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SUMMARY

An approximate solution for the potential flow through a cascade consisting of
two rows of staggered circular rods is derived. Tne solution is then used to obtain
the classic slotted-wall boundary-condition coefficient applicable to rod-wall wind
tunnels. A comparison with the solution of Chen and Mears (as corrected by Barnwell)
for flow through an unstaggered cascade is also made.

INTRODUCTION

Longitudinally slotted wind-tunnel test sections which have slat shapes with
circular cross sections are generally referred to as rod-wall wind tunnels. Fig-
ure l(a) shows the side view of the wind-tunnel flow expanding around the model and
going through the wall into the plenum surrounding the test section. Figure l(b)
gives a cross-sectional view of the rod elements and defines the pertinent geometric
parameters.

Rodwall--.--k Plenum\

Tunnel

._AA_ Flowthrough wall

(a) Side view of rod-wall wind tunnel.

(b) Cross section A-A. End view of rod wall.

Figure I.- Diagram of rod-wall wind tunnel.



In 1952, Sabol (ref. I) published the ballistic range results of a study of the
shock reflection properties of walls with various slat cross-sectional shapes
(including circular) in both circular and rectangular test sections. His studies
indicated that reflected shock waves of sharply reduced strength occurred when the
walls had faired slots. In 1974, Binion and Anderson (ref. 2) compared acoustic data
and aerodynamic data taken in both rod-wall and perforated-wall wind tunnels at
transonic speeds. They found that the rod walls had lower noise levels than the
perforated walls and that the aerodynamic data were as good as, or better than, the
perforated-wall results. Gilliam (ref. 3) extended the transonic rod-wall acoustics
study of reference 2 and found this type of wall to be very quiet in comparison with
other transonic tunnels. His results also indicated that the subsonic fluctuating
pressure coefficient approached that of a solid-wall wind tunnel with a turbulent

wall boundary layer. Harvey et al. (ref. 4) examined the effect of rod gap width on
noise attenuation as well as on wall boundary-layer removal and laminarization in
supersonic tunnels. They were able to correlate the transition Reynolds number with
gap width and to show that laminar rod-wall boundary layers introduced insignificant
noise into the flow field. Recently, Harney et al. (ref. 5) published a paper citing
their work on a transonic, adaptive rod-wall wind tunnel; it had solid sidewalls with

upper and lower rod walls with both longitudinal and spanwise wall-jacking stations.
This configuration allowed two-dimensional and some three-dimensional wall adaptation
through changes in the wall openness ratio or changes in the wall shape or both to
match free air streamlines about the model.

The purpose of this report is to obtain an approximate, homogeneous rod-wall
boundary condition. First, a solution for the inviscid, incompressible cross flow
through a rod wall composed of alternately staggered rods is obtained by linear
superposition of doublet singularities. After constructing this solution, it is then
possible, using the method outlined by Barnwell (ref. 6), to obtain a classic homo-
geneous slotted-wall-type boundary condition for the rod wall. This solution differs
from that of Chen and Mears (ref. 7) in that their solution did not allow for off-
axis movement of the rods.

SYMBOLS

a slot spacing (horizontal displacement between adjacent rods)

cI doublet strength coefficient

c2 doublet-rod strength coefficient

F complex potential functions

h vertical displacement of adjacent rods

Im( ) imaginary part of ( )

i imaginary number,

K slotted-wall boundary-condition coefficient

Re( ) real part of ( )



r rod radius

U horizontal cross-flow velocity

V vertical cross-flow velocity

Va vertical cross-flow velocity far from the rods (i.e., the tunnel ambient
component)

W complex velocity, U - iV

x,y cross-flow coordinates (see fig. I(b))

x',y' coordinates in z'-plane (see fig. 2(a))

Xa,Xb starting and ending locations of doublet rod

Xg,yg coordinates for gap point

Yd vertical distance from rod center to isolated doublet

Ys stagnation point

z complex variable, x + iy

z' intermediate complex variable, x' + iy'

