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INTRODUCTION 

This paper reviews some of the flight test techniques currently being used or 
developed at NASA Ames Research Center's Dryden Flight Research Facility (fig. 1). 
Use of ground and airborne computational capability to increase flight test capa­
bility and to enhance data return, checkout of systems-driven aircraft, and new 
techniques for collecting basic data are discussed. 

AIRBORNE AND GROUND COMPUTATION TRENDS 

The advent of reliable computational capability and digital data links has cre­
ated new opportunities and challenges for those in the flight test business (fig. 2). 
The following sections discuss some of the ways in which these capabilities are being 
used at. Ames Dryden, ranging from remotely piloted research vehicles to vehicles with 
part of their control loops being closed through a data link with a ground-based 
computer. 

Remotely Piloted Research Vehicles 

The most extreme example of using ground facilities to control the flight vehicle 
is the remotely piloted research vehicle (RPRV, fig. 3). In t.his case, state Lnfor­
mati on is downlinked to a pilot's display and a control system computer, which also 
receives pilot-commanded information. Control surface commands are then uplinked 
to the test aircraft. Figure 4 shows a typical control station, a cockpit similar 
in shape and function to a typical fixed-base simulator cockpit. In the system used 
at Ames Dryden, during normal flying the aircraft is "dumb"; that is, all control 
and guidance loops are controlled through the ground comput.er. Control loops are 
closed onboard for the backup control modes in which t.he vehicle is controlled as a 
"drone," either from the ground or from a chase aircraft. RPRVs are used at Ames 
Dryden for testing considered too high in risk for manned testing. Such vehicles 
that have been or will be tested include the spin research vehicle; the drones for 
aerostructural testing (DAST) vehicle, an active flutter suppression experiment; nl1d 
the controlled impact demonstration test to be performed with a Boeing 720 aircraft 
to test. antimisting kerosene fuels (fig. 5). The data return from these programs to 
date has been good, and we have concluded that RPRVs are a good approach for high­
risk testing. 

RPRVs are also used in an attempt to reduce the cost and increase the timeliness 
of obtaining flight data on new technOlogies. The most complex vehicle flown to 
date, the highly maneuverable aircraft technology (HiMAT) vehicle (fig. 6), was built. 
and flown with these as the primary objectives. The vehicle was flown 26 times, and 
the data are currently being evaluated to be presented at a symposium in May 1984. 



The degree to which the original objectives were accomplished is also being 
evaluated. 

Remotely Augmented Vehicles 

The combination of the F-8 digital fly-by-wire test bed, data links, and ground 
computation led to the concept of closing control loops in a ground computer to con­
duct basic handling qualities research (ref. 1) - the remotely augmented vehicle 
(RAV) concept (fig. 7). In this system, the single-strand uplink/downlink system is 
prevented from being flight critical by the basic redundancy management system of the 
F-8 test bed, thus allowing non-flight-critical software in a higher-order language 
to be used in the ground computer. This use of higher-order languages facilitates 
experimentation and separates the experiment from safety of flight. To avoid wasting 
flight time, the experimental software is still subjected to the verification and 
validation process. 

Remotely Computed Displays 

The development of the uplink/downlink capabi li ty, coupled with the powerful 
ground computational capability, prompted the development of a new technique: the 
remotely computed display (RCD, ref. 2), shown in figure 8. In this system, aircraft 
state information received through telemetry is used in an algorithm in the ground­
based computer to generate flight director commands that are sent back to the air­
craft and displayed to the pilot. 

Use of this technique enhances our ability to conduct flight tests in several 
ways. The technique allows the pilots to attain a steady-state test condition 
approximately 25 percent faster than with conventional techniques. Because instru­
ment errors, position errors, and other biases are accounted for in the flight direc­
tor algorithm, the points are flown more accurately than when using raw data pre­
sented on cockpit gages. Probably the most important use of this technique is in 
flying profiles that are difficult, or impossible, using standard methods. An 
example is shown in figure 9, a constant Reynolds number profile from Mach 0.6 to 
Mach 1.2. The technique has been used for a number of other demanding data profiles 
such as level windup turns, constant-radar-altitude decelerations, and zero-g 
profiles. 

