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D. P. Rizzetta and ~. J. Borland 
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Abstract 

A numerical procedure is presented for computing the unsteady transonic 
flowfield about three-dimensional s\tept wings unaergoing general time 
dependent motions. The outer inviscid portion of the flow is assumed to be 
governed by the modified unsteddy transonic small disturbance potential 
equation which is integrated in the time domain by means of an efficient 
alternating direction implicit approximate factorization algorithm. Gross 
dominant effects of the shock-boundary-layer interaction are accounted for by 
a simple empirically defined model. Viscous flow regions adjacent to the wing 
surface and in the trailing wake are described by a set of integral equations 
appropriate for compressible turbulent shear layers. The two-dimensional 
boundary-layer equations are applied quasi-statically stripwise across the 
span. Coupling with the outer inviscid flow is implementea through use of the 
displacement thickness concept within the limitations of small disturbance 
theory. Validity of the assumptions underlying the method is established by 
comparison with experimental data for the flow about a high aspect ratio 
transport wing having an advanced airfoil section. 

Draft Report received August, 1982. Revlsed Final Report received 
November, 1983. 
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NOMENCLATURE 

II (I) + 2 G F; cjI 
c S Y Tl 

II E: M 2 k2 
1 Q) 

'" aspect ratio 

= local section chord nondimensionalized by c
r 

(cstc
r

). 

= reference chord 

.. local section chord 

= entrainment coefficient (~~ 
Pe e 

15 

f o 

= skin frictipn coefficient (see Eq. A-ll) 

pU dN) 

= total wing lift coefficient (2 f: tiP f~ (C~ - Cp+)dF;dl'J) 

.. total wing moment coefficient, moment taken about leading edge 
of root section 

'" local section pressure coefficient 

= see Eq. A-16 

'" sec Eq. A-20 

'" see Eq. A-13 

'" type-dependent finite difference operators 
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.. 
E 

F 

G 

H 

ii 

k 

M 

N 

.. local instantaneous surface section definition (z = f(x,t» 

.. local viscous ramp surface slope modification 

.. see Eq. A-15 

'" see Eq. 24 

.. see Eq. 25 

.. initial Q distribution, Q(~' ~, ~, 0) 

2 = 1/2 (y - 1) M= -1 

= initial cjlt distribution, Qt (~, rlo ~, 0) 

15* 
'" shape factor, a 

.. see Eq. A-14 

1 = L _IL 
.. shape parameter, e f 0 Pe (1 - Ue) dN 

.. nondimensional time scaling 

= reduced frequency, 

= Mach number 

.. physical normal boundary-layer coordinate 

.. turbulent Prandtl number 
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Re 
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z 

a 
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cS 

co 

• adiabatic recovery factor, (prt )1/3 

pQU"" cr 
• freestream Reynolds number based upon chord, u

m 

• momentum defect thickness Reynolds number, 

= physical streamwise boundary-layer coordinate 

= Sutherland law gas constant 

c 
= physical time nondimensionalized bY:1f 

km 

.. temperature 

.. streamwise velocity component 

.. physical streamwise coordinate nondimensionalized by c
r 

= physical spanwise coordinate nondimensionalized by c
r 

= physical normal coordinate nondimensicnalized by cr 

= angle of attack 

= viscous ramp wedge angle 

= specific heat ratio 

= jump in P9tential across wake 

• boundary-layer thickness 

6* = displacement thickness, IoQ (1- P;~e ) dN 

o~, cS~, 6~~ = finite difference operators 

A~,A~,A~,At = finfte difference numerfcal mesh step sizes 
_ {o low frequency approximation 

£1' £2 - 1 otherwise 

• nondimensional transformed normal coordinate 

= nondimensional transformed spanwise cordi nate 
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U'e ~EQ 

ALE 

As 

X 

Xc 

lJ 

f; 

f;o 

f;p 

~- f;R 

f;s 

p 

4> 

w 

Superscript 

+ 

+ 

* 

(:) e!!. U 
• momentum defect thickness, Io peUe (1 - Ue) dN 

= see Eq. A-18 

= leading edge sweep angle 

= local section sweep angle 

= taper ratio 

= see Eq. A-17 

.. viscosity coefficient 

.. nondimensional transformed streamwise coordinate 

= offset of viscous ramp leading edge from sonic point 

.. length of viscous ramp precursor 

= length of viscous ramp main body 

= sonic point location 

= density 

.. perturbation velocity potential function nondimensionalized by 
cr Uc:o 

= physical velocity potential function. cr Uc:o (x + 4» 

= circular oscillation frequency 

.. upper surface 

.. lower surface 

= backward difference 

.. first intermediate solution (prediction) 

= second intermediate solution (first correction) 

= critical value 
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n 
!! 

n + 1 

Subscripts 

e 

I. J. K 

Kp 

Km 

LE 

min 

tip 

t 

US 

x.y.z 
E;.fl.1.; 

20 

3D 

C3 

• symbolic representation 

• previous time level 

• final solution at new time level (second correction) 

= boundary-layer edge 

= E;. fl. I.; grid indices 

• I.; - plane lying above wing surface 

= I.; - plane lying below wing surface 

.. leading edge 

= minimum 

= wing tip 

= time derivative 

.. upstream 

.. spatial derivative 

.. two-dimensional 

.. three-dimensional 

.. freestream 
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I. INTRODUCTIOt~ 

Solutions of steady inviscid transonic flowfields about wings of arbitrary 
planform are commonly obtained by numerical solution of the differential 
equation governing the velocity potential function. While this approach 
necessarily implies that any embedded shock waves are sufficiently weak that 
rotationality effects may be neglected. it has proven extremely useful for 
many apPlications l -7• In the case of unsteady flows. few methods capable of 
generating time accurate three-dimensional flowfields are currently 
available8- 12• If the wing may be considered thin. the problem is rendered 
more tractable by applying the small disturbance assumption. This not only 
simplifies the governing equation. but also facilitates application of the 
surface boundary condition. 

