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NUMERICAL SOLUTION OF THREE-DIMENSIONAL UNSTEADY TRANSONIC
FLOW OVER WINGS INCLUDING INVISCID/VISCOUS INTERACTIONS

D. P. Rizzetta and .. J. Borland
Boeing Military Airplane Company
Seattle, Washington

Abstract

A numerical procedure is presented for computing the unsteady transonic
flowfield about three-dimensional swept wings undergoing general time
dependent motions. The outer inviscid portion of the flow is assumed to be
governed by the modified unsteady transonic small disturbance potential
equation which fs integrated in the time domain by means of an efficient
alternating direction implicit approximate factorization algorithm. Gross
dominant effects of the shock-boundary-layer interaction are accounted for by
a simple empirically defined model. Viscous flow regions adjacent to the wing
surface and in the trailing wake are described by a set of integral equations
appropriate for compressible turbulent shear layers. The two-dimensional
boundary-layer equations are applied quasi-statically stripwise across the
span. Coupling with the outer inviscid flow is implemented through use of the
displacement thickness concept within the 1imitations of small disturbance
theory. Validity of the assumptions underlying the method is established by
comparison wiih experimental data for the flow about a high aspect ratio
transport wing having an advanced airfoil section.

Draft Report received August, 1982, Revised Final Report received
November, 1983.
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NOMENCLATURE

E
=(E-)+Zﬁsgy¢n

2,2
elﬂm k '
aspect ratio

F 2

2n?2

©

k

Tocal section chord nondimensionalized by . (cs/cr).
reference chord

Tocal section chord

d )

1
entrainment coefficient ("—"'TT' pU dN)
Pele d J'o

skin friction coefficient (see £Eq. A-11)

e Tip 1, - 4
total wing 1ift coefficient (2 Io Io (cp - Cp )dgdn)

total wing moment coefficient, moment taken about teading edge
of root section

Tocal section pressure coefficient
see Eq. A-16

see Eq. A-20

see Eq. A-13

type-dependent finite difference operators
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1- M
-]
local instantaneous surface section definition (z = f(x,t))

local viscous ramp surface siope modification

“1/2 (y+ 1) H2

see Eq. A-15

see Eq. 24

see Eq. 25

initial ¢ distribution, ¢(g, q, ¢, 0)

1/2 (y - 33 u 2
1-n2
©

172 (y - 1 M2 21

initial ¢, distribution, o (£, ns g, 0)

-ty -1n?
5*
shape factor, §

see Eq. A-14

L ep U
shape parameter, o Io Pe (1 - Ue) dN

nondimensional time scaling

uCr

reduced frequency, TU_~

Mach number
physical normal boundary-layer coordinate

turbulent Prandtl number

C e d e e s———
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4

n

adiabatic recovery factor, (Prt)lld

p. U ¢

o e r

freestream Reynolds number based upon chord, u

peUee

momentum defect thickness Reynolds number, Ha
physical streamwise boundary-layer coordinate
Sutherland law gas canstant ‘

Cp
physical time nondimensionalized by -T

K e
temperature
streamvise velocity component
physical streamwise coordinate nondimensionalized by c.
physical spanwise coordinate nondimensionalized by <.

physical normal coordinate nondimensicnalized by cp

angle of attack

viscous ramp wedge angle
specific heat ratio

Jump in potential across wake

boundary-layer thickness

U
displacement thickness, [ (1- palp ) N

= finite difference operators

finite difference numerical mesh step sizes

0 low frequency approximation
1 otherwise

nondimensional transformed normal coordinate

nondimensional transformed spanwise cordinate
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W
Superscript

+

1]

"

o ol U
Eﬁ' (1-?1;‘) dN

momentum defect thickness, Io Pele

see Eq. A-18

leading edge sweep angle

Tocal section sweep angle

taper ratio

see Eq. A-17

viscosity coefficient

nondimensional transformed streamwise ccordinate

offset of viscous ramp leading edge from sonic point
length of viscous ramp precursor
length of viscous ramp main body

sonic point location

density '

perturbation velocity potential function nondimensionalized by
cp Uy

physical velocity potential function, cp u, (x + é)

circular oscillation frequency

Jpper surface

lower surface

backward difference

first intermediate solution (prediction)

second intermediate solution {first correction)

critical value



[ ~ = symbolic representation

n = previous time level

n+1l = final solution at new time level (second correction)

e = boundary-layer edge
- I,J,K = £, n, ¢ grid indices
Kp = r - plane 1ying above wing surface

Kn = ¢ - plane lying below wing surface
. LE = leading edge
E min = minimum
% tip = wing tip
g t = time derivative
us = upstream
X,¥,2
] Esnsl = spatial derivative
‘ 20 = two-dimensional
3D = three-dimensional
: @ = freestream
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I. INTRODUCTION

Solutions of steady inviscid transonic flowfields about wings of arbitrary
planform are commonly obtained by numerical solution of the differential
equation governing the'velocity potential function. While this approach
necessarily implies that any embedded shock waves are sufficiently weak that
rotationality effects may be neglected, it has proven extremely useful for
many applicationsl'7. In the case of unsteady flows, few methods capable of
generating time accurate three-dimensional flowfields are currently
available8~12, If the wing may be considered thin, the problem is rendered
more tractable by applying the small disturbance assumption. This not only

simplifies the governing equation, but also facilitates application of the
surface boundary condition.

Time integration of the modified unsteady transonic small disturbance
potential equation has proven to be particularly useful. It permits the
treatment of nonlinear unsteady three-dimensicnal flow phenomena including
irregular shock wave motion. In addition, the flowfield equation may be
coupled directly with the structural equations of motion for an elastic wing

which are simultaneously integrated in time in order to obtain a nonlinear

aeroelastic solution13.

Al though unsteady inviscid flowfield solutions can provide a reasonable
physical description for a wide variety of flow conditions, they will not be
adequate when viscous effects are significant. This is typically true for
flows about wings having advanced airfoil sections which involve complex flow
structures characterized by the following phenomena: 1) shock-boundary-layer
interaction altering the shock strength and location, 2) effective camber
modification due to differences in the boundary-layer displacement on the
upper and lower wing surfaces, and 3) displacement and camber effects of the
near wake. A detailed description of these effects can be provided only
through the use of additional equations governing the flow. Numerical
solution of the more exact equations appropriate to three-dimensional viscous
flows is burdensome in terms of computing resources. For the study of
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aeroelastic behavior and nonlinear flutter, it is reasonable to perform a more
simplified analysis. It is the intent here to account for the gross dominant
effects of inviscid/viscous interaction for such applications without
degrading the basic efficiency of the inviscid computation. Thus, no attempt
will be made to resolve exact details of viscous regions, but rather the
effects of viscosity upon the unsteady surface pressure distribution will be
determined in order to provide appropriate aerodynamic forces for structural
applications.

