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Abstract

A new computational technique for the solution of the full

potential equation is presented. The method consists of outer

and inner iterations. The outer iterate is based on a Newton like

algorithm, and a preconditioned Minimal Residual method is used

to seek an approximate solution of the system of linear equations

arising at each inner iterate. The present iterative scheme is

£ormulated so that the uncertainties and difficulties associated

with many iterative techniques, namely the requirements of

acceleration parameters and the treatment of additional boundary

conditions for the intermediate variables, are eliminated.

Numerical experiments based on the new method for transonic

potential flows around NACA 0012 airfoil at different Mach

numbers and different angles of attack are presented, and these

results are compared with those obtained by the Approximate

Factorization technique. Extention to three-dimensional flow

calculations and application in finite element methods for fluid

dynamics problems by the present method are also discussed.

I. Introduction

The ability to compute transonic flow fields around airfoils

or wings is an important aid in the design of efficient modern

transport aircrafts since they operate predominantly in transonic

ranges. Considerable effort has been spent, in recent years, on

the construction of fast and accurate numerical procedures for

the solution of the full potential equation. To be useful as a ,

design and analysis tool, the success of a computational



procedure should not be problem dependent. For example, some

numerical procedures yiel_ rapidly converged solutions if optimal

values of acceleration parameters are provided and if other

special conditions are given. However, it should be pointed out

that optimal values of these parameters are often unobtainable

for practical calculations.

The standard iterative procedur9 for transonic small

perturbation and full potential calculations was based on the

successive line over-relaxation (SLOR) method. Because of its

slow convergence rates for many practical problems, the method

has been replaced by many new iterative procedures. One of the

most successful numerical techniques is based on the Approximate

Factorization (AF) scheme, and there are many variants of the AF

method_-6 including those based on ADI _ type developed by

Ballhaus and Steger, AF22 type by Ballhaus, et al., AF3 _ type by

Baker, and SIP5 type by Sankar, et al. These computational

procedures provide substantial improvement in rates of

convergence compared to the SLOR method. However, they all

require one or more iteration parameters in order to accelerate

the convergence, and an intermediate variable is also introduced

into the iterative process for a two-dimensional calculation.

Consequently, the uncertainty as to what values should be used

for the iteration parameters, and the uncertainty about how to

select the boundary conditions for the intermediate variable, may

affect the convergence rates as well as the stability of the

iterative process. It is our aim here to present an efficient

iterative procedure which yields a rapid rate of convergence like

the AF scheme, while eliminating the difficulties associated with

the AF scheme. The present method consists of outer and inner
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iterations. The outer iterate is based on a Newton like

ite_ative process in which the Jacobian matrix is not required,

and a preconditioned Minimal Residual algorithm is applied only

to seek an approximate solution of the system of linear equations

arising at each inner iterate. This method can therefore be

regarded as a Newton like - Minimal Residual algorithm or an

Inexact Newton like (IN) iterative procedure.

The idea of the IN iterative scheme was first proposed by

the author in [7]. Although our early paper indicated that the

method can be used to compute transonic flow fields around%

airfoils, it was not competitive with the AF scheme implemented

by Dougherty et al'. The computational results showed that more

iterations were needed for a converged solution compared to the

AF scheme, and the CPU time per iteration for the IN method was

about three times that required for the AF scheme. More

recently, the IN method has been modified to include a better

preconditioning operator so that a substantial improvement has

been achieved: the number of iterations is now about half of

that required by the AF scheme, and the CPU time per iteration is

about twice of that required by the AF scheme. The present paper

is mainly concerned with the numerical solutions of a

two-dimensional full potential equation, and particular attention

is focused on the improved version of the IN iterative method.

Comparisons of numerical results for lifting and non-lifting

airfoil calculations between the IN and AF schemes are given and

extensiOn to three-dimensional calculations will be discussed.

We describe the problem formulation for the transonic flow fields

around an airfoil in section If, and the solution of nonlinear

discrete potential equations by the IN method is presented in

3



section Ill, results of computationalexperiments are discussed

in section IV, and finally,concluding remarks are given in

sectionV.

