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1, Summary

This report summarizes the results of a three year investigation
into the structural dynamics of a cantilever turbomachine blade

mounted on a spinning and precessing rotor.

A cumulated list of publications issued during the coutse of the
research appear as references 1,2,3 and 5 of this final technical
report. In addition to these references which are conference
proceedings and journal publications, reference 17 is an interim
report covering the first eighteen months of research under the
Grant. The present final technical report incorporates that
interim report, with corrections, and augments it with the results

of the final one and ore half year of effort.

Both stability and forced vibration are considered with

a blade model that increases in complexity (and verisimilitude)
from a spring-restrained point mass, to a uniform cantilever,

to a twisted uniform cantilever, to a tapered twisted cantilever
of arbitrary cross-section. 1In every instance the formulation
is from first principles using a finite element based on beam
theory. Both ramp-type and periodic-type precessional angular
displacements are considered. 1In concluding, forced vibrating
and flutter are studied using the final and most sophisticated

structural model.

The analysis of stability is presented in some detail
and a number of numerical examples are worked out. One example is
given approximating a shroud-type restraint at the 3/4 span point.

One other set of calculations demonstrate the role of structural



damping in the phenomenon. The practical occurence of this type

of instability is discussed.

The forced vibration problem is treated, with forcing
present at one and two times the rotational frequency with
amplitude dependent upon the precessional rate. Finally there
are presented some considerations on the effect of subsonic
aerodynamic damping on the dynamics of twisted cantilever blades.
The conclusion is that when flutter occurs it is of the coalescent
type with the two lowest modes coupling to account for the vanishing

of the aerodynamic damping.



2, Introduction to Precession-Induced Instability of Rotor Blades

An operating turbine-type aeroengine may be considered a
gyroscope with the turbomachine rotor blades representing a large
number of radially disposed beams. These blades are subject to a
wide variety of vibratory forcing mechanisms as well as flutter,
or self-excitation. Hence rotor blade vibrations, as well as those
of stator vanes, have received a great deal of analytical and
experimental attention, forming a very large sub-discipline in the
field of aeroelastic and mechanical vibrations. The excitation and
self-excitation studied in this present research program relate to
the fact that the engine spin axis may be forcibly precessed with
angular rates that are developed by the entire vehicle in which the

aeroengine is mounted.

The potential sources of precession of the rotor shaft axis
are several in number. In highly maneuverable aircraft the pilot
may intentionally institute rapid pull-up, nose-over or yawing
motions with angular rates approaching, or even exceeding one radian
per second, With a maneuver lasting only a few seconds the rotor
may turn through hundreds of revolutions providing ample time for
self-excitation to occur or for forced vibrations to build up.

In addition to this ramp-type precession, the rotor may be
subjected to an harmonic precession of the engine axis due to flying
through a turbulent atmosphere. A wing-mounted engine would be
subjected to the same harmonic angular rate as the wing chord in a
flutter situation, assuming the flutter mode had an appreciable
wing torsion component. 1In the latter case, however, the fluttering
system would consist of the wing/pylon/engine and the inertial and
aeroelastic characteristics of the engine and its nacelle would have
to be included in the flutter stability determination.

Another potential source of harmonic precession is the operation
of turbine engined aircraft on rough runways, or the operation of
land vehicles in rough terrain. 1In these cases, as well as in the
turbulent atmosphere, the precession might be expected to have a
certain statistical distribution centered about the natural fregquency
of the entire complex vibrating structure.



Other vehicular applications of gas turbines and the seismic
motion of stationary gas turbine mounts are additional situations in
which gyroscopic influences on blade stability may be important.

For the ultimate treatment of these gyroscopic phenomena in
turboblading the aerodynamic influences should be included in the
anaylsis. However, initial y it is convenient to ignore the aero-
dynamic forces and deal with only elasticity and inertia. If the
assumed operation is far from a flutter condition this assumption
is tantamount to ignoring the acrodynamic damping provided by the
working t.uid (air, or combustion products in a turbine).

The order of investigation is therefore as follows:
i) Develop a finite element for a tapered, twisted beam

ii) Qualify the element by static loadings and rotating natural
frequency determination

iii) Conduct stability analyses and forced vibration analyses
under both precession histories, steady (or ramp variation)
and harmonic

iv) Include the aerodynamic forces in the forced vibration
analysis, and, if possible, in the self-excitation analysis

v) Include the shaft restraint in the analysis (i.e., allow

for a "coning" of the shaft as additional degrees of freedom)

In the present report items i) to iii) are included, representing
the results of the first 18 months of work under the present contract.
(These results have been reported in 3 published papers 1, 2, 3).



3. Blade Idealized as a Cantilever Beam Under Rotor Spin and

Space-Fixed Precession
3.1 1Introduction

This section deals with the study of vibratory behavior of turbo-
machine blades under combired rotor spin and angular precession.
The turbine blade is idealized as a cantilever beam. Pretwist
is not considered. The effects of blade taper, variable precession

rate, damping and Coriolis forces are studied.

The purpose of this study is to gain insight into the com-
plicated problem of blade vibrations under combined rotor spin and
precession by first studying a simplified model. The results of
this study can also be used as references for the numerical solution

obtained from the more complete model employed in Section 4.

The equations of motion are derived from Lagrange's eguations.
The kinetic and potential energy expressions required are developed

in the sequel.

3.2 Kinetic and Potential Energies

It is assumed that the precessional velocity vector
is space fixed and the origin of the rotor fixed xyz coordinate

system (see Fig. 1) is a fixed inertial point.

The angular velocity of the rotor is

('jsw('-#_jl(CoSGj-LS‘mGk) (1)
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where ©O<-wt and & 1is the magnitude of the rotor spin

velocity. The position vector of a displaced peint on the beam can

be given as

- . .

r-(x-‘-s‘){-t-(qa-s.’)J +(z2+82)k (2)
where SQ,SQ, $2 are the centroidal displacement components

of an arbitrary beam cross section. For the purposes of this section
$2 can be considered to include only the fore-shortening effect

(4) and is given by

<4 ST G ] o

Taking the time derivative of equation (2) the velocity

of a point on the beam is

R » R .‘ L _~’ _&

\7: Sx‘ +S|1J+S}k+wxr (4)
Using equations (1) and (2) the velocity can be written more
explicitly

[ él *(2#5})_9056 - (‘j"'S\J)—QS"\o](

+ [§y-(z+8)w + (x+$) 2 sn67

+ [éz *(‘j+$3)w~(\<+.§,)_n_c.osejk (5)
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The kinetic energy is obtained from

T=2 (9. pdV (6)
v

We neglect all the terms which include x and y in the above
integral because these terms are due to shear deformations and/or
due to rotary inertia which are usually neglected in beam type
analysis. Eqguation (6) can be simplified

R=L
R

(7)

where A(z) is the variable cross sectional area. In practice

blades usually have a very nearby linear thickness variation

Alz) = A [(\‘m*)zzg + 1] z >K (8)

where A is the cross sectional area at the root cf the blade,

and tr is the ratio of tip thickness to that of the base.

In order to reduce the beam problem with many degrees of
freedom to a single degree of freedom, only bending vibration
perpendicular to the major axis of cross section is considered.

This leads to

§y = (2 ,¢)cosp

S =~S(2,)s5ing (9)
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Fig. 1 Space-fixed Precession in the Rotor-fixed Coordinate
System xyz

|
y, by

Fig..2 Setting Angle for Straight Blades
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where ® is the setting angle measured from the axis of spin
to the major axis of the local cross-section,(see Fig. 2) and
is the displacement in the direction of the minor axis of cross

section. Furthermore the fore-shortening effect can be written as:

2
Y ‘§'§ (‘55 ) J2 (10)

Hence the kinetic enexrgy integral (7) can be completely expressed
in terms of the displacement, $ (z,t) in the fliexible direction
of the blade. For completeness we retain the terms that contain

cross sectional coordinates ..§ and v . .
—_ - - a2 = _S:
v-v = §+§ (%5%) 2§%( ) S ( 2!j><ia
: YNl 2 S
G Byge] + {22 (B3 ((H) e
/39 2 _— 4 2
£ T (BY + 2 5( )(,24;*[5(%)0‘2]}

i X L 3
(w"a-_nluste) ~+ (wl.;_n_ts.‘nte) {S“cosip +~n S B

*

—_1

~ Ensng 'JSE.COS‘&@ - Y(-S—Sm 28 + S Cos™ @ ‘%

+Jlt % §15"1§ - thcm‘ﬁ + Qgs.}szp -+ 2.‘§§ s.},’“[&
qS Sm.‘zﬁ - S Sin p}

- $2antsnB %(F}--S%g ag( )olz)\oSG

~(ScesB-Msiag) 546 3
~§QCOS§§(2—§ g( )o‘ )w*(gs.,\g-t

neesg) .n $h B 'g

-8- (continued)
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— [ - -—
-2 §5(31) + §(B)(3)a2 } {wlnmme - seosp+Teosp)

4 ncosp (5B~ Ncos B + § SingdT
3 _ 1 /3 B 4T )
- — t'
1282 -3 § (F)de§(Sese -nsinp« Tersp)atinzs

+§2-52 4 (B a Y (esapanok+ Tsip)anwsie
R

+ $(8-n"+28F 15 ) s2B+ 2(Sn+3n) cosaplwncosd

Neglecting shear deformations the potential energy is given as:

U=2§er(E8)de -
> Y “
With an known displacement function S this integral can be

evaluated.

3.3 Uniform Blades
3.3.1 Equation of Motion

To study the behavior of uniform cantilever b.ades for which
t. = l, we may assume a reasonable distribution of displacements

along the blade as follows

51:(%-R)

(z,¢t) = a) (1 - Co 2L

) (13)

o)

|

M e o B o o e i R 0



ORIGINAL P '@
OF POOR QUALi:Y

u(t) being the tip displacement of the blade. This assumed form is

inserted into the kinetic energy T and potential energy U expressions

and the Rayleigh-Ritz procedure is applied to both integrals.

From Lagrange's equation !

