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ESTIMATIONOF DISCONTINUOUSCOEFFICIENTSIN PARABOLICSYSTEMS:

APPLICATIONSTO RESERVOIRSIMULATION

Patricia Daniel Lamm

Southern Methodist University

ABSTRACT

We present spline-based techniques for estimating spatially varying

parameters that appear in parabolic distributed systems (typical of those

found in reservoir simulation problems). In particular, we discuss the

problem of determining discontinuous coefficients, estimating both the

functional shape and points of discontinuity for such parameters. In

addition, our ideas may also be applied to problems with unknown initial

conditions and unknown parameters appearing in terms representing external

forces. Convergence results and a summary of numerical performance of the

resulting algorithms are given.
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I. Introduction

Wepresent here our efforts related to the estimation of discontinuous

spatially varying coefficients in parabolic distributed systems. Although our

ideas are applicable to a wide class of problems in which the determination of

discontinuous coefficients is of importance (e.g., the propagation of waves

through layered media; the dynamics of beamswith "discontinuous" elastic

properties), our work here is motivated by an inverse problem in reservoir

simulation commonly referred to as "history matching". The problem in this

case is to determine unknown parameters (such as permeability, porosity) that

appear as coefficients in model reservoir equations. "Optimal" choices of these

parameters should provide the best match between the observed and simulated

production history at one or more wells. Information about these coefficients

(functional shape and location of discontinuities) provides insight into physical

properties of the reservoir and can indicate the location of abrupt structural

changes; in addition, precise determination of these parameters is essential to

the process of accurately simulating and predicting reservoir behavior.

The governing reservoir equations describe mathematically the physical

and chemical processes occurring during primary hydrocarbon recovery or during

enhanced recovery efforts (secondary or tertiary forms of recovery). Mathematical

models vary widely depending on the physical process being described (miscible

or immiscible fluid flow, thermal or fluid injection, etc.) and the types

of observations available. Commonto each model however is a system of rate

equations (derived from Darcy's law, which relates flow rate to fluid pressure

gradients) as well as appropriate conservation laws and equations of state.

The resulting dynamical system is typically distributed in nature and of para-

bolic type [17], [18]; unknown parameters quite often include the porosity of



surrounding rock, or the ratio of pore volume to total volume, and (relative)

permeability, which is the ability of the rock to transmit fluid [18]. Due to

spatial changes in underground structure, it is highly likely that these

parameters will vary spatially and contain numerous discontinuities.

In order to solve the inverse problem, data in the form of fluid pressure

(or flow rate) is collectedat the wells and used in a numerical parameter

estimation process. There have been a large number of substantial contributors

to the development of theoretical concepts and numerical algorithms for the

history matching problem. An exhaustive list of related references would be

too lengthy to include here; instead we refer the reader to [18] for an excellent

survey of the outstanding efforts in this area. One numerical approach commonly

taken involves subdividing the reservoir into a grid of smaller blocks; constant-

valued parameters (which are allowed to vary independently from block to block)

are then estimated. Unfortunately, if accurate solutions are desired, the

grid size often must be quite small and thus the number of unknown parameters,

as well as the dimension of the state space, can be very large--as many as

50,000 parameters or more [17]. (This is an unfortunate consequence of the

fact that the parameters of interest--as well as state variables--are infinite-

dimensional yet computations must be performed in a finite-dimensional setting.)

Our goal here is to avoid some of the difficulties associated with the approach

described above. Specifically, our ideas involve separating the order of

state approximation from that of parameter estimation, so that the need for

an approximate state space of high dimension does not impose the same require-

ments on the dimension of an approximate parameter space; this is accomplished

by searching for parameters in classes of functions with quite general spatially

varying representations. In order to focus attention on the problems associated



with estimating spatially varying discontinuous coefficients in this context,

we consider an archetypical model of (parabolic) distributed type that

admittedly is a simplified version of the fluid pressure equations associated

with reservoir simulation (see [17], [18], and the references therein); never-

theless the model selected here is a prototype that contains the essential

parameter-dependent terms for which we may begin our investigations. In the

sections that follow we define the model equations of interest and construct

an approximation framework in which we wish to consider the parameter estimation

problem. Convergence results are presented for problems associated with either

spatially distributed or "discrete" sample data. Finally, we discuss numerical

implementation in general, and in the context of particular examples.

It is our intent in this report to examine convergence properties and imple-

mentation problems associated with these methods; we do not address such important

questions as identifiability, observability, or general underlying properties

of the governing partial differential equation system.

The notation used throughout is standard: For I C R (the real line), weu

shall denote by C(I;X) the space of continuous functions f: I . X with uniform

norm J-J_; by L2(I;X ) we mean the usual space of square-integrable "functions"

f: I . X with L2 norm J-JL2(I;X) and inner product <.,.>L2(I;X ), The Sobolev

spaces HP(I;X) and H_(I;X) are defined as usual (see, for example, [I ]).

Whenever X = R, we shall simplify notation by writing C(1) and L2(I ), respectively,

and, where no confusion results, by writing J'l (and <.,.>) for the norm (and

inner product) on L2(O,I ). In addition, no notational distinction will be

made between a function f: I . R and its restriction to I 1C I.



2. The Parameter Estimation Problem

As our fundamental state system we consider the scalar parabolic distributed

system

au (t,x)= 1 a _up--_-_ (q(x) (t,x))+ f(t,x;r(x)) (t,x)E (0,T)x (0,I)' ,

(2.1) u(t,O): u(t,l)= 0 ,

u(O,x)= Uo(X).

Here q and p are discontinuous(positive)functionsrepresentingthe permeability

and porosityproperties,respectively,of the fluid and surroundingrock; the

pointsof discontinuityin these functionscorrespondto abrupt spatialchanges

in the physicalflow region (suchas might be associatedwith layeredmedia).

Both q and p are typicallyunknownso we shall considerthe problemof estimating

these parameters,as well as the functionr, r(x)eR pand the initialcondition

uO, from observationsof the state variableu.

For ease of presentationin the argumentsthat follow,it is assumedthat

p z l, althoughit is not difficultto extendour ideas to the case of non-

constant(andunknown)p. We detailin Remark3.1 the minor modificationsone

must make in the calculationsfound below in order to treat p as a functional

parameterthroughout.

To simplify notation, we assume that q is discontinuous at one point only,

x = _, and that q is represented by

q = @I + H_@2



where 41 and 42 are continuous on [0,I]; here H_ is the usual Heaviside function

on [0,I] given by H_ = 1 on [_,I], H_ = 0 otherwise. There is a straightforward

extension of our ideas to the case where

q = @I + _ @ii=2 H_i-1

0 = _0 < _I < _2 < "'" < _ = I, except that notational difficulties become

excessive. (We later demonstrate our approximation and estimation techniques

for multiple discontinuity problems in the section on numerical findings.) Given

the parameterization chosen for q we define the parameter vector y = (_, 41, 42,

r, uO) = (S,Uo) as an element of the parameter set F _ F = _×L2(O,I), where,

for m, m fixed,

S(m,m) _ {s = (_,_1,42,r)__ R xC[O,I] ×C[O,l] _ L2((O,I);RP) I _ _(0,I),

4i _ CI[o,I], and 0 < m <__4i(x) < m

for i -- 1,2, and x_ [0,I]}.

Concerning r and the applied force f, we make the following (standing) hypotheses:

(HI) The parameter set r is compact;

(H2) For every r_ L2((O,I);RP ), the map t . f(t,-;r(.)): [O,T] . L2(O,I)

is Holder continuous with exponent _, 0 < _ < I.

(H3) The map r . f(.,-;r(-)) is continuous from L2((O,I) _ RP) to L2((O,T ) x
(o,i)).



The parameter estimation problem associated with (2.1) consists of finding a

parameter y _ r that is "optimal" in the sense of providing the best match

between observed data and model solutions to (2.1). Although a number of

criteria may be used to measure "fit to data," we consider first a least squares

criterion J that is defined in conjunction with distributed data: That is,
^

given distributed observations ui_ L2(0,1 ) at discrete times t i _ (0,T),

i = l,...,n, we seek y _ r that minimizes

n 1

(2.2) a(y) = _ f IC(ti,x;y)u(ti,x;y) - ui(x)12dxi=l 0

over all y_ r. For each (ti,x),the outputmap C(ti,x;y):R . R is assumed

to be continuousin y and such that the mappingx . C(ti,x;y)_(x)is in L2(O,l)

whenever_ _L2(O,l). We note that data generallyis not availablein the

distributedform given here; often this difficultycan be handledby fitting

a curve (usinglinearinterpolation,for example)to discretedata.