II. Problem Formulation

For a two-dimensional problem in Cartesian coordinates, the

governing partial differential equation for an inviscid

isentropic fluid flow expressed in the conservation form is

+ = 0 (i)
x x y y

where

7 - 1 2 2 i/(_-i)
_: [_ (€.€)]

7+1 x y

Equation (i) is known as the full potential equation, where _ is

the velocity potential, p, the density of the fluid flow, and _,

the ratio of specific heats. Equation (i) is a nonlinear equa-

tion since $ is a function of @ and @ . The numerical solu-
x y

tion of Equation (i) for transonic flow is more delicate and more

interesting than those for purely subsonic or purely supersonic,

because the governing equation changes its type from elliptic in

subsoinc regions to hyperbolic type in supersonic regions, and

the boundary between these regions is unknown. Moreover, the

equation also admits discontinuous solutions, such as shocks

which may exist in the flow fields.

To handle a general flow problem with complex geometries it

is advantageous to transform Equation (i) from the physical

domain in the Cartesian coordinates into the computational domain

in a rectangle8. The full potential equation written in the

4



computational coordinates 6 and n is given by

pU pV
(--) + (--) : 0 (2)
J _ J n

where

7-i I/(r-l)
p: [I (u_.v_) ] ,

o:A. .A% , v:A. .A. ,
1 6 2 n 2 6 3 n

2 2
J= _ n - _ n , A= 6 + _ ,

x y y x 1 x y

2 2
A = 6 n - 6 n , A = n + n •
2 x x y y 3 x y

Here U and V are the contravariant velocity components along the

6 and n directions, J is the Jacobian of the coordinate

transformation, A_, A2 and A3 are metric quantities.

One of the difficulties in the numerical solution of

transonic flow calculations is that both compression and

expansion shocks are admitted hy Equation (i). The expansion

shocks, however, are physically meaningless. Thus in order to

eliminate the expansion shocks from the flow fields, an

artificial viscosity term is introduced, via an upwind bias, into

the full potential equation. In this paper, the method of

artificial density 8-_ is implemented, where the fluid density is

modified in such a way that

p . (;- _pa6) (3)

where
= max [ 0, 1 - 1/%42 ]

Here s + (t) indicates that s is replaced by t. In the above

expression _ is a switchingfunction which is zero in subsonic

5



flow fields and non-zero in supersonic flow fields, M is the

local Mach number, and p is the density gradient in the upwind

diretion. An important advantage in using the artificial

density method is that a central difference approximation can be

employed to discretize the full potential equation in the entire

flow fields regardless of whether it is in a subsonic or a

supersonic region.

III. Solution Procedure

By the application of the finite difference method the

solution of the full potential equation (2) is transformed to the

solution of a large set of nonlinear equations

L(@) : 0 (4)

where @ is a vector of velocity potential at the grid points, and

L is the nonlinear full potential operator.

Newton Like Algorithm

Our iterative scheme for the solution of Equations (4) can

be described as follows:

Let _o be an initial guess for the velocity potential

vector, compute the residual vector r° = L(@°), then for

n:0,1,2,...,untilllr°l12<c,

n n

solve M 6_ = -r
n

n+l n n
set _ = @ + 6_ (5)

n+l n+l
compute r = L(@ )

where n is an iteration number, 64 is the correction vector, and

M. is a matrix operator which varies from iteration to iteration.

It should be noted that if M. = L'(@"), the Jacobian matrix of

6



L(_), then (5) is a Newton's iterative process for the solution

of the nonlinear equations (4). Although Newton's method yields

a rapid convergence rate, the method requires the initial guess

@o to be inside a domain of attraction, that is, one must have a

good initial vector to ensure for convergence. Furthermore, even

if the linearized full potential operator is a sparse matrix, the

Jacobian matrix L'(_) will likely be a full matrix. For many

practical problems in aerospace industry the order of the

nonlinear equations is large, such as 5000 or more, consequently

it would be very difficult and expensive to compute the Jacobian%

matrix for each iterate n.