It is assumed that viscous effects are confined to thin regions immediately
adjacent to the wing surface and along the trailing wake. These are then
postulated to be in instantaneous equilibrium with the unsteady outer inviscid
H flow. A simple order of magnitude analysis indicates that this assumption is
’ valid if the reduced frequency of the unsteady wing surface motion is

sma1114. As a consequence, a steady form of the equations governing the
viscous regions may be applied in a quasi-steady fashion. In addition, the
viscous equations appropriate for two-dimensional flows will be applied
stripwise along the span. Fok_this calculation, however, the streamwise
direction is taken as that either normal to the mean of the leading and
trailing edge sweep angles for locally subsonic strips, or normal to the shock
surface for strips where shock waves are present. Thus, the treatment of the
viscous equations embedies the concept of simple sweep theory.

A A RN Y

The-use of two-dimensional boundary-layer equations greatly reduces the amount
of computational effort involved in treating viscous regions. Even with an
integral formulation, a three-dimensional viscous analysis requires solution
of a system of partial differential equations, which can be costly. This is

E no small consideration for performing aeroelastic analysis which may require a
large number of solutions to establish flutter boundaries.

Ty o

Viscous regions are assumed to be governed by a set of boundary-layer

.f equations appropriate for turbulent flows. For this purpose an integral form
of "lag entrainment equations" are employed, which have been used with success
for the prediction of turbulent shear 1ayer515'17. Coupling with the outer

inviscid flow is provided by the displacement thickness concept within the

AL e XAt

PR ek S s




. framework of small disturbance theory. The impact of viscous effects upon the
potential equation is manifested solely in a modification of the surface and
wake boundary conditions. This procedure has proven adequate for a number of
both steady and unsteady computations of flows about airfoi]sls'zo.

The most complex aspect of viscous transonic flows over airfoils is that of
1 the shock-boundary-layer interaction. This effect is difficult to represent
: and resolve correctly for turbulent flows, and troublesome to couple in a
numerically stable fashion with the outer inviscid solution. In the case of
steady flows, procedures have been developed which achieve this coupling.

Such methods commonly involve the use of underrelaxation in an iterative
g process such that a matching of the two solutions is obtained at convergence.
Both the physical and numerical difficulties are considerably more involved in
the unsteady case. Here the shock strength and location vary in time as the

shock traverses the wing surface. In addition, time accuracy as well as
stability is essential.

Much of this difficulty is removed by employing a simple computational
artifice to model the displacement effect of the shock-boundary-layer
interaction which is used in conjunction with the boundary-layer solution.

e T o e A

This is accomplished by augmenting the wing surface geometry with a
wedge-nosed ramp that is inserted near the bas2 of the shock in the inviscid

calculation. The ramp converts the normal shock to an oblique shock, thereby
decreasing its strength, displaces it upstream from its inviscid location, and
is free to traverse the wing surface in correspondence with the unsteady shock
motion. The magnitude of the ramp angle is allowed to adjust instantaneously
to the shock strength and is chosen such that an empirically defined
post-shock pressure is recovered. Application of this ramp model has proven
quite'useful'in both two- and three-dimensional steady computations2 and

5 more recently in two-dimensional unsteady so]utionsl4’22.

T
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IT. UNSTEADY POTENTIAL EQUATION

The equation governing the outer inviscid flow is the modified
three-dimensional unsteady transonic small disturbance potential equation
which includes higher order terms to ensure proper swept shock jump
conditions, and may be written as

3 _ e 2 2
EE'(A¢t + B¢x) = 5; (E$x +Fo o+ GQy )

) )
"oy ley o) +gg L)

Here ¢ is the perturbation velocity potential function and

A

G

H

where k is

= 2,2
"Ele k ’

=2m 2k,

1- Mmz ,

-2y + 1) 2,

172 (y - 3) 2,

--nn?,

the nondimensional time scaling.

(1)

(2a)
(2b)
(2c)
(2d)
(2e)

(2f)

The following shearing transformation is applied in order to map the swept

tapered wing planform in the physical domain intc a rectangle in the Cartesian
computational domain:

X - XLE(.Y)

ST oTTpr et Yotz

11

(3)
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Outboard of the wing tip, a smootn transition to a constant chord section
swent at the average of the leading and trailing edge sweep angles is
applied. In addition, the coefficient G is split into two components

6 = Gg + 6,  (4a)

= - 2
G =1-M°, (4p)
= 2

such that the streamwise and normal contributions to the spatial differencing
of the governing equation may be identified. This decomposition will be
useful in the formulation of the numerical solution algorithm. Upon defining

2 =8 42 85 €y o (5a)
Fo .. 2

b = (—) + G , (5b)
CZ S Ey
. 2

X = Gy (gy op + 007 + Hey op (g, g *+ o) (5¢)

* ey By opt o)

-
')

= H¢§ (:y ¢'E + ¢n) + cgy ¢E (5d)

Eq. 1 becomes

) (6)
) 3¢ L X aY
+$‘~(C¢)+C—a—cz+a +§‘r'"-
It is noted that
=2 (a 6.+ b 2y v 26 5 o
3g g2 g S ¥n "En (7)

represents the streamwise contribution to the governing equation with the
remaining terms on the right-hand side of £q. 6 comprising the normal portion.

12
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A formal definition of the inviscid problem is completed by prescription of
the boundary and initial conditions:

far upstream ¢ = 0, (8a)
1
far downstream copt ek ¢y = 0, (8b)
wing root + =0, :
g Ey bg * o (&) .!
far spanwise '¢n =0, (8d) :
far above and below b = 0. (8e)

On the wing surface, the linearized unsteady boundary condition

6" = éf: + e gkf, (9)

is applied on ¢ = 0* for0<g <1, Oi“i“tip’

Along the trailing vortex sheet in the wake, the following contact conditions
are invoked:

[gop +cpk o, = 0, | (10a)
[¢C] =0, ' (100)

ong=0forg>1,0<n < Ngipe where brackets denote the jump in the enclosed
quantity from above to below the vortex sheet.