Currently, the flight director algorithms are generated using the experience of 
the pi lots and experimenters, and trial and error on a simulator. Effort is undenvay 
to apply automated trajectory optimization techniques to the development of these 
algorithms. 

SYSTEMS-DRIVEN AIRCRAFT 

The advent of systems-driven aircraft with extensive onboard computational cilpa­
bility has forced a revolution in the manner in which aircraft are checked out and 
deemed ready to fly on either the first mission or operational missions thereafter. 
This section describes how we have dealt with this revolution in two cases and how we 
plan to cope in the future. 
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HiMAT Checkout and Simulation 

When the HiMAT vehicle was first flown, it represented an extreme case of the 
problems encountered in testing a systems-driven aircraft with its redundant onboard 
computers, uplink, downlinks, and ground-based computations (ref. 3). 

All the HiMAT flight software underwent two types of testing during the flight 
qualification process: verification testing and validation testing. Verification is 
the process by which it is determined whether the software performs exactly as speci­
fied. The verification process is accomplished by devising specific tests for each 
software task, conducting the test, and observing whether the task was accomplished 
according to specification. While verification testing used one or more of the com­
puter systems from a HiMAT simulation, much of it was accomplished without simulating 
the dynamics of the vehicle. Validation is a broader task which seeks to determine 
whether the system, of which the software is a part, performs adequately to accom­
plish the flight requirements. Therefore, much of the validation testing requires 
simulation of the vehiclE~ dynamics. This verification and validation process was 
conducted using the system shown in figure 10. Tests using this system varied: 
simple simulations used the computer facility to compute aircraft dynamics, and the 
cockpit; a complete simulation used the actual vehicle as an "iron bird," and simula­
tion of the data links. 

Additionally, the system of figure 10 was tied to the control room to dt"ive the 
displays, charts, and maps to simulate the flight environment for the most critical 
element of the flight test system, the test team. 

F-8 Checkout and Simulation 

The F-8 RAV was tested in a manner similar to that used for the HiMAT RPRV. A 
decommissioned airplane was used as an iron bird in combination with simulation hard­
ware built specially for this program, as shown in figure 11. This system allowed 
verification and validation tests to be performed on the basic F-8 hardware and soft­
ware, as well as on the special hardware and software associated with the RAV. 

Integrated Test Facility 

To date, the systems used to check out our highly integrated vehicles have been 
built specifically for the needs of each program. This approach has resulted in con­
siderable duplication of effort from program to program. To correct this deficiency, 
an integrated test facility (ITF) is being proposed (fig. 12) to meet the development 
test needs of the systems-driven aircraft that will be flight tested at Ames Dryden. 
This facility would incorporate features that would facilitate efficient operations 
and increase productivity. For example, the facility would house and integrate the 
current simulation/RPV and avionic laboratories. It would colocate all test and 
ground support equipment, would provide test bays for six to eight aircraft or iron 
birds, and would be large enough to accommodate an aircraft the approximate size of a 
B-52. ']~he facility would be suitable for positive security control, and the test 
bays would be shielded where necessary. Integrated support equipment would be pro­
vided to allow interrogation and excitation of the various computer-based systems. 
Special equipment for handling inertial navigation systems and special optic sensors 
would be provided. The ability to apply dynamic control surface loading to simulate 
aerodynamic loads would be included, as would ground vibration test capability. A 
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data link to the aircraft engine runup area would be provided to allow closed-loop 
testing with the engine running. 

