Aileen Foreman

Mathematical Algorithms to Maximize Performance in Numerical Weather Prediction

Introduction

Numerical weather prediction models, which involve the solution of non-linear
partial differential equations at points on an extensive three-dimensional grid,
are ideally suited for processing on vector machines. It was logical therefore
that the new global forecast model to be implemented at the Meteorological Office
should be written in vector code for the Cyber 205.

In order to achive full efficiency and to reduce storage requirements the
model used 32-bit arithmetic which had been found to provide high enough precision.
Unfortunately, however, the trigonometrical and logarithmic functions provided
by CDC could only handle 64-bit vectors and, although written in efficient scalar
code, did not take advantage of the special facilities of a vector processor. It
was therefore necessary to rewrite the functions in vector code to handle both
32 and 64-bit vectors. There was also no half-precision compiler available for
the Cyber 205 at that time and so the functions, like the model, had to make
extensive use of the "special call" syntax. This made the code more difficult to
write but it allowed much greater flexibility in that it became possible to access
the exponent of a floating-point number independently of its coefficient.

This paper presents a description of the techniques and it summarises the
results which were achieved. One example, the logarithmic function, is treated
here in detail to illustrate the general approach to the problenm.

Derivation of logarithms

The coding for the logarithm function illustrates both the use of the way in
which floating-point numbers are stored and the use of linked triads to gain
additional speed.

To calculate Y= lg“(;r,) we divide the range of > into two, the first of
which is

a) x P d2 and x<AN2
2
We first write the value of x in a way which can be related to the format

of stored floating-point numbers. Thus, introducing two new unknowns 2 and «,
n being an integer and gwW< | o+ ve may write any number as o = 2"W.

Now the Cyber 205 stores the floating-point number as

2%% coafficiant - 29 20 r

5 where the
factor 2 is introduced by normalization.

Since for logarithms, ¢ must always be positive, for 64-bit numbers bit 17
will be on, 0 j = 46 and for 32-bit numbers bit 9 will be on, so j = 23.

Then relating the two, we have n=exp + J' and - fe

As an example, if x = 2.0 as a 64-bit normalized value
z= o 45 g 46

80 from the above formulae

N= _ﬁf“'f“ [} and u’-'oa

Here, we can obtain the values of A and w very easily as we can access
the exponent and coefficient of a number by using special calls.

The next step is to convert the functions into a suitable form for vectorizatiom
and this involves the introduction of a new variable

2 (w- AT |2
*lw + 422 vhich can be computed at the same
time as w .,
Then w:(nz) N
1-2 2
From the original definition

z:L"'V‘(ﬁ)
|-

thus z (o
10ge - = (n _'2:) Ige2 + Joge_(I‘-:iz)

b) For the 1_'emin1:.ng values of . , within the range 3 < X< o , the
value of 3 1is defined by: 2 >

2= xX-1/ 80 that xX= 1t &

x+ [y |
Then lofeX= lofe s N for 42 < x<AZ.
I+2 z 142
In each case, the problem then becomes one of vectorizing 3‘(?{ which

is easily done by replacing it with a truncated series which gives the required
degree of precision: P

logg(l+%) = Z cman-tl
-

mz0

where the constants ¢, are known.

en oge 4y) -

(L oz v)P Cg) 3™+)t r) 22a) 2™ Ca) 2

Despite its complicated appearance, this reduces to eight vector operations
consisting of a multiplication, six linked triads and a final multiplicationm
by 2 thus

Multiplication to give 2-

First triad = V1 = Cg2'+cg
Second triad = V2 = w1z +Ca
Third triad = V3 = Y22 +Cs ete.

Tests, using the 1.5 compiler, and a range of vector lenﬁths gave the
following results, with times being expressed in unita of 10-" seconds.

Vector length 10 50 100 200 500 1000 2000 5000

CDC logarithms] 55 .7 1.01 2.00 3.66 7.0 21.50
6h-bit vector L7 61 .78 1,12 2.16 3.87 7.47 20.15
logarithm

32-bit vector .53 .57 .65 82 1.34 2.20 3.99 9.66
logarithm

The first point to notice here is that the full increase in speed for
32-bit vectors is only achieved with large vector lengths. Because of the
overheads associated with the initiation of vector instructions, this is not
unexpected and is common to all of the functions to be described. What is
unexpected is that no improvement in speed was achieved for our 64-bit functiom
when compared to the CDC function. In this respect, this function is unique
among all those treated in this paper. However, the original aim of producing
a 32-bit version has been successfully achieved.

