
NASA Contractor Report 170412 

NASA-CR-170412 
19840012444 

Reall·Tilme Flutter Analysis 

Robert WaU(er and Naren GlUpta 

Contract NAS4-2955 
March 1984 

National Aeronautics and 
Space Administration 

11111111111111111 111111 11111111111111111111111 
NF02565 



NASA Contractor Fieport 170412 

Reall·Tilme Flutter Analysis 
Robert Walker and l\Iaren Gupta 
Integrated Systems, Inc., 151 University Avenue, Suite 400, Palo Alto, California 94301 

Prepared for 
Ames Research Center 
Dryden Fliblht Research Facility 
Edwards, California 
under Contract NAS4-2955 

1984 

NI\S/\ 
National Aeronautics and 
Space Adm~nistratiol1 
Ames Resellrch Center 
Dryden Fligllt Research Facility 
Edwards, California Sl3523 

r 
;/1'1--cA cJ~7~ 



FOREWARD 

The report documents techniques~nd a FORTRAN 77 computer 

program for the identification of flutter-mode frequencies and 

damping ratios in near-real-time. Recent advances in recursive 

identification algorithms and analysis are applied to the flutter 

test problem. The accuracy and convergence of the algorithms are 

predicted analytically and substantiated with results from simu­

lated and flight data. The results show promise for monitoring 

aircraft flutter characteristics in real-time with a high degree 

of reliability. 

The work has been performed under NASA contract NAS4-2955. 

Technical direction and discussions with NASA technical monitor 

Mr. :Glenn Gi~~ard and with Mr. Richard Maine are gratefully ac­

knowledqed. ) 
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SECTION 1 

INTRODUCTION 

Real-time monitoring of flutter parameters can significantly 

improve safety of flight tests for new and modified aircraft, 

reduce flight test time, and aid envelope expansion. The moni­

toring system must be reliable and accurate and should require 

minimum inputs from the operator. To aid flutter clearance of 

many aircraft, it is desirable to monitor flutter characteristics 

with randomly forced (turbulence excitation) as well as known 

forcing inputs. The most success is likely to be achjf~ved with 

the use of advanced system identification techniques. For wide­

spread use, the computation time should be suitable for a real­

time implementation and a standard computer language like the 

ANSI FORTRAN-77 is desirable. 

The goal of this effort is to develop a computer program-­

based on an identification algorithm--with excellent accuracy and 

convergence performance in estimating flutter mode ~haracteristics 

of test aircraft from real data. 

1.1 SUMMARY OF APPROACH 

A summary of the approach used to develop and document the 

near-real-time flutter analysis program is shown in Figure 1-1. 

The performance of two different algorithms was evaluated 

with a high-level command-driven identification and control pro­

gram called MATRIXX [1]. This capability enabled a thorough 

yet efficient evaluation of the algorithms before implementation 

and testing of the Near-Real-Time Flutter Analysis (NRTFA) pro­

gram in FORTRAN-77 source code. 
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• Reliability and Convergence 
Characteristics 

• Estimation Accuracy 

• Computation Time and Memory 
Requirements 

SOFTWARE DEMONSTRATION 

• Simulated Data 

• Test Data 

r 
EVALUATION OF ESTIMATION ACCURACY 
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• Effect of Modeling Error 

• Effect of Data Dropouts 

DOCUMENTATION 

Figure 1-1 Real-Time Flutter Analysis Approach 
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1.2 RESULTS SUMMARY 

The selected techniques are based on recursive prediction 

error methods (RPEM), which can emulate a maximum likelihood, 

instrumental variables and least squares. 

The Cramer-Rao estimate error accuracy bounds for a two-

active mode model predict that the critical parameter, damping, 

can be estimated quite satisfactorily after approximately 500 

data points. Actual simulations indicate that the convergence 

transient from no a priori information lasts slightly longer, but 

that for long data records of 2500 data points, damping ratios 

can be estimated very accurately «.05% error). Modal parameters 

can be estimated from unknown inputs (turbulence excitation) with 

sufficient accuracy when the signal-to-noise ratio is approximately 

ten or greater. For lower turbulence levels almost any known input, 

even at very low levels, significantly improves the estimation 

accuracy. 

The delivered algorithm tracks the flutter mode of the third 

DAST flight quite successfully, indicating where the damping 

trend breaks toward zero at the 6nset 'of a pulse response decay, 

prior to the flutter condition. Quantitative comparisons of the 

convergence, robustness and accuracy of the recursive identifica­

tion algorithm analysis and simulation results show the near-real­

time flutter analysis (NRTFA) program to be highly reliable. 

1.3 REPORT ORGANIZATION 

Candidate algorithms and the associated model forms most 

suitable for use with them in flutter testing are described in 

Section 2. The reliability, robustness and accuracy of these 

flutter mode estimates are evaluated in Section 3, supported by 

results on simulated and flight data in Sections 4 and 5. The 

program architecture, configured with an interactive driver which 

calls the appropriate identification subroutines, with an instal-
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lation guide is documented in Section 6. The memory and CPU 

requirements for the flutter analysis program as it is now con­

figured are also given. Appendix A serves as a brief User's 

Guide giving an example interactive setup session, with guide­

lines for parameter setup options, and a description of the modal 

parameter estimate output. Appendix B gives the FORTRAN listings 

of the principal routines of the NiTFA program. 
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SECTION 2 

REQUIREMENTS FOR REAL-TIME FLUTTER ANALYSIS 

The development of a system identification software 

package to monitor aircraft flutter characteristics is 

influenced by the following considerations: 

1. The basic requirements in real-time flutter analysis 
involves estimation of damping ratios and changes 
in natural frequencies of aeroelastic modes. Mode 
shapes are not required but may be determined if 
they improve damping ratio and natural frequency 
estimates. Physical parameters are usually not 
estimated in real-time. 

2. Several flutter modes must be tracked simultaneously. 
The modes can be closely spaced. For successful 
real-time implementation, computational efficiency 
is very important. 

3. The real-time software must be robust and reliable 
because its failure could cause delay or termina­
tion of a flight test. 

4. Since the flight test engineer is generally busy 
with several tasks during the flight test, the 
software should require minimum commands during the 
test. Set-up parameters, if any, should be entered 
prior to the flight test, and the algorithm should 
be able to restart without entering any startup 
values. 

5. Because of the damping ratios of flutter modes are 
required with high precision and the data is often 
noisy, advanced identification techniques are 
highly desirable whose convergence properties and 
accuracy performance can be analyzed. 

6. The estimated parameters must be updated at regular 
intervals to continuously track any changes in 
flutter characteristics. Thus, a recursive tech­
nique is desirable. 
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The following characteristics of a real-time flutter­

monitoring software package determine the extent to which 

the above requirements are met. 

1. model representations, 

2. identification procedures and robustness 
characteristics, and 

3. numerical techniques, program architecture and 
input/output structure. 

These issues are interrelated since identification 

procedures and numerical techniques depend on the model form. 

The model form affects the shape of the criterion function 

we seek to minimize with respect to the parameters, as well 

as the type of equations which must be propagated to find 

the gradients. This section explains why certain model 

forms and algorithms are preferred for real-time flutter 

analysis. The identification algorithms are broadly grouped 

as recursive and block recursive algorithms. Robustness 

characteristics, numerical techniques and a suitable program 

architecture are discussed in subsequent sections. 

2.1 Model Forms 

Three model forms can be used: 

1. transfer function or continuous autoregressive 
moving average (ARMA), 

2. sample-data transfer function or discrete ARMA, 

3. state variables in continuous or discrete forms. 

2.1.1 Transfer Function 

The q x 1 input u to p x 1 output y transfer 

function is 

6 

yes) 
u(s) 

= T(s) , (2.1) 



which may be written as 

T(s) N(s) 
D(s) 

n R. 
1 

2: 
i=l (s + Ai) 

(2.2) 

(2.3) 

N(s) is a matrix polynomial and D(s) is a scalar poly-

nomial in s . 

pole functions. 

R. 
1 

are p x q matrices and A. 
1 

are the 

For scalar input and output, the transfer function is 

also written as 

m 
T(s) = KL: 

i=l 

(s + z.) 
1 L 

i=l 

(2.4) 

where z. are the zeros and K is the gain. A continuous 
1 

autoregressive moving-average form is 

n m 
(n) +~ (n-1) =i: B. (m-1) (2.5) Y a. y . u 

1 1 
i=l i=O 

where y(j) is the jth derivative of y 

2.1.2 Sampled Data Transfer Function 

This transfer function and ARMA representation is 

similar to the continuous transfer function except a z-trans­

form is used in place of the s-transform. Thus 

(2.6) 

where 

(2.7) 

This model can be written in any of the forms corresponding 

to Equations (2.3) to (2.5). 
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The representation maps the imaginary axis into the 

unit circle. Lightly damped oscillatory continuous modes 

will be close to the unit circle in the ARMA formulation, 

depending on how far the continuous roots are into the left 

half plane and the sampling time. The continuous damped 

frequency and sample time determine the angular orientation 

of the poles in the z-plane, 

e -1 2 ~ 
= Tan w (1 - S )2 T 

n 

The different discrete polynomial models for both known 

and unknown inputs and their state-space realizations are 

discussed more fully in the next subsection on recursive 

algorithms, where they are particularly attractive. 

2.1.3 State Variable Models 

Defining the state vector as x, a state variable 

model is written as 

x = Fx + Gu + rw (2.8) 

y Hx + v 

w is the process noise vector and v is the measurement 

noise vector. F, G and H matrices can take various forms 

depending on the particular selection of the state vector. 

In many offline applications, the state vector is selected 

to represent a set of physical quantities (e.g., body rates, 

deflection at a certain point on the wing). Such represen­

tations give rise to physical parameters, such as stability 

and control coefficients. 

In real-time flutter analysis, the natural frequencies 

and damping ratios of aeroelastic modes are of primary 

interest. Since a state variable model [F, G, H) has the 

same input-output behavior as a [TFT- 1 , TG, HT- 1 ] model if 
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T is a nonsingular matrix, the following representation 

appears useful (for single-input systems): 

B 1 1 1 
11 1 1 

---~---~----~------
1 1 1 
1 B 1 1 
1 2 1 1 
1 1 1 

F = ---1---~----~------
1 1 1 
1 I' [ 
[ 1 1 
1 1 .1 

-- - -t.- --~ -----1- ------
[ liB 
1 lin 

0 1 

B. 2 1 
-(;j - 2!;i]Jn. n. 

1 1 

G = 

(J 

or 

-(;j 

'-

o 
1 

o 
1 

o 
1 

(2.10) 

llJ 

(2.11) 
(5 

and H is a general matrix with potentially all nonzero 

elements. With multi-input systems, the remaining part of 

matrix G is general and unknown. r is a general matrix. 

The turbulence excited structural vibrations are of 

special interest. In this case G = O. For the purpose 

of identification, the Kalman filter representation is 

desirable 
. 
A 

x = 

y = 

A 

Fx + Gu + Key - Hx) 

Hx + v 

(2.12) 

[F,G,H,r] have been mapped into [F,G,H,K] It is usually 

easier to identify K rather than r , and in general 

requires fewer parameters. 

In the state variable form, the natural frequencies and 

damping ratios of all modes are estimated directly. The 

measurements are, however, nonlinear functions of parameters 

leading to a more difficult convergence problem. 



The propagation of the linear equation, as well as the 

computation of the gradients of the innovations with respect 

to parameters are much more easily accomplished with a dis­

crete space model of the form 

= 

= 

where and are independent, identically distributed 

sequences with zero mean. If the time variation of the 

estimator during the transient phase is important or there 

is a priori structural knowledge about the noise covariance matri­

ces that considerably reduce the number of parameters below pn, 

the dimension the Kalman gain matrix K (where p is the 

number of outputs and n the number of states), then the 

general equations above should be considered. In real time 

flutter identification, the r matrix generally will not be 

known, nor the structure of the noise covariances, making 

the innovation form a much more desirable set of eqautions. 

They are given by 

= 

= 

where {vk } is a sequence of independent variables with 
A 

zero mean. Moreover, the model generating y from y , 

i.e., y = H(zI-F+K H)-ly , is stable (eigenvalues of 

F-KH are in the unit circle). In the next subsection, we 

will see that ARMA type-models have direct realizations as 

a state-space innovations form. 

The discrete controller and real Jordan block form, analogous 

to the continuous block forms described previously, both keep 

a simple parameterization of an oscillatory mode; however, 

10 
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the real Jordan block form is a preferable canonical form 

for identification of physical systems, generally giving a 

better conditioned optimization problem as described below. 

Consider a single mode (a general system is a linear com­

bination of such modes) of a continuous system 

1 x o 
u, 

v 1 

y = 

The input is an acceleration forcing the velocity 

equation, with position the integral of velocity. The 

discrete form of this equation (for a pure oscillator using 

the simplest case) is 

v 
""k+l 1 

= 

sinew !:,) n. 
w n 

Yk = rh , 1 

sinew !:,) 
n 

w n 

1 
-2 
w n 

h
2

] [::] 

x k 

vk 

2 w - 1 -n 

sinew !:,) 
n 

w 
n 

If time is normalized such that for the primary mode of 

interest, w = 1 , then the above discrete equations are in n 
real Jordan form. Consider, in addition, the identification 

of the mode in both the block real Jordan form and the block 

controller forms of Equation (2.10). The two equations are 

11 



= = 

= = 

where in both cases the H matrices have been changed to fix 

G at [0 l]T , and conserve the residues. For our one mode 

example the parameter vectors are 

h hi mi 

h h2 

l-: -:J 
m2 e and e = for 

0 -b 

CD -a 

The gradients of the estimate with respect to these two 

different parameterizations expressed in the real Jordan form 

state variables are 

and 

where 

T m 

~ 
de 

= 

,and T = 

The Hessian, or information matrix is approximated by the 

outer product of these two gradients. If 

12 



x1(k) 

<P = 
x

2
(k) 

M = 
x1(k-l) 

X 2 (k-l)J 

then 

v .... \ = T MT T and M = m m m 

In other words the transformations, 

N 

L 
T 

<P <P 
k=:l 

~ 

M TT T 

T 
m 

and T are 

directly effecting the condition of the estimation problem. 

Since we are referencing both to the real Jordan form, 
-r 

K~(Tm) = 1 , or it is perfectly conditioned with respect to 

its own coordinate system whereas K2 (T) can be quite large. 

It was pointed out above that continuous modes driven 

directly by accelerating forces, give discrete models that 

are closer to being in real Jordan form, hence transforma-

tion to the block controller form can only make the numeri­

cal conditioning of the information matrix worse, Of course 

in high order physical systems the phase relationships 

between modes can be such that this preference for the real 

Jordan form over the block controller form would no longer 

hold. However, the primary modes in flutter testing are 

expected to sufficiently follow the phase behavior of a 

simple oscillatory mode, that the real Jordan form will be 

used. 

Having described different model forms and reasons for 

preferred ones, the next two subsections describe the 

algorithms used to identify the parameters of these model 

sets. 

-r 
The condition of a matrix A with respect to any norm x is 

K ( A) = II A II II A-
1 II . x x x 

13 



2.2 Recursive Identification Algorithms 

Recursive identification refers to identification 

algorithms that update parameters at every sampling instant. 

Such algorithms are characterized by finite non-increasing 

storage requirements. Typically they are well-suited for 

on-line,real-time identification on computers of modest size. 