In order to implement the iterative scheme in (5)

efficiently it would then be natural to consider another operator

for M_. Axelsson_° has shown that if M. is a linear operator and

in some sense makes liE(_") - M_4" II almost insensitive to 4",

then the iterative procedure (5) converges. In this paper we

shall choose M to be an approximation to the full potetntial

operator, and with this particular choice the iterative process

defines a Newton like algorithm. The construction for M. is

given as follows:

Consider at the nth iterate, the fluid density has been

calculated from values of the velocity potential at the (n-l)th

iterate, the resDlt of the application of a central difference

approximation to L then leads to a nine-point formula, where

(L4 :c 4 .w 4 .E 4
i,j 1,3 i,3 i,j i-l,j i,j i+l,j

+ N 4 + s 4. + NW 4 (6)
i,j i,j+l i,j 1,j-i i,j i-l,j.l

+ NE 4 + SW @ + SE 4
i,ji. ,j.li,ji-l,j-1 i,j

7



Note that, the values at the NW, NE, SE and SW positions are
l

usually much smaller than those at N, W, C, E and S positions,

since they are due to the skewness effect of the coordinate

transformation. The operator M is now chosen by setting the

values at NW, NE, SW and _SE to zero. Hence M will be ar

five-point formula and this _mplies that the skewness effect has

been ignored. We would like to remark that neglecting the

non-zero values at NW, NE,/ SW and SE positions for the full

potential equation in non_-conservation form will no longer

guarantee that M will be a good approximation to the L operator.

Thus M should retain the nine-point formula structure for this

situation, and the results for the non-conservative full

potential equation will 5e reported later.

It should be noted that for the conservative full potential

equation M will be identical to the linearized operator L

provided an orthogonal transformation is used, and for other

transformations M will only be an approximation to L. Thus the

operator M takes the following form for orthogonal

transformations:

. PA_ . . pA3 .
M6@ : [_ (--) _ + _ (--) 8 ]6_ (7)

i,j _ J i+i/2,j _ n J i,j+i/2 , .i,j

in purely subsonic flow calculations. For mixed subsonic-

supersonic flow problems, the density _ in M has been modified

according to (3) so that an artificial viscosity term is

introduced. However, for large supersonic regions (i.e. strong

shock calculations) it is necessary to introduce an additional

upwind directional bias in the supersonic flow fields to ensure

for smooth convergence. This can be achieved by modifying the

8



operator M so that a @ type term is explicitly included, and M
_t

will take the form:

+ + PAl .
M6_ = [±_ + _ (--) _ (8)

i,j _ _ J i+I/2,j

. PA3 .
+ _ (--) _ ]6_

n J i,j+i/2n i,j

for transonic flow calculations, where _ is a switching function

which is zero in subsonic regions and is non-zero in supersonic

regions, 8 is a constant which controls the amount of the 4
_t

term that is introduced.
%

It should be noted that Equations (7)-(8) are valid only for

orthogonal transformations. In this paper a non-orthogonal grid

transformation is used and the operator M will only be an

approximation to L. Consequently, instead of Equation (8), we

have:

4-

M6i -- +L +E:]64 (9)
i,j a i,j

where E is the error matrix due to ignoring the skewness effect

in the grid transformation. Now consider E = EI + aI, then the

Newton like iterative scheme in (5) becomes:

. n+l n n
4-

(±_8_ . L + aI + E ) (4 - _ ) = -L4 (i0)
1

Since IIEIII << IILII for the full potential equation in

conservation form, it is not hard to observe tht Equation (i0) in

fact simulates a time-dependent problem:

n+l
_.± _ + L. = o (ll)

t _t

We would also like to remark that our iterative scheme is

9



fully implicit, and moreover, the boundary conditions for the M

operator are the same as that imposed for the full potential

operator. Although the iterative scheme given in (5) appears to

be similar to that based on the AF technique, there is an

important difference in choosing the operator for M. In the AF

scheme M is taken to be a product of two simple factors N_(a) and

N2(a), and the basic iterative scheme can be expressed as:

n n
N (a) N (a) 6_ = a_L_ (12)
1 2

where a is a sequence of acceleration parameters, _ is a%

relaxation parameter, N_(a) and Nz(a) are both functions of a,

and they are easy to invert. The solution of Equation (12) is

then obtained in two steps through an intermediate value F, that

is

n n

step i: N (a) F = c_L$
1

(13)
n n

step 2: N (a)6@ = F
2

This, in turn, requires an additional boundary conditions for F

in order to solve for the step i. Slow convergence or even

divergence may occur if the values of acceleratio_ parameters a

and the boundary conditions for F are not carefully chosen.