5,_ angles of inclination between doublet axis and x-axis

6 slot width

8 angle of inclination between doublet axis and y-axis

transformation variable, i = I, 2, 3, 4

doublet strength

strength of isolated doublet

_2 strength of doublet rod per unit length

complex rod-wall potential, _ + i_

_r nondimensional rapidly varying potential

velocity potential

_o velocity potential used to enforce far-field boundary condition

_r rapidly varying portion of velocity potential

stream function



FORMULATION AND ANALYSIS

The problem presented herein is to suitably approximate the inviscid cross flow
through a cascade of circular bodies as shown in figure 1(b). The potential is con-
structed by adding combinations of elementary solutions of the Laplace equation which
satisfy the boundary conditions at specific locations. It is assumed that no lift is
generated; that is, the flow does not separate. Since the bodies are closed, only
doublet singularities are needed.

The complex potential of a doublet singularity at the origin of the z'-plane is
given by

in

F(Z') = _ez' (I)

If a row of doublets is placed at z' = 0, +2a, ..., _+2na, ... we have

z n=l z' + 2na + z' - 2na

Letting kI = z'/a and using expression (830) of reference 8 gives

in l_klh
F(kl) = _e2a_ cot_-_-/

Thus t

F(z') = pe
2a cot (2)

If rows of doublets are placed at z' = z - iyd and z' = z + a - i(h - yd ), then,
from equation (2), the complex potential of the combined doublet rows in the z-plane
is expressed as

F(Z) = i_1_ cos -- - ia (3)

a sin -_ (z - i h) + i sinh--_(h)a a - Yd
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where _1 representsthe strengthof each of the individualdoubletsand _ = _/2,
which aligns the doubletaxes with the oncomingflow throughthe wall.

Now let equation (I) be the elementalpotentialof a continuous,constant-

strengthdistributionof doublets,that is, _ = _2 dx'. It can be seen by referring
to figure 2(a) that

-Xa %
i_ dx' i_ dx'

F(Z') = -_2e z' - X' _2e Z' - X'
-Xb a

= _2e in _ _ + in % Xb (4)

where e = (z/2)+ e and _ = (z/2)- e. If an infiniterow of doublet-rodpairs
are placed at z', z' e 2a, ..., then

I<_' + Xa_-z' + 2a + Xa_/Z'- 2a + Xb> 1F(z') = _2ei_ in _ + _bj_ i + 2a + XbbJ_ZT 2a + ""

I<z' - xb_z' + 2a - xb_'z' - 2a - _} 1

i_ in ..

+ _2e _ Xa/\ZT + 2a X_aJ\_; 2a xb

Alternately, by letting

z' + x
a

kl - 2 a

z' + xb
k2 =2 a

Z !

k3 - 2 a

Z I -- X
a

k4 2 a



z'-plane /

"xb "xa xa xb x'

(a) Doublet rods in z'-plane.

z-plane

h Yd

hi2
X

(b) Distributed singularities in z-plane.

Figure 2.- Singularity distribution used for modeling the rod-wall
boundary condition.



the complex potential function becomes

2a <_)2_ k___is _--kl "'" n2 2/ "'"
F(A1,k2,k3,k4) = _2e in

2a (___)211 k____--k2 "'" n2 2/ "'"

w J

2a I_>2_ k32_I

leo

_-_3"'" n22/
+ _2elpIn

2a (__)2 t _42__k4 *'" n2 ;2/ ...

i /in1)  in3/= "2e lnk "_ln k2 + _2elP in__-_In_4

after using expression (1016) of reference 8. Xhus,

12e 1(z' + Xa rsinis in _ ' --. (5)

, = In_s---_----- -_ + in---_---F(z ) _2e in _ (z' + in _ (z'

The doublet-rod pairs defined by equation (5) are next placed at
z' = z - i(h/2) along with their images, which are placed at z - i(h/2) + a. Xhe
combination of equation (5) plus its images is given by

is in_ + Xa - i sin _ - _ - i _ + a1

= In_ _ h) _ (z
F(z) _2e in _ + xb - i sin _ x i ha "2+

• in _ - xb - i sin _ + x - )