Finally, the initial conditions

9 (Eln’C,O) =g (E’T]:C)) Qt (E’\"I!C’O) = h(Eon.c)
(11)

are specified.

Once the solution to Eq. 6 is obtained, the local instantaneous pressure
coefficient may be determined from the following expression

cp = .2 (.(]:L @E + glk ¢t)o ' (12)

13
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II1. VISCOUS EQUATIONS

Solution of the equations governing viscous flow regions is predicated upon
the quasi-study assumption. Therefore, 1t is necessary to consider only the
steady form of the equations involved in order to extend the flowfield
solution from time level t" to time level tn+1 =t 4+ 4t during the

unsteady solution process. In order to evaluate viscous parameters at the new
time level, tn+1, all inviscid quantities are obtained from the potential
solution at time level t". The two-dimensional form of the viscous

equations is employed stripwise along the span. However, the streamwise
direction is taken as that normal to the local sweep angle, Age The value
of’As is equal to that of the incident shock surface for locally

supersonic strips or the mean of the leading and trailing edge sweep angles

for locally subsonic strips.

Viscous Ramp

The viscous ramp model, which is used to simulate the displacement effect of
the shock-boundary-layer interaction, is based upon the observation in many
steady experimental measurements that the post-shock pressure level for
turbulent flow over an airfoil corresponds approximately to that of the
oblique shock produced by flow over a compression ramp with a wedge aigle
equal to that of the detachment angle for the given upstream Mach number.
Geometry of the model is depicted schematically in Figure 1. It consists of a
short precursor over which the ramp slope varies linearly from zero to the
given wedge angle followed by the main ramb body>a1ohg-which the slope varies
quadratically. At the ramp leading edge the ramp height and slope are '
continuous, and at the downstream end and the slope and curvature vanish. The
ramp is positioned with respect to the local instantaneous sonic point
location and affinely scaled with the shock strength as determined by local
conditions upstream of the shock. By offsetting the ramp leading edge a
distance g, ahead of the sonic location, the ramp is able to more fully
influence the numerical shock profile. The leading edge of the ramp {s
preceded by a precurser of length ;p which has been used in previous

14
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unsteady ca1cu1ationsl4’zo'22 to moderate passage of the sharp leading edge

across computational mesh points, thereby precluding spurious numerical
instabilities. The main body of the ramp has a length of ER where the
parameters zp, g and g may be selected for each specific
application.

The wedge angle, g, is obtained directly from the steady two-dimensional
form of Eq. 6. A complete derivation may be found in Ref. 20. In addition,

the concepts of simple sweep theory are applied to obtain

F 3/2
_.) ¢ - E
c
“us ] (13)

where o is evaluated just upstréam of the shock. Given ¢ and
‘ us & us

2 -2 cos2 Ag (
8= (p) 3

the sonic point location, Egs the ramp slope variation fR is
12

defined as follows:

f*=0forg<;s-;°-gp, (14a)
E-5.+¢%
fR* = zg L1+ (2285 70y gop (14b)
g %R
ES-EO-EPSE<ES Eo’
4 -
f, =23 [1 (275 §°)]2 for o {14¢)
ER
s "8 ST <E5 -5 TEp
fR: = 0 for g.> g = &y *+ Epe (14d)

15
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Lag Entrainment Equations

The form of the fntegral boundary-layer equations which will be considered
here is that of the lag entrainment equations due to Greenls. They are
predicated upon the boundary-layer assumption that the normal extent of
viscous regions is small compared to the wing or wake thickness, which
necessarily applies to flows at high Reynolds numbers. By integrating the
governing partial differential equations in the normal direction and suitably
modelling the requisite relationships among the dependent variables, a system
of three first order ordinary differential equations is obtained. Two of the
equations result directly from continuity and momentum. The third evolves
from the Bradshaw, Ferriss, and Atwe1]23 turbulent energy equation, but is
formulated in terms of the entrainment concept originally proposed by

Head24. This yields a streamwise rate equation governing the degree to
which the outer inviscid flow merges with the turbulent shear layer.

The lag entrainment equations are beiefly summarized here, where the simple
sweep concept has been employed for coupling with the inviscid solution. We
first define

displacement thickness ¢* = [, (1 - 0 7.) 9N, (15)
e'e
® U U
momentum defect thickness o = [ pQU-(l - ) o, (16)
ee e
=& -~
shape factor Hj = =, C : (17)
f=leeo,. Y
shape parmeter H = 5 Io 5 (1- Ue) dN, (18)
. 1 d 8
entrainment coefficient C. = oy @ ‘Io pU dN. (19)

Here S and N are the streamwise and normal directions respectively within the
boundary layer. The subscript e refers to the bcundary-layer edge denoted by
N = &, Within the confines of small disturbance theory the edge conditions
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may be taken as those corresponding to the inviscid solution along the wing
surface or wake centerline evaluated cn ¢ = o®.

The-primary dependent variables are taken as (c—e), H, and Ce- Given thefr

value at any streamwise station, E, their distributions may be predicted by
the following system of first order ordinary differential equations:
Cf cos A 2

2 0, (1
aE— ‘—) = '——2—— [H +2 - cos AS] (q) (E) ¢EE' (20)

(21)
dn 0.-1 Cf cos A 6 1
az" (z::) HHI[CE cos A - Hl ["—-2——' - (Ho +1) (-q) (-c-) ¢EE§T.

dC du '
E. (9 F 1/2 1/2 o Ve
T (—-) [(IT_H') cos Ag [(c )EQ Ac (CT) 1+ (U-e i )EQcos Ag

1+02Mzcos2A

- [1+0.075 4, 2 cos? A 31 ( 9) ( ) ¢ }
s1+Oll~‘l coszA 13

(22)

A definition of the parameters necessary to complete the description of these
equations 1s given in Appendix A.