Exponentials

The exponential function is derived from the standard formula

2 3 e 16
=2 2" -2‘& ' chosen to make use of special calls. k, m and ¢
are defined as follows:

If n= ik [u,xl

108¢2
then R= utb[%] and m=n modulo 16 for x30
J
and Rz wabrn 1 and mz l6-n modulo 16 for <O
(]
; :(l‘;‘> -n
IOJC‘Z
. mlie
Now, since m is integer and O < m < lé , the factor 2 is

obtained from a look-up table of 16 elements of known values, using the "special
call' instruction Q8VXTOV,

Having found the integer & from the above formula, and :«’.m"6 from the
look-up table, to obtain the value 2™. 27/ = 2k+mue we add K to the
exponent part of 2™/'® by using special calls.

The factor . 2.6:“6

zFub i} Pg;a".;z" P.(§+ Po
(g - £+ nf-po)

where f is obtained as above and pPe, P, P3 are known constants.

ie given by

% o
Then, to obtain & all we need is a final multiply of 29'% py 2"*"/'

The following results were achieved, times again being given in units of
10 seconds.

vector length 10 50 100 200 500 1000 2000 5000
CDC expomential .35 .7 .93 1.b4 2,86 5.25 10.52 33.36
64-vit vector A7 6 .78 1,14 2,29 4,15 7.97 22.75
exponential

32-bit vector L7 .56 .68 .93 1.85 3,14 5.85 14.62

exponential

Here, for a vector length of 5000 the 32-bit exponential routine is only
4LO% faster than the 64-bit routine because of the use of the '"special call”
Q8VXTOV. However the 64-bit routine has achieved a considerable speed-up over
the CDC exponential.

The Hyperbolic functions

The routines to calculate the hyperbolic functions Y= coshx y,_g‘,‘nhz
and y= banh 2 use the following formula, !
cosh < = l(p,r' + &':')
<
The calculation of ¢ is as described e‘aj.crlier., During the calculation of < '
little extra work is required to obtain e which avoids the need to call the
exponential routine twice,

The hyperbvolic sine is given by

. %< -
senh x = _1_2.(@ -2) for j=x=lzo0.5
g x‘z,m-ol
vahx = e :
and 5 erron for (xl<o0.9
m=z=90

Here the two distinct cases are treated independently, so that we are dealing
with shorter vector lengths, and then the results are merged together at the end
of the routine. The polynomial expansion of sinh x can be performed in seven
vector instructions, by using linked triads.

The hyperbolic tangent is given by

am«i
Eanh x = 2 - for o< |x=|g0.12

[ag -84

tanhx = | - 2 for o0.\2 < |x|x 8.0

P2

tanhx =z 1.0 for a >18.0

tonhcs -1.9 for < ~-18.0

Again, the distinct cases are treated independently so that we are dealing
with shorter vector lengths, and again we can use linked triads when calculating
the polynomial expansion of Fanhx .

The timings of the hyperbolic sine and hyperbolic tangent routines are data
dependent, but some sample timings are given below. All times are expressed in
units of 10-4 geconds.

vector length 0 S50 100 200 500 1000 2000 5000
hyperbolic

cosine

64-bit vector .55 .79 1.08 1.68 3.45 6.41 13,26 37.65
32-bit vector 5S4 .69 .88 1.27 2.4k L. kb 8,72 22.99
hyperbolic

sinh

6h-bit vector .75 .99 1.30 1.96 3.88 7.27 14.87 Uu3.85
32-bit vector .72 .87 1.07 1.48 2.74 5.00 9.47 24,38
hyperbolic

tangent

64-bit vector .66 .87 1.15 1,68 3.33 6.01 11.79 34,83
32-bit vector b 73 .89 1.21 2.30 3.66 6.87 17.76

Again, we see that for very short vector lengths we do not have a great
advantage by using 32-bit vectors, but for longer vector lengths we are approaching
twice the speed of the 64-bit functions. There were no CDC functions available to
compare with our results.

Sines and cosines

The trigonometrical functions, y-sinx and y=zcos are calculated from
the polynomial expansion of sinx 80 that we can make use of linked triads
again. First the input argument needs to be reduced modulo 277 . This is achieved
by

letting T = 2 |xl and Tz ink| _2 |xl
ar I
then put 2T -y so that ©Osu<l.
and RzT, modulo 4
So sun(x) is given by
Stnx= Sen B for R=0O

sen (1 -=a) for =\

-s¢n 3 for k=2

-sin (I-%) for k=3

3
where s = Z Crm 2"'"" for 64-bit function
n=90
and the constants Cm are known.

