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ERRATUM

A HIGH RESOLUTION SOLAR ATLAS FOR FLUORESCENCE CALCULATIONS

by A'Hearn, Ohlmacher and Schleicher

The Kitt Peak spectrum referred to in this report was not actually

obtained by R. West as stated on page 12 and in the acknowledgements

although he did bring the spectrum to our attention. The spectrum was

obtained by J. Brault and L. Testerman of Kitt Peak as part of a more

extensive study of the solar spectrum. The various data from their

program are being synthesized into a more complete solar spectrum by

R. L. Kurucz of Harvard. That work will include a more careful study of

the absolute wavelengths as well as a wider spectral range and other

considerations.

14 October 1983
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I. INTRODUCTION

In the course of our program to study the fluorescence process in comets,

we frequently require the solar spectrum at high spectral resolution in

absolute units. For some programs, such as fluorescence of hydrogen in the

Lyman--a line, only a small portion of the solar spectrum is needed, e.g., the

few Angstroms including the Lyman-a line. At the other extreme, however, are

molecules like C2 and CO+. These species have emission bands which extend

from the ultraviolet to the red (CO +) or even to the infrared (C 2 ). A proper

calculation of the fluorescence by these molecules thus requires a homogeneous

solar spectrum over this entire spectral range. In order to meet this need we

have synthesized a solar spectrum from various sources.

There are a number of characteristics required in a solar atlas to he

used for fluorescence calculations. In the first place, the spectrum must

refer to the whole disc of the sun (i.e., the solar irradiance), not just the

center of the sun. Secondly it must have a reasonably good calibration in

absolute flux units. Thirdly, it must have a spectral resolution comparable

to or better than the thermal widths expected for cometary specral lines and,

in order to study the Greenstein effect in comets, the spectral resolution of

the atlas must be better than the expected Doppler widths due to mass motions

within the comet. The overall expansion of cometary material is expected to

take place at velocities of order 1 km/sec while the expected sublimation

temperatures, 150 to 200 K, imply thermal velocities of several tenths of a

km/sec. Therefore, a spectral resolution of several tenths of a km/sec is

appropriate for our purposes. This turns out to require unavailable data.

Fortunately for us, the solar rotation (2 km/sec near the equator) smooths out

all features finer than this. We can therefore accept a somewhat lower resolu-

tion, of order 1 km/sec, provided it is interpolated to better than 1 km/sec.
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Our general approach has been to provide an absolute intensity

calibration which is completely independent of the high resolution data which

form the basis for our final spectrum. Several sources of low resolution data

have been combined to provide an absolutely calibrated spectrum from 2250 A to

7000 A. Similarly three different sources of high resolution data are used to

cover this same spectral range. we have used the low resolution data to put

each high resolution spectrum on an absolute scale. We have then combined the

three high resolution spectra in their overlap regions to produce a single,

absolutely calibrated high resolution spectrum over the entire spectral range.

Although this atlas was assembled for our own purposes of calculati-g the

fluorescence spectrum in comets, it does have other applications. Nicolet

(1981), for example, has recently discussed the same problem from the view-

point of photochemical rates relevant to aeronomy although he Aid not require

spectral resolution nearly as high as ours. Similarly, these results are

needed for fluorescence calculations relevant to planetary atmospheres and

exospheres.
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Ii. SOLAR VARIARILIY

An important question is whether or not the solar spectrum shows any

variability that would matter for our purposes.

The only fluctuations which matter for our purposes are those which

exceed a few percent on time scales from hours (the time required to establish

fluorescent equilibrium for cometary species) to several decades (the time

span of quantitative data on comets). Two recent conferences on solar vari-

ability* have considered many different types of variation. Examination of

the proceedings leads one to conclude that, at ?east in the optical region,

there are no changes in the solar spectrum relevant tc our interests with the

exception of changes in a few discrete absorption lines. For example, the

intensity at the core of the Ca II K line does vary significantly with the

solar cycle (Livingston, et al. 1981). Since this will matter only for

transitions pumped at that frequency, none of which are of interest to us, we
i
3

have ignored this effect. Fluctuations associated with the five minute

oscillations (e.g., Frohlich, 1981) are too rapid to be of interest to us.

