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SECTION 1
INTRODUCTION: TASK 1

The basic aim of Task 1 is to utilize the forecasts provided by Western
Union and ITT in order to obtain a forecast of transponder requirements including
various factors, The WU and ITT forecasts are of satellite addressable traffic.
This merely postulates the fraction of total traffic that is susceptible to satellite
carriage. The end product of Task 1 is a forecast of traffic that actually will be
carried by satellite. Certain assumptions about system configurations are also

implieit in this process.

The factors that we included in Task 1 are, in order: interpolation of
the WU and ITT baseline year values to produce yearly figures; estimation of
satellite capture; effects of peak-hours and the time-zone staggering of peak
hours; circuit requirements for acceptable grade of service; capacity of satellite
transponders, including various compression methods where applicable; and require-
ments for spare transponders in orbit. As part of Task 1, we also estimated the
geographical distribution of traffic requirements. These items are explained

below.

The Process

The factors noted above were applied sequentially to transform the
forecasts of raw demand into transponder requirements. The first step was to
interpolate between the baseline years of 1980, 1990, and 2000. This we did
graphically, using the simplest curves that fit the three points reasonably well.
The result was two year-by-year forecasts of satellite addressable traffic. This
process was simple for voice and data, and for the video distribution and video
conferencing forecasts of ITT. For the WU video forecasts, somewhat more
manipulation was needed. This involved a separation between the so-called "full-
motion" and "limited-motion" forms of conferencing. The limited-motion con-
ferencing (LMVC) was considered to be compressed video of the sort used by AT&T
PMS (for example) while the full-motion conferencing (FMVC) was considered as
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equivalent to broadcast video channels. This distinction was prompted by WU's own
specifications for the required bandwidths of these two forms. The FMVC was
stated to require 22 MHz in 1980, with a 2:1 compression in 1990 and 3:1 in 2000
(note that these are average values). The LMVC was stated to use an average of
1/12 transponder in 1980, with a 2:1 compression in 1990 and 3:1 in 2000. The
video conferencing forecasts were translated into half-circuits using the informa-
tion supplied by WU and ITT. Interpolation between the baseline years was made as
simple as possible for these calculations.

Satellite Capture

This term has been the source of some confusion. As we use it in this
(and previous) studies, satellite capture is simply the fraction of the traffic under
consideration that is actually carried by satellite. Since we are dealing here only

with a base of satellite addressable traffic, the satellite capture is the fraction of
satellite addressable traffic that is actually carried. In some instances, this causes
the capture fraction to be higher than seems appropriate. For example, in 1980,
we estimate a voice traffic capture of 20 percent. This is high only because the
addressable portion of the total market is relatively small in 1980: 10.9 percent
according to ITT. This means that the satellite capture of the total voice market
in 1980 is only 2.2 percent, a much more reasonable figure. As a further example,
in 2000, the addressable portion is 33.5 percent of the total, and this combined with
a capture fraction of 34 percent of addressable yields an 11.4 percent capture of
the total voice market.

The satellite capture was estimated using whatever data we were able
to find. In the case of voice, the result was a reasonable estimate; however, from
there on out the figures are more speculative, with the exception of TV distribution
which is carried almost exclusively via satellite. The capture fractions were then
applied to the interpolated forecasts to produce a set of raw satellite traffic
forecasts, expressed in the same units as the basic forecasts.

Peaking

The next step was to estimate the effects of busy-hour staggering on
the peak traffic demand. The contractors had already included allowances of 5
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percent and 8 percent in the forecasts for grade-of-service considerations, and
these allowances were removed at this stage. Next, the peak factors included by
WU and ITT were also removed, since we had peak factors of our own to apply. In
some cases, the peak-hour factors we used were close to those of the contractors;
in others, there were substantial differences. To some extent, this involved

substituting our own judgment for that of the contractors.

Peaking during the busy hour is not uniform across the CONUS, but
varies because of the time zone differences. For local traffie, this has no effect,
but because a significant portion of the long-haul traffic goes between time zones,
the staggering of busy hours has an averaging effect on a facility such as a satellite
that serves all time zones at once. We used data from AT&T filings before the
FCC to estimate the busy-hour peaking. The division of traffic among the time
zones we estimated from the population distribution. In effect, we took the basic
forecasts of satellite traffie, which had the contractors' peak factors in them, "un-
peaked" the forecasts, and then "re-peaked" them, using our factors and the time-

zone staggering.

Grade-of-Service Calculations

In order to provide service to users without extensive waiting or a high
proportion of busy signals, additional circuits must be included in the system over °
and above those needed to carry the peak traffic if fully loaded. The number of
additional circuits needed is a strong function of such factors as the traffic on the
link, the desireé grade-of-service, and the existance (or absence) of demand
assignment. We simulated real conditions to some extent by using the results of
Western Union's Market Distribution Model (MDM) to size the traffic among the
cities served. Three networks were postulated using the MDM data for 10 SMSAs,
20 SMSAs and 97 SMSAs. Since the 20 SMSA model included the 10 SMSA traffic
distribution values, these were subtracted from the 20 SMSA figures before the
calculations were done. Traffic along each link in the networks was sized, and
demand assignment was used if the link was too thin to be efficient. A grade-of-
service of 1 percent was used for voice, 5 percent for data (to reflect the
deferrability of some data) and 20 percent for video conferencing (to reflect to
some extent the existence of scheduling for this service). The resulting ecircuit

requirements were then used as input to the next steps in the process.
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Satellite Transponder Capacity

We estimated transponder capacities for various types of traffic in
order to convert the circuit requirements into transponder requirements. The
reference transponder of 36 MHz bandwidth and the equivalent of 33 - 35 dBW
EIRP (at C-band) was used for this. EIRPs will be higher at higher frequencies to
accommodate the larger margin requirements. We made our estimated based on 1)
likely modulation/access methods, 2) cost/technology tradeoffs, especially for CPS
applications, and 3) the estimates of WU and ITT in their reports to NASA.
Technology advances in several areas were also incorporated. The results of
applying these capacity estimates to the circuit requirements were the net,
operational transponder forecasts.

Requirements for Spare Transponders

Because there is a finite probability that one or more transponders or
even an entire satellite will fail in orbit, and because there is a need to handle sun
outages and system re-configurations without significant loss of service, there is a
need for spare transponders in orbit. Some or all of these spares may be used for
preemptible services, if enough such customers can be found, and the portion of the
total so used will depend on the traffic type.

We estimated the sparing requirements from a number of sources:
statements by the satellite operators and users, both publiely and in FCC filings;
known sparing strategies in existing systems such as INTELSAT; financial data on
the cost of protected versus unprotected versus preemptible transponders; and
estimates of the required availability of service over the satellite lifetime for
various types of traffic. These sparing estimates were then added to the net
transponder requirements to yield a gross, in-orbit transponder forecast.

Summarx

Table 1-1 illustrates the effect that various processes in Task 1 have
had on the base forecasts. We have illustrated this with the low traffic forecast
for 1990. The basic satellite-addressable forecast is considered to be the



normalized value of 1.0. The table shows the relative value after processing
through the indicated stage. Thus, the combined effects of previous stages are
included in these figures. In general, the capture fraction calculation had the most
effect.

Table 1-1
Normalized Effects on the
Low Forecast - 1990

Video

Stage Voice Data Conferencing TV
Base Forecast
(satellite-addressable) 1.0 1.0 1.0 1.0
After Satellite Capture 0.21 0.37 0.90 1.0
Includes Time Zone
Effects 0.144 0.546 0.84 1.0
Includes Grade-of-
Service Factors 0.165 0.546 1.074 1.0
Includes Transponder
Spares 0.205 0.682 1.15 1.07




SECTION 2
VOICE TRAFFIC DEMAND FORECAST

2.1 Satellite-Addressable Voice Traffic Forecasts

Recent studies by Western Union and ITT have produced updated
estimates of future traffic in the U.S. A certain portion of the long-haul traffic is
susceptible to being carried by domestic satellite communications systems. This
portion is called "satellite addressable traffie." The fraction of the addressable
portion that actually is carried by satellite is the satellite capture fraction.

Table 2-1 shows the ITT and WU forecasts for voice traffiec. Included
under the heading of voice traffic are the following services: WATS, MTS and
private line. WU has included several categories of traffic explicitly that don't
seem to be in the ITT traffic. However, these don't account for much of the total,
so we have ignored this particular difference. These forecasts include peak factors
to account for the unevenness of traffic during the day and allowances of five
percent and eight percent for WU and ITT, respectively, for grade-of-service

considerations.
Table 2-1
WU & ITT Forecasts
Satellite~Addressable Voice Traffic
(thousands of half-circuits)
1980 1990 2000
Western Union 227 1,781 8,843
ITT 253 1,319 4,482
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Interpolation between the benchmark years given in the forecasts was
done by the simple means of drawing a smooth curve across the three points. The
results are shown in Figure 2-1. Yearly values taken from Figure 2-1 are shown in
Table 2-2. Unfortunately, the two forecasts intersect around 1983, thus confusing
the issue of high and low forecasts. However, since they are quite close to each
other from 1980 to the intersection, we have used the average of the two forecasts
between 1980 and 1983. After that time, the WU forecast is used for the high, and
the ITT forecast for the low.

Table 2-2
Satellite-Addressable Voice Traffic
(thousands of half-circuits)

Year Low High
1980 240 240
1981 310 310
1982 380 380
1983 470 470
1984 550 590
1985 650 720
1986 760 870
1987 880 1,030
1988 1,010 1,230
1989 1,150 1,450
1990 1,319 1,781
1991 1,500 2,100
1992 1,700 2,450
1993 1,950 2,900
1994 2,230 3,430
1995 2,500 4,000
1996 2,830 4,700
1997 3,200 5,550
1998 3,550 6,500
1999 4,000 7,600
2000 4,482 8,843
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2.2 Satellite Voice Capture Fractions

The decision to place a portion of voice traffic on satellite circuits
depends on several factors. Primary in most thinking is the economic savings
which can accrue from the distance-insensitivity of the satellite link. In a simple
cost comparison, for a point-to-point link or relatively sparse network, this
advantage is easily seen. However, for most of the long-haul traffic in a well-
developed telephone system this comparison will not hold., Traffie is accumulated
and delivered at many points along the way. In a satellite system, earth stations
must be installed for such access. In a terrestrial network, such access is readily
available at virtually every repeater site. For switched service, moreover, circuits
are shared among calls of various length from one moment to the next, providing
more efficient loading of the system. For private line service, however, there will
be a savings available at some distance or beyond, and a certain fraction of circuits
can be carried by satellite economically.

Given the developing competitive environment after the AT&T divesti-
ture, some of the original reasons for using satellite (or other dedicated facilities)
may disappear. For example, MCI, then known as Microwave Communications
Incorporated, began by proposing a dedicated mierowave link between Chicago and
St. Louis, which would be used for shared private-line service. At this time, the
private-line rate offered by AT&T was well above the competitive price (that is,
the price in a éompetitive market) and volume discounts were offered (via the
Telpak C and D tariffs) only to users of more than 60 circuits. MCI was able to
offer private-line service to small users at considerable savings.

This situation existed because AT&T was a de facto — rather than de
jure — monopoly, but had been accustomed to maintaining this situation by a
combination of strategies. Rather than using the natural monopolist's barriers to
entry of setting prices low in accord with the economies of scale available, AT&T
used nationwide average pricing, and relied on the existance of the FCC to set up
regulatory barriers to entry. The Telpak tariff was an example of a barrier which
was erected in response to an entry threat which promised to overcome the
regulatory barrier. By adopting this mixed strategy, AT&T left open the possibility
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that a sufficiently determined competitor — which MCI certainly was and is —
would be attracted by the entry possibilities and be tenacious enough to overcome
the regulatory obstacles.

In a completely competitive long-haul market, the price should decline
to the competitive level, thus reducing the incentive for additional competitors to
enter, despite the reduced barriers. This will probably lead to a more consolidated
position for the established long-haul carriers, who can use the economies of scale
along their existing routes. New opportunities may open up for service to lower-
traffie regions, however. These will be charged higher prices under true allocation,
and this will offer incentive to alternative transmission systems operating at a
lower cost.

Another source of incentive for satellite use is the offering of new
services, or "old" services no longer offered by existing carriers. A new entrant
seeking to offer such services might choose satellite carriage because of the speed
with which earth stations can be installed, compared to the lengthy process of
constructing a terrestrial link over a distance.

An example of new service offering that has made several attempts at
the market is switched digital service. First offered (via terrestrial microwave) by
the now-defunct Datran system, this service has its latest incarnation using DTS
microwave and satellite inter-city links, as originally proposed by XTEN. Demand
for such services has grown somewhat each time it has been introduced. With
increasing emphasis on various digital systems, and aggressive marketing of office
automation by firms such as Wang and Xerox, we have probably reached the point
at which switched digital networks will become economical and widespread.

New service need not take such a completely different form; MCI's
shared private line service was, after all, simply private line voice. The newness
was the ability of users to share in the cost savings resulting from traffic
aggregation. A value-added service for voice is even possible. "Voice mail" can be
added to private line service, and voice mail systems already exist. Thus, new
services can range from relatively simple money saving offerings up to value-added
networks and the provision of service to areas not already covered by other
carriers.



Estimating the Voice Capture

Because information about the actual usage of satellite circuits is
rather hard to come by, we have had to estimate the capture fraction on the basis
of reasonable scenarios. Of the common carriers with significant voice traffic,
either switched or private line, AT&T, Western Union, RCA Americom, GTE/SP
Communications, and MCI either have or will soon have their own satellite
capacity. We have used available information about some of these carriers to

provide guidance in making our estimates.

Table 2-3 summarizes the information about the carriers. AT&T Long
Lines is, of course, the largest, and of the SCCs, MCI carries the most traffic. Of
particular interest are the growth rates for the SCCs. These, coupled with the
overall market growth rates estimated by WU and ITT, can be used to calculate the
approximate market shares for the SCCs in the future, assuming growth as shown
in Figure 2-2. These shares are shown in Table 2-4.

Table 2~3
Toll Carrier Statistics

Interstate Circuits

(thousands)
Carrier
Annual
Carrier 1978 1980 1981 1982 Growth, %
AT&T Long Lines 491 592 622 660 (est) 5
MCI 4 49 95 129 36
GTE/SPCC 9 14 21 26 23
USTS 7 30 47 66 40
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Table 2-4
Estimated Market Shares of
Various Interstate Toll Carriers

(percent)

Carrier 1978 1980 1985 1990 2000
AT&T Long Lines 96 86 66 55 46
MCI 0.8 7.2 20 27 31
GTE/SPCC 1.8 2.0 3.7 4.7 6.5
USTS 1.4 4.4 10.3 13 16

Taking MCI as a paradigm of the other SCCs, we can examine the logic
by which we estimated the satellite capture. MCI has purchased 24 C-band
transponders from Hughes, which they are intending to use in their network. These
are primarily intended for two purposes: offloading and overflow handling in the
existing system, and extension of the system to areas not now covered. Since the
standard Hughes contract includes a certain amount of protection for the tran-
sponders, we can assume that all 24 could be used if needed.

Because their main interest lies in relatively heavy traffic, MCI is
unlikely to use these transponders for thin-route traffic. The modulation/access
method chosen will probably be one which permits a very high capacity per
transponder and multiple access. One possibility is Companded Single Sideband
(CSSB). With reasonable earth station sizes, this is capable of 4,200 channels
(2,100 circuits) per 36 MHz transponder at 2 degree spacing. (These figures are
taken from the filing of AT&T on the 2 degree spacing docket, and are computed
using a 12-meter antenna.) This results in a total of 50,400 circuits.



Clearly, it will not be feasible for MCI to have 24 transponders in
operation immediately. The Hughes satellites are scheduled to be launched in late
1983 and mid-1984, using the Delta 3920. If an average of 1,000 circuits per earth
station is assumed, resulting in 50 earth stations, then a reasonable construction
schedule might result in full operation around 1988. At that time, the situation
should be stable, with all transponders loaded.

The fraction of total long-haul traffic that is considered satellite
addressable varies with time. Based on ITT estimates, that fraction will be about
20 percent in 1988. Since we have no special reason to think otherwise, we should
assume that this same proportion of MCI's total traffic (which is by definition all
long-haul) is satellite addressable. In 1988, this will be approximately 139,000
circuits. Combined with the total satellite traffic of 50,400 circuits, this gives a
capture fraction of 36 percent for MCI in 1988. Similar figures can be derived for
other SCCs and are shown in Table 2-5. You should keep in mind that these figures
are derived using total long-haul traffic. This is computed from the estimated
interstate traffic figures shown in Figure 2-2, based on the assumption (from the
ITT report) that interstate traffic comprises 54 percent of the total long-haul.
Thus, the 139,000 circuits mentioned above is equal to the 1988 figure of
approximately 375,000 interstate circuits (of MCI) from Figure 2-2, divided by
0.54, multiplied by the 20 percent satellite addressable factor.

Table 2-5
Estimates of Satellite Capture

Satellite
Satellite Capture of
Carrier Year Circuits Addressable* *

ATT-LL 1981 28,500 20.7%
ATT-LL 1983 22,500 12.8%
MCI 1988 50,400 36 %
GTE/SPCC 1988 13,000 52 9%
Industry* 1988 78,400 13.8%

*assumes 4.5% for ATT-LL

**Note that the addressable traffic includes intrastate as well as
interstate circuits. Interstate always assumed at 54% of total.
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It's clear that these estimates involve a lot of approximation, and that
they therefore offer only an indication. However, given that the SCCs have more
incentive to use satellites than does AT&T, because of their less extensive
terrestrial networks, the figures are reasonable. Figure 2-3 shows some informa-
tion used in the development of the capture fraction. The lower set of isolated
points show the fraction of the total addressable market carried by satellite for
each of several carriers. These values are a reliable lower bound on the capture.
The curves show three different estimates of capture fractions. The curve marked
FSI79* is the capture estimate published in FSI report #106. This curve was
applied to the total long-haul market. The line marked FSI 79** shows these same
values after adjustment to reflect the fraction of the total market that is satellite-
addressable, resulting in much higher numbers. The ITT 79 curve is drawn from
numbers taken from the 1979 ITT traffic study.

The points marked "I" are estimates for the entire industry derived
from the estimates for the individual carriers. Finally, the estimates for the
carriers as a fraction of their own addressable traffic are shown labelled with the

carriers’ initials.

One point here deserves added clarification. The estimated capture
fraction for 1980 and the next few years seems rather high. However, this results
from the fact that the satellite-addressable traffic at that time was only a small
fraction of the total long-haul traffic. For example, in 1980, satellite addressable
traffic made up c;nly about 11 percent of the total. Thus, even though we estimate
 that the satellite capture was about 21 percent of the addressable, it was only

about 2 percent of the total.

Figure 2-4 shows our final estimate of the capture fraction versus time.
This curve flattens out at about 30%. The reason we have assumed such a
flattening for the capture fraction is that the addressable part of the total traffie,
as defined by WU and ITT, is growing with time for some of the same reasons that
would normally be incentives to switch from terrestrial to satellite. Thus, the two
concepts overlap somewhat. Therefore, we have included less growth in the
capture fraction because of the growth in the addressable portion.

Table 2-6 contains the high and low satellite voice traffic forecasts.
This table incorporates only the capture fractions developed thus far.
2-10
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Table 2-6
Satellite Voice Traffic Forecast

(thousands of half-circuits)

Year Low High
1980 47 47
1981 48 48
1982 45 45
1983 46 46
1984 54 59
1985 69 71
1986 91 100
1987 120 140
1988 160 190
1989 210 270
1990 280 370
1991 360 500
1992 440 640
1993 550 810
1994 660 1,000
1995 770 1,200
1996 900 1,500
1997 1,000 1,800
1998 1,200 2,200
1999 1,400 2,600
2000 1,500 3,000




2.3 Geographical Distributions and Facilities Loading

The geographical distribution of traffic is important for several
reasons. Aside from the obvious concern of manufacturers and planners who wish
to allocate service facilities and personnel appropriately, frequency coordination,
frequency band segmentation and satellite loading all depend to some degree on the
distribution of traffic.

Frequency coordination among earth stations is not generally a problem
at this time, but it could become one if the density of stations increased
sufficiently., This could occur in areas such as New York and Los Angeles.
However, frequency coordination with terrestrial microwave systems is likely to
remain the limiting factor. The coordination criteria are based on an average
number of interference entries along the so-called reference path. In spite of this,
there is a tendency for system planners to regard the coordination criteria as
something which can be used again and again as long as it is not exceeded. This is
not the case, and in areas supporting both dense microwave and dense satellite use,
consideration of the number of entries will certainly be needed. This will
complicate the coordination task and requires additional advance planning. Con-
gestion at one frequency band clearly affects the division of traffic among bands.

Regions of high traffic density will experience frequency coordination
problems (at C-band for example) that will drive users to the other available bands.
In systems using spot-beam satellites, the beam capacity at the lower bands will
also saturate sooner in these high traffic areas, again resulting in pressure to use
the higher bands. Another factor arises from the coincidence of high traffic
density and high population density, with attendent urbanization. This makes the
smaller antennas associated with higher frequencies desirable for zoning and

esthetic reasons.

In a system using multiple spot beams with interconnection onboard the
spacecraft, traffic concentrations will cause the system to saturate the satellite at
less than 100 percent utilization of the theoretical capacity. This phenomenon
occurs because in general connectivity is required for all traffic. This means that
as the traffic grows, some of the incremental traffic originating from all other
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beams must be connected to the largest beam (most traffie, that is, not physically
largest). Therefore, when the largest beam is saturated, no more traffic can be
added to the system. If the traffic is distributed in a very uneven manner,
considerable unused capacity will exist when saturation occurs.

Of course, this is to some extent an oversimplification, since it is
possible to fine-tune the system slightly. Traffic that does not require access to
the saturated beam(s) can be added. In fact, INTELSAT optimizes their traffic
plan in a similar manner, trying to extract the maximum from each satellite before
requiring additional antennas to access other satellites. However, the amount of
such fine-tuning is limited and cannot be determined beforehand. Therefore, for
system planning purposes, saturation ecan be assumed to happen as described above.

Basis for Traffic Distribution

The most straightforward basis for traffic distribution determination is
the population distribution. While other factors can be used, and have been -
included in the Western Union Market Distribution Model, for instance, population
seems to provide an adequate approximation. We have used data from the 1980
Census as the basis for the population distribution. In order to provide a useful -
model, we considered other factors as well. These were: population shifts with
time, and the granularity with which the information should be presented.

Population Projections

During the past decade, the pace of population growth in the United
States slowed to its lowest rate since the 1930 - 1940 decade.

A total of 225.2 million mainland Americans were tallied in the 1980
census, an 11.4 percent increase since 1970. The Census Bureau expects a
decreasing rate of population growth - less than ten percent - in this decade, and
about seven percent by the end of the century.

Statisties tabulated thus far show that about 90 percent of the country's

net population growth since 1970 occurred in the South and West. Those regions
grew by 21.4 percent, while the Northeast and North Central regions grew by a
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little more than two percent. More than half the population - 52.3 percent - now
lives in the South and West.

Assuming that the 1965 to 1975 migration patterns continue, and using
the results of the 1980 census as a baseline, Tables 2-7 and 2-8 were developed
showing the national population projections segmented by region and time zone,
respectively.

Since the largest shift over the 1980 to 2000 period is about five
percent, we decided to ignore the effect of population shifts.

Granularity

The Census data is available to a very fine degree of resolution. The
smallest geographical division that we felt appropriate was the county, of which
there are about 3000 in the CONUS. Using county-level data, we divided states
into several smaller areas where appropriate. Since the most we would expect in
this study period would be about 20 to 30 beams on a single satellite, this should
prove sufficient resolution.

The map foldout (Figure 2-5) shows the regions totaled, the time-zone
boundaries, and within each region, the percent of the total U.S. population
contained therein.



Population Projections - Region: 1980 - 2000

Table 2-7

~Population
(millions) % of CONUS
1980 1990 2000 1980 1990 2000
New England 12.35 13.70 14.62 5.48 5.67 5.66
Middle Atlantic 36.80 39.14 40.24 16.34 16.21 15.58
E. North Central 41.68 44.85 47.01 18.51 18.57 18.20
W. North Central 17.22 18.02 18.78 7.56 7.46 7.27
South Atlantic 36.95 41.18 45.40 16.41 17.05 17.58
E. South Central 14.66 15.06 15.92 6.51 6.24 6.16
W. South Central 23.75 24.79 27.02 10.55 10.27 10.46
Mountain 11.38 12.08 13.35 5.05 5.00 5.17
Pacific 30.45 32.68 35.91 13.52 13.53 13.90
TOTAL 225.2 241.5 258.3
Table 2-8
Population Projections -~ Time Zone: 1980 - 2000
Population
(millions) % of CONUS
1980 1990 2000 1980 1996 2000

Pacific 31.46 33.66 37.00 13.97 13.94 14.33
Mountain 11.59 12.33 13.57 5.15 5.10 5.25
Central 66.55 69.82 74.17 29.55 28.91 28.72
Eastern 115.64 125.73 133.51 51.34 52.05 51.70
TOTAL 225.2 241.5 258.3
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2.4 Busy-Hour Averaging and Peaking

An understanding of the nature of traffic, whether it be voice, video or
data, and its distribution with respect to time and destination is essential in
determining the transmission facilities required. For example, the distribution of
telephone traffic varies greatly from one period to another, not in any uniform
manner but according to the stochastic needs of the subseriber. In addition, traffic
volumes often deviate from season to season, from month to month, from day to
day, and from hour to hour.

Busy-hour traffic patterns vary in both amplitude and time duration as
one crosses the time zones spanning the contiguous United States. These variations
are caused by many factors, the most important of which are the concentrations of
population and business.

The telephony traffic intensity on which the satellite facilities are
calculated should represent the normal busy hour. Occasionally, however, the
traffic will exceed that level (some unusual peaks can be expected on such days as
Mother's Day and Christmas, while other peaks are unexpected). To engineer the
transmission facilities for all such eventualities would be very costly and ineffi-
cient. As a result, there will be peak periods when the traffic exceeds the volume
whieh has been assumed.

Within the week, traffic volume usually forms a fairly consistent
pattern, such as high on Mondays and Fridays, and low on Wednesdays. The
greatest degree of traffic variation over any period occurs between the hours of
the day. Volume ratios of the busiest hour to the least busy hour, for example, can
be as high as 100:1. In offices serving the business community, peak traffic can be
expected in the late morning and early afternoon.

Sometimes expressed as a percentage of the traffic occurring during a
24-hour period, the busy hour traffic usually varies from 10 to 14 percent. Figures
2-6 through 2-8 provide the traffic profiles of MTS DDD, 800 Service and Outward
WATS, respectively, for AT&T Long Lines in the year 1981.



Of the three traffic components examined by both Western Union and
ITT (MTS, WATS and Private Line), the latter two are employed by the business
sector and therefore follow the general business day usage profile, that is, peak
hours oceurring from 10 a.m. to noon and from 1 p.m. to 3 p.m.. MTS, however, is
divisible into two components: residential and business. Since neither component
is negligible and both have different hourly traffic distributions, the residential and
business MTS peak hour must be calculated separately in order to determine the
worst case situation. As might be expected, the MTS business profile is identical

to that of Outward WATS appearing in Figure 2-8.

Although nearly all residential traffic occurs in the 16 hours from 8
a.m. to midnight, the peak hours oceur between 7 p.m. and 11 p.m. partly because
of the lower tariffs at those times and partly because that is the period during
which most members of the household are home. It is the residential traffic which
accounts for the second peak in the MTS profile of Figure 2-6.