Wealso treat the problem of truly discrete data, i.e., uijE R is observed

sample data at (ti,xj), j = l,...,n. In this case the parameter estimation

problem consists of determining y E F that minimizes a "pointwise" fit-to-data

criterion,

n

(2.3) J(y) = _ _ ]C(ti,xj;y)u(ti,xj;y)- uijl 2i=l j:l



over y_ r. The use of discrete sample data leads to increased technical detail

and additional smoothness hypotheses on u0 and f. Wedefer consideration of

this particular estimation problem until we have fully developed an approximation

theory for distributed estimation problems (i.e., identification problems with

cost functional J defined in (2.2)); our findings for the "pointwise" estimation

problem (involving J) are then summarized in section 3.1 below.

Before we consider either of these estimation problems (where y_ ? is

unknown and to be determined), we shall first consider the existence of solutions

u of (2.1) for a given parameter y = (_,@l,@2,r,UO)_ r. Defining

u(t) _ u(t,.) _ L2(O,I), we may rewrite (2.1) as an initial value problem in u,

_u t = A(q)u(t)+ F(t;r), t _ (0,T),(2.4)

\u(O)= u0

Here q = @l + H_@2' F(t;r)= f(t,.;r(.))and the operatorA(q) is definedby

A(q)_ = P(qD_)for _ domA(q)= Vq, where

Vq = {_E H_(0,1)lqD_ HI(0,1)}

(throughoutwe shall use D to denotethe spatialdifferentiationoperator_-_).

We note that it would be natural,given the discontinuitiesin coefficientsp

and q, to considera weak form of (2.1) in order to relax restrictionson both

solutionsand parameters. For this particularproblem,however,we shall

insistthat solutionsu satisfya continuityequation

(2.5) (qDu)(_-)= (qDu)(_+) ,

which represents continuity of stressacrossa transitionpoint,_, between
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distinct spatial regions (layers of porous media, for example). Given this

condition on u (which implies that qDu must be sufficiently regular to ensure

that point evaluations are meaningful), there is reason for seeking at least

strong solutions to (2.1). Wehave one additional comment along these lines

from a numerical point of view: It is of interest to note that we experienced

no difficulties in applying our state variable approximation ideas to the

forward problem (i.e., the problem of integrating (2.1), or a weak form of

(2.1), for a known value of y) for particular problems where the true state u

did not satisfy (2.5). It was not until we turned to the numerical solution

of the inverse problem (and, in particular, the problem of estimating _ itself)

that it became evident that one could not expect to estimate _ unless the

(physically meaningful) continuity equation (2.5) was satisfied by solutions

of (2.1). Therefore, there seems to be little justification in considering weak

solutions of (2.1) in the context of the parameter estimation problem.

Our first result is a statement of existence and uniqueness of solutions

of (2.1); in addition, we indicate certain regularity properties of solutions

that will be useful in later calculations.

Theorem2.1. Let y = (_,@l,@2,r,u0)be given in F and let q = @I + H_@2"

There existsa unique (classical)solutionu to (2.1)with the property

that u(t)_ Vq for any t > 0. In addition,if uO_ Vq, then the map

t . A(q)u(t)is in C([O,T];L2(0,1)).

Proof: It suffices to show that A(q) generates an analytic semigroup on

L2(0,1). From this we may guarantee existence of a unique solution u to (2.1)

(see Corollary 3.3, p. 113 of [27]); we may then apply the well-known smoothing

properties of analytic semigroups (see, for example, Theorem 3.5, p. 114, of [27]),



along with hypothesis (H2), to obtain the statement of the remainder of the

theorem.

Wefirst show that A(q) is densely defined and self-adjoint. To this end

we note that Vq _ {4 E L2(0,1) I_ _ H (0,_), _E H (_,I)} satisfies

C Vq = domA(q) (since qD@(_-) = qD@(_+) = 0); it is easy to argue that VqVq _

is dense in L2(0,1) if one uses the fact that H_(0,_)and H_(_,I) are dense in

L2(0,_) and L2(_,I), respectively. Using an integratien by parts, it is not

difficult to show that A(q) is symmetric. To demonstrate that A(q) is self-

adjoint, it suffices to show [28; Theorem 13.11] that Range A(q) = L2(0,1); that

is, for g E L2(O,I ), it is sufficient to'verify the existence of a solution to

(2.6) A(q)_ = g

that satisfies @E Vq. Because one may readily see this is true (using standard

theory for two-point ordinary differential equation boundary value problems--

see, for example, Theorem 8.3 of [19]), it therefore follows that A(q) is self-

adjoint. In addition, A(q) is dissipative (since <A(q)_,_> _-miD_l 2 _ 0 for

all @_ Vq) so that a corollary of the Lumer Phillips theorem [27; p. 15] may

be invoked to argue that A(q) generates a CO semigroup of contractions on

L2(0,1). Finally, since _(A(q)) C (-_,0), we may apply standard semigroup

theory [20; Theorem 7.12, p. 82], [27; p. 61] to conclude that A(q) generates

an analytic semigroup (analytic on the sector {_ ¢I _ # 0, larg_ I < _ }).

The proof of the theorem is complete.

It is usefulto note that if u is a solutionof (2.1)then u also satisfies

(2.1)in a weak sense; i.e., u satisfies



I0

(2.7) f <ut(t)'v> = - <qDu(t),Dv> + <F(t;r),v>, t_ (O,T)

[ u(O) = uo

for any v_ H_(O,I). Using this formulation we may argue the continuous

dependence of solutions on (possibly unknown) initial data. In fact, we may

actually show that the map y . u(t;_):r . L2(0,1) is continuous, uniform in t,

so that we are guaranteed the existence of a minimizer for J over the (compact)

set r. As we also establish existence of an "optimal" parameter in Theorem 3.3

(and because we do not need the continuity of y . u(t;_) to make any of the

arguments given below), we state and prove only the result that follows.

Corollary 2.1. The mapping u0 . u(t;_,@l,@2,r,Uo):L2(0,1) . L2(0,1) is

continuous, uniform in (_,@l,@2,r) _ S and t _ (O,T).

!

Proof: Let uO, u0 be given in L2(0,1) and define u(t) z u(t;_,@l,@2,r,u0),
l

u'(t) z u(t;_,@l,@2,r,UO). Using (2.7), we find that, for t>0,

I !

<ut(t) - ut(t),v> = - <qD(u(t) - u (t)),Dv>

1 (fromfor any choice of test function v in H ; setting v = u(t) - u'(t)_ H0

Theorem 2.1) we obtain

1 d , 12 , 122 dt lu(t) - u (t) + m ID(u(t) - u (t)) _ 0 .

In fact, using the Rayleigh-Ritz inequality [29; p. 5], it follows that

1 d , 12 , 12dt lu(t) - u (t) + m_2 lu(t) - u (t) < 0

so that an application of the Gronwall inequality yields



II

e-2m_2t
Iu(t)- u'(t)I2<_ lu0 - Uo12

Continuousdependenceof u(t;S,Uo)on uO, uniformin s E S, thus obtains.

Weare ready to consider the problem of unknownparameters, in the context

of the parameter estimation problems defined in this section. Wenote that

the problem of estimating an optimal parameter y € r must be combined with

schemes for solving (2.1); i.e., we must consider state variable approximation

as well as the problem of finding finite-dimensional approximations for unknown

functional parameters. In the sections that follow, we develop both state and

parameter approximation techniques with the goal of solving these problems.
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3. A Spline-Based Approximation Scheme

Standard numerical optimization schemes applied to the problem of minimizing

J (or J) over r typically generate a minimizing sequence of parameter iterates,
0

starting from an initial guess, _ However, schemes of this type generally

require that u(_) (the solution of (2.1)) be evaluated as the parameter y is

updated; it is therefore desirable to combine estimation of an optimal parameter

with approximation techniques for solving (2.1). With this goal in mind,

we describe a spline-based state/parameter approximation scheme in the same

spirit of the ideas found in [5], [9], [I0], [12], [14], [23] to namea few

of the related references in this area for (continuous coefficient) parabolic

problems.