In the ultraviolet, there Rre large (>30%) discrepancies among different

observers. Simon (1981) has reviewed the various determinations, looking

specifically for real variations. The best results should come from repeated

measurements with the same instrument, such as those of Simon himself. He

concludes that the variations with solar rotation (27-day period) are 1-2% for

X2400 - 3300 A (mainly at the discrete Fraunhofer lines of Mg II near 2800 A)

and 2-4% for X2000 - 2400 A (mainly shortward of X2100 A). These fluctuations

are only of marginal significance for our purposes and the largest ones are

XIVth ESLAR Symposium on "Physics of Solar Variations Sept.	 % papers
published as vol. -7T4 of Solar Physics. Workshop held at Goddard .apace
Flight Center Nov. T980: Proceedings published as "Variations of the Solar
Constant" ed. S. Cofia NASA Conf. Publ. 2191.

s
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outside the spectral range under consideration (i.e., A < 2250 A). We will

therefore neglect these changes. The longer term variability, specifically

that with the 11-year solar cycle, is less well determined. Simon therefore

gives only upper limits of 2% for the region A2400 - 3300 A and 102 for the

region X2000 - 2400 A. Again the variation longward of X2400 is of only

marginal significance and we neglect it. The upper limit for variations in

the range X2000 - 2400 A might be important for our purposes, but it is clear

that with current data we cannot take these variations into account since they

are not adequately determined.

In summary, the present atlas will make no attempt to take into account

any variations with time. Such variations may be significant, however, at the

core of certain lines such as the K-line and at wavelen gths < 2400 A. These

limitations must be kept in mind when using the atlas.
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III. ABSOLUTE FLUX CALIBRATIONS

The absolute calibration of the solar irradiance in the optical region

has been taken from the work of Neckel and Labs (19R1). They have prc..•tded

the total irradiance at 1 AU integrated over 20 A -wide bandpasses (20.5 A wide

for A < 4010 A). They have estimated the accuracy of their results as better

than 1% at most wavelengths and better than 2% in the near ultraviolet. Other

absolute spectra of the sun, however, differ from these results by much more

than 2%. The choice of the data from Neckel and Lab6 is strongly supported by

the work of Hardorp (1980). He has discussed in some detail the comparison

between the sun and other stars which resemble the sun, both in respect to the

overall flux distribution and also in the strength of two discrete absorption

features in the near ultraviolet region of the spectrum. The earlier calibra-

tion by Labs and Neckel (1968) was the only solar spectrum which could match

the overall flux distribution of any stars which had the solar strength for

the discrete features. In the course of that investigation, Hardorp uncovered

the small errors in their flux distribution which have been corrected in the

more recent work by Neckel and Labs. Although t.-ere may be uncertainties

larger than those cited by Neckel and Labs, it seems clear to us that these

data are by far the best available and that consequently there is no point in

averaging them with any other data.

In the ultraviolet, the situation is more ambiguous. The discrepancies

among different observers are larger and there is less basis for choosing one

over another. In their review of this quesion some years ago, Smith and

Gottlieb (1974) chose the work of Broadfoot (1972) as the best, but many more

recent sources of data are now available.

Since the discrepancies among different observers of the ultraviolet flux

distribution of the sun are much larger than the real variations, we must
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select among the observers. In the spectral region x2500 - 3000 A, the data

of Broadfoot (1972) are in reasonably good agreement (10% or better) with n

variety of more recent data, particulary those of the groups headed by Simon

and by Heath (c.f. Nicolet, 1981; Simon, 1981) and from 2550 to 2900 A they

are in good agreement with the results of Mount and Rottman (1981). In this

region, the results of Broadfoot are the highest of the various sets of data

but still in adequate agreement. The choice between these sources seems

arbitrary in this spectral range and we have adopted the results of

Broadfoot. We use only Broadfoot's Table 2, which contains averages over 10 A

intervals, because his instrumental resolution was approximately 3 A and his

wavelength scale also has uncertainties of 1 A or more. Use of his Table 1

with data at 1 A intervals would therefore require detailed knowledge of his

Instrumental line shape whereas the 10 A data can be considered (with 1%

accuracy) to have a rectangular line shape. Since the data of Broadfoot were

taken near aphelion, they should be increased by 3% to reduce them to 1 AU,

but we have omitted this correction on the grounds that Broadfoot's data are

systematically the highest of these sources by a comparable percentage.

