
-N 84- 20 258

NASA Technical Memorandum 83605

Operating System for a Real-Time
Multiprocessor Propulsion
System Simulator

Gary L. Cole
Lewis Research Center
Cleveland, Ohio

Prepared for the
Summer Computer Simulation Conference
sponsored by the Society for Computer Simulation
Boston, Massachusetts, July 23-25, 1984

NASA

OPERATING SYSTEM FOR A REAL-TIME MULTIPROCESSOR

PROPULSION SYSTEM SIMULATOR

Gary L. Cole

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

The NASA Lewis Research Center is developing
and evaluating experimental hardware and software
systems to help meet future needs for real-time,
high-fidelity simulations of air-breathing propul-
sion systems. Specifically, the Real-Time Multi-
processor Simulator project focuses on the use of
multiple microprocessors to achieve the required
computing speed and accuracy at relatively low
cost. Operating systems for such hardware configu-
rations are generally not available. This paper
describes Che Real-Time Multiprocessor Operating
System (RTMPOS) that has been developed at NASA-
Lewis. The RTMPOS provides the user with a versa-
tile, interactive means for loading, running,
debugging and obtaining results from a multipro-
cessor-based simulator. A front-end processor (FEP)
serves as Che simulator controller and interface
between the user and the simulator. These functions
are facilitated by the RTMPOS which resides on the
FEP.

The RTMPOS acts in conjunction with the FEP's
manufacturer-supplied disk operating system that
provides typical utilities like an assembler, link-
age editor* text editor, file handling services,
etc. Once a simulation rs formulated, the RTMPOS
provides ft>r engineering-level, run-time operations
such as loading, modifying and specifying computa-
tion flow of programs, simulator mode control, data
handling and run-time monitoring. Run-time moni-
toring is a powerful feature of RTMPOS that allows
the user to record all actions talcen during a simu-
lation session and to receive advisories from the
simulator via the FEP. The RTMPOS is programmed
mainly in PASCAL along with some assembly language
routines. The RTMPOS software is easily modified to
be applicable to hardware from different
manufacturers.

INTRODUCTION

Simulations of complex dynamic systems require
a versatile interface between the user and the simu-
lation compuCer. In order to maximize the useful-
ness of the simulation as an engineering tool, the
interface should provide a user-friendly means of
programming, interacting with and obtaining results
from the simulation. In the past, different types
of computers have satisfied some but not all of
these requirements. For example, the use of analog
computing equipment provides immediate results and
an extremely versatile user/simulator interactive
capability. But programming and changing of the
program can be difficult. On the other hand, digi-
tal computers are more easily programmed but their
operating systems are generally not designed to pro-
vide the interactive capabilities needed for many
simulation tasks.

Simulations are becoming more sophisticated in
terms of the complexity of the systems being modeled
and in the level of model details being sought.
Therefore, the computer hardware and associated
operating systems that are needed to support these
simulation efforts, in real time, are also becoming
more complex. An example is the Real-Time Multipro-
cessor Simulator (RTMPS) being studied at the NASA
Lewis Research Center. The objective of the RTMPS
project is to develop and evaluate experimental
hardware and software systems for real-time inter-
active simulation of air-breathing propulsion sys-
tems. The RTMPS project is focusing on the use of
multiple microprocessors to achieve the required
computing speed and accuracy at low cost relative to
hybrid and main frame digital computers.

University grant and contract efforts related
to the RTMPS project are described in Refs. 1 to 4.
These include investigations of computer architec-
ture and related hardware requirements (l),
approaches to partitioning simulation models for
solution on multiple microprocessors (2,3) and
requirements for high-level programming languages
for multiple processor systems (4).

The NASA-Lewis in-house efforts, to date, are
documented in this paper and in Refs. 5 and 6. The
general multiprocessor simulator concept is
described in Ref. 5. The experimental hardware con-
figuration now in use at Lewis is described in this
paper and in Ref. 6 Reference 6 also describes a
high-level Real-Time Multiprocessor Programming Lan-
guage (RTMPL) developed at NASA-Lewis.