The convergence arguments developed below are similar to standard variational-

type estimates often used in association with finite element approximations (see,

for example, [29], p. 129) although the estimates given here are complicated

somewhat by the presence of unknown parameters. This variational approach was

taken in [I0] and [II] for the problem of estimating continuous coefficients in

parabolic systems; we require a somewhat different treatment here primarily due

to the fact that we allow discontinuous coefficients, where the points of dis-

continuity are unknown (necessitating parameter-dependent approximation spaces

xN(q)). Thus, an interesting aspect of our approach (and often a source of

difficulties) involves the fact that our approximation spaces change with every

choice of parameter iterate. Wenote that although the theoretical problems

are quite different, our construction of approximating spaces xN(q) is somewhat

similar to the ideas found in [2], [13], [16]; there the problem was to esti-

mate unknown delays appearing in functional differential equations

(there is a correspondence between our treatment of an unknown point of dis-

continuity and the approach taken in those references to handle an unknown
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delay, at least from the standpoint of numerical approximation schemes).

We turn now to a precise statement of the approximation scheme under

consideration.

For any y : (_,@l,@2,r,UO) _ r, we construct parameter-dependent spaces

and operators as follows: For q = @I + H_@2and N = 1,2,..., we define

xN(q) = span{B_(q), i = 1,...,2N-I}, where B_(q) denotes the i th continuous

piecewise-linear B-spline basis element (satisfying homogeneousboundary con-

di.tions) with knots at {x_(q), k : O,...,2N}. Here x_(q) : k_/N, k : O,...,N,

and x_(q) = _ + (k-N)(I-_)/N, for k : N+I,...,2N. The piecewise linear

elements are characterized by B_(q)(x_) = aik for i,k = I,...,2N-I

(Bi(q)(O) = B (q)(1) = 0); see Figures I-3.

11 i !
N xN xN

xi-I i i+l _ 1

Figure I. B_, i = I,...,N- I.

D

I
N N

XN_1 _ XN+1 1

N
Figure 2. BN
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I I I
xn xNi-I x i+l 1

N i = N+I ... 2N-I.Figure 3. Bi, , ,

We remarkthat in general,for y, yE F and q = @I + H_@2' q : @I + H_@2' we

do not have xN(q)C xN(q) or xN(q)cxN(q), nor do we have xN(q)C Vq (note

that althoughan element_NE xN(q) does have a discontinuityin its first

derivativeat _, _N does not satisfythe continuityequation(2.5)

associatedwith q. The approximationspacesxN(q) are chosenso

that the resultingparameterestimationalgorithmenjoysa numberof computational

advantages,especiallywhen _ is unknown. We take a generalGalerkinapproach

to defineapproximatingstatesystemsand then obtainconvergencefindingsby

workingdirectlywith the weak form of these equations. As an alternative

approachto that taken hereone could defineapproximatingoperatorsAN(q) for

A(q) and investigatethe sense in which AN(q)"converges"to A(q) (see,for

example,Example2.2 of [22],or[23],forapproximatingoperatorsthatmight

be used in this context).

For yE F fixed and N = 1,2,...,we seek an approximationto u(t;y)of the
2N-l

uN(t;y) "_(t;y)B_(q) where the "Fourier coefficients" wNform ' 1 arei=l
determined via the system of ordinary differential equations (ODE),
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(3.1)

L :<uo, ,

for i = I,...,2N-I. Alternatively, uN satisfies

(t,y),v>= - <qDuN(t;y),I)v>+ <F(t;r),v>, t _ (O,T),
(3.2)

uN(o;y)= pN(q)u0

for all vC xN(q); here pN(q):L2(O,I) . xN(q) denotesthe orthogonalprojection

(with respectto the usual L2 topology)alongxN(q)±. Associatedwith (3.1)

is an approximateestimationproblem,namelythat of finding_N_ r thatminimizes

n l

(3.3) jN(y) = _ f iC(ti,x;y)uN(ti;Y)(x ) _ ui(x)12dxi=l 0

over r, where uN(y) is the solutionof (3.1)correspondingto y € r.

Our initialfindingsconcerningthe Nth approximateproblem(3.1),(3.3)

are immediateconsequencesof the fact that (3.1)is an ODE on xN(q) and that

B_(q) (and their spatialderivatives)are continuousin
the basis elements

(see (4.1)for a more explicitmatrix representationof (3.1)). We shall defer

a more detailedexaminationof (3.1) (andthe implementationof the estimation

schemeassociatedwith (3.1),(3.3)),untilSection4 where our numerical

findingsare summarized.

Theorem3.1. For each N and any y E r, there existsa uniquesolutionuN(y)

of (3.1),uN(t;y)E xN(q). In addition,the mapping_ . uN(t;y):F . L2(O,l)

is continuous for each t _ (O,T).
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Corollary 3.1. For each N, there exists a solution _Nc r for the problem of

minimizing jN over F.

Finally, a simple modification of the proof of Corollary 2.1 yields a

similar statement concerning the continuous dependence of uN(t) on Uo:

Corollary 3.2. The mapping u0 . uN(t;(S,Uo)): L2(O,I) . L2(O,I) is con-

tinuous, uniform in N, s= (_, _l,_2,r)_ S, and t_ (0,I).

An essential step in the process of correlating state variable approximation

with the problem of estimating an optimal parameter _ _ r (for the original

parameter identification problem) is the establishment of the convergence of

uN(t;¥ N) to u(t;_) for any sequence { N} in r that converges to y_ F. Weshall

clarify the need for arguments of this type in the proof of Theorem 3.3. To

facilitate steps in this direction, we shall first establish linear spline

estimates, the proof of which are in the spirit of [29; pp. 16-17, 78]. In

N ywhat follows we assume that { N} is given in r, y = (_N,_ ,0 ,rN,u ), with

N - _,GO. _ = (_,_i,_2, )_ r (in the usual product topology on F); in addition,

we assume there exists a such that 0 < a < _ < 1 - a < 1 (and, in the case of

multiple discontinuities, I_k - _k_ll _ a > O, k = l,...,u). Given

qN : _ + H N_, we shall henceforth simplify notation and abbreviate

pN pN(qN)j xN xN(qN), and x_ _ x_(qN), k = O,...,2N.

Lemma3.1. Let _ be given in V_, where q = _I + H_2" There exist constants

cI and c2, independent of N, such that

(3.4) I_- RN_I <_ºClN-2 IA(q)_l
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and, for N sufficiently large,

(3.5) {D(_ - PN_/)I < c2N-I IA(_)_I

Proof. Weshall denote by IN_ the linear interpolant of _, with knots at

x_, k = O,...,2N; that is, IN_(x_)= _(x_), k = O,...,2N. We find that

ID(_-IN_)I2 = <D_,D(_-IN_)> - <D(IN_),D(_-IN_)>

where
2N x_

= D(IN_)D(__IN_)

<D(IN_)'D(_-IN_)> k_l _-I

N

2N fx k D2(IN_):- _ (¢-IN_)
k=l xN_l

=0.

Thus,

ID(m-zNm)I2 = <D_,D(_/-IN_)>

1 2N x_

k-I

1 2N xN
- m _ I D(qD_) (_-IN_)

k=l xN_I

_<Z ID(_D_)I[_N_-_Im

< (m_N)-I IA(_)_)IID(_'IN_)I
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where we have used (2.16) of [29; p. 17] in the last estimate. It therefore

follows that

(3.6) ID(_-IN_)I< (m_N)-1 I_(_)_1

and, again using (2.16) from [29],

(3.7) IIN_,-_,I< (m'n2N2)-1 IA(_)_I

To establish (3.4), we use properties of the projection pN to note that

I_-PN_]< _-IN_I < ClN-2IA(_)_I

Finally, {D(¢-PN_)< ID(_-IN_)I+ ID(IN¢-pN_){, where an application of the

Schmidt inequality [29; p. 7] yields (for N sufficiently large)

ID(IN__RN_)12 2N x _ 12= _ ID(IN_ pN_)
k=l

k-I

2, 2<12kZ1 fx_ IIN_p._I-- = XN
k-1

<__12 (N/a) 2 IIN_-pN¢I2

so that

ID(_-PN_)I < ID(_-IN_/)I + 2_-3-(N/_) IIN_-pN_l

< ID(_-IN_)I+ 2V_(N/a){lzN_-ml+ I_-PN_I}

< (m_N)-llA(_)_l + 4VT(N/6)ClN-2IA(_)_]

< c2N-1IA(_)_I

for an appropriate choice of the constant c2.
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Wemay now use the linear spline estimates derived in Lemma3.1 to

establish a preliminary convergence result.

