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ESTIMATION OF DISCONTINUOUS COEFFICIENTS IN PARABOLIC SYSTEMS:

APPLICATIONS TO RESERVOIR SIMULATION

Patricia Daniel Lamm

Southern Methodist University

ABSTRACT

We present spline-based techniques for estimating spatially varying
parameters that appear in parabolic distributed systems (typical of those
found in reservoir simulation problems). In particular, we discuss the
problem of determining discontinuous coefficients, estimating both the
functional shape and points of discontinuity for such parameters. In
addition, our ideas may also be applied to problems with unknown initial
conditions and unknown parameters appearing in terms representing external
forces. Convergence results and a summary of numerical performance of the

resulting algorithms are given.
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1. Introduction

We present here our efforts related to the estimation of discontinuous
spatially varying coefficients in parabolic distributed systems. Although our
ideas are applicable to a wide class of problems in which the determination of
discontinuous coefficients is of importance (e.g., the propagation of waves
through layered media; the dynamics of beams with "discontinuous" elastic
properties), our work here is motivated by an inverse problem in reservoir
simulation commonly referred to as "history matching". The problem in this
case 1is to determine unknown parameters (such as permeability, porosity) that
appear as coefficients in model reservoir equations. "Optimal" choices of these
parameters should provide the best match between the observed and simulated
production history at one or more wells. Information about these coefficients
(functional shape and location of discontinuities) provides insight into physical
properties of the reservoir and can indicate the location of abrupt structural
changes; in addition, precise determination of these parameters is essential to
the process of accurately simulating and predicting reservoir behavior.

The governing reservoir equations describe mathematically the physical
and chemical processes occurring during primary hydrocarbon recovery or during
enhanced recovery efforts (secondary or tertiary forms of recovery). Mathematical
models vary widely depending on the physical process being described (miscible
or immiscible fluid flow, thermal or fluid injection, etc.) and the types
of observations available. Common to each model however is a system of rate
equations (derived from Darcy's law, which relates flow rate to fluid pressure
gradients) as well as appropriate conservation laws and equations of state.

The resulting dynamical system is typically distributed in nature and of para-

bolic type [17], [18]; unknown parameters quite often include the porosity of




surrounding rock, or the ratio of pore volume to total volume, and (relative)
permeability, which is the ability of the rock to transmit fluid [18]. Due to
spatial changes in underground structure, it is highly Tikely that these
parameters will vary spatially and contain numerous discontinuities.

In order to solve the inverse problem, data in the form of fluid pressure
(or flow rate) is collected at the wells and used in a numerical parameter
estimation process. There have been a large number of substantial contributors
to the development of theoretical concepts and numerical algorithms for the
history matching problem. An exhaustive list of related references would be
too lengthy to include here; instead we refer the reader to [18] for an excellent
survey of the outstanding efforts in this area. One numerical approach commonly
taken involves subdividing the reservoir into a grid of smaller blocks; constant-
valued parameters (which are allowed to vary independently from block to block)
are then estimated. Unfortunately, if accurate solutions are desired, the
grid size often must be quite small and thus the number of unknown parameters,
as well as the dimension of the state space, can be very large--as many as
50,000 parameters or more [17]. (This is an unfortunate consequence of the
fact that the parameters of interest--as well as state variables--are infinite-
dimensional yet computations must be performed in a finite-dimensional setting.)
Our goal here is to avoid some of the difficulties associated with the approach
described above. Specifically, our ideas involve separating the order of
state approximation from that of parameter estimation, so that the need for
an approximate state'space of high dimension does not impose the same require-
ments on the dimension of an approximate parameter space; this is accomplished
by searching for parameters in classes of functions with quite general spatially

varying representations. In order to focus attention on the problems associated




with estimating spatially varying discontinuous coefficients in this context,

we consider an archetypical model of (parabolic) distributed type that
admittedly is a simplified version of the fluid pressure equations associated
with reservoir simulation (see [17], [18], and the references therein); never-
theless the model selected here is a prototype that contains the essential
parameter-dependent terms for which we may begin our investigations. In the
sections that follow we define the model equations of interest and construct

an approximation framework in which we wish to consider the parameter estimation
problem. Convergence results are presented for problems associated with either
spatially distributed or "discrete" sample data. Finally, we discuss numerical

implementation in general, and in the context of particular examples.

It is our intent in this report to examine convergence properties and imple-
mentation problems associated with these methods; we do not address such important
questions as identifiability, observability, or general underlying properties

of the governing partial differential equation system.

The notation used throughout is standard: For I CR (the real line), we

shall denote by C(I;X) the space of continuous functions f: I + X with uniform

norm I- 5 by L2(I;X) we mean the usual space of square-integrable "functions"

w’

f: 1> X with L2 norm I'ILZ(I;X) and inner product <-, The Sobolev

> .
L2(I,X)

spaces Hp(I;X) and H%(I;X) are defined as usual (see, for example, [11]).

Whenever X = R, we shall simplify notation by writing C(I) and L2(I), respectively,

and, where no confusion results, by writing

(and <-,+>) for the norm (and
inner product) on L2(0,1). In addition, no notational distinction will be

made between a function f: I > R and its restriction to I, C I.
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2. The Parameter Estimation Problem

As our fundamental state system we consider the scalar parabolic distributed

system
B (£, = oy & (%) 2 (£.0) + Fltasr(), (6x)€ (0,T) = (0,1),
(2.1) u(t,0) = u(t,1) = 0,
u(0,x) = uo(x).

Here q and p are discontinuous (positive) functions representing the permeability
and porosity properties, respectively, of the fluid and surrounding rock; the
points of discontinuity in these functions correspond to abrupt spatial changes
in the physical flow region (such as might be associated with layered media).
Both q and p are typically unknown so we shall consider the problem of estimating
these parameters, as well as the function r, r(x)é Rp and the initial condition

Ug> from observations of the state variable u.

For ease of presentation in the arguments that follow, it is assumed that
p =1, although it is not difficult to extend our ideas to the case of non-
constant (and unknown) p. We detail in Remark 3.1 the minor modifications one
must make in the calculations found below in order to treat p as a functional

parameter throughout.

To simplify notation, we assume that q is discontinuous at one point only,

X = g, and that q is represented by

9= ¢; + Ha,




where ¢1 and $, are continuous on [0,1]; here H_ is the usual Heaviside function

g
on [0,1] given by Hg =1 on [g,1], Hg = 0 otherwise. There is a straightforward

extension of our ideas to the case where

0= EO < 51 < 52 < ... < Eu = 1, except that notational difficulties become
excessive. (We later demonstrate our approximation and estimation techniques

for multiple discontinuity problems in the section on numerical findings.) Given
the parameterization chosen for q we define the parameter vector y = (&, ¢y 5>
r, uO) = (s,uO) as an element of the parameter set I ¢ r = S><L2(0,1), where,

for m, m fixed,
(M) = (s = (£,07:85,1)€ R xC[0,1] xC[0,11 x L,((0,1)3RP) | & £(0,1),
s, € '[0,11, and 0 <m <400 < m
for i = 1,2, and x € [0,1]}.
Concerning T and the applied force f, we make the following (standing) hypotheses:

(H1) The parameter set I is compact;

(H2) For every r'e.Lz((O,l);Rp), the map t ~ f(t,-;r(-)): [0,T] ~ L2(0,1)

is Holder continuous with exponent o, 0 < o < 1.

(H3) The map r - f(-,+;r(+)) is continuous from L2((0,1); R") to L,((0,T) x
(0,1)).




The parameter estimation problem associated with (2.1) consists of finding a
parameter Y* e T that 1is "optimal" in the sense of providing the best match
between observed data and model solutions to (2.1). ATlthough a number of
criteria may be used to measure "fit to data," we consider first a least squares
criterion J that is defined in conjunction with distributed data: That iS,
given distributed observations aiG'L2(0,1) at discrete times ti e (0,T),
i=1,...,n, we seek y* € T that minimizes
1

[ et xsy)ulty,xsy) - a]-(x)|2dx

n
(2.2) dy) = ]
=10

over all ye r. For each (ti,x), the output map C(ti,x;y): R - R is assumed
to be continuous in v and’such that the mapping x - C(ti,x;y)w(x) is in L2(0,1)
whenever y e'L2(0,1). We note that data generally is not available in the
distributed form given here; often this difficulty can be handled by fitting

a curve (using linear interpolation, for example) to discrete data.

