
N 8 4 - 2 0 2 5 9
NASA Technical Memorandum 83606

RTMPL—A Structured Programming and
Documentation Utility for Real-
Time Multiprocessor Simulations

Dale J. Arpasi
Lewis Research Center
Cleveland, Ohio

Prepared for the
Summer Computer Simulation Conference
sponsored by the Society for Computer Simulation
Boston, Massachusetts, Ju ly 23-25, 1984

rWNSA

RTMPL - A STRUCTURED PROGRAMMING AND DOCUMENTATION UTILITY FOR REAL-TIME MULTIPROCESSOR SIMULATIONS

Dale J. Arpasi
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

The NASA Lewis Research Center is developing
and evaluating experimental hardware and software
systems to help meet future needs for real-time sim-
ulations of air-breathing propulsion systems. The
Real-Time Multiprocessor Simulator (RTMPS) project
is aimed at developing a prototype simulator system
that uses multiple microprocessors to achieve the
desired computing speed and accuracy at relatively
low cost. Software utilities are being developed to
provide engineering-level programming and inter-
active operation of the simulator.

Two major software development efforts were
undertaken in the RTMPS project. A real-time multi-
processor operating system (subject of a companion
paper) was developed to provide for interactive
operation of the simulator. The second effort (the
subject of this paper) was aimed at developing a
structured, high-level, engineering-oriented
programming language and translator that would
facilitate the programming of the simulator.

The Real-Time Multiprocessor Programming
Language (RTMPL) allows the user to describe
simulation tasks for each processor in a straight-
forward, structured manner. The RTMPL utility acts
as an assembly language programmer, translating the
high-level simulation description into time-
efficient assembly language code for the
processors. The utility sets up all of the inter-
faces between the simulator hardware, firmware, and
operating system. All required interprocessor com-
munications (i.e., data transfers) are automatically
established by the utility. RTMPL simulations are
self-documenting since the utility produces
listings, error messages, warnings, and database
files that can aid in the debugging and running of a
simulation.

The RTMPL utility is written in Pascal. The
current implementation runs on a Motorola EXORmacs
Development System (host for experimental simulator)
and produces MC68000 assembly language code. The
utility can easily be retargeted for different
processors by changing the contents of a target
definition file. The RTMPL language (i.e., command
and operation set) is macro-based and can be
modified/expanded to meet particular simulation
needs.

INTRODUCTION

A Real-Time Multiprocessor Programming Language
(RTMPL) has been designed to aid in developing

multiprocessor simulation programs. The language
and its utility (translator) are targetable to
specific simulator architectures, processor-types,
and simulation requirements. To aid in portability
of RTMPL, the utility is written, for the most part,
in Pascal. Two simple MC68000 assembly language
routines are used for special system interfacing.
The RTMPL utility functions as an assembly language
programmer, accepting an engineering-level des-
cription of the simulation and translating it into
time-efficient assembler source code. The utility
provides program optimization and diagnostic in-
formation to the user via output listings. It also
provides operational information to the simulator
operating system in the form of database files to
facilitate real-time, interactive, running of the
simulation.

The RTMPL was developed initially to support
the development of a Real-Time Multiprocessor
Simulator (RTMPS) at LeRC. It was felt that rapid
turnaround of code generation would be required in
the process of testing and evaluating the simulator
and associated simulation techniques. In the long
term it is hoped that the demonstrated value of
RTMPL will help to promote the acceptance and use of
real-time multiprocessor simulation by the general
engineering community. This paper presents an over-
view of the RTMPL language and utility. The general
simulator configuration to which RTMPL is applicable
is described with emphasis on the simulator's in-
formation-transfer capabilities. RTMPL is described
in the context of the overall simulation development
effort. The targeting of code and the major utility
functions are discussed. A brief discussion of the
language is included to show how it reflects the
general RTMPS simulation philosophy. Finally, a
description of the utility's output listing is
presented and its usefulness for simulation opti-
mization and execution is discussed. A more
detailed description of RTMPL will be provided in a
detailed user's manual (to be published). It
includes a full definition of the language con-
structs and presents an example simulation with a
complete set of source and output listings.

General Simulator Configuration

The RTMPL language and utility were developed
to provide a means for programming a multiprocessor
simulator having the general configuration shown in
Fig. 1. Subsets of this configuration are also
supported. The general simulator consists of a
number of simulation channels. Each channel would
be directed to solving a portion of the simulation.
There are two special-purpose devices' (1) a

user-interface or front-end processor (FEP) which
provides for user interaction with the simulator,
and (2) a real-time interface which provides for
communications between the simulator and external
devices (e.g., controllers, actuators). Internal
simulator communications are accomplished via two
data paths. The Interactive Information Bus links
the FEP and simulation channels. The Real-Time
Information Bus links the real-time interface and
simulation channels. For noninteractive simu-
lations, both buses can be used for real-time inter-
channel data communications, thus providing the
potential for significant speed improvements
relative to a single-bus configuration. However,
for interactive simulation, the Interactive Infor-
mation Bus could be tied up servicing user requests
and would not be available for real-time data
transfers.