N
Lemma3.2. Suppose {yN} is given in r such that y . _ = (_,@l,@2,r,u0)_ F.

Assume, in addition, that G0_ V_, where q = $I + H_2" Then, for every

t E (O,T),

uN(t;yN) . u(t;_)in L2(O,l)

as N . _ (whereuN is the solutionof (3.1)associatedwith yN and u is the

solutionof (2.1)associatedwith i).

Proof. Let u(t) _ u(t;_),uN(t) _ uN(t;yN). Then

fuN(t) - u(t)I _ luN(t) - pNu(t)I + IpNu(t) - u(t)I

where the second term is 0(N-2) from (3.4) (u(t) E V_ for t _ (0,T); Theorem 2.1).

To consider the first term, we note that solutions u(t), uN(t) of (2.1), (3.1),
1

respectively, satisfy (2.7) and (3.2) for any vEX N C H0(0,1 ). Using these

equations it is easy to see that

<u_(t),v>+ <qNDuN(t),Dv>- <FN(t),v>- (<d pNu(t),v> + <qNDpNu(t),Dv>)

= 0 - (<d pNu(t),v> + <qNDpNu(t),Pv>)

+ <ut(t),v>+ <qDu(t),Dv>- <F(t),v>

where F(t) z F(t;r) FN(t) z F(t;rN) and qN N H N@_
' ' = @l + . It thus follows

that

<d
_-_(uN(t)- pNu(t)),v>= _ <qND(uN(t)_ pNu(t)),Dv>

+ <d (u(t)-pNu(t)),v>+ <qDu(t)-qNDpNu(t),Dv>+ <FN(t)-F(t),v>.
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Letting v = uN(t) - pNu(t) E XN, we argue that

1 d uN 22 dt I (t)-pNu(t)l <__- mll)(uN(t)-pNu(t))l 2

+ I d (u(t)-pNu(t))l luN(t)-pNu(t)l

+ IFN(t)- F(t)l fuN(t) - pNu(t)l

<I
-2 Id (u(t)- pNu(t))12 + 4_ lqDu(t)- qND(pNu(t))I2

+ 1 IFN(t)_ F(t)12 + fuN(t)_ pNu(t)12 ,

where we have repeatedly used the inequality ab <I (a2 + b2). Defining

wN(t) - fuN(t)-pNu(t)12 , the above estimates reduce to

_N(t ) _ 2wN(t) < i d (u(t)_pNu(t))12 + 1 l_Du(t)_qND(pNu(t))12

+ IFN(t)- F(t)l 2 ,

so that an application of the Gronwall inequality yields

wN(t) : IuN(t)-pNu(t)I2 <_ e2T {T_+T_+TN+T_}

where

N

T1 = IuN(0'yN)- pNu(0;Y)I2

N T

= (u(s;-;)- pNu(s;-;))12ds
N_ 1 T

_3 2m £ IqDu(s'Y) - qND(pNu(s;Y))I2ds

TN
_4 = f Ig(s;rN) - F(s;r) 12ds"0
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From hypothesis(H3),it followsthat _ . 0 as N . _. We are also able to

argue the convergenceof T_ to 0 since T_ = IpNu_- pNu01_ lu_ - Uoi.

To considerT_, it is usefulto note that, for v fixed in XN, the function

definedby gN(t) z <u(t) - pNu(it),v>is identicallyzero (fromthe definition

of pN) so that 0 = g_(t) = <ut(t) - d-_pNu(t),v>. But this is true for every

v _ XN and all t € (0,T),so it must followthatd_ pNu(t)= pNut(t). Thus,

T

=_ = i lut(s) - pNut(s)12ds0

where, for each s _ (O,T), the integrand converges to zero as N . _; this claim

may be verified using (3.4) and the fact thatut(s)€ L2(O,I ) and

V_ is dense in L2(O,I ). The integrand is dominated by 2[ut(s)l 2 where s . ut(s)

is in L2((O,T), L2(O,I)) (Theorem 2.1). It follows that T_ . O.

Finally, for N sufficiently large,

T 12 TmT_ <_f i(q-qN)Du(s) + f lqND(u(s)- pNu(s))I2
0 0

T T T

_2 T
+ m S ID(u(s)- pNu(s))I2

0

+ T 12 _N T4 (171- ,_12 172- @_l_) f IDu(s) + 2m2 I_- I_ IDu(s)l20 0

T 12+ (mc2N-l) 2 i IA(q)u(s)0

T
where we have used (3.5) in the last inequality. Further, [ IDu(s)I 2 =

0
T T T
i <Du(s),Du(s)>_ m-I f <qDu(s),Pu(s)>_ m-I f IA(_)u(s)llu(s)l<
0 0 0
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(since u0E V_) so that _ . 0 as N .-.

Finally, it is possible to lift the requirement that Uo belongs to V_ and

to prove a more general convergence theorem.

N N NTheorem 3.2. Assume{¥N} is given in r, y = (_N,@l,@2,rN,u), such that
N -

y . y = (_,@l,@2,r,UO)€ r. Then, for each t _ (0,T),

uN(t;_ N) . u(t;_) in L2(0,1)

as N.-.

Proof. Let E > 0 be given and define q = $I + H_2' sN = (_N'#_'¢_ 'rN)' and

= (_,_l,@2,r). Since V_ is dense in L2(0,1), there exists @€ V_ sufficiently

close to u0E L2(0,1 ) so that we may argue that

luN(t;y N) - u(t;_)[ S luN(t;(sN,u_)) - uN(t;(sN,@))l

+ luN(t;(sN,@)) - u(t;(s,@)) I

+ [u(t;(_,_)) - u(t;(_,G0)) I

<€,

for N sufficiently large.

Here we have used the continuous dependence of uN, u on initial conditions

(uniform in sN, s, and N), the inequality lu_ - _1 _< lu_ - u01 + lu0 - _], and

the findings in Lemma3.2. The proof of the theorem thus obtains.
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To this point, we have focused on state variable convergence (of uN to u)

once the convergence of any sequence of parameters has been guaranteed. In

reality, however, we have yet to establish whether any sequence of solutions

{_N} for the approximating estimation problems is indeed convergent; even then

we have no assurance that the limiting parameter ¥ is in fact a solution to the

original parameter identification problem. In our next theorem we consider this

problem and indicate when an approximate estimation problem may be used numer-

ically to compute an approximate solution for the original problem. The proof

of the theorem is similar to ideas found in [12], [14].

Theorem 3.3. For each N let _N denote a solution for the problem of minimizing

* {_Nk}jN over r. There exists y E r and a subsequence of {_N} such that

(i) _Nk . y in the producttopologyon F,

(ii) uNk(t;_ Nk) . u(t;y*) for each t _ (O,T),

(iii) jNk(y Nk) . j(y*), and,

(iv) y is a solution to the original parameter estimation problem,

namely that of minimizing J(y) over r.

Proof. Parts (i)- (iii) are immediate consequences of hypothesis (HI),

and Theorem 3.2. To prove part (iv) it suffices to note that

* jNk(yNkJ(y ): lim )
Nk.

< lim jNk(y)

Nk._

: J(y)
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jNk *for any y_ r (yNk- is a minimizerfor over F), so that y is a solutionfor

the problemof minimizingJ over T.

Remark3.1. Althoughit has been assumedin our discussionso far that p _ l,

there are no difficultiesassociatedwith extendingour ideas to more generalp

(p =-El + H_ 2, (_I,K2)_ K _ {(_I,_2)E C[0,1]xC[0,1]10 < m_ <i _ _})"

For example, it is easy to see that the arguments used in the proof of Theorem 2.1

change very little if, instead of A(q) and the L2 inner product, one considers

1A(q) and the weighted L2 inner product defined bythe operatorB(p,q)_
l

<_,_>p _ p_. For each N and yN (_N,@_,_,rN N N N,= = ,U0,KI,K2J given in r (r a

compact subset of SxL2(0,1 )×K), we may define approximating equations in the

variable uN(t) _ xN(qN) by

INN

<p ut(t),v>:- <qNDuN(t),I)v>+ <F(t;rN),v> , v exN(qN)

uN(o) pNu_ ,

N K1N N qN _ HN@F_.where p = + H NK2 and = @ + To establishconvergenceof uN to u
N

(as y . _) one may make a simplemodificationin the proof of Lemma 3.2 to

argue that

mluN(t) - pNu(t)l 2_< l(pN)_(uN(t) - pNu(t))l 2

< ce2T{T_+T_+T4N+ IpUt-pNPNutI2}

N
where the zi are unchangedfrom that lemma and the last term convergesto zero.

