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FOREWARD

The report documents techniques\and a FORTRAN 77 computer
program for the identification of flutter-mode frequencies and
damping ratios in near-real-time. Recent advances in recursive
identification algorithms and analysis are applied to the flutter
test problem. The accuracy and convergence of the algorithmg are
predicted analytically and substantiated with results from simu-
lated and flight data. The results show promise for monitoring
aircraft flutter characteristics in real-time with a high degree
of reliability.

The work has been performed under NASA Contract NAS4-2955.
Technical direction and discussions with NASA technical monitor
Mr. Glenn Gllyard and w1th Mr. Richard Maine are gratefully ac-
knowledged. )
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SECTION 1

INTRODUCTION

Real-time monitoring of flutter parameters can significantly
improve safety of flight tests for new and modified aircraft,
- reduce flight test time, and aid envelope expansion. The moni-
toring system must be reliable and accurate and should require
minimum inputs from the operator. To aid flutter clearance of
many airéraft, it is desirable to monitor flutter characteristics
with randomly forced (turbulence excitation) as well as known '
forcing inputs. The most success is likely to be achieved with
the use of advanced system identification techniques. For wide-
spread use, the computation time should be suitable for a real-
time implementation and a standard computer language like the

ANSI FORTRAN-77 is desirable.

The goal of this effort is to develop a computer program--
based on an identification algorithm--with excellent accuracy and
convergence performance in estimating flutter mode characteristics

of test.aircraft from real data.
1.1 SUMMARY OF APPROACH

A summary of the approach used to develop and document the

near-real-time flutter analysis program is shown in Figure 1-1,

The performance of two different algorithms was evaluated
with a high-level command-driven identification and control pro-
gram called MATRIXX [1]. This capability enabled a thorough
vet efficient evaluation of the algorithms before implementation
and testing of the Near-Real-Time Flutter Analysis (NRTFA) pro-
gram in FORTRAN-77 source code. :
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1.2 RESULTS SUMMARY

The selected techniques are based on recursive prediction
error methods (RPEM), which can emulate a maximum likelihood,

instrumental variables and least squares.

The Cramer-Rao estimate error accuracy bounds for a two-
active mode model predict that the critical parameter, damping,
can be estimated quite satisfactorily after approximately 500
data points. Actual simulations indicate that the convergence
transient from no a priori information lasts slightly longer, but
that for long data records of 2500 data points, damping ratios
can be estimated Very accurately (<.05% error). Modal parameters
can be estimated from unknown inputs (turbulence excitation) with
sufficient accuracy when the signal-to-noise ratio is approximately
ten or greater. For lower turbulence levels almost any known 1nput
even at very low levels, significantly 1mproves the estimation

accuracy.

The delivered algorithm tracks the flutter mode of the third
DAST flight quite successfully, indicating where the damping
trend breaks toward zero at the onset of a pulse response decay,
prior to the flutter condition. Quantitative comparisons of the
convergence, robustness and accuracy of the recursive identifica-
tion algorithm analysis and simulation results show the near-real-

time flutter analysis (NRTFA) program to be highly reliable.

1.3 REPORT ORGANIZATION

Candidate algorithms and the associated model forms most
suitable for use with them in flutter testing are described in
Section 2. The reliability, robustness and accuracy of these
flutter mode estimates are evaluated in Section 3, supported by
results on simulated and flight data in Sections 4 and 5. The
program architecture, configured with an interactive driver which

calls the appropriate identification subroutines, with an instal-



lation guide is documented in Section 6. The memory and CPU
requirements for the flutter analysis program as it is now con-
figured are also given. Appendix A serves as a brief User's
Guide giving an example interactive setup session, with guide-
lines for parameter setup options, and a description of the modal
parameter estimate output. Appendix B gives the FORTRAN listings
of the principal routines of the NR@FA program.



SECTION 2

REQUIREMENTS FOR REAL-TIME FLUTTER ANALYSIS

The development of a system identification software
package to monitor aircraft flutter characteristics is

influenced by the following considerations:

1. The basic requirements in real-time flutter analysis
involves estimation of damping ratios and changes
in natural frequencies of aeroelastic modes. Mode
shapes are not required but may be determined if
they improve damping ratio and natural frequency
estimates. Physical parameters are usually not
estimated in real-time.

2. Several flutter modes must be tracked simultaneously.
The modes can be closely spaced. TFor successful
real-time implementation, computational efficiency
is very important.

3. The real-time software must be robust and reliable
because its failure could cause delay or termina-
tion of a flight test.

4. Since the flight test engineer is generally busy
with several tasks during the flight test, the
software should require minimum commands during the
test. Set-up parameters, if any, should be entered
prior to the flight test, and the algorithm should
be able to restart without entering any startup
values.

5. Because of the damping ratios of flutter modes are
required with high precision and the data is often
noisy, advanced identification techniques are
highly desirable whose convergence properties and
accuracy performance can be analyzed.

6. The estimated parameters must be updated at regular
intervals to continuously track any changes in
flutter characteristics. Thus, a recursive tech-
nique is desirable.



The following characteristics of a real-time flutter-
monitoring software package determine the extent to which
the above requirements are met.

1.  model representations,

2. didentification procedures and robustness
characteristics, and

3. numerical techniques, program architecture and

input/output structure.

These issues are interrelated since identification
procedures and numerical techniques depend on the model form.
The model form affects the shape of the criterion function
we seek to minimize with respect to the parameters, as well
as the type of equations which must be propagated to find
the gradients. This section explains why certain model
forms and algorithms are preferred for real-time flhtter
analysis. The identification algorithms are broadly grouped
as recursive and block recursive algorithms. Robustness
characteristics, numerical techniques and a suitable program

architecture are discussed in subsequent sections.

2.1 Model Forms

Three model forms can be used:

1. transfer function or continuous autoregressive
moving average (ARMA),

2. sample-data transfer function or discrete ARMA,

3. state variables in continuous or discrete forms.

2.1.1 Transfer Function

The gqx1 input u to px1 output y transfer

function is

<t
~
n
p
|

= T(s) , (2.1)

o
~
n
|



which may be written as

- N(s)
T(s) = D(s) ‘ (2.2)
a R.
= 2: S — (2.3)
i=1 )
N(s) 1is a matrix polynomial and D(s) is a scalar poly-
nomial in s . Ri are pxq matrices and Xi are the

pole functions.

For scalar input and output, the transfer function is

also written as

m
T(s) = K 3~ (s+z;) 5 (s+ ), (2.4)
i=1 i

where z; are the zeros and K is the gain. A continuous

autoregressive moving-average form is

n m
- < m-1
+§: o yUIJQ =§: B, p(m-1 (2.5)
i=1 i=0
where y(J) is the jth derivative of vy

2.1.2 Sampled Data Transfer Function

This transfer function and ARMA representation is
similar to the continuous transfer function except a z-trans-

form is used in place of the s-transform. Thus

) = ’T(z_l) u(z_1

) (2.6)
where

(2.7)

This model can be written in any of the forms corresponding
to Equations (2.3) to (2.5).



The representation maps the imaginary axis into the
unit circle. Lightly damped oscillatory continuous modes
will be close to the unit circle in the ARMA formulation,
depending on how far the continuous roots are into the left
half plane and the sampling time. The continuous damped
frequency and sample time determine the angular orientation

of the poles in the z-plane,

ol

5 = Tan_lwn(l - 52) T

The different discrete polynomial models for both known
and unknown inputs and their state-space realizations are
discussed more fully in the next subsection on recursive

algorithms, where they are particularly attractive.

2.1.3 State Variable Models

Defining the state vector as x , a state variable

model is written as

Fx + Gu + Tw s (2.8)

b
I

il

N Hx + v

w 1is the process noise vector and v 1is the measurement
noise vector. F, G and H matrices can take various forms
depending on the particular selection of the state vector.
In many offline applications, the state vector is selected
to represent a set of physical quantities (e.g., body rates,
deflection at a certain point on the wing). Such represen-
tations give rise to physical parameters, such as stability

and control coefficients.

In real-time flutter analysis, the natural frequencies
and damping ratios of aeroelastic modes are of primary
interest. Since a state variable model [F, G, H] has the

same input-output behavior as a [TFT*l, TG, HT_l] model if



T is a nonsingular matrix, the following representation

appears useful (for single-input systems):

- M~
~ 0
B1= : { 1
R Y
0
] 1
Fo= (7T , G = T (2.10)
b { :
i | f
R o
B
I [ { n |
L_ i 1 |
0 1 o w
B, = 5 , or , (2.11)
i
-0 . - Zgiuni :w d‘
. N

and H 1is a general matrix with potentially all nonzero
elements. With multi-input systems, the remaining part of

matrix G is general and unknown. T 1is a general matrix.

The turbulence excited structural vibrations are of
special interest. In this case G = 0 . TFor the purpose

of identification, the Kalman filter representation is

desirable
;c = FX + Gu + K(y - Hx) (2.12)
y = H; + v
[F,G,H,T] have been mapped into [F,G,H,K] . It is uéually
easier to identify K rather than T , and in general

requires fewer parameters.

In the state variable form, the natural frequencies and
damping ratios of all modes are estimated directly. The
measurements are, however, nonlinear functions of parameters

leading to a more difficult convergence problem,

0



The propagation of the linear equation, as well as the
computation of the gradients of the innovations with respect
to parameters are much more easily accomplished with a dis-

crete space model of the form

where Wy and v, are independent, identically distributed
sequences with zero mean. If the time variation of the
estimator during the transient phase is important or there

is a priori structural knowledge about the noise covariance matri-
ces that considerably reduce the number of parameters below pn,
the dimension the Kalman gain matrix K (where p 1is the

number of outputs and n the number of states), then the

general equations above should be considered. In real time
flutter identification, the I matrix generally will not be
known, nor the structure of the noise covariances, making

the innovation form a much more desirable set of eqautions.

They are given by

X = Fx, + Gu, + Kv

where {Vk} is a sequence of independent variables with

zero mean. Moreover, the model generating § from vy ,
i.e., § = H(zI-F+K H)_ly , is stable (eigenvalues of
F-KH are in the unit circle). In the next subsection, we

will see that ARMA type-models have direct realizations as

a state-space innovations form.

The discrete controller and real Jordan block form, analogous

to the continuous block forms described previously, both keep

a simple parameterization of an oscillatory mode; however,

10



the real Jordan block form is a preferable canonical form
for identification of physical systems, generally giving a

better conditioned optimization problem as described below.

Consider a single mode (a general system is a linear com-

bination of such modes) of a continuous system

X 0 1 X 0
= u )
v —wz -2Ew v 1
. n
y = [h1 h2] b4
v

The input is an acceleration forcing the velocity
equation, with position the integral of velocity. The

discrete form of this equation (for a pure oscillator using

the simplest case) is

- - — —
i I sin(w_A) ] @2 -1
k+1 w k 4
_ n 0
k
i sin(w_A) = sin(w_A)
Vit R T Vi n
wn ® 2 wn
n
L ~l _ JO B -] L. —
X
_ K
Yk

If time is normalized such that for the primary mode of
then the above discrete equations are in

interest, W, = 1,
Consider, in addition, the identification

real Jordan form.
of the mode in both the block real Jordan form and the block

controller forms of Equation (2.10). The two equations are



k+1

Vi

where in both cases the H matrices have been changed to fix
G at [O 1]T , and conserve the residues. For our one mode

example the parameter vectors are

hm1 h11
hm2 . h2 0 1
0 and 6 = for f
~-b  -a
o -b ~
L@ 72

The gradients of the estimate with respect to these two
different parameterizations expressed in the real Jordan form

state variables are

3y T
——a—é_ = Tm[Xl,Xz,Xl(_),X2(_)] ]
and ~
3y _ 31T
—= = TIxy,%5,%x(=),%x5(=)17
98
where

3
=]

it
——
o =
= (@]
SN —

h h ,and

=
=
[\
2
1l
]
=
=
(]
f\
[
=)

L 2 1/ L

The Hessian, or information matrix is'approximated by the

outer product of these two gradients. If

12




EXG

.
s = |2 M= DL b,
xl(k—l) k=1
X, (k-1)
L < -
then
M = TMTL , and M = TMT'
m m m :

In other words the transformations, Tm and % are
directly effecting the condition of the estimation problem.
Since we are referencing both to the real Jordan form,
K;(Tm) = 1 , or it is perfectly condit%oned with respect to
its own coordinate system whereas KZ(T) can be quite large.
It was pointed out above that continuous modes driven
directly by accelerating forces, give discrete models that
are closer to being in real Jordan form, hence transforma-
tion to the block controller form can only make the numeri-
cal conditioning of the information matrix worse, Of course
in high order physical systems the phase relationships
between modes can be such that this preference for the real
Jordan form over the block controller form would no longer
hold. However, the primary modes in flutter testing are
expected to sufficiently follow the phase behavior of a
simple oscillatory mode, that the real Jordan form will be
used.

Having described different model forms and reasons for
preferred ones, the next two subsections describe the
algorithms used to identify the parameters of these model

sets.

The condition of a matrix A with respect to any norm x is
-1
e () = Al 11ET .

13



2.2 Recursive Identification Algorithms

Recursive identification refers to identification
algorithms that update parameters at every sampling instant.
Such algorithms are characterized by finite non-increasing
storage requirements. Typically they are well-suited for

on-line, real-time identification on computers of modest size.

For single-input single-output systems in linear finite
dimensional form, the AutoRegressive Moving Average with
eXogenous inputs (ARMAX) models are popular. They are

represented with the difference equations:

-1 -2 -NA _ -1 -(NB-1)
(1+alz +azz ...+aNAz )yk+1 = (b0+b1z "'+b(NB—1)Z u
-1 -2 -NC
+ (1+clz +c22 ...+cNCz )ek+1
or
: -1 _ -1 -1,
A(z )Yy = B(z up + Cla ey 4
where
Vier Va1 © - are the outputs
Up o Uy g5 are the exogenous inputs
€ €1 are the innovations or white noise.
-1 . . -1 _
Z represents the unit delay operator, i.e., =z Ve = Vo1
Inputs and outputs are observed but the innovations
sequence is not observed. 1In the transfer function language,
-1 -1
-1 -18B -1 C(z -1
g™ty = 27t BEZ )yl 4 S ) g
A(z ™) ACz ™)

C(z—l) always represents a stable polynomial, i.e., all its
roots are inside the unit circle. 1In general B(z*l) and
A(z_l) are not stable and not comprime. A general black-box

14



model

-1 -1 - ) C(Z—l)

F(z ")Y(z 7)) = —==" u(z ") + ——3_ ez ™)

) D(z ™)

can also be used but they have not been very popular, partly
because the ARMAX formulation can subsume the general form
without substantial penalty. The ARMAX form can be seen

as an implementation of the so-called observer cannonical

state-space form,

k+1 k k k
Ve = ka + ek
F = | -a,10...0 | G= | b, | K = [ c,-a, |
1—-7 1 171
—a201. b2 Cy=2q
—aBO 1
"1
-a 0 0 b c_-a
_ i I o
H = 1[1,0...0]

The vector ARMAX models consist of the vector difference

equations

-1 -1 -1
A(z MWir1 = B(z u, Clz "dep,q
where
Vi Vo1 are vector outputs,
U, Uy _q e are vector inputs

€ € 1 - are vector innovations



Some special model forms also have names,

—1)u + e

-1
A(z ")y = Bz k

k+1

is known as egquation error form, It is obtained as a special
case of the ARMAX form by setting C(+) =1

Setting PB(+) = 0 and C(:) = 1 gives the autoregressive
(AR) form:

-1 _
Az V1 T ke

. -1 -
Setting A(z ") = 1 and Kz 1) = 0 gives the moving

average (MA) form:

-1

= C(z )

Yk+1 Vi+1

The ARMAX forms most useful in identifying flutter modes
are the recursive least squares (RLS) model (F(z_l) = C(z_l)
_ -1
= D(z
reasonable magnitude with a very large signal-to-noise ratio,

>y = 1) , useful with persistent knownh inputs of

and the recursive maximum likelihood (RML) method [2]
(F(z_l) = C(z-l) = 1) , useful for modeling with unknown
input (the B polynomial can be zero when there is no known
input) or with considerable noise disturbance. Identifying
the C(z—l) polynomial is equivalent to identifying the
Kalman gain directly in a state-space innovations form model

(described previously).

