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SUMMARY

An analytical evaluation of cryogenic propellant tank insulations for liquid oxygen/liquid
hydrogen low-thrust 2224N (500 1bf) propulsion systems (LTPS) was conducted. Insula-
tions, consisting of combinations of foam and multilayer insulation (MLID), as well as MLI-
only, were investigated. The purpose of the study was to analytically assess the benefits
of a combined foam/MLI system relative to MLI alone and develop an experimental
technology development plan for a combined MLI/foam propellant tank insulation system
concept.

Helium-purged MLI with no foam substrate was selected as the baseline insulation
concept. The MLI/foam combination insulations studied were purged with nitrogen.

Thermal analysis models of three baseline LTPS conceptual designs were developed to
predict heat leak into the propellant tanks during ground-hold, launch, and orbital mission
phases. The three LTPS studied were designed for shuttle orbiter launch and packaged
pa/ylog.d densities of 56 kg/m3 (3.5 Ibm/Ft 3), 40 kg/m3 (2.5 Ibm/Ft3) and 24 kg/m3 (1.5 Ib
m/Ft2).

Heat leak information generated by the thermal analysis models was used to evaluate the
influence of tank insulation design variables on LTPS and payload size and mass. The
insulation design variables studied included were; 1) foam and MLI thickness, 2) foam/MLI
interface temperature, 3) purge gas, 4) foam material and 5) purge enclosure heat transfer
environment during prelaunch operations. Insulation designs which maximized payload
mass were identified.

It was found that LTPS payload mass could be increased by replacing He-purged MLI with
MLI/foam combination insulations. Enhanced convection heat transfer in the purge
enclosure was required during purging to achieve the desired MLI/foam interface
temperature with a minimum thickness of foam. Purging with N3 rather than He reduced
tank heat leak during ground hold. Boiloff losses were therefore reduced and the
effective propellant density was increased due to a lower rate of boiling. Optimum
insulation thickness depended on payload density and whether or not foam was used.
Typically, He-purged MLI thickness ranged from 2.3 to 5.1 cm (0.91 to 2.0 in.). Optimum
MLI/foam insulations ranged from 3.3 to 5.8 cm (1.3 to 2.3 in.). In evaluating the effect
of MLI/foam interface temperature on payload mass, the lowest temperature considered
(1449K (~1009F)) gave the highest mass. Of the two foam materials studied, the
adhesively bonded Rohacell 31 was preferred over spray-on BX 250A due to its lower
density.

A preliminary test plan, conceptual test hardware designs and cost estimates for an
experimental program were developed. The objectives of the experimental program are
to measure the performance of foam-plus-MLI cryogenic insulation and to verify the
analysis of Task I. The plan provides for testing a one-half scale liquid hydrogen tank in
an existing vacuum chamber facility. The foam-plus-MLI system and, for comparison
purposes, a MLI-only system would be tested separately. Each test would simulate the
pressure and temperature environment of a complete STS ground hold, launch, ascent, and
orbit. The cost of the 24-month program was estimated as just over two million 1982
dollars. Possible variations on the plan and their effect on costs were briefly investi-
gated.






1.0 INTRODUCTION

This report describes a study of propellant tank insulations for cryogenic low-thrust
propulsion systems (LTPS). The work was performed for the National Aeronautics and
Space Administration Lewis Research Center (NASA LeRC) under contract NAS3-22824.

A 12 month technical effort was conducted to analyze multilayer insulations (MLI) and
MLI/foam combination insulations for application to LH3 and LO2 tanks on low thrust
propulsion systems launched from the Space Transportation System (STS) or Space Shuttle
as it is more commonly known. Insulation therma! performance, weight, volume and
impact on payload delivery to geosynchronous Earth orbit (GEO) were predicted and an
experimental plan to determine the thermal performance of combined MLI/foam insula-
tions was developed.

NASA and DOD studies have forecast the need for low-thrust chemical orbit-to-orbit
propulsion systems to transport acceleration-sensitive large space structures (LSS) from
low Earth to geosynchronous orbit. These propulsion systems will likely utilize the
cryogenic propellants liquid hydrogen and oxygen, thus requiring high performance
insulation systems to minimize propellant losses due to environmental heating.

MLI combines the advantages of low weight and excellent on-orbit thermal performance.
Disadvantages of MLI are high pre-launch heating rates and the complexity of a helium
purge system which is required to preclude the condensation and solidification of water
vapor and air within the MLI blankets. The high pre-launch heating rates for MLI cause
not only high vent rates, but also yield lower-density propellants due to the boiling of the
cryogenic liquids, and thus the requirement for larger volume tanks. The use of foam as
an insulating material eliminates the need for a helium purge system and greatly reduces
the pre-launch heating rates. However, foam has unacceptable on-orbit thermal
performance for the multi-day missions anticipated for the low-thrust chemical propulsion
systems.