For single-input single-output systems in linear finite 

dimensional form, the AutoRegressive Moving Average with 

eXogenous inputs (ARMAX) models are popular. They are 

represented with the difference equations: 

-1 -2 -NA _ -1 -(NE-l) 
(1+a1z +a2z ... +aNAz )Yk+l - (bO+b1z ... +b(NB_l)z uk 

-1 -2 -NC + (1+c 1z +c 2z ... +cNCz )ek +1 

or 
-1 

A(z )Yk+l = -1 -1 . 
B(z )uk + C(q )ek+1 

where 

are the outputs 

are the exogenous inputs 

are the innovations or white noise. 

-1 -1 
z represents the unit delay operator, i.e., z Yk = Yk-l 

Inputs and outputs are observed but the innovations 

sequence is not observed. In the transfer function language, 

-1 y(z ) 

C(z-l) always represents a stable polynomial, i.e., all its 
-1 roots are inside the unit circle. In general B(z ) and 

-1 A(z ) are not stable and not comprime. A general black-box 

14 



model 

= -1 
e(z ) 

can also be used but they have not been very popular, partly 

because the ARMAX formulation can subsume the general form 

without substantial penalty. The ARMAX form can be seen 

as an implementation of the so-called observer cannonical 

state-space form, 

= 

= 

F = 

H = 

-a1 l0 ... ° 
-a2°1. ... 
-a ° 3 

1 

'1 

-a ° ° n 

[1,0 ... 0] 

G = 

b 
n 

K = 

c -a n n 

The vector ARMAX models consist of the vector difference 

equations 

-1 
A(z )Yk+l = 

-1 -1 
B(z - )u

k 
+ C(z )e

k
+

1 

where 

are vector outputs, 

are vector inputs 

are vector innovations 
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Some special model forms also have names, 

-1 
A(z )Yk+1 = -1 

B(z )Uk + ek +1 

is known as equation error form. It is obtained as a special 

case of the ARMAX form by setting Ceo) = 1 . 

Setting P(·) = 0 and C(·) = 1 gives the autoregressive 

CAR) form: 

-1 
A(z )Yk+1 = e k +1 

Setting A(z-l) = 1 and E(z-l) = 0 gives the moving 

average (MA) form: 

-1 
Yk+l = C(~ )vk +1 

The ARMAX forms most useful in identifying flutter modes 

are the recursive least squares (RLS) model (F(z-l) = C(z-l) 
-1 

= D(z ) = 1) , useful with persistent known inputs of 

reasonable magnitude with a very large signal-to-noise ratio, 

and the recursive maximum likelihood (RML) method [2] 
-1 -1 (F(z ) = C(z ) = 1) , useful for modeling with unknown 

input (the B polynomial can be zero when there is no known 

input) or with considerable noise disturbance. Identifying 

the C(z-l) polynomial is equivalent to identifying the 

Kalman gain directly in a state-space innovations form model 

(described previously). 

2.2.1 Recursive Least Squares (RLS) 

RLS is a very popular recursive identification 

algorithm. It is very simple to implement and provides 

reasonable estimates with excellent robustness. 

RLS gives exactly the same estimates as the batch least­

squares on the cumulative data. In addition to giving the 

least squares parameter estimate at each time instant, RLS 

also permits forgetting of past data to accommodate quasi-

16 



stationary models. It also permits incorporation of prior 

uncertainty about the starting values of the parameter 

estimates. The model underlying RLS is the same as the 

one for batch least-squares, 

y(k) = ¢(k)8(k-1) + e(k) 

In the context of linear dynamical systems the auto­

regressive form and the equation error forms can be trans­

formed to RLS form with 

-nA anAz )y(k) = e(k) 

-y(k-1) 

= -y Ck-2) 8 = 

-Y(k-nA) 

and 

-YCk-1) a
1 

-YCk-2) a 2 

¢k = 8
k = 

-YCk-n) a nA 
U(k_1) b 

0 

u(k_2) b1 

u Ck- NB ) bNB - 1 
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2.2.2 Recursive Maximum Likelihood (RML2 [~ . .u 

Estimation of the A, B, and C polynomials of the 

ARMAX model: 

-1 -1 -1 
A(z )Yk = B(z )uk + C(z )ek , 

is called recursive maximum maximum likehood. For SISO 

systems, since A and B are both monic polynomials, this 

equation can be written as 

= 

The one step predictor of Yk based on a certain set of 

values of a., b. and c. , denoted bye, is as follows 
1. 1. 1. 

= 

The one-step-ahead prediction error is given by 

= 

The prediction error methods are based on the minimization 

of a quadratic function of the form 

The above minimization problem is nonlinear in e. Hence 

an explicit solution is not available, Therefore, a numeri­

cal search procedure is used to find e 

Differentiating J with respect to e gives 



N 

J == L: E:k ( 8 ) V E:k ( 8 ) 

k=l 

VJ and VE: k (8) are the gradients of J and E: k (8) . The 

second gradient is given as follows 

N 

L: 
k==l 

From the prediction error equation 

'" VE: k (8) = VY k \8 

The Hessian, V2J , will now be approximated at the true 

V
2

J can be shown to be 

zero at the true parameter value. Since the true Hession is 

more important close to the true minimum than elsewhere, we 

approximate the Hessian by the first term of V2 J which, in 

minimum of J the second term of 

vimvof 'i7E:K(8) , becomes 

N 

L: 
k==O 

Further approximations are needed in order to obtain a recursive 

Gauss-Newton algorithm from the above equations and compu­
tation of E: k (8) requires all the data up to t. This 

computation is approximated by using the latest values of 

the data and the parameter estimates. Different approaches 

to affect this approximation lead to several algorithms. 

The RML2 algorithm uses the following approximation 

19 



wh~re 

-
e(k) = y(k) - ~(k)e(k-i) 

¢(k) = 

y(k-i) 

y(k-n ) a 
u(k-i) 

s(k-n ) c 

and e = Yk - ~kek are the residuals or the a posteriori 

prediction errors. 

2.3 Block Recursive Identification Algorithms 

In block recursive or semi-batch algorithms a block of 

data is stored in active memory and the identification 

routine may make several passes over the data. When the new 

data block is brought in, the old one is discarded. Maximum 

likelihood techniques are well suited to this situation, 

particularly in the known input case where an output error 

minimization can be used. Sensitivities of the outputs with 

respect to parameters are propagated as well as the estimate. 

The parameters of the Kalman gain in the innovations form 

can also be propagated for the unknown input case. 

Two algorithms were developed in a high-level inter­

pretive language [1] to study their performances. The 

first propagates the analytic sensitivities of a SISO system, 
propagating the minimum number of equations possible. The 

second algorithm is structured for a general MIMO system 

with potential nonlinearities. The sensitivities are found 

by perturbing the nominal model. The following sets of 

20 



discrete equations are propagated 

where 

f(x
k

,u
k

,8) 

f(xk ,uk ,8+l'I8
1

) 

8 = 8 mxl 

x o 

x 
o 

o 

o 
(m+l)nxl 

The outputs and associated innovations at each time point k 

are: 

z m 

= 

h(xm,u, 8+l'I8 
m 

=> 

\> 
m 

z -z 
o 

(z -z)-(z -z) 1 0 

z -z m 0 

and 

Rather than analytic sensitivity time histories as the 

regressors, the perturbed sensitivities are regressed on the 

nominal innovations to identify a scaled version of the 

parameter step, 

= 88 '¥(88/l'I8) 

The parameter update equation is 

89,+1 = 89, - (08/l'I8)9, . diag(l'I8 i ), where is the 

interation count. The parameters associated with measurement 

equation above are updated with a U-D update performed once 

\> 
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for the entire data block. The measurement covariance is 

estimated by 

= diag{ [v 
o 

Results using this algorithm on a two mode example with very 

lightly damped modes are shown in Section 4.3. 
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SECTION 3 

ALGORITHM RELIABILITY, ACCURACY AND ROBUSTNESS 

~he previous section described both a general class of 

recursive estimators called recursive predictive error 

methods and a semi-batch maximum likelihood algorithm for on­

line flutter identification. Application of such algorithms 

to flutter identification can not be made in a useful way 

without a qualitative and quantitative assessment of the 

reliability, accuracy and robustness of the algorithms. By 

reliability we mean, can the algorithm fail to converge, 

converge to a wrong value or give grossly erroneous accuracy 

estimates? An accurate, but large parameter error estimate 

is reliable information, quantifying the appropriate confi­

dence in poorly identifiable parameters. The accuracy of 

parameter estimates can be assessed in three ways; simula­

tion, the Cramer-Rao bound or estimates of this bound from 

either the propagated covariance or limit evaluation. All 

three accuracy measures and their use with flight data are 

discussed in this section. Robustness of flutter identifica­

tion algorithms addresses the ability of the algorithm to 

m!~intain reasonable accuracy under violations of assumptions 

on the model and experiment. Thus, all three of these 

algorithm attributes are inter-related as will be elaborated 

in subsequent discussion. 

3.1 Algorithm Reliability and Convergence 

The primary reliability issue for flutter identification 

algorithms is convergence. 

• Do the estimates of the modal parameters converge? 
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• If the estimates converge, what is their limit? 
Is it unique? 

• What is the convergence rate and the accuracy of 
the estimates? 

The semi-batch maximum likelihood algorithm requires 

good a priori estimates for convergence, but the convergence 

is quadratic in the neighborhood of the true values. An 

example is shown in Section 4.3 where RPEM applied to only 

100 points can give excellent ML start~up values from an initial 

RPEM estimate of zero for all parameters. Quite a bit can 

be said about the convergence of recursive predictive error 

methods. The conclusions are affected by the user choice 

of model set, choice of input signal, choice of criterion 

function, choice of gain weighting sequence, choice of 

numerical serach direction, and choice of initial conditions, 

as well as the selection of the "approximate" gradient of the 

predictor (see Ljung and Sodestrom [3] for a thorough dis­

cussion of all these issues). Here we summarize general con-

clusions on RPEM applicable to the chosen model sets (see 

Section 2.2) and experimental conditions experienced in 

flutter mode monitoring. 

The recursive predictive error method will converge 

with probability one to a local minimum of the expected 

cost as N, the number of observed data, tends to infinity. 

Whether local minima exist apart from the global minimum, 

depends on the model strucure chosen. For the auto regres­

sive form 

and ARMA form 

= 
-1 

C(z )e
k 

no false local minima exist [4]. For the equation error 

model set, 
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A(z )Yk = 



no false local minima exist since the cost is quandratic in 

the parameters. 

For the ARMAX (!uto ~egressive Moving !verage with 

e~ogenous inputs) model set, 

-1 
A(z ) Yk+1 

-1 -1 
B(z ) uk + C(z ) e k +1 

The negative log likelihood function of the ARMAX form has a 

unique global minimum if the signal-to-noise ratio is sufficiently 

large. Local minima do exist if the signal-to-noise ratio 

is very small [5]. This will be the principal model used, 

with the Recursive Prediction Error alg9rithm (RPEM [3], 

also known as RML2 [2] for the ARMAX form), which implements 

the Gauss-Newton update for parameter estimates. 

The RML1 algorithm [2] and the AML (approximate Maxi­

mum Likelihood) algorithm of Solo [7] use a further approxi­

mation in the Gauss-Newton update which in turn poses the 

so-called Strict Positive Real condition for convergence [8]. 

However, the projection of the estimates into a region of 

stability is not needed with AML. Even the problem of the 

estimates getting trapped into local minima disappears. 

If the identifiability conditions are not met, the parameter 

estimates do not converge, but the prediction-error sequence 

does converge to its minimum value. 

Starting RPEM or RML2 as AML and gradually shifting to 

fully RPEM or RML2 is possible by using the so-called con-
A --1 traction factor on the estimated C(z ) polynomial [3]. 

Doing so eliminates the problem of getting trapped in the 

local minima if they exist. The transient convergence rate 

is also markedly improved. 

Another significant assertion about the above conver­

gence results, is that convergence holds whether or not the 

actual system has the same model structure as the chosen 

one. The identification procedure will pick the "best" 
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approximation of the system, or in other words the approxi­

mation from the selected model structure which best mini­

mizes the prediction errors. However the identified model 

may depend on the input, since the best approximation for a 

sinusoidal input, for example, may be different than for a 

white noise input. If the selected model structure is 

exactly the same as the true system, the "best approximation" 

is equal to the true system, independent of the input. 

In summary, these black-box models are highly desirable for 

identification of flutter modes where a detailed model of the 

aircraft may not be available and could change considerably during 

a flutter test. 

Thus far we have described whether the proposed algorithms 

converge and if so, whether they converge to a unique global mini-

mum. In the next section a description of asymptotic distribution 

of the estimate 8(t) will be given, which provides both the rate 

of convergence and the accuracy of the estimates asymptotically. 

It should be emphasized that there is no similar analysis for the 

transient convergence behavior of recursive algorithms, and that 

this behavior is very strongly a function of the "user choices" 

mentioned at the outset of this section. Transient convergence 

behavior can best be investigated by simluation. The simulation 

performance,of the model analyzed theoretically in Subsection 3.22, 

for short, intermediate, and long data records is given in Section 4. 

3.2 Estimation Accuracy 

The semi-batch maximum likelihood method and the recur­

sive prediction error technique propagate the covariance 

matrix (inverse of the Cramer-Rao information matrix). This 

matrix is propagated in the U-D factored form. The Cramer­

Rao bound is based on an assumed noise distribution, typically 

Gaussian noise sources, which may not hold in flight tests. 
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Also the bound holds for the asymptotic nature of the 

parameter estimates. The physical environment and system 

characteristics can change before a long enough data record 

can be processed, to achieve the asymptotic behavior. 

The estimation errors predicted by the Cramer-Rao bound 

are usually too small. However, it provides an excellent 

measure of relative parameter estimation errors. Experience 

[9] has shown that in stability and control derivative esti­

mation, the Cramer-Rao bound should be multiplied by a 

factor of three to five to obtain actual estimation errors. 

In model parameter estimation with high band width sensors, 

the factor is closer to two based on limited experience. 

The simulation cases of Section 4.4 show the actual errors 

and the theoretical bound (computed from the true model). For 

the long data simulation sequences, the bound gives a good 

accuracy estimate for the input noise sequences, which are 

Gaussian in the simulations. 

For both the semi-batch maximum likelihood approach and 

the recursive predictive error method, the information matrix 

inverse is approximated as 

-1 P = M = 
-1 

In other words the second gradient of the criterion function 

(V) is approximated as a weighted outer product of the 

first gradient of V with respect to the parameters, where 

R is the estimated innovations covariance. 

3.2.1 Maximum Likelihood Estimation Accuracy 

As explained in Section 2.3 the parameter update in 

the semi-batch ML algorithm which was the inverse of the 

Hession, is accomplished with the Bierman's D-D update 

routines [10]. 
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The variances of identified parameters can be obtained easily 

from the U-D factored form of the covariance. These parameters 

are, however, parameters of a discrete model used for efficient 

propagation, whereas we are interested in the continuous fre­

quency and damping estimates and their standard deviations. We 

can use the Jacobian of the transformation from the discrete 

roots (the ML parameterization) to the continuous frequency and 

damping parameters. This is a local linearization of this non­

linear mapping; however, for lightly damped modes, this trans­

formation is well-conditioned indicating that it is not sensitive 

to small variations in discrete parameter values. 

Since the parameter covariance is 

the covariance of different parameters which are functions 

of the original ones 

where 

~1 = fee) , 

P e JP JT 
1 e 

J = af ~ 
ae 

It is easier to write the inverse function in this case 

where e are the discrete parameters and e1 the contin­

uous frequencies and damping ratios. For each mode, the 

discrete parameters are given by 
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aD 

Ulb 

and their 

Hence 

-1 
J. 