Busy-Hour Staggering

To begin the analysis of busy-hour staggering, the traffic flow between
time zones and within time zones must be identified. While many factors can be
used to develop the time-zone matrix mix, we have opted for what we believe is
the most straightforward - population distribution.

As an example, we will develop the time-zone distribution mix for the
year 1990. From Table 2-8, the percent breakdown of population by time zone is
13.94, 5.10, 28.91, and 52.05 for the Pacifie, Mountain, Central, and Eastern Time
Zones, respectively. Based on the premise that the flow of traffic is proportional
to the time-zone population, Table 2-9 can be developed. The first row in the table
is calculated as follows - 52.05 percent of the total traffic orginates in the ETZ.
Out of this fraction, 52.05 flows back into the ETZ, 28.91 percent to the CTZ, 5.10
percent to the MTZ, and 13.94 percent to the PTZ.

The first row of entries in the matrix results from simply multiplying
the above fractional values together as follows:

Eastern-Eastern = 0,.5205 x 0.5205 = 0.271
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Eastern-Central = 0.5205 x 0.2891 = 0.150
Eastern-Mountain = 0.5205 x 0.0510 = 0.0265
Eastern-Pacific = 0.5205 x 0.1394 = 0.0726

In effect, 27 percent of the total traffic will remain within the ETZ,
with 15, 3, and 7 percent flowing from the ETZ to the CTZ, MTZ, and PTZ,
respectively.

Table 2~9
Traffic Flow Between and Within the Time Zones

(percent)
Eastern Central Mountain Pacific
Eastern 27.1 15.0 2.65 7.26
Central 15.0 8.36 1.47 4.03
Mountain 2.65 1.47 0.26 0.71
Pacifie 7.26 4.03 0.71 1.94

By coupling the results of Table 2-9 with the MTS and Outward WATS
usage profiles of Figures 2-6 and 2-8, the percent capture of both MTS and WATS
can be determined on an hour-by-hour basis for each time zone. The procedure will
be demonstrated with an example.

On examination of Table 2-9, the first column may be interpreted as
the flow from (source) the Eastern, Central, Mountain, and Pacific Time Zones to
(sink) the Eastern Time Zone. In order to ascertain the fraction of WATS or MTS
telephony traffic flowing into the ETZ, say at 5 p.m. (Eastern Standard Time), one
must determine the fraction of WATS or MTS traffic flowing within the ETZ at 5
p.m., from the CTZ to the ETZ at 4 p.m., from the MTZ to the ETZ at 3 p.m., and
finally the traffic flowing from the PTZ to the ETZ at 2 p.m.

For Outward WATS, 8.6, 11.1, 11.3, and 10.0 percent of the traffic
flows during the hours of 5 p.m., 4 p.m., 3 p.m., and 2 p.m., respectively, during the



course of day as shown in Figure 2-8. These percentages can be conveniently
expressed in a (1 x 4) matrix - (8.6, 11.1, 11.3, 10.0).

In like manner, the percent of total traffic flowing within and into the
ETZ can be expressed as a (4 x 1) matrix -

27.1
15.0
2.65
7.26

where the uppermost element corresponds to the total traffic within the ETZ and
in decending order the flow of traffic from the Central, Mountain, and Pacific
Time Zones into the Eastern Time Zone.

To determine the percentage of WATS traffic flowing into the ETZ at 5
p.m. (EST) the two matrices (1 x 4) (4 x 1) are multiplied together resulting in a
single output (1 x 1). For example, when the above matrices are multiplied
together we find that 5.02 percent of the total WATS traffic flows into the ETZ at
5 p.m. (EST). Similar calculations can be made for the remainder of the day and
for the other three time zones. Figures 2-9 and 2-10 display the percent capture of
MTS and Outward WATS by each of the time zones on an hour-by-hour basis.
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Table 2-10 shows the percent breakdown of voice into MTS, WATS, and
Private Line during the average hour. These figures are derived from the recent
ITT study.

Table 2-10
Average Hour Voice Traffic
(percent)
Private

MTS WATS Line

1980 34.6 17.6 47 .8

1990 29.0 14.1 56.8

2000 20.9 19.3 59.8

Using these data together with the satellite~addressable voice traffic
forecasts, the satellite voice capture percentages, and the ITT composite peak
factors, the number of circuits in an average hour can be determined. Table 2-11
displays the average number of circuits needed for the low forecast of Section 2.1
for the years 1980, 1990, and 2000.

Table 2-11
Average Hour Voice Traffic

(half-voice cireuits)

Private

MTS WATS Line
1980 8,390 4,270 11,600
1990 44,400 21,600 86,900
2000 197,000 182,000 563,000




The MTS entry for 1980 is determined as follows—the satellite address-
able voice traffic for the year 1980 totals 240,000 half-voice circuits. In order to
extract the average number of satellite-addressable circuits, this figure must be
reduced by the peaking factor. In the work performed by ITT, a composite satellite
addressable peak factor of 1.98 was used for the year 1980 and later reduced to
1.81 and 1.62 for the years 1990 and 2000. Dividing 240,000 half-voice circuits by
a peak factor of 1.98 results in 121,212 satellite-addressable half-voice circuits.
This figure is then multiplied by the estimated satellite capture (20%) and the
fraction of MTS satellite addressable traffic (34.6%) from Table 2-10.

That is, the average hourly MTS voice traffic is equal to—
= 240,000/1.98 x 0.20 x 0.346
= 8,390 half-voice circuits

In order to determine the peak voice traffic on an hour-by-hour basis
for one standard time (for example Eastern Standard Time), MTS and WATS peak
factors derived from Figures 2-6 and 2-8 are applied to the average hourly voice
traffic in Table 2-11.

In a format similar to Table 2-6, which forecast the high and low
satellite voice traffic, Table 2-12 lists the year-by-year satellite traffic forecast
integrating the effects of the staggered busy hours. As shown in Table 2-12, the
staggering of busy hours has an averaging effect on a facility that serves all the
time zones simultaneously. This averaging process results in a reduction of the
satellite voice facilities required amounting to 30 percent in the early years, and
slowly dropping to 20 percent by the year 2000.



Table 2-12
Satellite Voice Traffic Forecast
Adjusted to Include Effects of Busy-Hour Staggering
(thousands of half-eircuits)

Year Low High
1980 32.2 32.2
1981 32.2 32.2
1982 30.5 30.5
1983 31.5 31.5
1984 37.0 36.7
1985 47.0 49.0
1986 61.9 68.0
1987 81.1 94.5
1988 109 135
1989 147 192
1990 192 268
1991 251 376
1992 313 495
1993 393 648
1994 480 825
1995 574 1,040
1996 679 1,270
1997 791 1,520
1998 920 1,840
1999 1,070 2,150
2000 1,210 2,470




2.5 Grade of Service Calculations

2.5.1 Traffic Engineering

If calls are to be handled without delay or loss, it would be necessary to
provide as many circuits as there are subseribers. Assuming that each call involves
two subscribers, it would perhaps be sufficient to provide half as many circuits as
there are subscribers. This is the ideal case, but for economical reasons it is
impractical.

To reduce the number of circuits to a reasonable amount, it is
necessary to give up the ideal concept for nonblocking service. Subseribers have to
realize that some of their calls cannot be handled immediately when the circuits
are being used by other subsecribers and that such calls have to be delayed or
renewed. The term "grade of service" is given as the proportion of these
unsuccessful calls relative to the total number of calls. The grade of service is
defined as the measure of service given from the point of view of insufficiency of
plant equipment.

For example, when transatlantic cables were first introduced the cost
per channel over these cables was very high. It was then the practice of telephone
administrations to queue up all traffie, so that it was practically never possible to
obtain a channel when desired. Instead, a telephone subsecriber desiring to place a
call had to register his intention with the telephone company, and he was advised
of the approximéte waiting time, always in the order to several hours. This
resulted in very high line utilization but a very poor grade of service.

We are now use to a very good grade of service. It is the standard
practice of the Bell Operating System to design links for grades of service ranging
from 1 in 100 to 1 in 1,000.

Traffic engineering can be defined as the process of determining
adequate quantities of the correct type of equipment and trunks. All traffic
engineering is based on a calculated grade of service. When used in accordance
with accepted operating procedures, the desired balance of quality and cost of
service will result.



2.5.2 Demand Assignment

Satellite links can be established on a preassigned or on a demand-
assigned basis. Earth stations having continuous traffic over a given number of
channels use preassigned channels. However, many channel requirements are of a
short-term nature, so a channel and terminal equipment economy technique known
as demand assignment is used.

Increased space segment efficiency in a fully variable demand assign-
ment network arises from the fact that all channels are pooled and may be used by
any station, according to its instantaneous traffic load. This may be contrasted
with a system using preassignment in which all channels are dedicated, that is, both
ends of the channel are fixed. With this system, when traffic to a particular
destination is light, the utilization is poor. Also, for a given system traffic load,
the blocking probability for a system employing preassignment is higher than for a
system employing demand assignment. This occurs because some number of
channels are "locked in" to a particular link. In a system employing demand
assignment, unused channels may be made available to other users. Conversely, for
a given blocking probability, the number of channels required to pass a given
amount of traffic in a preassigned system is greater than in a demand assignment
system. The lighter the traffic per destination, the greater the advantage of the
demand assignment system.

Figure 2-11 shows the general relationship between the number of
channels required as a function of the traffic in Erlangs for grades of service of 1
in 20, 1 in 100, and 1 in 1,000.

The relationship between traffic density, channels per link, and grade of

service is defined by the Erlang equations.

The most commonly used equation is the Erlang B equation which
assumes an infinite number of sources and a lost-calls-cleared situation. The
Poisson equation applies for the lost-calls-held case. For the limited sources
condition, the Engset and Binominal equations apply. The Erlang B equation has
been standardized by the CCITT and is shown below:
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P= A"/N!

N X

A7 /x!

>

x=0
where
P = Probability of blocking.
A = Total traffic offered in erlangs.
N = Number of channels.

2.5.3 Circuit Loading Calculations

Additional circuits are needed to ensure the required grade of service,
which we have taken to be one percent of calls busy. However, the number of
extra circuits required depends on the trunk group size and by the Erlang (or
similar traffic engineering) function. Therefore, in order to estimate the number
of circuits needed for an acceptable grade of service, we must first estimate the

size of the trunk groups involved.

Since the Erlang B function is rather nonlinear, we felt that an
approach based strictly on the average number of trunks per link would be
inaccurate, especially for the thinner-route traffic carried by CPS and smaller
SCCs. So, we looked for a way to approximate the actual trunk group size, even
without knowing' the actual system configuration. The method that we chose
makes use of the Western Union market distribution information developed under
their Task 2.0.

We assumed that the traffic was carried by three "systems,” one
comprising the top ten SMSAs as defined for an established common carrier, and
carrying 42.5 percent of the traffic; a second comprising the top twenty SMSAs as
defined for an established carrier, and carrying 32.5 percent of the traffic, and a
third comprising the "most efficient network" for a specialized common carrier.
See Tables 2-13 through 2-15. CPS links would be generally thinner than even the
SCC links, but because CPS will be shared among voice, data and videocon-
ferencing, we estimate that the overall efficiency for CPS will be similar to that

for the SCCs. Given these assumptions, we then proceed as follows.
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Table 2-13

Established Common Carrier—10 Earth Station Model

NEW YORN NY-NJ

FORT WAYNE IN

LYNCHEURG VA

ERIE FnA

ROCKFORD IL

ATHENS GE

ERYAN-COLLEGE STATION TX
LAKELAND-WINTER HAVEN FL
FORTLANDI ME

EVANSVILLE IN-KY

NO.
SMSA'S

42
33
19
15
20
15
12
13
12

7

GROUP
MARKET
VALUE

10.02
8.09
4,69
4,13
3.31
3434
2435
2,25
2.19
2.11

cuM
GROUFP
MARKET
VALUE

10.02
18.11
22.80
26.97
30.29
33.62
35.98
38.23
40.42

42,353



Table 2-14
Established Common Carrier-20 Earth Station Model

Cum
Group Group
No. Market Market
SMSA's Value Value
1 New York, NY-NJ 42 3.12 3.12
2 Fort Wayne, IN 33 2.94 6.06
3 Lynchburg, VA 19 1.13 7.19
4  Erie, PA 15 1.02 8.21
5 Rockford, IL 20 1.22 9.43
6 Athens, GA 15 0.94 10.37
7  Bryan-College Station, TX 12 1.24 11.61
8 Lakeland-Winter Haven, FL 13 0.73 12.34
9 Portland, ME 12 0.54 12.88
10 Evansville, IN-KY 7 0.69 13.57
11 Visulia-Tulare-Porterville, CA 11 3.07 16.64
12 Lawrence, KS 10 2.67 19.31
13 Jackson, MS 10 2.39 21.70
14 Eau Claire, WI 6 1.93 23.63
15 Montgomery, AL 6 1.50 25.13
16 Chico, CA 8 1.59 26,72
17 Yakima, WA 9 1.53 28.25
18 Oklahoma City, OK 6 1.45 29.70
19 Fort Collins, CO 6 1.39 31.09
20 Little Rock-North Little Rock, AR 5 1.37 32.46
Note: Market values for the first 10 (of the above 20) SMSAs were reduced

from the Western Union figure to account for traffic in the 20 city

model.
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Table 2-15

Specialized Common Carrier Summary—Most Efficient Model

NEW YORK NY-NJ

CANTON OH

RACINE WI

JACKSON MI
SPRINGFIELD-CHICOFEE~-HOLYOKE CT=-MA
HAGERSTOWN M

MUNCIE IN
GREENSEORO-WINSTON-SALEM-HIGH NC
ANNISTON AL

SFRINGFIELDN IL

DURUQUE IA

OXNARD-SIMI VALLEY-VENTURA CA
STOCKTON CA

FETERSEBURG-COLONIAL HEIGHTS~HO VA

LAKELANDI-WINTER HAVEN FL
ELMIRA NY

LEXINGTON-FAYETTE KY

ROCHESTER MN

ASHEVILLE NC

LIMA OH

EEAUMONT-FORT ARTHUR-ORANGE TX
KANSAS CITY MO-KS

EENTON HAREOR M1
BILOXI-GULFFORT MS
JACKSONVILLE NC
FARKERSEURG-MARIETTA WY-OH
COLUMEIA SC

IENVER-KOULLER CO

FORT LAUDERDALE-HOLLYWOOD FL
OCALA FL

COLUMEUS GA-AL

DALLAS-FORT WORTH TX
FROVIDENCE-WARWICK-FAWTUCKET RI-MA
TERRE HAUTE IN

BUFFALO NY

GLENS FALLS NY
APPLETON-OSHKOSH WI

BREMERTON WA
VINELAND-MILLUILLE-BRINGETON NJ
LONGVIEW TX

LAWTON OK

AUSTIN TX
CLARKSVILLE-HOFKINSVILLE TN-KY
BAY CITY MI

JOFLIN MO

LAFAYETTE LA

FORT WALTON EEACH FL

LINCOLN NE

SALEM OR

BRADENTON FL

CHARLESTON-NORTH CHARLESTON SC
LITTLE ROCK-NORTH LITTLE ROCK AR o, _gn
EVANSVILLE IN-KY

NO.
SMSA'S

*J)

r

[

?'JI-JNNNFJNNNMf'J‘blw.b.b.b.b-br-J.b.bl'J-b-bbl-b.b-b-bbm-b-b.btﬂ.bbl0-b(.'lO-b0~UIU|\JO~WI-J0~UI*O

GROUP
MARKET
VALUE

9.64
3.82
3.96
2,72
3.13
3.52
1.86
2,31
2.13
1.97
1.45
2.74
1..84
1,62
1.19
1.66
1.58
1.65
1.40
1,45
1.68
1.34
1.23
1.24
1,06
1.06
1,06
1,28
1.19
1.01
0.97
1.11
0.91
0.90
0.87
0.87
0.86
0.83
0.84
0,85
0.87
0.88
0.77
0.75
0,69
0,72
0465
0.66
0.64
0.55
o.ss
0.5

0.52

Cum
GROUF
MARKET
VALUE

9.64
13,46
17.41
20,13
23.27
26,79
284,69
30,96
33.09
33406
36.52
3?.26
41.10
42,72
43,91
45,37
47.15
48,890
000..1
S51.66
53,34
54 .48
25.91
S7.14
58,21
S99.27
60.33
61.61
62.81
63.82
64,79
65,90
66.81
67.71
68.58
69.45
70.31
71.13
71.97
72.83
73.70
74.58
75.35
76,09
76.78
7750
78.135
78.80
79.495
80.00
80.53
81.10
81,63



Table 2-15 (continued)

Specialized Common Carrier Summary-—Most Efficient Model

MEMFHIS TN-AR

FROVO-OREM UT
VISALIA-TULARE-FORTERVILLE CaA
FHOENIX nZ

CEDAR RAFIDS IA
LEWISTON-AURURN ME

YUEA CITY CA

SAN DIEGO ChA

SI0UX CITY NE-IA

BANGOR ME

TULSA OK

EL FPASO TX
FARGO-MOORHEAL NID-MN
MIDLAND TX

CORFUS CHRISTI TX
ALTOONA FA
EROWNSVILLE-HARLINGEN~SAN EENI TX
BRYAN~COLLEGE STATION TX
ABILENE TX

CHATTANOOGA TN-GA

DES MOINES IA

WICHITA KS

JACKSON MS
SALINAS-SEASIDE-MONTEREY CA
DULUTH-SUFERIOR MN-WI
RICHLANII-KENNEWICK WA
ALERUQUERQUE NM
RIVERSIDE-SAN BRERNARIINO-ONTAR CA
HAMILTON-MILOLETOWN OH
LORAIN-ELYRIA OH
LYNCHEBURG VA

LAS VEGAS NV

TUCSON AZ

FORT SMITH AR-OK

ATHENS GE

FLORENCE AL .
TALLAHASSEE FL

LUBEOCK TX

TUSCALOOSA AL

COLUMERIA MO

MONROE LA

AMARILLO TX

ST CLOUD MN

KANKAKEE IL

NO.
SMSA'S

o ob b et b b R A R e R e e b e b b R A R = BRI RIS ORI RI R I PRI G R R - IR

GROUF
MARKET
VALUE

0.33
0.32
0.47
0.49
0.42
0.41
0.42
0.45
0.41
0.39
0.41
0.40
0.37
0.37
0.37
0.36
0.36
0.36
0.35
0.34
0.34
0.32

'093.0‘

0.29
0.27
0.27
0.27
0.27
0.25
0.25
0.24
0.25
0.23
0.24
0.23
0.23
0.23
0.22
0.22
0.22
0.22
0.22
0.21
0.19

CuM
GROUF
MARKET
VALUE

82,16
82,68
83.16
83.65
84,07
84.48
84,90
85.35
85.76
86,14
86.56
86,96
87.33
87.70
88.06
88.42
88.78
89.14
89,49
89.82
90,17
90,48
¥0.78
91.07
91.34
91.61
91,88
92,14
9240
92,64
92.89
93,13
93.38
93,62
93.86
94,08
94,31
94.53
94,75
94,97
95,19
95,40
95.61
95.80



Traffic is apportioned to the various SMSA stations by their "Group
Market Value." Thus, for example, in Table 2-13, the New York SMSA would be
originating 10.02 percent of the total traffic. This traffic is apportioned among
the nine links to the other nine stations (still referring to Table 2-13) according to
their share of the total 42.53 percent of the traffic carried by this network. An
appropriate adjustment is included so that: 1) the traffic along each link is
reciprocal, that is, if 200 circuits originate in New York and go to Lynchburg,
Virginia, then 200 circuits originate in Lynchburg and terminate in New York; and
2) the total traffic still sums to 42.53 percent of the nationwide traffiec; and 3) no
traffic flows from a station back to itself.

At this point, we have the traffic along each link, in both directions, for
all the links in the network. For Table 2-13 this comprises 90 numbers. This
traffic is expressed in peak loaded channels, or Erlangs. We then consult the
Erlang table for the appropriate grade of service (0.01) to find the number of
circuits along each link in each direction needed to give that service. Because in a
satellite system, carriers originate at a particular earth station, the trunks
between any two stations are assumed to be available for service in two groups:
one-half in one direction and one-half in the other. For large trunk groups, there is
a negligible difference between this case and considering the total group as one
aggregate, available to either station independently.

After the number of circuits for each link is determined, the numbers
are totalled up to give the total number of circuits needed for this network.

Demand Assignment

In the 20 and 97 station networks, many of the links will have very few
Erlangs of traffic. If these links were served on a pre-assigned basis, as we
assumed the heavier trunk groups were, the result would be a very inefficient
system. For the links in these networks, we have assumed a variable-destination
demand assignment system, with a threshold traffic level equivalent to 50 circuits.

The traffic originating at each station is tested. If it exceeds 50
circuits (37 Erlangs at 0.01) then the links are broken out as noted above. If the
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traffic is less than 37 Erlangs then the entire traffic load is assumed to be demand-
assigned, and the number of circuits is computed on the basis of the total traffic.
For example, a station might be the source of 20 Erl. of traffic. Since this is less
than 37 Erl., the entire 20 Erl. are assumed to be carried on a variable-destination
demand assignmént system, originating at that station, but terminating at any
other station, as needed. This would result in a requirement for 30 circuits at 0.01.
If the links were pre-assigned, and even if there were only 20 other stations, each
with 1 Erl. of traffic, between 80 and 100 circuits would be needed.

Assuming that the station originates more than 37 Erl. of traffic, and
each link is examined individually, a further test is conducted. If the traffic on any
one link is less than 37 Erl., then that link is combined with other(s), until the total
exceeds 37 Erl. Again, variable destination is assumed. This results in similar

savings in circuit requirements.

We did this for each year in the twenty-one year scenario, but in order
to avoid too many sets of lengthy tables we will simply show the results for 1980,
1990, and 2000. As you can see from Table 2-16, the later years, having more
traffic and thus denser links, show more efficient use of the circuits. These
calculations are included in the year-by-year values for total transponder
requirements that are shown further on in the report.

2.6 Transponder Capacity for Voice

The éatellite voice traffic forecasts consider only the source of
demand. In order to transform them into a forecast of transponder requirements,
we have to determine the capacity of a transponder for voice. This capacity will in
general be a time-varying function. Our calculations here don't imply a particular
transponder configuration, but are based on the common 36 MHz transponder
bandwidth.

Table 2-17 shows the WU estimates of voice circuit capacity versus
time. Rather than use these directly, we developed our own estimates and used the
Western Union figures as a check. We consider three "kinds" of voice traffic:
analog voice, carried on FDM/FM -carriers or as Companded Single Sideband
(CSSB); digital voice carried on large TDM or TDMA carriers; CPS voice, carried



Table 2-16
Grade-of-Service Results for Voice
(traffic in thousands of half circuits)

Year
1980 1990 2000
Low High Low High
TOTAL TRAFFIC 32.2 192 268 1,210 2,470
10 SMSAs: Traffic 13.7 81.7 114 515 1,050
Capacity 16.1 86.6 119 519 1,050
Efficiency 85% 94% 96% 99% 100%
20 SMSAs: Traffic 10.4 62.3 87.0 393 802
Capacity 13.5 73.0 99.7 416 826
Efficiency 77% 85% 87% 959% 97%
97 SMSAs: Traffie 8.06 48.0 67.1 303 618
Capacity 10.7 60.2 83.5 359 708
Efficiency 75% 80% 80% 84% 87%
TOTAL: Capacity 40.3 220 302 1,290 2,580
Efficiency 80% 87% 89% 94% 96%
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digitally on carriers of 3.088 Mbps each, eight per transponder. The bit rate per
half-voice circuit varies with time as shown in the WU figures. Large carriers are
assumed to use DSI if carried digitally, and companding if analog (except in 1980).
Other assumptions are deseribed below.

Our approach was to use the market distributions shown in Table 2-4
(reproduced for convenience as Table 2-18) to divide the total satellite market
among the carriers, after extracting the CPS traffic fractions also shown in Table
2-18. We then estimated the transmission method and parameters for each carrier
for 1980, 1990 and 2000. These figures are shown in Table 2-19. The resulting
average half-circuits per transponder are also shown.

Table 2-17
Western Union Estimates of Transponder Capacity

1980 1990 2000
Half-Voice Circuits:
Estimate 1 1,200 3,600 7,200
Estimate 2 1,200 2,400 4,800
Digi;al 937 2,812 3,750
Composite:
Estimate 1 1,200 3,364 4,931
Estimate 2 1,200 2,491 4,210




Table 2-18
Estimated Market Shares of Various Interstate Toll Carriers

(percent)
Year
Carrier 1978 1980 1985 1990 2000
AT&T Long Lines 96 86 66 55 46
-MCI 0.8 7.2 20 27 31
GTE/SPCC 1.8 2.0 3.7 4.7 6.5
USTS 1.4 4.4 10.3 13 16
CPS-WU - 0.25 - 1.57 2.47
CPS - ITT - 5.8 -_ 10.6 14.9
Table 2-19
Transponder Capacity Estimates
(Except CPS)
Year
1980 All 1,500 half-circuits per transponder
1990 AT&T - All digital, half of transponders at 90 Mbps, half at 60 Mbps
rate 7/8 FEC, DSI, 32 kbps per half-voice circuit
MCI - All CSSB, 4,200 half-voice circuits per transponder
Other SCCS - All digital, 60 Mbps rate 7/8 FEC, DSI, 32 kbps
1990 Composite = 3,949 half-circuits per transponder
2000 AT&T - All digital, same as 1990 except no FEC, 24 kbps per half-

cireuit
MCI - All CSSB, 6,000 half-voice circuits per transponder

Other SCCs - All digital, same as 1990 except no FEC, 24 kbps per half-
circuit

2000 Composite = 5,839 half-circuits per transponder
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CPS Transponder Loading

We assumed that all or most CPS traffic would be carried using small
earth stations, and relatively inefficient utilization of the space segment would
result. For example, a 36 MHz transponder operated in the multicarrier mode has
significantly less capacity than would be the case for single carrier operation.
Operation into small stations can be enhanced by the use of carrier spacing plans
designed to reduce intermod. Such sequences have been deseribed in the literature
by Babcock and Fang and Sandrin. Figure 2-12 shows typical variations in the
transponder capacity as a function of earth station figure of merit and required
carrier to noise ratio. Based on this and probable system configurations, we
assume that a typical CPS transponder would support eight carriers of 3.088 Mbps
each for a total of 24.7 Mbps. ‘

The bit rate for a half-voice circuit was assumed to vary from 64 kbps
in 1980 to 24 kbps in 2000. This gives a CPS transponder of 386 half-voice circuits
in 1980, 772 half-voice circuits in 1990, and 1,029 half-voice circuits in 2000. The
capacity of a CPS transponder, combined with the fraction of the addressable
traffic denoted as CPS and the capture fraction then gives the number of CPS
transponders. The non-CPS portion of the traffic is used with the previously-
developed loading factors to get the number of non-CPS transponders.