Although the RTMPS hardware is complex, it is
anticipated that the desired user/simulator inter-
face capabilities can be achieved through proper
design of the operating system. The purpose of this
oappr i<; to givp an overview of the design and capa-
bilities of the Real-Time Multiprocessor Operating
System (RTMPOS). The RTMPOS is designed to allow
highly-interactive, engineering-level programming
and operation of multiprocessor systems. It is
designed to be expandable and to minimize dependence
on specific manufacturer hardware. In the case of
the Lewis experimental RTMPS, the RTMPOS provides
special system tasks that operate in conjunction
with a standard, manufacturer-supplied disk oper-
ating system (DOS). This paper describes the multi-
processor architecture that is supported by the
RTMPOS, the general programming and operational
functions that are provided, and the RTMPOS struc-
ture that supports those functions.

GENERAL SIMULATOR CONFIGURATION

The Real-Time Multiprocessor Programming Lan-
guage (RTMPL, ref. 6) and the Real-Time Multipro-
cessor Operating System described in this paper are

designed to support the general simulator configura-
tion shown in Fig. 1. The primary elements in this
configuration are the multiple simulation channels
(1 to n), the Front-End Processor (FEP), and the
Real-Time Interface. The Real-Time Interface pro-
vides for communications between the simulator and
external devices (e.g. strip-chart recorders and
controls).

The FEP serves as the simulator controller and
the interface between the user and the simulator.
These functions are facilitated by the RTMPOS which
resides on the FEP. Data are transferred between
the FEP and the simulation channels via the Inter-
active Information Bus. The RTMPOS provides for
simulator run-time operations such as program load-
ing and modification, simulator mode control, and
data handling. The FEP also services the simulator
peripherals (terminals, disk drives, printers,
etc.). A manufacturer-supplied DOS provides typical
utilities like an assembler, linkage editor, text
editor, file handling services, etc. The resident
DOS has a multi-tasking capability (i.e. permits
many tasks to run concurrently in a time-slice
mode). This capability is essential to the RTMPOS
concept since the RTMPOS includes several tasks that
permit the simulator to send advisories to the user
via the FEP while the simulation is being run.

Each simulation channel (fig. 1) consists of
two processors—a computation processor (COMP) and a
preprocessor (PREP). Each COMP executes its
assigned portion of the simulation (an RTMPL pro-
gram) and serves to interface its channel to the
FEP. The PREP's also execute RTMPL programs and
provide for distribution of information from the
COMP's to the other channels via the Real-Time
Information Bus. Communication between the COMP and
PREP is accomplished through a shared memory. Each
simulator processor contains specially-designed
firmware (software burned into EPROMs) that facili-
tates communication between the FEP and the COMP's
and between the COMP's and The PREP's. The firmware
performs such functions as initialization and check-
out of the processor memory, data transfer, setting
the execution mode of the processors, sending inter-
rupts out to the FEP and, in some cases, timer
control.

One of the simulation channels (1 to n) is dif-
ferent from the others. It serves as a real-time
extension of the FEP. Its COMP is available to per-
form any real-time analysis required by the user to
support the simulation. For example, it may be used
to gather and process data from the other channels
which are then uploaded to the FEP by means of the
RTMPOS. The real-time PREP is used to distribute
data on the Real-Time Information Bus and serves as
controller for that bus. It is also responsible for
all timing and control of simulator operations.

The communication paths that are available in
the general simulator configuration provide a high
degree of programming flexibility. As a result, the
RTMPS implementation may be used to emulate a vari-
ety of multiprocessor systems. This flexibility
also means that the RTMPOS design can be viewed as
generic to a variety of multiprocessor systems that
are subsets of the general configuration shown in
Fig. 1.