1 

-~Ul T n e 

-t;Ul n 
= e 

variations 

LaD 

= 

LWD 

COS[Ul (1 n 
~2)~T] 

t;2)~T] sin[Ul (1 -n 

are given by 

daD daD 
Lw 

dWn ~ n 

dUlD dUlD 
Lt; 

dWn ~ 

2 .1. 
where T is the sampling time and Ul = Ul (1_~)2 the 

n n 
continuous damped frequency. With theD U-D factored co-

variance it is necessary to "square up", the new covariance. 

However, for accuracy prediction, any loss of precision due 

to "squaring up", is insignificant in Pe = JUDUTJT , where 
1 for k modes 

J 

INH 
parms 

[J l ] . 

ING 
parms 

This estimate of the Cramer-Rao bound from the inverse of 

the approximated Hessian is accurate only in the region of 

the convergence point. This is demonstrated quite clearly 

at the convergence point on the simulated example of 
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Section 4.3, where the actual estimation errors show nearly 

quadratic behavior as well. 

3.2.2 Recursive Predictive Error Method (RPEM) Accuracy 

Estimates 

The internal covariance estimate propagated in U-D 

factored form in the RPEM algorithm is not suitable to esti-

mate the Cramer-Rao bound for short data records because 

it is regularized to prevent singularity and also effected 

by the transient effects in the exponential forgetting fac-

tor which weights recent data more significantly than past 

data. The Cramer-Rao bound can be computed for RPEM algori­

thms, however, exactly in the simulation case, where the true 

rarameters are known, and estimated during a flight test propaga­

ted UD covariance after the initial convergence transient. 

Consider the ARMAX model, 

-1 
A(z )Yk = 

-1 -1 B(z )uk _
1 

+ C(z )ek 

with the negative log likelihood function 

v 1 
2N 

N 

L: with 

k=l 

as described in Section 2.2.2. The individual component 

derivatives of 3Yk are 
as-

= 
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Thus gradient of 

1 
--"1- e k .. 
C(z-) -1 

dE k 
-de = 1/Jk 

= 1 
---=-1- 4>k . 
C(z- ) 

"filtE~red" versions of the output, input, 

sequences. 

The regressors are 

and innovation 

We seek the asymptotic parameter covariance, where 

N 

(NPt
1 

= E [t/JR- 1t/JT]= ~ 1: E [t/JR- 1t/JT] 

k=l 

and N is the number of data points. 

Just as the ARMAX model above can be realized as a 

state-space innovations model, the gradient t/J k can also be 

realized as a linear model driven by the sequences uk and 

e k . This realization uses an augmental state and input 

t/J k 

2:k = 

in the equation, 

l.;k = 

For the scaler output case, 

p 
'1'-1 

NR 
with '1' HZH' 

where Z is the solution of the discrete Lyapunov equation 

Z FZFT 
+ GQGT . 
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Q is the covariance of w
k 

' and H selects the upper cor­

ner of Z corresponding to the row dimension of ~. The 

realization of the sk equation above uses the relations 

-"1 
(1 + c(z ))~k = ~k-l . 

and 

giving the following augmented equation. 

.l:'k 

" "-k 

4-1 

~'k-l 

~-l 

-to' I I a' I -b' I -c' 
---~--I ~--~--~--~--~--~--

I I I I 
I I I 0 I 0 I 0 

.. "t I I I I I 
-----~-----_f-----~----~----~-----I -c' 'I I I 

'-__ -;;._-1 I I I 
11 I I I I 
I . I I I I 
I . I I I I '-___ ~~L _____ ~ _____ L _____ ~ _____ _ 

r -c ' I I I L __ ~ __ I I I 
111 I I I 

. I I I 
I '. I I I L ___ L~ ____ ~ _____ ~-----

I -a' I b ' I e' 
r-~--~-~--~-~---
11 I I 
I . II 0 I 0 
I . 1 0 I 
~----1--~--lr-----

I------t 
11 I 
I I 
I '. I L ___ .l.i! ..... _____ _ 

I 0 
1------
P I . 
I 1 0 L ____ _ 
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~-1 

~-1 

4-2 

~-2 

~-2 

I -1 
I 0 

o I . 
I . 
I 0 

-~--1 I 
0 I 

I 0 

I 
o I 

---~--. I 1 
I u 

0 I 
+ I 

I . 
--~.Q-

I 1 

I 0 
0 I 
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I 0 

--~--. 
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Given quite general conditions on the experiment (see 

* Ljung (3, Chapter 4], and conditioned on the event ek ~ e 

[.] 

with probability 1 (w.p.l), then the constant scaled Lyapunov 

solution 
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is the asymptotic variance of the statistic 

A * ~ (e - e ) E: N ( 0 , NP) 

Noreover, for any 8 > 0 

1 8 A * N2
- ie(N) - e i + 0 w.p.l as N + 00 

(see Ljung [11] for the general, formal statement and proof 

of this theorem). 

* In simulation cases where e is known the Cramer-Rao 

bound above can be computed and used to estimate the theo­

retically attainable accuracy of the parameter estimates as 

a function of time, whereas with experimental data only the 

identified model can be used to estimate this bound. The 

simulated results of Section 4.4 compare the accuracy of one 

single simulation and the theoretical Cramer-Rao bound for 

different data lengths. 

In contrast to the maximum likelihood formulation, 

when the model is already in discrete modal form, an addi­

tional transformation must be applied to convert the discrete 

parameter covariance matrix to the continuous frequency and 

damping parameter covariance as follows, 

P J X P xTJT e e 
1 

with J defined as in the previous subsection, and 

r 

Re[x<nn [ (1) J Re x (1) 

G (1) J 1m [x<n~] 

(1," 01 

1m x (1) x< i) { -1 x = 21tx1 diag M M} 

Re ~(H~ ~ (2k)] Re x (1) 

~ (1) J 1m [x<n~J 1m x (k) 
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M is the modal matrix which transforms the polynomial 

parameters 

I 1 

I 
1 

M -~ I 
I 
I 
I 

1 
o 

= 

• O"k+jwk 

O"k-jwk 

I 

The above transformation was applied to the Cramer-Rao bound 

based on the true simulation parameters to produce the results of 

Tables 4-3 through 4-5. A high eigenvalue condition number, i.e., 

8 i (Ai) = IlxiyIl1 (norm of Ai's spectral projector; xi' y i are 

the left and right eigenvectors), is a warning that the respective 

polynomial roots are very sensitive to errors in the polynomial 

coefficients. For the simulation results described in the tables 

mentioned above, the eigensystem condition for both the true 

parameters and the estimated ones was a reasonable level, less 

than approximately 300 in the worst case. 

In the known input case, which is the recursive least 

squares, also called the equation error form, 

-1 
A(z )Yk 

the gradient is 

where 

de 

¢ = k 

= 

= -1 B(z )uk_1 + ek ' 

¢(k) , 

For arbitrary inputs uk' the asymptotic covariance is 
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This parameter covariance can then be found in terms 

of autocorrelations and cross-correlations of the input and 

output sequences. 

For the special case where u 
k 

and are random 

sequences we can compute the parameter covariance directly 

by solving a discrete Lyapunov equation as in the ARMAX 

case, which employs the covariance of the two random 

sequences. The state space realization uses the state and 

input, 

l;k = = 

in the equation 

= 

with F and G given by 

o 1 1 
------1 1 

1 1 I 
'. 1 1 1 1 

. 1 01 1 1 1 
-----i---~--1-----T-·---1 

i-------! 1 1 
h II I I 
1 . I I 
1 '. 1 0 1 1 1 L _____ + _____ !-__ . ___ J 

L -a 1 -b 1 
--~--I7-·-----f 

11 11 1 
I '. I '. I 
I . 1 0 I . 1 0 I L ____ -+._. ___ :J 

I 0 I 
t------& 
11 I 
I '. I 
I . 1 0 I ,,-_, ___ ::.J 

F = 

[:: J 

I 1 
I 0 
I 
1 : 
I 0 

---'---
1 1 
o I 
. I 
: 1 

G - 0 1 - ___ .1.. __ _ 
1 
I 
1 
I 
I 

--4---
1 I 
o I 

I 
I 

o I 
I 

computation of the Cramer-Rao bound as described in 

this subsection allows the investigation of the effect of differ­

ent gust and sensor noise levels without performing multiple 
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simulations. This is discussed in the next section under the 

general topic of robustness. 

3.3 Robust Flutter Mode Identification 

Violations in the assumptions of the statistical nature 

of the disturbances require estimation techniques robust 

with respect to distribution. These techniques are summa­

rized and demonstrated by simulation. Violations in the 

assumptions of the number of active modes, the gust levels, 

or characteristics of the sensor noise effect the accuracy 

of estimation. The results of the previous section can be 

used to efficiently quantify these effects. 

3.3.1 Robustness with Respect to Distribution 

Robust estimation procedures are very important 

because a few bad data points can significantly degrade 

parameter estimation accuracy. In some cases convergence 

characteristics would also be affected. Ljung [3] summa­

rizes robust estimation problem as follows: 
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1. When the measured data set contains some values 
that are abnormal, e.g., quite large due to 
sensor failures, straightforward use of a quad~ 
ratic criterion function will give substantial 
jumps of the parameter estimates, Moreover, 
the estimates need a long period before con­
verging back to the previous levels. 

2. A way to cope with this problem, i.e., to 
robustify the algorithm, is to use a criterion 
function that grows more slowly with £ than 
the quadratic one. Then large prediction errors 
will get less influence on the parameter esti­
mates and the algorithm becomes more robust. 

3. Another approach is to test recursively if the 
data contains outliers. This can be done by 
comparing the prediction errors with a speci­
fied limit. Large prediction errors mean that 
an outlier or a measurement error is probable. 
The measurement can then be substituted with the 
predicted value. This approach is applicable 
when there is only a few outliers in the data. 



Both identification techniques we have discussed in this 

section are based on minimizing a quadratic penalty func~ 

tional, e.g. 

N 
v = ~L 

k=l 

The robust procedures modify this cost functional to include 

a weighting function g which is monotonically decreasing 

2 

V 1 
~ 

e k 2 = 2 g e
k Bk 

k=l 

where Bk is the covariance of e k 

The use of such a robustness procedure in the real-time 

flutter identification procedure will now be discussed. 

Recursive identification techniques are inherently 

well-suited for implementing robust estimation techniques 

because the reasonableness of each new data pOint can be 

evaluated before it is used to update the parameter esti~ 

mates. An illustrative discussion of robustness measures 

and robust identification is given by Ljung [3]. A sum­

mary of the steps necessary to make the parametei estimates 

robust against data dropouts, wild points and outliers is as 

follows: 

Step 1: After a data point is processed, the 
estimated parameter values are used to 
predict the next data and the standard 
deviation of the predicted value. Let 
the predicted value be y with stand-
ard deviation cr. p 

Step 2: The next data point is compared to its 
predicted value. The quantity 
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Step 3: 

= o 
is a measure of the probability that 
the data point is wild. Data points 
with ~ > 3 should be suspect. Thus, 
data corresponding to large values of 
~ should be given less weighting. 
Depending on the expected distribution 
of data droupouts, any of the weighting 
functions of Figure 3-1 can be selected 
(see Huber [12]). If f(~) = y ,the 
estimates have the robustness 6f a median. 

A data point completely outside the predicted 
distribution is not used 

A restart is necessary if several contiguous points are re­

jected. 

Weighting 
Function 

1 

"..... Q) 
-j -

1 

- - -

Standard Estimate 

2 
f; 

I 

3 

Figure 3-1 Weighting Functions for Enhanced Robustness 

A weighting function of the second type was demonstrated, 

where the cost function is 

2 
e I e I <c. 

20 2 

2 
Signee) e 

202 -

2 
(e-:o:) 

202 lei> a with a = 30 

The measurements with predicted errors out of bounds are replaced with 
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Data dropouts have been generated with distribution shown 

below. 

Amplitude 

Frequency 
and sign 

Normally distributed with the same 
variance as the data but centered 
at 5a from the output estimate 

Semirandom telegraph signal with 
A = 1% 

Results with and without these dropouts are compared in Table 3-1 

for the known input case. (This table with a 6-model identified 

mode can also be compated to the same simulation in Tables 4-3 

and 4-4, which have no data dropouts and use an 8-mode model.) 

125 points 
with robust 
estimation 

125 point 
wjo robust 
estimation 

500 points 
with robust 
estimation 

500 points 
wjo robust 
estimation 

w 
n 

1 

2 

1 

2 

1 

2 

1 

2 

w 
n 

- w 
n 

.9998 

1.9592 

.9B98 

1. 9597 

.9997 

2.0009 

.9980 

2.0037 

s(%) 
A 

s(%) 

4.70 8.50 

4.80 6.36 

8.48 

4.80 6.39 

4.70 4.78 

4.80 4.71 

4.70 4.87 

4.80 4.51 

Table 3-1. RPEM Frequency/Damping Estimates (With and Without 
Robustness Techniques - Known Input with Standard 
Gust Cases a /a gust = 25) 

u 

The robust estimation procedure can improve the accuracy of 

the f1utter parameters (see Table 3-1); however, during the 

rapid portion of the algorithm convergence, the wild points 

actually increase the convergence rate. The extent to which the 

model is overparameterized also has a significant effect in 

making RPEM robust. 8-mode models identified from this data 
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showed little degradation until asympotic accuracies were 

achieved, and then the degradation was not severe. 

3.3.2 Effects of Noise and Modeling Errors 

Very high frequency effects can be modeled as white 

noise, unmodeled system dynamics with colored noise, and 

low frequency effects as a random walk. Errors in estimation 

are caused by an incorrect order linear approximation model, 

an incorrect intensity of Gaussian noise, or finally assump­

tion that the noise distribution is, in fact, Gaussian. 

The effects of these different noise sources on the 

Cramer-Rao bound for the modal parameters can be computed 

very efficiently for a large number of cases by merely solv­

ing matrix Ricatti and Lyapunov equations for each desired 

situation, rather than performing a simulation and doing 

the identification for a long data record. Consider simu­

lations generated for the 2-mode model of Section 4.4. 

according to the following model, 

= 

y = 

with 

N(O,q) 

= N(O,r) , 

2 q - 0 - gust 

2 
r = 0 sensor 

but the sequence uk is known. uk can be considered 

wideband excitation which could quite possibly be a pseudo 

random binary sequence; we have made it Gaussian here for 

computational simplicity. 
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The "nominal" model, about which trends for how these 

different disturbances or inputs effect the achievable 

parameter estimation accuracy will now be described. The 

two modes have frequencies of 1 and 2 per rev (borrowing 

a term from rotor craft analysis for normalized frequencies), 

where 1 per rev is 11.8 hertz-emulating the open loop modes 

in the ARW-l vehicle. The sampling rate is approximately 300 

( 2 2 2 
hertz. The gust noise covariance 0 gust = (.15) deg/rev) 

has been chosen to correspond to a continuous model with vertical 

gust root-mean-square values of approximately 1-2/3 feet/sect (at 

the ARW-1 condition of Mach of .7, altitude of 15,000 feet, and a 

correlation distance of 1750 feet). The damping parameters were 

chosen to be similar to the ARW-1 flight condition analyzed in 
Sect ion 5.1 (an 11. 8 Hz mode with 4.70% of damping and a 2:3. 6 Hz 

mode w:i th 4.80% damping). The sensor noise observed on the 

data (see Figure 5-11) was taken to be approximately Eo = .0050. 