J

d ,oL |
3(_5)“L=0 (14) '

|

.y
£

where L = T - U, the equation of the beam tip motion is obtained

d’c N ___ f
ut + [q,-‘- € a <+ G\’L.C°59 -;elq_-‘ coozgju :

de

~ € ;Smeu -+ q[~u +Qu_°_l__‘f + 20 ]

% t de* )

. - 15

= ¢'Fgn20 -~ 2€F fanP sing (13) }

where the quantities Qe , a., (t"ct‘/q’: Q4 and F are |

all dependent on blade parameters as follows:

6= - wt (dimensionless time)
€=/, << | (typically about 0.0001)
1342 EI
a, = 3.42 - C051§ + 1269 = 1173 K .
mLiw? L
~ R
a, ==-0369 + 0.5cos g +0.209 (16)
-10- (continued) .
. . e A
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~SinapP

0
[}

* R
0'63' ~ OlsCOS p -+ 0.%09% ._L_

P
»
]

= —1.094 sin B/L

C - Lase (omar + o0 £ )

The blade para- 2ters are setting angle (stagger) € , blade
length L, rotor radius R, mass of blade m, section modulus EI.
is the i~tor spin velocity whereas (L is the magnitude of the space

fixed processional velocity.

The parameters given in equation (16) are for uniform blades.
If the blade is tapered these parameters have different expressions
and they reflect taper effects. However, the equation of motion
(15) retains the same form and the characteristics of the solutions

presented in this section remain general.

It should be pointed out here that xyz coordinates used in
equation (15) are rotating with the rotor angular velocity () .
Therefore, the tip deflection u is located in a moving coordinate
system. This in turn produces the Coriolis term ( € Q. snd & )

which is not explicitly dependent on velocity.

Comparing the parameter d, to the other parameters in the

differential equation (15), q, can be neglected for large blade length

-11-
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L. Since gyroscopic instability is important for relatively long
turbine or fan blades this nonlinear term will be omitted from
further consideration in this section. For the time being it is
worthwhile to mention that this term is due to higher order effects

of the foreshortened axial displacement.

The two terms on the right hand side of equation (15) represent
forcing functions. They are generated by the centrifugal :cceleration
associated with the rotor rotation. The first term is a time function
with twice the frequency of the rotor spin i.e. the force becomes
zero four times in every rotation. This force vector is in the y
direction of the moving coordinate system. The second term is generated
by a force vector that is in the x direction of the moving coordinate
system. Both inhomogeneous terms on the right hand side of equation
(15) represent components of these force vectors that cause blade

bending in the u direction.

3.3.2 Stability of the Linear Equation of Motion

Equation of motion (15) is nonlinear even though the higher
order effects of foreshortened axial displacements are ignored by
dropping terms that are dependent on d4- In this section we shall
omit the other nonlinear term €& G‘ss'me wZ . Since the stability
of the motion is determined by the homogeneous part of the equation
of motion the linearized equation (15) is reduced to

d°a
dot

2 z —._
+ [Qo‘fEQ,‘LGq,OSQ*éQaCOS'ZQ.]U =0 (17)
The stability characteristics of this equation was discussed

=-12-
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in reference (5). The ecuation is identical to the Mathieu equation

if the €*

terms are ignored. The stability of Mathieu's equation
is studied by means of the so-called Strutt diagram, (6). The terms
that are of order O(e’) generate additional unstable regions and
augment the standard stability regions in the Strutt diagram. The

derivation of these stability curves is based on Floquet theory.

The period of the time-dependent coefficient in equation (17)
is 2 M . The perturbation method of strained parameters (7 ) can be
used to determine the periodic solutions of u. This requires the

expansion of the solution u(©) in terms of

U=Uo =+ €U, + € U= (18)

Also it is necessary to expand the dimensionless squared

frequency a, in terms of €& .
Qo = bo + €b, +~€¥b, (19)

Substituting equation (18) and (19) into (17) a set of differential
equations are obtained

d%u,

Jo* bou. = O

dzd:
daet

- b°u| = - (lOI*inse)UO

2
d U, (20)

de* ool T ‘(L:. + Qi1 Q1 Cos 20)Us

- (bl + Q.COSB)U,

etc.
~13-
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The differential equations (20) are solved successively and
secular terms are suppressed by imposing conditions on the expansion

parameters bl' b,, etc. This is based oa Floquet theory for the

2
transition behavior between stable and unstable solutions. The

solution of the first differential equation (20) is a harmonic function
Uo = Ao Coéﬁoé-*sos’;‘ \Iboe (21)

with constants Ao and B, Substituting this expression into the

second differential equation (20)
<

du,

de”

4"0,,“. = ——(bl +€‘C056) Uo (22)

and solving this differential equation yields

ale) = — Ao b, Sin Jb 6 N Bobi 6 cos{m 0
2k, 2 Vb,

- Ach [25('*5:)9 Cos(l*\}-go)e ]
2 2Jbo — 1 2Ubo +

- BO_QJ [an(l“"‘)’:‘*)e N Sin (\*VE,,)O ’J

z 0% = | z\rco-l-\
(23)

The first two terms on the right hand side of (23) are secular
terms. Additional secular terms arise when JI;= ‘/ﬁ . If this
analysis is carried out further by inserting the above solution (23)

into the third differential equation (20) it is determined that

-14-
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-~ ’ -
besides 'J;.- /4 ' Ji; =1 also gives rise to more secular

terms. Analysis in the higher powers of € generates even more secular

S
terms but for most practical purposes o(e) is accurate enough.

Starting with i, = '/9. equation (22) becomes

d e -+ lq = (—b| —%)Ao Cod é@ "’(—b’ + %)B"S';‘éa

de* 47!
_ QR 38 qB - 36
—Ez—'cés 2 Sin 2
(24)
Eliminating the secular terms in (24) requires that either
"Ql B =0
b= 3 , B (25)
or
= U -
b, - , A, =o (26)

The two values of bl in equations (25) and (26), when inserted
into equation (19), correspond to two different stability transition
curves in the (Qo,€) plane. These curves separate stable

from unstable regions.

Using these results, the second order approximation of the
transition curves can be obtained by eliminating secular terms in the
solution of the third differential equation in (20). This requires
that

(hara +3q ) A =0
(27)
and

P! -
(b;“'a|“"€Q|)6° o (28)

-15-
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Equations (27) and (28) indicate that

ba=-a=-3q o (29)

is the sufficient condition for the elimination of secular terms
in u,.
Equations (25), (26), and (29) are inserted into (19) to

obtain the equations for the two transition curves that emanate from

a =1/4, €=0o .

o
a 2
\ J A
ac=f2ed —e(argg’) (30)
The above process 1s repeated at the other singular point:
a, = 1 and €=0 . The transition curves are described by .
i
5
A, = + € [ q" 21 - Ql] (31) ’
and
F
k] 'K Q’-
a 1o 2 ' (32)

Emanating from each singular point on the a, axis of (ao,Gﬁ
plane there are two transition curves. The loci of transition values
separate the (ao, € ) plane into regions of stability and regions of
instability. Additional unstable regions can be derived for higher
values of a, . However, these regions of instability are narrow

(order of e ) and do not have much practical significance.

-16-



In the stable regions equation of motion (15) can be approximated

by the following differential equation.

4" a * .
o~ Fan26 - 26 FtanP Sin 6
Jot T Qe T €T (33)

This epproximation is not valid in the unstable regions of the

(ao, & ) plane.

3.3.3 Numerical Example

The equations (30), (31) and (32) for stability transition
curves derived by the perturbation method contain blade parameters
@ , R/L etc. 1In this section using these equations for some

typical blade we may construct a stability chart. The stability
chart of Fig. 12 is given for a particular set of hlade parameters,

R/L = 1.384, L

10 in., P = -45° which yields the following para-

meters a, = 1, q = 1, and q, = 2.

For every pair of curves that emanates from the discrete
a, values, the region between the transition curves correspond to
(ao, € ) values which give unbounded solutions of the equation of
motion. Therefore these are regions of instability. It should be

noted that the unstable region at a, = l is considerably narrower

than the region at a_ = 1/4.

We now check the validity of the stability transition curves
that are given in Fig. 12 by an independent numerical procedure.
According to reference (8) the solutions of the homogeneous differential

equation (17) are stable if

/
IVi(27) + v ¢(am) | < 2 (34)

-17-
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Fig. 3 Stability Chart for the Linear Equation of Motion

-18-




where vl( 6 ) and \L { & ) are numerical solutions of (17) with

the following initial conditions

Vi(o) =) , W(d=o
(35)
/
V;(D)"O , Va (O)=|
The predictor-corrector numerical scheme of Adams-Bashforth
was used to obtain v,( 6 ) and v,( 6 ) for given (a,, € ) values
when a, = 1, q, = 1, and q, = 2. The stable and unstable points
are marked on the stability chart of Fig. 3. Excellent agreement
is observed with the results of perturbation methods.
3.3.4 Effect of the Nonlinear Coriolis Term
. . . . —2
If the nonlinear Coriolis term, eqa&ne w
is retained in the equation of motion (15) a general stability
analysis becomes impossible. However certain predictions can be
made about systems which have the form
g — — da
da +~ Q.U = 64‘(09\0*»;,3)
der (36)

. o dT . o
where € is small and 'F(I)G, u, -a-a) is periodic with
a period 2w in the product variable Y6 . 1In these systems
"resonance" occurs only if

q E
Ja, ~ =9 (37)
P

where p and q are small and mutually prime integers (9). 1If Ya,

is irrational and cannot be obtained by the division-of two integers

the solutions to (36) are not periodic but usually bounded. Therefore

-]19-



it suffices to make the stability analysis of (15) for only those
Jq, values which can be represented as a division of two mutually

prime integers

Ja. = _% : (38)
P

Neglecting terms that depend on 9y the equation of motion
(15) can be written in the form of equation (36). The coefficient
€ in this equation is the ratio of the precessional angular
velocity L1 to the spin angular velocity W . 1In general this
ratio is very small compared to age Therefore it can be expected
that the solutior of (15) is nearly harmonic. An approximate lin-
earized differential equation can be obtained by assuming that the

solution consists of two parts:

The first part u, satisfies the equation:

L

du,

+ aolL =0 (40)
de*

which has the solution:
U\_: ALCOS E.Q -+ BLSf‘nH‘,G (41)

Substituting equations (39) and (40) into equation (15) and linearizing

by neglecting the ( eu)2 term, results in

-20-
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2 &F35n206 - 2€ Ftanf Sinb |

4+ Q3 Sin 0 Ut

“(€a,+ Qicosh 4+ €grcos28) U

(42)
The stability of the above differential equation can be
studied by considering the homogeneous part only.
d‘u + 2 o + E
Jo* [ao + eq;-&-éq.Cos Gzz(‘osae
~€ 2gisho u]u o (43) i

Under the condition of equation (38) the period of the coefficient
of u in the above differential equation is 2PW™ . Furthermore
the stability of this differential equation can be studied by means

of Floquet theory. '

Here we apply the perturbation method of strained parameters,

again.
2
U= U + EU + € U, (44)

As= be + €b, + €*b, (45)

Substituting the above equations into (43) a set of differential

equations are obtained

-21-
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=+ bou! = - (b.-‘-q.CosG ~2?;ane qg)“o

=—, + bty = —(b,+a,+qaces2)Us
—(hn *q cosB XL sin 8 UL ) Uy

(46)

etc.