Time integration of the modified unsteady transonic small disturbance 
potential eq~ation has proven to be particularly useful. It permits the 
treatment of nonlinear unsteady three-dimensional flow phenomena including 
irregular shock wave motion. In addition. the flowfield equation may be 
coupled directly with the structural equations of motion for an elastic wing 
which are simultaneously integrated in time in order to obtain a nonlinear 
aeroelastic solution l3• 

Al thOUgll unsteady inviscid floltfield solutions can provide a reasonable 
physical description for a wide variety of flow conditions. they will not be 
adeq~ate when viscous effects are significant. This is typically true for 
flows about wings having advanced airfoil sections which involve complex flolt 
structures characterized by the following phenomena: 1) shock-boundary-layer 
interaction altering the shock strength and location. 2) effective camber 
modification due to differences in the bounoary-layer displacement on the 
upper and lower wing surfaces, and 3) displacement and camber effects of the 
near wake. A detailed description of these effects can be provided only 
through the use of additional equations governing the flow. Numerical 
solution of the more exact equations appropriate to three-dimensional viscous 
flows is burdensome in terms of computing resources. For the study of 
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aeroelastic behavior and nonlinear flutter, it is reasonable to perform a more 
simplified analysis. It is the intent here to account for the gross dominant 
effects of ir.viscid/viscous interaction for such applications \"lithout 
degrading the basic efficiency of the inviscid computation. Thus, no attempt 
will be made to resolve exact details of viscous regions, but rather the 
effects of viscosity upon the unsteady surface pressure distribution will be 
determined in order to provide appropriate aerodynamic forces for structural 
applications. 

It is assumed that viscous effects are confined to thin regions immediately 
adjacent to the \,/ing surface and along the trail ing wake. These are then 
postulated to be in instantaneous equilibrium with the unsteady outer inviscid 
flow. A simple order of magnitude analysis indicates that this assumption is 
valid if the reduced frequency of the unsteady wing surface motion is 
smal,14. As a consequence. a steady form of the equations governing the 
viscous regions may be applied in a quasi-steady fashion. In addition. the 
viscous equations appropriate for two-dimensional flows will be applied 
strip~lise along the span. For .this calculation. however. the streamwise 
direction is taken as that either normal to the mean of the leading and 
trailing edge sweep angles for locally subsonic strips. or normal to the shock 
surface for strips where shock waves are present. Thus. the treatment of the 
viscous equations embodies the concept of simple sweep theory. 

The,use of tWO-dimensional boundary-layer equations greatly reduces the amount 
of computational effort involved in treating viscous regions. Even with an 
integral formulation. a three-dimensional viscous analysis requires solution 
of a system of partial differential equations. which can be costly. This is 
no small consideration for performing aeroelastic analysis which may require 'a 
large number of solutions to establish flutter boundaries. 

Viscous regions are assumed to be governed by a set of boundary-layer 
equations appropriate for turbulent flows. For this purpose an integral form 
of "lagentrainment equations" are employed, \~hich have been used with success 
for the prediction of turbulent shear layers15- 17 • Coupling with the outer 
inviscid flow is provided by the displacement thickness concept within the 
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framework of small disturbance theory. The impact of viscous effects upon the 
potential equation is manifested solely in a modification of the surface and 
wake boundary conditions. This procedure has proven adequatd for a number of 
both steady and unsteady computations of fl O\~s about airfoil s 18-20. 

The most complex aspect of viscous transonic flows over airfoils is that of 
the shock-boundary-layer interaction. This effect is difficult to represent 
and resolve correctly for turbulent flows. and troublesome to couple in a 
numerically stable fashion with the outer inviscid solution. In the case of 
steady flows, procedures have been developed which achieve this coupling. 
Such methods commonly involve the use of underrelaxation in an iterative 
process such that a matching of the two solutions is obtained at convergence. 
Both the physical and numerical difficulties are considerably more involved in 
the unsteady case. Here the shock strength and location vary in time as the 
shock traverses the wing surface. In addition, time accuracy as well as 
stability is essential. 

Much of this difficulty is removed by employing a simple computdtional 
artifice to model the displacement effect of the shock-boundary-layer 
interaction which is used in conjunction with the boundary-layer solution. 
This is accomplished by augmenting the wing surface geometry with a 
wedge-nosed ramp that is inserted near the base of the shock in the inviscid 

calculation. The ramp converts the normal shock to an oblique shock. thereby 
decreasing its strength, displaces it upstream from its inviscid location, and 
is free to traverse the wing surface in correspondence with the unsteady shock 
motion. The magnitude of the ramp angle is allowed to adjust instantaneously 
to the shock strength and is chosen such that an empirically defined 
post-shock pressure is recovered. Application of this ramp model has proven 
quite useful in both two- and three-dimensional steady computations21 and 
more recently in two-dimensional unsteady solutions 14 ,22. 
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II. UNSTEADY POTEi~TIAL EQUATION 

The equation governing the outer inviscid flow is the modified 
three-dimensional unsteady transonic small dlsturbance potential equation 
which includes higher order terms to ensure proper swept ~hock jump 
conditions, and may be written as 

(1) 

Here ~ is the perturbation velocity potential function and 

A :: M 2 k2 
E:1 co ' (2a) 

B = 2 M 2 k 
co ' (2b) 

E = 1- M 2 
co ' (2c) 

F = - 1/2 (y + 1) M}, (2d) 

G = 1/2 (y - 3) Mco2, (2e) 

H = - (y - 1) M 2 
co ' 

( 2f) 

where k is the nondimensional time scaling. 

The following shearing transformation is applied in order to map the swept 
tapered wing planform in the physical domain into a rectangle in the Cartesian 
computational domain: 

x - \E(Y) 
c (y) , '1 = y, 1; = z. (3 ) 
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Outboard of the wing tip. a smootn transition to a constant chord section 
swent at the average of the leading and trailing edge sweep angles is 
applied. In addition. the coefficient G is split into two components 

G .. GS + G
W 

Gs .. 1 - HC) 2• 

2 Gtl = 1/2 (y - 1)!\, -1. 

(4a) 

(40) 

(4c) 

such that the streamwise and normal contributions to the spatial differencing 
of the governing equation may be identified. This decomposition will be 
useful in the formulation of the numerical solution algorithm. Upon defining 

a 

b 

= (~) + 2 GS ~y ¢n' 

.. (;2) + GS r./. 

X = GN (r.y Cl>r. + ¢n,2 + Hc.y ¢r. (r.y ¢r. + ¢n) 

+ C E;y (r.y Qr. + ~Ill. 

Y = Hor. (~y Or. + ~n) + c~y Or. 

Eq. 1 becomes 

C~tt + Bor. t = k (a ~r. + b ~r. 2) + 2 GS ¢n :!Jr.n 

2 
+ ..L ( C cjl ) + cil ¢ + ~ . + 2! . 

an i'\ 7 ar. an 

It is noted that 

(Sa) 

(Sb) 

(SC) 

(Sd) 

(6) 

(7) 

represents the streamwise contribution to the governing equation \~itll the 
remaining terms on the right-hand side of Eq. 6 comprising the normal portion. 
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A formal definition of the inviscid problem is completed by prescription of 
the boundary and initial conditions: 

far upstream cjl = 0, 

1 far downstream c Qf,; + E2k cjlt '"' 0, 

wing root f,;y cjl~ + Q
n 

= 0, 

far spanwise .cjl = 0, 
n 

far above and below ¢~ = O. 