2.2.1 Recursive Least Squares (RLS)

RLS is a very popular recursive identification
algorithm. It is very simple to implement and provides

reasonable estimates with excellent robustness.

RLS gives exactly the same estimates as the batch least-
squares on the cumulative data. In addition to giving the
least squares parameter estimate at each time instant, RLS

also permits forgetting of past data to accommodate quasi-

16



stationary models. It also permits incorporation of prior
uncertainty about the starting values of the parameter
estimates. The model underlying RLS is the same as the
one for batch least-squares,

y (k) (k)6 (k-1) + e(k)

In the context of linear dynamical systems the auto-
regressive form and the equation error forms can be trans-

formed to RLS form with

-1 -2 -nA _
(1+alz tagz T... a2 Yy (k) e(k)
Y (k-1) aq
¢ = | V(k-2) g = a9
Y (x-nA) NA
and — — L -

_ -1 ~NA -1 —(NB-1)
(i+alz . .+aNAz )yk+1 .(bo+blz "'+bNB—lz )
“V(k-1) &

Y(k-2) 29

0 = . _ :
Kk 6. = :
—y(k—n) k &nA
u<k_1) bO
Y(k-2) by
Y (k-Np) Y

Up et

17



2.2.2 Recursive Maximum Likelihood (RML2 [2])

Estimation of the A, B, and C polynomials of the
ARMAX model:
-1 _ -1 -1
A(Z )Yk - B(Z )uk + C(Z )ek ’
is called recursive maximum maximum likehood. For SISO

systems, since A and B are both monic polynomials, this

equation can be written as

-1 -1
a(z ) b(z ~)
_———t g o+ =ty + e
1) k C(Z—l) k k

Ve = 1 - -
k c(z

The one step predictor of based on a certain set of

y
k
values of as, bi and Cy denoted by 6 , is as follows

2 -1 -1
Vklo = (i Salz Dy o B2 )y
c(z ™)
The one-step-ahead prediction error is givén by
e(8) = v - Fyl8y g

The prediction error methods are based on the minimization

of a quadratic function of the form

N
_ 1 2
T o= 5 e (®)
k=1
The above minimization problem is nonlinear in 6 . Hence
an explicit solution is not available, Therefore, a numeri-

cal search procedure is used to find 6

Differentiating J with respect to 6 gives

1€



N

J = }: e, (8)Ve, (8)
k=1
vJ and Vek(e) are the gradients of J and ek(G) . The
second gradient is given as follows
N
VPI o= 3 196, (8)V £, (8) + V7e, (8)e, ()]
k k k k
k=1

From the prediction error equation
v€k(e) = - Vykle

The Hessian, VzJ , will now be approximated at the true
minimum of J ; the second term of V2J can be shown to be
zero at the true parameter value. Since the true Hegssion is
more important close to the true minimum than elsewhere, we
approximate the Hessian by the first term of VZJ which, in

view of VeK(e) , becomes
2 al T
AFERDY WileV Yile
k=0 ’

Further approximations are needed in order to obtain a recursive
Gauss-Newton algorithm from the above equations and compu-
tation of ek(e) requires all the data up to t . This
computation is approximated by using the latest values of

the data and the parameter estimates. Different approaches

to affect this approximation lead to several algorithms.

The RMLZ algorithm uses the following approximation

19



e(k) = y(k) - ¢(k)6(k-1) ,

where

- ——y

y(k-1)
y<k—na>
Py =MD
u(k—nb)
E(k-1)

LE(k-nc)_

and € = Yy -~ $kek are the residuals or the a posteriori

prediction errors.

2.3 Block Recursive Identification Algorithms

In block recursive or semi-batch algorithms a block of
data is stored in active memory and the identification
routine may make several passes over the data. When the new
data block is brought in, the old one is discarded. Maximum
likelihood techniques are well suited to this situation,
particularly in the known input case where an output error
minimization can be used. Sensitivities of the outputs with
respect to parameters are propagated as well as the estimate.
The parameters of the Kalman gain in the innovations form

can also be propagated for the unknown input case.

Two algorithms were developed in a high-level inter-
pretive language [1] to study their performances. The
first propagates the analytic sensitivities of a SISO system,
propagating the minimum number of equations possible. The
second algorithm is structured for a general MIMC system
with potential nonlinearities, The sensitivities are found

by perturbing the nominal model. The following sets of

20



discrete equations are propagated

-~

f(xk,uk,
< 3 f(xk,uk,
k+1
Lf(xk,uk
where ©6 = 6
mx1

The outputs and associated

are:
Zg h(x_ ,u, 6)
Z4 | = h(xl,u ,6+A61)
Z h(x_,u, 6+A8
| “m| _ m m

’6+A6m1

6)

0+A0
1)

-

e

, X
o)
innovations
v T
> Vil =

0

-(m+1)nx1

Zz —~2Z
O

(zl—z)-(zo—z)

Rather than analytic sensitivity time histories as the

regressors,

nominal innovations to identify a scaled version of the-

parameter step,

9J

Vo T 96 58

~

Y(S80/A6)

The parameter update equation is

0 = 6, - (80/09),

2+1
interation count.

diag(A@i), where &

is the

at each time point

and

k

the perturbed sensitivities are regressed on the

The parameters associated with measurement

equation above are updated with a U-D update performed once

21



for the entire data block. The measurement covariance is
estimated by

5 . N P T
R2+1 = dlag{[vo —‘P((SG/AG)][\)O—\P((SQ/A@) 11 .

Results using this algorithm on a two mode example with very

lightly damped modes are shown in Section 4.3.

22



SECTION 3

ALGORITHM RELIABILITY, ACCURACY AND ROBUSTNESS

The previous section described both a general class of
recursive estimators called recursive predictive error
methods and a semi-batch maximum likelihood algorithm for on-
line flutter identification. Application of such algorithms
to flutter identification can not be made in a useful way
without a qualitative and quantitative assessment of the
reliability, accuracy and robustness of the algorithms. By
reliability we mean, can the algorithm fail to converge,
converge to a wrong value or give grossly erroneous accuracy
estimates? An accurate, but large parameter error estimate
is reliable information, quantifying the appropriate confi-
dence in poorly identifiable parameters. The accuracy of
parameter estimates can be assessed in three ways; simula-
tion, the Cramer-Rao bound or estimates of this bound from
either the propagated covariance or limit evaluation. All
three accuracy measures and their use with flight data are
discussed in this section. Robustness of flutter identifica-
tion algorithms addresses the ability of the algorithm to
maintain reasonable accuracy under violations of assumptions
on the model and experiment. Thus, all three of these
algorithm attributes are inter-related as will be elaborated

in subsequent discussion.

3.1 Algorithm Reliability and Convergence

The primary reliability issue for flutter identification
algorithms is convergence.

® Do the estimates of the modal parameters converge?
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¢ If the estimates converge, what is their 1limit?
Is it unique?

e What is the convergence rate and the accuracy of
the estimates?

The semi-batch maximum likelihood algorithm requires
good a priori estimates for convergence, but the convergence
is quadratic in the neighborhood of the true values., An
example is shown in Section 4.3 where RPEM applied to only
100 points can give excellent ML start-up Values from an initial
RPEM estimate of zero for all parameters. Quite a bit can
be said about the convergence of recursive predictive error
methods. The conclusions are affected by the user choice
of model set, choice of input signal, choice of criterion
function, choice of gain weighting sequence, choice of
numerical serach direction, and choice of initial conditions,
as well as the selection of the "approximate' gradient of the
predictor (see Ljung and Sodestrom [3] for a thorough dis-
cussion of all these issues). Here we summarize general con-
clusions on RPEM applicable to the chosen model sets (see
Section 2.2) and experimental conditions experienced in

flutter mode monitoring.

The recursive predictive error method will converge

with probability one to a local minimum of the expected

cost as N, the number of observed data, tends to infinity.

Whether local minima exist apart from the global minimum,

depends on the model strucure chosen. For the auto regres-

sive form

and ARMA form
_ -1
A(z)yk = C(Z )ek )

no false local minima exist [4]. For the equation error

model set,

1)u + e

A(z-l)y = B(z K

k k’
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no false local minima exist since the cost is quandratic in

the parameters.

For the ARMAX (Auto Regressive Moving Average with

eXogenous inputs) model set,
-1 _ -1 -1
Az ) Ves1 = B(z ) Uy + C(z ™) S

The negative log likelihood function of the ARMAX form has a
unique global minimum if the signal-to-noise ratio is sufficiently
large. Local minima do exist if the signal-to-noise ratio
is very small [5]. This will be the principal model used,
with the Recursive Prediction Error algorithm (RPEM [3],
also known as RMLZ [2] for the ARMAX form), which implements

the Gauss-Newton update for parameter estimates.

The RML1 algbrithm [2] and the AML (approximate Maxi-
mum Likelihood) algorithm of Sclo [7] use a further approxi-
mation in the Gauss-Newton update which in turn poses the
so-called Strict Positive Real condition for convergence [8].
However, the projection of the estimates into a region of
stability is not needed with AML. Even the problem of the
estimates getting trapped into local minima disappears.

If the identifiability conditions are not met, the parameter
estimates do not converge, but the prediction-error sequence

does converge to its minimum value.

Starting RPEM or RML2 as AML and gradually shifting to
fully RPEM or RML2 is possible by using the so-called con-
traction factor on the estimated @(z“l) polynomial [3].
Doing so eliminates the problem of getting trapped in the
local minima if they exist. The transient convergence rate

is also markedly improved.

Another significant assertion about the above conver-
gence results, is that convergence holds whether or not the
actual system has the same model structure as the chosen

one. The identification procedure will pick the 'best™"
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approximation of the system, or in other words the approxi-
mation from the selected model structure which best mini-
mizes the prediction errors. However the identified model
may depend on the input, since the best approximation for a
sinusoidal input, for example, may be different than for a
white noise input. If the selected model structure is
exactly the same as the true system, the "best approximation"

is equal to the true system, independent of the input,

In summary, these black-box models are highly desirable for
identification of flutter modes where a detailed model of the
aircraft may not be available and could change considerably during

a flutter test.

Thus far we have described whether the proposed algorithms
converge and if so, whether they converge to a unique global mini-
mum. In the next section a description of asymptotic distribution
of the estimate 6(t) will be given, which provides both the rate
of convergence and the accuracy of the estimates asymptotically.
It should bé emphasized that there is no similar analysis for the
transient convergence behavior of recursive algorithms, and that
this behavior is very strongly a function of the "user choices”
mentioned at the outset of this section. Transient convergence

behavior can best be investigated by simluation. The simulation
performance, of the model analyzed theoretically in Subsection 3.22,

for short, intermediate, and long data records is giVen in Section 4.

3.2 Estimation Accuracy

The semi-batch maximum 1likelihood method and the recur-
sive prediction error technique propagate the covariance
matrix (inverse of the Cramer-Rao information matrix). This
matrix is propagated in the U-D factored form. The Cramer-
Rao bound is based on an assumed noise distribution, typically

Gaussian noise sources, which may not hold in flight tests.
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Also the bound holds for the asymptotic nature of the
parameter estimates. The physical environment and system
characteristics can change before a long enough data record

can be processed, to achieve the asymptotic behavior.

The estimation errors predicted by the Cramer-Rao bound
are usually too small. However, it provides an excellent
measure of relative parameter estimation errors. Experience
(9] has shown that in stability and control derivative esti-
mation, the Cramer-Rao bound should be multiplied by a
factor of three to five to obtain actual estimation errors,
In model parameter estimation with high band width sensors,
the factor is closer to two based on limited experience.

The simulation cases of Section 4.4 show the actual errors
and the theoretical bound (computed from the true model). For
the long data simulation sequences, the bound gives a good
accuracy estimate for the input noise sequences, which are

Gaussian in the simulations.

For both the semi-batch maximum likelihood approach and
the recursive predictive error method, the information matrix

inverse is approximated as
-1 _ ey -1 vt
N 20 30

In other words the second gradient of the criterion function
(V) is approximated as a weighted outer product of the
first gradient of V with respect to the parameters, where

R 1is the estimated innovations covariance,

3.2.1 Maximum Likelihood Estimation Accuracy

As explained in Section 2.3 the parameter update in
the semi-batch ML algorithm which was the inverse of the
Hession, is accomplished with the Bierman's U-D update

routines [10].
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The variances of identified parameters can be obtained easily
from the U-D factored form of the covariance. These parameters
are, however, parameters of a discrete model used for efficient
propagation, whereas we are interested in the continuous fre-
quency and damping estimates and their standard deviations. We
can use the Jacobian of the transformation from the discrete
roots (the ML parameterization) to the continuous frequency and
damping parameters. This is a local linearization of this non-
linear mapping; however, for lightly damped modes, this trans-
formation is well-conditioned indicating that it is not sensitive

to small variations in discrete parameter values.

Since the parameter covariance is

P, = E[AS Aoty

the covariance of different parameters which are functions

of the original ones

P, = gp It
1
where
. of -
Jd = ) = Ael JAB

where 6 are the discrete parameters and 61 the contin-
uous frequencies and damping ratios. For each mode, the

discrete parameters are given by
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-fw_ T 1

o, = e n cos[wn(l - Ez)zT] ,
_gwn 2 N

wp, = e sin[wn(l - £7)%1]

and their variations are given by

Ao .?_?_D_ f_lz FA(U ]
D oW & n
n
o - 8wD awD ae
D 9 )
- _J - U)n E . S« -
Hence
W, w2
Fl€cos(w,_ 1)+ "D sin(w,_ 1)), Tl[cos(w, T)-& n sin(w_. T)]
n —_— n n —_— n
£ D wn D D wn D
-1 meWT D
Ji = -Te - © o
[Esin(w_ T)- ) cos(w_ 1)), T[sin(w T)+Ewn cos(w, T)]
n —_— n n e n
D W D D W D
n n
D
2.4 |
where 1 1is the sampling time and 0, = wn(l—g )?  the

continuous damped frequency. With theD U-D factored co-

variance it is necessary to '"square up', the new covariance.