Using Eqs. 17 and A-12 it may be shown that
§*y .

where

H C Hy C
ot -1y 2 1 b W
Fp = {T“' (1 + Cg=Ir 171 (G - = ’am} cosag (28]

and

F, ={n + g w21 () + 1) W) %El +ly-Dru2ile @ghen 2T @)
- Hy () +2- Hez)} (%Z) (). | (25)

This form was first deduced by East17 et al. and displays the dominant

explicit dependence of the displacement surface slope upon the pressure
aradient .
a ¢§5

17
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Hodified Boundary Conditions

The effect of the viscous flow regions is accounted for fn the inviscid
solution by modifying the surface boundary condition to incorporate viscous
displacement. Thus, Eq. 9 is replaced by

i ¢

+

P rekfref t (26)
. 1*' R

where the viscous ramp is used, and

=1
14 cf

t_1 ¢ £ (8% =
L%, kf* + (F +F, ¢.)% 7
: of, Tkl H R 4Ry 0 (27)

on;:OtforOi;il.05n<nﬁp

when coupled with the lag entrainment equations. Downstream of the wing
trailing edge the viscous wake generates an effective displacement afterbody.
Due to its presence, a discontinuity in the slope of the potential is now
permitted such that the wake condition Eq. 10b is replaced by

=& 7=
0,1 = L)1 = [F) + Fy g,

°"c=°f°"5>1.0§n§nt1p- (28)

~ BT T T

18
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IV. NUMERICAL METHOD
Inviscid Algorithm
The time accurate solution of the inviscid potential equation (Eq. 6) is
obtained by the following first-order (in time) accurate approximate
factorization alternating direction implicit (ADI) algorithm:
1)  E - sweep:
g n
MY L b, + o ~
o -6\ _ n .t 3 n

n n n
+2 G (cn o) Dn (E& o) + 8 (c 8, ¢ ) (29a)

n n n
+C + X'+ Y
GCC é $ Gn ’

12
1) n - sweep:

£ (b~ 6 al g n
Bog (G =7 6 (cs 0-c §,07)

n ~ + n
*Gs 800 0, (§ 0 - 5 oM, (29b)
111) ¢ - sweep: . . .
n+ n n- - n+j] -~
CA(E——=fo o yipg (& -8
At & at
=58, ("t oM, -  (2%)

ee
Here, 55, 5n, and GCC are second-order accurate central difference

operators, §_ is a first-order accurate backward difference operator, and
D_ and D are type-dependent mixec difference operators. Details of

the numerical method are summarized in Ref. 10 and discussed in detail in Ref.

25.

19
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Viscous Equations

The viscous ramp slope modification at time level n+l (f;E+ 1) is evaluated

based upon the potential distribution at time level n (¢"). In order to
locate the sonic point, Eg» the simple sweep relationship

c = C /cos2 Ag (30)

P20 P3p

is employed, where the steady form of cP3D is taken as {s consistent with the

quasi-steady assumption. The sonic point is then defined such that

*
c = C atrp =r._. (31)
Pap P2 £ 8

The critical pressure coefficient, c; , Is that corresponding to the
2D

equivalent two-dimensional freestream Mach number

M s M cos A, . (32)
“20 <30 s

The upstream location at which ¢E is evaluated corresponds to that grid
us

point lying two mesh point upstream of Ege Once Eg and ¢€ are
v us

obtained, the entire ramp geometry is defined by Eqs. 13 and 14.

Solutions to the lag entrainment equations in the form given by Eqs. 20 to 22
are obtained by a simple second-order accurate Runge-Kutta integration

scheme. Initial conditions are established upstream of shock Waves for
sections where the flow is locally supersonic or at the point of minimum
pressdre for sections where shock waves are absent. For this purpose
incompressible flat plate results and a 1/7 power law velocity profﬂe28 are
used to initialize g, H, and Cg. Integration is then carried out to the
downstream boundary based upon the potential distribution at the previous time
step.

20
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Coupling Precedure

Far upstream of shock waves all viscous effects upon the inviscid solution are
neglected. For locally supersonic stations the viscous ramp is employed ahead
of the sonic location as a simple wing surface slope modification given by

Eq. 26, but no coupling with the boundary-layer solution is involved.
Downstream of the sonic location the remaining portion of the viscous ramp is
ignored and the boundary-layer solution is implicitly coupled to the inviscid
solution through use of Eqs. 27 and 28. In the case of locally subsonic
stations no viscous ramp is employed and the implicit coupling procedure is
initiated at the point of minimum pressure.

The wing plane (; = 0) is centered between planes of computational mesh
points, such that the surface boundary condition is manifested in the
calculation of ¢CC in the mesh planes just above and below g = 0. This
is accomplished by employing the relationship

- 1,2 + e
odtk) = fag) Hloa en = o1k ) - 8 {o ] (33)
where the index Kp refers to the mesh plane just above the wing surface and
a constant mesh size i1s considered here for illustrative purposes. The

surface boundary condition is now employed as

+ 21 + + + + +

and (¢E€)IJ is written in terms of the potential at-points lying

above the surface; 1.e.

+ 1 -
(g M1 = (5g) Lo er Pgediac = o “rgdiac el (35)
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Equations 34 and 35 are then used in conjunction with Eq. 33 to obtain

é- : n+1_,121,n+1 n+1

I (g dtak -~ = 5 [‘¢1JK 1%k )

S . p p P

g : l,cHn+l +n+1 +n

: ‘ 1,2, +,n n n+1l n+1

o - lgp g Doy 4 qlor 4y gk "2 0rgx -t o o1 o)

1 ] P p p p

g ,

i n n+1l n+l

: - ‘¢1+1JK+1‘2¢1JK+1+¢1-1JK+1”]- (36)

o P P P p

% This expression forms an implicit relationship as part of the tri-diagonal

% system in the 7 - sweep of the inviscid algorithm. An expression similar to

; Eq. 36 may be derived for (¢cc)?dz 1. It is noted that at the grid location I, J valu
® m

i, : of 4 at the upstream column (¢? t i J) are known at the advanced time level but
3 : those at the downstream column (@? + 1 g) must be taken at the previous time

f level for the algorithm to remain intact. The coupling procedure is considered
} to be significant in suppressing numerical instabilities which would otherwise
s *

occur, particularly in regions where (%—)E is large such at the trailing edge.
s

Along the trailing wake the following relationship is employed

1,2 ~ ‘
144 p Az IJ p+1 IJKp LK,

where & is a symbolic representation of the value of ¢ which
19K, LK,

incorporates the jump in ¢ and ¢C across ¢ = 0 and Km refers to the mesh

plane just below ; = 0. By analytic continuation (i.e., Taylor Series)

20 j ,\ .T'fl‘— {"yb'."—',_‘~’;,-"\"r’\-‘ FIokiai e SE L TR S Ry S e

P + .
¢IJKm may be expressed in terms of values along 7 =0, i.e.

