A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: (1) rotary motion, (2) self-advancement, and (3) expansion.

Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.
Schwarz-Christoffel Transformation:

\[F(z) = \frac{z - \alpha}{z - \beta} \]

\[z - \text{plane} \quad \text{and} \quad \frac{1}{z} - \text{plane} \]

\[F(z) \approx \frac{\alpha - z}{\beta - z} \cdot \pi \]

\[z = e^{i\theta} \]

Location of vortices in the physical plane \(z = \frac{1}{2} i \),
in the transformed plane \(z = e^{i\theta} = i \)

Complex velocity in the transformed plane:
\[w(z) = -i \left(\frac{z - \alpha}{z - \beta} \cdot \frac{1}{z - \beta} \right) = \frac{2z}{z^2 - 1} \]

Complex velocity in the physical plane:
\[w(z) = u + iv = w(z)F(z) = \frac{2z}{z^2 - 1} \cdot \pi \]

\[\frac{2\pi}{5 - e^{-i\pi}} \cdot \frac{2\pi}{e^{i\pi} e^{i\pi}} \]

at \(z = i \) (i.e., \(x = 0, y = 1 \))

If \(\varphi = \frac{1}{2} \pi \Rightarrow w(\varphi) = -i \cdot \varphi \)

\(\varphi = 0 \) is thus taken as the reference velocity.

\[\text{channel with open ends} \]

\[F(z) = \frac{\alpha - z}{\beta - z} \cdot \pi \]

\[z = \text{cond} \left(\pi (1-i) \right) \]

Location of vortices in the physical plane: \(z = \frac{1}{2} + \frac{i}{2} \),
in the transformed plane: \(z = \text{cond} \left(\pi (1+i) \right) \)

\[\text{Complex velocity in the transformed plane:} \]
\[w(z) = -i \left(\frac{z - \alpha}{z - \beta} \cdot \frac{1}{z - \beta} \right) = -i \cdot \frac{2z}{z^2 - 1} \]

Complex velocity in the physical plane:
\[w(z) = w(z)F(z) = -i \cdot \frac{2z}{z^2 - 1} \cdot \pi \]

\[\frac{2\pi}{5 - e^{-i\pi}} \cdot \frac{2\pi}{e^{i\pi} e^{i\pi}} \]

If \(\varphi = -\frac{1}{2} \pi \) and \(\varphi = \pi \)
at \(z = 0 + i \), \(w(\varphi) = -i \varphi \)

302
Case 1: Deformation of flame fronts due to effects of three elementary components of flame propagation mechanism:
- initial distance - straight line
- vortex is located at the center of the interface with
 circulation $\Gamma = 1/4$ and core radius $r = 0.05$
- flame propagation speed $S_x = 0.4$
- density ratio $\beta = 3.0$
- time step $dt = 1.67 \times 10^{-3}$

Fig. 1: Deformed flame fronts and velocity field in the physical plane at 80th time step.
Fig. 2: Deformed flame fronts and velocity field in the transformed plane at 80th time step.
Fig. 3: Enlargement of inner portion of Fig. 2.
Case 2: Turbulent Flame propagation in a channel

- Initial interface straight line
- Water with circulation \(\Gamma = \frac{1}{3} \) is located at the center of the channel and 0.5 to the left of the interface — stays stationary
- Flame propagation speed \(Su \approx 5 \) with \(Su_{max} = 0.6 \)
- Density ratio \(\beta \approx 3.0 \)
- Time step \(\Delta t = 1.98 \times 10^{-3} \)

Fig. 4: Deforming flame fronts at every 40 time steps.

Fig. 5: Flame fronts and velocity field in the physical plane at 120th time step.

Fig. 6: Flame fronts and velocity field in the transformed plane at 120th time step.

Fig. 7: Enlargement of the inner portion of Fig. 6.
Case 3. Laminar flame propagation in a channel
• Initial interface: straight line
• Reactor is also located 0.5 in the left of the interface
 with circulation 1 - 10 and moving to the right at
 constant speed 0.0075
• Flame propagation speed $u = 0.1$
• Density ratio ρ_2/ρ_1
• Time step $\Delta t = 1.785 \times 10^{-2}$

Fig. 8 Flame fronts and locations of vertices at 10th, 20th
and 30th time step

Fig. 9 Flame fronts and velocity fields in the physical plane
at 20th time step

Fig. 10 Flame fronts and velocity field at different location
in the physical plane

Fig. 11 Flame fronts and velocity field in the transformed plane
at 20th time step

Fig. 12 Enlargement of inner portion of Fig. 11.
ORIGINAL PAGE IS OF POOR QUALITY