However, for accuracy prediction, any loss of precision due
T_T

to "squaring up', is insignificant in Pe = JUDU"J" , where
for k modes 1

" Inm 7

parms
(3,1,
J = [Jk]
~ ING -
parms

This estimate of the Cramer-Rao bound from the inverse of
the approximated Hessian is accurate only in the region of
the convergence point. This is demonstrated quite clearly

at the convergence point on the simulated example of
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Section 4.3, where the actual estimation errors show nearly

guadratic behavior as well,

3.2.2 Recursive Predictive Error Method (RPEM) Aécuracy

Estimates

The internal covariance estimate propagated in U-D
factored form in the RPEM algorithm is not suitable to esti-
mate the Cramer-Rao bound for short data records because
it is regularized to prevent singularity and also effected
by the transient effects in the exponential forgetting fac-
tor which weights recent data more significantly than past
data. The Cramer-Rao bound can be computed for RPEM algori-
thms, however, exactly in the simulation case, where the true
parameters are known, and estimated during a flight test propaga-

ted UD covariance after the initial convergence transient.
Consider the ARMAX model,

- - -1
Az 1)yk = B(=z 1)uk__1 + C(=z )ek ,

with the negative log likelihood function

N
= _1_. 2 i = -
vV = 5N Z ek(e), with ek(e) Ve ykf@
k=1
~ _ T
Yele = 9 %o

as described in Section 2.2.2. The individual component

derivatives of ayk are
RIS
Ve o1
Sai C(z_l) k-1
oy
k ~ uk__l R
abi C(z )

30



ENAN 1

= e .
Bci C(z_l) k-1i
9ex 1
Thus gradient of -« =§, = ——c ¢ The regressors are
RJE] k C(z—l) k

"filtered" versions of the output, input, and innovation

sequences.

We seek the asymptotic parameter covariance, where

N
3 R
k=1

ot - prvrlyT)-

2l

and N 1is the number of data points.

Just as the ARMAX model above can be realized as a
state-space innovations model, the gradient wk can also be

realized as a linear model driven by the sequences Uy and

ey - This realization uses an augmental state and input
1
k Uy 1
“x T ’ S ’
Oy ®k-2

in the equation,

= Fr + G w

Sk )-1 k-1

For the scaler output case,

g1
P = “— | with ¥ = HZH' ,

NR

where 7 1s the solution of the discrete Lyapunov equation

72 = FZF' + GQGT
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Q@ 1s the covariance of Wy and H selects the upper cor-
ner of Z corresponding to the row dimension of ¢ . The

realization of the equation above uses the relations

tx

(1 + ez, = o4
and

Ve = Ok-1%% t Sk ’

giving the following augmented equation.

o - Co — g - — 47
¢ al -b' —c! 5
______ = e ——— S - o1
1
¥y : 0 0 0 Vi1 :
10
-c! ‘ é
* 0
|1 ] I
K I Y%-1 .
| | 0
L 10 I
-c! | 1
| S~ I 0
K B i } a1 |t .
| 10, ———d —_——— ——l
1 ' 1
| -a b 4
o e e e S e e e S e e 0
1 0
-1 0 0 Yoo .
—_ 10 —_— —_— 0
—— - -
_____ f 0
1 ) 0
Yy : %2 ;
W Wt —_
| 0 1 u
[ 0
{1 0 :
%1 | .
! T EE: o k-1
o - - T o e -— ] vl

Given quite general conditions on the experiment (see

%
Ljung [3, Chapter 4], and conditioned on the event ek - 0

with probability 1 (w.p.1l), then the constant scaled Lyapunov
solution



- *
NP = RY (8 )
is the asymptotic variance of the statistic
~ *
N (6-06 )e N(O,NP)

Noreover, for any § > O

l_@/\ ES
N*""]o(N) -8 | 0 w.p.1 as N » o

(see Ljung [11] for the general, formal statement and proof

of this theorem).

In simulation cases where e* is known the Cramer-Rao
bound above can be computed and used to estimate the theo-
retically attainable accuracy of the parameter estimates as
a function of time, whereas with experimental data only the
identified model can be used to estimate this bound. The
simulated results of Section 4.4 compare the accuracy of one
single simulation and the theoretical Cramer-Rao bound for

different data lengths.

In contrast to the maximum likelihood formulation,
when the model is already in discrete modal form, an addi-
tional transformation must be applied to convert the discrete
parameter covariance matrix to the continuous frequency and

damping parameter covariance as follows,

T.T
o =
Py J X PeX J°
1
with J defined as in the previous subsection, and
o T (1) 2k)]] |
Relx"(y] ... Re[x((lg]
0
(1) 2k .
Tm 71y h“[x(<1g] (i) 1
x = : : *2kx1 = diag Wt |1, of w
1 2k :
reb ] ne )] 0
(1) (2k
L-Iml:x (k)] Im [x (131 :




M is the modal matrix which transforms the polynomial

parameters

- ‘ -
oy tiwg
g nl = 01-Jwy
1 ok+jwk
! 0]
Ok—jwk

b d

The above transformation was applied to the Cramer-Rao bound
based on the true simulation parameters to produce the results of
Tables 4-3 through 4-5. A high eigenvalue condition number, i.e.,
s; (X)) = "X1Y$“ (norm of A,'s spectral projector; x,, y, are
the left and right eigenvectors), is a warning that the respective
polynomial roots are very sensitive to errors in the polynomial
coefficients. For the simulation results described in the tables
mentioned above, the eigensystem condition for both the true
parameters and the estimated ones was a reasonable level, less

than approximately 300 in the worst case.

In the known input case, which is the recursive least

squares, also called the equation error form,

-1 _ -1

A(z )yk = B(z )uk_1 + e >
the gradient is

oe

k

— = ¢(k) ,

90
where

= u u ]T
% T Wgo1 - Ygenat Yk-1 00 Yk-nb

For arbitrary inputs Uy the asymptotic covariance is
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- -1 7.-1
NP = E[¢R "¢ ]

This parameter covariance can then be found in terms
of autocorrelations and cross-correlations of the input and

output sequences.

For the special case where uk and e, are random
sequences we can compute the parameter covariance directly
by solving a discrete Lyapunov equation as in the ARMAX
case, which employs the covariance of the two random

sequences. The state space realization uses the state and

input,
(bk uk
Z; = w =
k ~ 3 k ,
Xk ek
in the equation
= +
“x Fogor * O q
with F and G given by
- -
0 1
T 0
N i 0
0 1
0
L :
F e -1 o0 P
-2 b
1 1 .
1 0 1 0
0 1
1 0
10 (;

Computation of the Cramer-Rao bound as described in

this subsection allows the investigation of the effect of differ-

ent gust and sensor noise levels without performing multiple
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simulations. This is discussed in the next section under the

general topic of robustness.

3.3 Robust Flutter Mode Identification

Violations in the assumptions of the statistical nature
of the disturbances require estimation techniques robust
with respect to distribution. These techniques are summa-
rized and demonstrated by simulation. Violations in the
assumptions of the number of active modes, the gust levels,
or characteristics of the sensor noise effect the accuracy
of estimation. The results of the previous section can be

used to efficiently quantify these effects.

3.3.1 Robustness with Respect to Distribution

Robust estimation procedures are very important
because a few bad data points can significantly degrade
parameter estimation accuracy. In some cases convergence
characteristics would also be affected. Ljung [3] summa-

rizes robust estimation problem as follows:

1. When the measured data set contains some values
that are abnormal, e.g., quite large due to
sensor failures, straightforward use of a quad-
ratic criterion function will give substantial
jumps of the parameter estimates. Moreover,
the estimates need a long period before con-
verging back to the previous levels,

2. A way to cope with this problem, i.e., to
robustify the algorithm, is to use a criterion
function that grows more slowly with e than _
the quadratic one. Then large prediction errors
will get less influence on the parameter esti-
mates and the algorithm becomes more robust.

3. Another approach is to test recursively if the
data contains outliers. This can be done by
comparing the prediction errors with a speci-
fied 1limit. Large prediction errors mean that
an outlier or a measurement error is probable.
The measurement can then be substituted with the
predicted value. This approach is applicable
when there is only a few outliers in the data.
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Both identification techniques we have discussed in this
section are based on minimizing a guadratic penalty func-

tional, e.g.

The robust procedures modify this cost functional to include

a weighting function g which is monotonically decreasing

k=1

where Bk is the covariance of e

|, 0
N
NS

k
The use of such a robustneés procedure in the real-time

flutter identification procedure will now be discussed.

Recursive identification techniques are inherently
well-suited for implementing robust estimation techniques
because the reasonableness of each new data point can be
evaluated before it is used to update the parameter esti-
mates. An illustrative discussion of robustness measures
and robust identification is given by Ljung [3]1. A sum-
mary of the steps necessary to make the parameter estimates
robust against data dropouts, wild points and outliers is as

follows:

Step 1: After a data point is processed, the
estimated parameter values are used to
predict the next data and the standard
deviation of the predicted value. Let
the predicted value be vy with stand-
ard deviation o b

Step 2: The next data point is compared to its
predicted value. The quantity
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£ o= ly ; Ypl

is a measure of the probability that

the data point is wild. Data points

with & > 3 should be suspect. Thus,
data corresponding to large values of

£ should be given less weighting.
Depending on the expected distribution

of data droupouts, any of the weighting
functions of Figure 3-1 can be selected
(see Huber [12]). If f(&) =y, , the
estimates have the robustness éf a median.

Step 3: A data point completely outside the predicted
distribution is not used

A restart is necessary if several contiguous points are re-

Jjected.

Standard Estimate

4+
Weighting
Function

Figure 3-1 Weighting Functions for Enhanced Robustness

A weighting function of the second type was demonstrated,

where the cost function is

2

e le|<a
202
e? _ (e-)? . _
Sign(e) 5 - 5 lef > o , with o= 3¢
20 20

The measurements with predicted errors out of bounds are replaced with

p PR R

1
y =y _+ o sign (&) [Ze - 1] 2
o



Data dropouts have been generated with distribution shown

below.

Amplitude Normally distributed with the same
variance as the data but centered
at 50 from the output estimate

Frequency Semirandom telegraph signal with
and sign A= 1%

Results with and without these dropouts are compared in Table 3-1
for the known input case. (This table with a 6-model identified
mode can also be compated to the same simulation in Tables 4-3

and 4-4, which have no data dropouts and use an 8-mode model.)

O w0y E(%) £ECh)
125 points 1 .9998 4.70 8.50
with robust
estimation 2 1.9592 4,80 6.36
125 point 1 . 9998 4,70 8.48
w/o robust
estimation 2 1.9597 4,80 6.39
500 points 1 .9997 4.70 4,78
with robust
estimation 2 2.0009 4,80 4,71
500 points 1 .9980 4.70 4.87
w/o robust
estimation 2 2.0037 4.80 4.51

Table 3-1. RPEM Frequency/Damping Estimates (With and Without
Robustness Techniques - Known Input with Standard

Gust Cases Uu/c gust = 25)

The robust estimation procedure can improve the accuracy of
the flutter parameters (see Table 3-1); however, during the
rapid portion of the algorithm convergence, the wild points
actually increase the convergence rate. The extent to which the
model is overparameterized also has a significant effect in

making RPEM robust. 8-mode models identified from this data
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showed little degradation until asympotic accuracies were

achieved, and then the degradation was not severe.

3.3.2 Effects of Noise and Modeling Errors

Very high frequency effects can be modeled as white
noise, unmodeled system dynamics with colored noise, and
low frequency effects as a random walk. Errors in estimation
are caused by an incorrect order linear approximation model,
an incorrect intensity of Gaussian noise, or finally assump-

tion that the noise distribution is, in fact, Gaussian.

The effects of these different noise sources on the
Cramer-Rao bound for the modal parameters can be computed
very efficiently for a large number of cases by merely solv-
ing matrix Ricatti and Lyapunov equations for each desired
situation, rather than performing a simulation and doing
the identification for a long data record. Consider simu-
lations generated for the 2-mode model of Section 4.4,

according to the following model,

X = Fx, + Gw,_ + Gu

k+1 k k k
with

_ _ 2

Wk - N(O,Q) ’ q gust ;

2

U = N(0,0u)

v. = N(O,r) r o= o2

k ) sensor ’

but the sequence Uy is known. U, can be considered
wideband excitation which could guite possibly be a pseudo
random binary sequence; we have made it Gaussian here for

computational simplicity.



The '"'nominal'" model, about which trends for how these
different disturbances or inputs effect the achievable
parametér estimation accuracy will now be described. The
two modes have frequencies of 1 and 2 per rev (borrowing
4 term from rotor craft analysis for normalized frequencies),
where 1 per rev is 11.8 hertz-emulating the open loop modes
in the ARW-1 vehicle. The sampling rate is approximately 300

2 = (.15)2 deg/revz)

gust
has been chosen to correspond to a continuous model with vertical

hertz. Theé gust noise covariance (o

rust root-mean-square values of approximately 1-2/3 feet/secJr (at
the ARW-1 condition of Mach of .7, altitude of 15,000 feet, and a
correlation distance of 1750 feet). The damping parameters were

chosen to be similar to the ARW-1 flight condition analyzed in
Section 5.1 (an 11.8 Hz mode with 4.707% of damping and a 23.6 Hz

mode with 4.807 damping). The sensor noise observed on the
data (see Figure 5-11) was taken to be approximately BO = ,0050.
It should be pointed out that the significant difference between
this simulation and the flight maneuver is the use of broad

band rather than narrow band excitation.

The theoretically achievable parameter accuracy as a
function of input and noise power is shown in Figures 3-2 and
3-3 for damping ratio and natural frequency estimation errors.
The flutter parameter variances are a function of the gust, con-
trol input, and sensor noise covariances, variations of which
are shown with families of curves in the upper two plots of the
figures. The three-dimensional plots show the flutter parameter
standard deviations as a function of power ratios (with a log
scale on all axes). The parameter covariances have been computed
via a discrete Lyapunov equation as described in subsection 3.2.2;
they require the control and innovation covariances as input
parameters. The innovation covariances were computed directly
from the gust and noise covariances via the discrete algebraic

Riccati equation [13].

TThe gust level was very low during the ARW-1, Flight 3.
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GUST COV(QWe UNIT=.0825 DEGK 12)

Figure 3-2, Effects of Gust Noise, Sensor Noise, and Broadband
Input Power on Damping Estimation Errors - Two Mode Model.

2 = ,0025 deg2 of equivalent aileron)

(Ngmlnal values are zcgust
0sensor - -005 g )

Note: 3-dimensional axes are Log10 of the data.

. 2 2 .
X-axis is o _ “/o 3 Y-axis is Q /R ; =z-axis is ¢ . .
u w ’ W ’ damping ratio.