Becauseall other estimatesremainunchanged,we are able to derivean analog

to Theorem3.3, i.e., we are able to treat the case of a general(possibly

unknown)parameterp.
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Remark 3.2. To this point, we have developed an estimation theory based on state

variable approximation only; that is, we used uN to construct an approximate

fit-to-data functional jN which we then tacitly assumedcould be minimized

(numerically) to obtain an "optimal" _N_ r. Of course, one cannot actually

use a computer to implement such a parameter search since r is in fact a

functional parameter set (_ r contains the functional components _l,_2,r,UO,

Kl,and K2). The problem of further approximating the parameter set r has been

the subject of recent studies (see [I0], [14], and [23]); we shall summarize,

in particular, the results of [14] as they pertain to the problem at hand.

For ease of presentation we shall assume that r, uO, <I' and _2 are known

(there is an easy extension of these ideas to the case where these functional

parameters are unknown) so that y = (_, _I' _2) is the vector of parameters to

be estimated. Since we use cubic B-spline approximations to approximate the

functional parameters in our numerical examples (Section 4), we shall restrict

our attention to a theory based on cubic splines only; a more general theory

may be found in [14]. To this end, we take the (mere regular) parameter set F

to be a subset of

\

_(m,_) _ {s = (_, _I' _2) _ [6, 1-6] × CI[o,I] ×

CI[o,I]IO < m _ _i(x) _ m for x _ [0,I],

_i _ H2(O,I), and I_2_i I _m , i=l, 2},

(6 6(0,I) is fixed) and assume thatFis compact in the R × CI[o,I] xcl[o,l] topology.

For each M we define the finite-dimensional (approximate) parameter sets

FMby FM _ iM(F); here i M : R × CI[o,I] x CI[o,I] -> R x C2[0,I] × C2[0,I]
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is given by iM(_, €I' ¢2) _ (_' IM'_ 91' IM'_€2) where IM'_ is defined to

be the (unique) cubic spline function _(x) satisfying _(x_) : ¢(x_) ,

k = 0,I, ..., 2M, and D_(x_) = D¢(x_), D_(Mx2M) : D_{X_M) (see, for example,

Chapter 4 of [29]). The knots x_ are the _ - dependent knots described earlier

in this section, i.e., x_ = k_/M, k=O, ..., M, x_ : _ + (k-M)(I-_)/M for

k = M+I, ..., 2M. Weremark that we are also able to construct a parameter

approximation scheme based on a uniform mesh (of mesh length I/M) for components

¢_, ¢_ of (_, ¢_, €_)_FM; however, as is true with the approximation of state

variables, the resulting numerical scheme is greatly simplified if the mesh

depends on _, as well as on M. Weshall defer to Section 4 o more detailed

discussion on computational features of the resulting algorithm.

It is not difficult to use the ideas of [29; Chapter 4] to argue that, for

fixed M, the mapping (_,¢) -> IFI'_¢ : [_, I-6] x cl[o,l] --> C[O,l] is continuous

and thus FM is compact in the R × C[O,I] × C[O,I] topology. In addition, given

6 (O,m), we may use a variation of [29; Theorem 4.5] to see that, for M > m

sufficiently large (the choice of M is independent of _),

0 < m-€ < I M'_ ¢ < m + a ,

for all _ $ [a, I-_] and all ¢_H2(0,I), ID2¢l_m, ms¢(x)_m. Therefore, for

M sufficiently large, FM is a parameter set satisfying all conditions needed

(namely FM _ S(m-€, m+a) and rM satisfies hypothesis (HI)) order to apply

the parameter estimation/state approximation theory developed thus far. In
_N,M

particular, for each N and M > M, there exists a solution y to the problem

of minimizing jN over rM. From the construction of rM (and the compactness

of F) we know that there exists a sequence {_N,M} in F _ith _N,M = iM(_N,M)
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{c{Nk,Mj *and a subsequence } such that #Nk'Mj -> y e I" in the R × C[O,I] x

C[O,I] topology. In addition, _{Nk'Mj satisfies

• < Mj
jNk(._Nk,MJ) ._ jNk(y), yet

from which it follows immediately that

(3.8) aNk(_Nk'Mj) < aNk (iMJ(_)) , _ i"

App_lying arguments very similar to those in [14], we may use the convergence

of liM(y) - YI_-> 0 as M-> _, uniform in y 6 F [29; Theorem 4.5] to see

that I_Nk'Mj - y I_-> 0 as Nk,MJ -> _ and that, passing to the limit in (3.8),

(3.9) j(y*) _<j(#), C{e I'.

The parameter y is thus a minimizer for J over ?. Wesummarize these findings

below.

Theorem3.4 Let FM z iM(F) and let _N,M denotea solutionto the problemof

minimizingjN over rM. Then there is a subsequence{_Nk'Mj}of {_N,M}such

,Mj * ,
that_Nk -> y , where y is a solutionto the problemof minimizingJ over ?.

In fact, any convergentsubsequencehas as its limita solutionto the original

estimationproblem.

3.1. Approximate Estimation Problems Associated with "Discrete" Data

It is possible, under additional smoothness assumptions on solutions, to

use variational-type estimates (similar to those found above or in [I0], [30])

to argue pointwise (in x) convergence of state Variables; i.e., uN(t,x;y N) .

u(t,x;_)wheneveryN -. y, for (t,x)_ (O,T)x [O,l]. Resultsof this type
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lead naturally to a statement about the approximation of a solution for the

problem of minimizing the "pointwise" fit-to-data criterion J (see (2.3))

over F. Weshall briefly summarize our findings below.

It is not surprising that for this formulation we require additional

smoothness assumptions on the parameters. Specifically we take y = (s,u 0) G r

where r is a subset of r = SxH (0,I), and S _ {s = (_,01,02,r) E S I

i a, i = 1,2}.
In addition to hypotheses (HI) - (H3), we make the following assumption

(which in general may impose additional constraints on parameters and the

applied force f):

(H4) For any y € F, the mapping s . ut(s;y) is in L2((0,T); H_(0,1)).

Defining approximate state spaces xN(q) as before, we seek approximations

uN to u, where, for any given y = (_,@l,@2,r,u0) € r, q = @I + H_@2'

uN(t) = uN(t;y) satisfies

<ut(t),v> = - <qDuN(t),Dv>+ <F(t;r),v>, t _ (O,I),
(3.10)

uN(0) : pN(q)u 0

for all v_ xN(q); pN differs from pN defined in (3.2) in that pN: H_(0,1) . xN(q)

is the orthogonal projection in the H_(0,1) (rather than L2(0,1)) topology.

It is not difficult to see that there exists a unique solution uN(y) of (3.10).

In addition, for each (t,x) _ [0,T) × [0,I], the mapping y . uN(t;_)(x) is

S x H_(O,I) topology on y).
continuous (in the

The convergence result that follows is a pointwise analog of Lemma3.2.
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NLemma 3.3. Let {yN} be given in r such that y . ; in the S x H (0,I) topology,

= (_'@l'@2'r'u0)er. If u0_ V_, then uN(t;yN) . u(t;_) (as N . _) in the

H_(0,1)topology,uniformin t E [0,T);here uN(yN) and u(y) are solutionsof

(3.10)and (2.7)correspondingto yN and _, respectively.

Proof: Weshall write uN : uN(t;_N), u : u(t;_), qN : _N + H N_,

= _I + H_2' FN = F(t;rN)' and F = F(t;_)throughout. We note that

ID(uN- u)l <_ID(uN- INu)l + ID(INu- u)l

so that, using (3.6)and the fact that u(t)E V_ for t _ 0, it sufficesto

show ID(uN - INu)l. 0 as N . _.

Using (3.10),(2.7),and argumentssimilarto those in the proof of

Lemma 3.2,we may argue that, for v E XN = xN(qN),

N

<ut - INut,v> + <qNDuN- qNDINu,Dv>= <ut INut,v>+ <qDu-qNDINu,Dv>

+ <FN - F,v>

and in particular,using v = u_ - INut,

N_
lu_ - iNut12 + <qND(uN_ iNu), D(ut INut)>

l _ 2 2
_ lut INuti + lu_-INutl

+ ½ I FN- FI 2 + <_Du- qNDINu, D(u_ - INut)>.