We also treat the problem of truly discrete data, i.e., &tje R is observed

-~

sample data at (ti’xj)’ j=1,...,n. In this case the parameter estimation
~%
probiem consists of determining y € I that minimizes a "pointwise" fit-to-data
criterion,
~ 2
I

n n
(23) ‘J(Y) = Z] JZ] ]c(tiaxj;Y)u(tisxj;Y) - u'ij




over y € T. The use of discrete sample data leads to increased technical detail
and additional smoothness hypotheses on Uy and f. We defer consideration of
this particular estimation problem until we have fully developed an approximation
theory for distributed estimation problems (i.e., identification problems with
cost functional J defined in (2.2)); our findings for the "pointwise" estimation
problem (involving 3) are then summarized in section 3.1 below.

Before we consider either of these estimation problems (where y € T is
unknown and to be determined), we shall first consider the existence of solutions
u of (2.1) for a given parameter y = (s,¢],¢2,r,u0)6 r. Defining

u(t) = u(t,:) € L2(0,1), we may rewrite (2.1) as an initial value problem in u,

u,. = A(q)u(t) + F(t;r), t € (0,T),

t
(2.4)

u(0) = ug -
Here q = o1 * H€¢2, F(t;r) = f(t,+;r(+)) and the operator A(q) is defined by
A(q)y = D(qDy) for v € domA(q) = V_, where

q

V= e H(])(O,l) | qdy € H'(0,1))

(throughout we shall use D to denote the spatial differentiation operator g% ).
We note that it would be natural, given the discontinuities in coefficients o
and q, to consider a weak form of (2.1) in order to relax restrictions on both

solutions and parameters. For this particular problem, however, we shall

insist that solutions u satisfy a continuity equation

(2.5)  (qou)(¢”) = (gbu)(c") ,

which represents continuity of stress across a transition point, &, between




distinct spatial regions (layers of porous media, for example). Given this
condition on u (which implies that qDu must be sufficiently regular to ensure
that point evaluations are meaningful), there is reason for seeking at least
strong solutions to (2.1). We have one additional comment along these lines
from a numerical point of view: It is of interest to note that we experienced
no difficulties in applying our state variable approximation ideas to the
forward problem (i.e., the problem of integrating (2.1), or a weak form of
(2.1), for a known value of y) for particular problems where the true state u
did not satisfy (2.5). It was not until we turned to the numerical solution
of the inverse problem (and, in particular, the problem of estimating £ itself)
that it became evident that one could not expect to estimate £ unless the
(physically meaningful) continuity equation (2.5) was satisfied by solutions
of (2.1). Therefore, there seems to be Tittle justification in considering weak
solutions of (2.1) in the context of the parameter estimation problem.

Our first result is a statement of existence and uniqueness of solutions
of (2.1); in addition, we indicate certain regularity properties of solutions

that wilil be useful in later calculations.

Theorem 2.1. Let vy = (£,¢],¢2,r,u0) be given in T and let q = ¢, + Hg¢2'

1
There exists a unique (classical) solution u to (2.1) with the property

that u(t)€ Vv for any t > 0. In addition, if u0€ Vq, then the map

q
t > A(q)u(t) is in C([0,T]; L,(0,1)).

Proof: It suffices to show that A(q) generates an analytic semigroup on
L2(0,1). From this we may guarantee existence of a unique solution u to (2.1)
(see Corollary 3.3, p. 113 of [27]); we may then apply the well-known smoothing

properties of analytic semigroups (see, for example, Theorem 3.5, p. 114, of [27]),




along with hypothesis (H2), to obtain the statement of the remainder of the
theorem.

We first show that A(q) is densely defined and self-adjoint. To this end

we note that V = {y€ L2_0,1)|w €,Hg(0,g),‘pe Hs(g,1)} satisfies

q -
Vq g,vq omA(q) (since gby(g ) = qD¢(£+) = 0); it is easy to argue that Vq
is dense in L, (0,1) if one uses the fact that H%ﬂ),g)and HS(E,]) are dense 1in
L2(0 £) and Lz(g 1), respectively. Using an integraticn by parts, it is not

difficult to show that A(q) is symmetric. To demonstrate that A(q) is self-
adjoint, it suffices to show [28; Theorem 13.11] that Range A(q) = L2(0,]); that

is, for g € L2(0,1), it is sufficient to-verify the existence of a solution to

(2.6) A(q)y =

that satisfies y € V Because one may readily see this is true (using standard

g
theory for two-point ordinary differential equation boundary value problems--
see, for example, Theorem 8.3 of [19]), it therefore follows that A(q) is self-
adjoint. In addition, A(q) is dissipative (since <A(q)y,y> < -mIDpr2 < 0 for
all y € Vq) so that a corollary of the Lumer Phillips theorem [27; p. 15] may
be invoked to argue that A(q) generates a Cy semigroup of contractions on
L2(0,1). Finally, since o(A(q)) € (-»,0), we may apply standard semigroup
theory [20; Theorem 7.12, p. 82], [27; p. 61] to conclude that A(q) generates

an analytic semigroup (analytic on the sector {x€ C | # 0, |argx | < % }).

The proof of the theorem is complete.

It is useful to note that if u is a solution of (2.1) then u also satisfies

(2.1) in a weak sense; i.e., u satisfies
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<ut(t),v> = - <qpu(t),pv> + <F(t;r),v>, t e (0,T)

for any v € Hé(O,]). Using this formulation we may argue the continuous
dependence of solutions on (possibly unknown) initial data. In fact, we may
actually show that the map v » u(tsy): T » L2(0,1) is continuous, uniform in t,
so that we are guaranteed the existence of a minimizer for J over the (compact)
set I'. As we also establish existence of an "optimal" parameter in Theorem 3.3
(and because we do not need the continuity of y -+ u(t;y) to make any of the

arguments given below), we state and prove only the result that follows.

Corollary 2.1. The mapping Uy > u(t;g,¢],¢2,r,u0): L2(0,1) - L2(0,1) is

continuous, uniform in (g,¢],¢2,r) € gand t € (0,7).

Proof: Let Ugs Ug be given in LZ(O’]) and define u(t) = u(t;g,¢],¢2,r,u0),
u'(t) = u(t;g,¢],¢2,r,u6). Using (2.7), we find that, for t>0,

<up(t) - up(t),v> = - <qd(u(t) - u'(t)),Dv>

for any choice of test function v in Hé; setting v = u(t) - u'(t)e Hé (from

Theorem 2.1) we obtain

1

72 Ju(t) - u'(1)]?

+m| d(u(t) - u'(t))l2 <0 .

In fact, using the Rayleigh-Ritz inequality [29; p. 5], it follows that

1 d

7 lue) - w1+ m? Jule) - w(e)]® <o

so that an application of the Gronwall inequality yields
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2
|u(t) - u,(t)IZ < e-Zmn t IUO _ u(n)lZ .

Continuous dependence of u(t;s,uo) on Uy uniform in s € $, thus obtains.

We are ready to consider the problem of unknown parameters, in the context
of the parameter estimation problems defined in this section. We note that
the problem of estimating an optimal parameter y*éi I must be combined with
schemes for solving (2.1); i.e., we must consider state variable approximation
as well as the problem of finding finite-dimensional approximations for unknown
functional parameters. In the sections that follow, we develop both state and

parameter approximation techniques with the goal of solving these problems.
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3. A Spline-Based Approximation Scheme

Standard numerical optimization schemes applied to the problem of minimizing
J (or 5) over T typically generate a minimizing sequence of parameter iterates,
starting from an initial guess, YO. However, schemes of this type generally
require that u(y) (the solution of (2.1)) be evaluated as the parameter y is
updated; it is therefore desirable to combine estimation of an optimal parameter
v* with approximation techniques for solving (2.1). With this goal in mind,
we describe a spline-based state/parameter approximation scheme in the same
spirit of the ideas found in [5], [9], [10], [12], [14], [23] to name a few
of the related references in this area for (continuous coefficient) parabolic
problems.