Shortward of 2500 A, there are serious discrepancies between the data of

Broadfoot, whose data are systematically highest, and a variety of other

sources. The data of Mount et al. (1980) are the lowest of the several

investigators and their values are roughly 2/3 of those of Broadfoot. Mount

et al. suggest that the discrepancy is due to scattered light in Broadfoot's

instrument, but if this were the case one might expect the size of the

discrepancy to be anticorrellated with the brightness and this is not the

case. The data from Heath and from Simon lie between those of Broadfoot and

those of Mount et al. (c.f. Nicolet, 1981, figs. 10a, 10b; Simon 1981, fig. 9)

but significantly closer to those of Broadfoot. We therefore ignore the
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results of Mount et al. The selection among the other three is more

difficult. The results of Siron et al. (1982) might he questioned becauap

they were made at relatively low altitude (41. km) and therefore required

significant corrections for residual atmospheric absorption. They agree welt,

however, with Heath's data taken from the Nimbus satellite (c.f., Simon

et al., fig. 2) indicating that these atmospheric c erections were properly

applied. We conclude that in this spectral range, the data of Simon et al.

(1982) are as good as any and we use their average of the two most recent

measurements (their Table 2b).

We have now selected three sources of data for the absolute

calibration: Simon et al. (1982; Table 2b) for A < 2410 A; Broadfoot (1972;

Table 2) for the range x2400 - 3200 A; Neckel and Labs (1981; Tables 2 and 1)

for the range x3300 - 7000 A. It is still necessary to combine these data in

such a way as to eliminate a discontinuity at 2410 A and to interpolate

between 3200 and 3300 A. For the handpass X2353 - 2381 A, the value of Simon

et al. is .83 that of Broadfoot with no obvious trends in the ratio at shorter

wavelengths. To smoothly join with Broadfoot's data, we use Rroadfoot's data

for Otte bands centered at 2390 through 2500 A and multiply each by a value

which increases linearly from .83 at 2376 A to 1.00 at 2500 A. Above that

point, we take the values of Broadfoot and below A2390 we take the values of

Simon et al. The results of this splicing are given in Table 1 where we give

both the method of combining the sources and the actual values of 'he

result.

For the interpolation between Aroadfoot's results shortward of 32nO A and

those of Neckel and Labs longward of 3300 A, we use the results of Simon

(1975, Table 1). These results are almost equal to those of troadfoot short-

ward of 3000 A and about 10% higher than those of Neckel and Labs at 3300 A.

1
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Since the data of Rroadfoot seem to show a systematic drop from 3 Mt0 A to

3200 A but have much higher spectral resolutton than thoRe o f Simon, we have

adopted a weighted average, as for the splicing At 6norter wavelengths, wit1,

the weights varying linearly from 100% Broadfoot/0% Simon At 3nnn A to 0".

Aroadfoot/100% Simon at 3200 A. We have then expressed this as a fraction of

Broadloot's data which can then he interpolated with the results given in

Table 1.- Similarly, we have used a weighting of 00% Simon/0% Neckel-i.ahs At

3250 A linearly varying to 0% Simon/100% Neckel-Labs at 3400 A.

The complete sular spectrum used for the calthration is given in

Table 1. Although some of the calibration was done to units of energy per

time per wavelength, the ultimate atlas (for our own convenience) has been

converted to rad".anon densities at 1 AU. These are the data given in

Table 1 in units of 10 24 erg cm-3 11z-1 where the conversion of units waR

done using a at the center of the handpass. The two wavelengths indicate

the range over which the original flux was integrated or averaged aR

determined from the original reference. For all radiation densities greater

than 4000 x 10-24 ergs cm-3 Hz-1 , the numbers have been rounded to end In n.

The results are also summartze.i graphically in FiRtire Is where we have shown

the complete adopted calibration. Figure lb shows, at expanded Rcales, the

short-wavelength portion of the calthration which Includes all overlap

regions. In overlap regions, both original sources are shown an well as the

adopted calthration.
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IV. HTGH RES(WinoR SPECTRA

As with the data for absolute calibration, It hAX been necessary to

obtain the 1'gh reso Luton data from several Pources In order to cover the

desired wavelength range. Since line strengths anA shapes vary from the

center of the solar disc to the limb, it is necessary to have high resolution

data which refer to the whole disc. Thts drastically limtts the number of

available sources of data. As noted above, we require for our purposes a

spectral resolution of order 1 km/sec (10 m4 at 3000 A) and a corresponding

accuracy for the wavelength scale.

A. x3800 - 7000 A

For most of the optical range we have adopted the atlas of Reckers et al.