Each simulation channel in the general con-
figuration consists of two processors' a pre-
processor tied directly to the real-time bus and a
computational processor tied directly to the inter-
active bus. These processors communicate through
shared memory.

The general configuration allows a simulation
program to be segmented into 1 to N parts where N is
the number of channels. The computations for each
channel may be further segmented between the com-
putational and preprocessors. In this way, each
channel's computations can be speeded up, relative
to a single processor.

The RTMPL utility automatically sets up the
appropriate data transfers between and within the
channels. It does this using information contained
in operands that appear in the RTMPL source programs
(one for each processor). Transfer paths can be
specified in the source programs allowing any
processor to communicate with any other processor
via any information path. These features of RTMPL
allow the user to generate simulations that will run
on any subset of the general simulator. Subsets of
the general configuration are the results of elim-
inating processors and/or data paths from the
general configuration. RTMPL programs would be
targeted to a particular configuration based on
hardware availability or simulation requirements.

RTMPL Utility

The RTMPL utility functions under a disk
operating system. It is presently running under
Motorola's VERSAdos on an EXORmaco developraeit
system. The utility is specific to a particular
system only in the file identification format. The
utility is one of a number of utilities (either
developed at LeRC or furnished with VERSAdos) which
are currently being used for RTMPS simulation
development and execution. Figure 2 illustrates the
RTMPS utilities and how they are related. Simu-
lation development begins with the system-supplied
editor which is used to develop RTMPL source files.
These files define the simulation problem and
contain programs for each simulator processor. The
RTMPL utility translates the RTMPL source into
assembler-source files (according to information
contained in user-specified target definition files
that are described later). The system supplied
assembler and linker utilities then produce load
modules which are loaded into the simulation
processors (MC680001s in the RTMPS) by the

Real-Time Multiprocessor Operating System (RTMPOS)
at run-time. RTMPOS is a LeRC-developed utility and
is the subject of a companion paper (1). The RTMPL
utility also produces simulation-descriptive
data-base files for use by RTMPOS in providing
run-time initialization and interactive operational
capabilities. Finally, an RTMPL listing file is
provided which contains messages and source
interpretations to aid the user in developing
error-free, time-optimum simulations.

As mentioned previously, the RTMPL utility
makes use of target definition files to perform its
translation function. These files provide des-
criptions of the simulator configuration, target
processors, the target assembler, and simulator
logical states. Examples of processor information
contained'in the target definition files are
register specifications (number, length, and names),
available memory (starting locations and amount),
and value representations (single, double, or triple
precisions, and values used to represent the logical

constants TRUE and FALSE). The target assembler
information defines memory addressing formats
(scratch pad and array item access), pseud-
operations (data definitions, memory allocation and
reservation, library referencing), and special
assembler characters available for RTMPL-created-
names. Simulator logical states can be defined to
allow the user to access simulator firmware (flags
and latches), and processor status register in-
formation (overflow, result positive, negative,
etc.). Because the RTMPL utility produces assembly
language source files that are made up of general
macro statements, the target definition file must
specify which macros are available for the trans-
lation process. For example, should an integer
addition operation be required, the utility will
consult the appropriate target definition file to
determine which precisions and argument sources are
available for use in implementing the operation. It
will then select the add macro that is best suited
for time-efficient execution and insert the as-
sociated housekeeping operations (load, store,
precision conversion) as required. Similarly, if
the utility detects the need for data transfer the
target definition file is consulted to determine if
the appropriate transfer path is supported. This
translation approach allows the user to conveniently
target a simulation and be assured of obtaining
valid time-efficient code (limited by the efficiency
of the utility). However, this approach requires
that the user be familiar not only with the RTMPL
language capabilities but with the specific features
of the target simulator.

It is expected that target definition files
will normally be formulated by system programmers.
Any number of targets may be defined. Target
definition is a two-step process (1) writing time
optimized assembly language macros to support the
required RTMPL features, and (2) defining the
characteristics of the macros, using records that
are formatted according to RTMPL specifications.
Step 1 requires a talented assembly language pro-
grammer. Step 2 is accomplished using the SYSDEF
utility (fig. 2). This LeRC-generated utility
allows the system programmer to build, edit, and
list these records in response to prompts from
SYSDEF.