It should be pointed out that the significant difference between 

this simulation and the flight maneuver is the use of broad 

band rather than narrow band excitation. 

The theoretically achievable parameter accuracy as a 

function of input and noise power is shown in Figures 3-2 and 

:3-3 for damping ratio and natural frequency estimation errors. 

The flutter parameter variances are a function of the gust, con­

trol input, and sensor noise covariances, variations of which 

are shown with families of curves in the upper two plots of the 

figures. The three-dimensional plots show the flutter parameter 

standard deviations as a function of power ratios (with a log 

scale on all axes). The parameter covariances have been computed 

via a discrete Lyapunov equation as described in SUbsection 3.2.2; 

they require the control and innovation covariances as input 

parameters. The innovation covariances were computed directly 

from the gust and noise covariances via the discrete algebraic 

Riccati equation [13]. 

t The gust level was very low during the ARW-l, Flight 3. 
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The variations about nominal noise covariances were 

and 

The gust variations.c6rrespond to a range of gust velocity of 
5 2 9ft/sec - 5ft/sec ,the nominal at 13ft/sec for the low gust 

values seen in the flight data, the low corresponding to negli­

gible gust, and the 5ft/sec the Dryden gust model. The sensor 

nominal was varied to twice the noise standard deviation and twenty 

time less (corresponding to inertial grade instruments). The in­

put power variations were 

0 

2 1 
°u = q 

156.25 ~ 

625 

The highest level gave an amplitude response similar to the high-level 

level flight data inputs, and the next lower level is one-half 

the amplitude corresponding to the low-level flight data inputs. 

These theoretical predictions are compared to simulation 

results in Section 4.4. 
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SECTION 4 

SIMULATED DATA HESULTS 

Three groups of flutter examples were simulated to test the 

performance of the RPEM and the maximum likelihood (ML) a1go-

rithms: 

1. A two-mode example with very lightly damped modes at 
a frequency ratio of two. 

2. Different combinations of two modes with light to 
moderate damping (1% - 15%). 

:3. Two-mode examples with different noise and modal dis­
turbances discussed in the previous section on robust­
ness, reliability and accuracy. 

4.1 VEHY LIGHTLY DAMPED MODES 

The linear model used to test both the HPEM algorithm as 

the start up estimator, as well as the ML algorithm is 

x = Fx + Gu 

Y Hx 

where 

F = 0 1 0 0 G = 0 

-1 -.0136 0 0 1 

0 0 0 1 0 

0 0 --4 -.01 1 

H = [-1. 9456 1. 2239 2.1867 -.07552J 

This model was configured to emulate the torsion response (wing 
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bending and torsion modes) of a wing with two modes close to the 

flutter condition with time measured in normalized units (revs). 

The frequency response of this model is shown below in Figure 4-1. 
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As mentioned in Section 2, it is much more efficient to 

propagate linear systems in discrete form. The discrete form of 

this model (for a sampling time of .23 revolutions) is given by 
I 

Yk == HDxk 

where 

.9723 .2268 0 0 0 

.2268 .9723 0 0 1 
FlJ == 0 0 ,,8958 .4420 GD == 0 

0 0 --.4420 .8958 1 

HD == [-.4733 .2268 .5027 - .1105 ] . 

The output of this linear system as forced by a known 

gaussian input gust sequence is shown in Figure 4-2. 
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4.2 RPEM AS A STARTUP ESTIMATOR 

One of the desirable characteristics of the RPEM algorithm is 

the ability to start the estimation with no a priori information 

on the parameters. On short to intermediate data records with 

both process and measurement noise, however, overparameterization 

of the model aids in convergence of the flutter parameters con­

siderab ly (see Sect ion 4.4 II where an 8 o-mode model was used to get 

excellent flutter identification with two active modes). In this 

section, where the simulation has no noise, the startup model is 

so good that overparameterization cannot measurs.bly improve it. 

See Table 4-1 and Figure 4-3. Note that the residues of the art­

ificial mode are negligibly small. 

Table 4-1. RPEM Model Residue Comparison 

~ue Residues 
4-Mode Model 6-Mode Model 

Identified ReEd.dues Identified Residues 

\ 2.2683D-01 2.2683D-01 -6.566.0D=Cffi 
I --4.7332D-01 -4.7333D-01 -1.8139D-09 \ 

I -1.1049D-01 -1.1049D-Ol 2.2683D-01 
! 5.0268D-01 5.0270D-01 -4.7332D-01 

-1.1049D-01 
5.0268D-01 
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These residues of the discrete transfer function correspond 

to the cosine and sine coefficients in a partial fraction expan­

sion of a continuous transfer function. In other words, for 

k 
G = E 

i=l 

R (z+a. ) 
C. 1 

1 

(z+a.)2 + 
1 

+ R w. 
S. 1 

1 

2 w. 
1 

R c. 
1 

and R s. 
1 

are the residues associated with the i-th mode where 

H = [1 0 ... 0], F = 

and 

H(zI-F)-l G = H (zI-J)-l G 
m m 

1 
o 

G = b 

where H
m

, J, and G are the modal form of the discrete 
m 

equations. For the i-th mode the residues are 

4.3 MAXIMUM LIKELIHOOD ESTIMATION WITH RPEM STARTUP PARAME'I'ERS 

To demonstrate the use of RPEM as a startup algorithm for 

maximum likelihood the first 100 data pOints were processed with 

a 3-mode (overparameterized) RPEM model. These parameters and 

the estimated output are equally as good as the outputs shown 

in Figure 4-4. These RPEM parameters are too accurate to reason­

able test the maximum likelihood algorithm; therefore, an RPEM­

identified set of parameters using the wrong input (shown in 

Table 4-1) were actually used. 
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As would be expected from the results of the previous sec­

tion, the fit error of the final model is small, but the parameter 

pstimates have not yet converged. 
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0. 20. 40. 60. 80. 100. 

TItvE(~I2ED) 

Figure 4-4. RPEM Start-Up Model. (Estimated from the first 

100 points, but using an incorrect random input.) 

8n -0.4733 O.22tiB 0.5027 -0.1105 
A -1.0679 -0.7230 0.3292 0.6849 GH 

°1 W
1 °2 W2 

8 F 0.9723 0.2268 0.8958 0.4420 
8

F 
0.9737 0.2286 0.8985 0.4411 

Table 4-2. Maximum Likelihood Start-Up Parameters. 

The discrete 8
F 

parameters have reasonable startup values, 

however the mode shapes are essentially unknown. 
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The batch or semi-batch maximum li.ke lihood algorithm de­

scribed in Section 2.3 was applied to this 500 point simulation 

using the start-up values in Table 4-2. Figure 4-4 shows, first, 

the relative error in the natural frequencies on a linear scale 

and then the same error moduli are plotted on a logarithmic scale. 

The estimated variances of these parameters are also plotted with 

the actual errors. The algorithm has converged in four iterations. 

This particular simulation does not have any measurement noise 

added, which leads to the underestimate of variance after the 

modified Newton Raphson optimization has converged. 
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* Note that the last iteration started from iteration five 

with the covariance reinitialized to large uncorrelated values. 
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The damping estimates show similar behavior to the fre­

quencies, converging in four iterations, with reasonable error 

estimates at the convergence point. Further iterations decrease 

the parameter errors, but without measurement noise on the 

simulation, the error estimates underestimate the parameter error 

on iterations beyond the fourth iteration. 
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Figure 4-6 shows the Torsion rate measurement and estimated 

output with the associated innovations or errors produced by the 

estimated model after six iterations with the covariance correction 

(shown as the seventh iteration on Figures 4-4 and 4-5). 
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4.4 RPEM IDENTIFICATION FROM SHORT, INTERMEDIATE AND LONG DATA 

RECORDS 

To demonstrate the convergence"convergence rate and accuracy 

predictions of Section 3.3, simulations with two different models 

were performed. The input was treated as both known and unknown. 

Frequencies of 1 and 2 per rev (normalized frequency) were simu­

lated in a model of the form 

0 1 0 

2 2 1 -w 1 -2~1w1 
x = x + u , where 

0 1 0 

2 2 1 -w 2 -2~2w2 

y = [0 1 0 -.5] x. The frequency response for the model 

(wI = 1, ~1 = .0470, w2 = 2, ~2 = .0480) is shown in Figure 4-7. 

This is the same model used to study noise effects on achievable 

accuracy in Section 3.3. The same measurement white noise 

covariance (see Section 3.3) was used (0 = .0707), and 
v 

gust covariance (0 gust = .05 deg) was used. 

Modal parameters were identified with RPEM as a stand alone 

algorithm for short, intermediate, and long data records, rather 

than merely as a startup algorithm for semi-batch maximum likeli­

hood. The overparameterized model had eight modes; the lowest 

frequencies are the simulated modes. Frequency and damping 

estimates and the Cramer-Rao bounds (computed from the true 

model) are compared to actual errors in Tables 4-3 through 4-5. 
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A /-

W W ° l;(%) t,;(%) °scJ% ) n n W 
nCR 

1 .96::~ 7 60-'+ 4.70 10.4 .0784 • 10 Known 
3 

Input 2 1.896 3.5610 4.80 .94 .174 

Unknown 
1 1.139 .124 4.70 45.2 12.8 

Input 2 2.226 .464 4080 0307 23.6 

Table 4-3. RPEM Frequency/Damping Estimates and 
Accuracy Estimates 

(2-mode simulation of 125 data points. 8-mode model.) 

A A 

W wn a 1;(%) 1;(%) a /. n w i;CR nCR 

1 .9986 3.831 5 4.70 4.34 .O~~92 Known 
Input 2 2.0101 -4 1. 7810 4.80 5.32 .0868 

1 1.1611 .0622 4.70 31.8 6.39 Unknown 
Input 2 3.525 .232 4.80 11.9 11.82 

Table 4-4. RPEM Frequency/Damping Estimates and 
Accuracy Estimates 

(2-mode simulation of 500 data points. 8-mode model.) 



A A 

W w'-w a 1;;(%) 1;;( % ) 0'1;; % n n n W 
nCR CR 

1 .99963 1.711 6 4.70 4.7083 .0175 
Known --Lj. 

Input 2 1.9990 7.9510 4.80 4.6663 .0388 

1 .9798 .0278 
Unknown 

4.70 9.35 2.86 

Input 2 3.366 .104 4.80 7.90 5.26 

Table 4-5. RPEM Frequency/Damping Estimates and 
Accuracy Estimates 

C2-mode simulation of 2500 data points. 8-mode model.) 

The conclusions fro,ill these simulations both validate the 

pE~rformance of the algorithm RPEM for flutter mode identification 

with multiple modes and give insight into the validity of the 

results identified from the flight data in the next section. (The 

flight data also has two active modes with similar characteristics 

and also was overparameterized with an 8-mode model.) 

The gust level is too low to identify the flutter modes with 

turbulence excitation anly. With a known input the algorithm 

finishes the convergence transient in about 750 data points or 

1.5 seconds (see flight data results in Figure 5.15). For long 

data records (>4-5 seconds) RPEM gives extremely accurate esti-
A 

mates (It;. - t;.1< .05%). For this particular simulation the damping 

estimate error (w=l) is less than the Cramer-Rao bound, and for 

w=2, the damping estimate error is less than 2a
CR 
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SECTION 5 

FLIGHT DATA RESULTS 

Flutter-test flight data from the third flight of the ARW-l 

vehicle of NASA's drones for aerodynamic and structural testing 

CDAST) program has been used to demonstrate the real-time flutter 

estimation algorithms. Three different maneuver types were 

processed: 

1. A frequency sweep maneuver with significant excitation 
amplitude, 

2. An intervening record between excitation inputs to 
emulate typical unknown input or turbulence excitation, 
and 

3. The sequence of the last three pulses before the flutter 
incident resulting in failure of the right wing. 

5.1 KNOWN INPUTS 

Symmetric exci tat ion with a logarithmic sweep from 10 -- 40 

hertz is shown in Figure 5-1. 
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The actual aileron positions include some asymmetric input 

due to the Flutter Suppression System (FSS), as can be seen in 

Figure 5-2. 
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The frequency responses of this input and the ALFSO accelerometer 

output are shown in Figure 5-3. The ratio of these two responses 

in Figure 5-3 is a coarse estimate of the transfer function, 

shown in Figure 5-4. 
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Figure 5-3. Output and Input Frequency Response 

66 

." 



As can be seen from Figure 5-4, the noise is so great without 

averaging, that there is little recognizable information in any 

frequency range. 

A single-input-single-output identification study was per­

formed using the symmetric input and the ALFSO accelerometer with 

RPEM. Model orders of three, five and eight modes, with and 

without identifying the C(z-l) polynomial (or equivalently the 

Kalman gain) are compared in Tables 5--1 and 5-2. 
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Table 5-1. Known Input Modal Estimates 

(Estimation with C(z-l) Polynomial) 

Mode 3 Mode Model 5 Mode Model 8 Mode 

w (Hz) n 1; (%) wn(Hz) 1; (%) w (Hz) n 

1 11.70 5.77 11.81 4.59 11. 82 

2 66.72 22.7 57.19 11. 8 48.63 

3 228.9 6.00 116.8 17.8 81.94 

4 173.6 15.5 88.53 

5 207.1 5.42 143.4 

6 163.8 

7 206.2 

8 238.9 

.2 -
L _____ -L ______ L-____ -1. ______ ~_ 

Model 

1; (%) 

4.62 

4.00 

49.0 

11.6 

9.59 

5.15 

6.28 

3.00 

30. 60. 90. 1~. 150. 180. 2:10. 2:40. 
HERT2~ 

Figure 5-4. Coarse Estimate of A (jw)18 (jw) z a 

2:70. 
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Mode 3 Mode Model 5 Mode Model 8 Mode Model 

wn(Hz) ~(%) wn(Hz) ~ (%) wn(Hz) 

1 12.13 11.1 11. 89 4.95 11.77 

2 73.96 38.2 52.40 5.87 47.59 

3 205.4 13.1 113.5 16.0 65.44 

4 172.4 9.24 103.9 

5 227.2 8.31 130.9 

6 163.7 

7 198.3 

8 234.3 

Table 5-2. Known Input Modal Estimates 

(Estimation without C(z-l) Polynomial) 

~ (%) 

4.70 

5.71 

18.0 

18.1 

15.1 

6.94 

4.92 

3.95 

Only the lowest mode is within the range predicted by 

NASTRAN analysis and ground vibration test. The frequency and 

damping estimate of this mode is comparable and reasonable for 

all six model structures identified except for model with the 

smallest number of parameters, the three mode model wi th no 
-1 C(z ) polynomial. 

The mode at approximately 11.8 hertz and damping of 4.6% 
is close to the predicted value of the symmetric first body 

bending mode at this flight condition (M = .7, h = 15 k feet). 

Gilyard and Edwards [14, Fig. 3] show predicted values of approx­

imately wn = 11.8Hz with a damping ratio of 4.7%. 

Note that here we are using the symmetric input 

(8 + 8 )/2 as the single input and hence identifying the open a L a
R loop plant even though there is some asymmetric input. The 
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asymmetric input power is approximately 28 db down from the 

symmetric input (see Figure 5-2). Models with theC(z-1) poly­

nomials provide a more desirable model structure, able to model 

this unknown input. 