42



TG =W
MO
F oYl I ™ A G g ve e - 0 )

.2 1.
GUST COV(GWR UNIT=. 00ZCDEGE

3.3. Effects of Gust Noise, Sensor Noise, and Broadband

Figure
Input Power on Natural Frequency Estimation Errors - Two Mode
Model
Note: 3-dimensional axes are Log10 of the data.
i 2 2 . . .
x-axis is 0 /oW ;  y-axis is QW/R ; z-axis is odamping ratio.
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The variations about nominal noise covariances were

9 4
qwo 1 , and Ro 1 .
1/9 1/400

The gust variations. correspond to a range of gust Velocity of
gft/sec - bft/sec , the nominal at 1%ft/sec for the low gust
values seen in the flight data, the low corresponding to negli-
gible gust, and the 5ft/sec the Dryden gust model. The sensor
nominal was varied to twice the noise standard deviation and twenty
time less (corresponding to inertial grade instruments). The in-

put power variations were

0

2 1
156.25 o}

625

The highest level gave an amplitude response similar to the high-level
level flight data inputs, and the next lower level is one-half

the amplitude corresponding to the low-level flight data inputs.

These theoretical predictions are compared to simulation

results in Section 4.4.
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SECTION 4
SIMULATED DATA RESULTS

Three groups of flutter examples were simulated to test the
performance of the RPEM and the maximum likelihood (ML) algo-

rithms:
1. A two-mode example with very lightly damped modes at
a frequency ratio of two.
2. Different combinations of two modes with light to
moderate damping (1% - 15%).
3. Two-mode examples with different noise and modal dis-

turbances discussed in the previous section on robust-
ness, reliability and accuracy.

4.1 VERY LIGHTLY DAMPED MODES

The linear model used to test both the RPEM algorithm as

the start up estimator, as well as the ML algorithm is

i = Fx + Gu
y = Hx )
where
F = 0 1 0 0 c= [o
-1 -.0136 O 0 1
0 0 0 1 0
0 0 -4 -.01| , 1 ,
H= [-1.9456 1.2239 2.1867 -.07552]

This model was configured to emulate the torsion response (wing
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bending and torsion modes) of a wing with two modes close to the

flutter condition with time measured in normalized units (revs).

The frequency response of this model is shown below in Figure 4-1.
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Two Mode Lightly-Damped Model Frequency Response.

Figure 4-1.

(Frequency in Per Rev)
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As mentioned in Section 2, it is much more efficient to

propagate linear systems in discrete form. The discrete form of

this model (for a sampling time of .23 revolutions) is given by

X1 = Fp¥e ¥ Oply

Vi T Hp¥g o
where
9723  .2268 0 0 0
.2268  .9723 0 1
Fiy =lo 0 8958  .4420]| ° Gp =10l -
0 ~.4420 .8958 1
m, = [-.4733  .2268  .5027 -.1105] .

The output of thisg linear system as forced by a known

gaussian input gust sequence is shown in Figure 4-2.
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Figure 4-2. Lightly Damped Model Output and Input.
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4.2 RPEM AS A STARTUP ESTIMATOR

One of the desirable characteristics of the RPEM algorithm is
the ability to start the estimation with no a priori information
on the parameters. On short to intermediate data records with
both process and measurement noise, however, overparameterization
of the model aids in convergence of the flutter parameters con-
siderably (see Section 4.4, where an 8-mode model was used to get
excellent flutter identification with two active modes). 1In this
section, where the simulation.has no noise, the startup model is
so good that overparameterization cannot measurably improve it.
See Table 4-1 and Figure 4--3. Note that the residues of the art-
ificial mode are negligibly small.

Table 4-1. RPEM Model Residue Comparison

True Residues 4-Mode Model 6-Mode Model
Identified Residues Identified Residues

: 2.2683D-01 2.2683D-01 -6 . E6E0D-09
| -4,7332D-01 -4,7333D-01 -1.8139D-09
-1.1049D-01 -1.1049D-01 2.2683D-01
5.0268D-01 5,0270D-01 -4,7332D-01
' -1.1049D-01
5.0268D-01
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y and § (4-mode model)

y and y (6-mode model)
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Figure 4-3. RPEM Performance Without and With

Overparameterization.




These residues of the discrete transfer function correspond
to the cosine and sine coefficients in a partial fraction expan-

sion of a continuous transfer function. In other words, for

RC (Z+oi) + Rs.w.

-1 -1 5 i it
y(z =) = H(zI-F) G= ), 5 . ,
i=1 (Z+gi) + Wy
Rci and RS are the residues associated with the i-th mode where
i
b1
H=[10 0], F=|]-a, G= |b
! 1
!
| O ’ H
{
and
H(zI-F) L G = H (zI-0)"T @
m m ’

where Hm’ J, and Gm are the modal form of the discrete

equations. For the i-th mode the residues are

i = Byj 8i1 T Bgy 8o

Ry 1i 8i2 ~ Paj 8i1

4.3 MAXIMUM LIKELIHOOD ESTIMATION WITH RPEM STARTUP PARAMETERS

To demonstrate the use of RPEM as a startup algorithm for
maximum likelihood the first 100 data points were processed with
a 3-mode (overparameterized) RPEM model. These parameters and
the estimated output are equally as good as the outputs shown
in Figure 4-4. These RPEM parameters are too accurate to reason-
able test the maximum likelihood algorithm; therefore, an RPEM-
identified set of parameters using the wrong input (shown in

Table 4-1) were actually used.
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As would be expected from the results of the previous sec-
tion, the fit error of the final model is small, but the parameter

estimates have not yet converged.

.
Yy 6. - ] , . {:& ;w'l :!-% 5 ’ .
A 3. ; U R S U O U LA Y ST
N L iy kR Dy Lo g A
D o. | i\ ¢ il el AR '
° 1 e y 1 1 ] H
Y l\" i':' { il "'l ’: !l 1, 4 :‘
W3- R VN Y T T T L T T A O
A 1 H H ! S S| Y Y N H
T L A A T O L I A ¢
6. I~ TR A A ¢ i
4 ’ '}' - "|
-3 1 1 i 1 1
e =0 40. 60. 20. 100.

T IME (NORMAL TZED)
Figure 4-4. RPEM Start-Up Model. (Estimated from the first

100 points, but using an incorrect random input.)

oy 0ATI3  0.2268 05027 -0.1105
o L0 0.7230  0.3292  0.6849

1 99 Wo

op 0.9723  0.2268  0.B95B  0.4420
by 0.9737  0.2286  0.8985  0.4411

Table 4-2. Maximum Likelihood Start-Up Parameters.

The discrete eF parameters have reasonable startup values,

however the mode shapes are essentially unknown.
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The batch or semi-batch maximum likelihood algorithm de-

scribed in Section 2.3 was applied to this 500 point simulation

using the start-up values in Table 4-2. Figure 4-4 shows, first,

the
and
The
the

relative error in the natural frequencies on a linear scale
then the same error moduli are plotted on a logarithmic scale.
estimated variances of these parameters are also plotted with

actual errors. The algorithm has converged in four iterations.

This particular simulation does not have any measurement noise

added, which leads to the underestimate of variance after the

modified Newton Raphson optimization has converged.
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Figure 4-4. Maximum Likelihood Natural Frequency

Errors (and Error Estimates)

* Note that the last iteration started from iteration five

with the covariance reinitialized to large uncorrelated values.
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The damping estimates show similar behavior to the fre-
gquencies, converging in four iterations, with reasonable error
estimates at the convergence point. Further iterations decrease
the parameter errors, but without measurement noise on the
gsimulation, the error estimates underestimate the parameter error

on iterations beyond the fourth iteration.
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0.012

0. 009 |- ‘ , /ff,f”ff/ﬁ\\\\*s:::il per rev mode

0.006 | /
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Iteration Number *

Estimated & True Dumping Ratios

- CTTOor modulus of 1 per rev mode

error modulus of 2 per rev mode

§!§

Iteration Number *

Damping Ratio Error Modulus

Figure 4-5. Maximum Likelihood Damping Ratio Errors

(and Error Estimates)

* Note that the last iteration started from iteration five

with the covariance reinitialized to large uncorrelated values.
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Figure 4-6 shows the Torsion rate measurement and estimated
output with the associated innovations or errors produced by the
estimated model after six iterations with the covariance correction

{shown as the seventh iteration on Figures 4-4 and 4-5).

Lol L
WA

Accel (Deg/Rev2)

T
i
v
I

..3. 1 1. 1 i -
Q. z0. 40, 60. 80. 100 120.

0.0015
§ 2.0010
~
el AAARRAA |
r—
g 0. POBR | vy V""Vf\ AWA -
< . 2005
5 -.0010 |-

_.wiE ] ] | 1 i i

Q. ze. 4. 60. 80. 100 120.
TIME(REV)

Figure 4-6. Torsion Acceleration Estimated Output and

Output Error
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4,4 RPEM IDENTIFICATION FROM SHORT, INTERMEDIATE AND LONG DATA
RECORDS

To demonstrate the convergence,. convergence rate and accuracy
predictions of Section 3.3, simulations with two different models
were performed. The input was treated as both known and unknown.
Frequencies of 1 and 2 per rev (normalized frequency) were simu-

lated in a model of the form

[ o 1 7 [ o]
—w? —2€1wi 1
X = X + u , where
0 1 0
2 2
! —wg  =2E5u,] 1

y = [0 1 0 -.5] x. The frequency response for the model

(wy, = 1, gl = ,0470, wg = 2, £2 = ,0480) is shown in Figure 4-7.

1
This is the same model used to study noise effects on achievable

accuracy in Section 3.3. The same measurement white noise
covariance (see Section 3.3) was used (ov = ,0707), and
gust covariance (o gust = .05 deg) was used.

Modal parameters were identified with RPEM as a stand alone
algorithm for short, intermediate, and long data records, rather
than merely as a startup algorithm for semi-batch maximum likeli-
hood. The overparameterized model had eight modes; the lowest
frequencies are the simulated modes. Frequency and damping
estimates and the Cramer-Rao bounds (computed from the true

model) are compared to actual errors in Tables 4-3 through 4-5.
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60

W wn Own E(%) ECA) OECR(%)
CR '
1 962 |7.667, | 4.70 |10.4 .0784
Known =3
Input 2 1.896 {3.56,, | 4.80 .94 .174
Unknown 1 1.139 | .124 | 4.70 |45.2 |[12.8
Input 2 2.22¢ .464 4.80 | 093.7 |23.6

Table 4-3. RPEM Frequency/Damping Estimates and
Accuracy Estimates

(2-mode simulation of 125 data points.

8-

0 W, Own E(%) §C%) O€CR%
CR
.9 .8313 .
Known 1 986 | 3.8 12 4,70 4,34 Q392
Input 2 2.0101 | 1.78;5f 4.80 5.32 .0868
1.1611} .0622
Unknown 1 4,70 |31.8 6.39
Input 2 3.525 232 4.80 J11.9 }11.82
Table 4-4. RPEM Frequency/Damping Estimates and

(2-mode simulation of 500 data points.

Accuracy Estimates

8

mode model.)

mode model.)



® o -~w | o £y |OED o 4

n n n w
“CR CR

1 .99963| 1.717¢{ 4.70 |4.7083| .0175
Known : =
Input 2 1.9990 |7.95, 4,80 |4.6663| .0388

1 9798 | .0278| 4.70 {9.35 | 2.86
Unknown — .
Input 2 3.366 | .104 4.80 |7.90 | 5.26

Table 4-5. RPEM Frequency/Damping Estimates and
Accuracy Estimates

(2-mode simulation of 2500 data points. 8-mode model.)

The conclusions from these simulations both validate the
performance of the algorithm RPEM for flutter mode identification
with multiple modes and give insight into the validity of the
results identified from the flight data in the next section. (The
flight data also has two active modes with similar characteristics

and also was overparameterized with an 8-mode model.)

The gust level is too low to identify the flutter modes with
turbulence excitation anly. With a known input the algorithm
finishes the cohvergence transient in about 750 data points or
1.5 seconds (see flight data results in Figure 5.15). For long
data records (>4-5 seconds) RPEM giVes extremely accurate esti-
mates (Ig ~ &|< .05%). For this particular simulation the damping
estimate error (w=1) is less than the Cramer-Rao bound, and for

w=2, the damping estimate error is less than ZOCR
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SECTION 5
FLIGHT DATA RESULTS

Flutter-test flight data from the third flight of the ARW-1
vehicle of NASA's drones for aerodynamic and structural testing
(DAST) program has been used to demonstrate the real-time flutter
estimation algorithms. Three different maneuver types were

processed:

1. A frequency sweep manheuver with significant excitation
amplitude,

2. An intervening record between excitation inputs to
emulate typical unknown input or turbulence excitation,
and

3. The sequence of the last three pulses before the flutter

incident resulting in failure of the right wing.

5.1 KNOWN INPUTS

Symmetric excitation with a logarithmic sweep from 10 - 40

hertz is shown in Figure 5-1.
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Figure 5-1. Symmetric Sweep Excitation Maneuver




due to the Flutter Suppression System (FSS), as can be seen in

The actual aileron positions include some asymmetric input

Figure 5-2.

ADOIFDY

VDU +r DO

3.
2.

1 L ] "3

25588. 25530, 25552, 25594 . 25586,

TIME(SEC)

25588, 25590. 25592 . 25594, 25596,

TIME(SEC)

Figure 5-2. Symmetric and Asymmetric Inputs
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The fregquency responses of this input and the ALFSO accelerometer

output are shown in Figure 5-3.

in Figure 5-3 is a coarse estimate of the transfer function,

shown in Figure 5-4.

100.

The ratio of these two responses

100. |

1

6¢

0.

8;.4

t Tt

- i 1 1 i 1 1 1 1

. 30. 60. S59. 1c0. 150. 180. clo. 40, c70.
HERTZ

{
[l i 1 ] ] ] 1

. 30. B9, S0, ize. 158, 190. zZ1e. 249, 270,
HERTZ

Figure 5-3. Output and Input Frequency Response



As can be seen from Figure 5-4, the noise is so great without
averaging, that there is little recognizable information in any
frequency range.

A single-input-single-output identification study was per-
formed using the symmetric input and the ALFSO accelerometer with
RPEM. Model orders of three, five and eight modes, with and
without identifying the C(z—l) polynomial (or equivalently the

Kalman gain) are compared in Tables 5-1 and 5-2.