Figure 2 is a photograph of the current NASA-
Lewis RTMPS experimental hardware, the FEP, and the
peripheral equipment. The NASA-Lewis RTMPS uses a
Motorola EXORmacs* Development System as Che FEP and
the resident DOS is Motorola's VERSAdos (7)*. The
FEP and simulator processors are based on the
Motorola MC68000 microprocessor with an 8 MHz clock.

FORMULATING A SIMULATION

An RTMPS simulation is formulated using the
RTMPL utility (6). The RTMPL allows the user to
program the various elements of the general Simula-
tor configuration in a high-level, engineering-
oriented language. As shown in Fig. 3, the output
of the RTMPL is assembly language source program
files (one for each processor that is being used in
the simulator) and a set of simulation data base
files that relate the simulation implementation to
the RTMPL source programs.

Each assembly source program includes items
such as executives, tasks, variables, constants, and
argument groups. Executives and tasks define the
executable part of the simulation. An executive is
like a main program that directs the computational
flow of that processor's simulation program. Tasks
are used like subroutines to partition a program to
improve its readability and versatility. An execu-
tive may perform tasks itself. Each program must
have at least one executive but tasks are not
required. Constants and variables are elements in
the simulation equations that are to be executed in
the program. Variables are typically time-dependent
variables such as would appear in a differential
equation. Because of the parallel nature of the
solution, some variables must be transferred to/from
other processors- An argument group is a set of
constants and/or variables that are grouped under a
single name for ease of reference. Argument groups
provide for large-volume data transfers between the
FEP and the simulator. One application would be to
periodically pass an argument group to a sampling
routine to obtain simulation results.

the s
the so
bler and linkage editor.

The data base files that are generated by the
RTMPL are files of records that are read by the
RTMPOS. These files contain all information about
the simulation that is necessary for the RTMPOS to
support interactive execution of the simulation.
There are files of information relative to each pro-
cessor program as well as files of globally-defined
items that can be referenced by all simulation pro-
grams. The kind of information typically included
in the data base is illustrated by the constant
record shown in Fig. 4. Constants are stored in
linked lists (hence the pointer "next") of records
that include the constant's name (ID), location in
processor memory (LOG), and its DTP — data type
(scaled fraction or integer) and precision (number
of words in memory). This information allows the
user to reference a constant (or other item) by name
and allows the RTMPOS to reference it in memory.

*EXORmacs and VERSAdos are trademarks of Motorola
Inc.

All RTMPL data base and program source/object-
code/ load-module files are saved on disk files that
can be manipulated by the RTMFOS. Once the simula-
tion has been formulated, the RTKPOS provides the
following general programming and operational
functions'

• Program Control
• Data Base Management
• Simulator Control
" Run-Time Monitoring
• Simulation Results Management
• Miscellaneous

DESCRIPTION OF RTMPOS FUNCTIONS

Data Base Management

The first step in a simulation session is to
load the data base from the RTMPL-generated disk
files into the FEP memory. The RTMPOS then uses the
data base to allow the user to interactively modify
and execute the simulation. The data base manage-
ment functions provide for

• Loading
Editing

• Saving
• Listing

of the data base. Editing refers to making changes
to the simulation at run time such as displaying/-
changing values of constants and initial condition
(1C) values of variables. Advisory messages may be
changed and additions, deletions or changes to items
contained in argument groups may be made* The data
base may be edited before or after the simulation
program load modules have been loaded into the sim-
ulator. In either case the simulation programs are
automatically updated by the RTMPOS to be consistent
with the changes in the data base. The original
data base and load modules on the disk files remain
unmodified. An edited data base may be saved by the
user either by overwriting the original disk files
or by creating a new set.

The RTMPL utility generates a listing of the
entire data base. Once the data base is loaded into
the FEP, the user has the option of listing all or
selected portions of the original or edited data
base.