NASA's current technology program is focused on LTPS/LSS combinations which will
utilize a single Space Shuttle launch for transport to low Earth orbit. Shuttle constraints
add two additional considerations to the selection criteria for LTPS cryogenic propellant
tank insulation systems: 1)some LSS have such low densities when packaged within the
Shuttle cargo bay that the total LTPS/LSS payload is volume-limited so that emphasis on
minimizing the LTPS weight is not warranted, 2) purging of a LTPS cryogenic tank MLI
system within the confines of the Shuttle cargo bay adds the complexity of warm purge
requirements for other occupants of the cargo bay which cannot tolerate a low
temperature environment.

The work described in this report provides an analytical evaluation of cryogenic tank
insulaton systems which combine MLI with a foam substrate. The purpose of the study
was to: 1) select combined insulation systems which encompass the advantages of each
insulation component and 2) assess the combined systems' relative benefits as compared to
MLI alone and, 3) plan further technology development for combination insulations for
cryogenic propellant tanks. Although the results are generally applicable to any STS-
transportable tankage, the study was restricted to the consideration of low-thrust
propulsion systems. These systems were assumed to employ a single 2224 N (500 lbg) LO>
and LHjy rocket engine in all cases. Specific impulse, at a 6:1 mixture ratio, was set at
4560 N-sec/kg (465 seconds). The LTPS and its LSS payload were assumed to form a



single STS Orbiter payload. Size and mass of the combined LTPS/LSS were restricted by
the Orbiter cargo bay volume and the STS payload placement capability. In developing
mission timelines for the study, it was assumed that LTPS/LSS erection, deployment and
checkout in the Orbiter cargo bay would require slightly less than 43 hours of mission
time. The LSS payload was assumed to be transported to GEO in the fully deployed
configuration.

1.1 STUDY OBJECTIVES
The objectives of this study were to:

a. Analyze and compare MLI and MLI/foam insulations for LTPS propellant tanks on
the basis of mass, volume, payload placement capability and vehicle complexity.

b. Plan an experimental program to measure the thermal performance of MLI/foam
insulations applied to cryogenic propellant tanks and verify thermal performance
prediction.

These study objectives were established to provide NASA LeRC with benefit/cost
information for planning insulation technology development programs for future low-
thrust propulsion systems and similar STS-transportable cryogenic tankage.

1.2 STUDY SCOPE

This study consisted of 3 technical tasks. The objective of Task I was to perform a
preliminary analysis to predict the thermal performance of candidate LHy and LO3
propellant tank insulations and evaluate the potential benefits of MLI/foam insulation.
The effect of foam substrates on propellant vent losses, and the density of tanked
propellants prior to launch, were determined. Combined MLI/foam insulations were
compared with MLI only. Comparisons were made on the basis of LTPS operational
complexity and on LTPS volume, mass and payload placement capability.

In Task I, 9 sets of propellant tank insulation designs were investigated. They consisted of
one design in which MLI was used to insulate both the LH, and LO2 tanks, 2 designs in
which MLI was used for the LO5 tank and MLI/foam used for the LHp tank and 6 designs
in which MLI/foam was applied to both tanks. Two foam materials were studied:
BX 250A, manufactured by the Stepan Chemical Company of the U.S.A.; and Rohacell 31,
manufactured by Rohm-GMBH Chemische Fabrik Company of Germany.

The insulations were assumed to be applied to the propellant tanks of a single baseline
LTPS design. The LTPS design selected for the Task| studies was a Boeing-developed
expendable orbit transfer vehicle (OTV) which is described in Reference 1. The OTV was
modified by replacing its RL10-1IB engines with a 2224 N (500 Ibg) thrust engine and
reducing tank size. A single large space structure (LSS) payload and mission were
selected for the Task I studies. Thermal analysis models of the STS Orbiter cargo bay,
payload, LTPS, propellant tanks and insulation candidates were developed and LH7 and
LO, tank heat leaks predicted for the 9 insulation candidates. Heat leak predictions
covered the entire mission, from ground-hold through payload separation at GEO and
insertion of the LTPS into a disposal orbit.

The results of the Task I thermal analyses were used to select 3 sets of MLI/foam
candidate insulation designs for further detailed analysis in Task II. A fourth insulation



design, MLI only, was also included in the Task II studies as a baseline concept,
‘representing current state-of-the-art. The objective of Task Il was to compare the
operational complexity, volume, mass and payload delivery capability of LTPS point
designs. Designs incorporating MLI-insulated tanks were compared with designs in which
combined MLI/foam insulations were used. For each of the LTPS point designs developed,
propellant tank insulation systems were optimized for maximum payload placement
capability.