We thus find that
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1 d uN 122 dt {[(qN)_D( - INu) - 2<qDu - qNDINu, D(u N INu)>}

< 1 _ 2 FN 2 _ _-_ lut INut I + 1 I _ FI - <qDut qNDINut, D(uN INu)>

where we have used the fact that d iNu = iNut; it therefore follows that

mlD(uN _ %Nu)(t)12<_l(t)2 N + 2m_(t)+ _(0)+ (m+l)o_(O)+ _

(3.11) N N N
+ 04 + 05 + o6 ,

where

o_(t) = lqDu(t) - qNDINu(t)I 2 ,

_(t) = ID(u N- INu)(t)l 2 ,

T
N

_3 : f lu t INut 12 ,0

T
N FN 2a4:f I -FI0

T

_ : - 2 f <(q - qN)Dut, D(UN - INu)> ,0

and

T
N _ _

_6 = - 2 f <qND(ut INut ), D(uN INu)> .0

Using (3.6) and arguments like those for _ in the proof of Lemma3.2, we

find that
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N 2 12of(t) < 21(_ - qN)Du(t)l 2 + 2m ID(u - INu)(t)

_2 )-2 2<__2k(N)IDu(t)l 2 + 2m (nmN IA(_)u(t)l ,

where

k(Nl : 411_I- _12_ + I_2- _121 +2m2 I_-_NI .0 as N . _.

Thus, for t _ [0,T),

a_(t) < 2k(N) sup IDu(t){ 2 + 2m2(mxN)-2 sup IA(_)u(t)I 2
t_[0,T) t_[0,T)

Considering o_ and _, we find

o_(t) _ sup ID(uN - iNu)(t)l 2
te[O,T)

and

N 4T T T
_5 < --I I(q - qN)Dut12+_TI ID(uN- INu)I2-m0 0

T m
< 4T k(N) f IDut 12 + # sup ID(uN iNu)(t)l 2- m

0 t_[0,T)

In addition, we may integrate by parts to show that

N 2N T
o6 =- 2 _ f x_ D(ut_ iNut)qND(uN _ iNu)

k=l 0 xN
k-I

2N T x_
= 2 _ _ _ (ut _ iNut){DqND(uN _ iNu) + qN . 0}

k=l 0 xNk-I
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_ <8 fT _ m fTID(uN_ iNu)12}< m mTm-I 0 lut INutI2 + _T 0

T iNut m sup ID(uN - INu)(t)l 2 ,
< 8_2Tm-I £ lut - 12 +8 tE[O,T)

N
where we have used ID@_I< m, i = 1,2. Therefore, from (3.11),

1 II

m sup ID(uN- _Nu)(t)12 < (2m-l + I)_ + (_+I)ID(pNuN - ZNGo)12
8 t_[O,T)

+ (8_ZTm-I. ])o_+ _,_

T

+ 4Tk(N)m-I f lDut12,0

where _, o_ . 0 as N . =. Wemay apply (H4) and standard spline estimates

(see, for example, Theorem 2.4 of [29]) to also show that o_ . 0 as N . =.

It remains to consider ID(pNu_ - INuo)12: Wenote, using the properties of

pN that

ID(pNu_- INGo)I<__ID(pNu_-pNGo)I+ID(pNGo-Go)I+ ID(Go - INGo)I

< [D(uN - Uo) i + 21D(INGo- Go)l,

where each term converges to 0 as N . = from the convergence of u_ to Uo in

1 and (3.6). The proof of the lemma thus obtains.H0

Finally, we prove a more general convergence result.
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Theorem3.5. Let {yN} be given in r with y . _fE r in the S x H (0,I)topology.

Then, for each t _ [0,T),

uN(t;y N) . u(t;_) in H_(O,I)

as N._.

Proof: We first demonstrate the continuity of the mapping

u0 . u(t;(S,Uo)) : H . H , uniform in t_ [O,T) and s_S. Let uO, Uo_ H

and u = u(t;(S,Uo)), u' = u(t;(s,u_)). For any vG H_,

!

<ut - ut,v> = - <q(Du - Du'),Dv>

so that, using v = ut - utc H ,

!

0 < lu t - ut]2 - 1 d lq½D(u_ u,)]2- 2 dt

Applying the Gronwall inequality, we find that

!

lq_D(u- u')(t)l2 < lq_D(u0-u0)l2

or that

!

II)(u-u')(t)I 2 <_m -llD(u O- Uo)] 2,

so that the continuous dependence result obtains.

Wemay construct similar arguments to demonstrate (using (3.10)) that

N , 2 -1 N' 2
]D(uN(t;Uo ) - u (t,Uo))I _<_m ID(pNuo , _ Uo) [

I

<__m-l[D(u0 _ Uo)l2
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l i
so that the mappings u0 . uN(t;(S,Uo)):Ho . H0 are also continuous, uniform

in t, s, and N.
N -

Let {yN} be given in r with y . y, where y = (_,_l,_2,r,UO) E r. To

argue the convergence of uN(t;y N) . u(t;_)in H_ for arbitrary Uo E H_ (using

estimates like those in the proof of Theorem 3.2) we need only demonstrate that

V_, q = _I + H_2' is dense in H_. To this end, let € > 0 and @be arbitrary1

H_(O,I) and define _ = @- h where h is given byin
U

h(x) : _@(_)xl#, x E[O,_]

Lp(x) , x _ (_,l]

Here p is a quadraticpolynomialsatisfyingp(1) = O, p(_) = _(_), and

Dp(_) = q(_-)_(_)/_q(_+)(it is easy to show such a p exists,under the condition

# l). It is clear from the constructionof h that we have h_ V_, _ _ H_(O,l),

and _(x) = 0 for x = O,_,l, so that _ _ H_(O,_),_ _ H_(_,l).
From the

definitionof H , there exists €I_ Co(O's)and ¢2_ C_(_,l)such that

I_ - _II 2 < _/2 and I_ - _212 < _/2. Finally, defining _ on [0,I]

by _ = Cl + h on [0,_],_ = _2 + h on (_,l],it is easy to see that c _ V_

(€_ H_(O,l),qD__ Hl(o,_),qD__ Hl(_,l),and qD_ is continuousat x : _)

and [4- _I_i(0, = I_- _ll2 2 < _. Therefore,V-isu

in H_(O,I) and the proof of the theorem is complete.dense

Finally, we return to the problem of (approximately) determining a

minimizer 9* for the (pointwise) least squares criterion J. The proof of our

final result uses the estimates derived in this section, following the proof

of Theorem 3.3.
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Theorem 3.6. For each N, let _N denote a solution for the problem of
n n ^

minimizing jN over F, where iN(y) -- i=l_ j:l_ ]C(ti'xj;y)uN(ti'xj;y) - uij [2
~_

and uN is the solution of (3.10) associated with y6r. Then there exists y _ F

{_Nk} ~Nk ~* ~Nk,~Nk ~* ~*and a subsequence of {_N} such that y . y , J £y ) + J(y ), and y

is a solution for the problem of minimizing J over F.

One may also easily modify the arguments given above to include p as a

parameter (see Remark 3.1) and to prove a "double approximation" result

similar to Theorem 3.4 for both the state and estimated (functional) parameters.
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4. Implementation and Numerical Findings

A desirable feature of the spline-based scheme developed in preceding

sections is the ease of implementation of the approximation ideas, especially

when the points of discontinuity _i' i=l,...,_-l, for coefficients are unknown

and to be estimated. In what follows we describe how the particular state

approximation framework chosen here serves to facilitate (from a computational

standpoint) the parameter estimation/approximation process. Weconclude the

section by presenting our findings for some representative test examples.