(z (za+ in
in _-_ - x - i sin _ h (6)a _ +Xb iv+
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The complex potential of a free stream along the imaginary axis is given by

F(z) = iVaZ (7)

We can define

cI = _i/Va (8a)

c2 = _2/Va (8b)

= F/V (8c)a

and then add equations (3), (6), and (7) and simplify to obtain

_cI cos a z - i
•(z) = iz - i

a sin _ (z-a - i h) + i sinh _ (h-a - Yd)

os- [z - i hl + cos I m

+C2sineIlnl--Ea-_ £'

LLc (zosa -iT +cos

. h _Xa
--COS n Z i -- + COS

- 2 --_--

- lnLc a(z ,,_)

h _Xa
os K - i + cos T

Is<:I]in a z-i T -
+ ic2 cos 8 n _ h

Lsin _ (z iT+

- in a T-
! --h (9)

sin a z i _ +

The resulting system of singularities is as shown in figure 2(b). Equation (9)
represents the complex potential of a cascade consisting of two staggered rows of
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closed bodies whose shapes are determined by choosing ci, c2, h, y_, Xa, and
xb. The complex velocity W is obtained by differentiating equation[9), which
gives the following:

(_)2 iis+ i sin _ z i i slnh _( _ _ yi]_

W(z) - d_ _ i + i cI

dz _ (z .. _ h 2in - i h + i slnh _ _- Yd

I-C sin i sin _

-(za+ --c^ sin e .... +

a z _ _ _) agXb _g _ _) TgXb
os - i + cos-- cos - i + cos

- i sin_ - zsin

(..g - i + cos _ cos -- i + cos-cos _ a a

+ i a_ c2 cos e ot _ i _ x - cot _ - i _ +

- cot _ <z - i h Xa) (z )I
_ - + cot _ - i h (10)_+ Xa

The stream and potential functions may be obtained by taking the real and imaginary
portions of equation (9). The velocity components may be obtained from the real and
imaginary portions of equation (10). Thus,

= Re(_) (Ila)

= Im(_) (IIb)

U = Re(W) (IIC)

V = -Im(W) (IId)



which give the following:

= -y + ciA12 + c2[sin e (A21 - A31 ) + cos e (A52 - A42)] (12)

= X - ClAll + c2[sin e (A22 - A32) + cos e (A41 - A51)] (13)

!

U I . = 0 (14)
IZ=lYS

V z=iys -I + CLA62 c2[sin e (A72 - A82 ) + cos e (A92 AI02) ] = 0 (15)

where the A_j coefficients are defined in the appendix and Ys is the stagnation
point. The problem is to now find or specify values of e, ci, c2, Yd' h/d, xa,
and xb such that the desired rod shape is reasonably approximated.

HOMOGENEOUS BOUNDARY CONDITION

The classic form of the homogeneous boundary condition is

_x + aK _x _y = 0 (16)

where K is the boundary-condition coefficient for a specified wall geometry. With
Barnwell's method (ref. 6), K may be easily obtained once the potential is derived.
Since solutions to Laplace's equation are correct to within an additive constant,
equation (12) is written as

€ = -Y + ¢r + ¢o (I7)

where ¢ is the rapidly varying portion of the potential in the vicinity of the
wall andr _o is an additive constant which forces the boundary condition

lim Cr = 0 (i8)

to hold. Thus,

lim Cr = lim(# + y - ¢o) = 0 (19)
y_= y+_

I0



giving

% =- a[Cl + 2c2(x b -Xa ) cos e] (20)

From equation (20), it followsthat

@r = c1<A12 + _)+ c2[sin 8 (A21- A31)+ COS e (A52- A42)+ 2_(X -a b xa) cos e]

(21)

Equation (21) may be written as

_r = a_r (22)

Evaluating _ in the slot gives the desired result; that is,r

K = • (x = a/2; y = h/2) (23)r

or

K _[ + 2C2(Xb -X ) COS e] (24)= ci a
a

As a check on the solution, equation (15) was compared with the Chen and Mears
solution (ref. 7) as corrected by Barnwell (ref. 6). Chen and Mears used a doublet-
rod model similar to what is presented here; however, their solution did not allow

for the off-axis displacement of the alternate wall members. If ci, xa, e, and
h are set to zero, then equation (I5) reduces to the corrected Chen and Mears
solution.