QI 2ot

~ . + Ac +
ok = o1y - ) 10y, (38)
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Similarly, the value of ¢pgk May be written in terms of values along ; = 0~ as
m

= = - A = -
Pk, = o1y - (7 o)y - (39)

Combining Eqs. 38 and 39 results in

~ + - A + -
. ¢ = ¢ + (¢y, - ) = (52 [ )y = (6 )9,30
SIS 5 S SN z L% SR LAY (40)
For convenience we now define
(o - ) = 41)
¢10 ~01g) = Ty (

and express the jump in the normal slope of the potential across the traﬂmg
wake in accordance with Eq. 28 as

+ +
[(¢C)m - (o)1) = LDy + (R ogp)yy]

From Eq. 41 it follows that

- +

Using Eq. 35 and substituting Eqs. 41 to 43 into Eq. 40, it may be shown that
Sk = érgx_ * Trg - B2 TN, - (F]), )]
1K 10K, 10} 119 1'1

1 ety L (e- ‘
LU - (Oep ok = 2k (0pp) ]
L R TS 4 o KL

- - (2 (R, (Tee g | (44)
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Finally, Eq. 44 is substituted into Eq. 37 to obtain

)ﬂ"'l

_ ¢ 1,2 ,,.ntl n+l n+l n+l
10K = () “’mxpu - % )

(ore 19K, tonk T

1 +,n -\n

1 1,2 , 1,2 +.n -\ N n n+l n+l
- (3) 7 ()" LRy - (Fplyyl [Cxp+1 ‘¢1+1axp T 2 * 411 JKP’
n n+l n+l
- o (o -2 +91.3 )]
Ky ©OT+1 JK#1 = ZLIKeL ¥ 911 Jkpl

- ) G0 )Yy (g - 2yt e (45)

An expession similar to Eq. 45 may be derived for (4’4;)?& .
m
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Y. RESULTS

A computer program, XTRAN3S, based upon the inviscid numerical algorichm
described above is available for calculaving the steady and unsteady v
aerodynamic loads and aeroelastic response of thin clean wings in transonic
flow. This code is fully described in Ref. 25 to 28. All of the results
presented here were generated using XTRAN3S. The basic code has been modified
to account for viscous effects by incorporating the previously described
method. Appendix B describes alterations in user input specifications for the
modi fied version of XTRAN3S.

For each of the cases considered, calculations were performed which generated
an inviscid solution, a solution using the viscous ramp alone, and a full
viscous solution employing the viscous ramp in ccnjunction with the
boundary-layer equations.

A1l computations were performed on a nonuniform 60 x 20 x 40 (€5 n, )
Cartesian computational mesh with the wing surface defined by 39 x 12 points

in the g - n plane. The computational domain was defined by

-15.375 < ¢ < 26.575

-13.0375 < ¢ < 13.0375

and minimum grid spacing taken as

88 nin = 0.01
8ngin = 0.10
A in = 0.025

28
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which occur at the wing leading edge, at the wing tip, and adjacent to the
wing surface respectively. XTRAN3S default values were employed for the g-
and g-mesh distributions. The n-mesh and surface geometry description for
each case considered may be found in Appendix C. For all calculations the
time scaling, k, was selected as 0.2 and a time step of At = 0.0034906585
was employed. This corresponds to a distance of one root chord of travel in
57.3 time steps at the freestream velocity. For a reduced frequency of

kc = 0.2, the choice of st results in five time steps per degree of
circular frequency change along the pitching cycle of a forced oscillation.
Nominal values of the viscous ramp parameters were selected as follows:

£ = 0.02,

= 0.02,
& 2
gq = 0.10.

These choices have proven adequate for a number of both steady and unsteady
two-dimensional solutionsl4’20. Results were generated on the CRAY-1S
computing system and required approximately 0.5 seconds of CPU time per time
step of calculation for both inviscid and weage alone solutions, and 0.b
seconds per time step for full viscous computations.

All converged steady state solutions were run for 900 time steps at the
indicated values of k and At. These choices were found to be conservative
with respect to both stability and convergence. The low frequency
approximation (i.e., €y 3 0) was made in the wake jump condition Eq. 10a

and downstream boundary condition £q. 8b to prevent ancmalous behavior which
was otherwise observed to occur for swept tapered planforms. In general, the
following procedure was employed in generating steady-state results:

i) a converged inviscid solution was obtained using an undisturbed
condition as an initial state {f.e., = 6y = 0;

ii) a converged wedge alone solution was obtained using the inviscid

solution as the intiial state, updating the wedge computation at
each time step;

26

ey g R g A et T e emee 4 sty e e
KR SIS SR PP RIS S S



[+ S

\

i1 a converged full viscous solution was obtained using the wedge
alone solution as the initial state, updating the boundary-layer
computation at each time step.

In order to establish validity of the assumptions underlying the computational
method, comparison 1s made with experimental data for the steady flow about a
high aspect ratio wing having an advanced airfoi! section. The configuration
to be considered is depicted schematically in Fig. 2 and corresponds to the
Lockheed-Georgia "Wing A"Zg’30 which was developed as part of a
comprehensive program to acquire steady transonic experimental data
specifically for evaluation of three-dimensional computational methods. The
wing has an aspect ratio of 8.0, a taper ratio of 0.4, and leading edge sweep
angle of 27°. A nonuniform 12% thick airfoil section having appreciable aft
camber is employed, with approximately 5 of nose-down twist occurring
between the root and tip sections. The section and planform geometry are
regarded as representative of modern transport aircraft.