The differential equations (46) are solved successively
and secular terms are suppressed by imposing conditions on the ;
expansion parameters bl' bz, etc. The solution of the first

differential equation in (46) is an harmonic function
o= Ao CoS ﬂo 6 =+ 8, 5in \ﬂ:c 6 (47)

with constants A and B, Substituting this equation into the

second differential eguation in (46)

—d--‘:‘:.- 4\,0“. = -(L,+Q.Co$9 —‘2?‘51}\9 Us) Ue (46)
d8

and solvirg this differential equation it is determined that secular

terms arise when Jo. =1/ Jb, = 172, and Jo. =1/3.

-22-
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As before, the differential equation (48) has to be solved for
these specific values of b° and the secular terms that arise must

be eliminated by imposing conditions on bl‘

Starting with bo = 1/9, aquation (48) is

A-ldl i & - 0
de‘ - ; U, =~ b;Ao Cos 3 - l),eo Sms
'}‘a"AoALQtS“n% -+ -;'-IA.,S,_ Qs cosg
1 é A 6

+ 3 B.,Ag,q; Cos3 =~ 3 B.8. 13 Sm§ + ... (49)

Eliminating the secular terms in (49) requires that

"‘ZHAO-"-;E. BL?JAO "'-é '43-?’8" =0
: 1 -
-b' Bw ‘26[. q’ 60+ lAL q‘SA" o (50)

Equations (50) can be written in matrix form

.—L| + .13’, eL —i—g . AQ 0
X ]
h -b- 3 Be o
(51)
- o
GG« vime = . 3
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To obtain nontrivial solutions the determinant of the coefficient
matrix must be zero. This yields the following equation

2
"

s 2 2
bi—T<AL4BL)=O

or

= * i 2
b =V A.*a B, (52)

The two values of b1 in equation (52), when inserted into
equation (45), correspond to two different stability transition

curves that emanate from a, = 1/9, € = 0.

For each bl that is obtained from equation (52) the corresponding

relation between Ao and Bo is determined from equation (51).

A_o_ B‘-t JA_L:I"‘B‘.:l j

-
-—

B. A, (53)

When this analysis is extended to the second power of €& we face
an inconsistency that presents us from eliminating the secular terms.

For each transition curve that corresponds to a particular b, value

1
we obtain two conditions on b2 instead of one.

bo=-a - 2a 3 e B ALE e

[{»] 8?3 L [ 48;
?‘L

2 a
- (A =338, ) 2 (54)

3
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(55)

Obviously conditions (54) and (55) cannot be satisfied simul-

taneously for arbitrary AL and B Examining the two expressions for

L°
b2 in these equations, the difference is in the last term of the
equations; If these terms are neglected the perturbation solution

(44) will not be exactly periodic due to u,. The prerequisites for
applying Floquet theory to the transition curve will be violated.

The method of strained parameters fails to determine the stability
transition curves to the second and also to higher powers of € .
Therefore the solution so obtained is not uniformly valid as t —woo .
Other perturbation methods have been tried without success in resolving

this inconsistency. This remains a mathematical problem that may

be tackled rigorously at a future time.

Fortunately, in most practical cases the ratio, €& , of
precessional speed to rotor spin is small. The numerical error re-
sulting from omitting these inconsistent terms is negligible. 1In
order to verify these approximated stability curves the independent
numerical method of previous section is applied to the linear equation

(43) directly. This is preserted in the next section.

The approximate equations (54) and (55) for b2 and equation
(52) for b1 are inserted into (45) to obtain the equations for the

two transition curves that emanate from a, = 1/9, € =0.

-25~
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o X ?’
a q * e ___5: ’AL2+ BL:
s 9 S |
- & [QI + T‘; (i‘li '{ QsQBL \‘Atz-b 61.2 ]

(56, 57)
The above process is repeated at other singular points: € =0
and a, = 1/4, 1 etc. The approximate transition curves at a, = 1/4 are
t 2
QQ’ - 4 Gi -+ G [-Q| ?'. Q3 (IqAL bGel— )]
4 2 (58)
2 2 3
1 2 1 2 2
Qo = 73 - G-ZL + G [—Q. - = .+‘zi_ (ILJBL - é‘\L)i]
2 8 |15 .
(59)
and at q = 1 are
s f_ﬁ—"
Q. = | + 6"5 + B2 ]
(60, 61)

e~ T adee)]

It should be mentioned that these are not the only stability
curves. Additional unstable regions can be derived for higher values
of a,- However, these additional regions are exceedingly narrow and there-

fore they are less important.
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All of these transition curves contain AL and BL which are

the initial condition constants of the basic solution u . The
dependence of stability on the initial conditions is typical

for nonlinear systems. But these transition curves do not depend

on the constants Ao and Bo in equation (47) of the perturbed solution.

This indicates that the stability curves are valid for any arbitrary

initially perturbed motion.

3.3.5 Numerical Example

The equations for stability transition curves (56), (57), (58),
(59), (60), and (61) contain the initial condition constants
AL and BL as well as the blade parameters ﬁ , R/L, L etc. For
each of these parameters one can construct a family of stability
curves while the other parameters are held constant. We choose to
examine the effect of initial conditions on the stability curves

for a given set of blade parameters.

Stability charts of Figs. 4, 5, 6 are constructed for the

same blade data that were used in section 4.3.3 which yield =1,

|
q, = 1, q, = 2, and q3 = 0.1547.

For this purpose two dimensionless initial value parameters, "

and N2 are defined as follows:
n_ﬁg
)=
L

_ B.
Ma™ == (62)
L
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Note that AL is the initial displacement, uL(O) and BL is proportional

to the initial velocity.

Fig. 4, Fig. 5, and Fig. 6 correspond to different initial
displacement values, v, =0, Y, = 0.05, and Y = 0.1 respectively.
In each figure four pairs of transition curves are drawn for four
different values of Y : 0, 0.05, 0.1, and 0.5. Note that Ya =0.5
corresponds to a significant initial speed. For example, if the spin
velocity is 4000 rpm the initial speed for the transition curves

emanating from a, = 1/4 is 87 ft/sec.

In the unstable regions, between a pair of curves emanating
from discrete a, values, the perturbed motion u grows and consequently,

according to equation (29), the blade tip motion u is unstable.

In Fig. 4 the transition curves for ", =WN2=0 are of
particular interest. These are stability transition curves when the

nonlinear Coriolis term is not taken into consideration as given

FRRRTIIRE 8 S e

in section 4.3.3. From the expressions for stability curves it
can be seen that if the Coriolis term is neglected the stability §
characteristics of the blade tip motion will not depend on initial g
conditions (AL, BL). This is expected since the stability of linear
systems should be independent of iritial conditions. Also when
there is no initial motion (AL =0, B = 0) relative to the spinning
system the Coriolis acceleration does not effect the stability regions.

An interesting effect of Coriolis acceleration is the creation

of additional region of instability at a, = 1/9. This region is

not predicted by the linear analysis of section 3.3.2.
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and for Different Initial Speed qz

-29-~




SPEED RATIO {2 /¢

0.04

0.02

OR. AL FAQT 8
OF POOR QUALITY

Numerical Results
o Stable
e Unstable

)

<+

5

v 0.24 1/4 0.26
DIMENSIONLESS FREQUENCY a
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Unstable regions at a, = 1/9 and a, = 1l are quite narrow
for practical initial values (W, <0.1, Na< 0-05') and widen for
increased values of initial condition parameters ¥, and v?; .
On the other hand, the unstable region at a, = 1/4 does not depend
on the initial conditions. This region was predicted by linear

analysis and is unaffected from the nonlinear Coiiolis term.

Studying the three stability charts it might be concluded
that fcr moderate initial values and low prec ssion rates
the effect of Coriolis force on motion stability can be neglected for

blades undergoing gyroscopic motion.

So far the stability of tip motion has been analyzed by
the perturbation method. Because of the uncertainty in the accuracy
of this method it was decided to verify the stability charts presented
in Fig. 4, Fig. 5, and Fig. 6 by the numerical procedure that was
described in section 3.3.3. The solutions to the linearized equation

(43) are stable if

Vi (2pT) + Vo (apm) | < 2 (63)

where vl( @ ) and v2( 6 ) are numerical solutions of equation (43)

with the following initial conditions

[
0

Vi@ =1, v (o)

"
(o)

Vz(O)’ 0 , Va/(o)
(64)

Using this numerical method the transition curves that correspond
to ¥)a = 0.1 are checked. The stable and unstable (o, €)

points that are predicted by the numerical method are marked on the
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stability charts of Fig. 4, Fig. 5, and Fig. 6. They indicate
that the stability curves obtained from the perturbation method

are guite reliable.