Composite Transponder Capacities

Figures 2-13 and 2-14 show the time-varying information needed to
convert transmission requirements into active transponders. Figure 2-13 shows the
portion of voice traffic carried through CPS stations; the CPS portion of data is
also shown for comparison. Figure 2-14 shows the capacity of one 36 MHz
transponder in half-voice circuits as a function of time; this curve applies to the
non-CPS portion of the total voice traffic.



lno T L] R T T -

80

60 -

50 .

s0f Bandwidth i
Limited

Earth Station G/T's = -

30

20

6} Power and Bandwidth Limited

Spacing Used

Number of 1.544 Mb/s Carriers Per Transponder
'—J
o

A 1 1
6 8 10 12 14 16 18 20
Required C/N (dB)

Figure 2-12

MULTI-CARRIER CAPACITY FOR A TYPICAL DOMSAT TRANSPONDER




~ { e
: [ _I
vw - ”I_l
(i . ooz
! [ -
! N b odf wedee
i . \1 - oo
| 18 RN
) -‘n“ - fme]  fo—
WM it .\.w
alhs
i Tl i ltl—ll
! ° J
(b 1 . I
il Tin
|
I PG P
_w \/, T
i A~ Tz
i \\;\ - R uw
! - gt 4
. ‘-“‘ ““ i K : i -
. o = B
\ T, AR L
| T ] L
PRIt TETEARARERURRU AU NN o v o 1 14 A A RSN L R T AR R A N R i R A AN R
&) MR R i 1 N Y ARG R AT 00 O O
T} . PN
t ”
1 - oft ]
- js
I
m T 1 -
[ 1 N
| - -]t
4 .
ﬁ -
: “ _ .
i e
O -,
D < o o ‘ol ~
= h P! ) .
(@] o

SdD £q pstaar) 3jusdasd

2060

(o
9]

1380

Yeoor

13

Figure 2-

FRACTION OF TRAFFIC CARRIED BY CPS

-46



S1TNOIT) IT®BH

ut Aatorde)

(@}
e : o
T | AT g
il e , U T ] e
I |
h" ] N ]
_. h
! M - e
m - -+ R
j \ T "
i
i i 1
i \ spnhgNunpE A
i - -t o
|
.m— ] - O
| . (6]
. \- o
il N 1
| ’ I|. L T
il
il NHH
! | —
“ i N -
| I -um T -
u/r P D
-(-u/ ~ ]
HEN A lx/: A
_ ‘ct//
THHNGF N
A
IRANAEN N EREEN
! -1 - AN -]
. : =]
- - . i
w ! REREN ) e
, 4 A - -l ©
1 | R _ g . o ] - R S B
UMY ilis | w2
' —
o o o o o o
o o o o o o
o (@] o o o o
© Te! < o) ™ —

Year

Figure 2-14

NUMBER OF HALF VOICE CIRCUITS

MHz TRANSPONDER

PER 36

(non-CPS traffic)

2-47



2.7 Transponder Requirements Forecasts for Voice

The satellite voice traffic forecasts of Section 2.5, Table 2-16 can now
be integrated with the time-varying transponder capacity for voice appearing in
Section 2.6, Figure 2-14 resulting in an operational transponder requirements
forecast, that is without spare transponders included. Table 2-20 shows the result
of this calculation for both the high and low traffic forecasts.

Table 2-20
Operational Transponder Requirements Forecast - Voice

Year Low High
1980 27 30
1981 24 27
1982 20 23
1983 19 23
1984 20 25
1985 23 31
1986 27 39
1987 32 49
1988 39 64
1989 49 84
1990 59 110
1991 72 144
1992 84 181
1993 100 227
1994 118 280
1995 134 343
1996 153 410
1997 173 479
1998 196 573
1999 222 657
2000 247 753




SECTION 3
DATA TRAFFIC DEMAND FORECAST

3.1 Satellite-Addressable Data Traffic Forecasts

Table 3-1 shows the WU and ITT forecasts for data traffic that is
satellite-addressable. Interpolation was again done by a simple smooth curve. This
is shown in Figure 3-1. Yearly values are shown in Table 3-2. It is interesting that
in this case the ITT forecast is the higher of the pair, in contrast to the voice
traffic forecast.

Table 3-1
WU & ITT Forecasts
Satellite-Addressable Data Traffic
(thousands of megabits per second)

1980 1990 2000
Western Union 0.8 10.8 28.9
ITT 3.2 27.1 103.6
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Table 3-2
Satellite-Addressable Data Traffic
(thousands of Mbps)

Year Low High
1980 0.8 3.2
1981 1.1 4.0
1982 1.5 5.1
1983 2.0 6.4
1984 2.6 8.0
1985 3.4 10.0
1986 4.4 12.5
1987 5.6 15.5
1988 7.1 19.0
1989 8.8 23.0
1990 10.8 27.1
1991 13.0 33.0
1992 15.0 39.0
1993 17.3 46.0
1994 19.1 53.5
1995 21.0 61.5
1996 23.0 70.0
1997 24.5 79.0
1998 26.0 87.0
1999 27.5 94.0
2000 28.9 103.6

3.2 Data Capture by Satellite

According to the distribution of data transmission speeds in the Western
Union study, voiceband* data accounts for 91 percent of the total data traffic.
Thus, even if there were no other mechanisms working, data capture by satellite
should be at least 91 percent of the voice capture. However, the analog nature of
the communications plant (most of it, anyway) in the U.S. more or less ensures that
the economics of data transmission will compare unfavorably with those for voice.
Therefore, even in a competitive environment, we would expect a higher data
capture. This should increase as the data rate increases, with a rather sharp jump
once we leave the realm of voiceband data.

*data rate < 9.6 kbps



At one time, we made the bold statement that data circuits as short as
20 miles could be considered good candidates for satellite carriage, because of
networking considerations. That, however, was before two data communications
developments had begun to look significant: institutional cable (B-cable) and local
area networks. As a result of these (and related technologies) it now seems
unlikely that any data communications within a metropolitan area will be carried
by satellite. However, because these networks have the potential to aggregate
data traffic, thereby lowering the cost of the earth station per kbps, the potential
for inter-city satellite data has actually been increased.

The prime market for satellite capture of data communications will be
the growth portion of the total market. In the early years, this will be the case
because much of the growth will come from new, higher-speed services that were
not economical terrestrially. In later years, the situation will be more stable with
regard to the satellite/terrestrial trade-off, and in general, users of existing
services will have made their decisions. In addition, the gradual digital conversion
of the terrestrial plant will allow terrestrial facilities to remain competitive. This
will be aided by the increasing density of data communications. It is generally
more economical to serve dense routes by terrestrial means (assuming no physical
obstacles) and thinner routes by satellite. This is another reason for focussing
attention on the growth segment, since it is there that innovative services will be
found. Users of innovative services are almost always widely scattered at first,
making them more likely to use satellite facilities.

Of course, there will always be a certain amount of capture of existing
services, for a variety of reasons. However, this will be counterbalanced to some
extent by losses in existing services (for similar but contrary reasons) and by
increasing competitiveness of terrestrial facilities for the growth portion of non-
innovative services. Therefore, given the crude knowledge that we have to work
with, we think that a reasonable approximation to the capture can be derived by
working with the incremental growth portion of the market.



Figure 3-2 shows the approach we have chosen. The lower curve is the
capture fraction versus time for voice traffic. This is taken as the lower limit, and
in the early years of the period, as the actual fraction for data as well. The
uppermost curve shows the average capture fraction computed by assuming capture
of 50 percent of the growth portion of the data traffic. The curve is the average
of that growth figure for ITT and Western Union forecasts. In an environment with
constant growth, this will of course approach 50 percent capture eventually. The
central curve is the capture fraction pattern we have selected. It begins at the
voice capture level, and gradually reaches the growth capture level.

3.3 Busy-Hour Averaging and Peaking

The approach used to determine the effects of busy-hour staggering of
the peak voice traffic demand is again repeated for the satellite data traffic. As
previously stated, the satellite facilities should be engineered to handle the normal
busy hour. Unfortunately, no information is readily available which gives the data
traffic profile as a function of the time-of-day. Therefore, we have postulated
that the data has a profile similar to that of OQutward WATS (Figure 2-8).

Table 3-3 displays the high and low satellite data traffic forecasts. In
order to proceed with the staggered busy-hour analysis, the peak factors included
by WU and ITT were removed. For the low scenario (WU), peak factors of 1.91,
1.73 and 1.58 were used for the years 1980, 1990 and 2000. ITT, on the other hand,
used peak values, of 1.40, 2.00 and 3.91 for the same years. The year-by-year peak
factors were then obtained by interpolating between the above values.

With the removal of the contractors' peak factors, the analysis could
then proceed. Table 3-4 shows the forecast of satellite data traffiec, adjusted to
include the effects of busy-hour staggering.
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Table 3-3
Satellite Data Traffic Forecast

(thousands of Mbps)

Year Low High
1980 0.16 0.64
1981 0.17 0.62
1982 0.18 0.61
1983 0.22 0.70
1984 0.32 0.98
1985 0.53 1.6
1986 0.88 2.5
1987 1. 3.8
1988 2.0 5.4
1989 2.9 7.5
1990 4.0 10
1991 5.3 13
1992 6.3 17
1993 7.8 21
1994 8.9 25
1995 10 29
1996 11 34
1997 12 38
1998 13 43
1999 13 46
2000 14 51




Table 3-4
Satellite Data Traffic Forecast
Adjusted to Include Effects of Busy-Hour Staggering

(Gbps)

Year Low High
1980 0.21 1.2
1981 0.23 1.1
1982 0.25 1.0
1983 0.30 1.1
1984 0.45 1.5
1985 0.75 2.4
1986 1.2 3.6
1987 2.0 5.3
1988 2.9 7.3
1989 4.2 10
1990 5.9 13
1991 7.8 16
1992 9.7 18
1993 12 21
1994 13 23
1995 15 25
1996 17 27
1997 19 29
1998 20 31
1999 22 32
2000 23 33




3.4 Grade of Service Calculation for Data Transmission

These calculations are more problematical than those for voice. After
all, there's just one size of voice circuit - it's either there or it's not - but data
circuits come in an almost continuous range of sizes. Therefore, defining grade-of-
service requirements is much more complex, unless one simply decides on a basic
channel size and uses that. This is essentially what we have done, taking the
lowest level of data transmission considered in the forecasts, 2.4 kbps, as the
circuit rate, assuming bidirectionality.

We performed calculations for data that are essentially identical to
those for voice. To reflect the deferrability of some data, a grade of service of
five percent was used.

The circuit loading in these cases was essentially 100 percent. This
reflects the large number of circuits under consideration and the reduced grade of
service. Since data traffic is very amenable to efficient handling, this should be

close to a realistic appraisal.

3.5 Transponder Capacity for Data

Data can be carried either in analog form on voice channels or in digital
form over digital channels. While a great portion of the data traffic is voiceband
as far as bit rate goes, this doesn't mean that it would be carried in analog form.
For simplicity, and since we expect that eventually this will be the case, we have
assumed that all data traffic is carried in digital form. There are several
arguments in favor of this. First, connection to a digital channel is far less
complex for the user, since channel conditioning, adaptive modems, and other
devices for adapting the analog circuit to digital transmission are eliminated.
Second, the presence of data in analog voice groups disrupts the statistics of the
baseband, and renders the use of companders less effective (because the noise
reduction from companding is subjective) thus reducing the capacity of a tran-
sponder in this mixed mode. Third, data carried by voice channels does not lend
itself well to conversion to digital form using delta modulation, or other voice
digitizing systems except 8 bit PCM. Thus, data channels cannot be mixed
indiseriminantly with voice carried by this means, unless some additional measures
are taken to demodulate the data and send it in digital form.
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We are postulating three forms of digital access to a satellite trans-
ponder: large, single-carrier TDM or TDMA at speeds from 40 Mbps to 90 Mbps;
multiple-carrier 1.544 Mbps access using large stations, for a transponder capacity
of about 49 Mbps; multiple-carrier TDMA access using small, CPS stations at 3.088
Mbps for a total transponder capacity of 24.7 Mbps. The portion of data traffic
designated as CPS by the traffic forecasts will be assumed to be carried at 24.7
Mbps per transponder. Ten percent of the remaining traffic will be assumed to be
carried at 49 Mbps per transponder in multi-carrier mode. The rest of the traffic
will be carried at 49 Mbps in 1980, 60 Mbps in 1990, and 90 Mbps in 2000. These
figures are intended to reflect a mix of various transmission speeds. For example,
the SBS transmit rate of 48 Mbps is equivalent to a rate of 40 Mbps through a 36
MHz transponder. By 1990, there will be some rates lower than 60 Mbps and some
higher. These transmit rates are reflected in Table 3-5 which also contains the
composite rates.

Table 3-5
Data Rates Per Transponder (36 MHz)

1980 1990 2000

Portion at CPS rate of 24.7 Mbps

Western Union 98.7% 97.2% 95.2%

ITT 15.6% 17.7% 18.9%
Portion at 49 Mbps

Western Union 0.13% 0.28% 0.48%

ITT 8.4 % 8.3 % 8.1 %
Portion at varying rate

Rate 49 Mbps 60 Mbps 90 Mbps

Western Union 1.17% 2.5% 4.3%

ITT 76% 74% 73%
Composite Rate

Western Union 24.9 Mbps 25.1 Mbps 25.6 Mbps

ITT 42.5 Mbps 47.2 Mbps 57.4 Mbps

-i0



Composite Transponder Capacities

Figure 3-3 shows the capacity of a 36 MHz transponder in megabits per
second as a function of time for both data and videoconferencing traffic.
Different curves are shown for the high and low forecasts, since the fraction of
traffic carried by CPS is different for both systems.

3.6 Transponder Requirements Forecast for Data

Table 3-6 shows the operational transponder requirements for both the
high and low forecasts. On first inspection it may appear as if the data forecasts
have been inadvertantly reversed high for low. This oddity came about because of
the high proportion of CPS data that WU assumed in their forecasts and the
resulting low capacity per transponder. In our further calculations, we treat them
as shown in Table 3-6.

Table 3-6
Operational Transponder Requirements Forecast - Data

High
Year Low (ITT) (Western Union)
1980 27 8
1981 25 9
1982 24 10
1983 ' 26 12
1984 35 18
1985 53 30
1986 80 49
1987 116 78
1988 157 115
1989 213 168
1990 270 229
1991 322 304
1992 367 376
1993 411 457
1994 449 522
1995 484 590
1996 520 668
1997 547 723
1998 556 777
1999 561 835
2000 572 889
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SECTION 4
VIDEOCONFERENCING DEMAND FORECAST

4.1 Satellite~Addressable Videoconferencing Demand Forecasts

The ITT and WU forecasts for video conferencing are presented in
considerably different forms. In order to produce a set of comparable forecasts,
we've converted both to half-circuits of video. Specific procedures are as follows.

The ITT forecast is given in bits per second, and the transmit rate
requirement for the three target years is also given. To model the transition
between the 1980 figure of 42 Mbps per half-circuits, and the 1990 (and beyond)
value of 1.15 Mbps, we chose a curve of constant rate of reduction, over 10 years,
which works out to about 30 percent per year. This is shown in Table 4-1. The
resulting forecast in half-circuits is shown in Table 4-2. '

The Western Union forecast, as given, involves both so-called "limited
motion" conferencing and "full motion" conferencing. We have chosen to lump the
full motion portion together with the broadeast video forecast, because the degree
of compression involved is much lower than that of the limited motion. Thus, the
videoconferencing forecast here includes only limited motion, which we take to
mean the typical compressed video at approximately T-1 rates or similar.

Western Union presents their forecast in transponders, and states that
one transponder will accommodate an average of 12, 24, or 36 half-circuits in 1980,
1990, and 2000 respectively. These figures are averages of both CPS and trunking
traffic, which are carried at different bit rates per transponder. The forecast for
1980 is zero for both CPS and trunking, so the only years of interest are 1990 and
2000. In these, the CPS transponder rate is 52.5 Mbps and the trunking rate is 90
Mbps. Assuming the same rate per half-circuit in both systems, the number of
half-circuits in a CPS transponder is 14 in 1990 and 22 in 2000; corresponding



figures for trunking transponders are 25 and 37. These don't represent very
aggressive compression factors. The year 2000 rate is about 2.43 Mbps per half-

cirecuit.

Using these figures, we transformed the forecasts from transponders to
half-circuits for 1980, 1990, and 2000. These numbers were then plotted and a
smooth curve drawn to interpolate the annual figures. The curves for CPS and non-
CPS are shown in Figures 4-1 and 4-2. The annual figures are also shown in Table
4-3.

Table 4-1
Transmit Rate Requirements Per

Videoconferencing Half-Circuit — ITT

Transmit Rate

Year (Mbps)
1980 42
1981 29
1982 20.5
1983 14.3
1984 10.0
1985 7.0
1986 4.9
1987 3.4
1988 2.4
1889 1.6
1990 1.158
1991 1.158
1992 1.158
1993 1.158
1994 1.158
1995 1.158
1996 1.158
1997 1.158
1998 1.158
1999 1.158
2000 1.158
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Table 4-2
ITT Forecast Satellite-Addressable
Videoconferencing — Traffic
(Half-Circuits)

Traffie,
Year Half-Circuits
1980 9
1981 15
1982 25
1983 42
1984 71
1985 120
1986 200
1987 338
1988 562
1889 994
1990 1,614
1991 1,848
1992 2,116
1993 2,426
1994 2,781
1995 3,187
1996 3,644
1997 4,180
1998 4,784
1999 5,484
2000 6,278




Table 4-3

WU Forecast Satellite-Addressable

Videoconferencing Traffic

(Half-Circuits)

Year CPS Trunking
1980 0 0
1981 4 10
1982 9 50
1983 14 125
1984 19 240
1985 25 375
1986 31 560
1987 39 800
1988 48 1,100
1989 58 1,500
1990 70 2,015
1991 87 2,575
1992 107 3,125
1993 128 3,875
1994 153 4,225
1995 182 4,775
1996 214 5,325
1997 250 5,875
1998 288 6,425
1999 326 6,975
2000 365 7,529

4.2 Satellite Capture of Videoconferencing

AT&T's original videoconferencing system, PMS, was an analog system
which used terrestrial transmission exclusively. The video distribution channels
employed were the same type as those used for network television distribution.
Thus, there was essentially no satellite teleconferencing of the sort forecast here
before about 1982. At that time, we estimate that there was some small amount

of conferencing on SBS and other satellites.



The new PMS will be handled by a mix of satellite and terrestrial
facilities. Under the divestiture, the equipment and room facilities will be handled
by American Bell, and the transmission by AT&T Interexchange Services (ATTIX).
Upon inquiry, they were not able to specify what fraction of the traffic they
expected to be carried by satellite. However, AT&T has filed before the FCC
stating that up to five transponders would be used for video teleconferencing.
These are to be accessed by multiple T-1 (1.544 Mbps) carriers and would provide
12 half-circuits for videoconferencing in each transponder. No indication is

available about when this capacity would be needed.

Meanwhile, ISACOMM (United Telecom) and American Satellite are
offering teleconferencing at 1.544 Mbps each way. Some SBS users have their own
in-house systems. It is very difficult to determine how many circuits are involved.
For this reason, we have not been able to use present activity to pin down the

videoconferencing satellite capture with any certainty.

We have chosen to postulate a relatively arbitrary videoconferencing
capture, based on our own judgment. There are only a limited number of
terrestrial T-1 lines available now, and the larger optical fiber systems will not
have significant capacity on line until the late 1980's or later. Therefore, given the
substantial growth of videoconferencing forecast by Western Union and ITT (and
remember, we (FSI) have those forecasts as given) there is simply no alternative
but to accommodate much of it by satellite.

Our estimate is that between 1990 and 2000, 90 percent of the
videoconferencing will be carried by satellite. In making the transition between
the zero capture situation in 1980 and 1981, we chose a simple straight line growth,
reaching 90 percent in 1990. The estimated satellite capture of satellite-
addressable video teleconferencing is shown in Table 4-4.



Table 4-4
Satellite Capture of

Satellite-Addressable Videoconferencing

Capture
Year Percent
1980 0
1981 0
1982 10
1983 20
1984 30
1985 40
1986 50
1987 60
1988 70
1889 80
1990 90
1991 90
1992 90
1993 90
1994 90
1995 90
1996 90
1997 90
1998 90
1999 90
2000 90

4.3 Busy-Hour Averaging and Peaking

As we see it, videoconferencing systems will remain in the business
sector throughout the remainder of the century, with very little, if any,
penetration into the residential seetor. As such, videoconferencing systems will be
used in the same manner as the business telephone, with the majority of usage
occurring between the hours of 8 a.m. and 6 p.m.



Assuming this to be the case, the Outwards WATS usage profile (Figure
2-8) was employed and applied to ITT's and Western Union's satellite
videoconferencing forecast of Table 4-5. Peak factors ranging from 2.5 in 1980,
decreasing to 1.0 in the year 2000 were incorporated into Western Union's high
forecast. A peak factor of 2.66 was used in ITT's low forecast. Table 4-6 shows
the forecast of satellite videoconferencing adjusted to include the effects of busy-
hour staggering.

Table 4-5
Satellite Videoconferencing Traffic Forecast
(Half-Circuits)

Low High
Year (ITT) (Western Union)

1980 0 0
1981 0 0
1982 3 6
1983 8 28
1984 21 78
1985 48 160
1986 100 300
1987 200 500
1988 390 800
1989 800 1,200
1990 1,500 1,900
1991 1,700 2,400
1992 1,900 2,900
1993 2,200 3,400
1994 2,500 3,900
1995 2,900 4,500
1996 3,300 5,000
1997 , 3,800 5,500
1998 4,300 6,000
1999 4,900 6,600
2000 5,700 7,100




Table 4-6
Satellite Videoconferencing Traffic Forecast

Adjusted to Include Effects of Busy-Hour Staggering
(Half-Circuits)

Low High
Year (ITT) (Western Union)
1980 0 0
1981 0 0
1982 2 (f
1983 8 33
1984 20 99
1985 46 220
1986 96 430
1987 190 800
1988 380 1,400
1989 760 2,400
1990 1,400 3,900
1991 1,600 5,100
1992 1,800 6,300
1993 2,100 7,500
1994 2,400 8,800
1995 2,800 10,000
1996 3,200 12,000
1997 3,600 13,500
1998 4,100 14,000
1999 4,700 16,000
2000° 5,400 18,000
4.4 Grade-of-Service for Video Teleconferencing

The situation for videoconferencing is even more confused than that for
data. Not only is there a mix of circuit sizes, but also complicatings is the fact
that most videoconferences are pre-arranged by schedule right now. During the
early years, when the circuit is a high-capacity one-full transponder video, for
example—more advance scheduling is in use. The low demand for relatively large
circuits tends to load the system poorly for a good grade-of-service, while the
scheduling and queueing tends to improve things. The reverse will be the case in



the future, with more-or-less random access to much lower capacity channels and

virtually no scheduling of transmission facilities* will make the situation more like

voice traffic.

The computations are then essentially the same as for voice and data.

Results are shown in Table 4-7. To allow for some scheduling, the grade-of-service

was changed to 0.20.

Table 4-7

Grade-of-Service Results for Videoconferencing

(Half-Circuits)

Year
1990 2000
Low High Low High

TOTAL TRAFFIC 1,400 3,900 5,400 18,000
10 SMSAs: Traffic 590 1,700 2,300 7,700

Capacity 630 1,800 2,500 7,800

Efficiency 94% 949% 92% 99%
20 SMSAs: Traffie 450 1,300 1,800 5,800

Capacity 540 1,400 1,900 6,100

Efficiency 83% 93% 95% 95%
97 SMSAs: Traffic 350 980 1,400 4,500

Capacity 620 1,300 1,700 4,700

Efficiency 56% 759% 82% 969%
TOTAL: Capacity 1,790 4,500 6,100 18,600

Efficiency 78% 87% 89% 97%

*Note that videoconferencing will probably still be scheduled, but only with the

other parties, not with the carrier.



4.5 Transponder Capacity for Videoconferencing

We developed the transponder capacity for videoconferencing in the

same way as that for data, assuming all digital transmission. The division of non-

CPS transponder utilization was kept the same'as for data as well. Table 4-8 shows

the results of this development.

Table 4-8
Videoconferencing Rates Per Transponder (36 MHz)

1980 1990 2000

Portion at CPS rate of 24.7 Mbps

Western Union 0% 18% 23%

ITT 5% 119% 10%
Portion at 49 Mbps

Western Union 10% 8% 8%

ITT 9% 9% 9%
Portion at varying rate

Rate 49 Mbps 60 Mbps 90 Mbps

Western Union 90% 749% 69%

ITT 86% 80% 81%
Composite Rate )

Western Union 48 Mbps 47 Mbps 53.7 Mbps

ITT . 46.5 Mbps 51 Mbps 67.2 Mbps




4.6 Transponder Requirements Forecast for Videoconferencing

By combining the transponder capacity (Table 4-8), and multiplying the
rate per half-circuit (Table 4-1, plus related figures for Western Union forecast) by
the number of half-circuits of Table 4-9, we get the transponders requirements
shown in Table 4-10. Note that no sparing is included at this point. That the two
forecasts should come out so nearly equal is attributable to the differing half-

circuit capacity require ments.

Table 4-9
Net Videoconferencing Satellite Traffic
(Half-Circuits)

Low High
Year (ITT) (Western Union)
1980 0 0
1981 0 0
1982 23 51
1983 56 137
1984 100 274
1985 169 457
1986 269 727
1987 424 1,156
1988 662 1,781
1989 1,122 2,807
1990 1,796 4,431
1991 2,014 5,664
1992 2,264 6,900
1993 2,541 8,203
1994 2,860 9,539
1995 3,216 10,917
1996 3,634 12,230
1997 4,115 13,824
1998 4,651 15,379
1999 5,301 16,981
2000 6,021 18,634




Table 4-10
Forecast of Net Transponder

Requirements for Videoconferencing

Low High
Year (ITT) (Western Union)

1980 0 0
1981 0 0
1982 3 22
1983 6 41
1984 11 58
1985 17 66
1986 26 73
1987 38 80
1988 56 85
1989 90 93
1990 138 101
1991 147 126
1992 156 149
1993 166 174
1994 177 197
1995 189 219
1996 201 240
1997 215 262
1998 230 283
1999 249 303

269 322

2000




SECTION 5
BROADCAST VIDEO DEMAND FORECAST

5.1 Satellite-Addressable Broadcast Video Demand Forecasts

Broadcast video is at present a large user of satellite facilities. The
standard transmission technique places a single video signal plus associated audio
material in one 36 MHz transponder. Several compression devices are available
which in effect multiplex two or three video signals into one transponder. As
implemented for entertainment broadcasting, these are analog methods and all
involve either a loss of resolution or a reduction in the total FM advantage for the
multi-signal transmission. Digital compression hardware is also in use, which
allows the reduction of broadcast-quality video to about 22 Mbps. Further
improvements in digital compression are expected.

Because of a difference between the WU and ITT assumptions for
compression factors, and because we may treat the reduction of video bandwidth
requirements in a slightly different manner, we are showing the forecasts in terms
of video program channels, with no compression included. The WU and ITT figures
are shown in Table 5-1. The projections are plotted in Figure 5-1, and annual
values are in Table 5-2.

We have included in the forecast for broadcast video the essentially
uncompressed portion of the Western Union videoconferencing traffic. This
component of videoconferencing is significantly different from the highly-
compressed portion, and is in fact more akin to the broadcast video. Much of it is
one-way, similar to current use of satellites for teleseminars. Requirements are
generally more stringent than those for the highly-compressed videoconferencing.
Since a large audience is usually involved, large-screen TVs are used. Motion
handling and the absence of quantization effects are generally more important than
transmission cost in this type of conference.