On the wing surface, the linearized unsteady boundary condition 

+ 1 + + 
cjl~ - = cff,;- + E1k.ft-

is applied on ~ = ot for 0 ~ ~ ~ 1, 0 ~ n ~ ntip. 

(Sa) 

(Sb) 

(Sc ) 

(Sd) 

(Se) 

(9) 

Along the trailing vortex sheet in the wake, the following contact conditions 
are invoked: 

1 
[c ~f; + E2k Qt] = 0, ( lOa) 

[¢l~] = 0, (100) 

on ~ D 0 for ~ > 1, 0 ~ n ~ ntip' where brackets denote the jump in the enclosed 
quantity from above to below the vortex sheet. 

Finally, the initial conditions 

(11 ) 

are specified. 

Once the solution to Eq. 6 is obtained, the local instantaneous pressure 
coefficient may be determined from the following expression 

(12) 

13 
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III. VISCOUS EQUATIONS 

Solution of the equations governing viscous flow regions is predicated upon 
the quasi-study assumption. Therefore, it is necessary to consider only thp. 
steady form of the equations involved in order to extend the flowfield 
solution from time level t n to time level tn+1 = tn + 6t during the 
unsteady solution process. In order to evaluate viscous parameters at the new 
time level, tn+1, all inviscid quantities are obtained from the potential 
solution at time level tn. The two-dimensional form of the viscous 
equations is employed stripwise along the span. However, the streamwise 
direction is taken as that normal to the local sweep angle, As. The value 
of As is equal to that of the incident shock surface for locally 
supersonic strips or the mean of the leading and trailing edge sweep angles 
for locally subsonic strips. 

Viscous Ramp 

The viscous ramp model, which is used to simulate the displacement effect of 
the shock-boundary-layer interaction, is based upon the observation in many 
steady experimental measurements that the post-shock pressure level for 
turbulent flow over an airfoil corresponds approximately to that of the 
oblique shock produced by flow over a compression ramp with a wedge ailgle 
e_qual to that of the detachment angle for the given upstream Mach number. 
Geometry of the model is depicted schematically in Figure 1. It consists of a 
short precursor over which the ramp slope varies_ 1 i_nearly from zero to the 
given wedge angle followed by the main ramp body along which the slope varies 
quadratically. At the ramp leading edge the ramp height and slope are 
continuous, and at the downstream end and the slope and curvature vanish. The 
ramp is positioned with respect to the local instantaneous sonic point 
location and affine1y scaled with the shock strength as determined by local 
conditions upstream of the shock. By offsetting the ramp leading edge a 
distance ~o ahead of the snnic location. the ramp is able to more fully 
influence the numerical shock profile. The leading edge of the ramp is 
preceded by a precurser of length ~p which has been used in previous 
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unsteady calculations14 ,20,22 to moderate passage of the sharp leading edge 
across computational mesh points, thereby precluding spurious numerical 
instabilities. The main body of the ramp has a length of ~R where the 
parameters ~p' ~o' and ~R may be selected for each specific 
application. 

The wedge angle, a. is obtained directly from the steady two-dimensional 
form of Eq. 6. A complete derivation may be found in Ref. 20. In addition, 
the concepts of simple sweep theory are a~\pl1ed to obtain 

2 F 
2 [-2 cos As Cc) 4»~ - E 

a .. CFl 3 us (13) 

where ¢f; is evaluated just upstream of the shock. Given hand 
US ~ US 

the sonfc point location, ~s' the ramp slope variation fR 1s 
~ 

defined as follows: 

f\ .. 0 for 1; < C5 - Co - Cp' ( 14a) 

f ± .. ~B [1 + C~ - ~s + CO)] for 
Rf; f;R 

(14b) 

(l4c) 

+ 
fR- = 0 for 1; > 1; - ~ + CR. 

1; s 0 
(14d) 
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Lag Entrainment Equations 

The form of the integral boundary-layer equations \~hich will be considered 
here is that of the lag entrainment equations due to Green15• They are 
predicated upon the boundary-layer assumption that the normal extent of 
viscous regions is small compared to the wing or wake thickness. which 
necessarily applies to flows at high Reynolds numbers. By integrating the 
governing partial differential equations in the normal direction and suitably 
modelling the requisite relationships among the dependent variables. a system 
of three first order ordinary differential equations is obtained. Two of the 
equations result directly from continuity and momentum. The third evolves 
from the Bradshaw. Ferriss. and Atwell 23 turbulent energy equation. but is 
formulated in terms of the entrainment concept originally proposed by 
Head24• This yields a streamwise rate equation governing the degree to 
which the outer inviscid flow merges with the turbulent shear layer. 

The lag entrainment equations are beiefly summarized here. where the simple 
sweep concept has been employed for coupling with the invfscid solution. We 
first define 

CD U 
displacement thickness 6* = f (1 - p_) dN. o peUe 

(15) 

CD 

momentum defect thi ckness 9 = f 0 ~ (1 - UU ) dN. 
peue e 

(16 ) 

shape factor (17) 

- 1 CD p U shape parmeter U = -9 So - (1 - u) dN. 
Pe e 

(10) 

entra i nment coeffi c1 ent CE = + ~s J~ pU dN. 
Pe e 

(19) 

Here Sand N are the streamwise and normal directions respectively within the 
boundary layer. The subscript e refers to the boundary-layer edge denoted by 

N = 6. Within the confines of small disturbance theory the edge conditions 
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may be taken as those corresponding to the invfscid solution along the wing 
surface or wake centerline evaluated on ~ • ot • 

The'primary dependent variables are taken as (ca ), H, and CEo Given their 
S 

value at any strea~~ise station, ~. thefr distributions may be predicted by 
the following system of first order ordinary differential equations: 

d a Cf cos As 2 2 a 1 
C:lf(c

s
)" 2· [Ho + 2· Me cos As] (c

s
) (e) 4>~~, (20) 

E &" (_~rl F ( 2.8) cos A [(C )1/2 .). (C )1/2] + (a e) cos A dC { dU 
'Oi; Cs A Ho+ HI s or EQ o c or IT; d'S EQ s 

2 2 1 + 0.2 H/ cos
2 

As a 1 J (22) 
• (1 + 0.075 Me cos As( 2 2 )] (e) (e) 4>~~ 

1 + 0.1 Me cos As s 

A definition of the paranlcters necessary to complete the description of these 
equations is given in Appendix A. 