Although the effect of the intermediate boundary conditions in

the AF scheme has been studied via the yon Neumann and

Gustafsson-Kreiss-Sundstrom theory by South and HafezI_, the

stability analysis is valid only for purely subsonic flow

calculations and there is still no rigorous analysis available

for mixed subsonic-supersonic problems. Consequently, the

performance of the AF scheme for transonic flow calculations may

10



be strongly depended upon the experience of an individual user.

That is a fast convergence rate can be achieved if optimal values

of acceleration parameters and suitable intermediate boundary

conditions are provided, but not otherwise.

MinimalResidualAlgorithm

In order to obtain a better approximation @"._ in the Newton

l_ke iterative scheme we need to solve a system of linear

equations

M 6@ = - r (14)

where M is a large sparse matrix operator. It is important to

have an efficient solution method, since the linear system has to

be solved for each step in the Newton like procedure. Direct

method would not be possible since it requires a large amount of

storages and arithemetic operations. In this paper an iterative

method based on a Minimal Residual (MR) algorithm is used.

Although the MR method has a slower convergence rate than the

Conjugate Gradient algorithm _2, it can be applied to both

symmetric and unsymmetric problems as long as all eigenvalues of

the matrix operator has positive (or negative) real part. The

number of iterations, NI, required to attain a given accuracy

using the MR method is given13 by

NI = 0.5 K in(i/€) (15)

where K=IIMI IIIM-III, is the condition number of the matrix

operator M. Clearly the rate of convergence depends upon the

value of K, in the sense that the smaller the value for K, the

faster is the convergence rate that can be achieved. In order to

accelerate the iterative process, a non-singular matrix C is

introduced, and the linear system (14) is rewritten as

11



-I

Mc 6-_: - r (16)

where 6-_ = C64. Equation (16) is known as the preconditioned

system and C is the preconditioning operator. Suppose C is

chosen so that C -_ is a good approximation to M -_, then the

condition number of MC -_ would be much smaller than that for M

itself. Consequently, solving the preconditioned system (16)

will yield a faster convergence rate than that for the original

system (14). A detailed account of the construction for C and

its relationship to the matrix M will be given shortly. The
%

preconditioned MR algorithm can now be described as follows:

Let 64 ° be an initial guess correction vector, compute the

residual vector, pO = _r o _ M64O, and solve Cz o = pO, then for

k=O,l,2,...k, do

k+l k k

64 : 6. . o z ,
k

k+l k k

p = p - a Mz ,
k

(17)
k+l k+l

slove Cz = p ,

k k

where (p , Mz )
O =

k k k
(Mz , Mz )

T

Here (x,y) denotes the usual inner product, i.e. (x,y)=x y. The

main computational work per iteration in the preconditionedMR

algorithm is one matrix-vector multiplication for Mz, and the

solution for Cz=p.

Since we are interested in the overall convergence for the

nonlinear problem (2), it may not necessary to solve the linear

12



system in (5) to excessively high accuracy for each Newton like

iteration. In our implementation only an approximate solution is

sought for each iterate, and this can be achieved by using a

small fixed number of iterations (such as _ is set to 4) in the

preconditioned MR algorithm. The iterative procedure described in

this section thus consists of outer and inner iteration: the

outer iterate is based on a Newton like algorithm (5), and the

preconditioned MR method (17) is applied to find an approximate

solution for the inner iteration. This method is therefore

regarded as a Newton like - Minimal Residual algorithm, or simply

an Inexact Newton like (IN) procedure.