3.3.6 Forced Vibrations

The equation of motion (15) indicates that the gyroscopic beam
motion is a forced vibratory motion. From the stability analysis
it has been determined that the motion in the unstable regions of
the (ao, € ) plane is unbounded. This is due to the fact that
the forcing function initiates vibrations which lead to parametric
resonance. Hence it is only necessary to give the forced response

away from the resonance regions.

In the stable regions the solution to the equation of motion

(15) can be assumed to be

U4 = U+ €U (65)

where u; now includes the forced response

2

d U,
de?

1 IN
+ Q. U, = & Fan2B + 26 Fcot Bsinb (66)

where F is given in equation (16) and is inthe order of O(L),

and u is the perturbed solution due to the remaining terms in (15)

expecting the 9, term. As indicated before the terms with q, has not been

included in our analysis for the reasons noted earlier.

In the stable regions the perturbed motion is bounded.
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From equation (65) the error in taking u equal to u is in the order
of € . Therefore in the stable region the forced response of the

equation of motion (15) with error of order € can be obtained

from equation (66) directly

a4 % U.= AcosVa, 8 + BsinJa.6

2

€ F : 2€ F .
+ SIN260 + —— cotBsInG
Qo -4 Qo — | (67)
where
A= d(o)
_ a
g=__ [o!u 2¢ F 2€F cot B
Voo Ld6 | ., a.-4 Qe = | (68)
The peak value of (67) can be determined by summing the
amplitudes of individual harmonics:
* 2€F Co‘(’e
[T lmex = JA* +8* + (69)
Qo- 4 Qo =~ |

To check the validity of the solution (67) the equation of
motion (15), disregarding the q, term, is integrated directl:r. The
predictor-corrector numerical scheme of Adams-Bashforth is used again.
Both the numerical solution and the approximate solution are plotted
in Figs. 7 and 8. Fig 7 is constructed with zero initial conditions

whereas in Fig. 17 the initial values are u(Q) =1 in., Eﬁl = | n.
a6 ec¢
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da
which corresponds to d¢

-

cvo w in/sec. The solutions

in Fig. 7 and Fig. 8 correspond to a stable point in the (a,, € )
plane which is a = 2 and € = 0.01. The particular blade data
used in these figures is the same as those used in the stability

chart.

The approximate solution of (15) in the stable region which
acre obtained from equation (67) are in very good agreement with direct
numerical solutions of (15) as can be seen in Figs. 7 and 8. For
smaller and more realistic & values the accuracy of the approximate

solution will be even better.

The previous discussion leads us to conclude that for practical
purposes the peak value of the vibratory motion which is governed by
equation (15) can be predicted from equation (69) provided the parti-
cular blade and rotary data correspond to points inside the stable
region of the (ao, € ) plane. It is werthwhile to note that bending
moments associated with peak tip displacements in this case ( € = o.o:)
are acceptable. Therefore the forced motion of a blade under gyroscopic
disturbance is generally less important than the corresponding para-

metric stability problem.

3.4 Blades with Different Ceometry

In this part we show how to modify the analysis of previous
section to take into account some common blade geometry, namely
tapered cross sections and shrouding of blades. It can be shown
that these prcperties do not change the gensral form of equation of

motion (15). The parameters in equation (16) are changed however.
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They include blade geometry efiects. Since the differential
equation of motion (15) preserves its original form the stability

analysis of previous section remains valid.

3.4.1 Tapered Cantilever Blades

In section 3.3.1 we have given ej:ation of motion for vniform
blades that have a taper parameter, t, = 1. 1f t. ¥ 1 the parameters

in equation (16) take the following form

e=-uwt

e=N/w

N= 02268 + 0.1%6 (£~ 1)

Q. = T‘w i EAi(OJ‘:‘%?) [g,“‘)(fh )
pliL w? 4
AT E R AT ]

l’

nm

(70)

R

Pl
+0.2%62 + 0.3668 T ~ 0.226% cos B

R kN
+("‘r—') ( 0.234) + oAQ'ae:z—L ~ 0.156 Cos @)

|

Q, = ?5 %-0_0337 -+ o,l%M% + o.ll3‘+co$1€>

K k3
+ (-1 (0,068 + 0. 1431 + 0.091 CoS B)

-~ Sl})Q(B ( unc%qn‘aed)

~0
n
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l
L= %o.vﬂl + o.u%%qﬁ + 0.1134 Cosaﬁ

N L

4 2z
+ (¢ =) (o.n7p =+ 0.14311 <+ 0.093 cos (5)}

- ;

L= = Sne [o.:z%z + (te=1) o.:oza]
L

F = chosﬁ

[0.!3‘43 + 0"%'7’2': + (4 - |) (70 cont.)

N

R
(o.1064 + 0,134 = )]

The new blade parameters which appear in the above equation (70)
are material density, ¢ , the width of the blade, b which is assumed
constant, the root cross sectional area, A and tr' the area ratio of the

tip to the root. N is some shape factor which is defined above.
3.4.2 Tapered Blades with a Shroud at z = R + 3L/4
Except the assumed displacement distribution (13) the general

procedure described in Section 4.2 and Section 4.3 is exactly

repeated. The assumed displacement shape is now

Sz, =T K [4 (E'Lg)s-— 3 <2 —LR )n ] (71)

which satisfies the geometric boundary conditions since

~38~
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23 (R,¢) = o
oz

(72)
u(t) is again the tip displacement at z = R + L.
For this case the parameters in equation (16) of cantilever
blades take the following form
8= - Wf
e~ n/w
N = 00%57 + (£ - l) 0.0714
a
_ EA 3 2
Q™ —— s 53.%3 (e=1) 213.9 (€c=1) + 16.5 (£=1) + 7}
hJeb L"w
+ L R 2
(73)
+o.51u3k )g
L
a, < L ) N+ N cos'B +0.0%5 R
) N 0.05719 - 2 s B8 *+o. 7L.

+ 4 (0,457 +o.5)q3-’f: )%

-'SQ\QB

-0
[}

_ |\
7 3N

~N\

2
0.05719 + 0-0%’57% + Ncos @

R
+ 4571 + 0.5143 —
{r (ous 0 L ) g {(continued)
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q; = . . .

E = L cos © [0'0,‘67.‘.0,05.@ — {r(0.0667
aN L
(73 cont)
R
+o.°5‘[‘)]

3.5 Time-Varying Precession

In Section 4.2 we derived the kinetic energy expression for
space-fixed, constant magnitude precessional angular motion of the
rotor. In practice, however, time derendent precessional velocities
are very possible. 1In this section we will examine the case when

the magnitude of the precessional angular velocity vector is an

harmonic time function

|\ 2| = cos Mt (74)

Under this condition the angular velocity vector is expressed as
- . . .
W= Wi + ncosit (CoSGJ + s:nGk) (75)

where A is the frequency of the precession and 6= - wt

as before.

3.5.1 Line.r Equation of Motion and the Its Stability

The equation of motion is obtained by the same procedure that
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was discussed in Section 4.2 and Szction 4.3. Disregarding the

nonlinear terms the equation of motion is given

ddsz + fa.+ 27210

. e% [cos(1+0)6 + cos(1-0)6]

2

+ % [11@519 + (Qa -1) CosaVE + iai cos2(1+D) 86

: ~ 76
+-<%:-c°52(t—-'-).ie]§u (76)

= - €Ftan8 [sin(142)6 + sin( -'D)tQ]

+ ¢Flgcae v Lsipali+v)e +

'% Sin2(1-2)6 ]

where u indicates the tip displacement again. The quantities

ao, ays ql, 95, and F are related to the blade parameters as follows

6= - wt
JL
= — <
S R, < |
X (77)
V=
(/N)
2
W, = l3,HQEI
m L
(continued)
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Wo * 19 + 1.617 r
Q= T3 T ¢°3 g+ ety L RO
QF FOCR Glndaty
(l' T -~ Sg‘nQp

9=

0.63) + o.GCoslﬁ 4-0'80955

7
F= ~LCosB (O-S‘MI - o.?on%) (77 cont)

The equation of motion (76) represents a forced oscillation
whose stability characteristics are determined by its homogeneous
solutions. The homogeneous equation can be rewritten in the form

K2

du _
&91+QoU‘u "c(e,e), (78)

S

Assuming the solution of the above equation to be in the

form

u=A CoS(\JQo 6 + ) , C°= consTant
(79)

equation (78) may be solved by first substituting equation (79)

into equation (78). The amplitude in equation (79) is than deter-

mined by the equation

LA b o cafadm 41 + V)8 +2¢] & sin[(adan - |
A de 8qo/=
_U)6-+2C]

+ sin[(adas +1-v)6 +2c] 4 sin [(2da; — 1 +V)6 + 2¢])
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€1.
t o (qa=1) (sin[(alae +20)0 +2c] + sin[(2la, - 20)6 +2c])
[¢]
+ € : :
2o Qa (sin[(adaqe + 2) 6 *Qc__l + Sin [(:LJE -2)6 +2d)])
+ \zq " ‘ia(an [(zVa, +2+2d)e + 2¢] + sn[(2la@ - 2

- 22)6 + :c]

ol Sl"‘[(ﬁ\rao+2-2ﬁ))6 "’QC] +sin [(aVa; -2 +2V)6 +2¢])

(80)

If any term on the right hand side of this equation is not harmonic,
the solution amplitude in (79) will be unbounded. This leads to
unstable solutions at certain a, values. The unstable values are

indicated schematically in Fig. 9,

L4 1 'J\/\I v N 1
il R k] B T T '

+ + o
2 1 2 (I-Uf. ( )‘ 1 2
0V 4D EhY) a-v)  (=+v (=) \ (+V)
4 4 Qe

Fig. 9 Schematic Indication of Unstable Values
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The general stability of equation (78) can be studied
conveniently again by means of the parameter plane (ao, € ). The
plane can be divided into regions of stability and instability by the
so-called boundary curves or transition curves, separating these
regions. The perturbation method is used to derive these stability
boundary curves at each of the unstable a, values given above.

In order to apply the perturbation technique for the determination
of stability it is required that the function f£( 6 , €& ) in equation

(78) be periodic.

The sufficient condition for f( 6 ,£ ) to be periodic is
that 9 is a rational number, i.e., obtained by division of two

mutually prime integers my and m,.