The convergence arguments developed below are similar to standard variational-
type estimates often used in association with finite element approximations (see,
for example, [29], p. 129) although the estimates given here are complicated
somewhat by the presence of unknown parameters. This variational approach was
taken in [10] and [11] for the problem of estimating continuous coefficients in
parabolic systems; we require a somewhat different treatment here primarily due
to the fact that we allow discontinuous coefficients, where the points of dis-
continuity are unknown (necessitating parameter-dependent approximation spaces
XN(q)). Thus, an interesting aspect of our approach (and often a source of
difficulties) involves the fact that our approximation spaces change with every
choice of parameter iterate. We note that although the theoretical problems
are quite different,'our construction of approximating spaces XN(q) is somewhat
similar to the ideas found in [2], [13], [16]1; there the problem was to esti-
mate unknown delays appearing in functional differential equations
(there is a correspondence between our treatment of an unknown point of dis-

continuity and the approach taken in those references to handle an unknown
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delay, at least from the standpoint of numerical approximation schemes).
We turn now to a precise statement of the approximation scheme under
consideration.

For any vy = (g,¢],¢2,r,u0)'€,r, we construct parameter-dependent spaces

., we define
th

and operators as follows: For q = ¢] + H€¢2 and N = 1,2,..

XN(q) = span{B?(q), i=1,...,2N-1}, where B?(q) denotes the i~ continuous

piecewise-linear B-spline basis element (satisfying homogeneous boundary con-
ditions) with knots at {x\(q), k = 0,...,2N}. Here xi(a) = KE/N, k = 0,...,N,
N

and xk(q) =&+ (k-N)(1-g)/N, for k = N+1,...,2N. The piecewise linear

elements are characterized by BN(q)(xE) =6, for i,k =1,...,2N-1

i ik
N

(B?(q)(O) = B.(q)(1) = 0); see Figures 1- 3.

W-1 &5 Xn

Figure 2. B

==
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Figure 3. BY, 1= N+1,...,2N-1.

We remark that in general, for v, ; €randagq= ¢1 + H£¢2, q = &1 + H§$2, we

do not have XN(q) §_XN(5) or XN(a) §:XN(q), nor do we have XN(q) C V_ (note

q
that although an element wNéf XN(q) does have a discontinuity in its first
derivative at ¢, wN does not satisfy the continuity equation (2.5)
associated with q. The approximation spaces XN(q) are chosen so
that the resulting parameter estimation algorithm enjoys a number of computational
advantages, especially when £ is unknown. We take a general Galerkin approach
to define approximating state systems and then obtain convergence findings by
working directly with the weak form of these equations. As an alternative
approach to that taken here one could define approximating operators AN(q) for
A(q) and investigate the sense in which AN(q) "converges" to A(q) (see, for
example, Example 2.2 of [22],or [23], for approximating operators that might
be used in this context).

For ye r fixed and N = 1,2,..., we seek an approximation to u(t;y) of the

N -1y N . ) N
form u (tsy) = [ wi( 1.(q), where the "Fourier coefficients" ws are

. i
i=1
determined via the system of ordinary differential equations (ODE),

t;v)B
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0
~—
v
n

- <qpu’(t5v), 98} (q)> + <F(t;r), BY(a)>, te€ (0.7),
(3.1)
= <ug, BY(q)>

O’ -i b

0
~—
v

|

for i = 1,...,2N-1. Alternatively, uN satisfies

<uN(t,Y),v> = - <unN(t;Y),Dv> + <F(t;r),v> , t € (0,T),
(3.2) t

for all v €ZXN(q); here PN(q): L2(0,1) > XN(q) denotes the orthogonal projection

L

(with respect to the usual L, topology) along XN(q) . Associated with (3.1)

is an approximate estimation problem, namely that of finding QNEE r that minimizes

1 N ~ 9
DXy )ut(tsy) (%) - v (x)[Tdx

over I', where uN(y) is the solution of (3.1) corresponding to y € T.

h approximate problem (3.1), (3.3)

i

Our initial findings concerning the Nt
are immediate consequences of the fact that (3.1) is an ODE on X (q) and that
the basis elements B?(q) (and their spatial derivatives) are continuous in g
(see (4.1) for a more explicit matrix representation of (3.1)). We shall defer
a more detailed examination of (3.1) (and the implementation of the estimation

scheme associated with (3.1), (3.3)), until Section 4 where our numerical

findings are summarized.

Theorem 3.1. For each N and any y € T', there exists a unique solution dN(y)

of (3.1), u(tsy) € xN(q). In addition, the mapping v » uM(t3y): T ~ L,(0,1)

is continuous for each t € (0,T).
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Corollary 3.1. For each N, there exists a solution ?N € T for the problem of

e e e N
minimizing J  over T.

Finally, a simple modification of the proof of Corollary 2.1 yields a

similar statement concerning the continuous dependence of uN(t) on uy:

Corollary 3.2.  The mapping uy - uN(t;(s,uO)): L2(O,1) - L2(0,]) is con-

tinuous, uniform in N, s= (g, ¢],¢2,r‘)€ $, and t € (0,1).

An essential step in the process of correlating state variable approximation
*
with the problem of estimating an optimal parameter y € T (for the original

parameter identification problem) is the establishment of the convergence of

uN(t;yN) to u(t;y) for any sequence {YN} in I that converges to y € I'. We shall

clarify the need for arguments of this type in the proof of Theorem 3.3. To
facilitate steps in this direction, we shall first establish linear spline

estimates, the proof of which are in the spirit of [29; pp. 16-17, 78]. In

N N N N N N

what follows we assume that {YN} is given in T, v = (g 20730557 ,uo), with

YN >y = (E,$],$2,F,GO) € T (in the usual product topology on r); in addition,

we assume there exists & such that 0 < 6 < £ <1-38 <1 (and, in the case of

multiple discontinuities, ]Ek - Ek_]] >8>0, k=1,...,u). Given
qN = ¢§ + H N¢g’ we shall henceforth simplify notation and abbreviate
PN = PN(qN), XN z XN(qN), and xﬂ = xE(qN), k = 0,...,2N.

Lemma 3.1. Let y be given in Va, where q = $] + Hg$2. There exist constants

¢, and Cys independent of N, such that

1

(3.4) v - PN < N2 [a@)l
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and, for N sufficiently large,

-1
l

(3.5)  |n(y - PYy)| < N [A(g)y].

Proof. We shall denote by INw the Tinear interpolant of y, with knots at

E, k=0,...,2N; that is, INw(xE) - w(xE), k=0,...,2N. We find that
2
I(p-2"%) |2 = <Dy, p(p-1M)> - (z%),D(p-1")>
where N
N %k
N N N N
<D(17y), D(yp-1'y)> = kz] IN D(I7y)D(y-1"y)
Xk-1
N
= - Z f (1) (p-1Vy)
k=1 xk 1
=0.
Thus,

ID(w-INw>|2 = <Dw,n(w-INw)>
N
2N x
LS K Gy p(y-1")

EI-—'
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where we have used (2.16) of [29; p. 17] in the last estimate. It therefore
follows that

(3.6)  [p(u-1)| < (maN)™! |AG@)y]

and, again using (2.16) from [29],

(3.7)  |2-y] < (mrN%)" a@)u]

To establish (3.4), we use properties of the projection PN to note that

2

lo-PNy| < o=y < N2 JA@)y] -
1

Finally, ID(w-PNw)I_i |D(w-IN¢)| + ID(INw-PNw)l, where an application of the

Schmidt inequality [29; p. 7] yields (for N sufficiently large)

N N 2 2N X NN 2
ID(x p-P )" = T [ [p(xw-P y)]
KE1 N
k-1
N
2N -2 X N 2
<12 7} (xN-xN_ ) fk 1zp-PNy |
Lo X ™ Xy
= N
k-1
2
<12 (N/6)? |1Ny-pNy |
so that
19(u-PY9) | < [pu-tNy)| + 273 (n/s) [2Ny-PNy|

ID(w-INw)l + 2/§(N/a){|1N¢-¢| + Iw-PNwI}

IA

2
|

| A

(ma) " A@)] + 47T (V6)eqN 2 AGE)v]

N |AG@)y]

IA

€

for an appropriate choice of the constant Coe
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We may now use the linear spline estimates derived in Lemma 3.1 to

establish a preliminary convergence result.