Usi ng Eqs. 17 and A-12 it may be sho\'tn tha t 

(23) 

where 

F" 0 f + [1 + (.L:.J..) r 11 2] (C _ 1 f l5!!! {
HC H C J 

1 z- --2-- e E --z- 'dH
I 

(24) 

and 

F2 • { [1 + (~)r fl/) (H. + 1) "1 :1 + (y - tlr M/ iI + (~)r H. 2) Of + 11 

• H (H + 2 • He2)} (L) (l). (25) o 0 Cs c 

This form was first deduced by East17 et al. and displays the dominant 
explicit dependence of the displacement surface slope upon the pressure 
gradient ¢>l;E;. 
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f40dfff cd Boundary Conditi ons 

The effect of the vfscous flow regions is accounted for fn the fnvfscfd 
solution by modifying the surface boundary condition to incorporate viscous 
dfsplacement. Thus, Eq. 9 is replaced by 

(j) t =! t + t: kft + f t 
r; CfF; 1 t RF; 

where the viscous ramp is used, and 

(j) t ".h t + t:
1
kftt + (r) t 

r; F; sF; 

+ 
on r; .. 0- for 0 ~ t ~ 1, 0 ~ 11 < 11tip 

(26) 

(27) 

when coupled with the lag entrainment equations. Downstream of the wfng 
trailing edge the viscous wake generates an effectiv~ displacement afterbody. 
Due to its presence, a discontinuity in the slope of the potentfal fs now 
permitted such that the wake condition Eq. lOb is replaced by 

on r; .. 0 for t > 1, 0 < 11 < llti • 
- - p (28) 
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· ! IV. NUMERICAL METHOD 

Inviscid Algorithm 

The ti~~ accurate solution of the inviscid potential equation (Eq. 6) is 
obtained by the fo11o\'Iing first-order (in time) accurate approximate 
factorization alternating direction implicit (ADI) algorithm: 

i) 1; - sweep: 

+'" n ~+q,n _ 
BOf; (4)A~ 4> ) = Of; [an ( ~ 2 ~) + b ¢f;n ¢t] 

+ 2 GS (0 $n) 0 (6r $n) + 0 (c 0 $n) 
Il Il '» Il Il ( 29a) 

+ C 0 ¢n + 0 X" + 0 yn 
1;1; t Il 

if) n - sweep: 

-n 1:- - + n 
+ GS (Oil ~ ) Oil (Ot Q - Of; 4> ). (29b) 

iif) I; - sweep: _ 
n + 1 2 n n - 1 + ",n + 1. :;: 

cA (4) - 4> + 4> ) + B 0 ('+' - '+') 
6t2 f; 6t 

I-

.~o (¢n+l_$n). 
c. 1;1; (29C) 

I 
1, 

/' 

Here. 0t' oil' and 01;1; are second-order accurate central difference 

operators. 6t is a first-order accurate backward difference operator. and 
o and D are type-dependent mixed difference operators. Details of 
t~e nume~ical method are su~~arized in Ref. 10 and discussed in detail in Ref. 
25. 
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Viscous Equations 

n + 1 The viscous ramp slope modification at time level n+l (f~ ) is evaluated 

n based upon the potential distribution at time level n (Q)' In order to 
locate the sonic point, ~s' the simple sweep re1ationsnip 

Co,.. = Cp Icos2 As (30) 
r~O 30 

is employed, where the steady fonn of Cp is taken as is consistent with the 
30 

quasi-steady assumption. The sonic point is then defined such that 

* C = C at ~ = ~ • 
P20 P2D s 

( 31) 

* The critical pressure coefficient, C , is that corresponding to the 
P2D 

equivalent two-dimensional freestream Mach number 

M = M cos As' 
~2D co3D 

(32) 

The upstream location at which 9~ is evaluated corresponds to that grid 
US 

point lying two mesh point upstream of ~s. Once 4S and ~~ are 
"US 

obtained, the entire ramp geometry is defined by Eqs. 13 and 14. 

Solutions to the lag entrainment equations in the form given by Eqs. 20 to 22 
are obtained by a simple second-order accurate Runge-Kutta integration 
scheme. Initial conditions are established upstream of shock waves for 
sections where the flow is locally supersonic or at the pOint of minimum 
pressure for sections where shock waves are absent. For this purpose 

incompressible flat plate results and a 1/7 power law velocity profile28 are 
used to initialize a, H, and CEo Integration is then carried out to the 
downstream boundary based upon the potential distribution at the previous time 
step. 
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Coupling Procedure 

Far upstream of shock waves all viscous effects upon the inviscid solution are 
neglected. For locally supersonic stations the viscous ramp is employed ahead 
of the sonic location as a Simple wing surface slope modification given by 
Eq. 26, but no coupling 11ith the boundary-layer solution is involved. 
Downstream of the sonic location the remaining portion of the viscous ramp is 
ignored and the bounda~-layer solution is implicitly coupled to the invlscid 
solution through use of Eqs. 27 and 28. In the case of locally subsonic 
stations no viscous ramp is employed and the implicit coupling procedure is 
initiated at the point of minimum pressure. 

The wing plane (~ = 0) is centered between planes of computational mesh 
points, such that the surface boundary condition is manifested in the 
calculation of ~~~ in the mesh planes just above and below ~ = o. This 
is accomplished by employing the relationship 

(33) 

where the index Kp refers to the mesh plane just above the "i ng surface and 
a constant mesh size is considered here for illustrative purposes. The 
surface boundary condition is nOlt employed as 

(34) 

+ and {~~~)IJ is written in terms of the potential at-points lying 
above the surface; i.e. 

(35) 
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Equations 34 and 35 are then used in conjunction with Eq. 33 to obtain 

( )n + 1 (1 2 ( n + 1 n + 1 
4>1;1; IJK =!t) (cjlIJK + 1 - 9IJK ) 

P P P 

12 +n n n+1 n+1 
(llf;) (F2 )IJ [I;K + 1(4)1 + 1 JK -2 4>IJK + 4>1 - 1 JK ) 

P P P P 

n n+1 n+1 J 
- I;K (01 + 1 JK + 1 - 2 4>IJK + 1 + 4>1 - 1 J K + 1)] • 

P p P P 
(36 ) 

This expression forms an implicit relationship as part of the tri-diagonal 
system in the I; - sweep of the inviscid algorithm. An expression similar to 
Eq. 36 may be derived for (4)I;I;)~J~ 1. It is noted that at the grid location I. J valu 

m 
n + 1 of 4> at the upstrea:n col urnn (4) I _ 1 J) are known at the advanced time 1 evel but 

those at the downstream column (cjl~ + 1 J) must be taken at the previous time 

level for the algorithm to r~~ain intact. The coupling procedure is considered 
to be significant in suppressing numerical instabilities which would otherwise 

* 
occur. particularly in regions \-Ihel'e (~s)f,; is large such at the trailing edge. 