™My
m,

Y = (81)

Under this condition the period of f( 6 ,€&€ ) is 7Tm1 if m, and

1
m, are both odd. 9therwise the period is Z‘W‘ml. Later in this

section we will restrict my and m, to odd numbers only.

By limiting £( @, € ) to periodic functions Floguet theory
for linear differential equations with periodic coefficients is now

applicable. Here we use the method of strained parameters again.

The solution of (78) is assumed in the form

2
U= Ue + €U, + € Uy + , . (82)

with the stipulation that the solution u is periodic with the period

of f£( 9, € ), whereas the fundamental frequency a, is given by
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2
Qo= b, + €b,+€ by +. . . (83)

Substituting equations (82) and (83) into equation (78) a system

of equations is obtained

d’u, _

462 Uo = O

o;:'a +bou| = Lhuo“éuo?t[QS(l*U)G*COS(\—U)SJ
ua S + b, b,u, +b -< [Co;(l-b-'v)e 4<_05(|_v)9]
de u: (el gUo 2 |%|

+?‘z Uo [(QQ—\) Cos2VO + 93 Cos 26 + é‘?’ Cos 2(1+) 0

|
+3 cliCos’l(l-'U)G]
(84)
Equations (84) are solved recursively. Following the same

pattern that was described in Section 3.3 secular terms are eliminated

at each step and the equations for stability transition curves are

2
obtained. We give the equations for these curves at Qo= ¢ Qo= |
- =
4 4
At Q.=

2 =~ ‘i. (307=1) 2 9.° Q-1 4 a
=D =+ - -
[ B (V=D (9 -—i)] 3 (1~-7) N 4 ]e

=+ [-% 1 (v 2
[ :7 T ('ﬂa-l)(‘ﬁ)"—l)]— +[

- 2
?J ' 13
%(\vo) 4

(85)
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- a 12
Sl ‘l. (3-27) LI
Clo:'*[ 4 (l -D)(q v) [8("'7-Ja 4 ]
2 a
Qot‘-t-[q-‘ ?. (3‘-0) -}C1~[?' )..z:]e
iy (-2
(- (8- (86)
- )
At q°-' ‘1
1= q
o = - e...—
4 y T4 (87)
At q, = i1+ 7V
° 4
|+ i%
Qo = - e
q *eq (88)

Other transition curves are obtained accordingly.

3.6 The Effect of Damping

So far we have not considered damping in the analysis. 1In
reality blade motion is damped by external and internsl dissipative
forces. Air resistance is a typical form of external damping and
internal damping may be due to dissipative stresses in the blade

which is called material damping.

The dependence of dissipative forces on blade motion is
quite complicated. 1In this section we shall study a simple model

in which damping force is proportional to the velocity. Introducing
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¢ Jdu
& damping force e 40 into the linear equation of motion

(17) the equation becomes

du C o’u z -+ cos26 ua =0 89
—— —— — =
- + o -+ lq,-téq\-*é?,c‘)se G?a s -] ( )

The constant ¢ in the above equation represents the viscous damping

factor.

In order to study the stability of the motion governed by
equation (89) the equation is reduced to a Hill's type of equation

through the transformation

ule) ~ e u(e) (90)
under which

cliu Cl 2 + a 5QQ]U:O

de +[—ao~;-‘~+€a.+e(t,cose ecz,Co (91)

From the results of section 4.3.2 it can be inferred that the

5
. , . . C
solution to equation (91) is sirgular at a.-—-a?_= '/4 and
T
Qo"'%EL= | . In other wcrds, the singular points on the a,

axis of (ao, € ) pleane for the u~damped case are shifted to the

2 ijs a very small quantity so that the singular

left. 1In general c
points méy be assumed approximately coincident with those of the
undamped system. Since the other parameters in the differential
equation (91) are the same as those of the undamped system of

equation (17) the stability transition curves will have the same form.
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In the unstable regions the solution to equation (91) has the

following feorm

u(e) = e $(o) (92)

where $(6+2m)= @(9) , i.e. d is a periodic function

of 6 . The coefficient A governs the growth rate of the solution
u in the unstable regions and therefore sometimes it is termed the
"negative damping coefficient”. In the following steps we will

obtain ,ﬂ in terms of the parameters in the differential equation

(91).

Inserting the assumed solution (92) into the differential

equation (91) we obtain a differential equation in terms of the

periodic function .
2 k8
2 T 2
d—%424£+[q°—-c—1+)1-+EQ.+€Q|C059'*GQ1C0529]§ (93)
a6 a6 w
=0
Following Whittaker's perturbation method that is given
in reference (7) we expand the solution and the parameters of
equation (93) in terms of € as follows
2
¢=¢o+€¢|+e¢2
2
C 1
Qu~;;= EQ*EL"Lebz (94)

M= N+ e,
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Substituting the above expansion forms into equation (93)

and rearranging in powers of € we obtain

¢o"+ bo ¢°= o
¢‘” + b°¢| = -2)1‘ ¢°’-bt¢° "‘l-c"$9¢o
¢’” + b"g‘ =-2"('L¢°I - 2/1|¢|/ = btﬂl

- (bz+,q‘a.._0.) o, -ci,cosegs, - Q,cosﬁe o

(95)
Equations (95) should be solved in the neighborhood of the
singular points mentioned before, name.y Qo = -S, - '/q and
q,--c—z-,_ = | . The resulting secular terms are eliminated

w
in each power of €& so that periodicity of é is maintained at

2 l
each step. At a, - /W=y we obtain the following

conditions for eliminating secular terms in 4’.

(96)
A
—-o—r-\—[_?,'_ ?I: '3]
o ML 2PN M (97)
where A , B  are the solution constants of ¢, . Equation (96)
represents a relation between bl and A, which can be used to

eXxprzss M in terms of the other parameters. A better approximation

is obtained by eliminating secular terms in ¢1 . This requires that
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2
- |9t a
4 | —— 2
Ma ! q?' = bc 42AL24-Q\ f%;
"’(bu—":‘)

from which it can be shown that

Ma= 0
and
Q"
b:"/"ta'—q' b ~§_

In equations (100), (101), and (96) the frequency expansion
parameters bi are related to the negative damping parameters
in the neighborhood of a, = 1/4. We will give the expression for

a constant 4 curve in the unstable region near a,

equation (94)

"1*‘4

and

+ €b, + € ba

-50~-

(98)

(99)

{120)

b

(101)

(102)

{103)

£ al



Inserting equation (102) into eq. (10l1l) and eg. (96) and then
by substitution into equation (103) we get the expreszion for a ’s-

constant curve in the (ao, € ) plane.

I S L3
- - f Wt o2 2 * PN g (104)
A w? 4 g '71’6 -}1 - € (q'4—?—) /‘1

By finding the extrema of the above expression it can easily

be shown that the lowest value of & is

QAN
oy = (105)

Q
Thi- equation can be used to determine the lowest & value

that will cause¢ instability when damping is present in the system.

The analysis is repeated in the neighborhood of a, = 1l to
obtain the negative damping curves that correspond to a A < constant

value. 1In the first power of € it is determined that

M =0
by =0
{106)
and in the second power of € ,
K3
- q‘ haut ._'_J ?.1 a-
b, = "Z a, + 3 (Cl, - —5) - leAa (107)
Equation (96) takes the following fora
<t 2
Qo— =~ = | + ¢ b. (108)
" 2
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/“k’:g; (109)

Inserting equation (109) into (107) and in turn substituting

into equation (108) we obtain the negative damping curve that

corresponds to A4 = constant curve in (a,, € ) plane in the
neighborhood of a, = 1l
1 ——
< = < 2 2 110)
q-._.._|+e(__ ) Q _ (
S E (? =Y ) ]

The minimum value of € on this curve is

2 A

emin B 2
29, - 9 (111)

It should be noted that the negative damping coefficient in
the neighborbhood of a, = 1l is in the order of 61 whereas that of
a, = 1/4 is in the order of € . Hence the growth rate is slower in
the unstable region near a, = 1., It can be expected that the growth

rate at other singular points will be successively smaller.

So far we have analyzed the growth rate of u that was defined
by equation (90). The next step is to link the growth rate of u to

that of u which is the solution to the equation of motion (89) for

(o)



blade vibrations whan damping is present. It must be noted that

this dissipative damping has no relation to the negative damping that

was mentioned before.
Equations (92) and (90) can be combined to give

(A-5)e

u(e) = e $ (o) (112)

where é is periodic. From this equation we clearly see the
criteria for stability of damped blade vibrations. The vibrations
with damping will grow in time if the nlegative damping coefficient
associated with parametric excitation is larger than the dissipative

damping coefficient of the system.

< > M for STabilify

w (113)
The stability transition curves of equation of motion (89) ?
are obtained by setting ;
_S_... R

w - M (114)

Inserting equation (114) into the negative damping curves
(110) and (104) the stability transition curves for the differential

equation of (89) are obtained.

A ?‘1 2 c? b 9
Qo= — =T . - — -+ ~>
CRIL e~ e (a 2 (115)
2 2
= c 279 2 Y
o= | + = +€<-——._ )‘.'.J-"’ T°\2 < (116)
o c Q) + 3 (\%—_l)-,e;‘
CRIGINAL 007 T

OF POOR QUALITY
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These equations for transition curves could be obtained by

directly applying Whittaker's method to equation (89) and search-

ing for periodic solutions.

Equations (115) and (116) are plotted in Fig. 10 for a
particular blade data that yields a; = 1, q; = l, and q, = 2.
The stability transition curves that correspond to a particular

c
damping factor, /L) = 10 3

, are compared to the undamped case.
-

If W is 5000 RPM </ = 10 ” corresponds to a viscous damping

factor, ¢ = 0.5. As c becomes smaller the transition curves in Fig.

10 approacn the curves for the undamped case.

From Fig. 10 it can be seen that a finite damping coefficient
causes blade instability to occur at lower precessional rates. For a
particular damping factor the range of safe precessional speeds can be
determined from equations (111) and (105) when negative damping
coeffieicnt /q is set equal to the damping factor, C/w .