Table 5-1. Known Input Modal Estimates
(Estimation with C(znl) Polynomial)

Mode 3 Mode Model 5 Mode Model 8 Mode Model

w, (Hz) £(%) | w,(Hz) £(%) w, (Hz) £(%)

11.70 5.77 11.81 4.59 11.82 4.62
66.72 22.7 57.19 11.8 48.63 4.00
228.9 6.00 116.8 17.8 81.94 49.0
173.6 15.5 88.53 11.6
207.1 5.42 143.4 9.39
163.8 5.15
206.2 6.28
238.9 3.00

0 ~1 O O bW N

1 i i i i i 1 ]

e. 30. 60. S0. ize. 156. 180. c10. 240. 7.
HERTZ

Figure 5-4. Coarse Estimate of AZ(jw)/6a(jw)
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Mode 3 Mode Model 5 Mode Model 8 Mode Model

w,(Hz) | 6(%) | w (Hz) | &(%) | w, (Hz) | £(%)

1 12.13 11.1 11.89 4,95 11.77 4.70
2 73.96 38.2 52.40 5.87 47.59 5.71
3 205.4 13.1 113.5 16.0 65.44 18.0
4 172 .4 9.24 103.9 18.1
5 227.2 8.31 130.9 15.1
6 163.7 6.94
7 198.3 4.92
8 234.3 3.95

Table 5-2. Known Input Modal Estimates
(Estimation without C(z_l) Polynomial)

Only the lowest mode is within the range predicted by
NASTRAN analysis and ground vibration test. The frequency and
damping estimate of this mode is comparable and reasonable for
all six model structures identified except for model with the
smallest number of parameters, the three mode model with no
C(z—l) polynomial.

The mode at approximately 11.8 hertz and damping of 4.67%
is close to the predicted value of the symmetric first body
bending mode at this flight condition (M = .7, h = 15 k feet).
Gilyard and Edwards [14, Fig. 3] show predicted values of approx-
imately w, = 11.8Hz with a damping ratio of 4.7%.

Note that here we are using the symmetric input
(53 + da )/2 as the single input and hence identifying the open

loop plan% even though there is some asymmetric input. The

€8



asymmetrid input power is approximately 28 db down from the
symmetric input (see Figure 5-2). Models with the'C(z_l) poly~-
nomials provide a more desirable model structure, able to model

this unknown input.

There are several conclusions on the use of RPEM for real-
time flutter analysis with known inputs:
1. Overparameterization is important to accurately
identify the active flutter mode.

2. Overparameterization is even more important if the C(z
polynomial is not identified with a known input.

5.2 UNKNOWN INPUTS

One desirable characteristic of a real-time flutter identi-
fication system is to identify the dominant system dynamics
without a known input for continuous test monitoring. This can
be accomplished with the RPEM algorithm by identifying the
A(z_l) and C(z_l) polynomials and letting B(z_1)=0, or equiva-

lently identifying the system dynamics matrix and the Kalman gain

-1

directly. Figure 5-6 shows a section of data early in the flight,

between a sweep and an excitation pulse.
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Figure 5-6. Inter-Excitation Data Section
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The ALFSO sensor output for this interpulse section is

shown in Figure 5-7.

SWhTrD

0.3 -

0.2 -

-1 |

-2

0.0 i |“ d!"h ““.“ I‘hhi“ !

Figure 5-7.

25598, 25533, o600,
TIME

Turbulence Excited Accelerometer Output
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Two thousand data points were used to estimate the 48

parameters and modal estimates of Table 5-3.

Mode No. wn(Hertz) £(%)
1 26.08 70.1
2 50.07 4.38
3 68.57 20.3
4 140.3 4.31
5 171.1 2.71
6 207.8 8.13
7 235.8 1.31
*

Table 5-3. Unknown Input Model Estimates
(ALFSO Accelerometer Used as Recordgd)

Besides the peaks at 26 and 50 hertz identified above, the ALFSO
frequency response (see Figure 5-8) shows peaks at 12, 15, 20,

and 42 hertz as well.

* Eighth discrete mode not realizable as a real continuous

system,
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Figure 5-8. ALFSO Accelerometer Spectrum Forced by

Turbulence

This estimation was affected by the bias in the acceler-
ometer, which when taken out gives the modal estimates of Table
5-4.

Mode No. w, (Hertz) £(%)
1 14.51 24.0
2 46 .39 13.6
3 51.43 7.92
4 87.79 8.99
5 105.5 4.13
6 149.1 6.94
7 191.3 3.94
8 233.4 .46

Table 5-4. Unknown Input Model Estimates
(ALFSO Bias Removed Without Estimation
of B(z—l) Polynomial)

The lowest frequency is reasonable, but its damping is too high.

The estimate errors and error spectrum are given in Figure 5-9.
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Figure 5-9. Estimate Errors and Error Spectrum
(A(z_l) and C(z_l) Polynomials Estimated)
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It is evident that the effect of the low frequency modes has not

been completely removed. The approximate signal-to-noise ratio is
_ 2 2 2 _
SNR = (oy - oe) / O = 5.77 ,

so that the turbulence level is quite low.

It is interesting to examine the excitation channel more
closely (see Figure 5-10), which shows what could have been noise
in digitization, or noise actually transmitted and passed through

the control system.
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Figure 5-10. Interpulse Excitation and Excitation Spectrum

The A, B, and C polynomials were identified using this
input (a 48 parameter model) and the resulting modal parameters

are given in Table 5-5.
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Mode No. wn(HertZ) (%)
1 13.02 9.39
2 48.81 5.90
3 65.33 16.0
4 103.1 15.1
5 137.6 10.2
6 180.0 7.09
7 221.0 6.81
*

Table 5-5. Unknown Input Modal Estimates
(ALFSO Bias Removed, with Estimation
of B(z_l) Polynomial)

The lowest natural frequency estimate is still reasonable for
this flight condition (M = .7 , h = 15 k feet) with the damping

estimate much more reasonable, for the first bending mode.

The spectrum of the estimated model errors (Figure 5-11)
does look like nearly white noise, removing the peak in the
region of the first symmetric mode.

The estimated signal-to-noise ratio is slightly larger at
SNR = 5,79,

* Eighth mode not realizable as a real system.
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Figure 5-11.
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Estimate Errors and Error Spectrum
(A(z_l), B(z—l), and C(z—l) Polynomials
Estimated)



The conclusion from this flight data with a very low level
of turbulence or input excitation is consistent with the con-
clusions on simulated data in Sections 4.4 and 3.3.2. The ex-
citation level has a very significant effect on estimation accu-
racy and, of course, the proportion of the input signals that are

known significantly affect the parameter accuracy as well.

5.3 FLUTTER INCIDENT RESULTS

During the third flight of the ARW-1 program, the Flutter
Suppression System (FSS), the on-board stabilizing control sys-
tem, was actually operating at one-half the nominal gain, During
the acceleration from M = .80 to M = .825 the first wing-
bending asymmetric mode showed increasingly lighter damping,
finally resulting in structural failure of the right wing, and
together with a partial failure of the parachute recovery system,

a crash of the vehicle [14].

The excitation (FSSEXC channel) and ALFSO accelerometer
response are shown in Figure 5-12. The last three excitation
pulses are full cycle sine wave doublets (chopped here because
only every 20-th point has been plotted). Just over twelve
seconds (6290 data points) were processed as a single record,

up to the last point before accelerometer saturation,

Figure 5-13 shows the aileron positions for this final part
of the flight, while Figure 5-14 shows their average sum and

difference for the remaining linear portion of the flight.

It is noticeable that the symmetric and asymmetric inputs
have comparable input magnitudes due to the flutter suppression
asymmetric feedback attempting to stabilize the anti-symmetric
modes.

At approximately T = 26138.5 seconds, the test pilot was
instructed to terminate the test and the throttle was reduced

due to the light damping observed in the previous time traces
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Figure 5-13. Aileron Positions for the End of the
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[14]. The real-time damping estimator indicates a significant
reduction trend in damping, approximately two seconds before
this, as seen in Figure 5-15. Such a serious warning, this
early, is quite difficult if not indiscernable from the time
trace shown in Figure 5-12. The last damping estimate (modal

parameters were output eVery 100 points or .2 seconds, using

the last 190 points for the last estimate) is £ = -,02218 for
the symmetric wing bending mode at 19.16 Herz. Before the drop
in frequency at the flutter condition (see Figure 5-15), the

flutter mode frequency was estimated as &n = 125 rad/sec, which
correlates exactly with post flight processing results by other

techniques (see Gilyard [14, Figure 12]).

Figure 5-15 shows the initial convergence period for RPEM
of 0.5 - 1,0 seconds.” It is possible that the damping dip at
T = 26132 seconds is still due to convergence since some of the
other discrete modes modeled (an eight mode model) changed at
this point (after 1500 data points). The break up in natural
frequency and clear reduction trend in the damping at T = 26136.5
seconds is definitely due to the changing flutter characteristics.
All the modes modeled in the overparameterized system are changing

smoothly at this point.

It should be pointed out that the asymptotic forgetting
factor in RPEM can be fixed at less than one to make the algo-
rithm track models with changing characteristics with higher
accuracy. Giving the operator the option to select a past
window size of considered data is a possibility when real-time

implementation is performed.
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SECTION 6

NEAR REAL-TIME FLUTTER ANALYSIS (NRTFA)
PROGRAM DOCUMENTATION

The delivered ANSI FORTRAN-77, Near Real-Time Flutter Analy-
sis Program (NRTFA) is so named because, while providing a working
tool to analyze real time flutter analysis algorithms, it lacks
the real-time executive, real-time input/output buffered inter-
faces and real-time graphics drivers., Thus the program reads a
large data block, then emulates real-time operation by repeatedly
outputting new frequency and damping estimates to the operator
console screen. This section

1) Explains the choice of identification algorithm imple-
mented in NRTFA,

2) Documents the program structure and subroutines, as
well as fixed algorithm initialization parameters,

3) Describes the memory resources and timing comparisons
for typical flutter models,

4) Discusses extensions necessary for actual real-time
implementation, and

5) Gives installation instructions.

User information is documented in Appendix A, and Appendix B
gives the FORTRAN listings.

6.1 THE NRTFA ALGORITHM

Studies documented in the previous three sections support
the conclusion that the Recursive Predictive Error Method (RPEM)

works extremely well as a stand alone algorithm or as a parameter
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start-up routine for a block-recursive maximum 1ikelihood (ML)
algorithm. The block-recursive ML technique gives excellent
results where several passes can be made over the data block.

This may not be acceptable for the timing requirements of a real-
time algorithm. Implementation of a block recursive algorithm
with a single pass over the data could enhance identification

speed over pure recursive methods; however, the convergence
characteristics of such an algorithm require more research. There-
fore, the NRTFA program was configured with RPEM as a stand alone
algorithm which could be restarted at any point by the operator.

The equation error, standard ARMA or full ARMAX models can
be selected by the user (see Appendix A), as described in Section

2.

6.2 THE NRTFA PROGRAM

The NRFTA subroutine calling structure is given in Figure
6-1.

The NRTFA program structure is shown in Figure 6-2.

NRFTA
DATAIN SAVLOD
RPEM NSTABL
HQR3,
RG ORTHES,
ORTRAN

Figure 6-1. Near Real-Time Flutter Analysis Calling Sequence.
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Detailed descriptions of the options and input/output argu-
ments are given with comment statements in the subroutines (see

Appendix B); a brief description of the routines in Fig. 6-1 is:

NRFTA The main program which allows the user to set
up the identification problem and calls the
principal computational and input/output sub-
routines.

DATAIN Opens an input and output data file and calls
SAVLOD to read the data records.

RPEM Performs an update of the ARMAX model parameters
and their covariance for one additional input
and/or output data point.

NSTABL Performs a stability check on the C(z—l) poly-
nomial using the Schur-Cohn test.

RG Finds the eigenvalues of a real general matrix,
used to factor the A(z~1l) polynomial by
operating on the associated companion matrix.

HQRBW' { Supporting eigen-decomposition routines which
{ ORHES, transform a matrix to its Hessenberg form, and
ORTRAN subsequently to its real triangular form (Schur

form)with the unsymmetric QR algorithm.

There are a number of small supporting subroutines which have been

documented elsewhere [15].

There are several default values used to initialize RPEM
that have been fixed in NRTFA; their values or the way theyare
initialized could easily be changed in the source code. RPEM
uses an exponential forgetting factor, discounting past data so

as to minimize at time t the sum

t
o At 2,0,
=

where A 1itself is a function of time,
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A, computed recursively as

N J J
M(F) = (l—ax)xf + ajy A,

A(j+L) = (1—ax)k(j) + axkf

The fixed parameters are the initial forgetting factor AO(.Q),
the final forgetting factor Af(l), and the rate at which A
approaches its final value, ak(.97). The values in parenthesis
are those fixed for flutter application in the early part of
NRTFA (see the source listings in Appendix B). The above for-
getting factor parameters achieve a value of .99 (from .9) in
approximately 75 data points, and .999 in 150 data points.

In computing the regressors by filtering with the C(zml)

polynomial (see Section 3.2.2), a contraction factor is applied
to the poles of a(z—l), k , which reduces the effect of the

fac

filtering. kfac is also varied with time by the equation

kfac(j) + (1 - Ay )

kfac(3+1) = ak

fac fac
where kfac is approaching the value of 1.
The initial value is set at k = .01 with a = ,999,
fac k

fac
Thus the algorithm starts out as nearly approximately maximum

likelihood (AML) [ 7], where the residuals are used directly in
the regressors, giving good transient convergence characteristics
and then slowly approaching the RML2 [2] or standard RPEM algo-
rithm (kfac reaches .9 after approximately 2300 data points),

for good asymptotic convergence characteristics.

6.3 MEMORY RESOURCES AND TIMING COMPARISONS

The active memory requirements for tne NRTFA program and the
system supporting subroutines on the VAX 11/780 (VMS Version 3.1)
are shown below in Table 6-1, for the problem definition given in
Table 6--2.
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Routine Type Memory Requirement (Bytes)
Main Program 51,576
Input/Output Routines , _ 2,007
Identification Routines 2,138
EFigensystem Routines ' 24,138
System Support Routines 2,061
Total Executable Code 81,920

Table 6-1. NRTFA Memory Requirements.

The above memory requirements include storage for the maxi-

mum sizes shown in Table 6-2 below.

Parameter Maximum Size
dim. (8) 60
Number of modes with an

A, B, and C polynomial 10
Number of modes with

A and B or A and C 15
polynomial

Number of points per
data record 2000

Table 6-2, NRTFA Program Parameter Limits
(Effected by Current Array Dimension Bounds)

To characterize the CPU requirements of different functions
within the NRTFA program, on the VAX 11/780, the following experi-
ment was performed. RPEM identifications from 200 data points of
the A, B, and C polynomials, as well as only the A and B
polynomial for 2, 4, and 8 modes were performed. The interval

for outputting the frequency and damping estimates was varied to
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separate the CPU required for identification from that for factoring
the polynomial and outputting the desired estimates. In all cases
the order of the A, B, and C polynomials is twice the number

of oscillatory modes. The results are tabulated in Table 6-3.

CPU for Polynomial
Number of Number of Polynomials CPU for Factorization and
Modes Points/Batch | Identified |RPEM (sec*) wn,g output (sec**)
2 20 A,B,C 1.74/200 .27/8
2 5 A,B,C 1.74/200 1.107/32
4 20 A,B,C 4/200 2/8
4 5 A,B,C 4/200 8/32
8 20 A,B,C 14.58/200 11.93/8
8 5 A,B,C 14.58/200 47.72/32
8 20 A,B 7.27/200 11.93/8
8 5 A,B 7.27/200 47.72/32

Table 6-3. NRTFA Timing Study Results

Note that the common factor of the time to read the input data
has been subtracted from all cases. These results can be depicted
much more clearly, graphically. Figure 6-3 shows the CPU time in

seconds required for a single data point parameter update (6n

>

* 1.74/200

¥k ,27/8 = .27 seconds for 8 output batch computations. (Factori-
zation of the polymonial, transformation to continuous fre-
quencies and damping ratios, as well as output to a terminal
in the format shown in Appendix A.)