The RTMPL targeting capability offers a number
of advantages. First, it makes the RTMPL utility

independent of the target hardware. Thus, simu-
lations can be ported from simulator to simulator
with minimal effort. Second, it allows for future
expansion of RTMPL. Unary and multivariable
functions (e.g , trig functions, table lookups,
etc.) can be developed as inline macros and they
will be automatically included in the RTMPL system.
A library of procedures can also be defined in the
target definition files, permitting these procedures
to be referenced in RTMPL source programs. Finally,
the targeting approach permits full exploitation of
a target processor's capabilities. RTMPL supports
the boolean data type and three arithmetic data
types (Integer, Scaled Fraction, and Floating
Point), three arithmetic precisions (single, double,
and triple) and three operand sources (register,
memory, and immediate data). For example, it is
possible to define up to 81 addition macros thereby
ensuring that the RTMPL utility will be able to
select the one most appropriate during parsing.

The RTMPL utility is, in effect, an assembly
language programmer. A register assignment
algorithm is used to minimize loads and stores.
Scratch pad memory usage is automatically invoked
when sufficient registers are not available.
Precision conversions are also automated, as is
scale factor management, when required. All data
transfers (both asynchronous and synchronous) are
automated including the generation of transfer maps
and currency testing at the destination. These
features raise the development of multiprocessor
simulations to the engineering level.

RTMPL Features

RTMPL is a structured, high-order language
which is designed to facilitate the development of
error-free, time-efficient simulations. RTMPL
source is written by the user in four segments
control, global data, local data, and execution. As
shown in Fig. 3, separate source files are used to
store the control and global data segments. For
each processor to be used in the simulation, a
single source file (program) is used to specify the
local data and execution segments.

Control. In the control segment, the user
identifies all of the other source files in the
simulation and any output files. The user can also
specify options to govern the listing functions of
the utility. One somewhat unique option is DEBUG.
This option expands the listing to include all major
parsing functions and their results. It is par-
ticularly valuable during installation of the
utility.

Global Data. In the global data segment, the
user specifies the data that can be referenced
globally by any processor program. The data can
consist of messages and/or constants. Messages are
used to advise the user of programmed conditions
being met during the simulation execution. The user
can initiate these advisories using the RTMPL ADVISE
command. Constants may be specified by the user to
be parametric or fixed. Parameters may be changed
at run-time. Changing a global parameter causes it
to be changed in all programs in which it is
referenced.

Local Data. The local data can consist of
three segments constants, variables and argument

groups. A constant may be specified to be a simple
constant, a one-dimensional array of constants (data
table), or a parameter. Only a parameteric constant
may be changed by the user at run-time. Variables
may be specified to have any number of past values.
Past value retention is handled by the utility on
the basis of this specification. A variable may be
assigned a transfer path (either the real-time or
interactive information bus) to satisfy external
references. If the transfer path is not specified
the utility selects the real-time information bus.
Argument groups are used to pass arguments to/from
target library procedures. They are also used ex-
tensively by the operating system. Argument groups
consist of defined variables and/or constants. The
user-specified size of the argument group determines
the minimum number of items to be contained within
the group. The user may 'fill1 the group with any
number of items, up to the maximum, either using
RTMPL or using RTMPOS at run-time.

As appropriate, the user must specify data
type, precision, scale-factor and values for all
constants and variables. Except for values, the
RTMPL utility uses this information to insure
data-type compatibility and to recognize the need
for housekeeping operations when generating the
assembly language code. Values are used by the
RTMPOS for its various run-time functions.

Execution. The execution segments contain
statements that define the computations to be
performed in the simulation. The execution segment
is illustrated in Fig. 4. It consists of executives
and tasks. Executives contain the main simulation
functions. Two types of executives are allowed
background and foreground. Any number of background
executives can exist, but at least one is required
in each execution segment of each processor. The
background executive is the main computational
program of the processor. Any of the background
executives may be selected at run-time, through the
RTMPOS, for execution. Up to eight foreground
executives are permitted in each execution segment.
Foreground executives allow for programmed changes
in execution, in a priority interrupt environment,
based upon decisions made in the alternate processor
in the local channel. That is, the preprocessor can
be programmed to interrupt the background executive
and initiate a foreground executive in the com-
putational processor and vice versa. The execution
of foreground executives is accomplished using the
RTMPL ACTIVATE command.