During ground-hold operations, the MLI in the MLI/foam combinations was assumed to be
purged with Np. The 3 MLI/foam insulation combinations were designed for 3 tempera-
ture levels at the foam-MLI interface during ground hold purging. The interface
temperatures selected were slightly above the moisture dew point level in 3 grades of
commercially available N2. The baseline MLI was assumed to be purged with dry helium.

Three LTPS designs were considered in the Task II insulation studies. Each design was
developed for a sjpeciﬁc packaged payload density. The 3 densities selected were
56 kg/m3, 40 kg/m3 and 24 kg/m3 (3.5 Ibm/ft3, 2.5 Ibm/ft3 and 1.5 Ibm/ft3). Packaged-
payload density is defined as the mass of the payload divided by its volume in the stowed
configuration for launch in the STS Orbiter cargo bay.

Detailed thermal analyses similar to those performed in Task I were conducted for the 3
LTPS designs. The LSS payload defined in Task I was used in the Task II thermal analysis
models. Parametric thermal performance, mass and dimensional (thickness) data was
generated for the 4 insulation designs, as applied to each of the 3 LTPS. In addition,
parametric data was developed relating LTPS size and mass to propellant tank volume,
pressure and overall external length (including insulation). The parametric insulation and
LTPS data was incorporated into two payload prediction computer programs, TRADE and
TRADE2. These programs, described in detail in section 5, were developed to predict
the maximum LTPS payload for each insulation design. The predictions were used to
determine the insulation designs that optimized LTPS payload mass. The two programs
differed only in the assumed thermal environment in the purge enclosure during ground-
hold operations. The purge enclosure is an enclosed volume surrounding an insulated
propellant tank and is filled with purge gas. Typically a purge enclosure is formed by a
loosely fitting bag of plastic film (e.g., Kapton) fastened around the insulated tank. The
two thermal environments considered in the computer programs represented the two
extremes of the range of conditions that could occur in a purge enclosure. In one extreme
there would be no appreciable flow of gas in the enclosure and heat transfer between the
purge enclosure surface and outer layer of tank MLI would be by natural convection and
radiation. In the other extreme, forced, or enhanced, convection heat transfer between
warm purge gas and the cool MLI would dominate and the temperature of the outer layer
of the MLI would be at that of the purge gas. The assumed purge enclosure thermal
environment was an important consideration because it was found to have a profound
effect on tank insulation design and its impact on LTPS payload. Further discussions of
the effect of purge enclosure thermal environment on insulation design and performance
are contained in sections 4.2.1 and 5.5.

In Task Ill, a calorimetric test program was designed and planned to experimentally
evaluate the thermal performance of an insulated LH» tank. The specific objectives of
this effort were to: 1) identify the test variables and determine the range of variation of
each needed to evaluate insulation performance and verify thermal performance predic-
tions; 2) define instrumentation requirements; 3) develop preliminary test hardware



designs; 4) develop a test plan and schedule, and 5) estimate test program cost. The
insulation test program developed in Task IIl employed a % scale "boilerplate” aluminum
ellipsoidal dome LH; tank. The tank was approximately 209.6 cm (82.5 in) in diameter and
185.2 cm (72.9 in) in length.

Two tests were specified. The first test would be performed with the tank insulated with
helium-purged MLI. The results of this test would provide a comparison baseline for the
second test in which the tank would be insulated with a N2-purged MLI/foam insulation.
Testing would simulate a mission timeline including ground-hold purging, ascent, the
Orbiter bay doors-open condition, and free flight. Orbital average thermal environments
would be imposed on the exterior of the insulated tank by temperature controlled panels
surrounding the test article. Thermal performance of the insulation would be determined
by measuring LH2 boiloff and venting during each mission phase. Temperature sensors
mounted on the test article would allow the determination of specific heat leaks through
insulation, supports, lines, and electrical feed-throughs.

A 24 month program was identified with actual testing occurring in the 17th and 20th
months. Test program costs were broken down by major task, subtask and included labor
and nonlabor cost estimates. The total predicted cost for the test program, in 1982
dollars, was slightly more than 2 million dollars.

1.3 REPORT ORGANIZATION '

Study details are presented in the following sections of this report. Section 2 covers
specification and selection of candidate insulation materials. This section describes the
thermophysical properties of foam insulations, briefly discusses processes for the applica-
tion of foams to cryogenic tanks and describes foam substrate insulation conceptual
designs. Multilayer insulation is also discussed in section 2. Specific topics covered are
multilayer insulation design, insulation properties and venting characteristics.

Section 3 describes the LTPS conceptual designs developed to evaluate propellant tank
insulations. Design groundrules and assumptions are summarized and the LTPS mission is
then described. The technical approach followed in developing the LTPS conceptual
designs for Task I and Task II studies is described. Then, in the following two subsections,
the Task I and Task II LTPS design details are presented.