Table 5-1

WU & ITT Forecasts of

Satellite-Addressable Broadcast Video

(channels of video)

1980 1990 2000
Western Union:
Entertainment Video 58.2 116.9 221.2
Wideband Videoconferencing 5.2 261.8 221.4
WU Total 63.4 428.7 442.6
ITT Total 54 300 726
Table 5-2

Satellite-Addressable Broadcast Video

(channels of video and audio)

Year Low High
1980 63 54
1981 115 75
1982 165 100
1983 155 127
1984 220 120
1985 265 140
1986 308 165
1987 343 190
1988 395 243
1989 412 270
1990 429 300
1991 433 330
1992 439 363
1993 440 400
1994 440 437
1995 441 480
1996 442 525
1997 442 573
1998 442 620
1999 442 670
2000 442 726
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Capture of Broadcast Video

Inasmuch as satellites are ideally suited to broadecast applications, and
the major networks have all commenced transferring their program distribution to
satellites, we have assumed that 100 percent of the broadcasts are transmitted by
satellite.

Time-Zone Effects

The effect of service to different time zones is to increase the number
of video channels required, because the same programming will be repeated at
later times to accommodate the later audience. This is especially true for the
networks and larger cable programmers, since they are more interested in catering
to their large audiences and less interested in distribution costs. Smaller
programmers, including religious and public-interest groups, are operating on
smaller budgets and tend to transmit on a take-it-or-leave-it basis.

We have assumed that the overall requirements, including provisions for
additional channels to serve the time zones, were incorporated in the forecasts
made by WU and ITT. Therefore, we have made no separate calculation of these
effects on broadecast video.

Transponder Capacity for Broadeast Video

Broadcast video is now transmitted primarily using a single 36 MHz
transponder per video channel, although several techniques are available for
multiplexing two video signals per carrier. The 36 MHz bandwidth is excessive, and
high—-quality performance can be obtained using 24 MHz or 27 MHz. Some
examples derived from studies for DBS are shown in Table 5-3 and Figure 5-2.
Compression techniques which alternate lines from two pictures, restoring the
missing lines by interpolation at the receiving end, can be used with reduced
bandwidth at no penalty. However, systems which frequency-multiplex the two
video signals and use the resulting baseband to modulate a single carrier would
suffer a reduction in FM advantage as a result of the reduced bandwidth and could
not be used without penalty.



Table 5-3
Examples of Picture Quality Rating

Radio-Frequency Signal-to-Noise
Ratio for the Percentage of
Grade Viewers Indicated (dB) (1)

50% 75%

1.5 half-way between

excellent and fine 39.5 42.5
2 fine 35.2 38.2
3 passable 30.0 33.0
4 marginal 25.6 28.6
5 inferior 20.4 23.4

(1) Radio-frequency r.m.s. signal during sync. peaks, no
weighting, over 6 MHz gand, amplitude-modulation
vestigial-sideband.

Digital video compression systems are also available now. More
elaborate digital compression may be developed if and when high-definition TV is
offered commercially. HDTV would have some effect on the demand for video
transponders, however, and we haven't considered this in depth in this study, so it
seems somewhat unfair to assume that advanced compression spinoffs from HDTV
would be available.

Our feeling is that compression and multiplexing will be of interest
primarily for teleconferencing and for CATV operators whose programming doesn't
generate substantial revenue. For example, religious broadcasters, with some
notable exceptions, are hardly getting rich from their video ministries, and would
be receptive to a reduction in space segment costs. Other small programmers and
narrowcasters would also be candidates. However, for the networks and the larger
CATYV programmers, such as HBO, whose fare consists of first-run movies, sporting
events and high—quality, broad-based specials, find that transmission costs are a



C/No (dB)

102

100

80

—— VIDEO ONLY
— — VIDEO + SOUND AT 6.8 MHz

.
\\\ -
~ ~N

ST

N —_— -

FM THRESHOLD

C/N=9dB .

j
| | | 1 | |
12 18 20 24 20 32 36 40
RF BANDWIDTH (MHz)
Figure 5-2

REQUIRED C/No VERSUS VIDEO S/N AND RF BANDWIDTH (SYSTEM M)



small fraction of their operating budgets. Their first concern (and this is especially
so for the networks) is reliable, very-high quality transmission with flexibility. To
the extent that any reduction in picture quality is inherent in video compression,
these programmers will be very reluctant to use it. However, we think that a
bandwidth reduction to 27 MHz would be acceptable to these programmers, and
this is an effective compression of 1.33. This would apply to about 20 percent of
video traffic. Based on the estimates of the contractors, we expect the remaining
80 percent to have a compression factor of 3.0 by the year 2000. Figure 5-3 shows
the estimated number of video signals per 36 MHz transponder.
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5.2 Broadcast Video Transponder Requirements

Using Table 5-2 and Figure 5-3, we have produced a forecast for
transponder requirements. This is shown in Table 5-4. Note that these figures are
net requirements and don't include any spare transponders.

Table 5-4
Broadcast Video Forecast
(transponders)

Year Low High
1980 63 54
1981 105 68
1982 138 83
1983 173 94
1984 195 103
1985 212 114
1986 229 127
1987 231 134
1988 239 147
1989 241 158
1990 241 169
1991 234 178
1992 231 191
1993 223 203
1994 215 213
1995 210 229
1996 203 241
1997 199 258
1998 192 270
1999 188 285
2000 184 303




SECTION 6
SPARING AND REDUNDANCY CONSIDERATIONS

Sparing requirements may be different for different traffic types, and
may also be modified by the existence of low-availability traffic. The philosophy
of sparing versus redundancy is also applicable. As we define it, sparing is the
provision of one or more completely independent transmission facilities which can
be used simultaneously with the primary facilities they back up. Redundancy is
the provision of non-independent facilities, which may comprise less than a full
transmission chain. Consider, for example, two identical satellites. If they are
colocated, the one not in use is redundant, since its transponders cannot be used
independently without shutting down corresponding transponders on the other
spacecraft. If, however, they occupy separate orbital slots, one may be used to
spare the other, since its transponders can be used independently until needed to
replace a failure on the primary. Note that this is consistent with the intention in
this task, since redundant transponders (or satellites) do not increase the gross
spectrum/orbit requirement, while sparing does. The user of a spared transponder
has, for practical purposes, zero risk of a long-term disruption. The user of a non-
spared transponder has a risk equal to the probability of his transponder failing
(including whatever redundancy is supplied on-board the satellite). However, the
user of a preemptible transponder has twice the risk, since a failure of his own or
failure on the pi‘imary spacecraft can put him out of his transponder. These
factors are generally compensated for by price adjustments. However, the
willingness of a certain fraction of the users to accept the increased risk will
affect the gross spectrum/orbit needs. The increased reliability of flight hardware
and the provision of redundancy within the satellite have both reduced the need for
spares, and increased the willingness of customers to aceept the risk.

Redundancy (as defined above) does not increase the need for
spectrum/orbit, but it does affect the satellite design. Therefore, we will not
consider redundancy explicitly in this section. The discussion is deferred until
specific spacecraft are examined.



6.1 Sparing Philosophies

The pioneering communications satellite network, INTELSAT, has
always had a fairly conservative sparing approach. This is in keeping with the
important role of INTELSAT in trans-oceanic communications. Complete spare
satellites are always kept in orbit, although they may be leased for preemptible
traffiec. Since subsequent INTELSAT spacecraft generally incorporate many
features of their predecessors, the concepts involved in traffic management and
outage handling have not changed much over the years. Figure 6-1 shows recent
deployment plans, including spares, and Table 6-1 illustrates the excellent con-
tinuity of service that has resulted.

Table 6-1
System Status Report for October 1982

—— — —— ——— — — - — ———— — — — — — —— . o o}

Average Path Average Space

(System) (1) E.S. (2) Segment (3)

| ] I
1977 |  99.904 | 99.955 |  99.999
1978 : 99.877 ; 99.942 } 99.999
1979 { 99.883 { 99.945 : 99.998
1980 { 99.893 : 99.952 : 99.996
1981 { 99.927 } 99.968 } 99.997
1982 : 99.914 5 99.960 i 99.999
1982 (Sept.) i 99.943 I 99.975 { 99.999

(1) Average continuity of service for circuits computed on

(2)

(3)

"earth station-to-satellite-to-earth station" basis.

an earth station within the INTELSAT system.

Average continuity of service achieved for circuits through

Continuity of service of circuits through satellites within

the INTELSAT system including satellite outages and circuit

downtime which may have resulted from reconfiguration and
other causes.

$-2
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Current philosphies among the domestic operators lean more toward
making the customer responsible for protection, while providing a potential deep
backup in the event of a total failure. This latter is done by means of a ground
spare. This is often a euphemism for a satellite to be launched later, but does

provide fairly rapid response in the event that an entire spacecraft is lost.

Table 6-2 shows the announced plans of some of the domsat operators.
There is a preponderance of ground spares. Note that, although the sparing ratios
of some operators are shown, there is no way to determine how many protected
transponders will be sold, or how many preemptible transponders can be sold.
Therefore, the overall ratio of protected to preemptible pure spare transponders
can only be estimated. RCA's comments below seem to indicate that fewer TV

customers are expected to be happy with preemptible services.

"RCA Americom's largest customer group consists of program suppliers
who are using the SATCOM system for distribution to CATV systems. This is a
service which can be provided economically only by satellites. A rapidly growing
network of receive-only earth stations owned and operating by CATV systems
functions in conjunction with the RCA Americom satellite system to bring
television programming to millions of people each day. There are several thousand
CATV antennas receiving numerous channels of daily programming from pay TV,
independent station, news, sports and religious broadcasters. This compares with

approximately 375 stations at mid-1978."

"In the early years of CATV program distribution, program suppliers
were struggling to establish profitable businesses. Under these circumstances, low
price was often more important than restoration capability, and many customers
were satisfied with or preferred unprotected or even preemptible service. As their
businesses have grown, however, service protection has become increasingly
important. It is expected that all cable program distributors will demand protected
service with the guarantee of restoration in the event of satellite or transponder

failure."

"Since the distribution of CATV programs is a point-to-multipoint
service, all traffic must be restored on a single satellite in the event of satellite
failure. This constraint on service protection is an important and demanding

requirement for this service."



"In general, satellite service to the TV broadcast industry can be
classified in two fashions—full-time versus occasional part-time service, and point-

to-point versus point-to-multipoint service."

"The protection requirements for full-time TV broadcast service are
usually more severe and as demanding as for commercial telephone service.
Satisfactory occasional service on the other hand can be provided on unprotected
or preemptible transponders. The occasional service is offered in short segments
and the probability that preemption will be necessary during these brief periods is

very low."

RCA's tariff provides for protected, unprotected (but not preemptible)
and preemptible levels of service. The charges for these are such that the sum of
the price of a protected transponder and the price of a preemptible transponder is
exactly twice the price of an unprotected transponder. This means that RCA could
lease as many preemptible transponders as protected transponders, thus providing 2
for 1 protection, with no penalty relative to unprotected service.

There is no inherent need to have spare satellites; redundant (that is,
colocated with an operational satellite and turned off) satellites could be used.
However, this is an uneconomical solution for two reasons. First, the identity of '
the "failed" satellite cannot be determined beforehand. A redundant satellite
might be in the wrong place, and valuable time would be lost while it was
repositioned. Sécond, the transponders on the redundant satellite, by definition
could not be used for service until a failure occurred. Since there will continue to
be a market for preemptible services, this is revenue lost to the system operator.
In addition, the technical performance of the spacecraft probably could not be
maintained during a prolonged period with all transponders shut down. Therefore,
there will continue to be a need for sparing.



Table 6-2
Some Sparing Plans

Planned Number

of Satellites
Operator In Orbit Spares
ABC 2 GS
American Satellite 2 GS
AT&T TELSTAR 3or4 1 in-orbit (96 for 72)*
FASSC 2 GS
GTE/GSTAR 2 GS
RCA C-band 5 24 for 18*
Ku-band 3 16 for 12* or 18 for 14*
SBS 5 10 spare transponders
Western Union 6 5 for 4 and 2 for 1
Spacenet 3 6 for 5*
USAT 2 20 for 16*

*Note - preemptible service is offered on backup transponders.

6.2 Estimates of Sparing

Figures are available for the survival probability of a given number of

transponders on several current or planned spacecraft. These are shown in Table

6-3. Using these figures, standard statistical formulas and estimates of the

required continuity of service and availability, we can compute the needed sparing

levels. These calculations were made as follows:



Table 6-3
Satellite Reliability Estimates

Time, Transponder
Satellite Years Redundancy Survival Probability
SATCOM 1 7 R 24/24 0.05
7 20/24 0.637
7 16/24 0.739
10 20/24 0.392
SATCOM IR 8 T, R 24/24 0.765
8 20/24 0.814
10 24/24 0.691
10 20/24 0.760
RCA Ku 7 T, R 16/16 0.6472
7 12/16 0.8577
10 16/16 0.3909
10 12/16 0.7571
Hughes Galaxy 7 T, R 20/24 0.78
8.5 20/24 0.67
GSTAR 7 T, R 13/16 0.68
10 13/16 0.61

The probability of a transponder failing at any time was approximated
using the manufgcturers' data on transponder survival. Various kinds of reconfig-
uration were also considered. When redundant units are still available on the
satellite, reconfiguration was assumed to take two hours. If a spare transponder is
available on the same spacecraft, reconfiguration is assumed to take two hours. If
a spare transponder on another spacecraft must be used to restore service, the
process is assumed to take two hours for high-volume trunking stations with
autotrack antennas, such as C-band antennas of ten meters diameter or larger; two
hours for high priority services such as network TV distribution, whether tracking
or fixed antennas are used; and 48 hours for all other systems, which are assumed
to employ fixed-pointing (non-tracking) antennas.



A reasonable estimate is that there is about a one to two percent
chance that a given satellite transponder will fail in any given year. The failure
might arise from equipment specific to that transponder or from equipment
common to several transponders. If redundant items are provided, then the failure
can be alleviated within a short time. However, as the satellite ages, it becomes
more likely that any redundant equipment will already have been used to replace
failed items, and thus that an outage will have to be restored in some other

manner.

Tables 6-3 and 6-4 can be used to make rough estimates of the
probability that some failures (and subsequent restoration if possible) will occur
over a seven-year satellite lifetime. Table 6-5 shows the overall reliability
associated with various protection arrangements. These figures were used as
guidelines when sorting traffic among the various protection arrangements.

Table 6-4
Seven-Year Reliability of

Several Redundancey Arrangements

Number Reliability
Redundancy Operational t=7yr.
None 24 0.05
5 for 4 4 0.89
5 for 3 3 0.986
7 for 6 6 . 0.805
7 for 5 5 0.960
None 1 0.882




Table 6-5
Overall Reliability for Various Protection Scheme

(percent)
Net

Primary Sparing 7-Year
Redundancy Ratio Reliability
None 72/48 99.89
5/4 2/1 99.99
5/4 72/48 99.99
7/6 24/20 97.2
7/6 72/48 99.98
5/4 96/72 99.2

In order to divide up the traffic categories, we used the forecasts for
CPS addressable traffic and common-carrier traffic. This enabled us to identify
traffic that could use either no sparing or a less-convenient form of sparing. Table
6-6 shows the division of the traffic into these categories.

We assumed that traffic requiring no protection could be carried in
spare or preemptible transponders. This reduces the gross transponder requirement
slightly. Table 6-7 shows the factors by which each component of net traffic must
be multiplied to obtain the gross requirement, accounting only for sparing.



Table 6-6
Year 2000 Traffic Segregation into Sparing Categories

(percent of traffic)

Traffic Type

Broadcast Video
Sparing Voice Data Video Conferencing
Preemptible 7 6 30 20
Different Satellites
96 for 72 93 94 50 80
2 for 1 - - 20 -

Table 6-7
Transponder Multipliers for Sparing

Broadcast Video
Voice Data Video Conferencing
1.24 1.25 1.07 1.07
6.3 Gross Transponder Requirements

To derive the gross requirements for in-orbit transponders, we have
applied the sparing ratios of Table 6-7 to the net forecasts shown earlier. Both net
and gross are shown for clarity, in Tables 6-8 through 6-11.
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SECTION 7
EARTH STATION CAPACITY REQUIREMENTS FORECAST

71 Geographical Distribution of Requirements

Table 7-1 summarizes the communications requirements for voice,
video and data for the years 1980, 1990 and 2000. Incorporating these results
together with the geographical distribution of population, which we assumed was an
adequate approximation for traffic distribution determination, results in a forecast
of communications traffie throughput and its distribution across the contigous
United States.

Tables 7-2 through 7-4 present the low forecast regional requirements
for voice, video and data for the years 1980, 1990 and 2000. Tables 7-5 through 7-7
present the high forecast requirements. A detailed breakdown of the states by
region is given in Figure 7-1.

Table 7-1
Satellite Communications Requirements

Voice Data Videoconferencing
(half-voice circuits) (Mbps) (half-circuits)
Low 1980 40,300 160 0
1990 220,000 4,000 1,796
2000 1,290,000 14,000 6,021
High 1980 40,300 640 0
1990 302,000 10,000 4,431
2000 2,580,000 51,000 18,634
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Table 7-2 (continued)
Geographical Distribution of Traffic (2000)
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Table
Geographical Distribution of Traffic (1990)
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(continued)
Geographical Distribution of Traffie (1990)
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Table
Geographical Distribution of Traffie (2000)
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Geographical Distribution of Traffic (1980)
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Geographical Distribution of Traffie (1990)
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Geographical Distribution of Traffic (1990)
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SECTION 8
COMPARISON OF SUPPLY AND DEMAND
BASED ON KNOWN PLANS

This section uses the known plans of satellite operators and would-be
operators to produce an estimate of the available capacity at C-band and Ku-band
for the next few years. This is compared with the traffic forecasts to provide an
indication of the need for additional satellites or for increased capacity per
satellite.

An important consideration is the availability of orbital slots at the
desired frequency band or bands. We have recently seen what a great effect such a
limitation can have on the plans of would-be system operators. Depending on the
needs of the customer base to be addressed, there may be one band which is more
desirable than others; however, if slot is not available, then the operator will be
out of luck.

Tables 8-1 and 8-2 illustrate some factors of future availability of
orbital locations. In Table 8-1 the longitude limits which we used in this study are
shown together with the number of slots available at two degree spacing at each
frequency band. Table 8-2 shows the assigned orbital locations for satellites whose
launch has been approved. In addition to those shown in Table 8-2, there are a
number of as-yet unapproved satellites which have not been assigned orbital
locations; these are noted in Table 8-3. Clearly, the central portion of the U.S.
coverage arc is more valuable than the outer edges, primarily because it affords
the earth station a high elevation angle. This is not especially significant at C-
band, but is a definite factor in marketability at Ku-band and certainly at 30/20
GHz.



Table 8-1

Orbital Arc
Number Orbital
Band of Slots Range
6/4 35% 59° - 101°
119° - 143°
14/12 34 59° - 105°
120° - 139°
30/20 23 75° - 119°

*Based on 1983 assignments, these are actually only 30
slots. The 35 figure assumes all 2° spacing.



Table 8-1
1983 Orbital Assignments

Orbital Slot (W.L)/ Satellite
Frequency Band(s) User
143 (4/6 GHz) Satcom V
141 (4/6 GHz) Unassigned
139 (4/6 GHz) Satcom I-R
137 (4/6 GHz) Unassigned
134 (4/6 GHz) Galaxy I
132 (12/14 GHz) Rainbow
131 (4/6 GHz) Satcom TI-R
130 (12/14 GHz) ABCI
128 (4/6 & 12/14 GHz) Amsat
126 (4/6 & 12/14 GHz) RCA
125 (4/6 GHz) Telstar/Comstar
124 (12/14 GHz) SBS
122 (4/6 & 12/14 GHz) Spacenet
120 (12/14 GHz) USSSI
119.5 (4/6 GHz) Westar V
117.5 (12/14 GHz) Canada
116.5  (4/6 & 12/14 GHz) Mexico
113.5 (4/6 & 12/14 GHz) Mexico
112.5 (12/14 GHz) Canada
111.5 (4/6 GHz) Canada
110 (12/14 GHz) Canada
108 (4/6 GHz) Canada
107.5 (12/14 GHz) Canada
105 (12/14 GHz) Gstar
104.5 (4/6 GHz) Canada
103 (12/14 GHz) Gstar
101 - (4/6 & 12/14 GHz) Unassig_ged
99 (12/14 GHz) SBS
98.5 (4/6 GHz) Westar IV
97 (12/14 GHz) SBS
96 (4/6 GHz) Telstar
95 (12/14 GHz) SBS
93.5 (4/6 GHz) Galaxy II
93 (12/14 GHz) Unassigned
91 (4/6 & 12/14 GHz) Spacenet
89 (12/14 GHz) SBS
88.5 (4/6 GHz) Telstar
87 (12/14 GHz) RCA
86 (4/6 GHz) Westar
85 (12/14 GHz) USSSI
83.5 (4/6 GHz) Sateom IV
83 (12/14 GHz) ABCI




Table 8-1 (continued)

1983 Orbital Assignments-

Orbital Slot (W.L)/ Satellite
Frequency Band(s) User

81 (4/6 & 12/14 GHz) Amsat

79 (12/14 GHz) Rainbow

78.5 (4/6 GHz) Westar

Vil (12/14 GHz) RCA

76 (4/6 GHz) Telstar

75 (12/14 GHz) Unassigned

74 (4/6 GHz) Galaxy

73 (12/14 GHz) Unassigned

72 (4/6 GHz) Sateom

71 (12/14 GHzZ) Unassigned

69 (4/6 & 12/14 GHz) Spacenet

67 (4/6 GH2z) Satcom

Table 8-3
Satellites Not Yet Approved
Capacity
Applicant Each*

Ford Aerospace 54+
GTE 24
Hughes (Ku-band) 24
National Exchange 24
SBS 24
Western Union 24

*Equivalent 36 MHz transponders

+Hybrid



We have calculated the available supply (without launching any as-yet
unannounced satellites) in two ways: first, using only the satellites that have been
approved, and second, using all satellites for which we have information. The
figures also include random failures of transponders, but don't include-relatively
recent events such as the failure of twelve transponders on SATCOM II (which is
almost dead anyway). These projections are shown in Table 8-4, and are plotted in
Figure 8-1 and 8-2, along with the Low and High traffic forecasts respectively.

Table 8-4
Projected Capacity Versus Time

(including random failures)

All Satellites Approved Only
Year C-band Ku-band C-band Ku-band
1980 128 0 128 0
1981 147 12 147 12
1982 203 24 203 24
1983 298 36 298 36
1984 367 96 367 96
1985 486 180 438 156
1986 560 372 512 228
1987 558 612 510 - 371
1988 ) 630 720 534 371
1989 600 708 504 359
1990 600 696 504 347
1991 600 684 504 336
1992 576 672 480 324
1993 432 636 336 288
1994 288 612 192 264
1995 168 540 72 192
1996 120 370 72 48
1997 72 224 24 24
1998 72 104 24
1999 0 0
2000 0 0
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SECTION 9
EFFICIENCY CALCULATIONS FOR
FIXED-BEAM MULTI-BEAM SATELLITES

When we talk about the efficiency of a multi-beam satellite (which
presumably provides connectivity among all beams, although not necessarily
complete CONUS coverage by the beams) we really have to distinguish between
two different measures of efficiency. The first is the efficiency with which the
satellite uses the theoretical capacity of its beam configuration. The second is the

efficiency with which the satellite can be loaded given its actual transponder

configuration. Both of these depend on the traffic distribution among the beams
(which we have approximated by using the population distribution), but in slightly
different ways.

Theoretical Beam Efficiency

Figure 9-1 shows a possible (idealized) multi-beam coverage of the
CONUS. 1If every beam is provided with the same capacity, and we assume
(reasonably) that the traffic originating in any beam is divided among the other
beams according to their population, then the satellite will be unable to carry
additional traffic when the beam carrying the most traffic is saturated. Given the
uneven population distribution of the CONUS, this results in rather poor efficiency
compared with the maximum possible capacity, if traffic were evenly distributed.

In fact, the efficiency under such conditions is given by:

n-= 1

N X Phax

where

Z
i

number of beams

max fraction of traffic (population) carried on most heavily

loaded beam.



Figure 9-1

SPOT BEAM COVERAGE OF CONUS
(Numbers 1, 2 and 3 Indicate Frequency Assignment)



Using this formula, we can calculate the capacity at saturation given
the number of beams and the capacity of each. However, to design a satellite, we
must calculate the number of beams required for a given saturated capacity. In
order to do this, we need further information about the population distribution.
Dealing with the actual, detailed population distribution and physical aspects of the
coverage pattern is unwieldy, and unnecessary as well, since we only require the
population features in the region of densest traffic. We can therefore make some
approximations that will be valid for the range of beam sizes expected (although
they will break down for very large or very small beams).

The New York City area will always produce the densest traffic from
any region in CONUS. The specific thing we need to know is: given the number of
beams and assuming a beam size, what fraction of the total traffic will appear in
the beam centered on New York? We can then solve the equations for efficiency,
and finally invert the relationship to obtain the number of beams needed for a
given capacity. At C-band and Ku-band, we assume that the beams taken together
provide contiguous coverage. At 30/20 GHz, we assume a spot-beam configuration,
starting at 10 beams of about 0.35 degree, and eventually expanding to provide
contiguous coverage at about 135 beams. (Figure 9-2)

For the two lower bands, we proceed as follows:

Based on the N.Y, SMSA population and the population density of the
surrounding area, the population fraction in the New York beam is approximately:

where N = the number of equal-size beams for CONUS coverage

The efficiency, , is given by:

n-= 1 = 1
NP 0.05 N + 3.2




SATELLITE AT 110°W LONGITUDE




The capacity at saturation is then:

CNet= 8 mmn—dgr—s-beeamsxn = — 8N
beam 0.05 N + 3.2

And the number of beams is:

_ 3.2C
N = Net for 24 < CNe

8 - 0.05 CNet

t\< 108

Approximately 108 transponders is the maximum net C-band or Ku-band
capacity with 0.35 degree beams.

At 30/20 GHz, coverage was limited to SMSAs, using 0.35 degree
beams, until the number of beams was 136, which constitutes contiguous coverage.
The minimum network was 10 SMSAs (the largest). This provides net capacities up
to 101 transponders. For an 0.35 degree beam, the N.Y. area population comprises
about 7.15 percent of the United States total; the 10 largest SMSAs comprise about
34.9 percent of the United States. Therefore, the efficiency for the 10-beam
network is:

n = 1 : 349 _ (49
715 7.15 x 10
34.9

Beyond 101 transponders, we have to add beams to increase the
capacity. We've approximated the population of SMSA's smaller than the top 10 by
two linear relationships:

for #11 to #33:

' Pi =1.77 - 0.0309i

for #34 to #65

Pi =1.163 - 0.013i



where
i = rank of SMSA

th svsa

Pi = Percent of total U.S. population for the i

In order to get the fraction of United States population contained in the

1st through ith SMSAs, we integrate the above relationships and add the population
for the top 10 SMSAs:

10 SMSAs:
Pt = 34.9 percent

11 to 33 SMSAs:
0.0309 (i2

Pt = 34,9 + 1,77 (i - 10) - 2 - 100)

34 to 65 SMSAs:

P, =57.8 +1.163 (i - 33) - 9%3 G2 - 1089)

where

Pt = total integrated percent of U.S. population

Since the largest SMSA always contains 7.15 percent, the efficiency for

any number of beams N is:

-3
oy
3]
2

-

At 30/20 GHz, using single polarization and assuming a division of the
band into thirds to accommodate the beam interleaving, each beam could have
about 20.8 equivalent 36 MHz transponders. Using this fact, and the equations
given above, we can solve for N given the desired capacity CN et'*

*Note that a quadratic equation is involved; the smaller root turns out to be the
correct one.