Preconditioning Matrix

Having presented the preconditioned MR algorithm (17), we

now study how to construct the preconditioning matrix C.

Remember that the extra computational work for each iteration in

the preconditioned algorithm is in solving the linear system

Cz=p. Note that, if C=I, the identity matrix, then (17) becomes

the regular MR algorithm. For a good preconditioned algorithm, C

should be chosen so that the condition number of MC -_ is much

smaller than that of M itself. In particular, if C=M the

condition number of MC-_ is I, the minimal value one could

obtain. Although a converged solution can be achieved in one

iteration, we need to solve Mz=p which is as difficult as solving

the original problem M6_=-r. Thus another important consideration

is that C-_ should be easily invertable, otherwise the

preconditioned algorithm will not be efficient. To satisfy these

two criteria C is taken to be an approximation to the matrix

operator M, and C is also a product of sparse triangular

13



matrices:

C = LU = M + E (18)

where L and U are sparse lower and upper triangular matrices and

E is the error matrix which measures how good is the

approximation between C and M. The matrix C is based on an

incomplete factorization technique_4-_5, and the algorithm for

constructing the sparse matrices L and U can be described as

follows. Recall that M is a sparse matrix consisting of five

non-zero diagonals, where

(M_) = E . . D . . F _ (19)
i,j i,j i,j i,j i-l,j i,j i+l,j

.H . .B
i,j i,j+l i,j i,j-i

Now L and U are constructed so that L and U has four non-zero

diagonals respectively, in which the three non-zero diagonals are

in the same positions to those in the lower and upper triangular

part of M, where

(L_) = v _. + t
i,j i,j 1,j i,j i-l,j

+ g @ + x _ (20)
i,j i,j-i i,j i+l,j-I

(U_) = _ + e # . f
i,j i,j i,j i+l,j i,j•i,j+l

.y
i,j i-l,j+l

The elements of L and U are computed from the coefficients of M

according to the relations:

g = B
i,j i,j

x = -g e
i,j i,j i,j-i

14



t = D -g y
i,j i,j i,j i,j-i

v = (I + a)E -g f
i,j i,j i,j i,j-i

-t (e + Y ) (21)
i,j i-l,j i-l,j

-x (y + e )
i,j i.l,j-i i+l,j-i

e = (F - f x ) /v
i,j i,j i+l,j-i i,j i,j

y =-t f /v
i,j i,j i-l,j i,j

f =H /v
i,j i,j i,j

A small value , a, is added to the main diagonal elements of M

to ensure the stability of the iterative scheme. The convergence

rate, however, is not sensitive to a in the range from 0.025 to

0.i, and a = 0.05 is used for all test problems in this paper.

It should be pointed out that the algorithm given in (21) satisfy

the following condition15:

non-zero elements non-zero elements of C

(except the main = which are in the same

diagonal) of M locations as M

Consequently although the preconditioning matrix C is factorized

to LU decomposition, the product of LU will be symmetric as long

as M is symmetric. Thus LU may be a symmetric matrix for purely

subsonic flows or during the early iterations in mixed subsonic-

supersonic calculations. However, when supersonic regions are

developed a @ term will apperar in the M matrix operator, and
at

LU will then become asymmetric.

The solution of Cp=z can now be obtained efficiently by the

15



followingsimple procedure. Since C=LU, the linear system Cz=p

can be rewrittenas

Ls = z
(22)

Up = s

where s is a dummy vector. The solution of Ls = z is obtained

through a forward substitution, where

s = (z - g s - t s
i,j i,j i,j i,j-i i,j i-l,j

(23)
-x s )/v

i,j i.l,j-i i,j

Note that, unlike the AF scheme, no boundary condition is

required in order to solve for the dummy vector s. The solution

of Up = s is obtained by a backward substitution, where

p = s - e p - f P
i,j i,j i,j i+l,j i,j i,j+l

(24)
- y P

i,j i-l,j+l

To end this section we would like to mention that one of the

differencesin the implementationof the present method compared

to that given in our early refenece_ is that a more accurate

preconditioningmatrix is used in this paper. The computational

results given in [7] were based on a differentLU decomposition,

in which x = y = 0 for all i,j in Equations (20) (i.e.L
i,j i,j

and U had only three non-zero diagonals). With an additional

diagonal for L and U respectively,the norm of the error matrix E

is smaller than that in our early paper. Consequently,a faster

convergencerate is achieved in the present iterativescheme.
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IV. Numerical Results