Section 4 covers the preliminary thermal analyses and prediction of propellant tank
thermal loads. The first topic in this section is the approach followed in developing
thermal analysis models. Then the predicted performance of insulations is presented.
Following the discussion of insulation performance, predicted heat leaks through insula-
tion penetration and tank supports are presented and discussed.

Section 5 describes the Task II tank insulation system optimization. Groundrules and
assumptions are described and the optimization approach is presented. Then, the
computer program developed to predict the impact of insulation thickness and type on
LTPS payload mass and size is briefly described. Parametric LTPS design data used in the
computer programs are described and the results of the insulation optimization study are
presented and discussed.

Section 6 describes a plan for an experimental program to measure the performance of
MLI and MLI/foam insulation systems and verify insulation performance prediction



models. Topics covered in this section include the recommended experimental approach,
a description of the experiment, preliminary designs of experimental hardware, cost
estimates, program schedule and recommendations and alternative approaches.






2.0 INSULATION CONCEPTS

This section describes the LTPS propellants tank insulation concepts selected in Task I of
this study. As described in the preceeding section, two basic generic types of insulation
were investigated. One generic type studied was multilayer insulation consisting of
alternating layers of metallized Kapton (polyimide) film and Dacron net spacers. This
insulation has been used as a cryogenic tank insulation for over 20 years. It was selected
as the baseline insulation because it is low-risk and is well-characterized. When used to
insulate cryogenic propellant tanks, MLI must be purged of all gases that would liquify or
freeze at liquid hydrogen or liquid oxygen temperatures. Helium is normally used for
purging because;

a. it can be easily purified to eliminate contaminants

b. its condensation temperature at sea level pressure is well below the temperature of
liquid hydrogen (219K (-422° F) ) and liquid oxygen (920K (-29490 F) and

c. it has a high mass diffusivity and readily diffuses through the MLI.

An important disadvantage of using helium as a purge gas is its relatively high thermal
conductivity. This characteristic of helium causes high heat leaks into the propellants
during fill and hold operations on the ground. Large heat leaks are undesirable because:

a. Boiling occurs, and the presence of bubbles in the liquid propellant reduces its
effective density. A lower density reduces the amount of useable liquid propellant
that can be placed in a given volume of tankage.

b. After liquid replenishment is terminated, vaporized propellant must be vented and is
therefore lost. The tanks must be oversized to allow for this boiloff.

C. More reserve propellant must be loaded to account for boiloff losses during a
contingency hold that could occur in the countdown following termination of tank
replenishment. In the event this hold does not occur the extra propellant is
essentially inert weight.

d. Tank self-pressurization is more rapid during prelaunch and launch vent lockup.
Higher ullage pressures require heavier tanks.

The second generic type of insulation evaluated in this study consisted of a combination of
closed-cell foam and MLI. The foam covers the exterior of the tank and the MLI attached
over it. The presence of the foam between the MLI and tank wall raises the minimum
temperature of the MLI during ground hold purging. Therefore, nitrogen gas can be used
to purge both the hydrogen and oxygen tank MLI blankets. The principal advantage of
using nitrogen rather than helium is that its thermal conductivity is one sixth that of
helium. Hence, ground-hold heat leak is diminished. The thicknesses of the foam and MLI
can be selected to give the desired interface temperature during purging operations. The
performance gain achieved through the use of foam/MLI combinations is countered by the
greater density of the foam which increases the overall insulation system mass.

In the selection of candidate insulation concepts, the objective was to identify and
characterize foam insulations which could be combined with nitrogen-purged MLI to form
an alternative to conventional helium-purged MLI for propellant tank insulation. Follow-
ing a literature survey and discussions with industry and government experts, two
candidate foams were selected, one applied by spraying, and the other applied by adhesive
bonding. These materials are described in detail in the following section (section 2.1). In
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addition, a single MLI design was selected for use as the helium-purged insulation as well
as for the nitrogen-purged insulation in combination with foam. Construction and
performance details of the selected MLI design are summarized in section 2.2.

Initially, 9 sets of candidate insulations (each set consisting of a LH2 and a LO2 tank
insulation design) were studied. These candidate insulations are summarized in Table 2-1.
They consist of 8 sets using foam/MLI combinations of varying thicknesses and one set in
which only MLI was used with helium purging. In the case of foam/MLI combinations, 4
MLI thicknesses were selected, ranging from 1.40 cm to 2.72 cm. Foam thicknesses were
chosen for each tank to provide foam/MLI interface temperature ranging from 830K ( -
3119F) (for the LH7 tank only) to a maximum of 2440K (-20°F). Two foam materials
were studied, BX250A and Rohacel! 31.