Program Control

At run time the RTMPOS program control func-
tions are used for loading the program load modules
from the disk files into the desired simulator chan-
nels, activating the desired executive in each pro-
gram, and enabling or disabling tasks in the execu-
tive. The use of executives and tasks in struc-
turing a simulation program can provide the user
with a great deal of flexibility at run time. The
status of program executives and tasks can be
reviewed and changed by the user at any time.

Simulator Control

The user controls the simulator in much the
same manner as an analog computer. Three modes of
execution are available

STOP
RUN
HOLD.

In the STOP mode the simulator is halted and
simulation execution is suspended. Changes to the
data base are allowed only in STOP. While in STOP,
the user can specify which simulation variables are
to have their 1C or hold values set. 1C and hold
values are specified in the data base and they can
be changed by using the data-base editing commands.

In the RUN mode all simulation programs execute
repeated update cycles. The simulator stays in RUN
until the user executes the STOP command or the
simulation itself issues a halt advisory. The halt
advisory may be a user generated message such as
"SIMULATION HALT.' MAX TEMPERATURE EXCEEDED" or a
system advisory such as "SIMULATION HALT. DIVIDE BY
ZERO IN CHANNEL 2 PREP". All advisories are dis-
played on a user-defined message device (e.g., a

printer).

In the HOLD mode, user-selected simulation
variables in each program are held at the specified
values. After selecting the variables, the user
specifies the number of update cycles to be exe-
cuted. The simulation executes the update cycles
and then returns to the STOP mode and issues a "HOLD
MODE COMPLETE" advisory to the user.

Simulator control also includes initialization
of simulator hardware and user-specification of
timer intervals that control the execution of the
simulation (e.g., update time).

Run-Time Monitoring

This function allows a user to receive advi-
sories via interrupts from the simulator and to
record all commands that are executed and the
resulting actions that are taken during a simulation
session. The advisories can be user or operating-
system messages or they can be requests to read data
from the simulator. The messages are displayed on
the message device. The read advisories are built
into the simulation by the user. They are transpar-
ent to the user at run time and are automatically
serviced by special RTMPOS tasks.

A powerful feature of rur-time monitoring is
the self-documenting session history—a disk text
file that saves all user commands and resulting
prompts and messages from the RTMPOS. Any advisory
messages that occur are automatically entered into
the session history, as are user-generated com-
ments. The session history may be listed and edited
using the manufacturer-supplied utilities that are
resident on the FEP. Furthermore, a session history
may be executed by the RTMPOS. That is, commands
can be input to the RTMPOS from a session history
file rather than being entered manually from the
keyboard. This allows the user to quickly bring a
simulation to a previously obtained condition by
executing the session history from that session.
The user may also create a file with the text editor
that can be used to execute the routine parts of a
simulation session (e.g., loading a data base and
the simulator load modules). After the execution of
the session history is completed control is returned
to the user at the keyboard.

Results Management

Simulation results are obtained by means of the
read advisory that was mentioned in the previous
section. The user includes requests for sampling of
argument groups in the RTMPL source program. When
the simulation is running and a read advisory is
encountered, an interrupt is sent out to an appro-
priate RTMPOS task. Each channel has its own task.
The RTMPOS task transfers the argument group data
from the simulator to an auxiliary memory block in
the FEP. Whenever the simulator enters the STOP
mode, the RTMPOS converts the data to the proper
units using data base information, enters the data
with identification into a user-defined text file,
and clears the auxiliary memory. The data are coor-
dinated with the session history file by means of a
run number and an RTMPOS comment in the session his-
tory that indicates the number of data records that
were saved. The data may be listed using the FEP-
resident list utility.

Future enhancements in the results management
area are expected to include graphical display of
data and user-defined means for data analysis.

Miscellaneous

Once the RTMPOS has been invoked by the user
there are two ways to exit from it. One command
results in all RTMPOS tasks being permanently termi-
nated. A different command allows the user to tem-
porarily suspend the RTMPOS command task, perform
other tasks such as editing and listing a text file
and then resume the RTMPOS at the point that the
user left off. In the latter case, the simulator
can continue to run with any advisory messages out-
put to the message device to keep the user informed
of the simulation's progress. A "help" command is
also available that permits the user to view the
RTMPOS commands and a brief description of their
functions.