NEW TECHNIQUES 

Work is constantly underway to develop new techniques to obtain and process data 
faster and more accurately, and to broaden the base of detailed aerodynamic data for 
use by future designers. The use of Kalman filter techniques for processing pitot­
static position-error data and the use of a test fixture on the F-104 aircraft to 
obtain skin friction drag information are current examples of this kind of effort. 

Linearized Kalman Filter Techniques for Air Data Calibrations 

From the earliest days of flight test, determination of air data from pitot­
static information has been a difficult and time-consuming task. This task has tra­
ditionally been performed by quasi-steady-state comparisons of several data sources, 
such as balloon, radar, and tower flyby, to yield a position-error correction for the 
test aircraft's pitot-static system. A key ingredient of these methods was the 
experience of the experimenter in determining when during the test runs the various 
data sources were valid or not (fig. 13). 

Current digital data handling methods allow the melding of data from many 
sources, thus simplifying the task somewhat. More importantly, the existence of all 
the data for a position-error correction in a single data base also allows modern 
digital analysis methods to be applied to the data. 

A linearized Kalman filter (LKF) is being used to analyze data from the sources 
shown (fig. 14) to obtain position-error corrections, even in cases where one of the 
data sources is known to have problems. In the case of the HiMAT vehicle, a flight 
dedicated to airspeed calibrations resulted in the data shown in figure 15 because 
of a temperature sensitivity of the pitot-static pressure transducers. On later 
flights, the transducer problem was resolved, resulting in the correction shown on 
figure 16. The LKF trajectory reconstruction technique was applied to the original 
data, resulting in the correction shown, thus demonstrating that the technique can 
use data from multiple sources to discriminate pitot-static errors from instrumen­
tation errors. 

This method has also been successfully applied to space shuttle entry data 
(ref. 4). At a Mach number greater than 3.5, air data are obtained from inertial, 
body-axis rate and acceleration, and meteorological measurements. The LKF technique 
is used to blend these complementary sources of data to result in data with charac­
teristics from all sources: high- and low-frequency content, data relative to fixed 
space, and data relating to the surrounding air mass. The high-frequency data rela­
tive to the surrounding air mass are essential for the extraction of high-confidence 
estimates of the stability and control characteristics. 

Aerodynamic Experiments 

The aircraft at Ames Dryden are frequently used to carry detailed local-flow 
experiments into the flight environment. Typical of this approach is the flight 
test fixture (FTF) shown mounted on an F-104 aircraft (fig. 17). This fixture 

4 



features a well-documented smooth flow field, Mach number capability from 0.4 to 2.0, 

dynamic pressure to 90 kPa (1900 Ibjft2 ), and Reynolds number to 23 x 106 per m 

(7 x 106 per ft) (ref. 5). 

This fixture has been used to test new designs for pitot heads, to test the tiles 
used on the space shuttle, and to conduct studies of the effects of various devices 
to reduce base drag. Currently, large force balances (fig. 18) are being installed 
flush on the sides of the FTF. This will allow the direct measurement of skin fric­
tion and concurrent determination of skin friction from boundary layer measurement 
using existing rakes. Experiments will be conducted with excrescencies such as rivet 
heads, fasteners, and paint finishes on one side, while the other is maintained 
smooth as a control. 

CONCLUDING REMARKS 

NASA Ames Research Center's Dryden Flight Research Facility is continuing to 
develop new flight test techniques to expedite and enhance the collection and dis­
semination of flight test information. Remotely piloted research vehicles, remotely 
augmented vehicles, simulation of systems-driven aircraft, application of new com­
putational techniques such as the linearized Kalman filter for air data calibrations, 
and use of the flight test fixture to conduct aerodynamic experiments in the flight 
environment are some of the techniques currently being used or developed at Ames 
Dryden. 
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ECN 10170 

Figure 1. NASA Ames Research Center's Dryden Flight 
Research Facility. 

Figure 2. Control methods. 
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Figure 6. HiMAT RPRV on Edwards dry lakebed. 
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