Following the Task I thermal analysis of the 9 candidate insulations, 5 insulation designs
were selected for further study in Task II. Helium-purged MLI was retained as the
baseline insulation representing state-of-the-art technology. The other 4 insulation
designs selected for further study were foam/MLI combinations. Rohacell 31 was chosen
as the foam material for three of the insulations because its density is less than that of
BX250 A and it has essentially the same thermal conductivity and specific heat. One
foam/MLI combination incorporating BX250A was retained for the Task II study so the
relative benefits of the 2 foams could be compared for optimized insulation designs.

Instead of specifying MLI thickness, in Task Il it was decided to specify foam/MLI
interface temperature for each design. This decision was prompted by the fact that the
water content of the Ny purge gas determined the minimum temperature it could be
allowed to reach during purging. Hence, the dew point of the Ny purge gas determined
the foam/MLI interface temperature, since it was assumed no condensation would be
allowed in the MLI. Table 2-2 summarizes the water vapor content and dew point
temperature of 3 grades of N2. The N2 used to purge the STS cargo bay has a moisture
content of 140 parts per million and a dew point of 238°K (-319F). Water content in
higher purity N7 ranges from less than 16 parts per million to less than 5 for 99.998% pure
gas. However, even for the 99.998 pure gas, the dew point is between 2000K and 2110¥
(- 10QOF and -80°F).

Three values of foam/MLI interface temperature were specified, based on the dew point
data summarized in Table 2-2. The two highest interface temperatures were approxi-
mately equal to the dew points of orbiter cargo bay purge gas and the 99.998% purity N2.
A third, lower temperature, was chosen so the benefit of incorporating a thin layer of
foam into the insulation design could be determined. In this case, the interface
temperature would probably be below the dew point and a small amount of ice could occur
on the MLI layers nearest the foam. The amount of ice and its effect on MLI vacuum
performance would have to be determined experimentally. The presence of ice would
raise the emissivity of the radiation shields and would also raise the intersticial pressure
in the MLI during space operations.

The interface temperatures chosen for the three foam/MLI candidate insulations were,
2440K (-200F), 2000K (-100°F) and 1449K (-2000F). Table 2-3 summarizes the insulation
designs that were selected for Task Il optimization studies. The helium-purged MLI and
Rohacell 31/MLI combinations were applied to all three LTPS/payload designs. The
BX250A/MLI insulation was a;})plied only to the LTPS designed for a packaged payload
density of 40kg/m> (2.5 Ibm/ft?).
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Moisture content

Source ..
(parts/million)

Dew point, K (°F)

Nitrogen gas used for STS payload 140
compartment during ground hold

Available from gas suppliers D
99.995 % purity 10.5t0 16
99.998 % purity 1.5to <5

238 (-31)

217 to 219 {-70 to -65)
200 to 211 {-100 to -80)

vV

Reference: "‘Spacelab Payload Accomodation Handbook”, Document No. SLP/2104, June 1977

Suppliers contacted: ARCO Industrial Gases and Linde Division, Union Carbide Corporation

Table 2-2: Moisture Content and Dew Point of N, Purge Gas Candidates
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The following sections describe the details of the insulations evaluated in this study.
Foams are discussed in section 2.1 which covers physical and thermal properties,
application to tankage and foam insulation design. Section 2.2 describes the MLI design
selected for this study, MLI properties and venting performance.

2.1 FOAM INSULATION
Two foam insulations were selected for detailed analysis in this study. These foams were:

a. Rohacell 31
b. BX250A

The principal difference between these foams is application technique. Rohacell 31 is cut
and preformed from sheet stock and bonded to the insulated surface. BX250A is applied
by mixing and spraying the liquid foam material onto the insulated surface. Foaming and
curing occurs after the material is applied. Physical and thermal properties of the two
materials are similar.

A literature survey was conducted at the beginning of the study to evaluate and select
candidate foams. The primary considerations in selecting candidates were:

a. low thermal conductivity at temperatures ranging from liquid hydrogen temperature
to room temperature

b. low density

C. low specific heat

d. demonstrated capacity to withstand multiple thermal cycling between cryogenic and
room temperature without failing, cracking or debonding from the insulated surface

e. low flammability in accordance with NASA Handbook 1700.7a for materials used on
STS Orbiter payloads

f. availability of measured and documented properties and performance data.

Reference 2 reported the results of an experimental study which examined the feasibility
of applying 12 foam materials to liquid hydrogen tanks. Three foams from this study were
initially selected for further evaluation as potential insulations for LTPS propellant tanks.
These foams were Rohacell 31, BX250A and CPR 488. All three materials had low
thermal conductivity, low density and were demonstrated to perform satisfactorily as
cryogenic insulations. In addition, BX250A and CPR 488 are currently used as the
insulation on the STS launch system external tank. Hence, the performance, properties
and application processes for these foams are well documented. However, CPR 438 is
protected as a proprietary material and obtaining information on it was difficult.