There are several conclusions on the use of RPEM for real­

time flutter analysis with known inputs: 

1. Overparameterization is important to accurately 
identify the active flutter mode. 

2. Overparameterization is even more important i·f the C( z -1) 
polynomial is not identified with a known input. 

5.2 UNKNOWN I~PUTS 

One desirable characteristic of a real-time flutter identi­

fication system is to identify the dominant system dynamics 

without a known input for continuous test monitoring. This can 

be accomplished with the RPEM algorithm by identifying the 

A(z-l) and C(z-1) polynomials and letting B(z-1)=O, or equiva­

lently identifying the system dynamics matrix and the Kalman gain 

directly. Figure 5-6 shows a section of data early in the flight, 

between a sweep and an excitation pulse. 
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The ALFSO sensor output for this interpulse section is 

shown in Figure 5-7. 
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Figure 5-7. Turbulence Excited Accelerometer Output 
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Two thousand data points were used to estimate the 48 

parameters and modal estimates of Table 5-3. 

Mode No. wn (Hertz) ~(%) 

1 26.08 70.1 

2 50.07 4.38 

3 68.57 20.3 

4 140.3 4.31 

5 171.1 2.71 

6 207.8 8.13 

7 235.8 1. 31 

* 
Table 5-3. Unknown Input Model Estimates 

(ALFSO Accelerometer Used as Recorded) 
( 

Besides the peaks at 26 and 50 hertz identified above, the ALFSO 

frequency response (see Figure 5-8) shows peaks at 12, 15, 20, 

and 42 hertz as well. 

* Eighth discrete mode not realizable as a real continuous 

system. 
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Figure 5-8. ALFSO Accelerometer Spectrum Forced by 

Turbulence 

This estimation was affected by the bias in the acceler­

ometer, which when taken out gives the modal estimates of Table 

5-4. 

Mode No. wn(Hertz) l;(%) 

1 14.51 24.0 

2 46.39 13.6 

3 51.43 7.92 

4 87.79 8.99 

5 105.5 4.13 

6 149.1 6.94 

7 191. 3 3.94 

8 233.4 .46 

Table 5-4. Unknown Input Model Estimates 

(ALFSO Bias Removed Without Estimation 
-1 of B(z ) Polynomial) 

The lowest frequency is reasonable, but its damping is too high. 

The estimate errors and error spectrum are given in Figure 5-9. 
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It is evident that the effect of the low frequency modes has not 

been completely removed. The approximate signal-to-noise ratio is 

222 
SNR = (0 - ° ) / 0e = 5.77 , y e 

so that the turbulence level is quite low. 

It is interesting to examine the excitation channel more 

closely (see Figure 5-10), which shows what could have been noise 

in digitization, or noise actually transmitted and passed through 

the control system. 
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Figure 5-10. Interpulse Excitation and Excitation Spectrum 

The A, B, and C polynomials were identified using this 

input (a 48 parameter model) and the resulting modal parameters 

are given in Table 5-5. 
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Mode No. wn(Hertz) 1;;(%) 

1 13.02 9.39 

2 48.81 5.90 

3 65.33 16.0 

4 103.1 15.1 

5 137.6 10.2 

6 180.0 7.09 

7 221. 0 6.81 

* 
Table 5-5. Unknown Input Modal Estimates 

(ALFSO Bias Removed, with Estimation 

of B(z-l) Polynomial) 

The lowest natural frequency estimate is still reasonable for 

this flight condition (M :oe .7 , h = 15 k feet) with the damping 

estimate much more reasonable, for the first bending mode. 

The spectrum of the estimated model errors (Figure 5-11) 

does look like nearly white noise, removing the peak in the 

rE~gion of the first symmetric mode. 

The estimated signal-to-noise ratio is slightly larger at 

SNR :oe 5.79. 

* Eighth mode not realizable as a real system. 
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The conclusion from this flight data with a very low level 

of turbulence or input excitation is consistent with the con­

clusions on simulated data in Sections 4.4 and 3.3.2. The ex­

citation level has a very significant effect on estimation accu­

racy and, of course, the proportion of the input signals that are 

known significantly affect the parameter accuracy as well. 

5.3 FLUTTER INCIDENT RESULTS 

During the third flight of the ARW-1 program, the Flutter 

Suppression System (FSS), the on-board stabilizing control sys­

tem, was actually operating at one-half the nominal gain. During 

the acceleration from M = .80 to M = .825 the first wing­

bending asymmetric mode showed increasingly lighter damping, 

finally resulting in structural failure of the right wing, and 

together with a partial failure of the parachute recovery system, 

a crash of the vehicle [14]. 

The excitation (FSSEXC channel) and ALFSO accelerometer 

response are shown in Figure 5-12. The last three excitation 

pulses are full cycle sine wave doublets (chopped here because 

only every 20-th point has been plotted). Just over twelve 

seconds (6290 data points) were processed as a single record, 

up to the last point before accelerometer saturation. 

Figure 5-13 shows the aileron positions for this final part 

of the flight, while Figure 5-14 shows their average sum and 

difference for the remaining linear portion of the flight. 

It is noticeable that the symmetric and asymmetric inputs 

have comparable input magnitudes due to the flutter suppression 

asymmetric feedback attempting to stabilize the anti-symmetric 

modes. 

At approximately T = 26138.5 seconds, the test pilot was 

instructed to terminate the test and the throttle was reduced 

due to the light damping observed in the previous time traces 
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[14]. The real-time damping estimator indicates a significant 

reduction trend in damping, approximately two seconds before 

this, as seen in Figure 5-15. Such a serious warning, this 

early, is quite difficult if not indiscernable from the time 

trace shown in Figure 5-12. The last damping estimate (modal 

parameters were output every 100 points or .2 seconds, using 

the last 190 points for the last estimate) is ~ = -.02218 for 

the symmetric wing bending mode at 19.16 Herz. Before the drop 

in frequency at the flutter condition (see Figure 5-15), the 

flutter mode frequency was estimated as ~n = 125 rad/sec, which 

correlates exactly with post flight processing results by other 

techniques (see Gilyard [14, Figure 12]). 

Figure 5-15 shows the initial convergence period for RPEM 

of 0.5 - 1.0 seconds. It is possible that the damping dip at 

T = 261~32 seconds is still due to convergence since some of the 

other discrete modes modeled (an eight mode model) changed at 

this point (after 1500 data points). The break up in natural 

frequency and clear reduction trend in the damping at T ~ 26136.5 

seconds is definitely due to the changing flutter characteristics. 

All the modes modeled in the overparameterized system are changing 

smoothly at this point. 

It should be pointed out that the asymptotic forgetting 

factor in RPEM can be fixed at less than one to make the algo­

rithm track models with changing characteristics with higher 

accuracy. Giving the operator the option to select a past 

window size of considered data is a possibility when real-time 

implementation is performed. 
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SECTION 6 

NEAR REAL-TIME FLUTTER ANALYSIS (NRTFA) 

PROGRAM DOCUMENTATION 

The delivered ANSI FORTRAN-77, Near Real-Time Flutter Analy­

sis Program (NRTFA) is so naMed because, while providing a working 

tool to analyze real time flutter analysis algorithms, it lacks 

the real-time executive, real-time input/output buffered inter­

faces and real-time graphics drivers. Thus the program reads a 

large data block, then emulates real-time operation by repeatedly 

outputting new frequency and damping estimates to the operator 

console screen. This section 

1) Explains the choice of identification algorithm imple­
mented in NRTFA,. 

2) Documents the program structure and subroutines, as 
well as fixed algorithm initialization parameters, 

3) Describes the memory resources and timing comparisons 
for typical flutter models, 

4) Discusses extensions necessary for actual real-time 
implementation, and 

5) Gives installation instructions. 

User information is documented in Appendix A, and Appendix B 

gives the FORTRAN listings. 

6.1 THE NRTFA ALGORITHM 

Studies documented in the previous three sections support 

the conclusion that the Recursive Predictive Error Method (RPEM) 

works extremely well as a stand alone algorithm or as a parameter 

85 



~tart-up routine for a block-recursive maximum likelihood (ML) 

a1gorithm. The block-recursive ML technique gives excellent 

re~ults where several passes can be made over the data block. 

This may not be acceptable for the timing requirements of a real­

time algorithm. Implementation of a block recursive algorithm 

with a single pass over the data could enhance identification 

speed over pure recursive methods; however, the convergence 

characteristics of such an algorithm require more research. There­

fore, the NRTFA program was configured with RPEM as a stand alone 

algorithm which could be restarted at any point by the operator. 

The equation error, standard ARMA or full ARMAX models can 

be selected by the user (see Appendix A), as described in Section 

2. 

6.2 THE NRTFA PROGRAM 

The NRFTA subroutine calling structure is given in Figure 

6-1. 

The NRTFA program structure is shown in Figure 6-2. 

--

NRFTA 

DATAIN SAVLOD 

RPEM NSTABL 

G HQR3, 
ORTHES, 
ORTRAN 

Figure 6-1. Near Real-Time Flutter Analysis Ca1Jing Sequence. 
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Figure 6-2. Near Real-Time Flutter Analysis Flowchart 
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Detailed descriptions of the options and input/output argu­

ments are given with comment statements in the subroutines (see 

Appendix B); a brief description of the routines in Fig. 6-1 is: 

{ 

NRFTA 

DATAIN 

RPEM 

NSTABL 

RG 

HQR3! 
ORHES, 
ORTRAN 

The main program which allows the user to set 
up the identification problem and calls the 
principal computational and input/output sub­
routines. 

Opens an input and output data file and calls 
SAVLOD to read the data records. 

Performs an update of the ARMAX model parameters 
and their covariance for one additional input 
and/or output data point. 

Performs a stability check on the 
nomial using the Schur-Cohn test. 

-1 CCz ) poly-

Finds the eigenvalues of a real general matrix, 
used to factor the ACz-1) polynomial by 
operating on the associated companion matrix. 

Supporting eigen-decomposition routines which 
transform a matrix to its Hessenberg form, and 
subsequently to its real triangular form (Schur 
form)with the unsymmetric QR algorithm. 

There are a number of small supporting subroutines which have been 

documented elsewhere [15]. 

There are several default values used to initialize RPEM 

that have been fixed in NRTFA; their values or the way they are 

initialized could easily be changed in the source code. RPEM 

uses an exponential forgetting factor, discounting past data so 

as to minimize at time t the sum 

t 
",t-j 2(08) L.i t\ E J, , 
j=l 

where A itself is a function of time, 



A(j) = (l-a~)Af + a~Ao' computed recursively as 

The fixed parameters are the initial forgetting factor A (.9), 
0 

the final forgetting factor Af (l), and the rate at which A 

approaches its final value, a A(·97). The values in parenthesis 

are those fixed for flutter application in the early part of 

NHTFA (see the source listings in Appendix B) • The above for-

getting factor parameters achieve a value of .99 (from .9) in 

approximately 75 data points, and . 999 in 150 data points . 

In computing the regressors by filtering with the C(z-l) 

polynomial (see Section 3.2.2), a contraction factor is applied 

to the poles of 

iiI tering. k fac 

A -1 
C(z ), k fac ' which reduces the effect of the 

k
f 

(j+l) ac 

is also varied with time by the equation 

where k f is approaching the value of 1. ac 

The initial value is set at k fac = .01 with a
k 

= .999. 
fac 

Thus the algorithm starts out as nearly approximately maximum 

likelihood (AML) [7], where the residuals are used directly in 

the regressors, giving good transient convergence characteristics 

and then slowly approaching the RML2 [2] or standard RPEM algo-

rithm (k f reaches.9 after approximately 2300 data points), ac 
for good asymptotic convergence characteristics. 

6.3 MEMORY RESOURCES AND TIMING COMPARISONS 

The active memory requirements for tne NRTFA program and the 

system supporting subroutines on the VAX 11/780 (VMS Version 3.1) 

are shown below in Table 6-1, for the problem definition given in 

Table 6--2. 
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Routine Type Memory Requirement (Bytes) 

Main Program 51,576 

Input/Output Routines 2,007 

Identification Routines 2,138 

Eigensystem Routines 24,138 

System Support Routines 2,061 

Total Executable Code 81,920 

Table 6-1. NRTFA Memory Requirements. 

The above memory requirements include storage for the maxi­

mum sizes shown in Table 6-2 below. 

Parameter Maximum Size 

dim. ( e ) 60 

Number of modes with an 
A, B, and C polynomial 10 

Number of modes with 
A and B or A and C 15 
polynomial 

Number of points per 
data record 2000 

Table 6-2. NRTFA Program Parameter Limits 
(Effected by Current Array Dimension Bounds) 

To characterize the CPU requirements of different functions 

within the NRTFA program, on the VAX 11/780, the following experi­

ment was performed. RPEM identifications from 200 data points of 

the A, B, and C polynomials, as well as only the A and B 

polynomial for 2, 4, and 8 modes were performed. The interval 

for outputting the frequency and damping estimates was varied to 
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~eparate the CPU required for identification from that for factorillg 

the polynomial and outputting the desired estimates. In all cases 

the order of the A, B, and C polynomials is twice the number 

of oscillatory modes. The results are tabulated in Table 6-3. 

,---
CPU for Polynomial 

Number of Number of Polynomials CPU for Factorization and 
Modes Points/Batch Identified RPEM (sec*) w ,~ output (sec**) 

n -- 2 20 A,B,C 1.74/200 .27/8 

2 5 A,B,C 1. 74/200 1.107/32 

4 20 A,B,C 4/200 2/8 

4 5 A,B,C 4/200 8/32 

8 20 A,B,C 14.58/200 11.93/8 

8 5 A,B,C 14.58/200 47.72/32 

8 20 A,B 7.27/200 11.93/8 

8 5 A,B 7.27/200 47.72/32 

Table 6-3. NRTFA Timing Study Results 

Note that the common factor of the time to read the input data 

has been subtracted from all cases. These results can be depicted 

much more clearly, graphically. Figure 6-3 shows the CPU time in 

seconds required for a single data point parameter update (6n 

* 
** 

1.74/200 ~ 1.74 seconds for 200 updates by the RPEM subroutine. 

.27/8 = .27 seconds for 8 output batch computations. (Factori­
zation of the polymonial, transformation to continuous fre­
quencies and damping ratios, as well as output to a terminal 
in the format shown in Appendix A.) 
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parameters of the full ARMAX model for n modes) as a function 

of the number of modes. Similarly the transformation of the 

ARMAX model parameters to continuous frequencies and damping 

ratios is shown in the plot below as a function of the number of 

modes. Clearly overhead becomes more important with a small 

number of modes. 
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These values are consistent with operation counts for these 

two algorithms and the machine cycle time for the VAX 11/780 (VMS 

with a Floating Point Accelerator). The floating point operation 

cycle times for typical machines are shown below in Table 6-4. 

Table 6-4. Millions of Operations Per Second 

1 Performance 
Machine Vendor Rating (MOPS) Benchmark2 

IBM 3033 4.00 1.77(D)3 

Cyber 175 5.06 1. 36 (S) 

CDC 7600 10. 1.24(S) 

CDC 6600 2.5 .477(S) 

VAX 11/780 .831 .190(S) 
VMS/FPA 

HP 5451C .08 -
(HP1000 -
E Series) 

Apollo - .0196(S) 

1 "Mainframe KOPS Rating," Datamation 1982 

2 Floating Point (MOPS) for a typical mathematical software 
problem [16] 

3 (S) or (D) refers to operations in single or double 
precision 

For the 500 sps of the DAST flight data, with, for example, 

a four mode model, and frequency and damping estimates output 

four times a second to the operator, the CPU effort is approxi­

mately eleven times real time (10 seconds for identification and 

1.2 for factoring the polynomials in one second of flight data). 