Along the trailing wake the following relationship is employed 

(91;1;) IJK = (A~)2 (9IJK +1 - 29IJK + ~IJK ) 
P ppm 

(37) 

where ¢IJ~ is a symbolic representation of the value of 4>IJ~n which 

i ncorpora tes the jump in cjl and 4> across z; = 0 and K refers to the meSh z; m 
plane just below ~ = O. By analytic continuation (i.e., Taylor Series) 
A + 
9IJ~ may be expressed in terms of values along z; = 0 , i.e. 

(38) 
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Similarly, the value of 9IJK may be written in terms of values along ~ = 0- as 
m 

(39) 

Combining Eqs. 38 and 39 results in 

(40) 
For convenience we now define 

(41) 

and express the jump in the normal slope of the potential across the trailing 
wake in accordance with Eq. 28 as 

[(9~}IJ - (9~)IJ] = [(Fr)IJ + (F~)IJ (9~~)IJ] 

- [(Fi)IJ + (Fi)IJ (~~~)IJ]· 

From Eq. 41 it follows that 

(42) 

(43) 

Using Eq. 35 and substituting Eqs. 41 to 43 into Eq. 40, it may be shown that 

-t [(F;)IJ - (Fi}IJ] [CK +1 (1j>E;E;)IJK - r;K (<!>I""E;) ] 
p p p" IJKp + 1 

- (¥-) (Fi)IJ (rE;E; )IJ· (44) 
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Finally. Eq. 44 is substituted into Eq. 37 to obtain 

( )n+l (1)2 ( n+l n+l n+l n+l) 
~1;1; IJK = AE; 4l IJK +1 - 24lIJK + 4lIJK + r IJ 

p P p "11\ 

n n+l n+l 
- 1;K (4lI+l JK-+l - 24lIJK +1 + ~I-l JK +1)] p 'lJ p p 

An expession similar to Eq. 45 may be derived for (4l1;1;)~~~ • 
m 
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V. RESULTS 

A computer program. XTRA~'3S. based upon the inviscid numerical algorithm 
described above is available for calcula'~ing the steady and unsteady 
aerodynamic loads and aeroelastic response of thin clean wings in transonic 
flow. This code is fully described in Ref. 25 to 28. All of the results 
presented here were generated using XTRM~3S. The basic code has been modified 
to account for viscous effects by incorporating the previously described 
method. Appendix B describes alterations in user input specifications for the 
modified version of XTRAN3S. 

For each of the cases considered. calculations were performed which generated 
an inviscid <:olution. a solution using the viscolls ramp alone. and a full 
viscous solution employing the viscous ramp in ccnjunction \lith the 
boundary-layer equations. 

All computations were performed on a nonuniform 60 x 20 x 40 (~. n. ~) 

Cartesian computational mesh with the wing surface defined by 39 x 12 points 
in the ~ - n plane. The computational domain was defined by 

-15.375 < ~ < 26.575 

o < n ~ 5.3 

-13.0375 ~ ~ ~ 13.0375 

and minimum grid spacing taken as 

ll~min = 0.01 

= 0.10 

= 0.025 



which occur at the wing leading edge, at the wing tip, and adjacent to the 
wing surface respectively. XTRAtl3S default values were employed for the f;­

and t-mesh distributions. The n-mesh and surface geometry description for 
each case considered may be found in Appendix C. For all calculations the 
time scaling, k, was selected as 0.2 and a time step of ~t = 0.0034906585 
was employed. This corresponds to a distance of one root chord of travel in 
57.3 time steps at the freestream velocity. For a reduced frequency of 
kc = 0.2, the choice of ~t results in five time steps per degree of 
circular frequency change along the pitching cycle of a forced oscillation. 
Nominal values of the viscous ramp parameters were selected as follows: 

f; = 0.02, o 
f;p = 0.02, 
f;R = 0.10. 

These choices have proven adequate for a number of both steady and unsteady 
two-dimensional solutions14 ,20. Results were generated on the CRAY-1S 
computing system and required approximately 0.5 seconds of CPU time per time 
step of calculation for both inviscid and weoge alone solutions, and O.b 
seconds per time step for full viscous computations. 

All converged steady state solutions were run for 900 time steps at the 
indicated values of k and 6t. These choices were found to be conservative 
with respect to both stability and convergence. The low frequency 
approximation (i.e., £2 = 0) was made in the wake jump condition Eq. lOa 
and downstream bounda~ condition Eq. 8b to prevent anomalous behavior which 
was otherwise observed to occur for swept tapered planforms. In general, the 
following procedure was employed in generating steady-state results: 

i) a converged inviscid solution was obtained using an undisturbed 
condition as an initial state (f.e., ~ = ~t = 0); 

ii) a converged wedge alone solution was obtained using the inviscid 
solution as the intiial state, updatfng the wedge computation at 
each time step; 
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111 a converged full viscous solution was obtained using the wedge 
alone solution as the initial state. updating the boundary-layer 
computation at each time step. 

In order to establish validity of the assumptions underlying the computational 
method. comparison is made wi th experimental data for the steady flo\., about a 
high aspect ratio wing having an advanced airfoil section. The configuration 
to be considered is depicted schematically in Fig. 2 and corresponds to the 
Lockheed-Georgia "Wing Au29.30 whic.h was developed as part of a 
comprehensive program to acquire steady transonic experimental data 
specifically for evaluation of three-dimensional computational methods. Tne 
wing has an aspect ratio of 8.0. a taper ratio of 0.4. and leading edge sweep 
angle of 27°. A nonunifonn 12~ thick airfoil section having appreciable aft 
camber is employed. with approximately 50 of nose-down twist occurring 
between the root and tip sections. The section and planform geometry are 
regarded as representative of modern transport aircraft. 