Since both BX250A and Rohacell 31 have properties comparable to CPR 488, it was
decided to eliminate CPR 488 as a candidate foam.

2.1.1 Properties of Foam Insulations
Physical and thermal property information for the two candidate foams were obtained

from data supplied by the manufacturers and from the literature. The foams are
manufactured by the following companies:



a. BX250A - Stepan Chemical Co.
USA

b. Rohacell 31 - ROHM-GMBH
Chemische Fabrik Co.,
Germany

Table 2-4 presents the room temperature densities of Rohacell 31, BX250A and CPR 488
foams and shows the basic material from which the insulations are formed. BX250A can
be seen to have essentially the same density as CPR 488 while Rohacell 31 is about 16%
lighter.

Thermal conductivities of Rohacell 31 and BX250A are plotted as a function of
temperature in Figure 2-1. The information shown is based on test measurements. The
Rockwell International data for Rohacell 31 agrees fairly well with the maufacturer's data
for three versions of the foam. The straight line, labeled Rohacell (Baseline), was used as
an approximate representation of this data.

An apparent discontinuity can be seen to exist in the plotted data for BX250A. The sharp
increase in thermal conductivity between 280°K and 200°K is possibly due to condensation
of freon propellant and gases in the closed cells of the foam. Freon, is used to propel the
liquid foam material in the spraying process, and becomes entrapped in the insulation as it
foams.

Specific heat of Rohacell 31 and BX250A are plotted as a function of temperature in
Figure 2-2. Both foams have almost identical values of specific heat at temperatures
below 1809K (-1360F). Above this temperature, Rohacell 31 specific heat is slightly
higher than that of BX250A.

2.1.2 Foam Insulation Application

Foam insulation is applied directly to the propellant tank outer surface. In the case of
BX250A, the insulation would be sprayed onto the prepared surface under closely
controlled conditions. Surface preparation processes including cleaning, degreasing and
etching have been developed by NASA and Martin Marietta Corp. for the application of
spray-on foams to 2219 aluminum tanks. Spray process specifications have also been
developed to control application variables, including temperature, humidity, application
rate and amount of overlap on each spray pass. Care must be taken in application and
cure to ensure uniformity of foam properties (density and thermal conductivity) as well as
thickness.

Rohacell 31 is available from the manufacture in sheets. A range of thicknesses, are
available from 0.254 cm (0.1 inches) to more than a 2.54 cm (1.0 inch). Application of this
foam to propellant tanks would be accomplished in 3 steps. First the sheet stock would be
cut to the desired shape. Then the pieces would be fit to the contour of the tank by heat
forming and then adhesively bonded to the prepared surface. An adhesive manufactured
by the Crest Chemical Company of Texas has been found by Boeing to provide the
required bond strength at cryogenic temperatures. In test, this adhesive was found to
maintain bond integrity under repeated temperature cycling. The insulation would be held
against the tank during adhesive cure by vacuum bagging. In this technique, a flexible,
leak tight plastic film is placed over the insulated area and taped down to seal off any
leakage. The enclosure between the insulation and film is then evacuated and atmos-
pheric pressure on the outside of the film forces the insulation against the tank.

15
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Density

Foam Material Manufacturer 3 3
Kg/m b /ft
Rohacell 31 Polymethacrylimide RéHM, GMBN, Germany 30 1.9
Stepan Foam BX250A Polyurethane Stepan Chemical Company 37 2.3
CPR 488 Polymetric Isocyanate The Upjohn Company 36 23

Table 24: Candidate Foam Materials




TYPE DATA

BTU W SOURCE
Hr-f#t°F m.K
0.050 A BX 250A BELL AEROSPACE
ROHACELL 31 ROCKWELL INTERNATIONAL
ROHACELL 71 |
i I ROHACELL 51 } MANUFACTURER
ROHACELL 31
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0.020 |
0.030 }-
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0.010
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Figure 2-1: Foam Thermal Conductivity Characteristics
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2.1.3 Foam Insulation Design

As shown in Figure 2-3, foam insulation is placed between the propellant tank wall and
the MLI. A gas-impervious barrier film is bonded over the outside of the foam. This film
serves two purposes. First, it entraps volatile materials in the foam that could otherwise
escape into the MLI and degrade its vacuum performance. Second, it keeps the N2 purge
gas from direct contact with the foam. In the case of the LHj tank, if there were no
barrier, the No purge gas would liquify in any cracks or seams in the foam. This process
would increase the ground-hold heat leak into the LH2 tank and the entrapped N2 would
be a gas source which would degrade MLI performance in space.

Candidate barrier materials are:

a. Aluminized Kapton
b. Aluminum foil - Kapton laminate
c. Aluminum foil - polyester laminate.