RTMPOS STRUCTURE

A rather complex software structure is required
to provide all of the RTMPOS functions that have
been described. The overall RTMPOS structure and
its relationship to the FEP/simulator is shown in
Fig. 5. As explained earlier, the RTMPOS resides on
the FEP (EXORmacs) and operates in conjunction with
VERSAdos. The RTMPOS interacts with the EXORmacs
utility software and with the peripheral equipment
by means of the file-handling (FHS) and the input/-
output ClOS) services. The RTMPOS block of Fig. 5
is shown in more detail in Fig. 6 to illustrate the
multi-task design of the RTMPOS. The major RTMPOS
tasks are the Command task and the tasks associated
with servicing the advisory interrupts that come
from the simulator. An auxiliary memory (131k
bytes) is used to provide a communication link
between the tasks as well as storage for advisory
messages and simulation-data results.

The RTMPOS command task processes all of the
user-entered commands. The user enters a command
for the desired function and is then prompted by the
RTMPOS for subsequent inputs. This task consists of
mostly PASCAL procedures with some assembly language
routines. The assembly language routines are used

mainly for moving information between the command-
task memory and other (auxiliary and COMP) mem-
ories. The assembly routines are specific to the
MC68000 microprocessor but should be easy to adapt
to other manufacturers' hardware. The PASCAL proce-
dures are generic except for the naming of files
(VERSAdos-specific). These procedures should also
be easy to adapt to other manufacturers' file-
handling systems. The PASCAL structured approach to
programming facilitated the design of the RTMPOS and
should also facilitate any additions and/or modifi-
cations to the RTMPOS. The present version of the
RTMPOS command task requires approximately 210k
bytes of memory. This includes the memory required
to support the data base for a relatively small
3-channe1 simula tion.

As shown in Fig. 6, each channel is assigned an
interrupt service task (l.5k byte), a message advi-
sory task (5k byte) and a read advisory task (Ik
byte). After receiving an interrupt, the interrupt
task determines the advisory type and then initiates
the appropriate advisory task. Each of these tasks
is written in assembly language and is specific to
the MC68000 microprocessor.

Enough auxiliary memory is reserved for 95 mes-
sages. If the allotted memory is exceeded the user
is notified by a system message and the oldest mes-
sages are overwritten. One hundred twenty-nine
kilobytes of auxiliary memory are reserved for
data. This is sufficient to save approximately 2500
argument group records, each containing 20 single-
precision items. If the allotted memory is exceeded
the user is notified by a system message. The simu-
lator continues to run but no additional data
records are saved.

One additional task that is not shown in Fig. 6
is a small (500 byte) assembly routine that is used
to temporarily suspend operation of the command
task. The user can then use the FEP for other pur-
poses (with or without the simulator running). The
user can resume operation of the RTMPOS command task
and interactive operation of the simulator at any
time.

At the present time the RTMPOS is designed to
accommodate a maximum of 10 simulator channels. The
NASA-Lewis experimental RTMPS hardware contains only
3. For a 10-channel system the RTMPOS would consist
of 32 tasks requiring a total memory capacity of
approximately 0.5 megabytes, including the memory
required for a large data base and the auxiliary
memory.

CONCLUDING REMARKS

The RTMPOS described in this paper meets the
goals of providing a user-oriented, interactive pro-
gramming and operations environment for a real-time
multiprocessor simulator. The RTMPOS acts in con-
junction with a manufacturer-supplied disk operating
system to provide the desired capabilities. A simu-
lation is first formulated using a high-level pro-
gramming language. The RTMPOS then provides for
run-time operations such as loading, modifying and
specifying computational flow of programs, simulator
mode control and run-time monitoring. Run-time
monitoring includes communication of simulator

advisories to the user and recording of a session
history file. The session history file is a power-
ful feature that records all user commands, perti-
nent RTMPOS prompts and messages and advisory mes-
sages from the simulator. The user can use the ses-
sion history file to review a session's progress
without having to take notes and to input commands
to the RTMPOS rather than entering them manually
through the keyboard.