Hence we obtain

Jus = 2 ot q,=— (117)
L 4
and
2 Icw
Ns = " at Qo= (118)
(Q‘zn"?n)
where s represents the safe precessional speed. From these

equations and Fig. 10 it can be inferred that higher precessional

-55-



rates are required at a,
a, = 1/4. For the partic
of precession in terms of

at a = 1/4 and €s =

= 1 for instability as compared to
ular example (c = 0.5) the safe range
€ = 2/ are €s

0.051 at a, = 1.

= 0.002

3
A T WY

Y R L T

W




4. Arbitrary Blades Under Combined Rotor Spin and Space-~Fixed Precession

4.1 Introduction

The stability analysis performed in section 3 are based upon
an assumed blade deformation shape (see equation 3.13) which might
be different from the actual shape that would occur. Another
deficiency of the approach used in the last section is that pretwisted
blades can not be analyzed in the same fashion. 1In this section a
general numerical formulation to analyze the stability of a pretwisted
blade of arbitrary cross-section is presented. Results obtained
by this method are compared with those computed in section 3. 1In
addition the behavior of a turbomachinery blade with realistic
dimensions is studied. The same approach may be used to analyze

forced vibrations of a pretwisted blade under gyroscopic excitation.

The first step is to derive a stiffness matrix for the
twisted blade. 1In order to handle blades wiin arbitrary geometry,
finite element approach is selected. For a twisted blade usually
the shell element is the most appropriate finite element. However,
the numerical method for dealing with the stability problem is
quite complicated. It is desirable not to employ too many degrees
of freedom for the modeling of the blade. For this reason the beam
element is chosen. Since the problem interested in this work happens
almost exclusively to long and slender blades this simplification
is not considered serious. A 12 x 12 beam element stiffness matrix
for twisted blades is formulated based on a theory proposed by Downs

(10). sStatic deflection solutions are used to study the accuracy

-57=-
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of this stiffness matrix.

The derivations for mass matrix and the changes in stiffness
matrix due to rotational motions are based on Lagrange's formulation
of equations of motion. Before the equations of motion with time
dependent coefficients are analyzed the natural frequencies in both ]
cotating and . on-rotating force fields are calculated. The computed
solutions are compared with known analytical and experimental results.
The subsequent stability analysis of the pretwisted blade under
both rotor spin and space-fixed precession is studied via numerical :

methods based on Floquet's theory.

Sy i ot B Y e e e gl

4.2 Stifiness Matrix

The elementary beam theory cannot be directly applied to

the study of twisted blade. The modified beam theory acsumes that

e e - A

the undeformed blade is pretwisted along its length about a straight

longitudinal axis through shear centers of cross sections. These cross

a——

sections are parallel to the rotor fixed xy plane (see Fig. 3.1).

The blade surface is supposed to be composed of helical fibers. 1If
the position of an arbitrary point on he cross section is indicated
by its principal coordinates € and 7 , the distance of this point

from the shear center is
)
/.
2 2 2
d= (€ + n) (1)

By designating ©® as the initial twist of the blade in radians
per unit length and considering a portion of the blade with unit

length, any helical fiber of length ﬂ, which is at a distance d
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from the shear center forms a small spiral angle %" (see Fig. 1, with
the longitudinal axis. The length of this helical fiber can be

approximated as
.2,
1»1’("""‘&)2 (2)

Knowing this length, the axial strain of a helical fiber due
to bending, axial load and torsion can be derived. The axial fila-

ment strain caused by an extension of "a" per unit length is

[(a-+q)1+o<ad2]‘/°~[|+o<‘o\’]/2
B T

Neglecting higher order terms in o this equation may be reduced to

Q

€a=a (1 -3ud?) (4)

The axial strain due to an elastic twist ¢ per unit length can

be given in a similar manner

) [-‘ _._(0(4_8):92]/1— [l 4.0(1&2]/1
[' N y\zaz] Yy

Again ignoring higher order terms in ¢ and £

6,5 (5)

€y = god (1 =4 2d7) (6)

P
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The total axial strain form axial extension, bending and torsion

can be derived

€= (l—zdd)[ 5‘}“‘ ‘qd“ ——_goccla] (7)

where '§ = - ex,'L =R- ey (e, e, are positions of the centroid)and

where {g and Uy are the deformations in the principal directions.
The stiffness matrix is obtained from the potential energy

of a beam element

=—;§GT€O\\; (8)

where € is the deformation strain and § its corresponding stress.
Substituting the axial strain given by equation (7) into the strain
energy expression (8) the stiffness matrix is determined after
performing the integration. Since torsional strain was not included

in the strain equation (7), torsional rigidity has to be added to

the final stiffness matrix. It is worth noting that other effects such
as shear deformation, warping and rotary initial terms can be included
in the strain expression (7) if they are considered important. The

integrand in equation (8) may be written in matrix form

e = _ . « . -
€ %‘2 T -& o «d %&;

2 .2:2 d'd -§" §} T - :tda dy
E(-3d") & 5 A 8 5 | o
dds |- &Y F | )dy

az*
J 2 &4 yud® o | 29
3% o(A §43 N a2

=E(i~§o&\‘) 5\)30& [P] Du%

e el

el kb

50l WAL 5
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Fig.3 Principal Nodal Displacements in Bending



For the finite element formulation the deformations within

an element iDu‘S have to be expressed in terms of nodal displacements.
This is accomplished by assuming reasonable distributions for the
element deformations between end nodes and relating these deformations
to ncdal displacements by shape functions. Element bending deforma-
tions Ug and Uv in equation (9) are in the principal directions
of the cross sections and hence they rotate with the pretwist angle
along the longitudinal axis. This will lead tc complicated finite
element shape functions. 1In order to keep the shape functions

simple the principal displacements 4 and V at the middle

of the blade element are selected to represent the element bending
deformations. They are related to bending displacements cof an

arbitrary cross section by (see Fiy. 3)

Ug= U coSno S & NSINKS

asi v 10
Uq = ~USINKS +VCoSHS (10)

The coordinaie s originates from the middle of an element. It
coincides with the longitudinal z axis and they have the following

relaticnship

Nt Q 9
scz-R-24i-3 , 13l <3 (11)

where n is the number of the element and f( reprecsents the length
of each element. The length of the nth element under consideration

is f. R is the rotor radius.



All the displacements are approximated by polynomials

w= (s+Cz

G= Cy+Cues+Css 4 Ces
V=C +Css +Ce8"+CB
¢=Cys +Ca

(12)

The constants C;, are determined by the rnodal displacement variables

at the two end nodes (1 and 2)

v ,
f(h?) = }w‘, ¢\|,Un,¢’u,\h, ¢g'U):’, ¢‘;)qz, dcjt,\lt)¢l-s (13)

The expressions of Ci are listed in Appendix A.

The deformation variables i?ﬂ} used in equation (9) can now
be expressed in terms of nodal displacement variables 50“% . The
bending curvatures in {V}u} are related to curvatures in the

middle of the element.

T

d Usg du 43 .
Sd + 3551\0(5
as? 2 Co S ds

diuv 'C& 7] J v
ds® ds ast

Cosd‘

Differentiating equation (12) with respect to s the following

equations are obtained

I POOR QuU.uhié

(14)
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4T 4 cz
e Cy +2Gs +3Cs

a
dla (15)
Z‘_—

The constants (.‘i are known in terms of nodal displacement variables
id‘.} . They are substituted into equation (15), and with equation
(14) the transformation matrix between deformation variables

and nodal displacement variables i}l‘u} is obtained

FN
‘ W,
3
as |,
%L: ) PT'»' « e T!,m ) dU|
Un
aa}t T ‘ & |
si - (] . . . ¢ V'
cl'a:. } T &, ? (16)
as SR o
d
\a‘% / :r“" * . -rn,n ] Q_%L \
Ua \
2,
or {0 =[] Fus g
-



The elements of transformation matrix [111 are given in

Appendix B.

Inserting equation (16) into equation (9) and after performing

the matrix algebra the potential energy is

U =-5§u;.§T ‘[S]o\\l Wik (17)

where the matrix [S] is

[s1= E(1-d") [T.]T [¢] [T-] (18)

From the potential energy equation (17) the stiffness matrix is

derived

1=, (1w

To extend this integration for the stiffn:ss matrix to a
relatively complicated cross section of the type which is liable
¢ occur in real turbomachinery blades requires the introduction
of a method known as the isoparametric transformation in the finite
element analysis (ll). With this approach the evaluation of the
stiffness matrix represented by equation (19) can include cross
sections of any arbitrary form. This involves the distortion of
a simple basic square form into areas with arbitrary boundary shapes.
The accuracy of the 'mapping' depends on the number of nodes
introduced around the circumference. 1In this report all results

are based on eight boundary nodes.



In the standard isoparametric formulation of three dimensional
distortion, mapping takes place in all three directions. In the
present approach, the integral (19) of the stiffness matrix already
contain the blade pretwist effect. Therefore, it suffices to perform
distortion in two dimensions of the blade cross-sectional area only.
This reduces the amount of required numerical computation in evaluat-
ing the stiffness matrix. It also assumes that the axis of pretwist

is a straight line.

The isoparametric formulation begins with the establishment
of a one-to-one correspondence between the Cartesian and curvilinear
coordinates. The variables & and Y in matrix [P] of equation

~>

(18) are related to the curvilinear coordinates x and y

RN

Once such coordinate relationships are known, shape functions can
be specified in local undistorted coordinates and by suitable

transformations the stiffness matrix evaluated.

The most convenient way of establishing the coordinates
relationship in (20) is to use the shape functions Ny associated

with the eight boundary nodes. This may be written as

§=N.§‘+N;§3+ e e e e Nt§s
(21)

M= N+ Naat oL . N,



in which Ni are shape functions given in terms of the local

coordinates (x,y). Based on the basic square form the shape function

expressions are

Corner nodes

Na".';(l-*ﬂ.)(l‘f%a)(xxt+1H.-—|) (22)

Mid-side nodes
X=0 , N'c’_;(l—xz)(l‘“jztj?)
gizo,  Ni=5 (1+xx) (1~ ‘51)

(23)

where i is the number of the shape function, and Xis y; are either

+1 or -1 or zero depending on the location of the boundary node.