A low temperature adhesive such as Crest adhesive would be used to bond the barrier to
the foam. Adhesive bonding, or heat sealing in the case of the aluminum foil-polyester
laminate, would be used to achieve a vacuum seal on the seams of the barrier.

{
The foam insulation around tank mounting supports would have to allow for movement of
the support struts. This movement arises froms

a. thermal contraction and expansion of the tank and supports,
b. tank pressurization and,
c. vibration due to dynamic launch loads.

One possible design concept for foam insulation at support struts would be to form a
barrier film sleeve around a portion of the strut. Inside the sleeve, the strut would be
insulated with a layer of foam. The foam on the strut and tank wall would be cut away so
they could not interfere under maximum movement of the strut. The length of the
insulated sleeve and the thickness of insulation would be determined by the requirement
that the purge gas not condense on the exterior of the barrier. The sleeve would be
pleated near its attachment to the tanks insulation barrier to allow for movement of the
strut.

2.2 MULTILAYER INSULATION

The MLI design selected for this study consisted of alternating layers of double
aluminized Kapton (DAK), and Dacron net spacers. The outer layer of MLI was a laminate
of Dacron scrim and double-aluminized Kapton.

This design was selected because:

a. it is state-of-the-art,

b. it has been flown and tested extensively as a cryogenic insulation,

c. its performance is well documented, and

d. test-validated equations have been developed to characterize its performance.

Kapton was selected over Mylar as the radiation shield material because Kapton meets
the flammability requirements of NASA Handbook 1700.7a and Mylar does not. Metalliza-
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tion of both sides of the shields is desired to minimize layer-to-layer energy transfer. For
the shields to be opaque, a metal deposit at least 600 to 800 Angstroms thick is required.

The Kapton shields were assumed to be metallized with vapor-deposited aluminum rather
than gold. Although optical characteristics and durability of gold produce superior
shields, aluminized surfaces can be obtained with performance characteristics rivaling
those of gold at a substantially reduced cost. At cryogenic temperatures, for example,
the emittance of aluminized Kapton is 0.02 versus 0.01 for goldized Kapton. Anti-
oxidation coatings have been developed by metallized film manufacturers which provide
environmental protection for aluminized shields with little affect on reflectivity. Care
must be taken in handling aluminized shields however because, unlike goldized surfaces,
the metal layer can fracture if the film is crinkled. Fracturing causes the effective
emissivity of the shield to increase.

Dacron net was selected for the shield spacer material because:

a. It is environmentally inert as shown in Reference 3 and does not outgas appreciably
when exposed to vacuum.

b. It offers low resistance to gas flow and diffusion during MLI purging and venting.

C. It maintains positive separation of radiation shields in the presence of gravity and
launch loads.

d. Performance predictions for MLI with Dacron net spacers are based on a large
volume of experience and should be more accurate than predictions for other MLI
designs.

2.2.1 Multilayer Insulation Design
Specific design features of the MLI selected for this study were the following:

a. Inner radiation shields - 0.0076 mm (0.00033 in.) thick double-aluminized Kapton.

b.  Outer layer - laminated 0.025 mm (0.00! in.) thick double-aluminized Kapton and
Dacron scrim.

c. Spacers - Dacron net.
d. Number of radiation shields per unit of insulation thickness - 24 shields/cm (60
shields/in.).
Blanket thickness control - nylon pins and buttons.
Method of attachment - Velcro tabs.
Installation configuration - two separate blanket layers. Gores and polar caps on
ellipsoidal domes, peripheral blankets around cylindrical surfaces and preformed
gores on toroidal tanks. Figure 2-4 shows a typical insulation blanket configuration
for ellipsoidal tanks. Adjacent blanket segments would be butted together with
sufficient space provided for purge gas egress. Inner and outer blanket joints would
be staggered.

h. Purging - removal of condensible gases from MLI blankets would be accomplished by
diffusing either helium (Hg) or nitrogen (N) between radiation shields in both inner
and outer blankets. Purge gas would be introduced into the blankets by small
perforated tubes penetrating all but the outer most shield of each blanket. These
tubes or purge pins, would be centrally located in each blanket segment or gore, and
the purge gas would diffuse toward the blanket edges where it would escape to the
purge enclosure. This enclosure is a volume around the outside of the insulated tank
that is filled with purge gas. For the LTPS configuration considered in this study, it
was assumed the purge enclosure would be formed by the outer body shell of the
LTPS. A reinforced Kapton membrane on each end of the body shell, would

m o
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complete the enclosure. Purge gas would exit from the enclosure through holes
provided in the Kapton closeouts and through leakage paths in the body shell.

2.2.2 Insulation Properties

Physical and thermal properties of MLI used in this study were based on Boeing expenence
as well as published data. The density of the MLI blankets, was assumed to be 35.1 kg/m
(2.19 1bm/ft3). This value included the 0.0076 mm thick inner shields, Dacron spacers,
0.025 mm thick Kapton outer layers and all hardware (pins, buttons, etc.,) as well as
Velcro attachment tabs.