In this section results of numerical experiments using AF

and IN iterative scheme are presented. The computer program is

based on the TAIR code 8, and they all have been carried out on

the CDC CYBER 203 computer of NASA Langley Research Center. The

problems to be considered are transonic potential flow fields

around NACA 0012 airfoil at different Mach numbers and different

angles of attack. The grid system used for both schemes is the

same, where the total grid is 149"30 = 4470 points. Furthermore,

£he boundary conditions, initial starting vectors and criterion

for convergence test are the same for both schemes. For all

figures presented in this sections, the solid lines are the

results obtained based on the AF scheme of Holst', and the dotted

lines are those for the IN iterative scheme.

The surface pressure coefficient distributions, C , are
P

identical to those reported by Holst's experiments', and hence

they will not be presented here. In this paper, we shall mainly

focus on the comparison of convergence rates and the efficiency

for the AF and IN iterative schemes. Figures 1-3 compare the

rates of convergence of the two methods for the following cases:

(i) M_ = 0.85, a = 0°; (2) M_ = 0.8, a = 0.5°; and .(3)M_ = 0.75,

a = 2°. The first one is for zero angle of attack, i.e. a

non-lifting condition, (2) and (3) correspond to lifting a_rfoil

calculations.

From the comparison of convergence histories we observe that

the IN iterative scheme produces generally a smoother reduction

in the residual norm, especially for lifting airfoil

calculations. Another useful criterion for comparing the
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efficiency of each method is to study the development of

supersonic points and the circulation as the number'of iterations

is increased. Figures 4-5 show the development of the number of

supersonic points for M_=0.85, s=0° and M_=0.8, _=0.5°, and

Figure 6 gives the development of circulation for M_=0.8, a=0.5°.

The results in Figures 4-6 clearly indicate that the number of

supersonic points and the circulations are rapidly established

for the IN iterative scheme. From Figures 4-5 we observe that at

the 2nd iteration supersonic points had already been established

in the IN scheme, and moreover, it reached almost 50% of its

final value at the 5th iteration, whereas the AF scheme attained

its first supersonic points in the 6th and 7th iterations for the

cases of M_=0.85, and M_=0.8 respectively.

It should be noted that the convergence histories alone do

not reveal the complete picture for the comparison between the AF

and IN schemes, another important point of concern is the

computing time required for each method to obtain a given

accuracy. For a detail comparison one should study the exact

numbers of arithmetic operations for each computer code.

However, this is obviously very difficult to achieve for

practical problems, Such as the transonic flow fields

calculations. To provide a reasonable indication, Table 1 gives

the total CPU time in seconds required to reduce an average
J

residual (i.e. llr112) to less than 10-7. The CPU time per

iterate is 0.235 seconds for the AF scheme, and is 0.524 seconds

for the IN scheme.
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.Table 1,. C9_Par_sgn of CPU
time =or =ne A_ ana iN schemes

M_ = 0.85 M_ = 0.8 M_ = 0.75

a = 0° a = 0.5° a = 2°
AF 32.4 35.5 28.2

IN 41.8 44.5 31.3

It should be pointed out that a considerable amount of

computational work is needed for evaluating the residual vactor

at each iterate, since it is necessary to update the fluid

density at each grid point, modify the densities which are in the

supersonic regions, and calculate the velocity potentials, ...

etc. In fact evaluating these residuals takes more computing

time than solving the discrete potential equation using the AF

scheme for each iterate. Consequently, although the work per

iterate for the IN scheme takes twice the CPU time required by

the AF scheme, the total number of iterations is reduced so that

the overall computing time needed to attain the same accuracy for

the IN scheme is not significantly larger than that based on the

AF scheme.