(1916) taken at Sacramento Peak Observatory (Sac Peak hereafter). This

spectrum was obtained by using a cylindrical lens of only 5 ass focal length to

image the sun onto the entrance slit of a double-pass spectrometer. The

spectrometer was used with two different gratings to Rth to 15th orders with

100 A interference filters to isolate the order of interest. The data (in the

magnetic tape version cf the atlas) are sampled at 5 m4 intervals. The

resolving power was approximately 300,000 for the range from A4000 - 7000 A

(13 mA at 4000 A - 1 km/sec) and 192,000 for the range A 3ROO - 4000 A (21 A

at 4000 A, - 1.5 km/sec). To reduce noise, the data were addttionally

smoothed with a Gaussian filter of width at the e I point t X/750,000 (1 n m4

at 4000 A). As noted in the introduction to that atlas, there should be no

fide structure at higher resolution than this because of solar rotation.

The original atlas was normalized to a continuum intensity of 0.9, but

because they carried out the scans to small sections (10 - 20 A each) there

P
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may he errors of several percent in defining the continuum level near strong

Fraunhofer lines.

Focause many of our calculations involve wavelengths deduced from

molecular constants and because we are combining both optical and ultraviolet

data, it was decided to use all wavelengths Ii vacuum. Since the Sac Peak

Atlas uses wavelengths in air, it was necesss.iry to convert the wavelength

scale. For equally spaced values of X vac we calculated X air from

X vac /Xair	
1 + 1()76 J64.328 + 29498.11[146 - 1/A v)

+ 255.4/(41-1/X 2	(1)

using A in microns (c.f., 41len 1973, p. 124). The flux from the Sac Peak

Atlas was interpolated to this wavelength in air.

B. X3000 - 4050 A

Data for this spectral range were obtained by R. A. West at Kitt Peak

National Observatory using the Fourier Transform Spectrometer (FTS) at the

Mc Math Solar Telescope. This instrument provides ful.t-disc spectra at high

spectral resolution. The three original interferograms were taken on 21 and

22 June 1981 with the sun near transit to minimize losses due to the severe

atmospheric attenuation at these wavelengths. They cover three separate but

overlapping spectral regions to produce spectra covering the regions:

a. (2887 - 3435 A), b. (3233 - 3977 A) and c. (3487 - 4057 A). The maximum

airmasses were 1.05, 1.21, and 1.10 for a, b, and c, respectively. Recause of

the filters used to prevent aliasing in the interferograms, the signal dropped

essentially to zero near the ends of these spectral ranges and the full range
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Is not useful. Each interferogram consisted of - 7 x 10 5 points yielding a

resolving power near 3.5 x in s or a resolution near 10 nd.

The spectra, as obtained on magnetic tape from G. Ladd at Kitt Peak, were

interpolated to 0.005 A intervals (vacuum wavelengths) and the overlap regions

plotted to check for consistency. The agreement in the overlap regions was

excellent so the spectra were merged, after applying the absolute calibration,

into a single spectrum using a linear weighted average in the overlap regton4.

In other words, between 3240 and 3400 A , the weighting varied linearly from

LOOX spectrum a/OX spectrum b at 3240 A to 07. spectrum a/100'1, spectrum h at

3400 A and similarly between 3520 and 3960 A for spectra b and c.

No attempt was matte to explicitly correct for atmospheric attenuation.

Attentuation varying slowly with wavelength is automatically removed during

the applicat'nn of the absolute calibration. Discrete absorption features,

e.g., due to telluric 0 3 , may still remain. Because of our interest in OH, 	 }

the spectral region from 3070 to 3085 A was carefully compared with the

spectrum of the center of the disc measured with a rocket by Kohl, Parkinson,

and Kurucz (1978). No discrete telluric features could be identified in this

region. However, features of significant strength may exist in other

wavelength regions.

C. X2250 - 3050 A

For this spectral region we have utilized the atlas of Kohl, Parkinson,

and Kurucz (1978, KPK hereafter). This atlas contains spectra of the center

of the disc and of a position near the limb (u - 0.21). The spectral

resolution is 0.028 A, slightly coarse for our needs but still the most

appropriate data available. In addition, the wavelength scale itself is

accurate only to about 0.02 A, another significant limitation from our point
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of view. The magnetic tape version of the atlas is tabulated, however, at

5 64 intervals of wavelength in air.