The RTMPOS functions that are described in this

paper represent an initial design that has been pro-
grammed and debugged. Testing of this design with
the experimental RTMPS hardware was about to begin
at the writing of this paper. It is expected that
enhancements and additions will be made in the
future to allow user-defined data analysis routines
and graphical display of simulation results. Since
the RTMPOS is part of a research project, the
required improvements and their implementation will
depend upon the experience gained during the testing
phase. The PASCAL structured approach to program-
ming of the RTMPOS should allow modifications and
additions to be made with relative ease.

REFERENCES

1. O'Grady, E. Pearse and Wang, Chung-Hsien,
"Multibus-Based Parallel Processor for Simula-
tion," Proceedings of the 1983 Summer Computer
Simulation Conference, Society for Computer
Simulation, La Jolla, CA, 1983, pp. 371-375.

2. Daniele, Carl J. and MeLaugh1in, Peter W., "The

Real-Time Performance of a Parallel, Nonlinear
Simulation Technique Applied to a Turbofan
Engine," Modeling and Simulation on Micro-
computers- 1984, edited by Ray Swartz, Society
for Computer Simulation, La Jolla, CA, 1984,
pp. 167-171.

3. Makoui, All and Karplus, Walter J-, "Data Flow
Methods for Dynamic System Simulation A
CSSL-IV Microcomputer Network Interface," Pro-
ceedings of the 1983 Summer Computer Simulation
Conference, Society for Computer Simulation, La
Jolla, CA 1983, pp. 376-382.

It. Collins, W. Robert and Feyock, Stefan, "The Use
of ADA in Distributed Simulations," Proceedings
of the 1983 Summer Computer Simulation Confer-
ence , Society for Computer Simulation,
La Jolla, CA, 1983, pp. 364-370.

5. Blech, Richard A. and Arpasi, Dale J., "An
Approach to Real-Time Simulation Using Parallel
Processing," NASA TM-81731, 1981.

6. Arpasi, Dale J., "RTMPL A Structured Program-
ming and Documentation Utility for Real-Time
Multiprocessor Simulation," NASA TM- , 1984.

7. Glaser, Jay G., "The VERSAdos Operating Sys-
tem," Microprocessor Operating Systems, edited
by John Zarrella, Microcomputer Applications,
Suisun City, CA, 1981, pp. 9-1 to 9-20.

REAL-TIME INFORMATION BUS

EXTERNAL
DEVICES

i

\ F

REAL-
TIME
INTERFACE

J

| F

CH. 1
PRE-
PROCESSOR

• • •

J

1

CH n
PRE-
PROCESSOR

\

SHARED
MEMORY

FRONT-
END
PROCESSOR

j

1 F

CH. 1
COMP
PROCESSOR

• • •
CH n
COMP
PROCESSOR

i

i

INTERACTIVE INFORMATION BUS i
PERIPHERAL EQUIP.
DISK DRIVES
TERMINALS
PRINTERS
ETC.

Figure 1. - General simulator configuration.

PREP processors and
Real-time information
BUS

Floppy-disk drives

r1 Hard disk

•1

Shared memory

BFEP, COMPS
and interactive
information BUS

[£83-69501
Figure 2. - NASA-Lewis RTMPS experimental hardware.

DATA BASE FILES

USER

DISKh-

PROGRAM
SOURCE FILES

ASSEMBLER

PROGRAM
OBJECT

* FILES

LINKER

PROGRAM \
LOAD \
MODULE FILES-

PROGRAM

Figure 3. - RTMPL - generated simulation files.