To evaluate the stiffness matrix in equation (19) two
transformations are necessary. In the first place &€ and 'ﬂ are
defined in terms of local (curvilinear) coordinates x, y by equation
(21). In the second place the volune over which the “ntegration
has to be carried out needs to be expressed in terms of the local
coordinates. A standard process will be used which involves the

determinant of the Jacobian matrix [J]. Thus

4§dyds = det [T} dx&@s (24)

The Jacobian matrix [J] is found explicitly in terms of the

local coordinates by



r N
d 1. AN: a _1 g! n!
dx dx =+ - - dn §& M

1 an ans | |
2 dq - ‘1—-§‘qu

(25)

After substituting equations (21) and (24) into the integral
express’on for the stiffness matrix (19) the stiffness matrix of an

arbitrary cross-section is

[¥]= S‘ [S'] det [ﬂclxc}tjcls (26)

The above integration must be evaluated numerically. A flow-chart
showing how to compute this 12 x 12 matrix using Gaussian integration

is given in Appendix C.

In order to establish the accuracy of this numerical method
the static deflections of cantilever beams with arbitrary cross-
section were investigated. For different elliptical and triangular
cross-sections the errors in computed free and deflections using
this approach with six elements remained below 3% of the theoretical
values. This seems adequate for most engineering applications.
In particular for the stability analysis of interest in this work

the accuracy of the approximated stiffness matrix is sufficient.

Another interesting example selected to evaluate the numerical
accuracy in computing the stiffness matrix is the crcss-section
defined by a convex and a concave edge and shaped like a crescent

(see Fig. 2). Two nodal distribution schemes were tested. They



are shown in Fig. 2a and 2b. For a 6 inch long cantilever beam
with 3000 1b. load at the free end the vertical and horizontal
free end deflections are compared with those obtained by the

numerical method (six elements):

X ~ direction 4- direction
Sheme A 5296 ogd)
Sheme & .5%l0 0398
Beam Soluton |  .560% ,0%77

This indicates that the eight nodes in case b are better placed

than the ones in case a. The numerical interpolation is quite
sensitive. If three nodal points are employed along the circular
edge only, the results can be as much as 100% off the correct values.
This is due to the fact that the three node parabolic approximation

cannot represent the circular edge correctly.

For twisted blade with rectangular cross section some
experimental results were presented by W. Carnegie (12). 1In
these experiments the blades were uniformly pretwisted over a 6 inch
(15.2 cm) length and had cross sectional dimensions of 1 in x 1/16 in.
(2.54 cm x 0.16 cm). The blade material was mild steel with density
of @ = .000735 lbf-seczlin4 and with Young's modulus of E = 30 x 106
psi. Using the same blade data and six finite elements the static
deflection under unit load at the tip was computed. The results

are compared to Carnegie's experimental results in Fig. 4. As can

be seen deflections in the horizontal and vertical directions become
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due to pretwist. Satisfactory agreement is obtained in these

comparisons.

4.3 Kinetic Energy and Mass Matrix

The mass matrix is deri.:" ‘rom the kinetic energy which
also determines the charges in che stiffness matrix due to rotational
motions. For the case . - space fixed precession these changes in
stiffness matrix are time dependent and might lead to instability
of the system. Without precessional angular velocity usually the
primary interest is in the calculation of natural frequencies.
After deriving the kinetic energy and the associated matrices, the
correctness of these matrices will be tested by comparing the
computed natural frequencies in rotating and non-rotating force

fields w'th known experimental and analytical solutions.

-
Beginning with the displacement vector I of an arbitrary

point (x,y,z) of the beam

F=(\+a-‘j¢)7 +(§’+\I+X*¢)i

+{z+wW+ ¢°‘z(xl""jz) "2 5[(%“? ‘_._(%_g)'llaz
~-3(x+ sz) 5 (%{)zd?) \:

The x,y,z coordinates employed in this displacement equation are

(27)

the rotor-fixed coordinates shown in Fig. 3.1. The corresponding

velocity is

. o el o 8
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+(w+¢o((x+?) J(Qz 924-92 -5:‘-10'2

Jz J2 (28)

2 .
‘(x‘-uj‘) ji&‘.iﬁgz)k + W
[ 4

where @ is the angular velocity of the rotor and was defined in
) -
equation (3.1) of section 3. The velocity V is to be inserted

into the kinetic energy

T=%Q ST}.‘\TJV (29)

A}

For the finite element analysis, the deformation variables
T 24 v
guf% = 5“;\’)“’)?‘) >z , 22 , o%

in the velocity :? equation (28) have to be expressed in terms

of nodal displacement variables faag employed in the stiffness
matrix (19). Due to the angle between the major principal bending
axis of a cross section and the rotor spin axis the deformation
variables §UF§ can be related to deformation variables if(A} at

an arbitrary cross section

- a
u [(cos® ~SinB o 0 o) o) 0 Us
v sing Cos@ o o o o o Uy
W o o | 0 @) O fo) w
¢ = o Q o | @) o) o ¢ ?
o 0 o o :
52 o) Cosg -Sing o s
b sing CosB
A 0 o © O’ o
oY >
% | O v o © ey
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or YU} = [Ta] gbh}

where the angle § is between the rotor spin axis and the major

principal bending axis of an arbitrary cross section. If the pretwist

angle per unit length & is constant the angle @ is (see Fig. &)

g=Bo +u2 (31)

with @, as the blade setting angle at the root.

To be consistent with the shape functions employed in the
derivation of the stiffness matrix the principal displacements 2?
and '3' at the middle of an element are selected to represent the
element bending deformations. The angle of twist of the nth element

middle cross section is

n-i

]
gmx 50 + 2 0(2,04 <+ sdngﬂ (32)

(=

where o and ,2; are the pretwist rate and length of elements
before the nth element. With %”ew\ in equation (30) the
deformation variables 5(,(,% are functions of
T - - od N 7
sumg ‘?“,V,W,%, az )92,3"% (33)

Repeating the procedure used to derive equation (16) for the
stiffness matrix the above variables can be determined in terms

of nodal variables f'Uii

bl
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fun} + [T]Fud (0

The elements of matrix [Ts] are listed in Appendix D. With

50.\-}5"50"‘} in equation (30) and iUm3 from equation (34)

the variables in the velocity V equation (28) are expressed as
functions of the nodal variables 5“33 . Substituting this velocity

into the kinetic energy (29), this leads to the kinetic energy of

7o [[5a3[MT5A3 + a3 [MaT5ud+ 143 ] S}
-+ iM&TE&% + %Ms%T ?a«'g] dV (35)

where 503% are the nodal displacement variables and ?U.‘? their

time derivatives. The matrices [M}'] are

(M1=[W] (] TAT[T.][™]
[M] =[BT R TAITIT)

(]~ [V IR TA [T
sid <[ TT [ ] SAd [T [T .
M3 <[] [B] 43 (1T

The matrices [A.] are listed in Appendix E.



With both kinetic and potential energies the equations of motion
can be derived via lLagrange’s formulation. The mass matrix is obtained
after integrating matrix [}4;] . This mass matrix is not exactly
the same as the standard mass matrix because of the pretwist effect.
The differences are, howe. e¢r, very minor. The elements of matrix

[M;] are time depenésnt. They reflect the effects of both
rotational arnd precessional motions on the beam stiffness. This matrix
is combined with the stiffness matrix of equation (26) to form a
time dependent matrix representing the spring stiffness coefficient
matrix of the equations of motion. Matrix [ﬂﬂ;] does not appear
in the equations of motion. The forcing terms of the equations of
motion are obtained from matrices EM% and SM;% . The integrations
in equation (35) are performed numerically. For arbitrary cross-sections
the same numerical distortion procedure used in the evaluation of

stiffness matrix has to be applied.

Without the precessional angular velocity the integrated
matrix [0A;] represents the change of blade stiffness due to
rotor spin. To demonstrate the accuracy of the present approach
the following numerical example was calculated: length, ,Z = 7 in.,
width, w = 3 in., thickness, t = 0.09 in., Young's modulus,
E=1x 107 psi, Poisson's ratio, VU = 0.3, and mass density,

4 lbm/in3. The results are presented in Figs.

Q@ =2.587 x 10°
5 and 6 and are compared with the experimental and numerical results
obtained by MacBain (13) using NASTRAN program and 230 plate elements.
The present numerical results, based upon the beam theory, are

obtained using 6 beam elements. 1In Fig. 6, the first, second and

-77-
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third bending frequencies and the first and second torsional
frequencies at zero spin velocity are plotted vs. the total pretwist
angle of the blade. 1In Fig. 7, the same frequencies with 30° deg
pretwist angle are plotted vs. the rotational speed. 1In this case

the blade setting angle €¢ = 0 and wb radius R = 7 in.

The same examples were used by Chen and Dugundji (14) to show
the accuracy of a twisted beam finite element derived from the
governing differential equations of motion provided by Houbolt and
Brooks (15). Since the theoretical assumptions made by Houbolt
and Brooks are essentially the same as those made in this report
there is practica’ y no difference in the numerical solutions.
Comparing the ae:ivation of stiffness and mass matrices for the
finite element analysis the present approach is superior because
of i*s straight-forward simplicity. Nonlinear material ' r geometrical
effects can be easily included in the derivation. The evaluation
of cross sectional properties are based on the shape of the area and not

its moment of inertia which is cften difficult to determine.

4.4 Stability Analysis

The homogenous equa- .s of motiorn for the study of stability
due to precessional motion can be formulated as a system of linear
differential equutions with periodic coefficients. The system

has the following form

[M‘] l‘iﬂx N {-K*]l\.uﬂ‘: © (37)
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[M1] is the mass matrix defined by equation (36). [K*] is the
effective stiffness matrix which is the combination of the structural
stiffness matrix [K] defined in equation (26) and the [le matrix
given by equation (36). The pericdicity enters equation (37)

through the matrix, [M2], whose time dependent terms are Jue to

the precessional motion.