Kohl et al. ( 1980) have used the KPK atlas to derive total solar

irradiance by assuming a shape for the limb darkening curve and assuming, that

the spectrum for the center of the disk is valid for the interval 1.0 > V >

0.23 and that the spectrum for the limb is valid over the interval from

0.23 > µ > 0.0. Since we are applying a separate absolute calibration, we

need only the relative weights of the two spectra but in earlier work we did

try to maintain the absolute intensity calibration of the KPK atlas. Using

the limb-darkening coefficients of Allen (1973, p. 171) we deduced the

weighting

0.330 Iu=0.23
I^	 0.545 I u

=1 +	 0.080 Iual (if 
Iu=0.23 

is not given)

(2)

The second form is needed over selected wavelength intervals in which K OK. do

not give a spectrum for the limb. Most of these regions are at the longer

wavelengths and it is for this reason that we have discarded all data from KPK

for a > 3050 A.

The comparison of the solar spectral irradiance deduced from this atlas

with many other sources has been discussed in some detail by Kohl et al.

(1980) and will not be repeated here. The atlas wavelengths were converted

from air to vacuum and interpolated to uniform 5 mA intervals in vacuum

wavelength.

_	
^ .^. a► • •	 _	 _^ ' — _. ^.^..^^^'" ^`.." tee,_.
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v. THE COMBINED ATLAS

Each of the three high resolution atlases (and each piece of the KPNO

atlas) wa4 independently placed on our absolute scale before they were

combined into a single atlas. The atlas was integrated over each handpass of

the absolute calibration, Table 1, and divided into the calibration value

(already in units of radiation density at r - 1 AU). Each quotient was

associated with the wavelength at the center of the corresponding handpass and

the set of quotients defined the calibration curve for the high resolution

spectrum. These points were then fitted with a cubic spline to define a

continuous calibration function and were multiplied by the high resolution

atlas to provide a final absolutely calibrated atlas. The response curves are

shown in Figure 2.

To combine the three atlases, we first checked for wavelength shifts

between them by calculating the cross-correlation function between each pair

of absolutely calibrated, high resolution spectra for all 5 A intervals in the

overlap region between the spectra. These cross-correlation functions are

shown in Figure 3 and indicate both that there are wavelength shifts of order

10 ma between the spectra and that there is noise in the wavelength scales of

order 5 mA. An average of the offsets shown in Figure 3 yiel.ds A KPNO - X KPK

-0.0206 t .0045 A (rms) and X KPNO - X SP _ -0.0119 t .0013 A (rms). Note that

the variations in the cross-correlation functions are much greater for KPNO

vs. KPK than for KPNO vs. Sac Peak. This is consistent with the wavelength

errors quoted by KPK. A comparison with laboratory wavelengths in the overlap

region of Kitt Peak and Sac Peak indicated that the Sac Peak wavelength

calibration was better. Therefore, we shifted the Kitt Peak spectrum redward

by 0.01 A (exactly 2 data points). This procedure is not correct since the

wavelength scale of an FTS spectrum will be in error by only a multiplicative
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factor, but as the difference in the shift between 300n and 4nnn 1. would he

significantly smaller than our desired resolution we opted for the simpler

approach of a constant shift. To bring the KPK. Rtlas into agreement both with

the KPNO atlas and with laboratory wavelengths over the range 3000 to 1050 A,

we shifted the KPK atlas blueward by 0.01 A.

Finally, we used a linearly varying weighting function to merge the

three atlases in their overlap regions. The weighting functions used varied

from 100% KPM/0% KPNO at 3000 A to 0% KPK/100% KPNO at 3050 A and from

100% KPNO/0% Sac Peak at 3900 A to 0% KPNO/1007, Sac Peak at 40n0 A.

In Figure 4 we show portions of the overlap regions of the final spectra,

showing both original sources after application of the wavelength shifts

described above. Note that even over the scale of a few Angstroms there is

significant jitter in wavelength when KPK and KPNO are compared; when KPNO and

Sac Peak are compared, the jitter in wavelength is leso than our wavelength

spacing of 5 A. This suggests that the final atlas may have wavelength

uncertainties significantly greater than the spacing, perhaps up to 10 or

20 mA, for wavelengths less than 3050 A but not for longer wavel.engths.

tie will point out only one comparison of our atlas with others. Donn,

Cody, Kumar, and g iant (private communication) have utilized a precedure

similar to ours but with totally independent data to obtain a corresponding

atlas. Their high resolution spectrum was obtained at Kitt Peak by Y,umar and

they used the absolute solar irradiance of Mount and Rottman (19$1). Thus far

they have calibrated only a portion of their atlas, On the region from 30n0

to 3200 A. Wiant has carried out a point by point comparison between our two

atlases for the few Angstroms in the vicinity of the strongest nH absorption.