Lemma 3.2. Suppose {y'} is given in T such that VAN (E,$],$2,F,GO)<E r.
Assume, in addition, that DO €,Va, where q = 5] + HE$2. Then, for every

t € (0,T),

UN(t§‘YN) -~ u(t;y) in L,(0,1)

N

as N - » (where uN is the solution of (3.1) associated with v" and u is the

solution of (2.1) associated with y).

Proof. Let u(t) = u(t;y), uN(t) = uN(t;yN). Then

W) - u(e)] < Jue) - PMuge)] + PNu(e) - u(e)]

where the second term is O(N_z) from (3.4) (u(t)e Va for t € (0,T); Theorem 2.1).

To consider the first term, we note that solutions u(t), uN(t) of (2.1), (3.1),

respectively, satisfy (2.7) and (3.2) for any vE XN C H(])(O,l). Using these

equations it is easy to see that

<u¥(t),v> + <qNDuN(t),Dv> - <FN(t),V> - (<é% PNU(t)aV> + <qNDPNU(t)’DV>)
=0 - (<é% PNu(t),v> + <qNDPNu(t),DV>)

+ <ug(t),v> + <qu(t),pv> - <F(t),v>

where F(t) = F(t;r), FN(t) = F(t;rN), and qN = ¢? + H N¢2’ It thus follows
g€

that

< WMy - PMuce)),vs = - «q"oraie) - PNuct)), pvs

+ < (ut)- PMu(t)),vs + <aput) - g'opMu(t),ovs + <FV(t) - F(t),vo.
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N

Letting v = u"(t) - PNu(t) € XN, we argue that
72 1) - PMu(e) |2 < - mip(u(e) - PMue) |2
| & () - Plue))] fue) - Pty
+ ()™ aou(e) - Mo(pMu(e))]) (2m o(uce) - Pu(en)
FN( | 1) - PNuge)]
<318 - e + L fasuce) - gMotelucen?
+ 5 [P0 - F0)12 + (o) - Puce)?
where we have repeatedly used the inequality ab < & (a® + b%). Defining
wit) = |uN(t)- PNu(t)|?, the above estimates reduce to
Ny - ale) < | L uie)- PN |? + 2 Japuce) - oo(pu(e)) |2

+ 1PVt - Fe) |2

so that an application of the Gronwall inequality yields

W) = [ue) - PRu() |2 < €T (N e+ N oy
< I
where
N _ N Y
o = a0, - PMu(os7) |
rg = é | é% (s3Y) - PNu )] dS
N_ 1 -
13 % 5 é laou(s.y) - "0 (PMu(s:7))] %ds
-

/
0

lF(s;rN) - F(s;?)\zds.
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From hypothesis (H3), it follows that TZ +0as N+, We are also able to

argue the convergence of r? to 0 since r] |P - PNGOI f_lug - Ul

To consider rg, it is useful to note that, for v fixed in XN, the function

<u(t) - PNu(t),v> is identically zero (from the definition

N N

defined by gN(t)
(t) = <u (t) - Lo

of PN) so that 0 u(t),v>. But this is true for every

vV E XN and all t € (0,T), so it must follow that é% PNu(t) = PNut(t). Thus,

T
= é lug(s) - PNut(s)Ist

where, for each s € (0,T), the integrand converges to zero as N -~ «; this claim

may be verified using (3.4) and the factthatut(s) €'L2(0,1) and
Va is dense in L2(0,1). ‘The integrand is dominated by Zlut(s)l2 where s - ut(s)
is in L,((0,T), L,(0,1)) (Theorem 2.1). It follows that <ty - 0.

Finally, for N sufficiently large,

T T
meh < [1@- q")pu(s) |2 + / la"p(u(s) - PMu(s)) |2
T N
§26I )= #Pou(s) |? +4[ |Hz (3, - 65)Du(s) +4[l -HN)<¢>2 pu(s)|

2 T
R oluls) - Pu(s))|?

2
|

| A

- 2 2, T -2
4 (I¢]-¢']“I ¥ |¢2-¢2‘|m> é Du(s)|® + 2 [E-¢"| é |pu(s)|?

T
- 1.2 -
+ (Te N [ A@)u(s) |2
T 2
where we have used (3.5) in the last inequality. Further, [ [Du(s)|® =
0

T g T 4T
é <pu(s), du(s)> <m é <qDu(s),bu(s)> <m [ |A(qQ)u(s)]| |u(s)| < =

o
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(since ﬂo € Va) so that rg +0as N+ o,

Finally, it is possible to 1ift the requirement that GO belongs to Va and

to prove a more general convergence theorem.

Theorem 3.2.  Assume {yN} is given in r, yN = (gN,¢']\l,¢g,rN,ug), such that

WNa3= (£,9705575Uy) € T. Then, for each t € (0,T),

MNies) > u(ts7) dn Ly(0,1)

as N » «,

Proof. Let € > 0 be given and define q = $] + Hééz, sN = (&;N,¢¥,¢g,rN), and
s = (2,51,52,?‘). Since Va is dense in L,(0,1), there exists y € Va sufficiently

close to GOE L,(0,1) so that we may argue that

[Mesy™) - uttsH] < s u)) - Nt

+ uMes M) - ults(GLe))]

+ Ju(ts(s,v)) - ults(s,uq))]

for N sufficiently large.
Here we have used the continuous dependence of uN, u on initial conditions
(uniform in s\, 5, and N), the inequality |ug -y < |ug - ugl + luy - ¥], and

the findings in Lemma 3.2. The proof of the theorem thus obtains.
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N to u)

To this point, we have focused on state variable convergence (of u
once the convergence of any sequence of parameters has been guaranteed. In
reality, however, we have yet to establish whether any sequence of solutions
{?N} for the approximating estimation problems is indeed convergent; even then
we have no assurance that the Timiting parameter y is in fact a solution to the
original parameter identification problem. In our next theorem we consider this
problem and indicate when an approximate estimation problem may be used numer-

ically to compute an approximate solution for the original problem. The proof

of the theorem is similar to ideas found in [12], [14].

N

Theorem 3.3.  For each N let v denote a solution for the problem of minimizing

* =N -
JN over I'. There exists y € I and a subsequence {y k} of {YN} such that
.y =Ny *
(i) ¥ ® >y in the product topology on T,
=N
(i1) uNk(t;y k) -> u(t;y*) for each t € (0,T),

Nk _N
(iii) 9 (5 K *

) -~ J(y ), and,

*
(iv) y 1is a solution to the original parameter estimation problem,

namely that of minimizing J(y) over T.

Proof. Parts (i)- (iii) are immediate consequences of hypothesis (H1),

and Theorem 3.2. To prove part (iv) it suffices to note that

Ny _N
lim J K3 ©)
Nk—>oo

J(y )

Ni
Tim J K
Nk—>oo

Y)

| A

= J(y)
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Nk Nk

- - * . .
for any yE T (y = is a minimizer for J = over I'), so that y 1is a solution for

the problem of minimizing J over T.

Remark 3.1.  Although it has been assumed in our discussion so far that p = 1,
there are no difficulties associated with extending our ideas to more general p

(p =wq * HEKZ, (K],Kz)e K = {(K],K2)€ C[0,1]1xC[0,1]|0 <m < K < m}).

For example, it is easy to see that the arguments used in the proof of Theorem 2.1

change very little if, instead of A(q) and the L, inner product, one considers

O |—

the operator B(p,q) =

1
<p,z> = [ pyz. For each N and YN = (gN,¢N,¢N,rN,uN,K¥,KN) given inT (T a
o0 12927 UKok

A(q) and the weighted L, inner product defined by

compact subset of S><L2(O,1)><K), we may define approximating equations in the

variable uN(t) € XN(qN) by

<pNu2(t),v> = - <qNDuN(t),Dv> + <F(t;rN),v> , VE XN(qN)
Moy = PNl

N N N N
where p = k, + H ,x, and
17 e 2ndq

= ¢? +H N¢g’ To establish convergence of aY to u
y 12
(as yN > v) one may make a simple modification in the proof of Lemma 3.2 to

argue that
mju(t) - PMu(e) |2 < [eMEN ) - PMuce)))?