Thus, for

CNetS' 101:
N=10

101< Cyp ¢ 168:

N=  515- 4/ 26.5-018(Cy,, - 54.5)

0.09

168 <Cyy ¢ < 218:

N=  3.39- 4/ 11.5-0.0756 (Cy, - 77.1)

0.0378

for CNet > 218, the same efficiency as that for contiguous coverage is

used, so:

218<C ¢S 282

Ne

3.2 CNet

20.8 - 0.05 CNet

Practical Satellite Efficiency

The efficiency values calculated above tell how effectively the beam
coverage pattemn is used by the traffic distribution pattern. In constructing an
actual satellite, however, we would not necessarily have to provide the maximum
possible capacity per beam, but could use the assumed traffiec distribution to tailor
the satellite to the beam loading. That is, if at saturation a given beam will only
carry 2 transponders, then we only install 2 transponders for that beam. Thus,
although the efficiency with which the beam pattern is used will be low, the
efficiency with which the physical facilities of the satellite are used will be much
higher.



In designing our satellite, we would generally wish to ease the inter-
connection problem by selecting a transponder bandwidth and using it throughout,
although this is not absolutely necessary. Therefore, there will be a mismatch
between the capacity installed and that actually used at saturation. For example,
a particular beam may only require 0.4 transponder at saturation, but we have to
install 1.0 transponder to service it. Since the capacity has to exceed the
requirement (or at least equal it) this error will always be positive, and the

satellite will always be somewhat underutilized.

We have chosen to approximate the error by assuming that all beams
but the most heavily loaded beam have an average error of 0.5 transponder. Thus,
N-1

2 Net’
illustrated (and the entire process summed up) by some examiples. These are shown

in Table 9-1.

we install additional transponders over and above C This can best be

Table 9-1
Satellite Capacity Examples

Efficiency Gross
Band CNet N n Capacity

C or Ku 24 1 100% 24
30/20 24 10 49% 29
C or Ku 36 18 24% 45
30/20 36 10 49% 41
C or Ku 48 27 229 61
30/20 48 10 49% 53
C or Ku 96 96 13% 144
30/20 96 10 49% 101
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SECTION 10
SATELLITE INDUSTRY SCENARIOS

10.1 Introduction

This section explores one possible model for the satellite industry. This
model is traffic-driven, and includes a number of assumptions about the distribu-
tion of traffic among the various frequency bands. Because of these assumptions,
we have run the model using several scenarios, varying the assumed behavior to
show the sensitivity of the results. Virtually all of the scenarios converge to
systems which make use of multiple-spot-beam antennas and/or the 30/20 GHz
band. The specific traffic distributions and satellite constellations don't all
converge, however, and the difference can provide some illustration of the effects
of different constraints.

10.2 Structure of the Model

10.2.1 Traffie-Driven

In trying to progress from a set of traffic forecasts to a set of
development scenarios for the satellite industry, we have to consider a number of
factors. First and foremost is the role that demand — both as perceived by us and
as perceived by the satellite operators — plays in determining the need for
additional capacity. Differences between perceived (anticipated) demand and
actual demand can arise in several ways. There may be an imperfect perception on
the part of the using public about what services are offered and what their
advantages are. There may also be an imperfect marketing effort on the part of
the operator. Competing transmission media may arise during the inevitable delay
between system conception and operation, or the regulatory or economic environ-
ment change in an unexpected way. The result is that the actual traffic carried
may be quite unlike the market projections contained in the FCC filing, both in

type and volume.
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We, however, are working from a set of agreed-upon traffic forecasts,
and therefore will imagine that system planners in our model are working from
these data also. This, then gives us two scenarios to begin with, based on the High
Traffic Forecast and the Low Traffic Forecast of Task 1. We will assume as a
starting point that the system operators (and prospective operators) will attempt to
satisfy this demand insofar as it is possible. This will lead to their planning
satellite launches of sufficient capacity, with adequate lead time, that the

projected demand can be met.

In reality, of course, there are complications. Some system owners will
be using the High forecast to plan, while others will be using the Low (or, for that
matter, any number of values in between). The actual traffic will lie somewhere in
the middle. In addition, there will be delays of uncertain length in obtaining a
license, having satelites constructed, and having them successfully launched. One
might construct two somewhat more extreme scenarios, by assuming that every
thing goes according to schedule in the Low case, and all the delays are
unfavorably large in the High case. However, we have assumed that schedules will
be met on the average, having been formed with possible delays incorporated to

begin with.

10.2.2 Demand Related Factors - Frequency Preferences

There are essentially two ways in which we can assume the traffic is
allocated among- frequency bands. First, we might assume that the frequency
bands will fill from the bottom up; in other words, that C-band will be required by
any and all traffic until there is no more capacity available at C-band, then Ku-
band will be used and after that is filled, higher frequencies. This approach has
some drawbacks. First, it conflicts somewhat with history since the first Ku-band
satellites, those of SBS, were launched long before the C-band orbit was anywhere
near being filled. Second, all other considerations are not equal amongst the
frequency bands. In spite of the poor availability performance of higher frequency
bands for certain types of traffic or for certain types of customers, there may be
compelling reasons to use a higher band. For example, at C-band earth stations
potentially suffer from or interfere with transmissions in the terrestrial microwave
environment. This situation does not exist at the higher frequency bands because

they are not used for terrestrial microwave at this time. Another consideration is

10-2



antenna size. Although the antenna gain and the path loss exactly equal one
another as the frequency is increased, the angular diserimination on an antenna of
a given size increases as frequency is increased thus providing improved interfer-
ence performance at higher frequencies. Thus, for a given satellite spacing, say
two degrees, a smaller antenna can be used at Ku-band and a smaller one still at
30/20 GHz, and the same adjacent satellite performance can be achieved. This is a
real effect and can be very important to some customers, for example, if the earth
station must be unobtrusive, if it must be light-weight, if it must be subject to very
little wind loading.

These considerations lead us into a second matter of considering
division of traffic among the frequency bands and in fact, the second approach is
the one we have decided to use. We make the assumption that there is an a priori
preference for different frequency bands for different kinds of traffie, that this
preference is a freely expressed one, in other words, given that there is adequate
capacity available at any frequency band, there will be a certain preference for
each one depending on the type of traffic and the type of customer. The user will
only depart from his unrestrained choice when there is some restraint such as
unavailability of capacity. Naturally, these choice matrices will change with time
because users will become more familiar with other frequency bands or because
capacity will become available where it was not available before. Since these
preferences are not expecially well known, we have had to make estimates and use
these as input to the model. Some sensitivity runs of the computer model have also
been made in order to determine the degree of effect that these preference
matrices have on the outcome of the scenarios. These preference matrices are
applied in the model to new traffic which arises in each year rather than to the
total traffic data base. Thus, the traffic distribution among the frequency bands in
any given year will be a sum of the effects of all the previous years rather than a
straightforward multiplication of the traffic matrix by the preference matrix. This
is a reasonable approach because users who have chosen one frequency band
previously, either from unrestrained or from restrained choice will have a certain
investment in the use of that frequency band. They may have configured their
system around the use of this band, they may have actually bought equipment that
uses this band, in any event, there will be a relatively small probability of
migration from one band to another.
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Target Capacity

When planning a satellite which will be in service for a number of years
there are two conflicting considerations. First, from a profitability standpoint one
would like to have the satellite as full as possible immediately after launch.
However, if this situation were to prevail it would eventually be necessary to turn
away customers. These customers might in fact go elsewhere for their communi-
cations needs and once having done so, be very difficult to attract again.
Therefore it is always desirable to have some excess capacity provided of course
that this excess is not so much as to make the operation unprofitable. In selecting
a target size for a satellite to be launched we have taken a moderate approach and
assume that a desirable target will be the average capacity per orbital location in
that frequency band which will prevail halfway through the satellites useful life.
This target capacity will of course be limited by other considerations such as
available technology, available satellite busses and available launch vehicles.
Therefore, in the model it is used only as a target and not as an absolute

constraint.

10.2.3 Ground Rules for the Model
The model tries to satisfy traffic demand in several ways, and has a
specified set of actions that can be taken. These are as follows:

The model examines the growth in each of the traffic categories in
each year and allocates this growth among the frequency bands in accordance with
the preference matrix. If capacity exists to accommodate all of the growth in a
particular band then that growth is assumed to be added to the traffic carried and
no additional action is necessary to ensure sufficient capacity for that year. If
however, Fhe capacity in a particular frequency band is filled in that year and the
growth cannot be accommodated, some form of action will be necessary in order to
satisfy the demand. Naturally, our first attempt would be to launch additional
capacity in that frequency band, assuming of course that slots were available. This
launch of additional capacity could take several forms. First, a previously
launched satellite may reach the end of its useful lifetime in that year in which
case it would be replaced by a satellite with increased capacity, thus providing
capacity to accommodate the growth and demand. In general, it appears that

10-4



capacity increases from one generation of satellites to the next are in the range of
0 to 100 percent, that is, that the new satellite either has the same capacity as the
old one or up to twice that capacity based on the operating history and plan of the
satellite system operators we think this is a reasonable range, and in the model
have generally used a capacity increase of 50 percent from one generation to the

next as a working maximum.

Second, if empty slots are available, new satellites are launched. Capacity
will be limited by the technology.

The last alternative is to retire a satellite of lower capacity somewhat
before the end of its life in order to launch a satellite with higher capacity.
Actually, one would not want to do this unless all other alternatives had been
exhausted first.

If no alternatives are available to satisfy the demand at the desired
frequency band, another possibility is the use of an alternative frequency band.
For example, demand for capacity at C-band which cannot be filled might be
satisfied at Ku-band and vice versa. We believe that only in the event that both
lower frequency bands are filled is excess capacity likely to migrate to 30/20 GHz.
This is not to say, however, that there will be no independent demand for 30/20
GHz. Based on the specific features of the satellite systems which might be
available, it is quite reasonable to suppose that there will be applications for this
frequency band even in circumstances where there is capacity available at the
lower frequency bands. For example, use of a very small antenna aperture. can
produce quite good clear sky performance at 30/20 GHz. These might be used in
earth stations which serve applications having a very low availability requirement.
Alternatively, the availability requirements might be relaxed in order to procure
the advantages associated with a very small earth station size. Other users might
be attracted to 30/20 GHz by a considerably reduced space segment cost or
possibly by the availability of a great deal of speetrum which could allow them to
use frequency inefficient modulation techniques which would be prohibitively
expensive at the crowded lower frequency bands. The preference matrices for one
scenario reflect our thinking along these lines, that even given an unrestrained
choice there will be a preference for the use of 30/20 GHz.
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Other Ground Rules

Satellite Replacement: The actual lifetime of a given satellite will be
assumed to equal the mission life, with zero residential capacity. The design life
of satellites launched in later years will increase; this is one of the technology
variables. Satellite transponders will "fail" according to estimates of the overall
spacecraft reliability, including redundancy. This reliability estimate will be
another technology variable. If a satellite has lost more than half of its original
(physical) transponders, it will be considered for replacement when no other slots
are available and additional capacity is needed.

In general, satellites will not be replaced before they are "dead."
However, as a last resort, when additional capacity is needed and no other slots are
available, a satellite can be retired a year early and replaced with a satellite of
higher capacity.

Satellite Capacity: The transponders in each frequency band will be
considered as separate satellites (that is, the program model does not recognize a
hybrid satellite as a physical entity). This may produce some anomalies, but in
general is much more manageable. The maximum capacity that can be launched on
a single new satellite will be a function of time. This is a technology variable
which encompasses several considerations such as antenna design and on-board
switching.

10.2.4 Technology Variables

A number of technology variables limit and define the range of possible
satellite configurations that can be formulated by the model. Most of these are
explicitly contained in the weight/power and cost models that are used. However,
several somewhat arbitrary choices for limiting values were necessary and these
are discussed below.
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Satellite Lifetime

As satellite hardware has been improved and tested by actual use,
spacecraft lifetimes have increased. This trend has been augmented by a more
accurate assessment of the degree of redundancy needed to ensure an adequate life

for components with recognized failure mechanisms.

Failures can arise from several sources. Infant mortality is the failure
of a component which normally has a very long life, but which has some
manufacturing flaw. This failure mode can be eliminated by burn-in testing, and
should not be a problem in general.

Random failures are usually sudden failures of components which have
several possible failure modes. As implied by the name, these failures occur at
unpredictable times and are not visibly the result of progressive wearout
mechanisms. Some of these are caused by imperfect quality control procedures;
others are often of undetectable origin. A certain percentage of such difficulties
can be traced to unforeseen environmental effects. These could be prevented by
more careful systems modelling before construction, in some cases.

Wearout failures generally involve depletion or fatigue of some parts;
examples are battery degradation with cycling and TWT cathode depletion. Some
wearout mechanisms are externally driven, for example the degradation of solar
cell output caused by radiation and solar particles. In most cases, these failures
can be countered by suitable inherent redundancy or overdesign. In addition,
improved components can be used to lengthen the lives of future satellites.

Trends

Reliability of current spacecraft hardware has improved, and the
introduction of devices such as solid-state power amplifiers will increase it further
still. Although the use of new frequency bands is likely to decrease reliability
somewhat for a short while, we expect that the present trend of increasing
satellite lifetimes will continue.
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More sophisticated redundancy schemes have been designed for the
current generation of satellites. These are motivated by the need to squeeze the
maximum performance into the weight and volume constraints of available launch
vehicles such as the Delta 3920. However, these designs will continue to be used
even on spacecraft freed from those particular limitations.

Device improvements will also be available in the non-communications
portions of the satellite. For example, nickel-cadmium batteries have been
supplanted almost entirely by nickel-hydrogen cells in recent designs. These
promise better cycle life and reduced mass for the same capacity. Various
improvements in spacecraft reliability will be achieved by the following means:

Design: More careful design, including overdesign of solar arrays,
increased expendables allowances, new and more extensive redundancy and the

ability to reconfigure the spacecraft to some extent to allow fault recovery;

Fault Analysis: The fault tree method used in other disciplines,
especially those in which safety of operation and safe failure are important, can be
applied to identify various failure modes. Design steps to alleviate or avoid these

modes can then be incorporated.

Command Chain Reliability: The command and control chain is
important not only for day-to-day operation, but also for fault recovery. More
reliable and flexible command systems will not contribute to failures, and will
enable other operational procedures to be used to compensate for certain failures.

Parts Qualification: All components should undergo rigid testing or be
qualified by pedigree. Cleanliness and strict process control are necessary,
especially during assembly and semiconductor metallization. Burn-in of active
devices is desirable, especially new technology devices. When new devices are
used, the redundant item should use different technology or a different configura-
tion to avoid common failure modes.
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In some respects, increasing satellite lifetimes are beneficial. In-
creases in life generally are available (when they are) at relatively small
incremental costs, and the resulting satellite will have a lower cost per trans
ponder-year of service. This can be used to lower charges to users, to increase
profits, or, to a lesser extent, both.

However, at times, satellites may outlive their usefulness. This is more
likely at times when the technology is changing rapidly, such as during the late
1960's and early 1970's. Satellite communications was at that period very new, and
as a.result the available technology grew and improved very quickly. This process
happens all the time, though, since technology is always improving at some rate.

Satellites can become obsolete for other reasons as well. An example
of this can be found in the INTELSAT system and another in the early, 12-
transponder, WESTAR satellites. Traffiec in the INTELSAT Atlantic region has
grown rapidly enough over the years that higher capacity spacecraft were needed
before the present generation had expired. In some cases, of course, residual
capacity on INTELSAT spacecraft has been used to provide service in the more
lightly-loaded Indian Ocean and Pacific areas.

At the time they were launched, the WESTAR I and II satellites, with 12
transponders each, were somewhat less than state-of-the-art, since dual-
polarization operation was already possible. However, at that time it was not at
all clear that a substantial market for domestic satellite use would develop, let
alone the shortage of transponders that occurred during the latter part of these
satellites' lives. It was because of this unexpected market surge that the 12
transponder design became obsolete, albeit still useful for service.

In order to reflect the increasing trends of lifetime, we chose to vary
the projected life as a function of launch date. This was done in the simplest way.
Since by the year 2000 it will certainly be feasible to have a satellite lifetime of 20
years, and by that time if may be operationally desirable as well, we chose that
value for year 2000 launches. A typical lifetime for satellites launched this year is
8.5 years. Between now and 2000, the lifetime varies linearly. This is shown in
Table 10-1.
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Table 10-1
Postulated Satellite Lifetime

Year of Launch
1980 1985 1990 1995 2000

Life (years) 8.0 9.9 13.2 16.6 20.0

Busses and Launch Vehicles

The availability of an existing, developed and proven satellite bus is
also an important consideration when planning the kinds of satellites that will be
launched. An existing bus, particularly one which has supported more than one
generation of satellites is generally less expensive than one which is newly
developed. In addition, the capacity of the primary launch vehicle used for that
bus will probably have been tailored with moderate increases to fit moderate
increases in the size, weight and power of the bus. This vehicle which will most
likely be constructed on a proven base and which will have been used for a number
of satellite launches, will provide a higher reliability during launch than an
alternate vehicle might provide, especially if that alternate vehicle is being mated
to a satellite bus with which it has not been used before. Naturally, the
consideration of available launch facilities enters into the choice of satellite bus.
This is particularly important at this time since there is a wide variety of launch
vehicles potentially available. These are shown in Table 10-2 together with some
of their pertinent characteristics. Launch eapacity in expendable launch vehicles
is generally available in rather large increments. The Shuttle, while having a large
capacity to low earth orbit, will also provide geosynchronous capability incre-
mentally because of the need for a perigee stage. In addition, an existing apogee
kick motor is often used in order to keep the cost down. In some cases, the apogee
motor may be somewhat undersized for the launch vehicle and it will be necessary
to reduce the satellite mass in order to compensate for this. In our model, we have
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assumed that the choice of launch vehicle is based o;ﬂy on the satellite mass and in
general, have used the least expensive alternative for a particular mass range. We
have also assumed that an appropriately-sized apogee motor is available for every
satellite designed. Although this is not always the case, we did not wish to
introduce the additional complication of attempting to choose an apogee motor
from existing designs.

In addition to the considerations mentioned above, each operator will
pef‘ceive a certain risk associated with the use of a frequency band and/or a
satellite technology other than that which he now uses. For prospective operators
the risk is received in relation to applications and user communities with which he
is familiar and which he knows can be supported by existing satellite systems.

Table 10-2
Launch Vehicles

Approximate Cost,

Mass to G.E.O. 1983 Dollars

Vehicle kg (millions)
Delta 3920 620 38
STS/PAM DII 920 25
Ariane 1 970 34
STS/PAM-A 985 40
Ariane 2 - 1,140 43
Atlas/Centaur 1,150 65
Ariane 3 1,380 47
Ariane 4 2,000 82
STS/1US 2,250 125
Titan 34D/TRAN 2,900 100
STS/Centaur 5,400 168
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Capacity Limitations

In order to prevent the model from postulating a single enormous
satellite capable of satisfying the excess demand, but considerably different from
lany others then in orbit, we postulated some reasonable limits on the capacity that
could be launched. These limits increased with time, to accommodate improved
availability of the relevant technology. The primary limiting factor will be a
combination of antenna beamwidth and beam quantity limits, and mass/power
limits (although cluster satellites could alleviate this latter item). We have used
the antenna limitations to drive the capacity model.

As explained in Section 9, the net capability limit of a satellite
configuration depends on the number of beams and the traffic distribution.
Therefore, even in the absence of other constraints, the antenna engineering
provides an upper limit. Table 10-3 shows the selected capacity limits and the
number of beams required.

In this connection, you should note that the variations on the basic
scenarios (for the High Traffic Forecast only) involve limiting the capacity of
satellites at C-band and Ku-band. These lower limits over-ride the limits shown in
Table 10-3.
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Table 10-3
Capacity Limits Versus Year of Launch

Transponders
Net) (Gross) Beams

C-band

1980 - 1987 24 24 1

1988 - 1994 48 62 28

1995 - 2000 72 98 52
Ku-band

1980 - 1987 24 24 1

1988 - 1994 48 62 28

1995 - 2000 72 98 52
30/20 GHz

1980 - 1987 Not Available

1988 - 1991 13 18 10

1992 - 1995 72 M 10

1996 - 2000 150 162 24

Market Considerations of Multi-beam Satellites

A significant component of today's satellite market is transponder sales
and a related component is whole transponder leasing. Both of these forms of
marketing satellite capacity would be affected by the use of multiple beam
antennas for the simple reason that there would no longer be a separable
identifiable transponder on-board the satellite which the owner could sell or lease
as a unit. This lack would necessitate a completely different marketing approach
in selling satellite capacity. To some extent such a different approach has been
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anticipated by the sale and leasing agreements for current satellites such as the
Hughes Communications' Galaxy. While recognizing the desire of the customer to
identify his transponder, these agreements also account for the fact that there are
components which are shared among all the transponders on-board the spacecraft.
Many of these of course are housekeeping functions and need not be mentioned
explicitly in the agreement. However, some of them such as multiplex filters,
waveguide switches, connectors, redundant transponder components and receivers
are an intimate part of the transponder performance and in fact are mentioned
explicitly in the agreements. In such a sale, the buyer takes legal possession of a
fraction of a spacecraft component. This does not seem to have caused any
problems for Hughes and in fact may be perfectly acceptable to the majority of
users even if applied to the entire capacity which they purchase. Of course,
similar considerations would apply to brokering and reselling such as that which is
done by Robert Wold.

10.3 Satellite Weight, Power and Cost Models

Aside from being an obvious input to Task 3 Economic Analysis, the
satellite weight, power and cost models are also used in the performance of the
scenario evaluation. We have attempted to find a minimum cost per transponder in
orbit for each satellite to be launched given the range of capacities within which
we would like it to fall. Thus, the weight, power and cost models are used in an
iterative way in' the evaluation of the scenarios. This section describes these
models and describes some alternative models which we considered but did not use.

Satellite Mass and Power Model

The satellite mass and power model is based on an aggregation of mass
and power information for the spacecraft shown in Table 10-4. These satellites

were broken up into subsections as follows:

Communications antennas
Communications electronics
Attitude control system
reaction control system
Structure
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Thermal control
Electrical harness
TT&C

Electrical power supply

Table 10-4
Satellites Used for Mass/Power Model

INTELSAT v, v

Hughes HS361, HS376, Leasat, 30/20 GHz Concept Spacecraft
RCA SATCOM and Ku-band SATCOM

TDRS

FLT SAT

TRW 30/20 GHz Concept Spacecraft

Ford Aerospace 30/20 GHz Concept Spacecraft

The amount of propellant needed for stationkeeping was also estimated based on
the satellite lifetime. The antenna mass was based on several assumptions. First,
the need for separate receive and transmit antennas and reflectors. Second, the
use of shaped beams which were assumed to be formed by seven feeds each. Of
course, we recognize that many beams would be more complex and would require
more feeds, however, the level of detail in this model is insufficient to support
such a detailed calculation. We assumed that if the size of the satellite at C-band
and Ku-band was 24 transponders or fewer then CONUS coverage would be used
and this would require a single shaped beam. 30/20 GHz satellites were assumed to
always use multiple spot beams of one kind or another and also C-band and Ku-band
satellites with capacity greater than 24 transponders were assumed to use multiple
beams, Table 10-5 shows the parameters used to calculate the antenna mass at
each frequency band. Clearly, these are rough approximations and are not intended
as anything else.

10-15



Table 10-5
Antenna Design Parameters

NB
NF

number of beams
number of feed horns = 7 x NB

Basic design assume: reflector diameter is proportional to \/ NB

Reflection mass:
if diameter < 4.6 meters
mass = 2.3 x (diam.)l'95 (kg)
if diameter > 4.6 meters
mass = 0.182 x (diam.)2"? (kg)

The communications electronics was estimated based on mass and
power requirements for the larger components for miscellaneous items such as
waveguide, connectors and redundancy switches. All satellites were assumed to
use dual polarization and redundancy resulting in the requirements for components
shown in Table 10-6. We assumed that the transponder output power and hence,
transponder EIRP would increase with time at the rate of about 0.25 dB per year.
This is less than the actual rate at which the EIRP of some domestic satellites have
increased from one generation to the next. Such an increase can come from a
variety of sources, improvements in power amplifier efficiency, improvements in
antenna beam shaping, and increases in the total primary power available for the
communications electronies. The TT&C subsystem, attitude control subsystem and
thermal control subsystems as well as the electrical distribution harness were
calculated as functions of the communications electronics mass. Relationships are
shown in Table 10-7 for these subsystems.
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Table 10-6

Communications Subsystem Requirements

Receivers:
Drivers:

Power Amplifiers:

4 per beam (4 for 2 redundant)
1.2 per transponder (6 for 5)
1.2 per transponder (6 for 5)

Note - mass varies with frequency band.

Base RF output power (1980) & efficiency

C-band:

Ku-band:

30/20 GHz:

8.5 watts for CONUS coverage
(increases 0.25 dB per year)

n=40%
(increases 2.4% per year)

20 watts for CONUS coverage
(increases 0.25 dB per year)

"= 40%
(increases 1.9% per year)

20 watts per beam
(increases 0.25 dB per year)

N=25%
(increases 2.8% per year)
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Table 10-7
Some Subsystem Relationships

MR = communications subsystem mass
(mass in kg, power in watts)

TT&C:
mass = 0.0394 MR + 21 kg
power = 0.0488 MR +2TW

Attitude Control:
mass = 0.093 M
power = 0.665M

+ 37 kg
+4 W

R
R

Thermal Control:
mass = 0.135 MR

Harness mass = 0.26 MR - 9.5 kg
(minimum 5 kg)

The electrical power subsystem parameters were calculated based on
the power requirements of the subsystems already mentioned. We assumed that a
three-axis stabilized satellite would be used and we made allowances for battery
charging during eclipse with a total charge efficiency of 90 percent and for a 10
percent margin. We calculated solar array degradation at the rate of 3.5 percent
per year for the first seven years and 2 percent per year for every year thereafter.
The array mass and battery mass were calculated on the basis of figures shown in
Table 10-8.
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Table 10-8
Electric Power Subsystem

Battery mass factor:

f, =18.0 x (1.05(year-1980)y oo\ o
connectors + redundancy = 17%

margin for contingencies = 10%

Array mass factor:

'} ~

¢ : i
£ =18 x [lc_)g (power) _0.{-1] % 1'Og(yeatr-19803{ W
2

L -

The mass of the satellite bus structure is clearly a function of the mass
of the remaining subsystems and the mass of the reaction control subsystem
including propellant is a function of the total satellite mass and the total satellite
lifetime. Our assumption was that there was a 51.5 meter per second delta V
budget per year for stationkeeping, a 75 meter per second budget for initial
positioning and possible repositioning and a 5 percent margin. The reaction control
thrusters were assumed to have a specific impulse of 300 seconds. The complete
model is presented in Appendix G of the Final Report.

Other Models

The satellite mass and power model discussed above is clearly a simple
one. More sophisticated models are available as are other simple models which can
be used for comparison.

Ford Aerospace and Communications Company has developed a more
sophisticated method for estimating spacecraft weight and power. The basics of
this model have recently been published in a document resulting from preparation
for the 1983 RARC. Because of Ford's considerable communications satellite
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experience, this model clearly has substantial credibility and in faet, we have
incorporated some of the estimates particularly for communication subsystem
element weight and power consumption figures in the model used in these

scenarios.

Satellite Cost Models

In costing out the satellites used in this study, we have employed a
combination of the SAMSO Unmanned Spacecraft Cost Model and cost data
available from other sources. These latter have included cost model evaluations on
advanced satellites, using other models, and published figures for the cost of
recently-contracted spacecraft. Several issues concerning costs and the projection
of future costs are also discussed in this section.