He finds excellent agreement between the two atlases with the largest

differences amounting to approximately !0% of the continuum.
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This portion of our spectrum is shown in Figure 5 where we have

superimposed the positions of the five absorption transitions which dominate

the ultraviolet pumping of OH. For comparison purposes, we also show A

spectrum based solely on the center-of-disc spectrum of XPK which we users in a

previous study of OH fluorescence (Schleicher and A'l yearn, 1QR2). The

differences are significant And are due to several factors including tbf-

change from center-of-disc to whole dine, the systematic shtft in wavelength,

the reduced jitter in wavelength of the KPNO data, and the new absolute

calibration.

We conclude that our atlas can be used for calculations of fluorescent

spectra with confidence. The uncertanties in the solar flux should generally

not be the limiting factors in the accuracy of the resultant spectra although

the wavelength errors shortward of 3050 A may lead to errors in deduced fluxes

greater than 10%.
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VI. AVAILARtLITY

The final magnetic tape version of the atlas to available from the

authors. Our own tape Is 9-track, written in UNtVAC 1180 binary format. 'ae

will also provide tapes written in ASCII upon request. The data are hlecked

in records of 1002 words each, with the first two words being the number of

data points in the record (always 1000) and the wavelength in Angstroms of the

first point. The remaining 1000 words are the radiation densities at 1 AU

(erg cm-3 Hz-1 ) at intervals of 0.005 A. Thus each record covers 5 A. A

graphical version of the portion of the atlas covering X2250 - 4000 A will

also be available. The portion of the atlas l.ongward of 4000 A is not

available from us in graphical form, since it differs from the previously

published atlas (Becker* et al. 1976) only by a wavelength shift (air to

vacuum) and the smoothly varying response curve of Figure 2. Potential users

needing either the magnetic tape or the graphical display should contact the

authors to make arrangements for reproduction of copies.
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Table 1: Adopted Absolute Calibration of the Sun at Low Resolution

X l a2 Pv

_(A1 I	 ..
[10-24e rgcm 3Rz-1 ] Sourcel

2247.2 2272.7 277 SPN
2272.7 2298 .9 317 SPN
2298.9 2325.5 261 SPN
2352.9 2381.0 302 SPN - .8305
2385.0 2395.0 304 .8473

2395.0 2405.0 273 .8618
2405.0 2415.0 274 .875B
2415.0 2425.0 445 .888E
2425.0 2435.0 476 .902B

2435.0 2445.0 460 .916B

2445.0 2455.0 383 .930E
2455.0 2465.0 362 .943B
2465.0 2475.0 41; .957B
2475.0 2485.0 394 .971E
2485.0 2495.0 367 .985E

2495.0 2505.0 504 R
2505.0 2515.0 420 R
2515.0 2525.0 344 R
2525.0 2535.0 393 R
2535.0 2545.0 475 B

2545.0 2555.0 575 B
2555.0 2565.0 718 B
2565.0 2575.0 1005 R
2575.0 2585.0 1055 B
2585.0 2595.0 1002 R

w

2595.0 2605.0 776 R
3

I
2605.0 2615.0 704 R
2615.0 2625.0 950
2625.0 2635. 0 889 R
2635.0 2645.0 2036

it,.