Because the values C, and ¢y are too small to affect the accuracy of the
Z2-bit function results:

o

. am+| . .
sing = z CmZ for 32-bit vector function
ms

The cosine function is given by
cosx = st (.1.7.'4- z,> where s (Jz—_- -rr-) is calculated as above.

If it is known that the input operand, x, is always between -2 and +27
radians, much work can be left out of the routine;

1]

for as above let = 2 | =] and Ty = vab [zl:x.l_l
m

and S50 OS{L$3
and R= 1 modudo 4 « T2

and again 2:=T,-1, %0 Osz</|

So for R=7-0, = -T=1 six = sin(x) = sen(r)
for R=z-+y- l) T h-To=T -1 , s = “:"C"'z)= 5,;,,(1_,0
for R:T:-2 2=f-To= -2, sinx = ~sun(®) = zn(a-1)

for #=1y-3 2=f-T=1 -3 snm==sa(i-a) = sen (1 -4)

Thus we have two sets of functions, one set to calculate the sine and cosine
of any angle expressed in radians, and the other to calculate the sine and cosine
of angles between -27 and +27 radians.

The polynomial expansion of sin{(z) can be calculated in ten vector instructions
including eight linked triad instructions for the 64-bit function and in eight
vector instructions using six linked triad instructions for the 32-bit functioms.

_, Tests gave the following results with times given are expressed in units of
10 seconds.

vector length 10 S0 100 200 SO0 1000 2000 S000
CDC sine <15 .5 64 .91 1,72 3,07 6.13 22.98
64-bit vector 49 .59 .72 .98 1.74 3.02 5.59 14.98
sine (all angles)

32-bit vector L2 46 .52 .63 .98 1.57 2.76 6.35
sine (all angles)

64-bit vector .37 W4 .53 (72 1.27 2.20 4,07 10.04
sine (-2

to +27)

32-bit vector 3 .37 1 .50 75 1.20 2.09 4.78
sine (-1

to +20T)

vector length 10 S0 100 200 500 1000 2000 5000
CDC cosine .3 .55 .68 .99 2.08 3.29 6.68 23.59
64-bit vector .57 .60 .73 .99 1.87 3.19 5.9% 16.00

cosine (all

angles)

32-bit vector 69 47 .51 .63 1.0 1,70 2.9% 6.95
cosine (all

angles)

6h-bit vector 72 45 .55 .74 1,42 2.40 445 11,14
cosine (-2

to +2T)

32-bit vector 67 37 M1 50 .77 1.37 2.31 5.51
cogine (-AT

to +2T7)

Thus, we can see that we need a vector length of 500 to 1000 before our
64-bit routines for all angles are faster than the CDC supplied routines, but
that ocur 32-bit routines for restricted angles between -~ and 2T are
over four times as fast as the CDC routines for vector lengths of 5000.

Tangents

Similarly for the trigonometrical function, y=#%anx we have supplied
two sets of functions, one set to calculate the tangent of any angle expressed
in radians in both 64-bits and the other to calculate the tangent of angles
between -277 and +27 radians in both 64-bits and 32-bits. The tangent
function is calculated using a polynomial expansion of tan(x) to make use of

linked triads. The calculation is performed by first reducing the argument
modulo 1"

Let = .ﬂ'_ and 4= nt [l 4_1']
o ar
then 2=+ -1 so that ©Og=z<!

Now let s: + modulo 8, putting k=3 if Oss5s3
* and k:s-4 if 4<s<¥

ka.n(;c) is now given by

tan(x) = kan(z) for k=0
2 = | for k=1
ban(e-1)
- =1 for k=2
tan(s)
> tan (z2-1) for k=3
12
where fan(z)- Z Crp ™! to the required degree of precision.
mz9

Again, if it is known that the input operand is always between -ZTT and
+27 radians, we can write:

e Ax and 1, .t !ul
™ e

and s0 S¢v, ¢ ?

>

In this case $=T, modulo8 = v,

Then R=T1, where 0g +,4¢3
and s 1y~4 vhere +< r¢?

and the calculation continues as before.

The polynomial expansion of tan(z) is calculated in fourteen vector
instructions using twelve linked triads.

The resulting timings of tests are given below, expressed in units of 10~
seconds.

vector length 0 50 100 200 500 1000 2000 5000
CDC tangent 98 .73 .91 1.47 2.61 4.71 9,33 30.80
64-bit vector 90 .82 .99 1.35 2.55 4.48 8.k0 22.67
tangent (all

angles)

32-bit vector .96 .78 .90 1.14 1,92 3.219 5.59 13.29
tangent (all

angles)

6b-bit vector 67 76 .93 1.25 2.36 bL.1+ 7.74 20.64
tangent (-2m

to +2M)

32-bit vector 67 .70 .80 .99 1.76 2.9% 5.15 11.98
tangent (-2

to «2M)

10

These results show that we need a vector length of only about 200 befare
our 64-bit tangent function for all angles is faster than the CDC routine, and
that our 32-bit tangent function for restricted angles between -2T and

+2T radians is well over twice as fast as the CDC routine.