Freestream conditions were established for the flow in air at M, = 0.819,

a = 1.960, and Re = 8.08 x 106. These values duplicate the test

conditions of Hinson and Burdgeszg'3° as well as the numerical results of

Streett31. Steady-state solutions were generated by the time integration

procedure previously summarized. In the case of the full viscous computation

it was not possible to obtain an entirely converged steady solution due to

boundary-layer separation at the trailing edge of the upper surface and in the

aft cove region of the lower surface. A reasonable result was arrived at by

the following procedure. Using the converged wedge alene solution as an

initial profile, a converged viscous solution was generated at a Reynolds

number of 8.08 x 107. This value is 10 times that of the test condition and

was sufficiently high to preclude boundary-layer separation. The computation %
was then restarted with the converged viscous result as the initial profile
and run for 80 time steps at the test Reynolds number. In both calcuations
the boundary-iayer computation was updated each time step. The final solution
is probably resolved to plotting accuracy in the pressure distribution. Any
further calculation rapidly produced separation.
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Results of the calculations are shown in Fig. 3 {n terms of the wing surface
pressure distributions where the data of Hinson and Burdges has been provided
for.comparison. The spanwise mesh distribution was selected to coincide with
experimental data measuring stations. Comparison of the full viscous result
with the inviscid solution indicates the improvement due to the boundary-layer
calculation. It is noted that the shock is weakened and displaced forward by
the inclusion of viscous effects. Aft decambering due to boundary-layer
displacement is quite noticable, particularly on the aft Tower surface. The
wedge alone solution is seen to produce some ancmalous behavior on the
rearward portion of the upper surface. This is probably due to the post shock
re-expansion and the high aft camber. The only spurious result from the full
viscous solution is noted at n/"tip = 0.70 immediately downstream of

the shock, and may be caused by the merging of the wedge and boundary-layer
slope modifications. In Ref. 31, the results of calculations from a pilot
version of XTRAN3S were presented for the same case. In those calculations,
the spike downstream of the shock shown in Fig. 3d was not observed.

In Figure 4 the full viscous result at “/“tip = 0.70 is compared g;th
another computational solution. The numerical results of Streett™™ consist
of a full potential inviscid quter flow solution and a fully three-dimensional
integral boundary-layer and wake solution coupled via the displacement
thickness. While the flow conditions for Streett's solution are the same as
noted previously, the configuration consists of a half-body fuselage model
with a mid-mounted wing and corresponds to another of the test cases of Hinson
and Burdges. Streett's results compared extremely well with experiment, thus,
the data for the wing-body combination has been omitted. Oue to the presence
of the body, the shock lies somewhat ahead of its location for the wing

alone. The lower surface pressure distributfon is virtually the same in both

cases.

Upper surface distributions of the displacement and momentum defect thickness
at mfdspan appear in Fig. 5. Influence of the shock can be seen near

£ = 0.4, Downstream of the trailing edge, 6 and &* tend to constant

values which is consistent for wakes without pressure gradient.

In the case of fully three-dimensional unsteady transonic flows over wings,

little experimental data suitable for validation purposes is available.
Because of this, a representative sample calculation was selected in order to
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f1lustrate results of the numerical method. For this example a section
geomatry corresponding to the HSB-A333 atrfoil was chosen. The section,

shown in Fig. 6, has a blunt leading edge, a thickness ratio of 8.9%, moderate
aft camber, and has been selected as an AGARD standard for evaluating
transonic aeroelastic analysis methods. A wing planform identical to the
Lockheed-Georgia “Wing A" was employed (AR = 8.0, A = 0.4) except that the
leading edge sweep angle was set to 30°. The MBB-A3 section was chosen to
avoid the problems with boundary-layer separation evidenced in the Lockheed
Wing A calculation. Even though the airfoil is thinner, it still may be
viewed as representative of a typical modern transport aircraft configuration.

Steady-state solutions were generated for freestream conditions corresponding
toM = 0.85, a = 1.0°, and Re_ = 107. Results of the pressure

distributions at half of the spanwise mesh stations are compared in Fig. 7.
Viscous effects near shocks and on the aft lower surface are apparent.
Corresponding chordwise distributions of the displacement and momentum defect
thickness near the midspan station appear'in Fig. 8.

Using the steady-state solutions as initial conditions, unsteady calculations
were performad by specifying a forced rotation about the wingvleading edge
root such that o = 1° + 1% sin t. The reduced frequency, kc, was

chosen to be 0.2. Integration in time was allowed to proceed for two cycles
of rotation. Figures 9 and 10 indicate the instantaneous surface pressure
distributions for the inviscid, wedge alone, and fully viscous cases. The
value of time here {s referenced to the beginning of the second cycle and
given in radians. At the maximum angle of attack, a = 2°, (Fig. 9) a

large difference between the solutions, particularly near shocks is evident.
While the difference between the solutions is less substantial at the minimum.
angle of attack, « = 0° (Fig. 10), aft decambering due to viscous o
displacement is still appreciable. Corresponding values of the displacement
and momzntum defect thickness are given in Figures 11 and 12, It is noted
that the large differences in ¢* and g at the extremes of the oscillation
cycle are brought about by the alternate formation and disappearance of the
shock. In Fig. 13 the total wing unsteady 1ift and moment coefficient time
histories are presented along with the angle of attack variation. Although
there is little phase difference between the inviscid and viscous solution for
this particular case, the difference in both mean value and magnitude of
oscillation is significant.
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VI. DISCUSSION AND CORKCLUSIONS

A method has been presented for computing the unsteady three-dimansional
transonic flowfield about thin wings of arbitrary planform and section
geometry including the effects of inviscid/viscous interaction. Dominant
effects of the shock-boundary-layer interaction were accounted for by a simple
compuational artifice, while viscous regions adjacent to the wing surface and
along the trailing wake were described by a set of integral equations )
appropriate for two-dimensional turbulent flows. Although this analysis was
necessarily simplified, comparison with steady three-dimensional experimental
data and a solution of more exact equations for a typical transport
configuration indfcates that it will be adequate for many practical
applications. In addition, an example calculation of a wing oscillating in
rotation indicated appreciable variation in unsteady aerodynenic force
coefficients when viscous effects are accounted for. This behavior is typical
of wings having advanced airfoil sections and may be a significant
consideration when performing aeroelastic analysis.

Several comments regarding the operation and possible improvemant of the
modified version of XTRAN3S are appropriate here. N9 provision has been made
in the present work for the existence of a laminar boundary layer. The reason
for this is that the lag entrainment equations do not perform well at low
Reynolds numbers. Ideally, a simple attachment 1ine model or stagnation point
solution followed by a laminar calculation and suitable transition criteria
could easily be incorporated in order to establish initial conditions for the
lag entrainment equations without altering the basic computational method.