2645.0 2655.0 2026 B
2655.0 2665.0 2199 B
2665.0 2675.0 2112 R
2675.0 2685.0 2156 R
2685.0 2695.0 2039 B

2695.0 2705.0 2268 B
2705.0 2715.0 2246 .9

a

-	 _.tom •i	 ..ru^^.r'^ '^^^.^^•^



r	 0

2715.0 2725.0 1605 8
2725.0 2735.0 1991 8
2735.0 2745.0 1284 B
2745.0 2755.0 1337 3
2755.0 2765.0 2013 B

2765.0 2775.0 2259 B
2775.0 2785.0 1683 R
2785.0 2795.0 1104 B
2795.0 2805.0 737 B
2805.0 2815.0 1490 B

2815.0 2825.0 2480 13
2825.0 2835.0 2902 B
2835.0 2845.0 2768 B
2845.0 2855.0 1354 B
2855.0 2865.0 2604 B

2865.0 2875.0 3374 B
2875.0 2885.0 2692 B
2885.0 2895.0 3870 B
2895.0 2905.0 5420 B
2905.0 2915.0 5580 B

2915.0 2925.0 5060 B
2925.0 2935.0 5200 B
2935.0 2945.0 4890 R
2945.0 2955.0 4980 B
2955.0 2965.0 5610 B

2965.0 2975.0 4290 B
2975.0 2985.0 5020 B
2985.0 2995.0 4790 B
2995.0 3005.0 4210 B
3005.0 3015.0 4720 1.004B

3015.0 3025.0 4140 1.008B
3025.0 3035.0 6330 1.0128
3035.0 3045.0 5930 1.016B
3045.0 3055.0 6410 1.0209 - .075B + 0.25S
3055.0 3065.0 5360 1.029E

3065.0 3075.0 6080 1.038B
3075.0 3085.0 6360 1.047B
3085.0 3095.0 5560 1.0563
3095.0 3105.0 5130 1.065B - .0.5013 + 0.50S
3105.0 3115.0 7940 1.0808

3115.0 3125.0 6730 1.0945
3125.0 3135.0 7150 1.108B
3135.0 3145.0 7510 1.123E
3145.0 3155.0 7500 1.138B - 0.25B + 0.75S
3155.0 3165.0 6170 1.153B

28



12850 NL
22 040 Nil
15160 NL
27740 NL
29570 NL

32100 NL
29450 NL
30180 NL
31310 NL
31030 NL

3942.7
3960.5
3979.5
3999.5
4011.3

4030.0
4050.0
4070.0
4088.8
4108.8

3922.2
3940.0
3959.0
3979.0
3990.8

4010.0
4030.0
4050.0
/068.8
4088.8

3165.0
3175.0
3225.0
3287.9
3307.4

3327.7
3348.3
3368.4
3388.0
3408.4

3427.7
34 ° 0
3468.3
3487.9
3508.3

3528.7
3548.8
3569.1
3589.3
3609.9

3630.3
3650.8
3667.5
3688.0
3708.4

3726.4
3744.5
3765.0
3784.1
3803.7

3823.3
3843.5
3863.5
3883.9
3901.7

3175.0
3225.0
3275.0
3309.4
3327.9

3348.2
3368.8
3388.9
3408.5
3428.9

3448.2
3468.5
3488.8
3508.4
3528.8

2549.2
3569.3
3589.6
3609.8
3630.4

3650.8
3671.3
3688.0
3708.5
3728.9

3746.9
3765.0
3785.5
3804.6
3824.2

3843.8
3864.0
3884.0
3904.4
3922.2

	

8840	 1.16AB

	

8540	 S

	

11010	 S

	

13470	 1.060NL - 0.33NI, + 0.67S

	