NEXT: POINTER;

ID: NAME;

LOG: STARTING MEMORY LOCATION;

MEM: NUMBER OF MEMORY LOCATIONS;

DTP: DATA TYPE AND PRECISION;

SF: SCALE FACTOR (IF SCALED FRACTION);

PRM: PARAMETER (ADJ. OR FIXED) T OR F;

SIZE: ARRAY DIMENSION;

VAL: POINTS TO VALUE RECORD

Figure 4. - Details of data-base constant record.

FEP

VERSADOS (MULTI-TASKING DOS)

UTILITIES

FHS

IDS

RTMPOS

V D A T A \
"VBASE__\

DATA & CONTROL

INTERRUPTS

SIMULATOR

SIMULATION
PROGRAMS

FIRMWARE

| TERMINAL] | PRINTER | | DISK

Figure 5. - Overall FEP /simulator software structure.

RTMPOS

AUX. MEMORY

COMMUNICATION
INFORMATION

MESSAGES

DATA

COMMAND

CH. 1 ADVISORY TASKS

INTERRUPT
MESSAGE
READ

CH. n ADVISORY TASKS

INTERRUPT
MESSAGE
READ

SIMULATOR

INTERRUPTS

DATA

Figure 6. - RTMPOS task structure.

1. Report No

NASA TM-83605

2. Government Accession No 3 Recipient's Catalog No

4 Title and Subtitle 5 Report Date

Operating System for a Real-Time Multiprocessor
Propulsion System Simulator 6 Performing Organization Code

505-40-5B
7 Authors)

Gary L. Cole

B Performing Organization Report No

E-2023
10 Work Unit No

9 Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

11 Contract or Grant No

12 Sponsoring Agency Name and Address

13 Type of Report and Period Covered

Technical Memorandum
National Aeronautics and Space Adminstration
Washington, D.C. 20546

14 Sponsoring Agency Code

15 Supplementary Notes

Prepared for the Summer Computer Simulation Conference sponsored by the Society
for Computer Simulation, Boston, Massachusetts, July 23-25, 1984.

16 Abstract

The NASA Lewis Research Center is developing and evaluating experimental hardware and software
systems to help meet future needs for real-time, high-fidelity simulations of air-breathing pro-
pulsion systems. Specifically, the Real-Time Multiprocessor Simulator project focuses on the use of
multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost.
Operating systems for such hardware configurations are generally not available. This paper describes
the Real-Time Multiprocessor Operating System (RTMPOS) that has been developed at NASA-Lewis. The
RTMPOS provides the user with a versatile, interactive means for loading,running, debugging and
obtaining results from a multiprocessor-based simulator. A front-end processor (FEP) serves as the
simulator controller and interface between the user and the simulator. These functions are facil-
itated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's
manufacturer-supplied disk operating system that provides typical utilities like an assembler, link-
age editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS
provides for engineering-level, run-time operations such as loading, modifying and specifying com-
putation flow of programs, simulator mode control, data handling and run-time monitoring. Run-time
monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a
simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is pro-
gramed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily
modified to be applicable to hardware from different manufacturers.

17. Key Words (Suggested by Authors))

Operating systems; Multiprocessors;
Real-Time simulation; Interactive
simulation; Simulators

19. Security Classlt (of this report)

Unclassified

18. Distribution Statement

Unclassified - unlimited
STAR Category 62

20 Security Classlf. (of this page)

Unclassified
21 No of pages 22 Price*

'For sale by the National Technical Information Service. Springfield. Virginia 22161

National Aeronautics and
Space Administration

Washington, D.C.
20546

Official Business

Penalty lor Private Use. $300

SPECIAL FOURTH CLASS MAIL
BOOK

Pottage and Fees Paid
National Aeronautics and
Space Administration
NASA-451

NASA POSTMASTF.R: ir Undeliverahle (Srrti')n 15*
PoMal Manual) 1V> Not Return