) - NN 2
ce2T{T?+ T§+ 12+ Iput- o P utl

}

where the r? are unchanged from that lemma and the last term converges to zero.
Because all other estimates remain unchanged, we are able to derive an analog
to Theorem 3.3, i.e., we are able to treat the case of a general (possibly

unknown) parameter p.
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Remark 3.2. To this point, we have developed an estimation theory based on state
variable approximation only; that is, we used uN to construct an approximate
fit-to-data functional JN which we then tacitly assumed could be minimized

(numerically) to obtain an "optimal" ?N

€ r. Of course, one cannot actually
use a computer to implement such a parameter search since I is in fact a
functional parameter set (y € I contains the functional components $1290575Ups
K],GNd Kz). The problem of further approximating the parameter set T has been
the subject of recent studies (see [10], [14], and [23]); we shall summarize,
in particular, the results of [14] as they pertain to the problem at hand.

For ease of presentation we shall assume that k, ugs Kqps and Kk, are known
(there is an easy extension of these ideas to the case where these functional
parameters are unknown) so that y = (g, ¢], ¢2) is the vector of parameters to
be estimated. Since we use cubic B-spline approximations to approximate the
functional parameters in our numerical examples (Section 4), we shall restrict
our attention to a theory based on cubic splines only; a more general theory

may be found in [14]. To this end, we take the (mcre regular) parameter set T

to be a subset of
S(mi) = (s = (2, &), ¢,) € [5, 1-61 x C'[0,1]

C][O,1]|0 <m < 6.(x) <m for x € [0,1],

¢ 6'H2(0,1), and IDZ¢1! <m, i=1, 2},

(s € (0,1) is fixed) and assume thatT is compact in the R x C][O,l] X C][O,l] topology.
For each M we define the finite-dimensional (approximate) parameter sets
"(r); here i ¢ R x €'[0,1] x C'[0,1] — R x €%[0,1] x €°[0,1]

rMpy M = 4
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Mog

is given by iM(a, ¥ ¢2) = (g, I IM’£¢2) whiere IM’EQ is defined to

'|$
be the (unique) cubic spline function &(x) satisfying @(xr) = ¢(XE) ,

lg) s Da)(xl\sz) = Dq’(ng) (See, for exampte,

Chapter 4 of [29]). The knots XE are the & - dependent knots described earlier

in this section, i.e., xr = kg/M, k=0, ..., M, xﬁ = £+ (k-M)(1-£)/M for

k=0,1, ..., 2M, and o&(xg) = D(x

k = M+1, ..., 2M. We remark that we are also able to construct a parameter
approximation scheme based on a uniform mesh (of mesh length 1/M) for components
¢T, ¢§ of (g, ¢T, ¢g)eﬂiﬂ however, as is true with the approximation of state
variables, the resulting numerical scheme is greatly simplified if the mesh
depends on £, as well as on M. We shall defer to Section 4 a more detailed
discussion on computational features of the resulting algorithm.

It is not difficult to use the ideas of [29; Chapter 4] to argue that, for
fixed M, the mapping (£,¢) — IM’g¢ : [, 1-6] x C][O,l] — C[0,1] is continuous
and thus T is compact in the R % C[0,1] x C[0,1] topology. In addition, given
e & (0,m), we may use a variation of [29; Theorem 4.5] to see that, for M > m

sufficiently large (the choice of M is independent of ¢),
0 < m-e < e, <m+e,

for all £ ¢ [s, 1-6] and all cbeHz(O,]), |D2¢Iir_n, m< ¢(x) <m. Therefore, for
M sufficiently large, FM is a parameter set satisfying all conditions needed
(namely I‘M e $(m-e, mte) and PM satisfies hypothesis (H1)) order to apply
the parameter estimation/state approximation theory developed thus far. 1In
particular, for each N and M > @, there exists a solution ;N’M to the problem
of minimizing JN over FM. From the construction of FM (and the compactness

of T) we know that there exists a sequence {QN’M} in T with ?N’M = 1M(§N’M)
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k’MJ

N Nt x
and a subsequence {y } such that ¥ —> y €T in the R x C[0,1] x

_ J
C[0,1] topology. In addition, YNk’M satisfies

“Ne M J
Mk (MeoMy < gNk(y), yer"

from which it follows immediately that
Ni =Ny < N oM any
(3.8)  J™(y ) =9 (i7" (¥)) , yer

Appdying arguments very similar to those in [14], we may use the convergence

of |iM(y) -y|_— 0asM— «, uniform in y € T [29; Theorem 4.5] to see

- J * :
that lyNk’M -y |,— 0 as Nk,MJ — « and that, passing to the limit in (3.8),

* ~

(3.9) Jy) 2Jd(¥), vy er.

*
The parameter y is thus a minimizer for J over . We summarize these findings

below.

N,M

Theorem 3.4 Let FM iM(F) and let ¥y’ denote a solution to the problem of

_ J
minimizing.JN over rM. Then there is a subsequence {yNk’M } of {?N’M} such
- J * *
that yNk’M — vy , where y 1is a solution to the problem of minimizing J over T.
In fact, any convergent subsequence has as its limit a solution to the original

estimation problem.

3.1. Approximate Estimation Problems Associated with "Discrete" Data

It is possible, under additional smoothness assumptions on solutions, to
use variational-type estimates (similar to those found above or in [10], [30])
to argue pointwise (in x) convergence of state variables; i.e., uN(t,x;yN) >

u(t,x;y) whenever YN ~y, for (t,x) € (0,T) x [0,1]. Results of this type
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lead naturally to a statement about the approximation of a solution for the
probiem of minimizing the "pointwise" fit-to-data criterion 3 (see (2.3))
over I'. We shall briefly summarize our findings below.

It is not surprising that for this formulation we require additional
smoothness assumptions on the parameters. Specifically we take y = (s,uo) erT
where T is a subset of I = §><H8(0,1), and § = {s= (a,¢],¢2,r0 €S|
ID¢1|m.i M, i = 1,2}.

In addition to hypotheses (H1) - (H3), we make the following assumption
(which in general may impose additional constraints on parameters and the
applied force f):

(H8)  For any y € T, the mapping s > u (s3y) is in L,((0,T); Hg)(O,])).

Defining approximate state spaces XN(q) as before, we seek approximations

uN to u, where, for any given y = (g,¢1,¢2,r,u0) €T, q=¢; ¢ H£¢2,

uN(t) = uN(t;y) satisfies

<u,'§(t),V> = - <unN(t),DV> + <F(t;r),v>, te€ (0,T),

(3.10)

(0) = 2M(a)y,

N oSN N . . . N 1 N
for all v€ X'(q); P differs from P defined in (3.2) in that " : HO(O,I) - X" (q)
is the orthogonal projection in the Hé(O,]) (rather than L2(0,1)) topology.

It is not difficult to see that there exists a unique solution uN(y) of (3.10).
In addition, for each (t,x) € [0,T) x [0,1], the mapping vy - uN(t;y)(x) is
continuous (in the $ x Hé(O,]) topology on vy).

The convergence result that follows is a pointwise analog of Lemma 3.2.
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Lemma 3.3. Let {y} be given in T such that v + 7 in the § x Hy(0,1) topology,

y = (5,51,$2,F‘,G0)6 r. If GOG Va, then uN(t;yN) + u(t;y) (as N - =) in the

Hé(O,]) topology, uniform in t € [0,T); here uN(yN) and u(y) are solutions of

(3.10) and (2.1) corresponding to YN and vy, respectively.

Proof: We shall write u" = M(t3vN), u = u(ts7), q" = ¢¥ + H£N¢g’

q = 5] + Hgaz, PN - F(t;rN), and F = F(t;r) throughout. We note that

N

-u)| < ]D(uN -Iu)| + [D(IN

|D(u u - ul

so that, using (3.6) and the fact that u(t) € Va for t > 0, it suffices to

show |D(uN - INu)| > 0as N+ =,

Using (3.10), (2.7), and arguments similar to those in the proof of

Lemma 3.2, we may argue that, for v €.XN = XN(qN),

<u§ - INut,v> + <qNDuN - qNDINu,Dv> = <uy - INut,v> + <qDu - qNDINu,Dv>
+ <FN - F,v>
and in particular, using v = u? - INut,
|u§ - INut|2 + <qND(uN - INu), D(uﬁ - INut)>
5_%—|ut - INut|2 + |u2 - INutl2
+ % IFN- F[2 + <qDu - qNDINu, D(ug - INut)>.