12440	 1.055NL

12070 1.051NL - 0.59NL + 0.41S
11550 1.037NL
11220 1.019NL
12640 NL
12150 NL

11270 NL
12260 NL
12530 NL
13070 NL
13080 NL

15700 NL
14850 NL
10610 NL
15310 NL
15210 NL

14620 Ni,
18740 NL
17300 NL
18270 NL
17860 NL

14920 NL
16 02 0 NL
21510 NL
19220 Ni.
18130 NL

11950 NL
16620 NL
16280 NT,
19310 NL
21590 NL

2q
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4107.1 4127.1 34200 NL

4127.1 4147.1 33000 NL

4.46.5 4166.5 34380 NT. 1

4165.9 4185.9 32840 NL
4181.2 4201.2 32370 NL

4201.2 4221.? 35880 NL
4221.0 4241.0 32860 qT.
4237.5 4257.5 35150 NL
4257.9 4277.9 32830 NL
4276.' 4296.4 33710 NL

4296.4 4316.4 25380 NL
4316.4 4336.4 37350 NL
4329.7 4349.7 36390 NT.
4349.2 4369.2 39230 NL
4361.9 4391.9 39200 NL

4381.9 4401.9 35910 NL
4399.0 4419.0 38790 NL

4418.0 4438.0 42660 NL
4437.2 4457.2 42860 NL
4454.0 4474.0 41050 NL

4473.2 4493.2 45170 NL
4493.2 4513.2 48060 NL
4513.6 4533.6 45450 NL
4533.6 4553.6 46240 NL
4553.6 4573.6 47710 NL

4573.7 4593.7 47130 NL
4593.7 4613.7 47670 NL
4613.6 4633.6 49820 NL
4633.6 4653.6 47850 NT,
4653.6 4673.6 47340 NL

4673.5 4693.5 49080 NL
4693.5 4713.5 47820 NL
4713.3 4733.3 50100 NT.
4733.3 4753.3 50870 NL
4753.3 4773.3 49780 NL

4773.3 4793.3 52200 NL
4793.3 4813.3 52980 NL
4813.3 4833.3 52840 -NL
4833.1 4853.1 52510 NT,
4853.1 4873.1 45130 NL

4873.1 4893.1 49810 Nl,
4882.9 4902.9 51660 NL
4902.9 4922.9 50590 NT,
4922.9 4942.9 52390 NL
4941.5 4961.5 54260 NT,

^_
	 --__<	
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4960.7 4980.7 54800 NL
4978.9 4998.9 53200 NL
4998.9 5018.9 50900 N(.
5018.9 5038.9 54080 NL
5038.9 5058.9 54330 NL

5058.3 5078.3 56220 NL
5078.3 5098.3 55520 NL
5098.3 5118.3 56090 NL
5118.3 5138.3 55450 NL
5138.3 5158.3 54630 NL

5158.3 5178.3 50280 NL
5178.3 5198.3 51900 NL
5189.5 5209.5 54680 NL
5209.3 5229.3 57010 NL
5228.8 5248.8 58430 NL

5248.0 5268.0 56340 NL
5268.0 5288.0 56040 NL
5288.0 5308.0 60620 NL
5306.5 5326.5 60820 NL
5325.2 5345.2 58380 NL

5343.9 5363.9 61790 NL
5362.0 5382.0 59380 NL
5381.5 5401.5 59590 NL
5400.0 5420. 0 58780 NL a4
5420.0 5440.0 62380 NL

5440.0 5460.0 60840 NL
5460.0 5480.0 61370 NL
5480.0 5500.0 62620 NL
5498.0 5518.0 ',2720 NL
5517.3 5537.3 63000 NL

5537.0 5557.0 64390 NL
5556.9 5576.9 62080 NL
5576.9 5596.9 62490 NL
5596.9 5616.9 63100 NL
5616.9 5636.9 65290 NL

5636.0 5656.0 64870 NL
5656.0 5676.0 65080 NL
5676.0 5696.0 66080 NL
5696.0 5716.0 64810 NL
5716.0 5736.0 68310 NL =

5736.0 5755.0 67680 NL
5756.0 5776.0 68120 NL
5774.5 5794.5 67100 qL
5794.5 5814.5 68970 NL
5814.5 5834.5 69600 NL

- -.06.►	 •	 .a.- a-refs. 
^•._,._a,.. -	 •.

r.
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5834.5 5854.5 69660 NL
5854.5 5874.5 68480 NL
5874.0 5894.0 67220 NT,
5893.7 5913.7 67420 NL
5913.5 5933.5 69350 NT,

5933.5 5953.5 70230 NL
5953.5 5973.5 71060 NL
5973.0 5993.0 68960 NL
5993.0 6013.0 69140 NL
6013.0 6033.0 68840 NL

6033.0 6053.0 71450 NT.
6053.0 6073.0 71040 NL
6070.0 6090.0 71150 NT.
6090.0 6110.0 71210 NL
6110.0 6130.0 72430 NL

6130.0 6150.0 71280 NL
6150.0 6170.0 70460 NL
6170.0 6190.0 73300 NL
6190.0 6210.0 73350 NL
6209.7 6229.7 72760 NL

6229.0 6249.0 71760 NL
6249.0 6269.0 72270 NL
6269.0 6289.0 73760 NL
6289.0 6309.0 72400 NL
6309.0 6329.0 73300 NL

6329.0 6349.0 73390 NL
6349.0 6369.0 74550 NL
6369.0 6389.0 75270 NL
6389.0 6409.0 73830 NL
6409.0 6429.0 73780 NL

6429.0 6449.0 74730 NL
6449.0 6469.0 74820 NL
6469.0 6489.0 75290 NL
6489.0 6509.0 73520 NL
6509.0 6529.0 75750 NT,

6529.0 6549.0 75670 NL
6549.0 6569.0 65720 NT,
6611.0 6631.0 76790 NL
6653.0 6673.0 76560 NI,
6780.0 6800.0 75380 NL

NOTE:
1. Sources are:	 SPN . :-mon, Pestlels, And Nevejans (1982)

B - Broadfoot (1972)
S - Simon (1975) 

NL . Neckel and Labs (1981)
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