METHOD OF SOLUTION

The equations which must be solved are given by equations (13), (15), and (24).

The unknowns are Xa, Xb, ci, c2, 8, Yd' and K, with parameters h, r,
and a. To reduce the number of unknowns, xa is arbitrarily set to 0.01 for cases
when h _ 0 and to 0 for cases when the rods are aligned. The rod length xb is
determined such that the zero streamline (eq. (13)) is forced through a point in the
gap with the coordinates

y = h/2 (25a)
g

2)1/2
Xg = (y2 - yg (25b)
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It should be noted that the rod radius r sets the stagnation point y_ at x
equal to zero. The doublet strength cI is determined such that equatlon (15) is
satisfied at the upper stagnation point (0,Ys), and the doublet-rod strength c2 is
determined such that equation (15) is satisfied at the lower stagnation point

(0,-Ys)"

In reference 6 it was shown that K was very dependent on the slot radius of
curvature. Therefore, e is determined so that the radius of curvature in the gap

is equal to r. The doublet position Yd is set so as to minimize the root-mean-
square (rms) deviation from a circular body of radius r. The boundary-condition
coefficient K is calculated from equation (24).

The solution procedure is iterative and, in many cases, the convergence is
highly sensitive to the initial choice of variables. The gap point (x ,y_) where the. . _
radius of curvature is specified is not the point of mlnlmum separation between the
displaced cylinders. However, for small values of h, it is sufficiently accurate.
If the minimum-separation point is used, instability develops in the solution pro-
cedure and, for the larger wall openness values, undesirable body shapes are
obtained.

RESULTS

Wall openness 6/a as a function of rod displacement h/a is given by the
expression

- + - 2 r (26)a -

and is plotted for a rod radius of a/2 in figure 3. Body shapes for various values
of wall openness and a fixed radius r of a/2 are shown in figure 4. These shapes
were determined from equation (13) by solving for the zero streamline. The maximum
rms error from a circular body for 0 < h/a < 0.90 was 0.0070, which occurred at
h/a = 0.45. Typical rms values, however, were of the order of 0.0040. For those
cases in which the rods were not offset, the openness was changed by varying r; the
rms error decreased with increasing wall openness, going from 0.005 at 0.6-percent
open to less than 0.001 at 30.0-percent open.

In the present study, the rod radius and the radius of curvature matched in the
gap between the doublet rods at the point (x_,y_) as opposed to matching in the slot
at the minimum. For openness ratios less th_n _0 percent, the difference in location
between the minimum and the gap are insignificant. For openness ratios greater than
10 percent, the difference can be substantial. Barnwell (ref. 6) showed large
changes in the boundary-condition coefficient K with varying radius of curvature
when the wall openness ratio was small. Large changes also occur with varying open-
ness ratio and fixed curvature. During the present study it was found that these two
parameters controlled the value of K for small openness ratios even more than the
actual rod cross-sectional shape. For large openness ratios, the major effect is

12
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Figure 3.- Wall openness ratio versus rod displacement for rod radius of a/2.
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Figure 4.- Calculated body shapes for various values of h/a for rod
radius of a/2.
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openness ratio. Figure 5 shows a comparison between the present case of displaced
rods with a radius of a/2 and the Chen and Mears solution for undisplaced circular
rods (ref. 7). For openness ratios of less than about 12 percent, the Chen and Mears
solution and the present solution are equally applicable. If the openness exceeds
about 12 percent, the effect of rod displacement begins to appear and the difference
between the solutions grows to a factor of about 2. It should be emphasized,
however, that the applicability of the homogeneous wall boundary condition becomes
suspect at these large values of openness.