1.74 seconds for 200 updates by the RPEM subroutine.
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parameters of the full ARMAX model for n modes) as a function
of the number of modes. Similarly the transformation of the
ARMAX model parameters to continuous frequencies and damping
ratios is shown in the plot below as a function of the number of
modes. Clearly overhead becomes more important with a small

number of modes.
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Figure 6-3. CPU for Identification and Discrete Polynomial
Factorization and Output
(Full ARMAX Model - 6n Parameters for n Modes)
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These values are consistent with operation counts for these
two algorithms and the machine cycle time for the VAX 11/780 (VMS
with a Floating Point Accelerator). The floating point operation

cycle timeg for typical machines are shown below in Table 6-4.

‘Table 6-4. Millions of Operations Per Second

1 Performance
Machine Vendor Rating~ (MOPS) Benchmark?
IBM 3033 4.00 1.77(D)°
Cyber 175 5.06 1.36(S)
CDC 7600 10. _ 1.24(S)
CDC 6600 2.5 LAT7T7(S)
VAX 11/780 .831 .190(S)
VMS/FPA
HP 5451C .08 -
(HP1000 -
E Series)
Apollo - .0196(S)
1 “Mainframe KOPS Rating," Datamation 1982
2

Floating Point (MOPS) for a typical mathematical software
problem [16]

3 (S) or (D) refers to operations in single or double
precision

For the 500 sps of the DAST flight data, with, for example,
a four mode model, and frequency and damping estimates output
four times a second to the operator, the CPU effort is approxi-
mately eleven times real time (10 seconds for identification and
1.2 for factoring the polynomials in one second of flight data).
These timing results do not include accuracy estimates, which
require the mode shapes, but beyond this should not require

significant additional work. The above CPU requirements are



not as pessimistic as they may first appear for implementing RPEM

in real time to do flutter analysis.

Thirty percent of the work in factoring the polynomials can’
be eliminated if mode shapes are not desired; however, the
identification algorithm is where the reduction is needed for a
real-time implementation. For the modes of interest the sampling
time could be cut at least in half and with some loss in accuracy

the sampling rate could be cut by a factor of five.

The RPEM version implemented here has been a research tool
that can be streamlined significantly. Even single subscripting
the arrays could improve efficiency by as much as thirty percent.
In addition, the implementation of a block recursive algorithm
could significantly increase the throughput for a given machine
speed. Such considerations are part of the general analysis

necessary for actual real-time implementation.

Other considerations for actual real-time implementation
include adding a higher level routine to function as an executive
so that the operator can restart the procedure with function key
at his console, interfacing a data buffering routine with the

telemetry system, and displaying the modal parameters and accuracy

estimates graphically at the operator's console.

6.4 INSTALLATION INSTRUCTIONS

The NRTFA pfogram is written in ANSI Standard FORTRAN-77,
such that conversion to operating systems meeting this standard
should be straightforward. The storage requirements are modest,
such that an overlay structure is not required on machines such
as the Cyber, not having virtual memory. The principal adap-
tations all have to do with input/output. The subroutine FILES
which dynamically opens files for the control and output data
requires a suitably modified OPEN command. The subroutine
SAVLOD which reads the data files with a specified format into
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the buffer arrays should be changed to a convenient format for
the particular installation. The subroutines FILES (not shown as
it i1s machine dependent) and SAVLOD are called by the routine
DATAIN. This file interface is exactly that of MATRIXX [17.

The variable EPS in the real general eigensolver (RG) should

(1-t)

be set to the host machine precision (2 where t is the

number of binary bits in the mantissa of a floating point number).
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SECTION 7

SUMMARY

Recent theoretical analysis of recursive identification algo~
rithms has been applied to flutter test monitoring, and implemented
in a near-real-time flutter analysis program (NRTFA) shown to be
highly reliable. This report documents the algorithm and model
forms used, with the numerical analysis and estimation issues
considered for its choice. The performance of the recursive
predictive error method (RPEM) on simulated data compares well
with predicted convergence rates, accuracy and robustness. The
results on the DAST flight data show modal estimates that are
consistent with NASTRAN and ground test vibration results, with
consideration of the flutter suppression system (FSS) (see

Gilyard and Edwards [14]).

Timing studies of the configured FORTRAN program show that
real-time operation will be possible with careful implementation.
The development and documentation of this effort has clarified
the issues to be resolved for a full real-time flutter monitoring
system. The NRTFA program has been documented sufficiently for
program modifications, for adaptations to other computers'(Section
6), and for use in current flutter analysis (Appendix A). Sub-

sequent subsections explain these conclusions more fully.,

7.1 ALGORITHM CHARACTERISTICS

The RPEM algorithm implemented in the NRTFA program identi-
fies ARMA-type models (see Section 2.2 for the ARMAX model defi-

nition), which can be specified for three cases, known inputs,



unknown inputs or both. For the first two cases, and sufficiently
high signal-to-noise ratios in the third case, this algorithm is
globally convergent. The A(z_l) polynomial or equivalently the
system dynamics is always identified. With known inputs the

-1
B(z
fied; with unknown inputs the C(z_l) or equivalently the constant

)} or equivalently the input distribution matrix is identi-

Kalman gain is identified.

Two features have been added to effect good transient con-
vergence behavior. Initially the data is weighted with an
exponential forgetting factor which discounts past data. This
factor is changed to approach one, hence tapering off this
windowing effect after the parameter estimates have stabilized
somewhat., The NRTFA program also uses a second initial transient
factor which controls the computation of the estimated gradient.
This factor constrains the algorithm to be nearly linear regression
initially [3], [7] which gives a rapid initial convergence rate,
and then slowly tranforms to a full Gauss-Newton minimization of
the prediction error [3] for assured asymptotic convergénce to

the global minimum (for the three cases described above).

7.2 ALGORITHM PERFORMANCE

Colored sensor noise and higher order dynamics are automat-
ically accounted for by an overparameterized ARMA-type model.
The significant concluSion about noise effects is that whenever
some excitation can be tolerated it is highly desirable for
improving estimation accuracy. Unknown inputs still yield
reasonable damping estimates for signal-to-noise ratios above
approximately ten. Families of curves show the effect of dif-
ferent turbulence, sensor noise and input 1eVels in Figurés 3-2
and 3-3. The convergence rates and accuracy of estimated param-
eters from six different simulations compare favorably to pre-
dicted error bounds in Tables 4-3 through 4-% demonstrating the

underlying reliability. RPEM is based on a stability analysis of a
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differential equation associated with the behavior of the param-
eter estimates as a function of time [6]. Recursive algorithms

can be made robust to data dropouts and outliers with fairly

simple logic (see Section 3.3.1), resulting in improved estima-

tion accuracy (see Table 3-~1 for a quantitative comparison).

For known inputs and a low level of turbulence the recursive
least squares (RLS - A(z_l) and B(z_l) only) provides very good
results as long as sufficient modes are modeled to cover unknown
effects in the vehicle response; for example, with a high-ampli-
tude swept sine input, a three mode (RLS) model did not give good
estimates, whereas five and eight mode models did. The unknown
input results (see Section 5.2) support the general conclusion
stated previously that a sufficient turbulence level must be pre-
sent to give a signal-to-noise ratio (SNR) of approximately 10
for estimation particularity of the damping parameter. With a
low SNR, even low amplitude known inputs increase the estimation
of the A(z"l) polynomial and hence frequencies and damping ratio.
Monitoring of the final portion of the DAST Flight 3 has been
emulated with the delivered algorithm, showing clearly where the
flutter mode damping starts its trend to &=-.022 before satura-
tion of the sensors and controls and eventual failure of the

right wing.

7.3 SOFTWARE IMPLEMENTATION

Fixed parameters that influence the convergence character-
istics of RPEM are described in Section 6 such that the NASA
Dryden personnel can modify the source program (see Appendix B
for the listings of principal routines) if so desired. Minimal
necessary installation instructions are also given. Appendix A
illustrates an example execution of the NRTFA program, with guide-
lines for input options and description of the modal estimate

outputs.
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7.4 RECOMMENDATION FOR FURTHER RESEARCH

Work is needed in two directions jointly to achieve semi-

automated monitoring of aircraft flutter in real time.

1. Further development and testing of algorithms on
several flight records and simulation runs with a
variety of errors. Also paramenters like batch

size, fading factors and model orders need to be
further investigated.

2. Development of a real-time flutter analysis hard-

ware system.

The hardware system could be used on the ground initially but
could be extended to be an onboard system as more experience is
gained with the algorithms and the computation capability advan-

ces.

The goal of such a real-time flutter analysis system would
be to provide a dual environment. The real-time environment mon-
itors flutter characteristics for safe flight tests. In addition,
portions of the test are isolated for detailed post-flight analy-
sis. The second environment is the post-flight processing capa-
bility. This would be accomplished with a flexible identification
program to extract more accurate estimates of the frequency and
damping estimates on critical maneuvers where the real-time
algorithm indicated Very light damping or unusual behavior. Im-
provements to the real-time algorithms could also be made in
this "development'" or post-flight processing environment, as more

experience 1s gained.

Specific algorithm issues that deserve more attention are a
better quantification of estimation error effects due to model
order, more experience with convergence parameter setup values,
particularly on flight data, the effect and design of prefilters,

input design for maximum accuracy, and parameter estimation
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accuracy during the convergence transient phase.

The timing results of Section 6 indicate that speed needs to
be a significant concern in the further algorithm analysis,
quantifying the effects of, for example, not updating the covari-
ance ag often, etc. A comparison of the RPEM, extended Kalman
Filter (EKF), and maximum likelihood output error formulation
for a block recursive or semi-batch mode should identify the best
algorithm for the accuracy, convergence, and speed characteristics

most suitable for real-time flutter monitoring.

The joint development of the hardware system with further
algorithm investigation will be necessary, even though the problem
appears to be compute bound, because the actual throughput of
real-time systems can not be fully predicted by study alone.
Finally; the technology is now available to integrate a fully

automatic system and validate its performance.
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APPENDIX A

USER'S GUIDE
NEAR REAL-TIME FLUTTER ANALYSIS PROGRAM (NRTFA)

The NRTFA program setup parameters are entered interactively

as shown below.

ENTER INPUT FILE NAME...

U
ENTER OUTPUT FILE NAME...
Y
DO YOU WANT C(Z) POLYNOMIAL, IE. KALMAN GAIN IDENTIFICATION
(Y OR NO)?
Y
DO YOU WANT INPUT POLYNOMIAL B(Z) TO BE IDENTIFIED (Y OR N)?
Y
ENTER NUMBER OF DATA POINTS TO BE ANALIZED...
200
NUMBER OF MODES TO BE CONSIDERED?
4
HOW MANY POINTS PER BATCH?
20

The first two prompts are for the excitation and sensor data
files, where the file names can be up to 32 characters. The input
file U above contains the sequence of control positions, for
open loop identification, or the excitation superimposed on a

closed loop control system for closed loop identification. The
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exclitation channel is always read, whether or not the B(z_l)
polynomial 1s identified. The output file contains the sequence
of accelerometer outputs (the present version of RPEM is a SISO

algorithm).

The second group of two prompts above defines which two or
all three of the ARMAX polynomial models are identified (see
Section 2.2). If there is knowledge of the control channel B(Z_l)
should be identified, and if the gust inputs are known to be small
with wideband accelerometer noise then the recursive least-squares
(RLS) algorithm (A(z™Y) and Bz 1 identified, without cz" )
can be used. In all other cases the full ARMAX model (A(z—l),

B(z"1) and c(z1)) should be used.

The last three prompts of the interactive setup session
gspecify the number of data points to be read into buffer arrays,
the number of oscillatory modes (resulting in 2n or 3n parameters)
modeled, and how often the frequency and damping estimates are

output to the terminal.

The modal estimate output to the terminal resulting from

{he session above follows:
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0ii 3,433 0,133 G021 9,472 0,187 GC03: 130745 0.07F
04T 1A.e&3 0 0,ITE 0 0

Cii 4.538  0.077 €21 9.738  0.09%

i1 0, -0,213  1C2% 7,005 0,008  1C3! 10,038  0.084
iC4t 13,708 0. !

iC1i 0,533 0,234 1C2Y 7,151 0,048 030 10,775 0,124
Cat 13,741 0,071 %

IC1t 04489 0,057 1021 7.141 0,095 iC3T 5,071 D.4él
T4l 12,724 0,118

iC1t 0,417 0,234 1C2¢ 6,877 0,132 iC3IY 9,878 0,283
i1C41 13.765 0,092 iC5P 14,519 0.330 !

01! 0,686  0.0B8  1C21 6,681 0,183 1CI1 8,927 0,212
104t 13,505 0.132 i

L1t 0,675 0,052 102t 6,570 0,135 1031 9,557 0.177
iC4% 13,763 0,091 1C5t 14,043 0,218

iC1t 0,459 0,013 iC2! 4,483 0,161  iC3T 9,111 0,119

1C4t 13,414 0.126 :
FORTRAN STOF
¥

Estimates for the first twenty points are computed before
output begins, hence these 9 modal output parameter groups. A
pair of roots are prefixed by whether they are complex (C) or
two real (R) roots, along with the mode numbers. The modes are
ordered from smallest to largest by natural frequency. For a
complex pair the first number is the natural frequency and the

second the damping ratio.

For real roots, both are printed. If the discrete roots
cannot be realized as real continuous modes they are not printed
at all, for example the second group above, where only two of

four modes were printed.

107



" This Page Intentionally Left Blank



APPENDIX B

FORTRAN LISTINGS

Listings of the major subroutines of the Near Real Time
Flutter Analysis (NRFTA) Program as described in Section 6 follow,

ordered accofdingbto the calling sequence shown in Figure 6-2.

PROGGRAM RTFA

DOUEBLE FRECISION FMAT(40s60) s THETA(S0) sFEID(A0)»FICE0)y

1 FEICA60) s TETAR(ZL) +WORK(42) yFRPEM{6Q) sGRPEM(S0) s LRFEN (60
2 UARRA(L10) s YARRACL10) »UCURY YCURyLAKBDAKFACT » LANDL y ALMDIAY :
3 AKFACTsVsRESILLPINITSCFACT»FRERR

THIS 18 THE MAIN FROGRAM FOR REAL-TIME FLUTTER ANALYSIS BRY
RECURSIVE PREDICTION METHOD (RFEM).

HAVING INFUT UCT) AND DUTFUT Y(T) FARAMETER ESTIMATE THETA
IS8 UPDATED EACH TIME SURROUTINE RPEM 18 CALLED,

HODEL STRUCTURE USED IS

ACOXE-1 IY(T)=R(QR%-1 }U(T)+C(Q**-1 YE(T)

THETA- VECTOR OF ORDER (NARFPM+NERFHM+NC) CONTAINING THE
FARAMETER ESTIMATES.