For the results considered here, the Reynolds numbers were sufficiently large
such that for practical purposes the entire boundary layer could be considered
turbulent and the upstream displacement effect could be ignored. This may not
be possible in all cases. Wake curvature effects have been neglected entirely
in the present work. These may be accounted for by a simple alteration of the
basic wake jump condition, Eq. 10a32. It s indicated by the results of
Streett32 that wake curvature may have a significant impact upon the lower
surface pressure distribution for wings having advanced airfoil sections.
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The Lockheed-Georgia “Wing A" proved to be a severe test of the computational
method. Separation was indicated for the experimental configuration due to
the combination of thickness, camber, and flow conditions. This evidences a
need for treating cases of practical fnterest where boundary-layer separation
occurs and requires a reformulation of the boundary-layer solution method in
the "inverse" mode. It should also be noted that the version of XTRAN3S
emp]oyed for the calculations was designed to operate efficiently on the
CRAY-1S computing system. The boundary-layer calculation method was
implemented as a simple modification of the basic code, but does not take
advantage of the vectorization capabilities of the CRAY-1S. This slows the
viscous calculation somewhat, but it could easily be made more efficient.

It is not recormended that the wedge alone be used on wings having advanced
airfoil sections. As was noted for the cases presented here, use of the wedge
alone tended to produce spurious post shock re-expansions. This effect may be
reduced by varying the wedge parameters (go, Ep' gR) but that was

not done here. For wings having more conventional sections it is expected
that the wedge alone will be quite useful.

The method of time integration of fluid dynamic equations of motion offers a
unfque capabilty for performing aeroelastic analysis. Unsteady structural
equations of motion governing the deformation of an elastic wing may be
coupled with these directly and simultaneously integrated in time to determine

-the aeroelastic response of the combined system. This technique has already

been applied for a purely inviscid flowfield,13 and may easily be extended
to include viscous effects by the described method. Addition of the integral
equations for viscous calculations increases computation time (CPU) by about
20%, thus maintaining the basic efficiency of the inviscid algorithm. This
consideration provided much of the motivation for employing a simplified
viscous analysis, and appears to be justified for the purpose of structural
applications.

31

N

R E v
; : : e d RO e
R S A e e e em AN S ———— e o . J A G Gk JL I PRI,



ey .

P

APPENDIX A

Conditions at the edge of the boundary layer may be obtained from the {nviscid
solution along the wing surface or wake centerline evaluated on g = 0*.

In particular, using the small disturbance assumption and simple sweep theory,
we may write

M, =[1 +[1+ (I‘Tl) HQZJ (%) ¢€]Mm cos A, (A-1)
Pe.1-dyn? -
o= 1= ) Wl (A-2)
T

Tel- -0 Qe (A-3)

The viscosity ratio is obtained from the Sutherland viscosity law in the form

SO
1+77
T T
ES.: (T9)3/2 T9‘+T2 (A-4)

where So is a constant for the specific gas under consideration
(So = 110%. for air). The adiabatic recovery factor, r, 1s chosen as a
function of the turbulent Prandtl number

r = (pr)/3, (A-5)

The following parameters then completeiy define the lag entrainment equations

-1 5 1/2
Fo=[1+ (Y-?—) r 0,01, (A-6)
. 2 ' -
F.=1+0.05 M7, (A-7)
o U 6
Re, = —.8 (A-8)
0 He
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. (e 1 o, Palulr, Me,-1
(E;-) [1+ (E) d)E] cos As (E;) (T) (.uw) N

(2 [ 0.01013
) Fo TogyolF Re T -1.02

cfo

0 for wake shear layers,

c
F. H'{l - 6.55 (52 (1 + 0.04 uez)]”z} .

Ho

0.9
c =[___'._-.-
f
0.4
Ho

0 for wake shear layers,
H o= (A+1) [1+(17'—1-)rr42]-1
(1] e '

- (-1)?

aHy 1.72 + 0.02 (W - 1)°

Hy = 3.15 + (22%) - 0.01 (W - 1?2,
"

0.02¢; + ¢ + (28 Cro)
i

Fa® T+ ¢, ’
C = (1+0.1M2) (0,024 C.+1.2C.2+0.32C,)
T e ¢ E = E * fo
[1 for wall boundary layers
¢ l1/2 for wake shear layers,
H-1 2
du c ( )
(9 e ) = (1.25) [ f - 6.4327{ ]’
T, & o"o K 1+0.04H°
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- 0.00075] for wall boundary layers

(A-9)
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(A-11)

(A-12)
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(A-16)

(A-17)
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(ct)mo = (1+0.112) [0.024 (cE)EQO

(1 + 0.1 Me°) xf

E EQo

+1.2(c)2 +0.32 Ce,p 1.

(CT)EQ
)

-0.32¢C

fo’

T
(g eq = trzwowmor? /2 - 0-01,

(9
e

d

Ce

U H
e _ 1 1
HS_)EQ - [Hl Hy+ nl =3
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APPENDIX B

MODIFICATION OF XTRAN3S INPUT DATA REQUIREMENTS
FOR VISCOUS CALCULATIONS

The input data required by XTRAN3S s in the form of a card deck or a card
image file. A1l data is free field. Section A describes the input data deck
structure while Section B spells out the required input cards for
implementation of the viscous option and the associated formats and
groundrules. This Appendix may be considered as a revision of Section V of
Ref. 26, and should be used in conjunction with that Section.

A. Input Data Deck Structure
The input data deck for XTRAN3S has four levels of organization.

1. Program Deck - This includes a}l inputs (other than control cards which

are discussed in Section VIII of Ref. 26) for one problem. The deck
“boundaries" are

first record - BEGIN PROBLEM DEFINITION

last record - END OF PROBLEM

2. Data Secticn - A program deck is divided into data sections.
Specifically, the deck is divided into the following ten data sections:

1) Problem Definition Section

2)  Computational Contro} Section
3) Computational Grid Section

4)  Geometry Section

5) Boundary Condition Section

6)  Structural Modal Section

7)  Structural Matrix Section

8)  Checkpoint/Restart Section
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g) Post-processing Section
10) Viscous Calculation Section

As noted previously, the first section must be the Problem Definition
Section. The order of the remaining sections is immaterial. The first

record in each section must be of the form “BEGIN etc." No section
terminator is required.