The SAMSO Model

The latest SAMSO cost model published in June, 1981 was generated
from a data base containing detailed cost information relative to different space
programs (including INTELSAT IV). The SAMSO historical cost model basically
divides the spacecraft into a number of cost elements and applies cost estimation
relationships (CER) to derive the cost of each element as a function of a
combination of its physical characteristics (mass and power requirements). The
CER's were developed by SAMSO by applying least square regression techniques to
the cost data base obtained from the sample space hardware development

programs.
The various cost elements which enter the model are defined below:

a. Structure, thermal control, and adapter

This includes (i) struts, substrates, equipment platforms, booms,
antenna supports, solar panel suports, the mechanical despin equip-
ment for spin-stabilized designs, and balance weights; (ii) thermal
control hardware items such as insulation, louver assemblies, and
heat pipes; and (iii) the booster adapter and separation mechanism
between booster and spacecraft.
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b. Electrical power (EPS)

This includes solar cells, solar panels, regulators, converters, power
distribution units, batteries, and wire harnesses.

ec. Attitude control (ACS)

This includes sun and earth sensors, reaction control nozzles, fuel

- lines, valves, fuel tanks, control electronics, momentum wheels,
gyros and gyro electronics, solar panel drive mechanism and drive
electronics, spacecraft spinup and despin system, nutation dam-
pers, and accelerometers.

d. Telemetry, tracking, and command (TT&C)

This includes all TT&C hardware items such as receiving and
transmitting horns, command receivers, beacon transmitters, and
signal conditioners.

e. Communications

This includes receiving and transmitting antennae, receivers, TWT
amplifier and associated power supplies, input filters, cross-
connect filter matrices, RF switches, on-board switeh matrices,
attenuators, and equalizers.

f. Program level

This includes all program level activity which cannot be directly
related to any specific contract end item; this element can
typically be broken down into program management, systems
engineering, systems test and evaluation, acceptance test, reli-
ability/quality assurance, and data management.

For each of the foregoing elements, the SAMSO model supplies two
CER's: one for determining how much of the nonrecurring development cost is
attributable to the element in question; and the other for determining how much of
the first unit cost may be so attributed. As an alternative to treating the
Communications and TT&C subsystems separately, the model includes an additional
pair of CER's which may be used to compute cost estimates for these subsystems
considered in combination. The calculation method resulting in the highest cost
should be used.
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Other Cost Models

Other cost models have been developed by TRW, Canadian Astronautics
Ltd. (CAL) and by other spacecraft manufacturers. In general, these are not
available for public use.

In conjunction with the mass and power model mentioned previously,
Ford Aerospace also developed a satellite cost model. This satellite cost model is
similar in many respects to the SAMSO model but applies only to communications
satellites and incorporates a large number of complexity factors accounting for
various technology sophistications in the spacecraft. This cost model was also
published in conjunction with preparation with the 1983 RARC. We have chosen to
use the SAMSO model instead because the satellite configurations particularly in
the evaluation of the scenarios are not sufficiently well developed to justify the
use of a more sophisticated model. The complexity factors in particular would be
difficult to estimate given the rough approximations used in sizing and configuring
the spacecraft.

Some indications can be drawn from costs quoted in the press for recent
satellite contracts, and from data on costs of previous satellites. While this
information is of limited value in estimating the cost of larger spacecraft, it is
likely that there will be a mix of spacecraft sizes and complexities through the
period under study. Therefore, these historical examples will have some value.

10.4 Scenarios and Results

We have postulated three scenariosto use in our model. The first, Case
#1, which we believe to be fairly realistic, assumes that there is a certain amount
of demand for each frequency band. This demand changes over time. The

frequency preference matrix for Case 1 is shown in Table 10-9.
Case #2 is an extreme. In this scenario, we assume that C-band is

preferred above all, and that the other bands are used only when there is no
capacity available at C-band. This is shown in Table 10-10.
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Table 10-9
Frequency Preference for Scenario 1

(%)
Year
1980 1985 1990 1995 2000

TV DISTRIBUTION

C-band 100 96 90 85 80

Ku-band 0 4 10 15 20

30/20 GHz 0 0 0 0 0
DATA

C-band . 100 71 50 41 33

Ku-band 0 29 50 45 34

30/20 GHz 0 0 0 14 33
VOICE

C-band 100 71 50 45 40

Ku-band 0 29 50 46 40

30/20 GHz 0 0 0 9 20
TELECONFERENCING

C-band 100 55 30 17 10

Ku-band 0 45 70 59 45

30/20 GHz 0 0 0 24 45
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Table 10-10
Frequency Preference for Scenario 2

(%)
Year
1980 1985 1990 1995 2000

TV DISTRIBUTION

C-band 100 100 100 100 100

Ku-band 0 0 0 0 0

30/20 GHz 0 0 0 0 0
DATA

C-band 100 100 100 100 100

Ku-band 0 0 0 0 0

30/20 GHz 0 0 0 0 0
VOICE

C-band 100 100 100 100 100

Ku-band 0 0 0 0 0

30/20 GHz 0 0 0 0 0
TELECONFERENCING

C-band 100 100 100 100 100

Ku-band 0 0 0 0 0

30/20 GHz 0 0 0 0 0
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Case #3 assumes that 30/20 GHz is undesirable, but that C-band and
Ku-band eventually become equally desirable, except for TV distribution service.
For TV, the same split is used as in Case 1. These probabilities are expressed in
Table 10-11. '

Table 10-11
Frequency Preference for Scenario 3
(%)
Year
1980 1985 1990 1995 2000

TV DISTRIBUTION

C-band 100 96 90 85 80

Ku-band 0 4 10 15 20

30/20 GHz 0 0 0 0 0
DATA

C-band 100 84 71 59 50

Ku-band 0 16 29 41 50

30/20 GHz 0 0 0 0 0
VOICE

C-band 100 84 71 59 50

Ku-band 0 16 29 41 50

30/20 GHz 0 0 0 0 0
TELECONFERENCING

C-band 100 84 71 59 50

Ku-band 0 16 29 41 50

30/20 GHz 0 0 0 0 0
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All three scenarios are driven by both the High and Low traffic
forecasts, and use the general ground rules described earlier. Two variations were
run for the High traffic cases: One (B cases) in which both C-band and Ku-band
were limited to a net capacity per slot of 24 equivalent transponders, and another
(C cases) in which C-band was limited to 24 transponders and Ku-band was limited

to 36 net (45 gross) transponders.

The actual scenarios runs are included separately. The computer
printouts are too long to include in the text at this point. However, the important
results can be summarized by noting the significant events and showing graphs of

demand and supply versus time,

Tables 10-12 through 10-23 show the maximum individual satellite
capacity needed for each band, for each scenario, and the year in which such a
satellite capacity is first launched. The tables also show the average gross
capacity in each band for all occupied orbital slots, and the first year in which a
multi-beam satellite is needed (excluding the Ford Aerospace & Spotnet satellites,
which already propose spot beams). Figures 10-1 through 10-12 show capacity and

demand versus time for the scenarios.

10.5 Conclusions From Scenario Runs

Somewhat different scenarios could have been generated from the same
model, using different assumptions. For example, allowing follow-on (replacement)
satellites to increase by more than 50 percent over the size of the previous
satellite would have resulted in a traffic distribution that more nearly matched the
preference matrices, with lower probability of using 30/20 GHz in Scenarios 2 and
3. This would be counterbalanced by a higher requirement for multi-beam
technology at C-band and Ku-band. The assumption of 50 percent is justifiable
based on the known behavior of the satellite manufacturers and operators. For
example, the first U.S. domsats launched, the WESTAR I series, had 12 tran-
sponders each. These were followed by the RCA SATCOM I series, with 24
transponders each. Now, the WESTAR I's have been replaced by WESTARs with 24
transponders, but the SATCOMs are being replaced by still more 24 transponder
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Table 10-13
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SUMMARY FOR
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Table 10-18
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Table 10-19

SUMMARY FOR
CASE #2B —-- TOTAL C-BAND FREFERENCE -- 24 TRANSFONDER LIMIT AT C—EBAND
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Table 10-20
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SUMMARY FOR
CASE #z2C —--— TOTAL C~BAND FREFERENCE ~- 24 TRANSFONDER LIMIT AT C-BANLD
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HIGH TRAFFIC FORECAST
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birds. However, early next year, the Spacenet satellites will be launched with 36
transponders each, an increase of 50 percent over 24. In 1988 or 1989, assuming
that they are approved, the Ford satellites will be launched with 54 transponders
each, an increase of 50 percent over 36. While this works out to an increase of
about 75 percent in seven years, the 50 percent increase in the model is for a
single-band satellite, while these increases (for actual or proposed spacecraft)
include hybrid designs.

The single most significant conclusion to be drawn from these models is
that something like 90 percent of the demand in both high and low traffic cases
could be filled at C-band and Ku-band, provided that the necessary frequency-reuse

technology is available. Since the application of 30/20 GHz seems to require

roughly the same measure of frequency-reuse technology, this particular advance
can be said to be absolutely necessary, whether or not it is used at C-band and Ku-
band.

If 30/20 GHz proves technically obdurate, or commercially unaccepta-
ble, the frequency-reuse demands on the lower bands will be considerable in the
High traffic case. In Scenario 3, which postulates no independent demand for 30/20
GHz, that band is unused in the Low traffic case, with an average capacity per slot
of less than 40 transponders at C-band and Ku-band. In the High traffic cases,
30/20 GHz is unused until 1998, and the average capacity per slot is only slightly
higher than in the Low traffic runs. However, in both scenarios, multiple
frequency reuse is needed at the lower bands in the early 1990s. This clearly
targets the multiple reuse technology as most significant. Taking into account that
TV distribution comprises at most about one-third of the total after the introduc-
tion of multi-beam satellites, and less than 15 percent by the year 2000, we
conclude that less than 25 percent of the total capacity will need to be CONUS or
time-zone coverage. With an average capacity per slot of 40 transponders, the 75
percent of capacity subject to reuse averages less than 48 transponders per slot.
This requires about 27 beams. If we consider the peak satellite sizes postulated by
the model, the level of reuse is about twelve times (over and above the reuse by
dual polarization). This is still feasible, but would be difficult to construct,
requiring 36 beams.
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10.6 Transition to New Technology

Technology improvements in communications systems have proceeded
) along several lines. The quality of service and transmission has been improved in
fairly straightforward ways. Considerable emphasis has also been put on
digitization of switching exchange and progress toward an Integrated digital
system, capable of handling voice and data equally well. Increases in the
efficiency with which facilities such as transmission trunks are used have also been

pursued, leading to lower costs.

However, acting against these trends has been the desire to allow
servicable equipment to remain in service as long as possible, in order that the cost
be spread over as much time as possible. Thus, significant economies have to be
available from the new technology in order for it to displace existing equipment
with any rapidity. Additionally, there is the question of compatibility with existing
systems, which affects the design as well as the schedule of installation.

One current example of a large system which is in transition to
different equipment is INTELSAT, now in the process of procuring and installing
TDMA equipment for use with INTELSAT V. With such a radical change of
operations, a great deal of planning is needed to accommodate the various traffic
routes. The heavier traffic routes are to be converted first, followed eventually by
the lighter routes. This ensures that the TDMA equipment will be used
economically almost from the start.

In the case of a centrally-organized network like INTELSAT, the
conversion to more efficient transmission means can be carried out in an orderly, if
lengthy, manner. For the numerous users of U.S. domestic satellites, however, any
such transitions will be considerably less deterministic. Transitions are most likely
to occur when existing equipment has depreciated significantly; when substantial
network growth is planned; or whenever useful cost savings can result even though
equipment must be written off earlier than otherwise. Since in most cases, there is
no centralized organizing force, nor standardization to enable various private
networks to communicate directly, these changes will be a matter of individual

policy and timing.
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The use of advanced technology, including both additional spacecraft
complexity and new frequency bands, is prompted by pressures and capabilities.
Some of the pressures are: shortage of orbital locations, increasing customer
demand, inability to frequency-coordinate with new earth stations, and cost
competition from other transmission media. Capabilities primarily include the
ability to launch larger (more powerful, more complex) spacecraft and the
availability of hardware to operate at new frequencies. On rare occasions,
additional frequency spectrum is allocated by the ITU, adding to the capabilities.

A system operator who works according to the economic principle of
profit maximization would strive to satisfy as much demand as possible. So long as
individual satellites of relatively low capacity are used, there is little economy of
scale in satellite systems. What is available comes as a result of buying a number
of satellites of the same design, consolidation of spacecraft operations, and
maintaining as high a fill as possible. There is no assurance that the system owners
operate this way. In fact, instances can be found, such as RCA's second "auction"
in which the market demand was ignored somewhat in setting a price. However, in
general it is probably safe to assume that the operators will try to fill any
perceived demand, as long as the technology is available at fairly low risk and at a
cost comparable with competing media so as to allow a reasonable profit.

10.7 Regulatory Considerations

R educed Spacing:

The congestion of the geostationary are above the U.S., predicted
several years ago, prompted the FCC to investigate the feasibility of reducing the
spacing between satellites. This investigation, Docket 81-704, resulted in & number
of comments from the satellite systems operators, manufacturers, and other
interested parties. The positions taken by these participants are summarized in
Table 10-24.

Even though the decision to reduce spacing has been made, there are

still valid concerns about the effects on system operation and introduction of
innovations. These are as follows:
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Table 10-24

Positions of Various Parties on 2° Spacing

Mutual Broadcasting (MBS)
AT&T
Western Union

Southern Pacifiec Communications

RCA Americom
USSSI

SBS

Comsat

GSAT

Hughes Communications

American Satellite Co.

Home Box Office

Times Mirror

Wold Communications

Westinghouse Broadecasting

Public Service Satellite
Consortium (PSSC)

Support of
FCC Proposal

Yes

No

X
X
X

b

Mo MM

Recommendations

Time-Phased Orbital Spacing Policy
2.5° Spacing
@ 3° Evolving to 2°

(b) Formation of Industry Committee

(@) 3° Preferred Evolving to 2°
(b) Variable Spacing Policy

3° Preferred Evolving to 2°
Supports 3° Spacing

Prefers a Phased & Flexible Basis

(@) Delay in 2° Spacing Due to
Technology Requirements

(b) Adjustments in Other Parameters

Required

Urged "Figure-of-Merit" Rating of
Satellites

Supported 3° Spacing

Supported 2.5° to 3° "Variable
Traffie Oriented Spacing

Supported Ku-band Reduction to 2°
but Opposed C-band Reductior to 2

(@) Delay 2° Implei‘nentation

(b) 2° Satellites should Receive at
4 GHz and Transmit at 6 GHz

Supported 3° Spacing

Supported 3° but Urged Interference
Study

Supported 2° but opted for 39 if
2" is Found not Feasible
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Table 10-24 (continued)
Positions of Various Parties on 2° Spacing

Support of
FCC Proposal
Yes No Recommendations
Joint Council of Educa- X Urged Careful Transition and Use of
tional Telecommunications Such Techniques as "Polarization
(JCET) Interleaving"
Wall Street Journal X Urged Caution in Evaluating Inter-
ference Effects
Alascom X Asked for Wider Separation to Prevent
Destructive Interference
Satellite Syndicated Systems
(SsS) X Supported
United Press International
(oPI) X Opposed C-band Reduction
National Cable TV o
Association (NCTA) X 3" Spacing Less Disruptive
California Microwave ? Urged Innovation to Curtail Inter-
ference -
Scientific-Atlanta X 3° Spacing Supported with Continued
Investigation
M/A-COM X Believed 2° Can be Implemented by
end of Decade
EIA X Supported 3° Spacing/(
Department of Commerce X ) Supported Fully




Increased Interference — While many systems, especially those employ-
ing larger antennas, will still operate in a satisfactory manner, the total inter-
ference budget will certainly be increased. This increase will arise from two
sources: first, the previously existing satellites that are now closer in angular
space, and therefore on average experience higher antenna sidelobe levels, and
second, the increased number of interference entries resulting from the increased
number of orbital slots. This effect will occur for other satellite systems using the
orbit near the U.S. arc as well, and the Canadians have specified greater
separations between their satellites and ours. South and Central American systems
will also be affected, albeit to a lesser extent because of the geographical
distance.

Structure — The decreased separation will require greater structure to
the communications satellite constellation in order to limit the increase of
interference. This structure may take several forms. First, the FCC has proposed
that antennas be made to conform to a more stringent sidelobe gain level, and
more stringent cross-polarized response off-axis. Second, they have proposed that
the polarization plans of adjacent spacecraft be opposite to one another. Both of
these plans result in more structure in place of the operational flexibility that
existed before. Existing equipment, both satellites and earth stations, will in some

cases be obsolete under such plans.

Effects on Technology and Planning — The tolerance of system for
inhomogeneity of power levels and/or certain types of spectra with pronounced
peakedness would be reduced under such a plan. While this would have essentially
no effect on the introduction of new frequencies such as the 30/20 GHz band
(which can tolerate much smaller spacing), the use of multiple spot beams would be
difficult. There would be several effects from multiple spots: 1) if the increased
antenna gain (of the spots) is used to increase EIRP, G/T and transponder gain,
interference to and from the spot-beam system would be increased proportionately;
2) even if no increases in EIRP or gain were employed (G/T could be increased
without harm) the spot-beam satellite would increase the number of interference

entries experienced by other systems.

These considerations will require careful coordination with other sys-
tem operators before changes in satellite parameters can be made. The planning
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process will be more cumbersome and subject to bickering than now. However, the
concept of implementing multiple-spot-beam satellites with homogeneous trans-
mission parameters deserves consideration. Although larger earth stations would
be needed, such a system could be integrated into the reduced-spacing environment
without difficulty, and would provide a useful increase in orbital capacity through

frequency re-use.

Efficiency Requirements

One possibility for additional regulatory constraint would be the re-
quirement of a specific degree of spectrum/orbit efficiency for new or replace-
ment satellites. Such a course has been urged on the FCC during the filing process
for some recent applicants. These urgings were mostly from other applicants or
carriers who, feeling that their particular design was more efficient than the
instant applicant's, used the argument in a petition to deny. In spite of this origin,
the idea has some merit. Imposition of minimum requirements consistent with the -
state of the art would help increase the capacity of the arc, and would also help’
ensure eventual lower costs to users. However, considerable controversy would
probably arise over the administration of such a requirement.

Under an efficiency requirement, thé specific use to which the satellite
was designed would have to be specified beforehand. For example, a satellite
intended for TV broadcast to CATV systems could not employ frequency re-use
with any effectiveness, by the very nature of its traffic. Unless the application
were accounted for, this would result in a poor efficiency evaluation relative to

satellites with multiple beams and re-use.

Another factor involves hybrid versus single-band spacecraft. In a
sense, the hybrid satellite is more efficient, since it achieves some sharing of the
buss. However, this does not result in any spectrum/orbit efficiency relative to
single band satellites, and in some circumstances (different spacing at the different
bands) can add constraint to the total orbital configuration. The relative weight of

such factors is very uncertain.
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10.8 Division of Traffic by Frequency Bands

One result of the scenarios is an allocation of the traffic in each year
into the various frequency bands. To some extent, this is a function of the
preference matrices shown earlier and used to drive the model along with the
traffic. However, the preferences are subsidiary to the ability of the system to
provide capacity where and when desired. As far as this is concerned, this model
makes these assumptions:

1. Traffic that wants to go to C-band but cannot be acecommodated

can be carried at Ku-band if possible.

2. Traffic that wants to use Ku-band but cannot be sccommodated

can use excess capacity at C-band if available.
3. If there's no space at C-band or Ku-band the traffie can be carried
at 30/20 GHgz if it is possible to launch a satellite in that band at

that time.

To a great extent, then, the allocations among the bands are a reflection of the
possibility of providing capacity in each when necessary.

Tables 10-25 through 10-27 show the year 2000 division of traffic

among the bands for the various scenarios.
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Table 10-25
Year 2000 Traffic Distribution

Low Traffic
(Transponders)
Video-
Scenario 1 TV Data Voice conferencing
C-band 185.9 383.7 151.5 65.8
Ku-band 11.2 290.5 120.3 181.0
Ka-band 0.0 40.8 33.9 40.6
Scenario 2
C-band 185.2 627.3 191.9 218.3
Ku-band 11.9 87.7 113.8 69.1
Ka-band 0.0 0.0 0.0 0.0
Scenario 3
C-band 195.5 492.8 197.0 190.1
Ku-band 0.6 222.2 108.7 97.3
Ka-band 0.0 0.0 0.0 0.0
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Table 10-26
Year 2000 Traffic Distribution

High Traffic

(Transponders)
Video-
Scenario 1 TV Data Voice conferencing
C-band . 261.6 442.2 330.4 98.8
Ku-band 33.3 467.9 346.6 168.2
Ka-band 28.6 201.0 256.8 7.7
Scenario 2
C-band 228.8 580.6 317.3 194.3
Ku-band 59.7 383.6 382.6 107.1
Ka-band 35.2 146 .9 233.9 43.1
Scenario 3
C-band 228.9 508.8 283.9 161.9
Ku-band 59.6 455.2 415.4 139.5
Ka-band 35.2 147.1 234.5 43.2
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Year 2000 Traffic Distribution

Table 10-27

High Traffic Modified Scenarios

(Transponders)
Video-
Scenario 1-B TV Data Voice conferencing
C-band 219.8 340.9 191.5 87.7
Ku-band 30.6 405.9 243.5 135.9
Ka-band 73.2 364.3 498.7 120.9
Scenario 2-B
C-band 188.9 355.1 167.9 128.0
Ku-band 56 .5 389.6 261.7 108.3
Ka-band 68.2 330.0 440.0 97.0
Scenario 3-B
C-band 196.6 358.9 169.8 114.7
Ku-band 48.8 385.8 259.8 121.6
Ka-band 68.2 330.0 440.0 97.0
Scenario 1-C
C-band 219.8 340.9 191.5 87.7
Ku-band 55.5 501.2 358.2 160.5
Ka-band 48.4 269.0 384.0 96.4
Scenario 2-C
C-band 188.9 355.1 167.9 128.0
Ku-band 74.6 505.8 381.3 137.0
Ka-band 60.2 250.2 384.5 78.8
Scenario 3-C
C-band 196.6 358.9 169.8 114.7
Ku-band 71.8 518.2 395.3 158.3
Ka-band 55.3 234.0 368.7 71.6
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10.9 Connectivity and the Role of Larger Satellite Platforms

The number of satellites in orbit by the year 2000 could be very large if
relatively minimal designs are used, as in these scenarios. For example, in the
High traffic runs, as many as 35 C-band, 34 Ku-band, and 7 Ka-band slots are
occupied, yet average capacity per location is on the order of 30 to 40 transponders
in each band. Even if we assume that all satellites are hybrid designs, each
antenna would still access only about three percent of the total capacity. With
such a system, connectivity would be a severe problem. It is unlikely that user
communities could be segregated in such a way as to solve it. There would be a
need for many intersatellite links, and considerable intra-industry structure and

standardization even to approach a solution.

The postulated, multi-satellite situation is a natural consequence of the
present structure of the U.S. domestic satellite industry. As satellites reach the
end of their useful lives, the owner/operators will not forgo the chance to replace
each one individually, with the same size or larger spacecraft. In order for
satellites of considerably larger size to replace several smaller spacecraft, a
significant departure from present behavior is needed. Either several operators
would have to pool resources and launch a shared satellite, or an operator who is
leasing (or has sold) considerable capacity on several satellites would have to
aggregate this capacity on a larger, replacement satellite*.

This, of course, leads to the question of so-called "geoplatforms" and
whether they will be used in this study period. Based on the results of the
scenarios, and on comments by spacecraft manufacturers, and on the behavior of
prospective satellite operators, we would have to say that it depends on your
definition of geoplatform. Our reasoning is as follows.

First, the scenarios indicate that the forecasted demand can be
satisfied using satellites with fairly modest characteristics, compared with the
likely characteristics of geoplatforms. Even with combinations of the frequency
bands into two or three band hybrids, the largest spacecraft launched under the

*Note that in the case of Hughes Communications, this would almost certainly be a
"cluster satellite", since they hold the patent on the concept, and Hughes president
Wheelon has stated that "We'll never build a bigger satellite than INTELSAT VL"
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scenarios would be about 5000 kg at BOL, assuming that on-board switching
provided fairly complete connectivity. This is probably a reasonable maximum
single-Shuttle satellite, using a modified Centaur as the LEO to GEO vehicle.
Deployables of significant complexity would be needed to fit such a satellite into
the bay. This spacecraft could be said to be a geoplatform, although a firm
definition might be based on other characteristics than size alone. However, it is
probably at the lower limit of platform size.

Second, there are real incentives to the spacecraft manufacturers to
develop and construet busses of more modest size. First, the smaller bus will be
able to accommodate the payloads of more different customers, many of whom will
have modest requirements and only few of whom will have larger needs. In
addition, the manufacturer can spread the development cost over more customers,
with the total being more than any one or few customers would pay. This
commonality can be seen at work the widespread acceptance of the RCA SATCOM
bus, and the Hughes HS-376 bus. In contrast, Ford and TRW, with much larger
busses (from INTELSAT V and TDRS) have been unable to attract much interest.
With current launch vehicles, the price differential between the smaller and larger
busses is also a factor.

Third, current satellite planners are focussed on serving relatively small
user communities, for which connectivity is no problem. Since, compared with
terrestrial point-to-point communications, satellites are still in their infancy, the
need for widespread connectivity has not arisen. Present and prospective users are
still concentrating on the problems of getting their own specific communications
requirements filled, and it will be some time before there is a need for widespread
interconnection between user systems.

Lastly, it is likely that, considering antenna structures needed for
multi-beam formation at C-band, most of the multiple-beam capacity will be
provided at Ku-band or 30/20 GHz. Except for the power supply requirements, no
large structure would be needed at these bands.

The year 2000 seems to be right on the threshold of requiring really

large satellites. Assuming that traffic growth continues at or near the same pace,
the year 2010 would certainly see geoplatforms in orbit.
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SECTION 11
EARTH STATION FORECASTS

Earth station configuration changes must accommodate existing hard-
ware as much as possible. To some extent, this can be done through user
segregation. For example, specialized TV distribution satellites make a great deal
of sense. The value of a particular spacecraft to both programmers and cable
system operators depends in large part on the number of TV signals accessible on
that satellite. Therefore it makes sense to provide satellites with a larger number
of narrower transponders, and without point-to-point users on it to "waste" (from

the TV viewpoint) any transponders.

Some modulation/access methods that will be coming into use in the
next few years will be handled best if they can be segregated. AT&T and other
long-haul carriers will be using Companded Single Sideband (CSSB) extensively,
beginning soon. From the satellite system viewpoint, this is a step backwards,
since it requires the use of large and expensive earth stations. However, it has the
advantage of providing very high capacity (since the baseband itself is transmitted)
and with proper frequency and power control, has extensive multiple-access
potential. However, satellites used with such systems require low sensitivity
(transponder gain) so that uplink noise contributions can be minimized. The
resulting high earth station EIRP is a potential source of interference into spot-
beam satellites, which will have much greater sensitivity on the uplink. This, along
with the use of the large earth station antennas, suggests that satellites accessed
by such methods can be segregated into a portion of the arc. These satellites could
be spaced close together, since the large antennas will alleviate interference diffi-

culties (in a homogeneous system) even with relatively small intersatellite spacing.