A further improvement in computing time for the IN iterative

scheme is possible, since no effort to optimize the present

computer code was attempted. One could expect that a larger

number of inner iterations (i.e. the value for k in the

preconditioned Minimal Residual algorithm) per outer interation

(i.e. the value for n in the Newton like iterative process) might

result in a smaller number of outer iterations, and similarly, a

smaller number of inner iterations per outer iteration might

result in a larger number of outer iterations. It is, of course,

not clear what values are the best possible for a particular

problem. However, a variable for the inner iteration, so that k
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is gradually increased as the outer iterations proceed, w£11

_robably be a better choice than a constant value for k as used

in the present implementation. A criterion for achieving this

objective is being investigated.

Finally, it should be mentioned that in assessing these

numerical results, one should keep in mind that there is a major

difference between these methods. Although the AF scheme

requires less computing time, its formulation and application

require specialized knowledge and experience of an individual

user. In the sense that the performance of the AF scheme may be

greatly affected by the choice of the acceleration parameters and

also the treatment of the boundary conditions for the inter-

mediate variable. Because of these reasons, many researchers

have had a mixed experience with the AF scheme, sometimes finding

excellent results, and sometimes finding them disappointing.

Although more computing time is needed for the IN iterative

scheme, it is easy to program and it does not suffer from the

above difficulties.

V. Conclusion

A Newton like - Minimal Residual iterative scheme is pre-

sented for the solution of the full potential" equation in

transonic ranges. The method described here exhibited an

attractive property over the Approximate Factorization scheme,

namely the uncertainties and difficulties in choosing the

acceleration parameters and treatment of boundary conditions for

the intermediate variable are eliminated. Consequently, the

present method is less problem dependent and also less user

dependent as well. Numerical results for transonic airfoil

20



calculations are promising: the IN method produces generally a

smoother reduction in the residual norm,' and the number of

supersonic points and circulations are rapidly established as the

number of iterations is increased. In addition, there is still

room for improvement for the present method. Finally, two

potential ares of application are as follows:

(1) TransonicWingCalculationsz
It is technically straightforward to extend the present

method for numerical solution of a three-dimensional full
%

potentialequation. Moreover, the increase of the computational

work over a two-dimensional flow calculation is smaller for the

present method compared to the corresponding increase for the

Approximate Factorization scheme. For a three-dimensional

problem, the matrix operator M in the Newton like iterative

procedure will be a seven-point formula instead of a five-point

as for a two-dimensional problem. However, the main computational

work for the inner iteration is comparable to that required for a

two-dimensional calculation, since a sparse LU factorization can

be obtained with no difficulty. The Approximate Factorization

scheme, on the other hand, consists of three-step calculations16,

and it can be expressed as

n n

N (a) N (a) N (a) 6@ = s_L@ (25)
1 2 3

The solution of this scheme would now require two additional

boundary conditions for the two intermediate variables.

(2) Finite Element Method in Fluid Dynamics Problemss

Since the ApproximateFactorization scheme is essentially
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based on the alternating direction splitting methods, they will

not be applicable since it is n4 longer possible, in the finite

element formations to partition the matrix operator in terms of

the usual directional derivatives. The present method, however,

does not suffer from this restriction, since an incomplete sparse

LU factorization can still be derived for the finite element

matrix.

These two areas of applications and other possibilities will

be under investigation.
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FigureCaptions

I. Comparison of convergence histories (NACA 0012 airfoil,

M_=0.85,a=0°)

2. Comparison of convergencehistories (NACA 0012 airfoil,

M_=0.8,a=0.5°)

3. Comparison of convergence histories (NACA 0012 airfoil,

M_=0.75, a=2°)

4. Developmentof the number of supersonicpoints (NSP)as the

number of iterations is increased (NACA 0012 airfoil,

M_=0.85, _=0°)

5. Development of the number of supersonic points (NSP) as the

number of iterations is increased (NACA 0012 airfoil, M_=0.8,

_:0.5°)

6. Development of the circulation (CL) as the number of

iterations is increased (NACA 0012 airfoil, Mm=0.8, a=0.5°)
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