Freestream conditions were established for the flow in air at M~ = 0.819. 
a 3 1.96°. and Re = 8.08 x 106• These values duplicate the test 
conditions of Hin~on and Burdgcs 29 •30 as well as the numerical results of 
Streett31 • Steady-state solutions were generated by the time integration 
procedure previously summarized. In the case of the full viscous computation 
it was not possible to obtain an entirely converged steaciy solution due to 
boundary-layer separation at the trailing edge of the upper surface and in the 
aft cove region of the lower surface. A reasonable result was arrived at by 
the following procedure. Using the converged wedge al~ne solution as an 
initial profile. a converged viscous solution was generated at a Reynolds 
number of 8.08 x 107• This value is 10 times that of the test condition and 
was sufficiently high to preclude boundary-layer separation. The computation 
was then restarted with the converged viscous result as the initial profile 
and run for 80 time steps at the test Reynolds number. In both calcuations 
the boundary-layer computation was updated each time step. The final solution 
is probably resolved to plotting accuracy in the pressure distribution. Any 
further calculation rapidly produced separation. 
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Results of the calculations are shown in Fig. 3 in terms of the wing surface 
pressure di stributi ons \'there the data of Hi nson and Burdges has been provi ded 
for. comparison. The spanwise mesh distribution was selected to coincide with 
experimental data measuring stations. Com~arison of the full viscous result 
with the inviscid solution indicates the improve~~nt due to the boundary-layer 
calculation. It is noted that the shock is weakened and displaced forward by 
the inclusion of viscous effects. Aft decalTlbering due to boundary-layer 
displacement is quite noticable. particularly on the aft lower surface. The 
wedge alone solution is seen to produce some anomalous behavior on the 
rearward portion of the upper surface. This is probably due to the post shock 
re-expansion and the high aft camber. The only spurious result from the full 
viscous solution is noted at n/ntip = 0.70 immediately downstream of 
the shock. and may be caused by the merging of the wedge and boundary-layer 
slope modifications. In Ref. 31. the results of calculations from a pilot 
version of XTRAN3S were presented for the same case. In those calculations. 
the spike downstream of the shock shown 1n Fig. 3d was not observed. 

In Figure 4 the full viscous result at n/ntip = 0.70 is compared with 
another computational solution. The numerical results of Streett32 consist 
of a full potential inviscid Quter flow solution and a fully three-dimensional 
integral boundary-layer and wake solution coupled via the displacement 
thickness. While the flow conditions for Streett's solution are the same as 
noted previously. the configuration consists of a half-body fuselage model 
with a mid-mounted wing and corresponds to another of the test cases of Hinson 
and Burdges. Streett's results compared extremely well with experiment. thus. 
the data for the wing-body combination has been omitted. Due to the presence 
of the body. the shock lies somewhat ahead of its location for the wing 
alone. The lower surface pressure distribution is virtually the same in both 
cases. 

Upper surface distributions of the displacement and momentum defect thickness 
at midspan appear in Fig. 5. Influence of the shock can be seen near 
~ = 0.4. Downstream of the trailing edge. e and 0* tend to constant 
values which is consistent for wakes without pressure gradient. 

In the case of fully three-dimensional unsteady transonic flows over wings, 
little experimental data suitable for validation purposes is available. 
Because of this, a representative sample calculation was selected in order to 
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illustrate results of the numerical method. For this example a section 
geometr,y corresponding to the MSB-A333 airfoil was chosen. The section, 
shown in Fig. 6, has a blunt leadfng edge, a thickness ratio of 8.9~, moderate 
aft ca~ber, and has been selected as an AGARD standard for evaluating 
transonic aeroelastic analysis methods. A wing planform identical to the 
Lockheed-Georgia "Wing A" was employed (AR = 8.0, >. II 0.4) except that the 
lp.ading edge sweep angle was set to 30°. The MBB-A3 section was chosen to 
avoid the probl~ms with boundary-layer separation evidenced in the Lockheed 
Wing A calculation. Even though the airfoil is thinner, it still may be 
viewed as representative of a typical modern transport aircraft configuration. 

Steady-state solutions were generated for freestream conditions corresponding 
to I~ = 0.85, a = 1.00

, and Re = 107• Resul ts of the pressure 
~ 0 

distributions at half of the spanwise mesh stations are compared in Fig. 7. 
Viscous effects near ShOCKS and on the aft lower surface are apparent. 
Corresponding chordwise distributions of the displacement and momentum defect 
thickness near the midspan station appear in Fig. 8. 

Using the steady-state solutions as initial conditions, unsteady calculations 
were performed by specifyi ng a forced rotati on about the wi ng 1 eadi ng edge 
root such that a = 10 + 10 sin t. The reduced frequency, kc' was 
chosen to be 0.2. Integration in time was allowed to proceed for two cycles 
of rotation. Figures 9 and 10 indicate the instantaneous surface pressure 
distributions for the inviscid, wedge alone, and fully viscous cases. The 
value of time here is referenced to the beginning of the second cycle and 
given in radians. At the maximum angle of attack, a = 2°, (Fig. 9) a 
large difference between the solutions, particularly near shocks is evident. 
While the difference beoieen the solutions is less substantial at the minimum 
angle of attack, a ~ 00 (Fig. 10), aft decambering due to viscous 
displacement is still appreciable. Corresponding values of the displacement 
and momentum defect thickness are given in Figures 11 and 12. It is noted 
that the large differences in 0* and e at the extremes of the oscillation 
cycle are brought about by the alternate formation and disappearance of the 
shock. In Fig. 13 the total wing unsteady 11ft and moment coefficient time 
histories are presented along with the angle of attack variation. Although 
there is little phase difference between the inviscid and viscous solution for 
this particular case, the difference in both mean value and magnitude of 
oscillation is significant • 
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VI. DISCUSSIOn A"D CONCLUSIONS 

A method has been presented fOI" computing the unsteady three-dim2nsional 
transonic flowfield about thin wings of arbitra~ planform and section 
geometry including the effects of inviscid/viscous interaction. Dominant 
effects of the shock-boundary-layer interaction were accounted for by a'simple 
compuational artifice, while viscous regions adjacent to the wing surface and 
along the trailing wake were described by a set of integral equations 
appropriate for two-dimensional turbulent flows. Although this analysis was 
necessarily simplified, comparison with steady three-dimensional experimental 
data and a solution of more exact equations for a typical transport 
configuration indicates that it will be adequate for many practical 
applications. In addition, an example calculation of a wing oscillating in 
rotation indicated appreciable variation in unsteady aerodynamic force 
coefficients when viscous effects are accounted for. This behavior is typical 
of wings having advanced airfoil sections and may be a significant 
consideration when performing aeroelastic analysis. 