The growth of the earth station population is roughly proportional to
the traffie, varying according to the kind of traffic (i.e. — CPS or trunking or TV,
etc.). The number of earth stations per transponder of traffic has historically been
an increasing function with time, and we expect this to continue within reasonable

limits. For TVRO or very thin route stations, the practical limits are quite high or
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non-existant. However, for stations which carry a significant amount of traffic
and require access to one or more transponders on a continuous basis, there are
fairly low limits. The frame period limits the number of accesses in a TDMA
system, since reasonable efficiency must be maintained. FDM/FM/FDMA systems
are unlikely to play a significant role in the future; accesses here are limited since
the carrier sizes must be pre-assigned if a reasonable level of system control is
desired, and rapid re-configuration presents problems. CSSB systems allow a large
degree of multiple access, but the earth stations are large and expensive.

The earth station size mix will also vary according to traffic category.
This is partly an economic decision, since a smaller earth station of less complexity
and lower price will be needed to make lighter traffic economical to carry.
However, the consideration of physical placement is very important for CPS
services. This is especially so at Ku-band and 30/20 GHz, since these stations will
be located in metropolitan areas (as well as elsewhere) and hence must be as
unobtrusive as possible.

11.1 Earth Station Sizes

In order to reduce things to manageable proportions, we have selected a
number of "typical" earth station configurations for use in our calculations. These
are shown in Table 11-1. The traffic is divided up into categories appropriate to
these earth stations by means of 1) the CPS/non-CPS divisions provided by ITT and
Western Union in their initial traffic forecasts, and 2) the segregation into
frequency bands ‘that was an outcome of the model scenarios. This traffic, so
divided, is then used to determine the number of earth stations as described in the
next subsection.

11.2 Correlation Between Traffic and Earth Station Population

Traffic growth arises in two ways: first, new users come on line,
bringing their traffic to the system, and second, the traffic of existing users
increases with time. We are most interested in the first category, since the new
users will in most cases require new earth stations, and we are interested in
predicting the earth station population. In order to extract this component of
growth, we must estimate the magnitude of the second component.
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Table 11-1

Typical Earth Stations

High-
Carrier Quality  Small Shared CPS
Type Trunking TVRO TVRO Business Business
Antenna diameter (m)
at C-band 11 - 30 7 7-11 4,5 - 17
at Ku-band 7 - 12 3.5-8 3-5
at 30/20 GHz 7-12 NA 3-7 1-3
Approx. Capacity 1000 - 10000 3-5 1-3 2-12 0.3 -6
Circuits TV TV Mbps Mbps
(Analog)
or
12 - 60
Mbps

For starters, we can look at the oldest satellite communications system
around, INTELSAT. Traffic in the Atlantic region of INTELSAT has been growing
at a more-or-less steady pace for some years now, and can probably be considered

to be in a mature state. Figures 11-1 and 11-2 show some points of interest here.

In Figure 11-1, we see that intially there was a period corresponding to the

classical "S" curve growth pattern, slow initial growth, followed by very rapid

growth, followed in turn by a longer period of stable growth at a modest rate.

Figure 11-2 compares the growth of traffic with the growth in earth stations,

showing that the former is greater after about 1977, and that most of the traffic

growth is just that, with relatively little contribution from added earth stations.

These data indicate that the mature growth rate is about 13 percent per year.
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Other indications are found in the mature growth rates for telephony
traffic. In the U.S., total long-haul traffic is growing at a rate of about 10 to 12
percent per year. The number of phones in service is growing at a rate of about
five percent per year. This indicates a rate of growth per phone of about 4.5 to 6.5
percent per year. While this is considerably lower than the rate shown by
INTELSAT, the system in the U.S. is in a more mature state than international

satellite telephone traffie now is.

Since even growth through existing facilities involves additional invest-
ments for equipment, we can be conservative and estimate that traffic through
such facilities grows at a rate of about 5.5 percent per year for voice, and about
10 percent per year for new services such as data and videoconferencing. If the
total growth rate of the service falls below twice these rates, then the existing-
facilities growth rate will be assumed to account for half the growth (that is, will

be the square root of the total growth factor).

TV Distribution

This analysis falls apart if applied to TV distribution receive-only earth
stations, since there is no clear relationship between the number of RO stations
and the number of transponders carrying traffiec. The situation is further
complicated by the fact that some programs are distributed free (TV evangelists
ete.), and that the number of channels that an RO can receive simultaneously is
unrelated to the number that can be accessed individually. While there is probably
good temporal correlation between the number of satellite video channels and the
number of ROs in service, we suggest that the casual relationship is tenuous at
best. Once several high-quality program channels were available, such as HBO and
Showtime and the like, the attractiveness of satellite TV was probably increased
only slightly by each doubling of the number of channels.

In addition, there are a great many privately-owned RO stations, and
their number is growing rapidly. In a recent FCC filing, SPACE (Society for
Private and Commercial Earth Stations) estimates that there are now 300,000
stations in operation, and that monthly shipments exceed 20,000!! Clearly, most of
these are very-low-cost TVROs for home use. In contrast, the 1983 Satellite
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Directory lists approximately 7400 licensed receive-only stations. In consequence,
our estimates of the TVRO earth station installations will be based primarily on
population, rather than on the number of transponders or video channels in service.

Estimated Correlation Factors

In Figure 11-3, you can see that the earth station/transponder ratio is
considerably lower for those networks that service trunking type traffic primarily.
Systems which address a more direct-to-user market, such as SBS and American
Satellite, operate many more stations per transponder at a much lower average
capacity per station.

In Section 2, we estimated an average of 1,000 circuits per station for
an intertoll carrier, using a mix of satellite and terrestrial transmission. If we
apply this value (assuming that it is constant with time for the moment) to the
composite non-CPS transponder capacities, we get a ratio of 1.5 earth stations per
transponder in 1980, 3.9 in 1990, and 5.8 in the year 2000. The increase is clearly a
strong function of the dramatic improvement in transponder capacity during the
period. By contrast, the transponder capacity in the INTELSAT system has
remained fairly constant (on average) for the period covered in Figure 11-3.

Even though the various traffic types can be expected to occupy
transmission capacity in somewhat different ways, any network must provide a
reasonable set of access procedures so that users can communicate with one
another. The pt;esence of earth stations carrying more than one kind of traffic
(which will be more common than not) and shared-user stations implies that an
overall correlation factor is needed, which includes all traffic (excepting TV
distribution, which is quite separate). Therefore, we will only differentiate
between trunking and CPS categories for point-to—point traffic. These factors are
developed as shown below.

CPS Traffic
As noted in the sections treating Task 1, we have postulated that CPS

transponders will be accessed in such a manner as to reduce the cost of the earth
station as feasible. Our assumptions about this result in a capacity per 36 MHz
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transponder of 24.7 Mbps, with improvements in transponder linearity, EIRP, etc.
being used to enable cheaper earth stations, rather than increased capacity.

If we examine the ITT data concerning the total addressable CPS earth
station population, as shown in Table 11-2, and equate this with the total
addressable CPS satellite traffic, also shown, we can compute an approximate
number of earth stations per transponder. This is shown in the last line of the
table, based on a 24.7 Mbps transponder capacity. Since the traffic is shown as
growing much faster than the earth station population, the ratio drops significant-
ly. While this is a reasonable pattern of behavior, we think that the ratio and
number of earth stations postulated is much too low for a CPS network.

Table 11-2
Calculations Based on ITT Data

1980 1990 2000
CPS-Addressable Traffic 1,490 13,990 63,190
(Mbps)
CPS-Addressable Traffic 60 566 2,558
(transponders)
CPS Earth Station 0 3,934 4,239
Addressable Market
Earth Stations per 0 6.9 1.7

Transponder

Figure 11-4 shows our estimate of the ratio of CPS-type earth stations
to transponders carrying such traffic. Dedicated and shared earth stations of very
large users would probably not be included in the CPS portion, since their
aggregated traffic would be larger. Such users would be able to access the
satellites using relatively more expensive access techniques and earth stations,
therefore, transponder capacity would be higher in such instances.
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Trunking Traffic Stations

Because the earth station costs are averaged over a very large number
of users, trunking systems can afford to install more costly equipment so as to get
the most capacity per transponder. Such a system will probably undergo a number
of transitions between various configurations, with the trend being toward more
efficient use of the space segment.

Since the number of major service points is likely to be limited,
eventually the network will have expanded to cover virtually all of them. At this
point, the ratio of earth stations to transponders in use will begin to stabilize or
decline slowly as the traffic increases. This is complicated in the U.S. by the
presence of competing long-haul carriers, whose facilities will duplicate one
another to some (undefined) extent. This results in the overall environment having
a larger number of earth stations while the traffic base, which is controlled by the
end users, remains more or less the same. However, because of the well-developed
terrestrial system, and future networks using fiber optics for data transmission, the
overall ratio for trunking will still fall to a low level, because the number of

service points will be low.

The correlation factor for trunking stations is also included in Figure
11-4, shown previously.

TV Distribution

Amazingly, there seems to be an enormous market for TVRO stations,
much larger than we thought even as recently as 1979. There is now about one
licensed TVRO, generally of 4.6 meter diameter or larger, for each inhabited
"place" of 2,500 persons or more (this is a Census Bureau subdivision). Of course,
they are not so evenly distributed. Generally, we can conclude that the licensed
TVROs serve cable systems, larger hotels, and other users who derive revenue from
the programs and desire interference protection. This amounts to about 7,400
stations. The limiting number of licensed TVRO stations is likely to be much
larger. According to the U.S. Industrial Outlook, there are over 50,000 hotels,
motels, and similar establishments. About 70 percent of these have payrolls (that
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is, are more than a Mom & Pop operation). This puts the potential number of
licensed TVROs at greater than 35,‘000. However, there is no conclusive way of
knowing what fraction of this potential market would buy stations, nor how many

have already purchased an unlicensed station.

Estimating the number of unlicensed stations is of course even more
speculative. In theory, the number could be as large as 10 to 20 million, but is
unlikely to reach that level for a number of reasons. However, if DBS and quasi-
DBS systems are included, the number of installations could easily achieve the 10
to 20 million level, mainly because the stations are projected to be very expensive.

As noted above, SPACE has estimated that there are 300,000 earth
stations in service in the U.S. right now. The vast majority are relatively
inexpensive, unlicensed TVROs. They further estimate that shipments are running
about 20,000 per month. If we assume that volume remains at this level, by 1990
there would be approximately 2 million RO stations in service.

By that time, however, DBS systems may have made significant inroads
on the "conventional” TVRO market for home use. If that is the case, we would
expect to see a reduction in the number of C-band TVROs being sold, with a
corresponding diversion of the market into FSS Ku-band and DBS stations. Such a
diversion would be hastened by the advent of 2 degree spacing at C-band, which
should be complete before 1990, since this would drive up the cost of C-band
TVROs because of improved performance requirements. Therefore, by 1990 we
would expect thét sales would have declined to the 10,000 per month level at C-
band, with the remainder made up of Ku-band DBS and quasi~-DBS stations.

Earth Station Installations for the Scenarios

Since the various scenarios produce somewhat different distributions of
traffic among the frequency bands, we estimated the earth station requirements
for each one. Division between the shared and unshared CPS stations is based on
the estimates for these categories contained in the ITT and Western Union reports.
Summary results of earth station requirements are shown in Tables 11-3 through
11-14.
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CASE #1 -— SO0OME DEMAND FOR EACH BAND —— NO LIMIT ON C-BAND OR KU-BAND
CAFACITY EXCEFT STRICTLY TECHNICAL AS ESTIMATELD.

LOW TRAFFILC FORECAST

NLMBER OF C~-BAND EARTH STATIONS
YEAR TRUNF. ING LDEDICATED SHARED
Crs CFRS

4,0 =70

41.0 25,0

23,0 22,0

29,0 41.0

44,0 S7.0

Bo.0 = §

TH.C 4

100.0

121,

1 =2, 0

1:".

=211,
o2, 0

pag: R
L_/. O
272.0
2%4.,0 1094, 0
Z305.0 1174.0

214,90 12532.0 1532.0
ZZ0.0 150%, 90 1595,.0
I26.0 1376.0 1&220.0

Table 11-3a

Total Earth Stations in Service
(TVROs Not Included)
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CASE #1 —— ZOME DEMAND FOR EACH BAND —— NO LIMIT ON C-RAND OR EL—BANL
CAPACITY EXCERFT STRICTLY TECHNICAL AS ESTIMATELD.

LOW TRAFFILC FORELCAST

NUMBER OF EU-RAND EARTH STATIONS
THRUNE ING DEDICATED SHARED

CPS CFs

<
m
xl
T

g
L)
Py
e
-
~’

-
-
'

Q0.0 0,0

{1 2EC ), U

1281 0,0 0,0 Q.0
1322 0.0 .0 G0
1vaz 2.0 1.0 2.6
17324 6.0 2.0 10,90
1225 12.0 o2 =27 0
1786 25,0 5.0 TN |
1257 IZ2.0 SZ.0 100.0
R H5.0 131i.0 133,090
15z 106.0 255.0 1.0
1920 1i51.0 380,00 4650
1%l 172.0 41,0 SEE.0
1922 205.0 SEA.0 Tl&.0
1593 220.0 S, O SE50.0
1994 Z52.0 721.0 RLTEPRY)
1995 272.0 28,0 10287.0
1924 SN0 VTE.Q L1EE, 0
19w7 10,0 10440 12032, 0
173 Z21.0 1140.0 1294,.0
1999 S25,.0 1122.0 14%7.0
—00C¢

244, 0 1270.0 1552.0

-

[
—_
o~
g

Table 11-3b

Total Earth Stations in Service
(TVROs Not Included)
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CASE #1 —— LSOME DEMAND FOR EACH BAND —— NO LIMIT ON C—-RBAND OR FU-RAND
STRICTLY TECHNICAL AS EXTIMATED.

LoWw TRAFFIC FORECAST

NUMBER OF HA-BAND EARTH STATIONS
YEAR TRUNE ING LDELDTCATEDR SHARED
(=13 CFS

0.0 0,0 O, 0
0.0 .0 0.0
Q.0 0.0 0,0
Q.0 0.0 0,0
0.0 0.0 Q.0
0.0 Q.0 0.0
Q0,0 0.0 0,0
Q.0 0.0 0.0
Q0,0 O, 0 Q.0
0.0 0.0 0.0
Q.0 0.0 (B INW]
Q.0 0,0 0,0
0.0 0.0 0,0

1.0 5.0 L0
5.0 1.0 17,0
12,0 7.0 4ésa, 0O
PUC IS LS. O 23,0
22.0 1050 1az.0
41.0 125,40 14500

2 5.0 147.0 Z04.0
2000 71.0 21804 267.0

Table 11-3c¢

Total Earth Stations in Service
(TVROs Not Included)
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CASE #2 —— TOTAL C—-BAND
EXCEFT FURELY

LW TRAFFIC FORECA

L
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O
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Y]
o5,
i}

i
- I\I
DU B

1995

2000

NUMBRER COF

TRUNE ING

45,0
41,0
3.0
42,0
52.0
72.0
101,60
12%.0
127.0
258.0
40,0
290, 0
425.0
451.0
505,00
550,0
S41.0

Sa0, 0

Table 11-4a
Total Earth Stations in Service

P

(AR

FREFERERNLE ~— NO LIMIT
TECHNILCAL

C.—EBAND

DEDICA
_F=

27.0
Z2%,0
22,0
45,0
&b, 0
111.0
121.0
20,0

425.0

12301 .0
1527.0
172%.0
1279, 0
19770
20700
IR IS

TSRO

[

Z2a91.0

(TVROs Not Included)
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ESTIMATED.

C—BAND OR EL-BAND

AT TN
SHARED
CFE

ZZL0
5.0
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52.0
2O, O
135.0
221.0
254,0
S23.0
77E.0
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eSFl .0
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CASE #2 —— TOTAL C-BAND PREFERENCE —--— NO LIMIT AT C-EAND OR KL-BAND
EXCEFT PLRELY TECHNICAL A% ESTIMATED.

LOW TRAFFIC FORECAST

NUMBER OF KU-BAND EARTH STATIONS
YEAR TRUNE. ING DEDICATED SHARELD
R CFs

IR0 0.0 0.0 0.0
@51 Q.0 0.0 0.0

1 0.0 0.0 0.0

: 0.0 ) 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 Q.0 0.0
0.0 Q0.0 Q.0
0.0 0.0 0.0
0.0 O, 0 0.0
0.0 0.0 Q0.0
0.0 Q.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 D, 0O
15.0 4,0 57,0
.0 152.0 192.0
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Table 11-4b

Total Earth Stations in Service
(TVROs Mot Included)
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CAZE #2 —— EVEN SPLIT BETWEEN C AND RU BY 20003
N2 LIMIT AT C—-BAND OR FU-BAND EXCEFT TECHNICAL AS ESTIMATEDR

LOW TRAFFIC FORECAST

NUMBER OF C—-BAND  EARTH STATIONS
YEAR TRUNE. ING DEDICATED SHARED
CFS ZFs
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Table 11-5a

Total Earth Stations in Service
(TVROs Not Included)
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CASE #% ——

LOW TRAFFILC

EVEN =FLIT BETWEEN © AND KLl RY
NO LIMIT AT C—BAND OR RJ-BAND E

FORECAZT

NUMBER OF KLU-BAND
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Table 11-5b

CFs

0.0
0.0
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0.0
3.0
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25,0

20003
XCEFT

EARTH

DEDICATED

Total Earth Stations in Service

(TVROs Not Included)
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TECHNICAL A% ESTIMATED

STATIONS
SHARELD
CFs
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0.0
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CASE #1 ~— SOME DEMAND FOR EACH BAND —— NO LIMIT EIN'IZ.—E:AND OR kL~BAND
CAFACITY EXCEFT STRILTLY TECHNICAL AS ESTIMATED.

HIGH TRAFFIC FORECAST

NUMEBER OF C~BANDL EARTH STATIONS
YEAR TRiNE ITNG DEDICATED SHARED
CFs CFE&

24,0 2.0 G230
20,0 &Hl. O 74.0
24,0 7=,0 @0,0
45,0 107.0 1z1.

1.0 1520 1,_,n
T 216.0 SeS5.0
59,0 Zo2.0 3%4,.0
L2 0 475, 0 EE )
HE.0
75,0
S0.0
24,0
102,0
114,60
1258,0

145,00 PR,
157.0 ST
174.0 =S017.0
1E33.0 s P

120, 0
174.0

Table 11-6a

Total Earth Stations in Service
(TVROs Not Included)
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CASE #1 -— SOME DEMAND FOR EACH BAND —- NO LIMIT ON C—-RAND OR EL-RAND
CARPFACITY EXCERPT STRICTLY TECHMICAL AS ESTIMATED.

HIZH TRAFFIC FORECAST
NUMBER OF KU-BAND EARTH STATIONS

YEAR TRUNE. ING DEOICATED SHARED
CFa CFs
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Table 11-6b

Total Earth Stations in Service
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CASE #1 —- ZOME DEMAND FOR EACH BAND —= NO LIMIT ON C-BAND OR Hi-BAND

CAFACITY EXCEPT STRICTLY TeCHNICAL A% ESTIMATED.
HIGH TRAFFIC FORECAST
NUMBER OF FA-BAND EARTH STATIONG
YEAR TRUNEING DEDICATED SHARED
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2 —— TOTAL C-RBAND

NLUMBER OF C—-BAND

TRLINE I MG

24,0
20,0
237.0
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Table 11-7a
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(TVROs Not Included)
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11-24

STATIONE
SHARED
DI =

(R
(WY
O, O
0,0
0,0
O, 0
Q.0
., 0
Q.0
O, )

O, O

ZaTE

el b

S1%5.0

SITE.0

OR  L-RAND



CASE #& —— TOTAL C-BAND FREFERENCE —— NG LIMIT AT C-BAND OR kuU-EAND
EACEFT FLURELY TECHNICAL AT ESTIMATED.

HIGH TRAFFIC FORECAST

. NUMBER OF EA-BAND EARTH STATIONE
YEAR TRLUINE ING ODEDICATED SHARED
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#3 —— EVEN SFLIT BETWEEN £ AND KU BY 20003
NGLIFMIT AT C—RAND OR EU-BAND ELCEFT TECHNICAL
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TRUNE TNG DEDICATED
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i —— EVEN

SPLIT BETWEEN C ANDC R BY 20003

FORECAST

TRAFFIC

-
[

-~

™~ |‘_I.'| .p'.. l':-Zl !‘-:I —-

"y |:|E| '::j i

"~

TR
[xx]
N

Ly

iy
X

o
Z

SO IR N
D000 08 -a

o
"~

a0

SRR B R I B O Y I

Ll

" IR R T Y "

"~

NLIMBER OF reLi—BAND EARTH STAT
TRUNS ING DEDICATED =i
[ = (% N

O, 0 0, 0 0,0
Q.0 Q.0 W PY]
Q.0 0.0 0,0
4,0 S0 2.0
5.0 11.0 14.0
7.0 21.60 2.0
2.0 37.0 45,0
11.0 102,00 125.0
17.0 171.0 210,00
21.0 21EL0 SRS O

114,90 LAG 2.0 TS
154,40 SZ07 .0 4042, 0
197 .0 414650 S0l L, 0
241.0 427 .0 TS, O
231,00 42750 LOZL L0

-y [—

220 SO/ 4,0 Hool.O

Table 11-8b
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CASE #Z —— EVEN SFLIT BETWEEN C AND kU BY ZO000j
NO LIMIT AT C—-pANMD OR rU-BAND EXCEFT TECHNICAL

HIGH TRAFFIL FORECAST
NUIMBER COF RA-RAND EARTH

YEAR TRUMNE ITNG DEDICATED
CFsS C
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CASE #1B —— S0ME DEMANLD FOR EACH BAND —-= 24 TRANSFONDER LIMIT AT C-BAND
24 TRANSFONDER LIMIT AT KU-BAND

HIGH TRAFFIC FORECAST
NUMEBER OF C—-BAND EARTH STATIONG
YEAR TRLINE TNG DEDICATED SHARED
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Total Earth Stations in Service
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CASE #1E -- SOME DEMAND FOR EACH EBAND —-— 24 TRANSFONDER LIMIT AT C-BAND
24 TRANSZFONDER LIMIT AT EU-BAND

HIGH TRAFFIC FORECAST

NUIMBER OF EU-BAND EARTH STATIONS
YEAR TRUNE. ING DEDICATED SHARED
RS LS
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CASE #1B —-
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t

(¥
L

b

!

Ny
&3

[ 1 I TR I U

\
]
SO0 N D

R I I R B
b R SR Ty Sy Ty B By
D BRI T SN NT N I3 N 0% B S S

RO

"
v o

l‘JH'—L’—LI—L]—Lp‘HHHHH'—LHHHHHHH'—L
)
]
-

-

)
'’
=4
'

TRAFFILC

SOME DEMAND FOR EACH BAND —— 24 TRANSFONDER LIMIT AT
24 TRANSFONDER LIMIT AT rU-BAND
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TRUNE ITNG DEDICATED SHARED
LRSS CP=
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Total Earth Stations in Service
(TVROs Not Included)
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CASE #ZB -— TOTAL C-BAND FPREFERENCE —— 24 TRANSFONDER LIMIT AT C-EBAND
24 TRANSFONDER LIMIT AT kKU-BAND

HIGH TRAFFIC FORECAST
NLUMBER OF C—RANDN EARTH STATIONZ

YEARR TRNETNG LEDICATED SHARED
CP= CFS
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(TVROs Not Included)
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CASE #2R —-- TOaTAL C-BAND FREFERENCE --—

24 TRANZFONDER LIMIT AT KU-EBAND

HIGH TRAFFIC FORECAST

NUMEBER OF EL-EBANLI EARTH
YEAR TRLUNE ING DEDICATED
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Total Earth Stations in Service
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SHARED
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CASE #2B —— TOTAL C-BAND FREFERENCE —— 24 TRANSFONDER LIMIT AT C-EBAND
24 TRANZPONDER LIMIT AT EU-BAND

HIGH TRAFFIC FORECAST
NUMBER OF kA-BAND EARTH STATIONS

YEAR TRUNME TNG LDEDICATED SHARED
LFS CF5
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Total Earth Stations in Service
(TVROs Not Included)
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CASE
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TRAFFIC

EVEN =FLIT BETWEEN C AND
24 TRANSFONDER LIMIT AT
24 TRANSFONDER LIMIT AT
FORECAST

NUMBER OF C—
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20,0
2E.0
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Table 11-11a

FLLBY 20003
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DEDICATED
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Total Earth Stations in Service

(TVROs Not Included)
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STATIONS
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CASE #ZB -— EVEN SFLIT BETWEEN C AND KU BY Z000;
24 TRANSFONDER LIMIT AT C-BAND
24 TRANSPONDER LIMIT AT kU-BAND
FORECAST
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YEAR

Q0
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TRAFFIC

NUMEBER OF kFU-BAND EARTH STATIONS

TRLINF. ING DEDICATED
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Table 11-11b

Total Earth Stations in Service
(TVROs Not Included)
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SHARED
CFs
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CASE #3B —— EVEN SFLIT BETWEEN C AND KU BY 20003
24 TRANSPONDER LIMIT AT ©C—RAND
24 TRANSFONDER LIMIT AT KU-BAND
HIGH TRAFFIC FORECAST

NLMBER OF EA-BAND EARTH STATIONS
YEAR TRUNE ING DEDICATED SHARED
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Total Earth Stations in Service
(TVROs Not Included)
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SOME DEMAND

TRAFFIC FORECAST
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FOR EACH BAND —-
TRANSFONDER LIMIT AT kU-BAND

NUMBER OF C—EBAND
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24.0
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24,0
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S, Q
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L2.0
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24,0
102,0
114.0
1220
120.0
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Total Earth Stations in Service
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Table 11-12a

DEDICATED

(TVROs Not Included)
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24 TRANSFONDER LIMIT AT C—EAND

EARTH STATIONS

SHARED
P
A0
74.0
P00
121.0
184.0
2650
294, 0
o210
214.0
11246.0
1503.0
SO0
P I
25190
2706, 0

2790, 0

SEADLO
IPILL0
DRI LD



CASE

HIGH

L B

o
DO

SN N G U s G Ry e DG G0 N0 B e R = D

S

S e
41

[
5
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Total Earth Stations in Service

(TVROs Not Included)
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<4 TRANSFONDER LIMIT AT C-BANLD
36 TRANSFONDER LIMIT AT KU-BAND
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CAZE #1C ~-— SOME DEMAND FOR EACH BAND —- 24 TRANSFONDER LIMIT AT C-RBAND
26 TRANZPONDER LIMIT AT EU-BAND
HIGH TRAFFIC FORECAST

NLUMBER OF EA-BAND EARTH STATIONG
YEAR TRLUNE.ING OEDICATED SHARED
LFE CFE
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SECTION 12
ECONOMIC ANALYSIS

Satellite communications has developed into a rather large business,
with total investment in current satellites of over $1 billion in the U.S. domestic
systems alone. According to a recent article, the worldwide communications
satellite market is approaching $3 billion per year, excluding ground segment. Thus
it is important that we examine the effect of our postulated future satellites on

the overall market, in economic terms.

The costs of satellites launched during each scenario run in Task 2 was
estimated using the SAMSO cost model. Launch costs were estimated'based on the
weight of the satellite and the costs of known launch vehicles. All these figures

were expressed in 1983 dollars to provide a common standard.

Table 12-1 shows the estimated costs for the example earth station
configurations that we used. Figures are again in 1983 dollars. These costs were

estimated using data of our own, plus information developed by Western Union.

Tables 12-2 through 12-13 show the costs of meeting the earth station
requirements postulated in Section 11. We have not included costs for networking
of trunk and shared CPS earth stations in these costs. A method of estimating the

magnitude of the networking costs is described below.

Space segment costs are also shown. Investments for known satellites

(i.e. - not generated by the program) are not included.