These timing results do not include accuracy estimates, which 

require the mode shapes, but beyond this should not require 

significant additional work. The above CPU requirements are 
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not as pessimistic as they may first appear for implementing RPEM 

in real time to do flutter analysis. 

Thirty percent of the work in factoring the polynomials can 

be eliminated if mode shapes are not desired; however, the 

identification algorithm is where the reduction is needed for a 

real-time implementation. For the modes of interest the sampling 

time could be cut at least in half and with some loss in accuracy 

the sampling rate could be cut by a factor of five. 

The RPEM version implemented here has been a research tool 

that can be streamlined significantly. Even single subscripting 

the arrays could improve efficiency by as much as thirty percent. 

In addition, the implementation of a block recursive algorithm 

could significantly increase the throughput for a given machine 

speed. Such considerations are part of the general analysis 

necessary for actual real-time implementation. 

Other considerations for actual real-time implementation 

include adding a higher level routine to function as an executive 

so that the operator can restart the procedure with function key 

at his console, interfacing a data buffering routine with the 

telemetry system, and displaying the modal parameters and accuracy 

estimates graphically at the operator's console. 

6.4 INSTALLATION INSTRUCTIONS 

The NRTFA program is written in ANSI Standard FORTRAN-77, 

such that conversion to operating systems meeting this standard 

should be straightforward. The storage requirements are modest, 

such that an overlay structure is not required on machines such 

as the Cyber, not having virtual memory. The principal adap­

tations all have to do with input/output. The subroutine FILES 

which dynamically opens files for the control and output data 

requires a suitably modified OPEN command. The subroutine 

SAVLOD which reads the data files with a specified format into 
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the buffer arrays should be changed to a convenient format for 

Lhe particular installation. The subroutines FILES (not shown as 

it i~ machine dependent) and SAVLOD are called by the routine 

DATAIN. This file interface is exactly that of MATRIXX [1]. 

The variable EPS in the real general eigensolver (RG) should 

be ~et to the host machine precision (2(1-t) where t is the 

number of binary bits in the mantissa of a floating point number). 
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SECTION 7 

SUMMARY 

Recent theoretical analysis of recursive identification algo­

rithms has been applied to flutter test monitoring, and implemented 

in a near-real-time flutter analysis program (NRTFA) shown to be 

highly reliable. This report documents the algorithm and model 

forms used, with the numerical analysis and estimation issues 

considered for its choice. The performance of the recursive 

predictive error method (RPEM) on simulated data compares well 

with predicted convergence rates, accuracy and robustness. The 

results on the DAST flight data show modal estimates that are 

consistent with NASTRAN and ground test vibration results, with 

consideration of the flutter suppression system (FSS) (see 

Gilyard and Edwards [14]). 

Timing studies of the configured FORTRAN program show that 

real-time operation will be possible with careful implementation. 

The development and documentation of this effort has clarified 

the issues to be resolved for a full real-time flutter monitoring 

system. The NRTFA program has been documented sufficiently for 

program modifications, for adaptations to other computers (Section 

6), and for use in current flutter analysis (Appendix A). Sub­

sequent subsections explain these conclusions more fully. 

7.1 ALGORITHM CHARACTERISTICS 

The RPEM algorithm implemented in the NRTFA program identi­

fies ARMA-type models (see Section 2.2 for the ARM AX model defi­

nition), whicb can be specified for three cases, known inputs, 
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unknown inputs or both. For the first two cases, and sufficiently 

high signal-to-noise ratios in the third case, this algorithm is 

globally convergent. The A(z-l) polynomial or equivalently the 

system dynamics is always identified. With known inputs the 

B(z-l) or equivalently the input distribution matrix is identi­

fied; with unknown inputs the C(z-l) or equivalently the constant 

Kalman gain is identified. 

Two features have been added to effect good transient con­

vergence behavior. Initially the data is weighted with an 

exponential forgetting factor which discounts past data. This 

factor is changed to approach one, hence tapering off this 

windowing effect after the parameter estimates have stabilized 

somewhat. The NRTFA program also uses a second initial transient 

factor which controls the computation of the estimated gradient. 

This factor constrains the algorithm to be nearly linear regression 

initially [3], [7] which gives a rapid initial convergence rate, 

and then slowly tranforms to a full Gauss-Newton minimization of 

the prediction error [3] for assured asymptotic convergence to 

the global minimum (for the three cases described above). 

7.2 ALGORITHM PERFORMANCE 

Colored sensor noise and higher order dynamics are automat­

ically accounted for by an overparameterized ARMA-type model. 

The significant conclusion about noise effects is that whenever 

some excitation can be tolerated it is highly desirable for 

improving estimation accuracy. Unknown inputs still yield 

reasonable damping estimates for signal-to-noise ratios above 

approximately ten. Families of curves show the effect of dif­

ferent turbulence, sensor noise and input levels in Figures 3-2 

and 3-3. The convergence rates and accuracy of estimated param­

eters from six different simulations compare favorably to pre­

dicted error bounds in Tables 4-3 through 4-2 demonstrating the 

underlying reliability. RPEM is based on a stability analysis of a 
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differential equation associated with the behavior of the param­

eter estimates as a function of time [6]. Recursive algorithms 

can be made robust to data dropouts and outliers with fairly 

simple logic (see Section 3.3.1), resulting in improved estima­

tion accuracy (see Table 3-1 for a quantitative comparison). 

For known inputs and a low level of turbulence the recursive 
-1 -1 least squares (RLS - A(z ) and B(z ) only) provides very good 

results as long as sufficient modes are modeled to cover unknown 

effects in the vehicle response; for example, with a high-ampli­

tude swept sine input, a three mode (RLS) model did not give good 

estimates, whereas five and eight mode models did. The unknown 

input results (see Section 5.2) support the general conclusion 

stated previously that a sufficient turbulence level must be pre­

sent to give a signal-to-noise ratio (SNR) of approximately 10 

for estimation particularity of the damping parameter. With a 

low SNR, even low amplitude known inputs increase the estimation 
-1 of the A (z ) polynomial and hence frequencies and damping rat io. 

Monitoring of the final portion of the DAST Flight 3 has been 

emulated with the delivered algorithm, showing clearly where the 

flutter mode damping starts its trend to ~=-.022 before satura­

tion of the sensors and controls and eventual failure of the 

right w:Lng. 

7.3 SOFTWARE IMPLEMENTATION 

Fixed parameters that influence the convergence character­

istics of RPEM are described in Section 6 such that the NASA 

Dryden personnel can modify the source program (see Appendix B 

for the listings of principal routines) if so desired. Minimal 

necessary installation instructions are also given. Appendix A 

illustrates an example execution of the NRTFA program, with guide­

lines for input options and description of the modal estimate 

outputs. 
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7.4 RECOMMENDATION FOR FURTHER RESEARCH 

Work is needed in two directions jointly to achieve semi­

automated monitoring of aircraft flutter in real time. 

1. Further development and testing of algorithms on 

several flight records and simulation runs with a 

variety of errors. Also paramenters like batch 

size, fading factors and model orders need to be 

further investigated. 

2. Development of a real-time flutter analysis hard­

ware system. 

The hardware system could be used on the ground initially but 

could be extended to be an onboard system as more experience is 

gained with the algorithms and the computation capability advan-

ces. 

The goal of such a real-time flutter analysis system would 

be to provide a dual environment. The real-time environment mon­

itors flutter characteristics for safe flight tests. In addition, 

portions of the test are isolated for detailed post-flight analy­

sis. The second environment is the post-flight processing capa­

bility. This would be accomplished with a flexible identification 

program to extract more accurate estimates of the frequency and 

damping estimates on critical maneuvers where the real-time 

algorithm indicated very light damping or unusual behavior. Im­

provements to the real-time algorithms could also be made in 

this "development" or post-flight processing environment, as more 

experience is gained. 

Specific algorithm issues that deserve more attention are a 

better quantification of estimation error effects due to model 

order, more experience with convergence parameter setup values, 

particularly on flight data, the effect and design of prefilters, 

input design for maximum accuracy, and parameter estimation 
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accuracy during the convergence transient phase. 

The timing results of Section 6 indicate that speed needs to 

be a si~nificant concern in the further algorithm analysis, 

quantifying the effects of, for example, not updating the covari­

ance as often, etc. A comparison of the RPEM, extended Kalman 

liil t(~r (EKF), and maximum likelihood output error formulation 

[or a block recursive or semi-batch mode should identify the best 

algorithm for the accuracy, convergence, and speed characteristics 

most suitable for real-time flutter monitoring. 

The joint development of the hardware system with further 

algorithm investigation will be necessary, even ihough the problem 

appears to be compute bound, because the actual throughput of 

r(~a] -time systems can not be fully predicted by study alone. 

Finally, the technology is now available to integrate a fully 

automatic system and validate its performance. 
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APPENDIX A 

USER'S GUIDE 

NEAR REAL-TIME FLUTTER ANALYSIS PROGRAM (NRTFA) 

The NRTFA program setup parameters are entered interactively 

as shown below. 

U 

Y 

Y 

Y 

200 

4 

20 

ENTER INPUT FILE NAME ... 

ENTER OUTPUT FILE NAME ... 

DO YOU WANT C(Z) POLYNOMIAL, IE. KALMAN GAIN IDENTIFICATION 
(Y OR NO)? 

DO YOU WANT INPUT POLYNOMIAL B(Z) TO BE IDENTIFIED (Y OR N)? 

ENTER NUMBER OF DATA POINTS TO BE ANALIZED ... 

NUMBER OF MODES TO BE CONSIDERED? 

HOW MANY POINTS PER BATCH? 

The first two prompts are for the excitation and sensor data 

files, where the file names can be up to 32 characters. The input 

file U above contains the sequence of control positions, for 

open loop identification, or the excitation superimposed on a 

closed loop control system for closed loop identification. The 
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()xcitation channel is always read, whether or not the B(z-l) 

polynomial is identified. The output file contains the sequence 

of accelerometer outputs (the present version of RPEM is a 8180 

algorithm). 

The second group of two prompts above defines which two or 

all three of the ARMAX polynomial models are identified (see 

Section 2.2). If there is knowledge of the control channel B(z-l) 

should be identified, and if the gust inputs are known to be small 

with wideband accelerometer noise then 

(RLS) algorithm (A(z-l) and B(z-l) 

the recursive least-squares 

identified, without C(z-l» 

can be used. 

B(z-l) and 

In all other cases the full ARMAX model 

C(z-l» should be used. 

-1 (A(z ), 

The last three prompts of the interactive setup session 

specify the number of data pOints to be read into buffer arrays, 

the number of oscillatory modes (resulting in 2n or 3n parameters) 

modeled, and how often the frequency and damping estimates are 

output to the terminal. 

The modal estimate output to the terminal resulting from 

lhe session above follows: 
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.~. ,'" ", ..... , .... , 
;'J';; ~i;: . j"i ::; L::' . . -' , . '- .... . ::. ;: :~. ,-i ;"~ .;,.! ; ,-;,l.i ... .:...: 

;~- :.:) L: ~,I -; ~: ".1., ,._ FIF"Tr. :A ,-; :: S· :: 1::< T ~ . .. ",'.,' 
t I'_'j,,' "- /""" -

. , .... / .. 5.433 ..... ,..--..,. 1 ;-..'1 T .-, ,~..., '1 Ot167 ~ ......... A 

~J.74·7 
.... ,-•. .., r'o 

~ L 1 ;- f • ...' + l :::.j tw ...... 7 to.l _ ,. L·w t I,) , Iv'.I "; 

., ~\ .. + 
.'\.,.'1 t 14 t .:.,~.:: o t 3::6 

: C1; .' C"""n 
Ot~0D /J.077 : C2: Ii """"10 7.7<.JW 0.095 

! C1: 0.493 -0.213 !C2! 7.005 0.008 !C3! 10.038 0.086 
: C4: 13.708 0.016 

:C1 ; 0.535 0.234 ! C2: 7.151 0.048 :C3: 10.775 0.124 
: C4: 13.741 0.071 

: Cl! 0.669 0.057 : C2: 7.141 0.095 ! C3: 9.071 ;).4 t,l 

; C4: 12.724 0.118 

: C1 : 0.617 0.234 :C2: 6.877 0.132 ~ j\ """ t 
t to, j • 9.878 0.283 

: C4: 13.765 0.092 ~f'c"-t 

'\.1""'+ 14.519 0.330 

: C 1 : 0.686 0.088 :C2: 6.681 0.163 :C3: 8i927 0.212 
: C4: 13 .505 0.132 

:C1: 0.675 0.052 :C2: 6.570 0.135 !C3! 9.557 0.177 
:C4: 1:3. 763 0.091 :C5: 14.043 0.218 

:C1: 0.659 0.013 : C2: 6.483 0.161 :C3: 9.111 0.119 
:C4: 13.414 0.126 

FOF:TRAN STOP 
f. 

Estimates for the first twenty points are computed before 

output begins, hence these 9 modal output parameter groups. A 

pair of roots are prefixed by whether they are complex (C) or 

two real (R) roots, along with the mode numbers. The modes are 

ordered from smallest to largest by natural frequency. For a 

complex pair the first number is the natural frequency and the 

second the damping ratio. 

For real roots, both are printed. If the discrete roots 

cannot be realized as real continuous modes they are not printed 

at all, for example the second group above, where only two of 

four modes were printed. 
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APPENDIX B 

FORTRAN LISTINGS 

Listings of the major subroutines of the Near Real Time 

Flutter Analysis (NRFTA) Program as described in Section 6 follow, 

ordered ~ccording to the calling sequence shown in Figure 6-2. 

PROGRAM RTFA 
DOUBLE PRECISION PHAT(60,60),THETA(60),PSID(60),FI(60), 

1 PSI(60),TSTAB(21),WORK(42),FRPEM(60),GRPEM(60),LRPEM(60), 
2 UARRA(10),YARRA(lO),UCUR,YCUR,LAMBDA,KFACT,LAMDL,ALMDA, 

.3 AKFACT,V,RESID,PINIT,CFACT,PRERR 
C 
C ----------------------------------------------------------
C THIS IS THE MAIN PROGRAM FOR REAL-TIME FLUTTER ANALYSIS BY 
C RECURSIVE PREDICTION METHOD (RPEM). 
e HAVING INPUT U(T) AND OUTPUT YeT) PARAMETER ESTIMATE THETA 
C IS UPDATED EACH TIME SUBROUTINE RPEM IS CALLED. 
e MODEL STRUCTURE USED IS 
C A(Q**-l )Y(T)=8(Q**-1 )U(T)tC(Q**-l )E(T) 
C THETA- VECTOR OF ORDER (NARPMtNBRPMtNC) CONTAINING THE 
C PARAMETER ESTIMATES. 
C THETA=(A(1),A(2), ••• ,A(NARPM),B(1),8(2), ••• ,B(NBRPH),C(1), 
C C ( 2) , • + • ,C (NC ) ) 
C .THIS IS AN INTERACTIVE SEMI-BATCH PROGRAM WITH OPTIONS ON 
C TOTAL NUMBER OF DATA POINTS, NUMBER OF POINTS PER BATCH 
C AND IDENTIFYING [A(Z),B(Z),C(Z)], [A(Z),B(Z)] OR [A(Z), 
C C(Z)]. THE FOLLOWING INPUTS ARE NEEDED. 
C NDATP - NUMBER OF DATA POINTS. 
C NMODE - NUMBER OF MODES TO BE IDENTIFIED. 
C NPRBCH - NUMBER OF POINTS PER BATCH. 
C 
C AFTER NSKIP POINTS, FOR EVERY NPRBCH POINTS NATURAL FREQUENCY 
C AND DAMPING RATIO OF EACH MODE ARE CALCULATED AND PRINTED. 
C THE TRANSFORMED DYNAMIC MATRIX 
C F(, )=[-A( ) IN THE FIRST COLUMN, IDENTITY MATRIX] 
C AFTER TRANSFORMING THE EIGENVALUES OF F INTO CONTINOUS 
C DOMAIN THE NATURAL FREQUENCY AND DAMPING RATIO OF COMPLEX 
r ROOTS ARE CALCULATED. IF THE ESTIMATED ROOTS ARE COMPLEX 
C THEN IN OUTPUT :C: WILL BE PRINTED BEFORE FREQUENCY AND 
C DAMPING RATIO OTHERWISE :R: AND LOCATION OF REAL ROOTS 
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C WILL BE PRINTED. TO BE ABLE TO PRINT REAL ROOTS THE 
L LINE BELOW LABEL 120 IN THE MAIN PROGRAM 'KDUM=KDUM3' 
C SHOULD BE DELETED. 
e IF DAMPING RATIO IS NEGATIVE THAT MODE IS UNSTABLE. 