Tasks are used to partition the executable
segment into parts which have some operational
significance. Tasks are re-entrant and may be
entered from any executive in the execution segment
using the RTMPL ENTER command. Tasks may be enabled
or disabled in executives or at run-time using
RTMPOS. The RTMPL DISPATCH command allows the user
to force a data-flow type of task execution. Any
task, referenced by the DISPATCH command, will be
executed when its external variable arguments become
available from computations on another processor.
These tasks are executed on a first-ready, first-
serve basis and dispatching continues until all
referenced tasks have been executed.

Tasks and executives are written in terms of
statements. There are three types of RTMPL

statements

equivalence
<VARIABLE > = <EXPRESSION >
conditional
IF <BOOLEAN CONDITION >

THEN .. ELSE . .
command
<RTMPL COMMAND > <COMMAND ARGUMENT >

The equivalence statement requires data-type
compatibility across the equal sign. In the con-
ditional statement the boolean condition may be a
boolean expression or a comparison of arithmetic
expressions, or a simulator logical state. The
'then1 and 'else' clauses may consist of one or more
statements. Some RTMPL command statements have
already been discussed. The complete set will be
described in the forthcoming RTMPL User's Manual.

Expressions may contain any operations defined
in the target file for the required data-type
Operands must be defined locally, globally, or
externally (in another processor program). The
expanded format for RTMPL operand specification
allows the user to reference, as an operand, any
variable or constant defined in the simulation by
specifying the channel name and processor type in
which the variable or constant is defined. External
reference of a constant causes the RTMPL utility to
create a constant of the same name in the local
program. External variable reference causes a
transfer map to be formulated for this variable in
its source processor program, and insertion of ap-
propriate data transfer macros in the source and
destination programs.

Output Listing

The RTMPL utility provides a comprehensive
listing that should aid the user in debugging,
optimizing and running the simulation. The listing
is organized into part>3 and the extent of the
listing is user-selectable. The first part of the
listing consists of an error scan of all source
programs. It identifies syntax errors with under-
standable error messages. For example

ERROR UNDEFINED VARIABLE FUELFLOW

advises the user that the variable FUELFLOW has not
been defined in the local data segment. Addition-
ally, the scan provides warning messages whenever a
precision conversion or scaling adjustment is
necessary for a variable or constant.

In the second part of the listing the RTMPL
utility interprets the program source files to allow
the user to verify the structure of the simulation.
Each statement of each executive and task is listed
along with its user or utility assigned label.

These labels are used to relate the RTMPL source to
the assembly language source generated by the
utility. Indentation is used to show the inter-
pretation of nested conditional statements. The
execution time of each statement, as determined from
the target definition files, is listed along with
the statement. Following the listing of each
executive and task, the total maximum path execution
time is listed. Finally, at the end of each program
listing, all external variables referenced in the
program are identified to indicate possible sources
of computational delay due to interactions with
other programs

The final part of the listing provides a tab-
ulation of the data-base, formulated for RTMPOS. It
contains extensive information, pertinent to the
simulation. This information is alphabetized and
formatted for convenient reference. Supplementary
listings of the resulting assembler source files are
available using a VERSAdos utility.

CONCLUDING REMARKS

A real-time multiprocessor Programming Language
(RTMPL) has been designed to aid in the development
of multiprocessor simulations. The RTMPL utility
(translator) is written, for the most part, in
PASCAL to enhance the portability of the language
and resulting simulations. The utility consists of
about 12 000 lines of code divided into 87 sub-
programs and requiring about 180 K bytes of resident
memory. The utility output is targetable allowing
for transportation of simulations between simulators.

The current version of the utility, running on
the Motorola EXORmacs system, requires about 20
minutes to translate and list a relatively simple
3-channel (6-processor) simulation. The long
translation time results from the multitude of disk
file accesses required by its targeting mechanisms.
A comparison of projected MC68000 execution times
using RTMPL generated code and a hand-coded version
of the assembly program showed that RTMPL is nearly
99 percent efficient assembly language programmer.

RTMPL is presently being used at LeRC to
program benchmark engine simulations for running on
the experimental RTMPS system. It is expected that
the current utility design will be frozen for the
duration of those tests. Experience gained using
this version will suggest design enhancements for
inclusion in a future version of RTMPL.

REFERENCE

1. Cole, Gary L. Operating System for a Real-
Time Multiprocessor Propulsion System Sim-
ulator. Presented at the Summer Computer
Simulation Conference, Boston, MA, July 23-25,
1984. NASA TM.

REAL-TIME INFORMATION BUS

SHARED
MEMORY

USER
INTER-
FACE
(FEP)

U

CH. 1
COMP.
PROC.

U

• • •

CH. n
COMP.

H
'i INTERACTIVE INFORMATION BUS S

Figure 1. - General simulator configuration.