Data Record - Sections are in turn divided into data records or
statements. As noted above, the first record is of the form "BEGIN
etc.” In most cases the order of the remaining records in the section
is immaterial. All exceptions to this rule are specifically noted.
Record boundaries are governed by the following rules.

0 1f the last non-blank character on the card is a "+" then the
record continues onto the next card.

0 Maximum record Yength is 250 items.
o Record terminators are / or card boundaries.
] The space between / and the card boundary is “ignored” and hence is

available for comments. If a record is only comment it must begin
with */,

Data Item - Records are in turn composed of data items. This is the
finest level of subdivision for the program deck. The delimiters or

“boundaries” of items are of two types.

(1] colon : this is used at most once per record and then only after
keywords.

0 commas, blank spaces and record terminators.




k]
T IS -urna(—:m”" VAP TSl L T ot VL3P S PERE
o i s ¥

B. Record Formats

The following ground rules concerning notation apply throughout this section.

Lol £ edido petoko At
LIt Gt

a)  [[ 11-- pata items enclosed by double brackets have optional input
. formats. One or more of the indicated options must be selected.

Lt

S nid

I
A ]

b) [ ]-- Data items enclosed by brackets have optional input formats.
Only one of the indicated options must be selected.

/ ’ c) ( )-- Data items enclosed by parentheses have default values. If the

" H default is acceptable for definition of the problem data, the particular
item or items need not be input. A1l default values are defined in the
descriptions of the input data.

d) ITEM -~ An item typed in all upper case letters is called a key-word.
H At least the underlined portion of a key-word must be input. This is
) always the first four characters including trailing blanks.

e) Item -~ An item with only the leading character typed in upper case
denotes that it must either be selected from a list of system key-words
or that it is identical to an item previously defined by the user.

f) ~ item -- An item typed in ali lower case letters is defined strictly by
the user,

The formats for data sections 1 through 9 are given in Ref. 26. The
additional data required for viscous calculations is given in Section 10,
which follows.

~

7

e, Ry

10.  Viscous Calculation Section

" The purpose of this section is to specify the Viscous Calculation option
if the user so desires. If this option is not desired, then this
section should be omitted.

37
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1)

2)

3)

4)

5)

6)

BEGIN VISCOUS FLOW PARAMETERS

This data record is used to indicate that processing of data

associated with the Viscous Calculation is to follow. The

following card statements (2-5) are optional and need only be input

if values other than the defaults are to be specified. Data .
records 2-4 define data associated with the viscous wedge (all

values are nondimensional by local section chord). )

(SHOCK OFFSET DISTANCE: xoffst)

Input of the shock offset distance.
The default is SHOCK OFFSET DISTANCE: .02.

(PRECURSOR LENGTH: xprec)

Input of the precursor length.
The default is PRECURSOR LENGTH: .02.

(RAMP LENGTH: xramp)

Input of the ramp lengfh.
The default is RAMP LENGTH: 0.10.

(CALCULATION INTERVAL: iblcal)

Input of the viscous fiow calculation update interval for both
wedge and boundary-layer computations.
The default is CALCULATION INTERVAL: 1

BOUNDARY-LAYER SOLUTION

This data record is required if the boundary-layer calculation is
to be executed and it also is the first data record associated with
the boundary-layer calculation. The following card statements
(7-11) are optional and need only be input if values other than the
default values are to be input.
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7)  (PRINT INTERVAL: ibiprt)

Input of the boundary-layer print interval,
" The default is PRINT INTERVAL: 50.

: 8)  (REYNOLDS NUMBER: reyinf)

Input of the free stream Reynolds number based on root chord.
The default is REYNOLDS NUMBER: 1.0E7

9)  (TEMPERATURE: tinf)

Input of che free stream temperature (degrees Kelvin).
The default is TEMPERATURE: 300.0

10) (SUTHERLAND LAW CONSTANT: s0)

Input of the Sutherland Law Constant (degrees Kelvin).
The default (defined for air) is SUTHERLAND LAW CONSTANT: 110.0.

11) (PRANDTL NUMBER: prt)

Input of the turbulent Prandtl number.
The default is PRANDTL NUMBER: 0.9
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- APPENDIX C

The n-mesh distribution and wing surface slope definition for the two
geometries considered are given here. In each case the wing surface is
represented as an analytic function having the following form:

3 4
a2 +ayg e et vag® v ag® v gty agh.

1. Lockheed Georgia “Wing A"

a. np-mesh
Index n
1 -0.21
2 0.00
3 0.21
4 0.42
5 0.63
6 0.83
7 1.11
8 1.39
9 1.94
10 2.25
11 2.50
12 2.65
13 2.75
14 2.80
15 2.90
16 3.05
17 3.30
18 3.80
19 4.30
20 5.30
40



ORIGINAL PAGE i3

OF POOR QUALITY
b. surface geometry

Root i Tip

a, 0.02399€815 0.023517482 -0.017931003 -0.017921293
/2 0.210881410 -0.148954440 0.175083370 -0.192270830
3 ~-0.348816530 ~-0.010928663 0.019118126 0.371830370
a, 0.418018550 -0,106489380 -0.494377680 -0.938122680
2, -0.637010050 0.391707720 1.12296990 1.757023200
a 0.395787680 0.150884270 -1,211785000 -0.989445110
a5 -0.085424090 -0.324138620 0.426635820 0.024627938
2. MBB-A3 Hing
a. n-mesh
Index n

1 '0025

2 0.00

3 0.25

4 0.50

5 0.75

6 1.00

7 1.30

8 1.70

9 2.00

10 2.25

11 2.50

12 2.65

13 2.75

14 2.80

15 2.90

16 3.05

17 3.30

18 3.80

19 4.30

20 5.30
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Upper Surface

Lower Surface

Upper Surface

Lower Surface
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Surface Geometry

Upper Surface

0.0
0.1064264
0.0051279
-0.1236988
-0.0149070
0.0270518
0.0

Lower Surface

0.0
-0.1064262
0.2190702
-0.6049436
0.9704346
-0.4781350
0.0
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Upper Surface

0.0
0.1064264
0.0051279

-0.1236968
0.0149070
0.0270518
0.0

Tip

Lower Surface

0.0
-0.1064262
0.2190702
-0.6049436
0.9704346
-0.4781350
0.0

-
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Figure 3a. Steady Surface Pressure Distributions for Lockheed “Wing A at VT tip = 0.15
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