C F(,) - DYNAMIC MATRIX 
C FREQ()- NATURAL FREQENCY 
C DAMP()- DAMPING RATIO 
C RLRT()- REAL ROOTS 
C CLXRT()- COMPLEX ROOTS 
C DT - SAMPLING PRIOD 
C 
C INPUT PARAMETERS FOR SUBROUTINES HAVE BEEN DEFINED IN THEM. 
e 
C SUBROUTINE DATAIN READS INPUT U( ) AND OUTPUT Y( I, 
e SUBROUTINE RPEM UPDATES THETA( ) PARAMETER ESTIMATE. 
e SUBROUTINE RG COMPUTES THE EIGEN-VALUES OF F( , ). 
e ----------------------------------------------------------
c 

c 

DOUBLE PRECISION F(20,20),VRG(20,20),U(SOO),Y(SOO) 
DOUBLE PRECISION FREQ(20),DAMP(20),CLXRT(20,2),RLRT(20),DT 
DOUBLE PRECISION EPSRG,ER(20),EI(20),SUPD(20),DUMP 
INTEGER INPUT(32),OUTPUTC32),IDC4),NR,NC,JOB,IMG 
INTEGER NLOW,NUP,INFO,NV,NARG,TYPE(20),NDELC20) 
CHARACTER CHAR(lO),ANSWR 
COMPLEX*16 CDUM1,CDUM2 
DATA IMG,JOB/O,500/ 
DATA NSKIP/40/ 

C ---------- EPSRG= MACHINE EPSILON ----------------------
c 

c 

DATA eFACT/l.0D10/,IDIM/60/,EPSRG/2.0D-161 
DATA NA/20/,NV/201 
DATA DT/.2292! 
OPENCUNIT=5,NAME='INPUT',STATUS='UNKNOWN') 
OPEN(UNIT=6,NAME='OUTPUT',STATUS='UNKNOWN') 

C ---------- READING INPUTS ---------------------------------
C 

CALL DATAIN (JOB,IMG,NDATP,U,Y) 
WRITE(6,881) 

881 FORMAT(2X,' DO YOU WANT C(Z) POLYNOMIAL, IE. KALMAN GAIN', 
1 • IDENTIFICATION (Y OR N)T ' ) 
READ(5,883)ANSWR 
WRITE(6,882) 

882 FORMATC2X,'DO YOU WANT INPUT POLYNOMIAL BCZ) TO BE " 
1 'IDENTIFIEDCY OR N)T') 
READ(S,883) AHSRB 

883 FORMAT(A) 
WRITE(6,880) 
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c 

880 FORMAT(2X,' ENTER NUMBER OF DATA POINTS TO BE ANALIZED,') 
READ(S,*)NDATP 
WRITE(6,994) 

994 FORMAT(2X,' NUMBER OF MODES TO BE CONSIDERED? 
READ(S,')NMODE 
WRITE(6,99S) 

995 FORMAT(2X,' HOW MANY POINTS PER BATCH?') 
READ(5,*)NPRBCH 

"NBACH=NDATP/NPRBCH 
TWONMD~2*NMODE 

, , 
• + t } 

C ---------- SET PARAMETERS FOR RPEM SUB, ------------------
C 

c 

NARPM~TWONMD 

NBRPM=TWONMD 
NC=TWDNMD 
IF{ANSWR.NE,'Y') NC~O 

IF{ANSRB.NE.'Y') NBRPM:O 
ND=O 
MP=NARPM+NBRPM+NC 
NPI=NARPM+1 
NLOW=l 
NUP=NARPM 
INIT=i 
IER1=1 
IER2=1 
DO 10 I=l,MP 

10 THETA(Il=O.ODO 
PINIT=1.D4 
LAMBDA=,9DO 
ALMDA=1.0 
LAMDL=O.97 
KFACT~O.Ol 

AKFACT=O.999 
ISTABI=l 
ISTAB2=O 

C ------------INITIAL RPEM CALL ----------------------------
C , 

CALL RPEM(THETA,PMAT~NARPM,NBRPM,NC,NDjUCUR?YCUR,LAMBDA, 
1 KFACT,CFACT,ISTAB1,ISTAB2,V,PRERR,RESID,INll,PINIT 
2 ,IDIM,IER1,IER2,FI,PSI,PSID,FRPEM,GRPEM,LRPEM,WORK, 
3 TSTAB,UARRA,YARRA) 

WRITE(6,993) 
993 FORMAT(11X,'FIRST MODE',11X~'SECOND MODE/,lIX, 'THIRD MODE', 

1 I11X,'FOURTH MODE',10X,'FIFTH MODE ',11X,'SIXTH MODE" 

111 



C ------------ MAIN LOOP AND BATCH LOOP SET-UP -------------
C 

C 

INIT=O 
IJ=O 
DO 30 J=l,NBACH 
DO 20 I=l,NPRBCH 
IJ=IJtl 
UCUR=U(IJ) 
YCUR=YCIJ) 
LAMBDA=ALMDA*LAMBDAt(1.0DO-ALMDA).LAMDL 
KFACT=AKFACT*KFACT+(l.ODO-AKFACT) 

C ---------- RPEM CALL --~-----------------------------------

c 

CALL RPEM(THETA,PMAT,NARPM,NBRPM,NC,ND,UCUR,YCUR,LAMBDA, 
1 KFACT,CFACT,ISTAB1,ISTAB2,V,PRERR,RESID,INIT,PINIT 
2 ,IDIM,IER1,IER2,FI,PSI,PSID,FRPEM,GRPEM,LRPEM,WORK, 
3 TSTAB,UARRA,YARRA) 

20 CONTINUE 

r ---------- TRANSFORMED DYNAMIC MATRIX SET-UP ----~--------

L 

IF(IJ.LT.NSKIP) GO TO 30 
DO 50 IDUM=l,NARPH 
DO 50 JDUM=l,NARPM 
FCIDUM,JDUM)=O.ODO 
IFtJDUM.EQ.IDUM+l) F(IDUM,JDUM)=1.0 

50 CONTINUE 
DO 40 K=lrNARPM 
FCK,l)=-THETA(K) 

40 CONTINUE 

C --------- CALL RG TO COMPUTE EIGENVALUES -----------------
c 

CALL RG(F,NA,NARPM,VRG,NV,NLOW,NUP,ER,EI,TVPE,SUPD, 
1 NDEL,NPl,NBLOCK,EPSRG,INFO) 

C 
C ---------- TRANSFORMING ROOTS TO CONTINOUS DOMAIN ---------
C 

K=O 
KDUM=O 
KDUM1=O 

60 K=Ktl 

112 

IFCK.GE.NARPM) GO TO 90 
KP1=K+l 
IFCABS(FCK,KPl».LT.l.0D-07) GO TO 110 
KDUM=KDUM+l 

. CDUM1=DCMPLX(F{K,K),F(K,KP1» 
CDUM2=CDLOG(CDUM1)/DT 
CLXRTCKDUM,1)=DREAL(CDUM2) 
CLXRTCKDUM,2)=DIMAGCCDUM2) 
K=Ktl 
GO TO 60 



(: 

110 IF(ABS(F(K,K».GE.l.0DO) 60 TO 60 
IF(F(K,K).LT.O.ODO) GO TO 150 
I\DUM1=KDUM1+1 
RLRT(KDUM1)=DLOG(F(K,K»/DT 
GO TO 60 

150 t\DUM=I(DUM+1 
CLXRT(KDUM,l)=DLOG(-F(K,K»/DT 

CLXRTCKDUM,2)=3.141S/DT 
GO TO 60 

'10 CONTINUE 
DO 80 ~;=l,KDUM 
IF(ABS(CLXRT(K,2».GT.l.0D-07) GO TO 70 
FREQ(K)=CLXRT(K,l) 
DAMP(K)=CLXRT(K,l) 
CHARCK)='R' 
GO TO 80 

70 FREQ(K)=DSQRT(CLXRT(K,1)*CLXRT(K,1)tCLXRT(K,2)*CLXRT(K,2» 
DAMP(K)=-CLXRT(K,l)/FREQ(K) 
CHAR(K)='C' 

80 CONTINUE 

C ---------- SORTING THE ROOTS -----------------------------
c 

c 

KDUM3=KDUM 
DO 140 K=l,KDUM-l 
DO 140 KP1=Ktl,KDUM 
IF(ABS(FREQ(K)-FREQ(KP1».LT.0.0001)KDUM3;KDUM3-1 
IF(ABS(FREQ(K)-FREQ(KP1».LT.0.0001)FREQ(KP1)=1.0Dtl0 
IF(FREQ(K).LT.FREQ(KP1» GO TO 140 
DUMP=FREQ(K) 
FREQ(K)=FREQ(KP1) 
FRECHKF'l )=DUMP 
DUMF'=DAMP(K) 
DAMP(K)=DAMP(KP1) 
DAMP(KP1)=DUMP 
ANSWR:::CHAR(K) 
CHAR(K'=CHAR(KP1) 
CHAR(KF'l'=ANSWR 

140 CONTINUE 
I<DUM=KDUM3 
IF(KDUM.GT.NMODE) GO TO 120 
DO 130 K=l,KDUHl 
F,DUM-=KDUM+l 
FREQ(KDUM)=RLRT(K) 
DAMP(KDUM'=RLRT(Ktl) 
IF(K.GT.KDUM1)DAMP(KDUM);O.O 

130 CHAR(KDUM)='R' 
120 IF(KDUM.GT.NMODE) KDUM=NMODE 
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C ---------- OUTPUT PRINT-OUT ------------------------------
C 

KDUM=KDUM3 
WRITE(6,883) 
WRITE(6,992)(CHAR(K),K,FREQ(K),DAMP(K),K=1,KDUM) 

992 FORMAT(3(3X,':',Al,Il,':',2F8.3 » 

30 CONTINUE 
STOP 
END 

SUBROUTINE DATAIN(JOB,IMG,NDATP,U,Y) 
c 
C ---------- SUBROTINE DATAIN ------------------------------
C 

c 

DOUBLE PRECISION Y(l),U(l) 
INTEGER ID(4),NR,NC,JOB,IMG 
INTEGER INPUT(32),OUTPUT(32) 

C ---------- INPUT FILE NAMES 
c 

WRITE(6,9000) 
9000 FORMAT(/,' ENTER INPUT FILE NAME ••• ') 

READ(5,9010,END=2000) INPUT 
.9010 FORMAT(32Al) 

WRITE(6,9030) 
9030 FORMAT(!,' ENTER OUTPUT FILE NAME ••• ') 

READ(S,9010,END=2000) OUTPUT 
c 
C ---------- ASSIGN FILES 
C 

C 

CALL FILES(2,INPUT) 
CALL FILES(11,QUTPUT) 

C ---------- LOAD MATRIXX FILE 
C 

c 

CALL SAVLODI2,ID,500,NR,NC,IMAG,JOB,U,U) 
CALL SAVLOD(11,ID,500,NR,NC,IMAG,JOB,Y,Y) 

NDATP=NR 

2000 CONTINUE 
C 
C ---------- CLOSE FILES 
c 

c 

114 

CALL FILES(-2,INPUT) 
CALL FILES(-11,OUTPUT) 
RETURN 
END 
SUBROUTINE SAVLOD(LUNIT,ID,MA,M,N,IMG,JOB,XREAL,XIMAG) 



c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
C 

101 
102 

c 

---------- SUBROUTINE SAVLOAD ----------------------------

INTEGER LUNIT,ID(4),M,N,IMG,JOB 
DOUBLE PRECISION XREAL(1),XIMAG(1) 

IMPLEMENT SAVE AND LOAD 
LUNIT ::. LOGICAL UNIT NUMBER 
ID ::. NAME, FORMAT 4Al 
M, N = DIMENSIONS 
IMG ::. NONZERO IF XIMAG IS NONZERO 
JOB ::. 0 FOR SAVE 

= SPACE AVAILABLE FOR LOAD 
XREAL, XIMAG = REAL AND OPTIONAL IMAGINARY PARTS 

SYSTEM DEPENDENT FORMATS 
FORMAT(4A1,3I4) 
FORMAT(4Z1S) 
IF (JOB • GT. 0) GO TO 20 

C SAVE 

c 

10 WRITE(LUNIT,101) ID,M,N,IMG 
DO 15 J ::. 1, N 

K ::. (J-l)*MA + 1 

L ::. K + M - 1 
WRITE(LUNIT,102) (XREALCI),I=K,L) 
IF (IMG .NE. 0) WRITE(LUNIT,102) (XIMAG(I),I=K,L) 

15 CONTINUE 
fi'ETURN 

C LOAD 
r 

c 

20 READ(LUNIT,101,END=30,ERR=29) ID,H,N,IMG 
IF (M*N .GT. JOB) GO TO 30 
DO 25 J ::. 1, N 

K ::. (J-IHM+1 
L ::. J*M 
READ(LUNIT,102,END=30) (XREAL(I),I=K,L) 
IF (IMG .NE. 0) READ(LUNIT,102,END=30) (XIMAG(I),I=K,L) 

25 CONTINUE 
RETURN 

29 WRITE(6,*) 'ERROR IN READING FILE' 

C END OF FILE 
C 

30 M ::. 0 
N = 0 
RETURN 
END 
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SUBROUTINE RPEM(THETA,P,NA,NB,NC,ND,U,Y,LAMBDA,K,C, 
ISTAB1,ISTAB2,V,EPS,EPS1,INIT,PO,IDIM,IER1,IER2, 
FI,PSI,PSID,F,G,L,WORK,TSTAB,UARRA,YARRA) 

---------- RPEM SUBROUTINE -----------------------------

RECURSIVE PREDICTION ERROR METHOD 
THIS IS A MODIFIED VERSION OF THE ROUTINE ORIGINALLY 
DEVELOPED BY T.SODERSTROM. THE MODIFIED FORM HANDLES 
VARIABLE SIZES OF POLYNOMIALS A,B,AND C.THE ROUTINE . . 