Several comments regarding the operation and possible improverent of the 
modified ~ersion of XTRA~3S are appropriate here. No provision has been made 
in the present uork for the existence of a laminar bounda~ layer. The reason 
for this is that the lag entrainment equations do not perform well at low 
Reynolds numbers. Ideally, a simple attachment line model or stagnation pOint 
solution followed by a laminar calculation and suitable transition criteria 
could easily be incorporated in order to establish initial conditions for the 
lag entrainment equations without altering the basic computatfonal method. 
For the results considered here, the Reynolds numbers were sufficiently large 
such that for practical purposes the entire boundary layer could be considered 
turbulent and the upstream displacement effect could be ignored. This may not 
be possible in all cases. 11ake curvature effects have been neglected entirely 
in the present work. These may be accounted for by a simpl~ alteration of the 
basic wake jump condition, Eq. lOa32 • It is indicated by the results of 
Streett32 that wake curvature may have a significant impact upon the lower 
surface pressure distribution for wings having advanced airfoil sections. 
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The Lockheed-Georgia "Wing A" proved to be a severe test of the computational 
method. Separation \'1as indicated for the experimental configuration due to 
the combination of thickness, camber, and flow conditions. This evidences a 
need for treating cases of practical interest fthere boundary-layer separation 
occurs and requires a reformulation of the boundary-layer solution method in 
the "inverse" mode. It should also be noted that the version of XTRAtl3S 
employed for the calculations was designed to operate efficiently on the 
CRAY-IS computing system. The boundary-layer calculation method was 
implemented as a simple modification of the basic code, but does not take 
advantage of the vectorization capabilities of the CRAY-IS. This slows the 
viscous calculation somewhat, but it could easily be made more efficient. 

It is not recommended that the wedge alone be used on wings having advanced 
airfoil sections. As was noted for the cases presented here, use of the wedge 
alone tended to produce spurious post shock re-expansions. This effect may be 
reduced by varying the wedge parameters (~o. ~p. ~R) but that was 
not done here. For wings having more conventional sections it is expected 
that the wedge alone will Qe quite useful. 

The method of time integration of fluid dynamic equations of motion offers a 
unique capabilty for performing aeroelastic analysis. Unsteady structural 
equations of motion governing the deformation of an elastic wing may be 
coupled with these directly and simultaneously integrated in time to detennine 
.the aeroelastic response of the combined system. This technique has already 
been applied for a purely inviscid flowfield,I3 and may easily be extended 
to include viscous effects by the described method •. Addition of the integral 
equations for viscous calculations increases computation time (CPU) by about 
20%. thus maintaining the basic efficiency of the'inviscid algorithm. This 
consideration provided much of the motivation for employing a simplified 
viscou~ analysis. and appears to be justified for the purpose of structural 
appl ications. 
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APPENDIX A 

Conditions at the edge of the boundary layer may be obtained from the inviscid 
+ solution along the wing surface or wake centerline evaluated on ~ = 0-. 

In particular, using the small dist.urbance assumption and simple swe~p theory, 
we may write 

He • {I + [1 + (Li-!) H}l (~l Ot}'1. cos As' (A-I) 

Pe I 2 
- = 1 - ('C) MCI) 4lr-' 
Pc> .. 

(A-2) 

(A-3) 

The viscosity ratio is obtained from the Sutherland viscosity law in the form 

(A-4) 

where So is a constant for the specific gas under considera:ion 
(So = 1100K. for air). The adiabatic recovery factor, r, is chosen as a 
fUnction of the turbulent Prandtl number 

(A-5) 

The following parameters then completely define the lag entrainment equations 

1 2 1/2 
F c = [1 + (Y) r r1e ], (A-6 ) 

Fr = 1 + 0.056 Me2, (A-7) 

( A-8) 
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(~) [log (F Re) _ 1 02 - 0.00075] for wall boundary layers 
Cfo • c 10 r e • ! 

1 0.01013 

o for wake shear layers. (A-9) 

; •• If { 1 - 6.55 [~ (1 + 0.04 fl. 2))1/2} • 

If 
Cf al[ 0.9 - 0.5] Cfo for wall boundary layers 

(- - 0.4) 
Wo 

o for wake shear layers. 

H = m + 1) [1 + p:.:1) r H 2] - 1 o --2 e 

2 dlf .. "[ (If-1) ] 
iIH"1 - 1.72 + 0.02 m _ 1)3 • 

HI = 3.15 + (~) - 0.01 m - 1)2 • • 
If - 1 

{

I for wall boundary layers 
A = 

c 1/2 for wake shear layers. 

(ll" - 1 )2 
6.432 H ] 

1 + 0.04 H/ • 
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(A-ll ) 

(A-12) 

(A-13) 

(A-14 ) 

( A-IS) 

(A-16 ) 

(A-l7) 

(A-lS) 



\ . ] ,0-

("-19) 

. ...:.. -'-. 

(A-20) 

(C·)EQ 
c = 0 0 32 C 

. (1 + 0.1 ~'e2) A 2 -. fo· 
c 

(A-21) 

(CE)EQ = (1.2 +iC:O•OOO!)1/2 - 0.01. (A-22) 

a dUe _ 1 H1 Cf (n; <IS)EQ - [H
1 

tHo + 1)] [--r - (CE)EQ]· (A-23) 

, 
; , 

, 0 
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APPENDIX B 

MODIFICATION OF XTRAN3S INPUT DATA REQUIREMENTS 
FOR VISCOUS CALCULATIONS 

The input data required by XTRAN3S ~s in the form of a card deck or a card 
image file. All data is free field. Section A describes the input datd deck 
structure while Section B spells out the required input cards for 
implementation of the viscous option and the associated formats and 
groundrules. This Appendix may be considered as a revision of Section V of 
Ref. 26. and should be used in conjunction with that Section. 

A. Input Data Deck Structure 

The input data deck for XTRAN3S has four levels of organization • 

1. Program Deck - This includes all inputs (other than control cards which 
are discussed in Section VIII of Ref. 26) for one problem. The deck 
"boundaries" are 

first record - BEGIN PROBLEM DEFItHTIOtI 

last record - END OF PROBLEM 

2~ Data Section - A program deck is divided into data sections. 
Specifically. the deck is divided into the following ten data sections: 

1 ) Problem Definition Section 
2) Computational Control Section 
3) Computational Grid Section 
4) Geometry Section 
5) Boundary Condition Section 
6) Structural MOdal Section 
7) Structural Matrix Section 
8) Checkpoint/Restart Section 
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4. 
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9) Post-processing Section 
10) Viscous Calculation Section 

As noted previously, the first section must be the ProDlem Definition 
Section. The order of the remaining sections is immaterial. The first 
record 1n each section must be of the form "BEGIN etc." No section 
terminator is required. 

Data Record - Sections are in turn divided into data records or 
statements. As noted above, the first record is of the form "BEGIN 
etc." In most cases the order of the remaining records in the section 
1s immaterial. All exceptions to this rule are specifically noted. 
Record boundaries are governed by the following rules. 

o If the last non-blank character on the card 1 s a "+" then the 
record continues onto the next card. 

o Maximum record 1ength is 250 items. 

o Record terminators are / or card boundaries. 

o The space between / and the card boundary is "ignored" and hence is 
available for comments. If a record is only comment it must begin 
with */. 