Space segment costs are also shown, but only for satellites launched by
the simulation program. Thus, the cost of known satellites is not included. Space
segment costs include the satellite development and unit costs, launch costs, and
launch support costs. No TT&C or operations cost are included.
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Table 12-1
Estimated Installed Earth Station Costs
($ millions, 1983)

Dedicated Shared

Trunking CPs CPS

C-band 2.0 0.40 0.50
Ku-band 2.4 0.48 0.60
Ka-band* 2.4 0.35 0.45
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CASE #1 —— SOME DEMAND FOR EACH BAND —— NO LIMIT ON C-BAND OR FL-BANLD
CAFACITY EXCEFRT STRICTLY TECHNICAL A% ESTIMATED.
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Incremental Investments

12-3




CASE #2 —— TOTAL C-BAND PREFERENCE —— NO LIMIT AT C-BAND OR FU-BAND
EXCEFT PURELY TECHMICAL AZ ESTIMATED.
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CAZE #2 —— EVEN SPLIT BETWEEN L AND kid BY 20003
NO LIMIT AT C-BAND OR KLU-BAND EXCEFT TECHNICAL AS ESTIMATED
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CASE #1 —-- SOME DEMAND FOR EACH BAND —— NO LIMIT ON C-BAND OR FLU-BANLD
CAFACITY EXCERPT STRICTLY TECHNICAL AT ESTIMATED.
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CASE %2 —— TOTAL C-BAND FREFERENCE —— NO LIMIT AT C~BAND OR EL-BANLD
EXCEFT FuRELY TECHNICAL A% ESTIMATED.
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CASE #3 —— EVEN &F EN C AND KU BY 20003
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Earth Station Networking

Trunking Stations

Trunking stations take advantage of a terrestrial network, serving a
relatively broad area, which colleet traffic for both long and short haul. A central
concentration point or points serve the earth station directly, and it may be
collocated with one of these. In the carriage of telephony, and lower speed data,
for which an established terrestrial network exists, the added costs for the earth
station networking will consist simply of whatever high-density links are needed to
transport the traffic from the collection point(s) to the earth station. In a typical
case, this would be a mierowave link of one or more hops, or possibly an optical
fiber links (for example, as planned for the various Teleports serving larger cities).
Typical costs are shown in Table 12-14 for these links. These costs vary with
length and the link capacity.

Shared CPS Stations

The distinction between trunking and shared CPS may become a bit
blurred, but we are not trying to define a generalized earth station taxonomy here,
simply to show some useful categories. Networking costs for shared CPS stations
could be minimal, as for instance when the station serves a single building or an
industrial park. The same local area network that may provide communications
within the service area can furnish connection with the earth station. This would
involve essentially no added cost.

At the other extreme of "shared CPS" (and probably well into the
blurred region) are networks such as we studied in a previous work for TRW.
Figure 12-1 shows the postulated earth stations and connections for a network
serving the Washington, DC metropolitan area. Such a configuration has much of
the total cost concentrated in the terrestrial network. In faect, in this analysis, we
assumed that the network would provide local connections at a significant level,
increasing the total traffiec in the system by 50 percent. Table 12-15 shows the
cost allocations for this particular configuration.

12-15



Table 12-14
Sample Networking Costs Fiber Opties Costs Per Kilometer

Transmission Rate (Mbps)

45 90 135 270
Number of Fibers 4 4 4 4
Cable Cost 1,700 1,700 1,700 1,700
Cable Installation 8,000 8,000 8,000 8,000
Repeater 865 1,075 1,265 2,530
Total 10,565 10,775 10,965 13,630

Summary Digital Microwave

Radio Equipment Costs

Item Costs
Transceiver $12,500 - 15,000
Repeater 25,000 - 30,000
Multiplexer 2,500 + $100/56k

channel

Cable Coaxial Costs
($/strand mile)1

Underground
Transmission Hardware $5,000
Construction 7,800
- 27,0002
Total 12,800
- 32,000

1One cable strand mile includes all trunk and feeder cables supported by one mile
of aerial messenger strand or located underground in one mile of trench or duct.

2Depends on nature of surface (paved or unpaved), soil type, type of conduit vs.

direct burial.
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Table 12-15
Ground Network Costs Summary - Optical Fiber

Investment
) Annual
Earth Total Leased
Interconnect Station Diversity Investment Line
Cost ($K) Cost ($K) Cost ($K) Cost ($K) Cost ($K)
TDMA
Washington 5,429 867 306 6,602 12,035
FDMA
Washington (W) 5,756 1,778 183 7,717 12,035
(N) 5,521 1,508 287 7,316 12,035
HYBRID
Washington (W) 5,916 1,253 173 7,342 12,035
(N) 5,265 1,370 272 6,907 12,035

(W) = wide beam (N) = narrow beam

Our inclination is to place such networks as that of Figure 12-1 in the
trunking categor'y, and to limit the shared CPS designation to less complex and
geographical dispersed setups. The implication in a shared CPS arrangement is
that, for a relatively small additional cost, enough users can be included in the
network, sharing the capital cost of the earth station, to bring it within affordabili-

ty for all of them.
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Summary

Table 12-16 summarizes the investment costs for space and earth

segments under the scenarios.

Table 12-16

Cumulative Investment Costs

for Scenario Runs
(millions of 1984 dollars)

Space Ground

Scenario Segment Segment
Low Traffic

1 7,545 4,797

2 8,072 4,576

3 7,469 4,682
High Traffic

1 10,528 14,270

2 11,239 14,150

3 ‘ 10,340 14,340

1B 13,143 13,868

2B 12,287 13,337

3B 12,287 13,330

1C 11,506 14,203

2C 11,500 14,264

3C 10,330 14,315
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SECTION 13
SUMMARY AND CONCLUSIONS

This report has covered a rather wide range of topies relating to
satellite communications in the U.S. To one extent or another, of course, the
various results depend on one another and on assumptions that we made during the
course of the study. Some of these assumptions are more arguable than others, for
instance, our selection of data rate for a CPS transponder, and our speculations
about the courses of action of the several long-haul carriers using satellite
transmission. Given the traffic forecasts that we began with, however, we are of
the opinion that no reasonable variation of assumptions would change the magni-
tude of either the high or low traffic forecast by more than a factor of about two.

Historical Perspective

From the beginning of the concept of the large (perhaps multi-purpose)
satellite, there has been an implicit assumption, by ourselves as well as others, that
the advantages were compelling enough that industry would be drawn to use such
spacecraft. We are now at a stage where we can see that, while there are
advantages, there are drawbacks as well, and logistical difficulties. There are
probably economies of scale available, at least on two fronts: sharing of the
housekeeping functions, and connectivity. However, there are drawbacks of scale
as well: the need to aggregate considerable traffie, the specialization required of
the satellite design, and the increased exposure to single-point failures, which ean
probably never be completely eliminated.

The investigation of the 30/20 GHz band shares some of these difficul-
ties, but has some Eounterbalancing advantages. There has always been a need,
eventually, for additional frequency space. This is the single largest factor that
argues for 30/20 GHz development. The technology developments that have been
included in that program, such as multi-beam antennas and on-board switching,
have applications at the other bands as well. However, the assumption that a 30/20
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GHz satellite would necessarily be large, heavy, and complex is not entirely
justified. Simpler designs are possible, and in the time frame encompassed by this
study, seem to offer quite useful service (see, for instance, the Hughes concept
designs based on FDMA).

Industry Views

The advantages of the current class of domestic satellites are well
known. Lovell & Fordyce point out that: "The North American Domsats have been
standardized around the Delta and Shuttle/SSUS-D launch vehicles. As a result of
this standardization, these domsats have enjoyed a relatively long production run.*
Part of the superior figure-of-merit of these designs can be attributed to the
economics of production and part to the lower cost of the Delta class launch
vehicle system." Since every operator wants to get the most satellite for his
money, this cost advantage is a compelling one. Competing designs will have to
prove that they can achieve the same level of effectiveness.

That new designs involve new risks has been clearly shown by the recent
troubles of INSAT A and B during deployment, and of the IUS during transfer of
TDRS. It is clear that larger spacecraft will involve both more complex deployable
mechanisms, and new launch vehicle systems. Even though the operator is (or can
be) insured against such problems, the premiums and indeed the viability of the
launch insurance business depend on the probability of failure remaining relatively
small and consistent.** In addition, while an established operator could weather a
failure, using existing (if aged) spacecraft, substantial delays of startup could be a
complete disaster for a new entrant. (In spite of this, new entrants have tended to
propose the more ambitious designs, presumably for reasons of product differentia-

tion and new marketing approaches.)

* - as have the Delta Class vehicles as a consequence.
** - launch insurance premiums have not covered losses over the past few years.
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Hughes, while disavowing increased buss size, has unveiled a design
recently that employs a despun solar array attached to a spin-stabilized buss. This
gives a considerable increase in power, with a modest increase in complexity,

mostly in deployables.

American Satellite's Otto Hoernig commented recently that his firm
sees the three-band hybrid as the satellite of the 1990s. The reasons are of note:
that an interconnected hybrid allows easy incorporation of existing earth stations
into a network expanded in frequency coverage. However, Amersat's next
generation satellite is postulated to be more modest than that, with 44 to 48
transponders and C-band/Ku-band coverage like the Amersat birds now under

construction.

Market Stability

Current satellites are beginning to depart from the "standard" 36 MHz
transponder, but primarily for reasons of weight and power constraint, rather than
a desire to serve specialized markets. The relative instability of the market is
probably somewhat to blame for this. Take the TV market as an example. This
market has been populated with many users whose financial stability is unknown, as
well as with profitable programmers. It would have been a somewhat risky step to
pioneer the use of narrower transponders, say, 24 MHz, for TV distribution when
the size and stability of that market segment was uncertain. In addition, one would
have required many cable systems and other users to change their receiving

equipment to accommodate the different bandwidth and channel centers.

While there may be some specialization of transponder characteristics
to serve certain markets, there will be every incentive to maintain as much
flexibility as possible, in order that other markets may also be tapped. To the
extent that markets become more stable, as TV distribution promises to do, the
satellite operators may find it desirable to invest in some specialization in order to
reduce costs or improve performance. However, the nature of the satellite
industry tends to discourage this somewhat. Satellites typically serve emerging
market areas, because a satellite system can provide economical connectivity even

when the users are few and far between, too sparse for cost-effective terrestrial
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connections. Thus the satellite operators will often be providing capacity to
communications technologies that are changing rapidly and market segments that
are far from stable. In such an environment, the best approach is to remain
flexible and attempt to satisfy as many different kinds of users as possible. This
tends to militate against more specialized designs.

Conclusions from the Scenarios

With the currently-mandated 2 degree spacing at C-band and Ku-band,
the scenario runs clearly indicate that the average capacity needed at each band is
relatively modest for the Low traffic cases, and feasible, but rather advanced for
the High traffic. It's worth noting that the 2B and 3B scenarios used every slot,
even at 30/20 GHz. However, it would be instructive to investigate different ways
in which this capacity might be provided. The scenario runs present one way, but
not the only way, in which satellites might be launched to satisfy demand. The
various possibilities might be loosely classified as: Multiple Small Satellites (as in
the scenarios); Multiple Hybrids of modest specific capacity; Rapid Transition to

Large Satellites.

Multiple Small Satellites

This approach is explicitly taken by the scenario program, mainly
because of the complexity of trying to form appropriate hybrid satellites. The
result is a skyfull of spacecraft, with all C-band and Ku-band slots used up. Of
course, "small" as used here is relative — these satellites are in many cases

considerably larger than current spacecraft.

We don't really think that actual developments will follow this line. For
one thing, a number of system operators have stated their express intention to
continue using hybrid spacecraft or to change to hybrids. For another, the use of
completely separate satellites would worsen the interconnectivity problem com-
pared with hybrids. Finally, the use of the same spacing interval at both (or all)
bands makes for an easy transition to having all slots able to accommodate a hybrid

spacecraft.

13-4



Multiple Hybrids

This is a more likely path of development, and could result in some
satellites of considerable size. These would certainly occupy the full Shuttle bay
(along with their upper stage) and could be considered to be "platforms". However,
jf all slots are utilized, the average capacity could be modest, and an average
satellite, if launched as a hybrid using two bands, would have a total capacity of
about 75 transponders in the year 2000. Satellites launched in the last two or three
years of the period (again, as two-band hybrids) would be in the 100 to 150
transponder range — quite large by today's standards. A hybrid design including all
three bands would be around 175 to 200 transponders, and interconnections would
present a challenge. While this would certainly be considered a "platform", the
average satellite by the year 2000 would still be considerably below this capacity.

The interesting thing that results from thinking about this alternative is
that it very clearly leads into the use of platforms (or possibly larger cluster
satellites) because the year 2000 seems to be right on the threshold of necessity.
In most of the runs, 30/20 GHz has just come into significant use, and the sizes of
satellites at the other bands are all such as to require many spot beams. The
connectivity —both in frequency and in spatial terms — will have become a sore
spot with many users. In addition, the technology should certainly be ready.

Other Factors

The two scenario realizations discussed above have one thing in
common: many, many satellites, with all slots full at C and Ku-band. One
significant result is that this will be an interference-dominated environment. As
noted earlier this causes significant reductions in the capacity per transponder
compared with a predominantly thermal-noise dominated environment. One
response to such constraints will be an increased use of interference-tolerant
modulation schemes. Error-correcting coding and spread-spectrum modulations are
possibilities, both of which result in a loss of some spectral efficiency. There will
also be difficulties associated with polarization plans, transponder bandwidths, and
EIRP inhomogeneities.
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Rapid Transition to Large Platforms

This realization implies that the satellite operators make a fairly fast
transition to large platforms, rather than having a very large number of smaller
satellites filling all available slots. Such a transition might occur in response to
the pressures noted above, and as a way to preserve the trend toward smaller earth
stations. The resulting satellite configurations would feature multiple frequency
bands with on-board interconnection, probably intersatellite links, and would quite
possible be segregated in the orbit from satellites providing point-to-multipoint
distribution, such as for TV. Such segregation would allow considerable inhomo-
geneity between spot-beam and area coverages, without interference.

Given the technology that will be likely to be available during the study
period, such spacecraft might begin to appear after some of the concepts have
been proven operationally. Initial designs, launched in the first half of the 1990s,
would be of sufficient size to occupy the entire Shuttle bay, together with upper
stage, and would probably have a total capacity of 150 to 200 transponders. This
could (and probably would) be a two- or three-band hybrid payload. However, we
think that a wholesale transition to large platforms is unlikely for several reasons,
in spite of its technological feasibility.

First, there is a considerable incentive for the satellite operators to file
applications for replacement satellites for all of their current operating satellites.
If they were all replaced with considerably larger spacecraft, a large oversupply
would develop. Second, the FCC has already made it clear that the potential
problems with 2 degree spacing — and the resulting large number of satellites ——
are, in its opinion, solvable. Therefore, even if the existing system operators
decided in mass to use fewer slots and higher capacity, the FCC could turn around
and award the slots so vacated to still other, newer, entrants. This could worsen
the interference problem, cause oversupply, and create other difficulties.
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Sensitivity to Traffic Variations

Reduced Low Traffic

If the Low Traffic forecast were reduced to one-half its present value,
little or no advanced technology would be needed to satisfy demand through the
year 2000. At the time, the average capacity per slot needed would be 24
transponders; this could obviously be supplied by C-band and Ku-band satellites of
conventional design. However, we think the probability of traffic being this low is
quite small.

Increased High Traffic

Increasing the High Traffic forecast to twice its current value would
have profound effects on the satellite requirements. Table 13-1 shows a scenario
summary for Case 1 run with twice the High Traffic values, but otherwise
unchanged. Table 13-2 reproduces the "normal" Case 1 for comparison.

The surprising thing is that there is relatively little difference in the
average satellite capacity for the two runs. However, this arises because when the
traffie is higher, the high capacity satellites are launched sooner. In fact, the
majority of the satellites that are launched early in the period are replaced
prematurely because of the need for added capacity. Of course, another major
difference is that all the 30/20 GHz orbital slots are filled in the double-traffic
case, and that demand outstrips supply by 1996.

The Role of Satellites in the Overall Communications Structure

Satellites are, and will remain, ideally suited for broadcast applications.
It is hard to conceive of a development in terrestrial communications technology
that would undermine this advantage, at least in the United States. There are a
number of countries whose physical extent is limited enough that it is actually less
expensive for them to install a terrestrial broadcast system (for TV and radio) than
to launch a satellite or even share a satellite for DBS purposes. However, our large
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land area and common interests, along with our seemingly inexhaustible appetite
for programming, will ensure a continuing role for satellites in broadcast. But
what of point-to-point communications?

In point-to-point communications, satellites have been used mainly to
enable the "great leap"” whereby new communications modes are offered, or
conventional modes expanded or opened to competition. This leap is generally
necessary because terrestrial communications systems suffer from a "eritical
mass" or "eritical density" syndrome. Until and unless the density of users becomes
relatively high, the distance-sensitivity of terrestial links makes the cost of the
system exorbitant. An added user is likely to cause the system to incur a very high
added cost. Once the density of users is high enough, the incremental cost per user
drops and continues to drop as the user base expands. In a satellite system,
different rules prevail.

An additional satellite user always incurs (roughly) the same incre-
mental cost no matter where he is located. The network can therefore add service
points and grow without penalizing any particular users with high costs. This
feature makes satellites ideal for new systems or modes of communications, where
users are initially few and far between. This is why satellites have been used for
trans-oceanic communications, greatly expanding the available facilities and
improving quality, and for new services such as wideband data communications and

videoconferencing.

As such services become better established, and the density of users
increases, terrestrial technologies begin to encroach. This process can readily be
seen at work today. It is our view that several factors will keep satellites viable
for many years. Among these are: the continuing existance of remote users, the
competitive environment in the U.S., and the economic advantage of existing

facilities.

Remote Users

Despite the fact that a large fraction of the U.S. population lives and
works in areas of high population density, there are and will increasingly be users in
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remote areas. Some of this will arise from moving the workplace to the home in
information-intensive industries. Some will arise from information needs to the
job. Just as there are still places where it is uneconomical to extend the power
grid, there are places where it will be too expensive to extend the information grid
except via satellite.

Compeititive Environment

With a monopoly service, use of satellite to access areas already served
by terrestrial systems would be foolish. However, in the current competitive
environment in the U.S., each entity which wishes to offer service to an area in
competition with those already serving that area has the possibility of establishing
a competitive beachhead by satellite. New services may be different in various
ways from existing ones; there may be certain value-added features, for example.
Re-selling transmission capacity acquired from existing carriers may be uneconom-
ical, or the new entrant may simply desire to garner all the potential profit for
itself. Thus, there are many possibilities for continued use of satellites for new
applications. These will almost always begin as low-density services, well-matched
to satellite carriage.

Another outgrowth of competition will be the offering of services not
traditionally identified with the Fixed Services bands. For example, given the
necessary technology development, mobile services could be offered using Ku-band
or Ka-band. If the U.S. should decide that competition with INTELSAT in some
areas is permissable, service to offshore mineral exploration units could be offered.
We anticipate that use of satellites will evolve away from simple duplication of
terrestrial facilities and services, and toward the provision of services that
satellites can do better than terrestrial systems can, along with services that
simply cannot be offered terrestrially.

Existing Facilities

Even though advances in terrestrial transmission techniques, such as the
current installation of optical fiber systems, will tend to compete very effectively
with satellite transmission for newer forms of traffie (such as data and videocon-
ferencing), satellite facilities will also continue to be installed apace. By the time
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that an alternative system becomes widely available for a particular set of users,
they may already have a substantial investment in the satellite facilities, which
they would be loath to discard. Their equipment and operating procedures will
have been tailored, to some extent, to the satellite link, and it may very well offer
them service far superior to that which they had received in the past. Thus, there
will be a large established base of satellite users, and very substantial incentives

would have to be offered to induce them to change systems again.

This "inertia" factor will be aided and augmented by the growing trend
toward integrated digital facilities. Eventually, there will be virtually transparent
interconnection among different types of transmission media, with proper flow and
error control so that the end user doesn't have to bother with specifying particular
arrangements. Except for this transmission delay, satellite facilities will be

indistinguishable from terrestrial ones.

In addition, with competition will come cost-allocated services. This
will tend to provide incentive for lower-density and remote users to use satellite
links, because the possible cost advantages of terrestrial systems will not be

realized for them.

Footnote: The Year 2000

The year 2000 has become something of a touchstone for long-range
planning. Indeed, one sometimes gets the impression that there is a veil drawn
across time which prevents us from seeing beyond that date. The usual short-term
focus of commercial firms, for whom five years is "long-range", probably causes

some of the reluctance to look beyond the end of the century.

However, it's our opinion that some interesting things will just be
beginning to happen by the year 2000, in communications and in space generally.
We are already in a position where the firm plans of communications carriers today
will affect the actual events of the early 1990s. This leaves relatively little scope
for action if we limit our future vision to the year 2000. To alter the course of

events requires either enormous power acting in a short time, or a long time for

13-12



moderate influence to be effective. We respectfully note that we (and NASA) are
more likely to be in the latter position than the former. Therefore, we need to
look further and identify decision points that are within the range of our influence.
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B.1 Antenna System

The antenna system model has two major elements: feeds and
reflector. Seven feeds are assumed for each beam, and their mass is modeled by
using Table B-1,

Table B-1
Assumed Mass per Feed Hom (kg)

Downlink Uplink
C-band 0.16 0.08
Ku-band 0.025 0.019
Ka-band 0.01 0.005

The reflector diameter is scaled from an approximate CONUS-coverage
diameter (ignoring the asymmetry of the coverage area). Scaling is:

DN =3x D1 X \/ N
where N = number of beams.

The factor of 3 allows for scanning. Reflector diameter at Ka-band is
constant, since the spot-beam size is assumed to be a constant 0.35%. The basic
sizes are shown in Table B-2.



Table B-2
Reflector Sizes for N =1 (meters)

Downlink Uplink
C-band 0.74 0.5
Ku-band 0.25 0.22
Ka-band* 5.25 3.85

*for N =136

Reflector mass was approximated from Figure B-1 by two simple

relationships:
For D 4.6 meter:
= 1.95 .
mass = 2.3 D (kg) (solid reflector)
For D > 4.6 meter:
- 2.4
mass = 182 D" (kg) (deployable reflector)
The dividing line was based on Shuttle bay diameter; another figure

could just as well have been used as a crossover point. Note that the SAMSO model
doesn't account for the increased complexity of the deployable reflector.

B.2 Communications Electronics
B.2.1 Receivers

These are assumed to be installed 4 per beam at C-band and Ku-band,
to handle dual-pol and 4-for-2 redundancy. At Ka-band, single-pol and 2-for-1
redundancy is assumed. Masses and power consumption are shown in Table B-3.

B-4



Table B-3
Receiver Mass and Power

(each)
Mass Power
(kg) (watts)
C-band 1.1 5.0
Ku-band 1.5 5.0
Ka-band * 2.0 4.5
B.2.2 Power Amplifiers and Drivers

Driver amps were modeled using the values in Table B-4; redundancy

was incorporated by increasing the mass and power by 20 percent. There are thus

1.2 drivers per transponder.

Table B-4
Driver Amplifiers
(each)
Mass Power
(kg) (watts)
All bands 0.5 1.0

Power amplifiers were modeled using Tables B-5 and B-6. Redundancy

was again at 1.2 amplifiers per transponder.



Table B-5
Power Amplifier Specifications

Base RF output power (1980) and efficiency

C-band: 8.5 watts for CONUS coverage
(increases 0.25 dB per year)

Ku-band: 20 watts for CONUS coverage
(increases 0.25 dB per year)

30/20 GHz: 20 watts per beam
(increases 0.25 dB per year)




Table B-6
Power Amplifier Mass and Power
(Y = Year - 1980, N = Number of Beams)

C-band (SSPA)

Y
Po = Output power per transponder = 8.5Wx1.06
N
7 = ‘i = (Y-3)
= efficiency = 0.40 x (0.307 log P +0.58) x (1.024 )
Mass = 1.4 kg

Ku-band (TWTA)

P _ 20 W x 1.06 ¥

N

0.40 x (0.307 log P_ +0.58) x 1.019Y =3

Mass 2.35 log P_ - 0.278

Ka-band (TWTA)

P, _ 20wx1.06Y "8
7= 0.25x(0.307 log P +0.58) x (1.028"Y ~ )
Mass = 2.35log P_ - 0.278




B.2.3

B.3

B.3.1

batteries during eclipse season.
Charging is assumed to take 22.8 hours maximum. Array degradation is:

Summer solstice requires 14 percent margin. Basic array power density is 18 W/kg;
this is assumed to improve 9 percent per year. We have also allowed an adjustment

Other Items in the Payload

Multiplex
C-band 0.7 kg/transponder
Ku-band 0.5 kg/transponder
Ka-band 0.3 kg/transponder

Matrix Switching for Multibeam

Mass: N3

1122 K8
Power: N3

925 .7 watts

Miscellaneous

5 percent additional mass

Electrical Power

Solar Arrays

The array must supply power to run all subsystems, as well as charge

0 -7 years 3.5% per year
7 - 20 years 2.0% per year

in density which varies with total power:

P
factor = Log _ 0.5
2

The array drive is sized at 0.01 kg/watt.

The charge cycle efficiency is 90 percent.



B.3.2 Batteries

Advanced batteries are used; the basic density is (by coincidence) 18 w-
hr/kg at 60 percent DOD. We assume a 5 percent per year improvement. There is
an allowance of 10 percent for redundant cells, and 17 percent for mounting,
connectors, and diodes. Maximum eclipse is 1.2 hour.

B.3.3 EPC Subsystem

The EPC was sized as follows:

mass = 6.8 kg + 0.00682 kg/watt

B.4 Other Subsystems and Parts

Other systems modeled include Reaction Control, TT&C, Attitude
Control, Thermal Control, Harness, and Structure. Structure was approximated by
the larger of:

36.7% of the mass of the payload, or

28.8% of the mass of (payload plus electric power system)

TT&C, ACS, Thermal and Harness are as shown in Table B-7.



Table B-7
Some Subsystem Relationships

MR = Communications Subsystem Mass
(mass in kg, power in watts)

TT&C:

mass 0.0394 MR + 21 kg

0.0488 MR +2TW

power
Attitude Control:

mass = 0.093 MR + 37 kg
0.665 Mp +4 W

power
Thermal Control:

mass = 0135 M
Harness:

mass = 0.26 Mp - 9.5 kg
(minimum 5 kg)




PROPULSION (RCS)

RCS is used for initial corrections, and stationkeeping. Typical budgets
are as follows:

Initial 60 m/sec
N-S 50 m/sec/year
E-W 1.5 m/sec/year
Repositioning 15 m/sec

The current hydrazine thrusters provide a specific impulse of 200 - 220
sec. Expected technology will give an ISp = 300 sec. with reliable hardware. To
compute the needed propellant mass, first calculate the total AV:

AV = 60 +15L (50 +1.5)
L = life in years
then:
_ AV
WBoL ©
gl
el SP
Wdry
where
WBOI‘. =  spacecraft BOL mass, kg
Wdry =  spacecraft dry mass, kg
w

BOL ™ wdry = propellant mass, Wp

p—t
n

thruster specific impulse, see

sp
_ 2
g = 9.8 m/sec
W = AV
1% gl
s -
e p 1 Wdry



Propellant tanks, plumbing and thrusters were included as follows:

max. 136 kg propellant per tank
(integral number of tanks)

mass per tank = 0,238 Mpo'72

where M p = mass of propellant per tank (up to 136 kg)

thrusters, plumbing = 0.023 x (spacecraft mass)