Webegin by examining the approximating ordinary differential equation

(3.1) rewrittenhere in terms of wN(t;y)_ (w_(t;y),w_(t:y), ...,W_N_l(t;y))T,

where the wN
i' definedin Section3, are the coefficientsin the expansion

2N-l

uN(t;y): _ w_(t;y)B_(q). Using this notation,the ODE may be written
i=l

(4.1) I QN_N(t) = " KNwN(t) + GN(t)' t6(O,T) ,

LwN(o) ;

here the (2N-])-square matrices QN= QN(y) and KN = KN(y) have entries

N = <B_(q), NQi,j Bi (q)> '

KiN,j : <qDB_(q), DB_(q)> ,

while the perturbation term and initial condition satisfy

gN(t) = GN(t;y)= _<F(t;r),B_(q)>,..., <F(t;r),B_N_l(q)>)T

and

respectively.
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Implementation of a computational scheme to estimate (approximate) para-

meters in (4.1) is greatly facilitated by the choice of basis elements for the

Nth approximate state space xN(q). In order to best indicate someof the advantages

of this approximation framework, we first consider the special case where only

q is unknown, where q = @l + H_@2' and @l and 02 are constants. First, it is

easy to see how our choice of a linear spline approximation schemeyields matrices

KN and QN that are quite simple in structure: For a given value of q, the inner

products appearing in these matrices may bedetemined from explicit formulas

(depending on N and _), a few of which are given here. For example, diagonal

entries in the (tridiagonal) matrices QNand KN are given by

QN : 2_/3N, i : l, N-Il,i "''' '

QN = I/3NN,N

Q_ = 2(I-_)/3N, i = N+I, 2N-Il,i ""' '

(4.2) KN = 2N_I/_ i = 1 N-Il,i ' ' ""' '

(4.3) KNN,N : N61/_ + N(61 + _2)/(I-_) '

and

(4.4) K_ = 2N(_1 + 62)/(I-_) i = N+l 2N-Il,i ' ' "'" ,

with similar representations for off-diagonal elements. Wenote that we are

able to avoid time-consuming and error-producing numerical quadratures; in

addition, our approach is more desirable (from a computational point of view)

than a method based on a uniform mesh size. For example, if for each N we simply

of length _ (so that position of _ is not taken into
subdivide [O,l] into units

account) the matrix QNwill be fixed throughout the estimation process; this

however is at the expense of considerable added difficulties associated with
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evaluating entries in KN. Using a uniform mesh, some of the inner products

must be "broken up" at the point _, e.g.,

requiring (multiple) numerical quadratures every timethat q (and thus _) is

updated. In contrast, with the _-dependent structure chosen here we need only

recombine simple algebraic expressions (such as those given in (4.2) - (4.4))

to obtain the elements of KN.

Many of these computational advantages are still present in the case where

the 0i are not assumed to be constant. If, for example, M and N are fixed

and r M consists of cubic spline element approximations for 01, 02 (defined
M

_-dependent mesh of points xk ; see Section 3), many of the quadratures may

still be performed in advance of the iterative process. In particular, if we

M k_M)""M
let On(X) : Z GM(x) for n=l,2 where GM are the usual cubic B-spline

m:l Yn,m m ' ' _ m
basis elements defined using the mesh points {x_ , k=O, ..., 2M} , we find that

N M NKi, j = <q DBj, DB.> may now be written as

Ki,jN = k_M)m=lM,m <GmDMBNj, N k(M) M M < MY1 BN DBi>L2(__ 1(4.5) DBi>L2(O,_ ) + _ (¥. +m=1 ,m Y2,m) GmDj ' , )

Since simple explicit algebraic expressions (in terms of _ and M) exist for

GmM , the quadratures in (4.5) may also be worked out easily in advance (yielding

expressions involving _, M, and N); as q-iterates are updated (i.e., coefficients
M

Yn,m are updated) it becomes a simple task to calculate the new entries in KN.

Weconsider here numerical examples where y is known and we have generated

synthetic data for use in testing our ideas. In all examples presented here,

we assume that r and u0 are known and fixed at their true values so that only

q = 01 + H_O2 is unknown (i.e., y = (_, 01, 02)) and to be determined. The special
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problems associated with estimating this discontinuous coefficient have been the

focus of our efforts throughout; the problem of identifying continuous functional

parameters and initial conditions has been considered elsewhere [13], [14], [16].

For each example that follows, both ¥ and u(y ) are selected in advance while

the appropriate forcing function f is artificially determined by substituting

y , u(y ) into (2.1). For chosen sample times t i, i=l, ..., n, and sampling

locations xj , j=l, ..., n (discrete data is used for these examples), data
^

is generated by setting uij = u(ti, xj; y ) , with random noise added in some

cases. Wenote that the sample data is no____tgenerated using our

spline-based scheme; rather, the data is constructed from an analytic expression

for the solution and thus is independent of the methods we illustrate here.

Webegin the parameter estimation process by supplying an initial guess of
0

¥ to IMSL's minimization routine ZXSSQ(a Levenberg-Marquardt algorithm) which

numerically attempts to determine a minimum, for given N, to jN (using C z 1

in (2.3)) over a fixed constraint set r M. Here uN(y) is the solution to (3.1)

calculated using IMSL's DGEAR,an ODEsolver, where the known values of u0 and

f are used in the equations. Wenote that although we are actually using the
^

cost functional associated with discrete observations uij, the approximating

equations (4.1) differ somewhat from those defined in Section 3.1: Indeed it

is not surprising that, in practice, we obtain pointwise convergence of the

approximating states under hypotheses more general than those needed in Section

3.1 so that we may, in fact, relax some of the restrictions on the approximating

system.

Example 4.1. In our first example we take

, FI5. , 0 < x < .6

q (X): _ 50. , .6<x< 1
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and define u(t, .; ¥ ) e dom A(q ) by

_x(70-lOOx)(t2+2) , 0 _x < .6

u(t,x;y ) = (L(15-15x)(t2+2), .6_x_l.

In examples4.1.a - 4.1.c below we seek to estimatey = (_, @l' @2)er_R 3

(with true value y = (.6, 15., 50.)) using an initialguess of 0 = (.8,30., 30.).

In each case we obtain the convergedvalues_N for N=4, 8, 16, and 24, using
0
y to start the iterativescheme for N=4, and previousconvergedvaluesas start-

ups for N=8, 16, 24 (e.g.,_4 is used as initialguess for the N=8 run).

Example4.1.a. Data is generatedfor this exampleusing Oij = u(ti, xj; y )

for ti = .5i, i=l, ...,4, and xj = .lj,j=l, ..., 9. Our findingsare reported

in Table 4.1.a.

Example 4.1.b. Werepeat the last example except that spatial sampling locations

are now given by xj = .lj + .05, j= O, I, ..., 9 (so that there is no spatial

observation point at _ , the point of discontinuity). Wesummarize our results

in Table 4.1.b. and note that there is little change between this example and

Example 4.1.a.

Example4.1.c. We repeat Example4.1.a,but add noise to the data. In this
W

case we defineuij = u(ti' xj; Y ) + rij where {rij}are Gaussianrandomnumbers

which (with98% certainty)fall in the range [-.06_,.06_],_ = _ uij/(nn).
i,j

Our findingsfor this exampleare summarizedin Table 4.1.c.

In the examples that follow we shall shorten our discussion by

abbreviating the length (and number) of tables and by displaying some results

graphically. The rather detailed presentation given for Example 4.1 was pro-

vided simply for the purpose of observing if noise in the data or changes in

the placement of data affected the outcome.
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Table 4.l.a. -- Example 4.l.a.

_N _N _N ~N CP time No. of
N ___ @I @2 J (secs) iterates

4 .623 14.669 51.950 1.5 x 102 28. 13

8 .602 14.845 50.672 1.5 x I00 54. 7

16 .600 14.961 50.095 8.8 x 10-2 202. 7

24 .600 15.000 50.000 5.6 x 10-9 141. 4

Table _4.1.b: -- Example 4.1.b.

-N -N -N ~N CP time No. of
N _ @I @2 J (secs) iterates

4 .621 14.956 48.494 9.0 x i01 32. 20

8 .607 15.009 50,063 3.8 x I01 35. 7

16 .601 14.991 49.728 1.2 x i0 -I 355, 13

24 .600 15.000 50.000 5.7 x 10-9 239. 5

Table 4.1.c. -- Example 4.1.c. (Noisy data)

-N jN CP time No. ofN ___N $ @2 (secs) iterates

4 .621 14.730 51.573 1,6 x 102 27. I0

8 .599 14.887 50.434 8.1 x I00 68. I0

16 ,598 14.991 50.296 8.0 x I00 178. 5

24 .597 15.006 50,149 8.3 x I00 733. 8
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In Example 4.2 below, we illustrate the use of our methods in problems

with two discontinuities 51, 52, in q; the example also serves to illustrate that

we are able to accurately estimate _i even when the forcing function f does not

contain discontinuities at each of those points.