THETA=(ATLIs A2y o o o v ACNARFM) yBCLI 0 B(2) vy o o o y BINBRFMI S C (1)
C(2)10¢~!C(NC')

THIS IS AN INTERACTIVE SEMI-BATCH FROGRAM WITH OFTIONS ON
TOTAL NUMBER OF DATA FOINTSy NUMBER OF FOINTS FER BATCH
AND IDENTIFYING LACZ)sB(Z)C(Z)1s LALZIH»EB(Z)] OR [AL(Z),
C(Z)J. THE FOLLOWING INFUTS ARE NEEDED.

NDATF — NUMEBER OF DATA FOINTS.

NMODE - NUMEER OF MODES TC BE IDENTIFIED.

NFRECH - NUMBER OF FOINTS FER BATCH.

fane B a3 20 3 s B 00 B v |

(o N e e pmy e e e e
85 Y Sy 2 e S TR

= Ty
[ S b B gt

AFTER NSKIF FOINTSy FOR EVERY NPRBCH FOINTS NATURAL FREQUENCY
ANDI DAMPING RATIO OF EACH MODE ARE CALCULATED AND FRINTELD.
THE TRANSFORMED DYNAHIC MATRIX

F( y y=[-A( ) IN THE FIRST COLUMN » IDENTITY MATRIX]

AFTER TRANSFORMING THE EIGENVALUES OF F INTO CONTINOUS

DOMAIN THE NATURAL FREQUENCY AND DAMFING RATIO OF COHPLEX
ROOTS ARE CALCULATED. IF THE ESTIMATED ROOTS ARE COMFLEX

THEN IN OUTPUT :C{ WILL BE PRINTED BEFORE FREQUENCY AND
DAMPING RATIO OTHERWIBE R: AND LOCATION OF REAL ROOTS

p R e T B e B o B o B e

T3 <
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C WILL BE FRINTED, TO BE ABLE TO PRINT REAL ROOTS THE
v LINE BELOW LABEL 120 IN THE WAIN FROGRAM ’‘KDUM=KDUM3’
o SHOULDD RE DELETED.
£ IF DAMPING RATIO IS NEGATIVE THAT MODE IS UNSTARLE.
f
" FO v ) - DYNAMIC MATRIX
L FREQ{ - NATURAL FREGENCY
L DAMPC¢ ) - DAMFING RATIO
L RLRT{ »- REAL ROOTS
¢ CLXRT¢ )~ COMFLEX ROOTS
L o7 - SAMFLING FRIOD
G
C INFUT FARAMETERS FOR SUBROUTINES HAVE BEEN DEFINED IN THEN.
C
C SUBROUTINE DATAIN READS INFUT UC 3 AND OUTPUT Y( .
C SUEROUTINE RFEM UFDATES THETA( ) FARAMETER ESTIMATE,
C SUBROUTINE RG COMPUTES THE EIGEN-VALUES OF FC » ).
£ m e e e e e e o e o e
C
DOUEBLE PRECISION F(20520)»VRG(20520)U(500)9Y(500)
DOUBLE FRECISION FREQ(20)»DAMF(20)sCLXRT(20+2)sRLRT(20),DT
DOUBLE FRECISION EFSRGSER(20),EI(20)SUFDI(20) s DUMF '
INTEGER INPUT(32)s0UTPUT(32)sID(4)sNRyNCyJOBING
INTEGER NLOWyNUF s INFOsNVSNARGy TYFE(20) o NDEL(20)
CHARACTER CHAR(10)sANSWR
COMPLEX%LS CDUML,CLUMZ
ATA IMG»JOB/0+500/
[IATA NBKIF/40/
C
C e EFPSRG= MACHINE EPSILON ---rmermemem oo e e
C
DATA CFACT/1.,0D10/»I0IM/60/EFSRG/2.0D-16/
. DATA NA/20/»NV/20/
DATA  LT/.2292/
OFEN{UNIT=5yNAKE="INFUT " »STATUS="UNKNOUWN")
DPEN(UNIT=5NAME="0UTFUT’ ySTATUS="UNKNOUWN")
C .
T hiinlubadabaldey READNING INFUTS = o oo e e o e e e
C
CALL DATAIN (JOR»IMGsNDATFUsY)
WRITE(&+881)
881 FURMAT(2Xs’ [0 YOU WANT C(Z) POLYNOMIAL. IE. KALMAN GAIN',
1 * IDENTIFICATION (Y OR N)77)
REAL(S:883)ANSUR
WRITE(6,882)
882 FORMAT(2X, 010 YOU WANT INFUT FOLYNOMIAL B{(Z) TO BE 7>
1 "IDENTIFIEDC(Y OR H)T7)

READ(SyB883) ANSRE
BB3 FORMATC(AS -
WRITE(6,880)
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880 FORMAT(2Xsy’ ENTER NUMBER OF DATA FOINTS TO BE ANALIZED. ")

P94

READ(SyXINDATF
WRITE(45994)

FORMAT(2Xy ' NUMEER OF MODES TO BE CONSIDERED? ..."7

READ(Sy£)NMODE
WRITE(62990)

5 FORMAT(2Xy ' HOW MANY FOINTS FER BATCHT)

REAI{ Sy X)NFRECH

‘NEACH=NIIATF/NFRECH

10

2
&

TWONMD=2kNHODE
------------ CEET FARAMETERS FOR RFEM SUB.

MARF M=THONHD
NBRF M= TWONNT
NC=TWONND

IF (ANSWR.NE, 'Y’) NC=0
IF (ANSREME. Y’ ) NERFM=0
ND=0
HF=NARFMNBRFHNC
NF1=NARFN+1
MLOW=1

NUF=NARFH

INIT=1

IER1=1

TER2=1

N0 10 IsiyMF
THETACI) =0, 000
FINIT=1.D4
LANEDA=, F10
ALNDA=1,0
LANDL=C, 97
KFACT=0.01
AKFACT=0,999
ISTARL=1

I§TAE2=0

mm e INITIAL RFEM CALL ==w-==m===

Calt RPEM(THETA?FMATyNARPM;NBRPM{NC;ND*UCURvYCUHrLAMBUﬁ:
1 KFACTsCFACTyISTARLsISTAE2Z Yy FRERRYRESID«INITsFINIT
yIDIMy TERL P TER2yFI PSS FSIN FRFEM GRFEN ) LRFEMy WORKS
3 TSTABsUARRAs YARRA)

WRITE(&y993)

993 FORMAT(11Xy 'FIRST MODE’ 11X SECOND MORE »11Xs 'THIRD MODE'>

1

/11Xy "FOURTH MORE‘ 10Xy "FIFTH MODE

‘11X, TEIXTH MODE":
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fan]

20

Y

L]

50

112

INIT=0

I1y=¢

0 3¢ J=1sNBACH

[0 20 I=1yNFRBCH

1J=IJ+1

UCUR=U(TJ)

YCUR=Y{IJ)

LAMEDA=ALMDAXLAMEDAY (1.0D0-ALMDA) XLAMDL
KFACT=AKFACTRKFACT+(1.000-AKFALT)

R RCETEEE RFEM CALL == ===mmmmmmmmm oo D

CALL RPEM(THETA»FPHATsNARFH s NBRFPMsNCo NIy UCUR YCUR»LANBDAY
1 KFACTsCFACTsISTABLsyISTAR2yVsFRERRIRESINsINIT)FINIT

2 oIDIMsTER1SIER2sFIFEIsPSIDYFRPEMsGRFEMLRFEMWORKY

3 TSTARsUARRAs YARRA)

CONTINUE

——————————— TRANSFORMED DYNAMIC MATRIX SET-UP S —

IF(IJ.LT.NSKIF) GO 76 30

Lo 50 ITUM=1sNARFH

DG 50 JDUM=1yNARFH

FOIDUM JDUM)Y=0. 000

IFCJDUMLEQ, IDUMYL) FOIDUM, JDUM)I=1.0
CONTINUE

D0 40 K=1rNARFH

FARy11=~THETA(KY

O CONTINUE

---------- CALL RG TO CONPUTE EIGENVALUES ===-mememmmeemee

CALL RG(FsNAsNARFPMsURGYNVINLOWINUFSERYEIsTYPE»SURDy
1 NOEL s NF1yNBLOCKEFSRG INFO)

KIUM=0

ROUM1I=0

K=K+1

IF{K,GE.NARFM) GO TO 90

KP1=XK+1

IF(ABS(F(KyKF1)),LT+1.,0D-07) GO TO 110
RDUM=KIUM+1

C COUML=DCHPLXCF (K K) s F(KIKF1) )

COUM2=CILOG(CDUML) /1T
CLXRT(KDUM,1)=DREAL(CDUN2)
CLXRT(KDUM» 2)=DIMAG(CIUN2)
K=K+1

G0 TO 40



G

119

70

80

IF(ARS(F(K+K)).GE,1.,000) 6O TO 60
IF(F(KsK)LT40.000) GO TO 130
RIUML=KDIUMI+1
RLRT(KDUML ) =DLOGCF (KoK /DT

GO TO &0

KIUM=KIUNK+1
CLXRT(KDUM» 1) =DLOG(~-F(KsK))/DT

CLXRT(KIUM»2)=3,1415/D7T

GO TO 60

CONTINUE

e 80 KE=1,KDUM
TF(ARS(CLXRT(Ks2)7.6T,1,00-07y 6O TO 70
FREQ(K)=CLXRT(Ks1)

DAHF (K)=CLXRT(Ky 1)

CHAR(K)='R’

G0 TO 80
FREG(K)=DSART(CLXRT(Ks 1)XKCLXRT (K» 1) +CLXRT(Ks2)XKCLXRT (K»2))
DAMF(K)=-CLXRT(Ks1)/FREQ(K)

CHAR(K)='C"

CONTINUE

KOUM3I=KIUM

D0 140 K=1,KDUM-1

[0 140 KP1i=K+1sRKDUM

IF (ABS(FREQ(K)~FREQ(KP1)),LT,0.,0001)KDUMI=KDUNI-1
IF(ABRS(FREQ(K)-FREG{(KF1}},LT+0,0001)FREQ(KF1)=1,00410
IF(FREQ(K) LT,.FREQ{(KP1)) GO TO 140

DUHF=FREQ(K)

FREQ(K)=FREQ(KF1)

FREQ(KF1)=DUNF

DUMP=DANP (K)

DENP R =DARF (KF1)

DANF(KF1)=DUNF

ANSWR=CHAR(K)

CHAR(K)=CHAR(KF1)

CHAR(KF1)=ANSUR

+ CONTINUE

KIIUKR=KIIUNS

IF(KDUM.GT.NMNODE) GO TO 120
O 130 K=1,KDIUM1

ROUM=RDUMT]

FREQ(RDUM) =RLRT(K)

BaMF (KDUM) =RLRT(R+1)

IF (R GT.KDUML) HANF (KIWUM) =0, 0

130 CHAR(KDUM)="R’
120 IF(KDUM.GT.NMODE} KDUM=NMODE

113



REUM=KOUM3

WRITE(6,883)

WRITE(Ss992) (CHAR(K) Ky FREQ(K) » DAMF(K) » K=1 s KDUMW)
FuE FORMAT(I(IXy 2/ sALsI1s7 17 s2FB.3 1)
30 CONTINUE

STOF

END

SUBROUTINE DATAIN(JOEs IMGsNDATFsU,Y)

C |
P SUBROTINE DATAIN =-===-mmommm oo s oo
C | |
DOUELE PRECISION Y(1),U(1)
INTEGER I[1(4)yNRyNCsJOEy ING
INTEGER INFUT(32),DUTFUT(32)
C

L e INFUT FILE NAMES

WRITE{6)5000)
7000 FORMAT(/y* ENTER INFUT FILE NAME...")
READ(GsF010,END=2000) INFUT
» 9010 FORHMAT(32A1)
WRITE(6+9030)
9030 FORMAT(/y’ ENTER DUTFUT FILE NAME...")
READCS»7010END=2000) OUTPUT

C wmmmemem=- ASSIGN FILES

CALL FILES(ZyINFUT)
CALL FILES(11,0UTFUT)

jan

P daiadadalaie LOAD MATRIXX FILE

£
CALL SAVLODN2,IDs500sNRyNCy IMAGY JOBsUSU)
CALL SAVLOD(11+IDsSO0NRsyNCsINAG»JORIYY)

NIATE=HR

C

2000 CONTINUE

C

L o CLOSE FILES

CALL FILES(-2yINFUT)
CALL FILES(-11,0UTPUT)
RETURN
© END _
SURROUTINE SAVLOD(LUNIT,»IDsHA»MsNyIMG» JOByXREAL»XINAG)
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101
102

10

INTEGER LUN
[OUBLE FREC

IMFLEHMENT §
LUNIT = LOG
Il = NAHE,
My N = HINE
IM6 = NONZE
JOB = O

= SFACE

oo

IT»ID0C(4) s NyIMG, JOB
ISION XREAL(1)XIMAG(L)

AVE AND LOAD

ICAL UNIT NUMBER
FORMAT 441

NSIONS
RO IF XIMAG IS NONZERO
FOR SAVE

AVAILABLE FOR LOAD

XREALs XIMAG = REAL AND OPTIONAL IMAGINARY FARTS

SYSTEM DEFE
FORMAT(4Al,
FORMAT(4Z18
IF (JOB 6T

SAVE
WRITECLUNIY

06 15 4 =1
K = (J-1)

L= K+ M

NDENT FORMATS
314)

)

+ 0) 60 TO 20

1r101) IDyMsNyIMG

y N
A + 1

-1

WRITE(LUNITY102) (XREAL(IJsI=KsL)

IF (INMG
CONTINUE
RETURN
LOATD

READCLUNITY

«NE. 0) WRITECLUNIT»102) (XIMAG(I)sI=KsL)

101 sEND=30,ERR=27) IDsMsNsIMG

IF (M¥N ,GT. JOB) GO TO 30

Do 25 J = 1
K = (J-1
L o= JKM

r N
TEM+L

READCLUNIT, 102 END=30) (XREAL(I)2I=K»L)

IF (IMG
CONTINUE
RETURN
WRITE(49X%)

END OF FILE

[y 0
N 0
RETURN
END

it

«NE. O READ(LUNIT,102,END=30) (XIMAG(I)sI=KsL)

"ERROR IN READING FILE’
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SUBROUTINE RPEM(THETAsFyNAsNEsNCoNDsUsYsLAMBIAYKYCy
ISTABLsISTAR2yVEFSyEPSIINITPO,IDIN,IERT S TERD,
FI+FSIsFPSIDYFsGrLyWORK» TSTARsUARRA S YARRA)