Data Item - Records are in turn composed of data items. This is the 
finest level of subdivision for the program deck. The delimiters or 
"boundaries" of items are of two types. 

o colon: this is used at ~ost once per record and then only after 
keywords. 

o commas. blank spaces and record terminators. 
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B. Re~ord Formats 

The following ground rules concerning notation apply throughout this section. 

a) 

b) 

c) 

d) 

e) 

[[ ]]-- Data items enclosed by double brackets have optional input 
formats. One or more of the indicated options must be selected. 

[ ]-- Data items enclosed by brackets have optional input formats. 
Only one of the indicated options must be selected. 

( )-- Data items enclosed by parentheses have default values. If the 
default is acceptable for definition of the problem data. the particular 
item or items need not be input. All default values are defined in the 
descriptions of the input data. 

JLIEM -- An item typed 1n all upper case letters is called a key-word • 
At least the underlined portion of a key-word must be input. This is 
always the first four characters including trailing blanks. 

Item -- An item with only the leading character typed in upper case 
denotes that it must either be selected from a list of system keY-\,/ords 
or that 1t is identical to an item previously defined by the user. 

f) item -- An item typed in ali lower case letters is defined strictly by 
the user. 

The fonnats for data sections 1 through 9 are given in Ref. 26. The 
additional data required for viscous calculations is given in Section 10, 
which follows. 

10 • Viscous Calculation Section 

. The purpose of this section is to specHy the Viscous Calculation option 
if the user so desires. If this option is not desired. then this 
section should be omitted. 
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1) BEGIN VISCOUS FLOW PARN~ETERS 

This data record is used to indicate that processing of datd 
associated with the Viscous Calculation is to follow. The 
following card statements (2-5) are optional and need only be input 
if values other than the defaults are to be specified. Data 
records 2-4 define data associated with the viscous wedge (all 
values are nondirnensiona1 by local section chord). 

2) (SHOCK OFFSET DISTANCE: xoffst) 

Input of the shock offset distance. 
The default is SHOCK OFFSET DISTANCE: .02. 

3) (PRECURSOR LEUGTH: xprec) 

Input of the precursor length. 
The default is PRECURSOR LENGTH: .02. 

4) (RAMP LENGTH: x ramp) 

Input of the ramp length. 
The default is RAMP LENGTH: 0.10. 

5) (CALCULATION INTERVAL: iblcal) 

Input of the viscous fiow calculation update interval for both 
wedge and boundary-layer computations. 
The default is CALCULATION INTERVAL: 1 

6) BOUNDARY-LAYER SOLUTION 

This data record is required if the boundary-layer calculation is 
to be executed and it also is the ftrst data record associated with 
the boundary-layer calculation. The following card statements 
(7-11) are optional and need only be input if values other than the 
default values are to be input. 
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7) (PRINT INTERVAL: fblprt) 

Input of the boundary-layer print interval. 
The defaul tis PRI NT INTERVAL: 50. 

8} (REYNOLDS NUr1BER: reyinf) 

Input of the free stream Reynolds number based on root chord. 
The default is REYNOLDS NUMBER: 1.0E7 

9} (TEMPERATURE: tinf) 

Input of the free stream temperature (degrees Kelvin). 
The default is TEMPERATURE: 300.0 

10) (SUTHERLAND LAW COUSTANT: sO) 

Input of the Sutherland Law Constant (degrees Kelvin). 
The default (defined for air) is SUTHERLAND LAW COI~STANT: 110.0. 

11) (PRANDTL NUMBER: prt) 

Input of the turbulent Prandtl number. 
The default is PRANDTL NUr·mER: 0.9 
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· APPENDIX C 

The ~-mesh distribution and wing surface slope definition for the two 
geometries considered are given here. In each case the wing surface is 
represented as an analytic function having the following form: 

1. Lockheed Georgia "Wing AM 

a. ~-mesh 

Index ~ 

1 -0.21 
2 0.00 
3 0.21 
4 0.42 
5 0.63 
6 0.83 
7 1.11 
8 1.39 
9 1.94 

10 2.25 
11 2.50 
12 2.65 
13 2.75 
14 2.80 
15 2.90 
16 3.05 
17 3.30 
18 3.80 
19 4.30 
20 5.30 
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ORIGirJAl PAGE m 

b. 
OF POOR QUALITV 

surface geometry 

Root l.!.e 

~ Upper Surface Lower Surface Upper Surface Lower Surface 

i 
ao 0.023996815 0.023517482 -0.017931003 -0.017921293 

a1/ 2 0.210881410 -0.148954440 0.175083370 -0.192270830 
a1 -0.348816530 -0.010928663 0.019118126 0.371830370 

a2 0.418018550 -0.106489380 -0.494377680 -0.938122680 

a3 -0.637010050 0.391707720 1.12296990 1.757023200 
a4 0.395787680 0.150884270 -1.211785000 -0.989445110 

as -0.085424090 -0.324138520 0.426635820 0.024627938 

2. MBB-A3 Wing 

n-mes h 
I 

a. i· 
I 
I 
! 

Index l'\ 

1 -0.25 
2 0.00 
3 0.25 
4 0.50 
5 0.75 
6 1.00 
7 1.30 
8 1.70 
9 2.00 

10 2.25 ! -
11 2.50 
12 2.65 
13 2.75 
14 2.80 
15 2.90 
16 3.05 
17 3.30 

.-- 18 3.80 
19 4.30 
20 5.30 
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b. Surface Geometry 

Root 

Upper Surface Lower Surface 

ao 0.0 0.0 
a112 0.1064264 -0.1064262 
a1 0.0051279 0.2190702 
a2 -0.1236988 -0.6049436 
a3 -0.0149070 0.9704346 
a4 0.0270518 -0.478DSO 

as 0.0 0.0 

-, 

42 

Tip 

Upper Surface 

0.0 
0.1064264 
0.0051279 

-0.1236988 
0.0149070 
0.0270510 
0.0 

Lower Surface 

0.0 
-0.1064262 

0.2190702 
-0.6049436 
0.9704346 

-0.478IJ50 
0.0 
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Figure 3 a. Steady Surface Pressure Distributions for Lockheed '1"1ing A" at l1!l1tip D 0.15 
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Figure 3 b. Steady Surface Pressure Distributions for Lockheed "Wing A" at l1!l1tip '" 0.30 
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Flguro 3 c. Steady Surface Pressure Distributions for Lockheed 'Wlng A" at n ITltip =- 0.50 
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