We thus find that
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7 == (@M - M) % - 2<gou - Mot p(u - Mu)>

1 N 2 .1 N 2 = NN N N
<3 Iut - Tlug| t s |[F"-F|® - <qDuy - g DL uy, D(u” - Thu)>

where we have used the fact that é% INu = INut; it therefore follows that
N N 2 2 N N N - N N
+ 0'4 + 05 + 06 [
where
oq(t) = |apu(t) - q'orMu(e)|”,
2
og(t) = |D(uN - Thu)(t)|” ,
T
N N 2
0'3 = [ |U -1 Utl s
T
N _ N 2
Oq = f |F - FI
0
02 =-2 f <@ - q") )Duy p(u" - 1Mu)>
and
N T N N NN
og = = 2 [ <q Dlu, - 1 “t)’ p(u” - 17u)>
0

Using (3.6) and arguments like those for rg in the proof of Lemma 3.2, we

find that
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o(t) < 2/(3 - qM)ou(t)|? + 277 |n(u - 1) ()2

2k(N) [Du(t)]|? + 27 (mmN)~2 1A@)u(t) |2,

| A

where

; ; _2
K(N) = 4013y - |2+ 13, - o312 +20° [E- ']+ 0 as s e

Thus, for t € [0,T),

N 2
0](t)

| A

2k(N) sup_ [ou(t)]? + 2i(men) 2 sup  |AGR)u(t)]
te[0,T) €[0,T)

mn

5 N
1°

Considering cg and cg, we find

Gg(t)‘i sup ]D(uN - INu)(t)I2
te[0,T)
and
T T
N 4T N m N ;2
Usiﬁé 1(q@ - a")pu,| +ﬁélD(u - T'u)|
4T T 2. NN 2
<=5 k(N) [ |puy| +7 osup_ [p(u - Thu)(t)]“.
0 te[0,T)
In addition, we may integrate by parts to show that
N
2N T x
og=-2 1 [ % o - tMuat - M)
k=10 XN
k=1
N
2N T x
_ k N N., N N N
= 2 k§1 é [N (up - T7ug ) {0 D(u" - T7u) + q" - 0}




2
t|2 +<g sup |D(uN - INu)(t)I ,

where we have used |D¢?|~5 m, i = 1,2. Therefore, from (3.11),

T sup In(u - My (e) |2 < (e 10l + () oMl - 1)|2
te[0,T)

_2_ -
+ (8m Tm 1, 1)02 + oﬂ

+ 4Tk(N)m" ! j pu, |2,

where 5?, 02 +~0as N - ». We may apply (H4) and standard spline estimates

(see, for example, Theorem 2.4 of [29]) to also show that oN +~ 0 as N » =.

3
N - 2

It remains to consider |p(® ug - 1 Ug We note, using the properties of

P , that

N N N-

[D(27ug - 17uq)| Nl

- - N-
|p(P ug - pN u )|+ |p( pN u0 - uo)l + |D(u0 -1 u0)|

| A

I A

N _ - N- -
[D(ug - ug)l + 2[D(27uy - uy)l,

where each term converges to 0 as N - «» from the convergence of ug to GO in

Hé and (3.6). The proof of the lemma thus obtains.

Finally, we prove a more general convergence result.
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Theorem 3.5. Let {YN} be given in I with yN >y €T in the § x Hé(O,]) topology.
Then, for each t € [0,T),

a"(esv") > u(ts3) in Hy(0,1)

as N » o,

Proof: We first demonstrate the continuity of the mapping

uy > u(t;(s,uo)) : H(]) > H(]), uniform in t€ [0,T) and s € §. Let Ugs ube Hg)

and u = u(t;(s,uo)), u' = u(t;(s,u('))). For any ve Hg,

%ut - U,V = - <q(du - pu'),pv>
. _ o 1
so that, using v = Uy uté HO’
0<fu -u?=-) 4 - u))?
- 17t t 2 dt

Applying the Gronwall inequality, we find that
la®(u - u)(8)]% < Ja"D(uy - up) |,
or that
p(u-u")(8)[% < " D(uy - un) |,
so that the continuous dependence result obtains.

We may construct similar arguments to demonstrate (using (3.10)) that

ID(uN(t;uO) - uN(t,u(')))lzi ﬁlm-]lD(PNuo - PNu('))l2
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so that the mappings u, ~ UN(t;(S,UO)): Hé > Hé are also continuous, uniform
in t, s, and N.

Let {YN} be given in T with YN + Y, wherey = (5,51,52,F,GO) e€T. To
argue the convergence of uN(t;yN) + u(t;y) in Hé for arbitrary ﬁo € Hé (using
estimates 1ike those in the proof of Theorem 3.2) we need only demonstrate that
V-, q = $1 + H-$2, is dense in Hé. To this end,nlet e > 0 and y be arbitrary

q &g
in Hé(o,l) and define ¢ = ¢ - h where h is given by

v(E)X/E, x € [0,E]
p(x) x € (£,1] .

Here p is a quadratic polynomial satisfying p(1) = 0, p(g) = v(g), and
pp(2) = q(£7)w(E)/Eq(E") (it is easy to show such a p exists, under the condition

£ #1). It is clear from the construction of h that we have h&€ Va, @ e-Hé(O,]),

and §(x) = 0 for x = 0,E,1, so that € H(0,E), ¥ € Hy(E,1). From the
definition of Hé, there exists ;!G CS(O,E) and £2<E CS(E,]) such that

N -2 =~ 42 . ..
|y - c]I < e/2 and |y - ;ZI : < e/2. Finally, defining z on [0,1]
H

}(0,%) Ho(E,1)
by ¢ = ¢y + h on [0,e], ¢ = g, + hon (,1], it is easy to see that ¢ € V-

(c e H(])(O,l), qDz € H](O,E), QD € H1(§,1), and gDz is continuous at x = &)

2 R Y .
and [y - ¢ = |y - ¢ + |y - ¢ < g¢. Therefore, V- is
[ 111002 2|12 3

0(0,1) 5(0,E) o(Es1)
dense in Hé(O,]) and the proof of the theorem is complete.
Finally, we return to the problem of (approximately) determining a
minimizer 7* for the (pointwise) least squares criterion 3. The proof of our
final result uses the estimates derived in this section, following the proof

of Theorem 3.3.
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N

Theorem 3.6. For each N, let v denote a solution for the problem of

N N L N -2
minimizing J° over r, where J"(y) = } 7} [C(tesxsy)u™ (texasy) = u. s
i=1 3=1 J 1 Y
~%
N is the solution of (3.10) associated with yeT. Then there exists y e T

N % =N
k"'Y,Jk(»

and u
-Nk N - Ny 5 -
and a subsequence {y "} of {y'} such that vy y ') ~>Jd(y ), and v

is a solution for the problem of minimizing J over T.

One may also easily modify the arguments given above to include p as a
parameter (see Remark 3.1) and to prove a "double approximation" result

similar to Theorem 3.4 for both the state and estimated (functional) parameters.
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4. Implementation and Numerical Findings

A desirable feature of the spline-based scheme developed in preceding
sections is the ease of implementation of the approximation ideas, especially
when the points of discontinuity £y i=1,...,u-1, for coefficients are unknown
and to be estimated. In what follows we describe how the particular state
approximation framework chosen here serves to facilitate (from a computational
standpoint) the parameter estimation/approximation process. We conclude the
section by presenting our findings for some representative test examples.