PROVIDES VARIOUS OPTIONS AS DESCRIBED BELOW. 
THE SUBROUTINE PERFORMS THE MODIFICATION OF THE 
PARAMETER ESTIMATES THETA FOR ONE SAMPLING INTERVAL 
A NEW CALL TO RPEM MUST BE MADE FOR EVERY NEW 
SAMPL~NG INTERVAL 
MODEL STRUCTURE USED IS 
A(Q**-l )Y(T)=B(Q**-l )U(T-ND)tC(Q**-l )E(T) 
THETA - VECTOR OF ORDER (NAfNBtNC) CONTAINING THE 

PARAMETER ESTIMATES. 
THETA=(A(l), ••• ,A(NA),B(l), ••• ,B(NB),C(l), •••• ,C(NC» 
THETA IS CHANGED IN THE SUBROUTINE 
P - SYMMETRIC MATRIX OF ORDER(NAtNBtNC) 
P IS USED IN THE U-D FORM.ITHIS U IS DIFFERENT 
FROM THE INPUT VARIABLE U(T).THE ARGUMENT OF THE 
ROUTINE CONTAINS U(T». 
P=U*D*U (TRANSPOSED) WITH D DIAGONAL AND U UPPERY 
TRIANGULAR. THE ELEMENTS OF D ARE STORED IN THE 
DIAGONAL OF P. THE ELEMENTS OF U ARE STORED IN THE 
UPPER TRIANGULAR PART OF P. P IS CHANGED IN THE 
SUBROUTINE. 
U -THE LAST INPUT VALUE 
Y - THE LAST OUTPUT VALUE 
LAMBDA - THE FORGETTING FACTOR (TO BE ENTERED) 

O.LT.LAMBDA.LE.l • 
K - THE CONTRACTION FACTOR 

O.LT.K.LE.l. 
THIS FACTOR CONTRACTS THE ROOTS OF THE 
C - POLYNOMIAL • (THIS IS TO BE ENTERED) 
THIS FACTOR IS USED IN FILTERING OF THE DATA 

C - PARAMETER USED FOR THE REGULARIZATION (SHOULD BE 
CHOSEN RATHER LARGE. TO BE ENTERED) 
THIS LIMITS THE MAXIMUM VALUE OF THE DIAGONAL 
ELEMENTS OF THE P - MATRIX 

ISTABl - FLAG(TO BE ENTERED) FOR STABILITY TEST OF C(Z) 
IF ISTAB1=O,NO MONITORING (STABILITY TEST AND 
STEP SIZE REDUCTION) IS PERFORMED. 
IF ISTAB1.NE.O, MONITORING IS PERFORMED 

ISTAB2 - INTEGER AT RETURN GIVING THE NUMBER OF STEP 
SIZE REDUCTIONS PERFORMED 

V - LOSS FUNCTION- SUM OF SQUARED PREDICTION ERRORS. 
TRANSltNT PHASE IS INCLUDED 
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EPS - GIVES THE PREDICTION ERROR ON RETURN 
EPSI - GIVES THE RESIDUAL ON RETURN PROVIDED UPDATE USES 

RESIDUALS BY IER1=! 
IN IT - FLAG TO BE USED FOR STARTING THE RECURSION. IF 

INIT=O, ALL PARAMETERS ARE UPDATED. IF INIT.NE.O, 
APPROPRIATE INITIAL VALUES ARE FIRST SET AND THE 
PARAMETERS ARE UPDATED USING THE AVAILABLE DATA 
U,Y 

PO - SCALAR PARAMETER USED TO GIVE AN INITIAL VALUE(TO 
BE ENTERED WHEN INIT.NE.O) 
IF INIT.NE.O, P=PO*I 

IDIM - DIMENSION PARAMETER 

IERi - FLAG TO BE ENTERED. IF IER1=O, PREDICTION ERRORS 
ARE USED IN PLACE OF THE RESIDUALS. IF IER1.NE.O, 

THE ALGORITHM USES THE RESIDUALS. 
IER2 - FLAG TO BE ENTERED. IF IER2=0, FILTERING IS 

NOT USED IN THE ALGORITHM. IF IER2.NE.O, 
FILTERING WITH POLYNOMIAL C(Z) IS PERFORMED. 

ABS(ND) .LT. 10 
IF IER1=O AND IER2=O, THE ALGORITHM REDUCES TO THE 
EXTENDED LEAST SQUARES CASE. 

IF IER1=O, AND NB=NC=O, THE SUBROUTINE REDUCES TO A 
SIMPLE RECURSIVE LEAST SQUARES ESTIMATE OF AR MODEL. 

IF IER2=O, THE ALGORITHM PERFORMS AS RMLI 
DOUBLE PRECISION THETA(l),PCIDIM,l),PSID(l), 
FI(1),PSI(1),TSTABC1),WORK(1),F(1),G(I),Ul,Yl,El,AL 
,CI,EPS,EPS1,ALFA,PO,V,C,U,Y,AHY,DD,S,BETA,GAHHA 

DOUBLE PRECISION LAMBDA,K,L(l),UARRA(l),YARRA(I) 
NN=NAtNBtNC 

TEST FOR INITIALIZATION 
IF(INIT.EO.O) GO TO 100 

V=O.DO 
DO 10 I=I,NN 
DO 10 J=l,NN 

10 P(I,J)=O.DO 
DO IS 1=1,10 
YARRA(I)=O.DO 

15 UARRA(I)=O.DO 
DO 20 l=l,NN 
PCI,I)=PO 
L(I)=O.DO 
FI(I'=O.DO 

20 PSICI)=O.DO 
NS=3*NC 
DO 30 I=l,NS 

30 PSID(I)=O.DO 
RETURN 

L 
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JOO NDS:::ND 
IF (NDS .LT. 0) GO TO 103 
IF (ND .LL !) GO TO 102 

DO 101 I=l,ND 
J=NItSt2-1 

101 UARRA(J)=UARRA(J-1) 
102 UARRA(l)=U 

U=UARRA(NDtl) 
GO TO 108 

103 NDS=··NDS 
DO 105 I=l,NDS 

J=NDSt2-1 
105 YARRA(J)=YARRA(J-l) 

YARRA(!):::)' 
Y==YARRA(NDSt1) 

108 CONTINUE 
COMPUTE PREDICTION ERROR 

EPS=Y 
DO 110 I=l,NN 

110 EPS=EPS-FI(I)*THETA(I) 
G COMPUTE NEW PARAMETER ESTIMATES 

AMY:::l. 
C TEST FOR NEED OF MONITORING 

IF(NC.EO.O)GO TO 200 
IF(ISTAB1.EO.0)GO TO 200 

ISTAB2::0 
120 DO 130 I=l,NC 

NI=NAtNBtI 
130 TSTAB(Itl)=THETA(NI)tL(NI)'EPS'AMY 

TSTAB(1)=1. 
r TEST FOR STABILITY OF C(Z) 

CALL NSTABL~TSTAB,NC,WORK,IST) 
IF(IST.EQ.O)GO TO 200 
AMY=AMYJ2. 
ISTAB2=ISTAB2+1 
IF(ISTAB2 .GT. 25) RETURN 
GO TO 120 

C UPDATE PARAMETER ESTIMATES 
200 DO 210 I=l,NN 
210 THETA(I)=THETA(I)tLCI)*EPS*AMY 

IF(IER1.EO.0)GO TO 250 
C COMPUTE RESIDUALS 

EF'Sl:::Y 
DO 220 I=l,NN 

220 EPS1=EPS1-FI(I)*THETA(I) 
250 IF(IER1.EO.0)EPS1=EPS 
C 
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620 

c 

650 
6~)O 

c 

'., 

COMPUTE FILTERED SIGNALS AND STORE IN PSID ARRAY 
Yl=Y 
Ul=U 
El. ::::EPS 1 

IF(IER2.EQ.0)GO TO 670 
IF(NC.EQ.O)GO TO 670 
no 620 I=l,NC 
CI=THETA(NAtNBtI)*K**I 
Yl:'(ltCUPSIII( I) 
Ul~Ul-CI*PSID(NCtI) 

El=El-CI*PSID(2*NCtI) 
IF(NC.EG.l)GO TO 650 
UPDATE PSID VECTOR 
DO 630 I:::2,NC 
11=NCt2-1 
PSID(Il)=PSID(Il-1) 
I2::NCtNCt2-I 
PSIDCI21=PSID(I2-1) 
13=NCtNCtNCt2-1 
PSID(I3)=PSIDCI3-1) 
PSID(l)=-Yl 
PSID(NCtl)=Ul 
PSID(NCtNCtl)=El 
UPDA1E VECTORS FI AND PSI 
CONTINUE 
IF(NA.EQ.l)GO TO 720 

DO 700 J=2 dlA 
I=NA+2-J 

F l( 1) =F I C 1-1) 
700 PSI(I)=PSI(I-l) 
720 FI(l)=-Y 

PSI (1) =-Y1 
IF(NB.EQ.O)GO TO 750 
IF(NB.Ea.1)GO TO 740 
DO 730 J=2,NB 
I =NAtNBt2-,j 
FI(I)=FI<I-1> 

730 PSI(I)=PSI(I-l) 
740 FI(NAtl)=U 

PSI (NAt!) =Ul 

750 IF(Ne.Ea.OIGO TO 780 
IF(NC.Ea.l)GO TO 770 
fiO 760 J=2,NC 
I=NAtNBtNCt2-J 
FI(I)=FI<I-1> 

760 PSI(I)=PSI(I-l) 
770 FI(NAtNBtl)=EPSl 

fS I< NAtNBt 1) =E 1 
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780 CONTINUE 
C COMPUTE GAIN VECTOR L, UPDATE P AND V 

[10 810 I=2,NN 
J:::NNt2-I 
ALFA=PSI(J) 
Jl=J-l 
DO 800 KK=l,Jl 

800 ALFA=ALFAtP(KK,J)*PSI(KK) 
FL)=ALFA 

810 G(J)=P(J,J)*ALFA 

c 

G(l)=P(l,l)*PSI(l) 
F(ll=PSI(1) 

ALFA=LAMBDA+F(l)*G(l) 
GAMMA=O. 
IF(ALFA.GT.O.)GAMMA=l./ALFA 
IF(G(l'.NE.O.)P(l,l)=GAMMA*P(l,l) 
DO 830 J=2,NN 
BETA=ALFA 
DD=G(J) 
ALFA=ALFAtDD*F(J) 
IF(ALFA.EG.O.) GO TO 835 
AL=-F(J)*GAMMA 
.Jl=J-l 
DO 82<'$=lrJl 
S=P(I,J) 
P(I,J)=S+AL*G(I) 

820 G(I)=G(I)tDD*S 
GAMMA=l./ALFA 
P(J,J)=BETA*GAMMA*P(J,J)/LAMBDA 
P(J,J'=MIN(P(J,J),C) 

830 CONTINUE 
C 

V==V+EPSU2/ALFA 
835 CONTINUE 

DO 840 I=l,NN 
840 L(I)=G(I)/ALFA 

F:ETURN 
END 
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SUBROUTINE NSTABL(A,N,W,IST) 
C TEST FOR STABILITY 

c 
DOUBLE PRECISION A(l"W(l),AL 

IST=1 
Nl=N+1 
DO 1 !:::I,N1 
\./( I>=A( 1) 

1 W(N1tI)=O. 
K:::O 

10 IF(K.EO.NIGO TO 99 
NK1=N-Kt1 
DO 11 J=l,NKl 

11 W(NltJ)=W(NKl-Jtl) 

12 

99 

IF(W(Nl+NK1'.EQ.0.'GO TO 98 
AL=W(NK1'/W(NltNK1) 
IF(ABS(AL).GE.l.0'GO TO 98 
NK:::N-I\ 
DO 12 J=l,NK 
W(J)=W(JI-AL*W(NltJ) 
K=K+l 
GO TO 10 
RETURN 
IST=O 
RETURN 
END 
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c 
C ---------- RG SUBROUTINE ----------------------------------
C 

1 NDEL,NP1,NBLOCK,EPS,INFO) 
INTEGER NA,N,NV,NLOW,NUP,NBLOCK,TYPE(N),NDEL(NP1) 
DOUBLE PRECISION EPS,A(NA,N),V(NV,N),ER(N),EI(N),SUPD(N) 

c 
C RG FINDS THE EIGEN VALUES OF A MATRIX. ALSO IT HAS CAPABILITY 
C OF FINDING EIGEN VECTORS TOO. TO BE ABLE TO FIND EIGEN-
C VECTORS SUBROUTINE ELMBTR WHICH HAS BEEN COMMENTED OUT MUST 
C BE CALLED. 
C 
C ON ENTRY 
c 
C A CONTAINS THE INPUT MATRIX 
C 
C NA,N LEADING DIMENSION AND COLUMN DIMENSION OF A 
C 
C NLOW, LOW AND HIGH INDEX OF DIAGONAL POSITIONS OF THE 
C NUP PORTION OF A TO BE REDUCED TO SCHUR FORM 
c 
C ON RETURN 
I; 
C A DESTROYED ON OUTPUT 
C 
C V CONTAINS THE PRINCIPAL VECTORS OF A 
C 
C NV LEADING DIMENSION OF V 
C 
C ER,EI REAL AND IMAGINARY PARTS OF THE N EIGENVALUES OF A 
C 
C TYPE (INTEGER) FLAG ARRAY INDICATING THE TYPE OF EIGENVALUE 
C (0 => REAL, '1 => POS. CONJUG, 2 => NEG CONJUG) 
C 
C SUPD SUPERDIAGONAL COUPLING ELEMENTS (INDEXED ON THE COLUMN 
C POSITION) 
c 
C 
C 
C 
C 
C 
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NDEL FLAG ARRAY RECORDING THE LOCATION AND SIZE OF THE 
BLK TRIANGLES, (NDEL(Itl) IS THE BOTTOM CORNER OF BLK I 

NBLOCK NUMBER OF JORDAN MATRICES FOUND 



c 
c 
c 
c 
c 

INFO = 0 NOR HAL RETURN 

- 1 LACK OF CONVERGENCE IN INITIAL GR DECOMPOSITION 
TYPE(I) = -1 ARE THE UNCONVERGED EIGENVALUES 

C ---------- EPS IS THE RELATIVE MACHINE PRECISION, I.E. 2**(I-T) 
C WHERE T IS NUMBER OF BINARY DIGITS OF FLOATING PT 
C MANTISSA (FOR IBM 16**(1-14) = 2.22D-16) 
C 

C 

IORDER=O 
FNORM=O.ODO 
DO 10 I=l,NA 
DO 10 J=l,N 
FNORM=FNORMtACI,J)*A(I,J) 

10 CONTINUE 
CALL ORTHES(NA,N,NLOW,NUP?A,SUPD) 
CALL ORTRAN(NA,NV,N,NLOW,NUP,A,SUPD,V) 
CALL HQR3(A,NA,N,NLOW,NUP,IORDER,V,NV,ER,EI,TYPE,SUPD,EPS) 

C ••• SET UP FLAGS FOR ELMBTR 
C 

c 

NDEL(l)=O 
NBLOCK~l 

DO 100 I=l,N 
. SUPD(I)=O.ODO 

IF(TYPE(I).LT.O) INFO=I 
IF(TYPE(I).EO.2) GO TO 100 
NBLOCK=NBLOCKtl 
NDEL(NBLOCK)=NDELCNBLOCK-l)tTYPE(I)tl 

100 CONTINUE 
NBLOCK=NBLOCK-l 

r •• , ELIMINATE TO BLOCK TRIANGLAR FORM 
C ••••••••• tTO SAVE SOME CPU TIME •••••••••••••• 
C 
C CALL ELMBTR(A,NA,N,V,NV,ER,EI,TYPE,SUPD,NDEL,NP1, 
C 1 NBLOCK,FNORM,EPS) 

RETURN 
END 
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