INTERACTIVE EXECUTION

Figure 2. - RTMPS software utilities.

LISTING

SOURCE FILE

CONTROL
SEGMENT

SOURCE FILE

LOCAL DATA
SEGMENT
(PROGRAM #1)

EXECUTION
SEGMENT
(PROGRAM #1)

SOURCE FILE

GLOBAL DATA
SEGMENT

SOURCE FILE

LOCAL DATA
SEGMENT
(PRO GRAM #n)

EXECUTION
SEGMENT
(PROGRAM #n)

BACKGROUND EXEC'S FOREGROUND EXEC'S
StLtCT J _ „
(RTMPO cv ^i UAUV^ : ^iD>

| EXEC:<ID>OJ];

EXEC:<ID>[0];
<STATEMENT>

EOR; *
— .

[0];

•""

DU

•
•
•

/

:C:<ID> [8];

E;

n ACTIVATE <ID>

ALTERNATE
<EC:<ID>E];| PROCESSOR

EXEC:<ID>[1];

< STATEMENT
•

EOR; :

ENABLE/DISABLE <TASKID>
ENTER <TASK ID>
DISPATCH <TASKID> . . .

ENABLE/DISABLE

(RTMPO S)
TASK:<ID>;

I TASK :<ID>;

TASK:<ID>;
< STATEMENT >

EOR; *

•••

Figure 3. - RTMPL source files. Figure 4. - RTMPL source records - execution segment.

1 Report No

NASA TM-83606
2 Government Accession No 3 Recipient's Catalog No

4 Title and Subtitle 5 Report Date

RTMPL - A Structured Programming and Documentation
Utility for Real-Time Multiprocessor Simulations 6 Performing Organization Code

505-40-5B

7 Author(s)

Dale J. Arpasi

8 Performing Organization Report No

E-2025

10 Work Unit No

9 Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

11 Contract or Grant No

12 Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

13 Type of Report and Period Covered

Technical Memorandum

14 Sponsoring Agency Code

15 Supplementary Notes

Prepared for the Summer Computer Simulation Conference sponsored by the Society
for Computer Simulation, Boston, Massachusetts, July 23-25, 1984.

16 Abstract

The NASA Lewis Research Center is developing and evaluating experimental hardware and software
systems to help meet future needs for real-time simulations of air-breathing propulsion systems.
The Real-Time Multiprocessor Simulator (RTMPS) project is aimed at developing a prototype simulator
system that uses multiple microprocessors to achieve the desired computing speed and accuracy at
relatively low cost. Software utilities are being developed to provide engineering-level programming
and interactive operation of the simulator. Two major software development efforts were undertaken
in the RTMPS project. A real-time multiprocessor operating system (subject of a companion paper)
was developed to provide for interactive operation of the simulator. The second effort (the subject
of this paper) was aimed'at developing a structured, high-level, engineering-oriented programming
language and translator that would facilitate the programming of the simulator. The Real-Time
Multiprocessor Programming Language (RTMPL) allows the user to describe simulation tasks for each
processor in a straight-forward, structured manner. The RTMPL utility acts as an assembly language
programmer, translating the high-level simulation description into time-efficient assembly language
code for the processors. The utility sets up all of the interfaces between the simulator hardware,
firmware, and operating system. All required interprocessor communications (i.e. data transfers)
are automatically established by the utility. RTMPL simulations are self-documenting since the
utility produces listings, error messages, warnings, and database files that can aid in the debugging
and running of a simulation. The RTMPL utility is written in Pascal. The current implementation
runs on a Motorola EXORmacs Development System (host for experimental simulator) and produces MC68000
assembly language code. The utility can easily be retargeted for different processors by changing
the contents of a target definition file. The RTMPL language (i.e. command and operation set) is
macro-based and can be modified/expanded to meet particular simulation needs.

17. Key Word* (Suggested by Author!.*))

Program generators
Multiprocessors
Real-time simulation

19 Security Classlf (of this report)

Unclassif ied

18. Distribution Statement

Unclassified
STAR Category

20 Security Classlf (of this page)

Unclassif ied

- unlimited
62

21 No of pages 22 Price*

*For sale by the National Technical Information Service, Springfield, Virginia 22161

National Aeronautics and
Space Administration

Washington, D.C.
20546

SPECIAL FOURTH CLASS MAIL
•OOK i n n i

l Bu«in*M

Penally lor Privatt Utt, $300 Pocug* *nd fun Pwd
fiction*) Atronwttc* •
Spae* Admmittrttion
NASA-461

NASA POSTMASTER- If Undrliverihlc (Srrlion I SM
Poitil Mtnuil) 1V> Nut Rttutn