We begin by examining the approximating ordinary differential equation

(3.1) rewritten here in terms of wN(f;y) = (w?(t;y), wg(t:y), cees ng_](t;y))T,
where the w?, defined in Section 3, are the coefficients in the expansion
2N-1

uN(t;y) = ) w?(t;y)BN(q). Using this notation, the ODE may be written

= i

- MWy +eVi),  te(o,T)

O
=
-3
=
—
ot
~—
n

- N
Q) = Wg

N N N

Q; ;5 = <Bj(a), Bj(a)>
N N N

K_":’| = <QDBJ(Q)a DB] (q)> s

while the perturbation term and initial condition satisfy

tsv) = (<F(tsr), BY(@)>, ..oy <F(t3r), Bhy 1(a)>)T

and
I
)

Wy = wh(v) = (@) (cugs BY(@)>, L.ty <ups Bhy.q(a)>

respectively.
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Implementation of a computational scheme to estimate (approximate) para-
meters in (4.1) is greatly facilitated by the choice of basis elements for the
Nth approximate state space XN(q). In order to best indicate some of the advantages
of this approximation framework, we first consider the special case where only
q is unknown, where q = 64 + H£¢2, and 9 and ¢, are constants. First, it is
easy to see how our choice of a linear spline approximation scheme yields matrices

N and QN that are quite simple in structure: For a given value of q, the inner

K
products appearing in these matrices may be determined from explicit formulas

(depending on N and £), a few of which are given here. For example, diagonal

entries in the (tridiagonal) matrices QN and KN are given by
N .
Qi 5 = 2/3N,  i=1, ..., N1,
N
QN,N /3N,
of 5 = 201-g)/3N, i =N, L., 2N,
(4.2) KV . = 2ng, /e i= N-1
. i,i 1 ’ s s >
N
(4.3) Ky y = Noj/e + N(gy + 4,)/(1-¢)
and

(4.2) K?’i = Mgy + 6,)/(1-), i= N4, ..., 2N-1

with similar representations for off-diagonal elements. We note that we are

able to avoid time-consuming and error-producing numerical quadratures; in
addition, our approach is more desirable (from a computational point of view)
than a method based on a uniform mesh size. For example, if for each N we simply
subdivide [0,1] into units of 1ength-% (so that position of £ is not taken into
account) the matrix QN will be fixed throughout the estimation process; this

however is at the expense of considerable added difficulties associated with
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evaluating entries in KN. Using a uniform mesh, some of the inner products

must be "broken up" at the point &, e.qg.,

1
N N
DBi + (¢]-+¢2) Jg DBj

N

N
DBi R

3
<qu3'\.‘ , 38Y> = o, Jo o8}

requiring (multiple) numerical quadratures every time that q (and thus &) is

updated. In contrast, with the z-dependent structure chosen here we need only

recombine simple algebraic expressions (such as those given in (4.2) - (4.4))

to obtain the elements of K.
Many of these computational advantages are still present in the case where

the ¢; are not assumed to be constant. If, for example, M and N are fixed

and PM consists of cubic spline element approximations for oy 99 (defined

g-dependent mesh of points XE ; see Section 3), many of the quadratures may

still be performed in advance of the iterative process. In particular, if we

k M)
Tet ¢ % Yn.m & (x) for n=1,2, where GM are the usual cubic B-spline
basis e]ements def1ned using the mesh points {xk » k=0, ..., 2M} , we find that
K? j = <qMDBN, DBN> may now be written as
k(M) k(M)
N M M. N N M M M. N N
(4.5) Ky 5= mg] ,m “aP85 DBi>L2(O,£) ¥ mZ1 om * Y2,n) OB DB?>L2(E,])

Since simple explicit algebraic expressions (in terms of ¢ and M) exist for

Gm , the quadratures in (4.5) may also be worked out easily in advance (yielding

expressions involving £, M, and N); as g-iterates are updated (i.e., coefficients

Yr,m are updated) it becomes a simple task to calculate the new entries in KN.
We consider here numerical examples where y* is known and we have generated

synthetic data for use in testing our ideas. In all examples presented here,

we assume that r and ug are known and fixed at their true values so that only

q = ¢, + H€¢2 is unknown (i.e., v = (&, $1s ¢2)) and to be determined. The special
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problems associated with estimating this discontinuous coefficient have been the
focus of our efforts throughout; the problem of identifying continuous functional
parameters and initial conditions has been considered elsewhere [13], [14], [16].
For each example that follows, both y* and u(Y*) are selected in advance while
the appropriate forcing function f is artificially determined by substituting

y*, u(y*) into (2.1). For chosen sample times ti’ i=1, ..., n, and sampling
locations X s j=1, ..., n (discrete data is used for these examples), data

.3 y*) » With random noise added in some

J
cases. We note that the sample data is not generated using our

is generated by setting aij = u(ts, x

spline-based scheme; rather, the data is constructed from an analytic expression
for the solution and thus is independent of the methods we illustrate here.

We begin the parameter estimation process by supplying an initial guess of
YO to IMSL's minimization routine ZXSSQ (a Levenberg-Marquardt algorithm) which
numerically attempts to determine a minimum, for given N, to SN (using ¢ = 1
in (2.3)) over a fixed constraint set FM. Here uN(y) is the solution to (3.1)
calculated using IMSL's DGEAR, an ODE solver, where the known values of Uy and
f are used in the equations. We note that although we are actually using the

cost functional associated with discrete observations uy the approximating

j?
equations (4.1) differ somewhat from those defined in Section 3.1: Indeed it
is not surprising that, in practice, we obtain pointwise convergence of the
approximating states under hypotheses more general than those needed in Section
3.1 so that we may, in fact, relax some of the restrictions on the approximating
system.
Example 4.1. In our first example we take

q*(x) i 15,  , 0<x<.6

.6 < x

50. , 1

I A
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and define u(t, «; Y*) € dom A(q*) by

. x(70-100x) (£2+2) , 0 < x < .6

U(t,X; Y ) = 2
(15-15x)(t™+2) , .6 < x < 1.

In examples 4.1.a - 4.1.c below we seek to estimate y = (&, ¢7> ¢2)€I‘§;R3

(with true value vy = (.6, 15., 50.)) using an initial guess of v = (.8, 30., 30.).

In each case we obtain the converged values ?N for N=4, 8, 16, and 24, using

YO to start the iterative scheme for N=4, and previous converged values as start-

4

ups for N=8, 16, 24 (e.g., y 1is used as initial guess for the N=8 run).

*

 Example 4.1.a. Data is generated for this example using ﬁij = u(ti, xj; vy )

for ti = .57, i=1, ..., 4, and»xj = .13, j=1, ..., 9. Our findings are reported

in Table 4.17.a.

Example 4.1.b. We repeat the last example except that spatial sampling locations

are now given by xj = ,1j + .05, j=0, 1, ..., 9 (so that there is no spatial

*
observation point at £ , the point of discontinuity). We summarize our results
in Table 4.1.b. and note that there is little change between this example and

Example 4.1.a.

Example 4.1.c. We repeat Example 4.1.a,but add noise to the data. In this

- * .
case we define u.. = u(ti, xj; Y ) + r.. where {rij} are Gaussian random numbers

1] 1]
which (with 98% certainty) fall in the range [-.06u, .06U], G = ) Gij/(nﬁ).

i,J

OQur findings for this example are summarized in Table 4.1.c.
In the examples that follow we shall shorten our discussion by
abbreviating the length (and number) of tables and by displaying some results
graphically. The rather detailed presentation given for Example 4.1 was pro-

vided simply for the purpose of observing if noise in the data or changes in

the placement of data effected the outcome.
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24

16
24

.623
.602
.600
.600

| o

.621
.607
.601
.600

.621
.599
.598
.597
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Table 4.1.a. -- Example 4.1.a.

-N -N JN CP time No. of
il %2 - (secs) iterates
14.669 51.950 1.5 x 10 28. 13
14.845 50.672 1.5 x 10Y 54. 7
14.961 50.095 8.8 x 1072 202. 7
15.030 50.000 5.6 x 1070 141. 4

Table '4.1.b. -- Example 4.1.b.

N -N ~N CP time No. of
Bl %2 v _(secs) iterates
14.956 18.494 9.0 x 10 32. 20
15.009 50.063 3.8 x 10] 35. 7
14.991 49.728 1.2 x 1070 385, 13
15.000 50.000 5.7 x 1072 239, 5

Table 4.1.c. -- Example 4.1.c. (Noisy data)

-N -N aN CP time No. of
Bl %2 e (secs) iterates
14.730 51.573 1.6 x 10° 27. 10
14.887 50.434 8.1 x 10 68. 10
14.991 50.296 8.0 x 10 178. 5
15.006 50.149 8.3 x 10 733. 8
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In Example 4.2 below, we illustrate the use of our methods in problems
with two discontinuities 10 oo in q; the example also serves to illustrate that
we are able to accurately estimate £; even when the forcing function f does not

contain discontinuities at each of those points.