A vast array of literature exists on the subject of ordinary
differential equations with periodic coefficients. Some of them
are procedures to study the stability problem. After reviewing these
procedures, it was determined that most of them are not suitable
for systems with many degrees of freeaom such as equation (37).
For large systems a general method of solution proposed by
Friedman (16) was found to be most appropriate. The details of
the method are not presented in this report because the procedure
in refererce (16) was adapted here without any major revision.
Following the suggested procedure and employing the improved
numerical integration scheme based on the Runge-Kutta method a
computer program was developed to study the stability regions of

the equations of motion governed by the matrix equation (37).

The first problem studied was the straight beam with constant
cross section. This case was already analyzed using another method
in section 3.3.2. The resulcs were plotted in a stability chart
in Fig. 3 of section 3. The linearized finite eiement solwucions
based on equation (37) with one and two elements were able to
suplicete the same stability chart. This demo~.strates that the

basic approach employed ii: the finite element solution is correct.



Furthermore, since the stability chart is now obtained by two
different solution methods, there is much more corfidence in the

validity of this chart.

The next case studied was the pretwisted beam with constant
cross section. The stability chart for this case is basically very
similar to the stability chart of the beam without pretwist. The
effect of beam pretwist is to increase the structural stiffness
in the effective stiffness matrix [K*] of equation (37). This
leads to an increase of the parameter a, cf the stability chart
in Fig. 3 of section 3 depending on the amount of pretwist. Since
the regions of instability decrease with increasing values of ar
the pretwisted beam is less prone to unstable dynamic motion under

precessional rotations.

The computation for each point in the stability chart using
the finite element solution is very expensive and time ccnsuming.
Not enough stable cr unstable points were caiculated to chart

a complete stability diagram.



5. Forced Vibration and Flutter
5.1 Introduction

The complete time dependent problem under precessional
rotation solved by the finite element method can be reduced to a

system of ordinary differential equations of the characteristic form

\“.M“llluﬁ + ‘_K*l &‘ﬂ) = 1\\:73 (38)

in which [M,] and (K*] are assembled mass and effective stiffness
matrices. The force matrix {F}is obtained from matrices {M4} and

{M_} defined ir equation (36). In general, the above equations

5
are non-linear; only linear cases will be studied. The forcing
matrix {F} contains functions of first and second order in spin
velocity; hence it is periodic. In the following the forced vibra-

tion problem will be solved by the determination of periodic responses

to equation {38).

The availability of the twisted beam finite element
program and a subroutine for unsteady subsonic aerodynamics (17)
made possible a short study of "fan flutter" under realistic
conditions of structural coupling due to twist. The effect of
centrifugal forces on the flutter mode is taken into account as
well. The terms associated with precessional rotation were removed.

The equations of motion to study flutter have the following form

T 1AKY + LCTARG + (K A =0

(39)



Matrix [C] represents aerodynamic damping and contains complex

terms. Substituting

huh = i e

into equation (39) the characteristic equation is obtained
/ . ~ %
L (M]r\Cls LK n {\kl\-— o)

where & and {U} are complex. The real part of the solution

(40)

(41)

represents a decaying vibration. The complex eigenvalue problem
involved in Eq. (41l) is solved by a numerical procedure given in

reference (18).
5.2 Forced Vibration

In section 3.3.6 the forced vibration of the simplified
single degree of freedom system was studied. It was shown that
dynamic responses are not sensitive to time dependent quantities
in the stiffness term. It seems reasonable to remove time dependent
quantities from the effective stiifness matrix [K*] and reduce

the coefficients of the differential equaticns (38) to constants.

The forcing term in Eg. (38) is periodic. It can be

expressed as

&Fl)’ ﬁl)edt (42)

where o is complex. A general solution can be given as

Al = ',ﬁz\edt

(43)



Substituting (43) in Eq. (38) gives
(2 T 1) Ay = AR -

By inverting the matrix

o] = @Ml e L]

(45)

and pre-multiplying with the force amplitude {F} the dynamic response

{U} can be determined.

The first computational example selected for comparison is
the straight beam without pretwist. Using a model with one finite
element the same tip displacement responses were reproduced as those
given in Fig. 7 and 8 of section 3. A few pretwisted beams were
studied as well. 1In general, the peak displacements are smaller for

pretwisted beam.
5.3 Flutter

The computational model chosen for examination is a steel
cantilever rotor blade uniformly twisted from root to tip such
that the stagger angle varies from 30 degrees at the attachment
to 60 degrees at the free end. The blade is untapered and the
cross section is taken to be a thin rectangle of 5.08 cm chord
and 4% thickness ratio. Pitch/chord ratio at midradius is 0.878.
The hub/tip radius ratio is 0.5. Axial inflow is assumed, uniform
radially, such that the relative flow angle at the blade tip is
60 degrees. This specification determines the air velocity triangle

at every radius; the aerodynamics are computed at the mean radius



of each beam (blade) element using the formulation outlined in [17].

The method of solution of the equations of motion was

essentially the same as that described in reference [18])}, and known

as the "p-k method". For a given Mach number, a value of reduced
frequency, k, is assumed, the unsteady aerodynamic forces are computed
using the aforementioned subroutine. The equations are then solved
for the complex eigenvalues, w = WR + i Wr- The motion having
been assumed to have a time dependence described by exp(iwt), the
computed value of We provided an improved estimate of the reduced
frequency, k = mRC/(ZV) and the procedure can be iterated until we

does not change. The converged value of Wp gives an estimate of

the flutter frequency; the associated value of w, at convergence

I
is an indication of the nonaerodynamic forms of damping (positive

or negative) that must be supplied to maintain the constant amplitude
"flutter" condition. In the absence of such external damping,

the flutter condition occurs with w, = 0; thus w, < 0 indicates

I

instability, or potentially divergent motion.

1

In the previous series of calculations the interblade phase
angle is a parameter. In practice this is limited to a finite
number of possible values 27 n/N where N is the number of blades
in the row and n is any integer, 0<n < N. For the extraction
of the greatest amount of information it is convenient to let the
interblade phase angle range continucusly over 0, 2n. Thus, at

each Mach number, a closed contour is obtained in w coordinates

R’ Y1

with interblade phase angle as a parameter.

The true flutter condition occurs at that Mach number where

a closed loop is cobtained, lying entirely in the positive Wy region



expect for one point at which the contour * tangent to the Wy axis.

Figures 4-1, 4-2, and 4-3 show the contours obtained for
the model blade at absolute approach Mach numbers of 0.75, 0.85 and
0.95. It appears from these figures that flutter will occur at a
Mach number just below 0.85 with an interblade phase angle in

the neighborhood of 1000.

In each of the figures a cusp-like tangency or near tangency

of the contour occurs in the neighborhood of w_, = 1023 to 1253 rad/sec,

R
depending on the relative Mach number, and hence rotor speed.

These points, and the irregular nature of the curves near these
tangencies, are attributable to the "aerodynamic resonance"
phenomenon. At the combination of parameters which produce
aerodynamic resonance the unsteady aerodynamic loading on the
blades vanish [18] and the blades vibrate as if in a vacuum. Thus,
the computed eigenvalue is real and corresponds to the rotating
natural frequency in vacuo. Although the aerodynamic damping dces
not go negative, operation at this point could result in large
response to forcing and may be shown in some instances to lead

to the accumulation of fatigue damage.

True flutter of the coalescent type is illustrated in Fig. 4-3.
Here a slight amount of mechanical damping would produce a flutter
point at Wp £ 2330 and y= 100°. The mode shape represents a
combination of the modes associated with the two lowest eigenfrequen-

cies at wp =1138 and wp = 3296.

One concludes from this brief study, and other supplementary
data, that the structural coupling introduced by blade twist results,
at least in these fairly repiesenative cases, in a classical

"coalescence-type" flutter.

- R N
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6. Conclusions

The 3 year program of research supported by NASA and reported
herein has resulted in four papers listed as references 1,2,3 and
5. Additionally, an interim technical report listed as reference
16, was issued after completion of the first half of the cocntract

period and has been incorporated into the present report.

Analytical representations coupled with computer-based
numerical solutions have been completed for a number of significant
blade dynamics problems. The earliest of these are point mass
and uniform cantilever models. A beam-type finite element, dis-
playing the important foreshortening property, has been developed
and forms the structural basis for all of the later prograns.

Blade twict, taper and cross-sectional shape are accounted for.

- Stability of a blade on a spinning and precessing rotor has

been studied using this beam element. Both steady (ramp function)
prececssional displacement and harmonic precession have been

studied and instability has been shown to be possible in both
operational modes. The critical parameters discriminating unstable
motion are found to be dependent primarily on the ratios of
rotating natuvral freguency to spin frequency and of constant*
precession rate to spin frequency. The blade setting angle and ratic
of blade length to attachment radius are also of significance.

With harmonic precession the critical values of spin rate are

found tc he dependent upon the frequency of the harmonic variation

of the precessional motion.

* In the case of harmonic precession the maximum rate (or amplitude
reanlacee +he conctant of the eteadyv pDrecescion case.



+ Forced vibrations, outside ihe recions of instability and
excited at three basic frequencies (a subharmonic, the sgin
frequency and twice the spin frequency) are attributable to
the interaction of precession and spin and may be calculated

in a straightforward manner.

+ Blades (beams) modeled as pretwistw=d beam-type finite elements
were subjected to subsonic cascade flutter analysis. It was
demonstrated that it is important to take into account the
structural coupling due to pretwist and to properly model the

effect of the rotational field on the rotor blade mode shape.

The general conclusions of greatest importance are:

l) the rotor blade model for dynamic analysis in complex
rotational fields and in air aerodynamic environment
should properly reflect foreshortening and pretwist
for reliable predictive capability, and

2) thin blades, on the order of 5% tip thickness, should
properly be analyzed using a plate-type finite element
incorporating foreshortening (as yet unformulated) and
with arbitrary orientation in the force field due to
arbitrary rotational motion (spin plus precession).

3) Twisted cantilever rotor blades at subsonic speeds tend
to flutter in the coalescent mode in which the two gravest
mode couple to produce the negative aeiodynamic damping.
This result is interesting since it is at odds with some of

the theoretical predictions for untwisted blades.
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