12

Rod-wall theory
|0 Corrected Chen and Mears

K B

0 , I , I , I , I l I
0 5 10 15 20 25 30

Wall openness ratio, percent

Figure 5.- Rod-wall boundary condition for cylinder of radius a/2.

CONCLUDING REMARKS

An approximate, two-dimensional potential flow solution for the flow through a
cascade of alternately displaced circular rods has been formulated. The solution was
constructed by using discrete doublet and doublet-rod singularities. Free parameters
in the solution were defined by minimizing the root-mean-square error deviation
between the body streamline and a circle of given radius. The radius of curvature in
the gap between two adjacent bodies was also specified and matched. With a method
described by Barnwell, the homogeneous slotted-wall wind-tunnel boundary-condition
coefficient is derived.
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For the case of undisplaced rods, the solution reduced to that of the classic
Chen and Mears solution for the rod wall as corrected by Barnwell. For cases when
alternate rods are displaced, the maximum root-mean-square error deviation from a
circular cross section was determined as 0.0070. The boundary-condition coefficient
is approximately equal to that given by the corrected Chen and Mears theory for wall
openness ratio of less than about 12 percent. Values of wall openness ratio greater
than this show deviations increasing to a factor of about 2.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
February 3, 1984
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APPENDIX

COEFFICIENTS OF STREAM, POTENTIAL, AND VELOCITY FUNCTIONS

If we define the parameters

p = _¥d/a

Q --_a/a

R = _xb/a

sI = _x/a

s2 = _(x - x )/aa
(AI)

s3 = _(x + x )/aa

s4 = _(x - Xb)/a

s5 = _(x + Xb)/a

tI = _[y - (h/2)]/a

t2 = _[(h/2) - yd]/a

then the Aij coefficients used in equations (12) to (15) are given by the
following:

I
_ sin 2sI - sinh t2 sin sI sinh t1

A11 =_ (sin sI cosh tI)2 )2 (A2)+ (cos sI sinh tI + sinh t2

1
_ sinh 2tI + sinh t2 cos sI cosh t1

= - -- (A3)

A12 a (sin sI cosh tI)2 + (cos sI sinh t1+ sinh t2)2

16



APPENDIX

I (-cos sI cosh tI + cos R)2 + (sin sI sinh tl )2
A21 = _ in 2 2 (A4)

(cos sI cosh tI + cos R) + (sin s1 sinh tI)

-I 2 cos R sin sI sinh tI

A22 = tan 2 _ sinh2t I (A5)cos2R - cos Sl

I (-cos s I cosh t I + cos Q)2 + (sin s I sinh ti)2
A31 - 2 In (A6)

(cos sI cosh t I + cos Q)2 + (sin s 1 sinh ti)2

-I 2 cos Q sin sI sinh tI

A32 = tan 2 _ sinh2t I (A7)cos2Q _ cos Sl

• 2 sinh2tlI sin s4 +
A41 = _ in 2 (A8)

s5 + sinh2tl
sin

-I sinh 2tI sin 2R
A42 = tan cos 2R cosh 2t - cos 2s (A9)

I I

I sin2s2 + sinh2tl
A51 = _ in 2 (AI0)

sin s3 + sinh2tl

-1 sinh 2t I sin 2Q

A52 = tan (A11)cos 2Q cosh 2t - cos 2s
1 I

2 1- sinh -_ < - _) sinh t2(a) oA62 = (At2)

[sinh _ (Ys -h)+ sinh t2]2

17



APPENDIX

a s cos R

-- - cosQa s

_:aco_0[oos_(_)](_s_) _'°'
2_ sin 2R

A92 = _ - 2_ ( h) (A15)cos 2R - cosh _-- Ys -

2_ sin 2Q
A102 = a-- 2_ / h\ (A16)

cos 2Q- cosh _-- fYs - _)\

Coefficients in equations (AI) to (A1I) are obtained from equations (Ila)
and (11b) and coefficients in equations (AI2) to (A16) are obtained by evaluating

equations (11c) and (11d) at x = 0 and Y = Ys' the stagnation point on the
cylinder centered at z = 0.
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