Example 4.2. Weseek here the "true" value of q given by

, |_I.0 , O. < x < .2

q = I 6.0 , .2 < x < .6-0.5 , .6 < x < I.

* * * * * *

In this case, y = (51 ' _2 ' @I ' @2 ' @3) = (.2, .6, I., 6., .5) and the

true solution corresponding to y is

, r30x 0 <_x < .2

u(t, x; y ) = 'L5x+ 5 .2<_x < .6-200x2 + 300x - lO0 , .6 < x < l ,

with data available at t i = .5i, i=l,..., 4, and xj = .lj , j=l,..., 9.

A sample of our findings is given in Table 4.2 below, where the converged values

repotted were obtained after 501CP seconds, with j8 = 8.3 x 10-6 .

Table 4.2 -- Example 4.2

51 52 @I @2 @3

Initialguess:. .300 .700 5.000 5.000 5.000

Convergedvalues .200 .600 l.O00 6.000 .5000
(N : 8):

True values: .200 .600 1.000 6.000 .5000
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We considernow two exampleswhere the "true"q = _I + H_2 involves

nonconstant values of _l and _2 " In each case we search for approximate

_1 and _2 _n the cubic spline space constructed using an M=I level of approx-

mation (see Section 3).

Example 4.3. Here we seek to estimate the "true" parameter

. _2x + 12 , 0 < x < .6
q

LllOOx2/9 , .6 _<x < 1 ,

starting from the initial guess for q of qO _ 3 on [0,I] (with start-up value

for _ of _ : .5). The solution

r(70x - lOOx2)(t2+2) , 0 < x < .6
u(t, x; y*) = i

_5(l-x)(t2+2) , .6< x <_l ,

is used to generate data at t i = .5i, i=l, ..., 4, and xj = .lj, j=l, ..., 9.

In Figure la we compare the estimated _N,M = _N,M@I+ H_N -N,M@2(N=I6' M=I)

with the "true" coefficient q . Figure Ib is the same graph that has been

enlarged and restricted to the interval [.4, .63] in order to better distinguish

between "true" and approximate curves.

Example 4.4. Again we estimate a functional parameter with true representation

given by

, _7.424 - 40x , 0 _ x < .3

q = _90(x-.3) 2 + 18 , .3 _ x _ I.

Data is generated as in Example 4.3, using instead the solution

2(.5-x) , 0 < x < .3u(t, x; y*) :
Lll.143t2(l-x) , .3 _x _ I.

Webegan the parameter search with the start-up guess of
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r-_

qO = _18. , 0 _x < .2
L48., .2_x_l

_N,M
(see Figure 2a) and obtained the converged value of q (N=24, M=I) that is

_24 ,
depicted in Figure 2b. Note that _ is not approaching _ ; in fact, we

observed that the iterates for _ never changed from the initial guess of

_0 .2 (recall _ =.3) throughout the iterative process. Wenote that the

software package did perform fairly well in its attempt to estimate the
_24 -24

approximate functional shape of the parameter q (i.e., @I '-@2 are roughly

the same as @I ' 02 on the intervals [0., .2] and [.3, I.]; between x:.2

and x =.3 there is discrepancy due to the incorrect value of _24). The failure

of the numerical package to adequately estimate _ may be due to some well-

known limitations of the particular optimization scheme (Levenberg-

Marquardt)that we chose to use with our approximation ideas: It has been our

experience that difficulties sometimes arise when this minimization scheme is

used to estimate more than seven or eight unknown parameters. (In this example

there are 9 unknowns -- _ and 4 coefficients each in the cubic spline repre-

sentations for _I and _2. ) That the numerical package was able to estimate

9 parameters (and, in particular, _) in the last example may be due to the fact

that the difference between q(_-) and q(_+) in that example is greater, making the

accurate placement of _ more critical.

Wewere able to overcome the difficulties we encountered in this example

by taking the following steps: First, observing that _ had not changed at all

while @I and _2 appeared to have converged to reasonable values, we restarted the
-24 -24

iterative process holding @I _ @I and @2 fixed while iterating only on

_. As is seen in Figure 2c, the converged value of _ obtained using this approach
_24 *

is _ =.299 :.3=_ . Finally, we "re-tuned" the coefficients in the spline



Figures 2a-2d: Example 4.4

_oj =0

Figure 2a Figure 2b



47

expansionsfor @I and @2 by iteratingonce again on those coefficients,this
_24

time holding_ fixed at the new value of _ and usingas start-upvalues for

@l' @2 the convergedvaluesobtainedfrom the first iterativeprocess(i.e.,
-24 -24
@l ' @2 )" The result is shown in Figure2d. This somewhatadaptivealgorithm

to estimateaccuratelyall unknownparametersis a commonapproachtaken (often

of necessity)when real data is used in connectionwith model-buildingapplications

(see,for example,[ll]).

Finally, we remark that a drawback of our approximation framework is that

we must specify the numberof discontinuities in advance of the estimation

process. Fortunately, it is possible to overestimate and underestimate this

number and still obtain useful information. This will be the focus of our last

two examples.

Example 4.5. We repeat Example 4.2 except that we assume throughout that q

is discontinuous at only one point (while two discontinuities are actually

present in q ); we also allow spatial variation in @I and @2and approximate
_N,M

using cubic splines. An initial guess for q and a converged estimate q

(N=24, M=I) are depicted in Figure 3 where it is interesting to note that
0

the initial guess of _ =.4 converges to a value close to that of the true

(second) discontinuity, _2 :'6. In addition, to the right of this point the

estimated shape of q begins to approximate the constant function @3' while to

the left of that point the rapidly increasing estimated shape gives an indication

that we have underestimated the number of discontinuities present.

Example 4.6. Werepeat Example 4.1, except that now we overestimate the number

of discontinuities in q. Weassume throughout that q = @I+H_I@2+H_2@3where
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@I' #2' and @3are constants. For an initial guess of

0 I'25. , 0 <__x< .5

q : I 5. , .5 < x < .7,20. , .7 <x<l ,

we obtained (N=8 , 291CP seconds)

8 _4.95 , O. _ x _ .503

: _51499 , .503 _ x _ .600005 , .600 < x < 1 ;

repeating the same example but with a different initial guess,
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_001 , 0 <x < .333
0 I

q = I'001 , .333 <x < .667
I

I_.001 , .667 <__x <_1 ,

we observed the following converged values (N=I6)

2.44 , 0 _ x < .0001
-16 I

q = _15.05 , .0001 _ x < .6001

_49.88 , .6001 < x < I.

A close inspection of either result reveals that we were, in fact, able

to accurately estimate q (as defined in Example 4.1), even though a two-

discontinuity approximation structure was incorrectly used throughout.

Remark 4.1 Wenote that all examples presented here involve polynomial or

piecewise-polynomial state/parameter functions; from this one might conclude

that such a polynomial structure is needed in order to effectively apply our

spline-based methods. In fact this is not the case, as we have seen in a

number of test examples (see [4], [7], [26] for a number of examples in the

context of several applications).
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5. Concluding Remarks

In the above presentation we have given a convergence theory for algorithms

for the special problem of estimating discontinuous functional coefficients in

parabolic systems. Weare currently working to further develop and refine these

ideas and to extend the theory to other applications, e.g. hyperbolic (seismic)

equations and higher order (elastic beam) systems. In particular, we are studying

an approximation framework that imposes the continuity condition (2.5) on approx-

imate solutions uN as well as on the original solution u. Our investigations

in this direction involve making further (parameter dependent) modifications of

the spline-based basis elements described in Section 3; we are also studying a

completely different approach that involves the "tau-Legendre" ideas that have

been successfully applied in [8] to (discontinuous coefficient) hyperbolic systems.

Weare also working to develop a related theory for two-dimensional domains,

although for obvious reasons this is not simply a trivial extension of the ideas

presented thus far.

Finally, we note that we have not addressed here the problem of "identifiability"

of parameters, or the ill-posed nature of parameter estimation or "inverse"

problems in general. These important and difficult questions arise in all

parameter estimation problems and are not special difficulties associated with

the particular problem under consideration here. The reader is referred to

Remarks 3.3 and 3.4 of [14] for further comments regarding the nature of this

ill-posedness, of nonuniqueness and the importance of initial guesses for parameters,

and the general unavailability of convergence rates for approximate parameters
_N

{q
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