The Arctangent function

The arctangent function y=-aéan (x) is again calculated from a polynomial
expansion so that we can use linked triads., The calculation is performed as
follows:

For || 347 +I let w-=

-

)
[E
and for |=]|< AT +/ let - [

Change the variable to z, defined by
= - A
a +wal
where, a is chosen so that z = 1.0 when . /2'+!

Under this condition, az (1-¥2)+d 4 -242 , and is therefore a
constant.

Then atan(x) is given by
atan(x)=atan(z)+atan(a)

Here, atan(a) is a constant and need only be calculated once, and we may replace
atan{z) by the truncated series:

meoQ
For || » 421 , atan(x) =z _'le:" - a_l:an.(é)
and for x<0O , atan () = ~akan (<)

Atan(z) can be calculated in ten vector instructions, eight of which are
linked triad instructions. The results are in the range -F to +T (not
inclusive). 2 2

i The following results were achieved, times again being given in units of
10 seconds.

vector length 10 50 100 200 500 1000 2000 5000
CDC arctangent .38 .90 1.19 1.97 L.06 7.35 16.19 u46.09
64-bit vector A48 .52 .66 .92 1.91 3.07 5,77 15.23
arctangent
32-bit vector A3 49 (55 69 1.10 1.79 334 7.27
arctangent

These results are spectacular, in that the 32-bit arctangent functiom is

over six times as fast as the CDC routine and even the 64-bit version has given
a threefold increase in speed.

11

Derivation of arcsine and arccosine functions

The final trigometric routines to be considered calculate the arcsine and
arccosine of x. The calculations are performed as follows.

for Og¢x < /2 , let a=2¢ so that asin(x) = asin(z)

and for L ¢cx ¢ y let z = (l -Jj)yz' and asin(x) = Z_T_ 2 ann (*)
Z 2 z _
for ~1$x<O , asin(x) = asin(-x) and the same substitutions are used.

Now the new variable, z, must be between zero and 0.7 50 we may write

1]
. Ame |
asen () = MZ; Cma to the required degree of
precision. -

The arccosine function is derived from the arcsine using the substitution

acos(x) s T - asen(x)
2

The polynomial expansion of asin(z) is calculated in thirteen vector
instructions, eleven of which are linked triads. The range of the results for
arccosine is -7 to + 7 inclusive, and for arccosine is O to ™ inclusive.

2 2
The following results were achieved, with times expressed in units of 10'1*

seconds.

vector length 0 50 100 200 500 1000 2000 5000
CDC aecsine 5 .67 .87 1.27 2.6 4,73 9.64 29,84
64-bit vector .52 .61 .75 1,04 2.02 3.55 6.69 16.54
arcsine
32-bit vector Sh 51 .58 .73 1.37 2.25 3.91 9.1
arccosine

vector length 10 0 100 200 500 1000 2000 5000
CDC arccosine 26 .68 .89 1.27 2.41 4.35 9,16 28.55
64-bit vector .51 .61 .76 1.05 1.95 344 6.4 18,73
arccosine
32-bit vector A48 .54 .61 .76 1.25 2.07 3.66 8.59
arccosine

Here our 32-bit functions are over three times as fast as the CDC routines, for
vector lengths of 5000.

Conclusion

The trigonometrical and logarithmic functions, as provided by CDC up to and
including version 2.0 of the compiler are, in gemeral, not very efficient. At
the Meteorological Office, we found it necessary to hand-code these functions in
vector syntax to take full advantage of the facilities of the Cyber 205. For the
32-bit versions, which have a high enough precision for most of ocur purposes,
speed increases of up to six times were obtained and even for our 64-bit versions,

i2

increases of up to three times are possible. However, CDC have undertaken to
provide fully vectorized versions of the trigonometrical andlogarithmic functions
in both 64-bits and 32-bits by release 2.1 of the compiler.

The functions described were written in the "special call' syntax because
of compiler limitations and the difficulties associated with this were partly
offset by the special features which were then available. Users with the 2.0
compiler could find that the extra facilities provided by the "special calls"
do not overcome the difficulties involved with this syntax and that coding
explicitly in the FORTRAN vector syntax achieves sufficient vectorization for
their own purposes.

13