Example 4.2. We seek here the "true" value of q given by

1.0 , 0. < x <

*

q = 6.0 , .2< x <
0.5 , .6< x < 1.

* * * * *

In this case, v = (&7 5, €, 5 ¢7 5 &5 5 ¢4 ) = (.2, .6, 1., 6., .5) and the
1 2 1 2 3

*

*
true solution corresponding to y is

30x 0<x<.2
u(t, x; y*) = ¢(5x +5 2 <x<.6
-200x% + 300x - 100, .6<x<1 ,

with data available at ti = .51, "i=l,..., 4, and xj ']j s J=1,..., 9.

A sample of our findings is given in Table 4.2 below, where the converged values

cer 3 -6
reported were obtained after 501 CP seconds, with 3% =-8.3x10°,

Table 4.2 -- Example 4.2

s R il 2 3
Initial guess:. .300 .700 5.000 5.000 5.000
Converged values .200 .600 1.000 6.000 .5000

(N = 8):
True values: .200 .600 1.000 6.000 .5000
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* * *e
We consider now two examples where the "true" q = o1 * HE*¢2 involves

* *
nonconstant values of 97 and 9o In each case we search for approximate
1 and 99 in the cubic spline space constructed using an M=1 level of approx-

mation (see Section 3).

Example 4.3. Here we seek to estimate the "true" parameter

* 2x + 12 > 0 <x<.6
q = 2
1100x~/9 s 6 < x <1 ,
starting from the initial guess for q of qo's 3 on [0,1] (with start-up value

for £ of £ = .5). The solution

. (70x - 100x%)(t?+2) , 0 <x<.6

U(t, X;Y)= 2
15(1-x)(t°+2) , 6 <x<1

is used to generate data at ti = .61, i=1, ..., 4, and Xj = '1j’ J=1, ..., 9.
. ) -N, -N,M -N,M
In Figure 1la we compare the estimated qN " ¢] + HEN ¢2

(N=16, M=1)

*
with the "true" coefficient q . Figure 1b is the same graph that has been
enlarged and restricted to the interval [.4, .63] in order to better distinguish

between "true" and approximate curves.

Example 4.4. Again we estimate a functional parameter with true representation

given by

* 27.424 - 40x , 0 <x<.3

q = 2 -
90(x-.3)" + 18 B <x< 1.

Data is generated as in Example 4.3, using instead the solution

* 200xt2(.5-x) , 0<x<.3
u(t, x; Y ) = 2(

17.143t%(1-x) , B <ax< 1.

We began the parameter search with the start-up guess of
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48. 2 < x <1

(see Figure 2a) and obtained the converged value of aN’M (N=24, M=1) that is
depicted in Figure 2b. Note that 224 is not approaching g*; in fact, we
observed that the iterates for ¢ never changed from the initial guess of
£0= .2 (recall g*= .3) throughout the iterative process. We note that the
software package did perform fairly well in its attempt to estimate the
approximate functional shape of the parameter q (i.e., 5%4,,524 are roughly
the same as ¢;', ¢;' on the intervals [0., .2] and [.3, 1.]; between x=.2
and x=.3 there is discrepancy due to the incorrect value of 224). The failure
of the numerical package to adequately estimate £ may be due to some well-
known limitations of the particular optimization scheme (Levenberg-
Marquardt)thdt we chose to use with our approximation ideas: It has been our
experience that difficulties sometimes arise when this minimization scheme is
used to estimate more than seven or eight unknown parameters. (In this example
there are 9 unknowns -- ¢ and 4 coefficients each in the cubic spline repre-
sentations for 2 and ¢2.) That the numerical package was able to estimate
9 parameters (and, in particular, £) in the last example may be due to the fact
that the difference between q(g ) and q(g+) in that example is greater, making the
accurate placement of £ more critical.

We were able to overcome the difficulties we encountered in this example
by taking the following steps: First, observing that £ had not changed at all
while B and %5 appeared to have converged to reasonable values, we restarted the
iterative process holding 91 = 5%4 and $§4 fixed while iterating only on
£. As is seen in Figure 2c, the converged value of £ obtained using this approach

-24
is g =.299 = .3==g*. Finally, we "re-tuned" the coefficients in the spline
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expansions for 91 and 2 by iterating once again on those coefficients, this
time holding ¢ fixed at the new value of 224 and using as start-up values for
415 9o the converged values obtained from the first iterative process (i.e.,

5%4 . $§4). The result is shown in Figure 2d. This somewhat adaptive algorithm
to estimate accurately all unknown parameters is a common approach taken (often

of necessity) when real data is used in connection with model-building applications

(see, for example, [11]).

Finally, we remark that a drawback of bur approximation framework is that
we must specify the numberof discontinuities in advance of the estimation
process. Fortunately, it is possible to overestimate and underestimate this
number and still obtain useful information. This will be the focus of our last

two examples.

Example 4.5. We repeat Example 4.2 except that we assume throughout that g

is discontinuous at only one point (while two discontinuities are actually
present in q*); we also allow spatial variation in 97 and 9o and approximate
using cubic splines. An initial guess for q and a converged estimate aN’

(N=24, M=1) are depicted in Figure 3 where it is interesting to note that

the initial guess of g0= .4 converges to a value close to that of the true
(second) discontinuity, g;'=.6 . In addition, to the right of this point the
estimated shape of q begins to approximate the constant function ;;, while to

the left of that point the rapidly increasing estimated shape gives an indication

that we have underestimated the number of discontinuities present.

Example 4.6. We repeat Example 4.1, except that now we overestimate the number

of discontinuities in q. We assume throughout that q = ¢1+HE ¢24-H€ 93 where
1 2
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O 9o and ¢ are constants. For an initial guess of
25. 0 <x<.5
q = 5. , S <x< 7
20. , 7 < x <1

—_ -— 2

we obtained (N=8 , 291 CP seconds)

14.95 , 0. < x < .503

A

8
q = ¢14.99 , .503 < x < .600

50.05 , .600 < x 1 3

| A

repeating the same example but with a different initial guess,
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001, 0 <x<.333
qg = ¢.001 , .333 <x < .667
.001 , .667 < x <1 s

we observed the following converged values (N=16)

2.44 0 < x < .0001
a]s = ¢15.05 , .0001 < x < .6001
49.88 , .6001 < x < 1.

A close inspection of either result reveals that we were, in fact, able
*
to accurately estimate q (as defined in Example 4.1), even though a two-

discontinuity approximation structure was incorrectly used throughout.

Remark 4;1 We note that all examples presented here involve polynomial or
piecewise-polynomial state/parameter functions; from this one might conclude
that such a polynomial structure is needed in order to effectively apply our
spline-based methods. In fact this is not the case, as we have seen in a
number of test examples (see [4], [7], [26] for a number of examples in the

context of several applications).
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5. Concluding Remarks

In the above presentatﬁon we have given a convergence theory for algorithms
for the special problem of estimating discontinuous functional coefficients in
parabolic systems. We are currently working to further develop and refine these
ideas and to extend the theory to other applications, e.g. hyperbolic (seismic)
equations and higher order (elastic beam) systems. In particular, we are studying
an approximation framework that imposes the continuity condition (2.5) on approx-

imate solutions uN

as well as on the original solution u. Our investigations
"in this direction involve making further (parameter dependent) modifications of
the spline-based basis elements described in Section 3; we are also studying a
completely different approach that involves the "tau-Legendre" ideas that have
been successfully applied in [8] to (discontinuous coefficient) hyperbolic systems.
We are also working to develop a related theory for two-dimensional domains,
although for obvious reasons this is not simply a trivial extension of the ideas
presented thus far.

Finally, we note that we have not addressed here the problem of "identifiability"
of parameters, or the i11-posed nature of parameter estimation or "inverse"
problems in general. These important and difficult questions arise in all
parameter estimation problems and are not special difficulties associated with
the particular problem under consideration here. The reader is referred to
Remarks 3.3 and 3.4 of [14] for further comments regarding the nature of this
i11-posedness, of nonuniqueness and the importance of initial guesses for parameters,
and the general unavailability of convergence rates for approximate parameters

_N,M
{9 1.
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