RECURSIVE PREDICTION ERROR METHOD
THIS IS & MODIFIED VERSION OF THE ROUTINE ORIGINALLY
DEVELOFED BY T.SO0DERSTROM., THE MOUIFIED FORM HANDLES
VARTABLE SIZES OF POLYNOMIALS AsBrAND C.THE ROUTINE
FROVIDES VARIOUS OFTIONS AS DESCRIBED' BELOW.
THE SURROUTINE PERFORMS THE MODIFICATION OF THE
FARAMETER ESTIMATES THETA FOR ONE SAMPLING INTERVAL
f NEW CALL TO RFEM MUST BE MADE FOR EVERY NEW
SAMFLING INTERVAL
MODEL STRUCTURE USED IS
ACQX%-1 IY(T)=B(Q%%-1 JUCT-ND)+CCQX%-1 JE(T
THETA - VECTOR OF ORDER (NA+NE+NC) CONTAINING THE
FARAMETER ESTIMATES.
THETA:(A(l)! 000’A(NA),E(i),OOQ,B(NB)7C(1),OiOO'C(NC))
THETA IS5 CHANGED IN THE SUBROUTINE
F -~ SYMMETRIC MATRIX OF ORDER(NA+NE+NC)
F IS USEDN IN THE U-D FORM.{THIS U IS DIFFERENT
FROM THE INPUT VARIARLE U(T).THE ARGUMENT OF THE
ROUTINE CONTAINS U(T)).
F=UxDI¥U (TRANSFOSEIN WITH D DIAGONAL AND U UFFERY
TRIANGULAR., THE ELEMENTS OF D ARE STORED IN THE
DIAGONAL OF F. THE ELEMENTS OF U ARE STORED IN THE
UFFER TRIANGULAR FART OF F. F I5 CHANGED IN THE
SURROUTINE.
U —~THE LAST INFUT VALUE
Y - THE LAST QUTFUT VALUE
LAMERLIA - THE FORGETTING FACTOR (TO BE ENTERED)
0.LT.LAMBDA.LE.L
K - THE CONTRACTION FACTOR
O LT KsLELL,
THIS FALCTOR CONTRACTS THE ROOTS OF THE
C - POLYNOMIAL . (THIS IS TO BE ENTERED)
THIS FACTOR IS USED IN FILTERING OF THE DATA
C - FARAMETER USED FOR THE REGULARIZATION (SHOULD BE
CHOSEN RATHER LARGE. TO BE ENTERED)
THIS LIMITS THE MAXIMUM VALUE OF THE DIAGONAL
ELEMENTS OF THE F - MATRIX
ISTABL - FLAG(TO BE ENTEREDD) FOR STARILITY TEST OF C(Z)
IF ISTAB1=0,NO MONITORING (STABILITY TEST AND
STEF SIZE RERUCTION) IS FERFORMED.
IF ISTAE1.NE.Oy MONITORING IS PERFORMED
ISTAE2 - INTEGER AT RETURN GIVING THE NUMERER OF STEF
SIZE REDUCTIONS FERFORMED
U - LOSE FUNCTION- SUM OF SQUARED PREDICTION ERRORS.
TRANSIENT FHASE IS INCLUDED



T3

[

T

10

26

C
£

EF3
EF81

INIT

FO -

~ GIVES THE PREDICTION ERROR ON RETURN
- BIVES THE RESIDUAL ON RETURN PROVIDED UFDATE USES
RESIDUALS BY IERi=]

- FLAG TO BE USEDL FOR STARTING THE RECURSION. IF
INIT=0s ALL FARAMETERS ARE UPDATED. IF INIT.NE.O»
AFPROFRIATE INITIAL VALUES ARE FIRST SET AND THE
FARAMETERS ARE UFDATED USING THE AVAILABLE DATA
Usy

SCALAR FARAMETER USED TO GIVE AN INITIAL VALUE(TO

RE ENTERED WHEN INIT.NE.O)
IF INIT.NE.O» F=FOXKI
IDIM - DIMENSION PARAMETER

IER1 - FLAG TO BE ENTERED, IF IERi=0» FREDICTION ERRORS
ARE USED' IN FPLACE OF THE RESTLUALS. IF IER1.NE.O»

THE ALGORITHM USES THE RESIDUALS.
IER2 - FLAG TO BE ENTERED. IF IER2=0, FILTERING I8
~ NOT USED IN THE ALGORITHM. IF IER2,NE.O»
FILTERING WITH POLYNOMIAL C(Z) IS PERFORMED,
ARSINID LLT. 190
IF IER1=0 AND IER2=0s THE ALGORITHM REIUCES TO THE
EXTENDEDN LEAST SQUARES CASE.

IF TER1=0» AND NB=NC=0, THE SUBROUTINE REDUCES TO A
SIMFLE RECURSIVE LEAST SGUARES ESTIMATE OF AR MODEL.

IF IER2=0s THE ALGORITHN FPERFORMS5 A5 RML1
DOUBLE FRECISION THETA{L) »P(IDIMsL1)sFSID(L)
FICIYoPSICL)yTETARCL) sWORK(L)yF(L129G{1)yULsY1sELsAL
1CIYEPSyEFSL/ALFAYPOIVsCryUsYsAXY DDy SyBETAYGANMA
DOUBLE PRECISION LAMEDASKsL{(1)s UARRA(1)sYARRA(1)
NN=NA+TNER+NC
TEST FOR INITIALIZATION
IFCINIT.EQ.Q)Y GO TO 100

Y=0, 10

D0 16 I=1yNN
DO 10 J=1yNN
F(Ip)=0,00
N0 15 I=1:10

© YARRA(I)=0.10

UARRA(I?»=0.10
00 20 I=1+NN
FOIs1)=FO
L{I)=0.,00
FI(I¥=0,00
FEICI)=0.10
NS=3¥NC
DO 30 I=1,N8
FEIMI)=0.10
RETURN
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160 NDS=ND
IF (NDS .LT..0) GO TO 103
LF (ND LLT: 1) GO'TO 102
B0 101 I=1.ND

J=NDI§+2-1 ‘ .
101 UARRA(Jr=UARRA(JI-1)
102 UARRA (L)Y =U
U=UARRA(NDH1)
GO TO 108

103 NOG=-NDIS
010 105 I=1sNDS
J=NDI5+2-1
105 TARRA(JY=YARRA(J-1)
YARRA(1) =Y '
Y=YARRA(NIG+1)
108 CONTINUE
COMFUTE FREDICTION ERROR
EFS=Y
00 110 I=1sNN
110 EPS=EPS-FI(I)KTHETA(ID)
0 COMFUTE NEW FARAMETER ESTIMATES
ANY=1.
C © TEST FOR NEED OF MONITORING
IF(NC.EQ.0)GO TO 200
IF(ISTARI.EQ.0)GD TD 200

18TAR2=0
120 0 136 I=1,NC
~ NI=NAtNEt]
130 TSTAR(I4H1)Y=THETA(NI)+L (NI ) XEFSXAMY

TSTAR(1)=1,
C TEST FOR STARILITY OF C(I)
CALL NSTABL(TSTAE,NCsWORKsIST)
IF(IST.ER.0IGD TO 200
ARY=ANY/2.
IGTAR2=I5TARZ2+1
IF(I5TABZ .GT. 25) RETURN

G0 TO 120
C UFDATE FARAMETER ESTIMATES
200 [0 210 I=1sRN
210 THETACI ) =THETACI)+L (1) KEFSKANY
IF{IERL1.EQ.0)GO TD 2350
G COMFUTE RESIDUALS
EFS1=Y
0 220 I=1:NN
220 EFS1=EFS1-FICI)XTHETAC(LD)
250 IF (IER1EQ.0)EFS1=EFS
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§30
450

700
720

760
776

COMFUTE FILTERED SIGNALS AND STORE IN FSID ARRAY
Yi=Y

Ui=U

E1=EF§1
IF(IER2.EQ.0)BD TD 670
IF(NC.ER.0)GO TO 670
[0 620 1=1yNC
CI=THETA(NA+NE+I)¥KKXI
Y1=Y1+CIXPSIN(I)
UL=U1-CIKPSINNCHD)
E1=E1-CIXFSID(2KNCHD)
IF(NC.EQ.1)60 TO 650
UFDATE FSID VECTOR

DO 630 I=2sNC
11=NCH2-1
PEIN(IL)=FSID(IL~1)
12=NCHNCH2-1
PSID(I2)=PSID(I2-1)
13=NCHNCHNCH2-1
FSINCI3)=PSID(I3-1)
FSIN(1)=-Y1
PRID(NCHD) =UL
FSIN(NCHNCH1)=E1
UFDATE VECTORS FI AND PSI
CONTINUE

IF(NA.EQ.1)B0 TO 720

D0 700 J=24NA
T=NA+2~J
FI(I)=FI(I-1)
FSICI)=FSI(I-1)
FI(1)=-Y

FEIC1)=-Y1

IF (NE.EQ.0)BO TO 750
IF(NB.EQ.1)60 TO 740
N0 730 J=29NE
I=NA+NB+2~-J
FICD=FI(I-1)
FSI(I)=PSI(I-1)
FI(NA+1)=U
FSI(NA+L) =U1

IF(NC.EQ.0)B0 TGO 7890
IF(NC.ERG.1)GO TO 770
a0 760 J=2»NC
I=NATNE+NC+2-J
FICD)=FI(I-1)
FSI(I)=FSI(I-1)
FI{NA+NB+1)=EFS51
FSI(NA+NRT1)=EL



780 CONTINUE

: COMFUTE GAIN VECTOR L» UPDATE F AND V

DO 810 I=2sNN

J=NN+2-1

ALFA=PSI(D)

Ji=J-1

B0 800 KK=1»J1

800 ALFA=ALFA+P (KK JIXFSI(KK)
FOJ=ALFA

810 GCIy=P(Jr JIXALFA

GC1I=F(1s1)XFSICL)

Fei)=PsI(DY

ALFA=LAMBDA+F (1) XG(1)
GAMMA=0,
IF(ALFA.GT 0. )GAMMA=1,/ALFA
TF(B(1).NELOIF(1y1)=GAMMAXF(1s1)
00 830 J=2yNN
RETA=ALFA
po=G6(J)
ALFA=ALFA+DDXF (J)
IF{ALFA.EQ.0.) GO TO 835
AL=~F (J)XBAHHA
Ji=d-1
DO 824 $=1,J1
S=F(I+J7
F(IsJy=5+ALXG(I)

820 o G(IY=G(I)+DD%S
GAMMA=1./ALFA
F(JsJ)=BETAXGAMMAXF (J»J)/LANBDA
FCJrd)=MIN(P{Jsd)sC)

830 CONTINUE

V=U+EFSKX2/ALFA
834 CONTINUE

D0 B40 I=1,NN
840 L{IY=G(I)/ALFA

RETURN

END
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99

L=

SUBROUTINE NSTABL (AN UWsIST)

TEST FOR STAEILITY

[OUBLE FRECISION A(L)sW(1)sAL

187=1

Ni=N+1

B0 1 I=1sN1

WD =a(D

W(N1+D)=0,

K=0

IF(K.EQ.N)GO TO 99
NK1=N-K+1

DD 11 J=1sNK1
WINL+J) =W INKLI-J+1)
IF(W(N1+NK1),EQ.0.)GO TO 98
AL=W{NK1}/WINL+NKL)
IF(ABS(ALY.G6E.1.,0)60 TO 98
HK=N-K

00 12 J=1yNK

WD =W O -ALXU(NLED)
K=K+1

G0 70 10

RETURN

18T=0

RETURN

END
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SUBROUTINE RG(AsNAYNsyVsNVINLOWINUFYERYEISTYFE»SUFDy

1 NDELsNF1yNBLOCK,EFSyINFO)
INTEGER NAsNsNVyNLOW,NUPsNBLOCKs TYPE(N) s NDEL (NF1)
DDUELE FRECISION EFS»A(NAsNIyV(NVSNI»ER(N)»EI(N) ySUFDII(N)

RG FINDS THE EIGEN VALUES OF A MATRIX. ALSO IT HAS CAPARILITY
OF FINDING EIGEN VECTORS TOO. TO BE ABLE TO FIND EIGEN-
VECTORS SUBROUTINE ELMBTR WHICH HAS BEEN COMMENTED OUT MUST

ON

ON

BE CALLED.

ENTRY

A CONTAINS THE INPUT MATRIX

NAsN LEADING DIMENSION AND COLUMN DIMENSION OF A

NLOW» LOW AND HIGH INDEX OF DIAGONAL FOSITIONS OF THE

NUF FORTION OF A TO BE REDUCED TO SCHUR FORM

RETURN

fi DESTROYED ON OUTFUT

Y CONTAINS THE PRINCIFAL VECTORS OF A

NV LEADING DIMENSION OF V

ERsEI REAL AND IMAGINARY PARTS OF THE N EIGENVALUES OF A

TYPE (INTEGER) FLAG ARRAY INDICATING THE TYFE OF EIGENVALUE
(0 => REALs 'l => FDS, CONJUGy 2 =» NEG CONJUG) ‘

SUFD SUFERDIAGONAL COUFLING ELEMENTS (INDEXED ON THE COLUMN
FOSITION)

NDEL FLAG ARRAY RECORDING THE LOCATION ANDI SIZE OF THE
BLK TRIANBLES, (NDEL(I+1) IS THE BOTTOM CORNER OF BLKN I

NBLOCK NUMBER OF JORDAN MATRICES FOUND



INFO = 0 NORMAL RETURN

¢
C
C = 1 LACK OF CONVERGENCE IN INITIAL OR DECOMFOSITION
C TYFE(I) = -1 ARE THE UNCONVERGED EIGENVALUES
C
£ W wemmeme——— EFS IS THE RELATIVE MACHINE FRECISIONy I.E. 2X%(1-T)
G WHERE T IS NUMBER OF RINARY LIGITS OF FLOATING FT
C MANTISSA (FOR IBM 148%%(1-14) = 2.,220-16)
C .

IORDER=0

FNORM=C . 000

N0 10 I=1yNb

00 10 J=tsH

FNORM=FNORMTA{IyJi*A(IrJ)

10 CONTINUE

CAHLL ORTHES(NAsNINLOWsNUFyAySUFD)

CALL ORTRAN(NAYNVYNsNLOWINUFsAsSUFDV)

CALL HORI(AYNAYNINLOWINUFsIORDER»VINVSERSEIYyTYFESSUFIWEPS)
I
£ +++ SET UF FLAGS FOR ELMBTR
C

NOEL(1)=0

NELOCK=1

00 100 I=1.N
S SUPD(II=0.0D0 :

IFCTYPECI) WLT40) INFO=I

IFCTYPECD) WEQ.Z)Y GO TO 100

MNELOCK=NBLOCK+1 '

NIEL (NELOCK) =NDEL (NELOCK~1)+TYPE(I)+1
16¢ CONTINUE

NBLOCK=NBLOCK-1

i3

+vo ELININATE TO BLOCK TRIANGLAR FORM
QQQQQQQiﬁ.OTD SAUE SUME CF'U TIMEQO’QOOQOOQO'OO

[aw

CALL ELMETRCAsNAsNsVyNV»ERYETyTYPEsBUFDNDELINFLy
1 NRLOCKsFNORM,EFS)

FETURN

END
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