MLI blanket specific heat was assumed to be 1.09 J/g-OK (0.26 BTU/Ibm-OR) in this study.
This value is an average of the specific heats of Kapton and Dacron at 2740K.

The thermal conductivity of MLI is dependent on temperature, the number of radiation
shields per unit thickness and intersticial gas species and pressure. In addition, thickness
control hardware, seams and penetrations degrade the effective thermal conductivity of
the installed insulation. Figure 2-5 shows the predicted vacuum performance of installed
MLI used in this study to model propellant tank heat leak. Thermal conductivity is plotted
as a function of insulation outer surface temperature for MLI installed on LH7 and LO>
tanks. This data is for interstitial gas pressure less than 10-7 torr. For pressures above
this value, the conductivity of the gas influences the effective thermal conductivity of
the MLI. Figure 2-6 shows the effect of interstitial gas pressure on heat flux through 3.8
cm thick MLI blankets on LH7 and LO2 tanks. At atmospheric pressures, during ground-
hold purging, the effective thermal conductivity through the MLI was essentially that of
the purge gas. The gas velocity between blanket radiation shields was assumed to be so
small that convective effects could be neglected. The equations used to predict insulation
performance in Figures 2-5 and 2-6 are summarized in Figure 4-9 of section 4.0 of this
report.

2.2.3 MLI Venting

MLI internal pressure decay, upon exposure to external vacuum conditions, is dependent
on blanket design and installation, materials, entrapped gas species and the degree of
cleanliness maintained during blanket construction, storage and handling. In this study, a
pressure decay model was developed for the propellant tank insulation. This model was
used to predict the MLI interstitial pressure following launch and depressurization of the
Orbiter cargo bay.

Effective MLI thermal conductivity during blanket venting could then be calculated, once
the interstitial pressure history was established.

The MLI pressure decay model used in this study was developed under a Boeing IR&D
program. The model was correlated with test data and compared with published MLI
venting measurements. Figure 2-7 shows comparison of model predictions and test results
from Reference 4. Differential pressure in Figure 2-7 is the difference between MLI
interstitial pressure and the pressure of the local external environment. The measured
Orbiter cargo bay depressurization rate is sufficiently slow that the difference between
MLI predicted interstitial pressure and the cargo bay pressure is small. Hence, to a good
approximation, the interstitial pressure could have been represented by the pressure in the
Orbiter cargo bay.
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Figure 2-5: Predicted Vacuum Performance of Installed ML/
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© DATA POINTS FROM “THERMAL PERFORMANCE OF
s MULTILAYER INSULATIONS™, CR 134477, CONTRACT
NAS3-14377, 1974 (SPECIMEN NOQO. 19)
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Figure 2-7: Comparison of Predicted and Measured Differential Pressure Across Venting ML/



3.0 LTPS CONCEPTUAL DESIGNS

This section describes the low-thrust propulsion system designs developed to support Tasks
I and II. These designs were used to determine the impact of propellant tank insulation
options on LTPS payload delivery capability. Design data was developed in sufficient
detail to allow the benefits and costs of foam/MLI combinations to be compared with
those of MLI only. In order to accomplish this objective, the following LTPS design
information was developed:

a. Configuration - general shape and physical arrangement of major subsystem
elements

b. Size - overall envelope dimensions and the dimensions of major subsystem elements

c. Mass - total system mass and the masses of tanks, structure, engine, avionics,
insulation, propellant and miscellaneous inert elements and consumables.

d. Materials - materials of construction for major subsystems including structure,
tanks, insulation, tank supports, and thermal control coatings.

The objectives of preparing this design information were to:

a. Provide the data needed to develop thermal analysis models of LTPS propellant
tanks. These models were used to predict tank heat leak and the resulting loss of
useable propellants during the LTPS mission.

b. Provide mass and size data which, along with propellant loss, was used to predict
LTPS payload delivery capability.

c. Provide parametric mass and size data to be used in the TRADE and TRADE2
computer models to predict optimum insulation designs. (A detailed discussion of
these two computer models is presented in section 5.0.)

In Task I of this study, a single LTPS point design was defined. The design was based on
the expendable, STS Orbiter-launched OTV developed by Boeing under contract NAS8-
33532, "Orbital Transfer Vehicle Concept Definition Study", Reference 1. This particular
design was selected for the Task I study because:

a. It was defined to the level of detail needed to accomplish the Task I thermal
analyses and initial insulation performance assessments.

b. It satisfied all the requirements for an LTPS designed for a 56 kg/m3 payload
density.

c. It required minimal modification (replacing the 66720 N (15,000 Ibf) thrust engine
with a 2224 N (500 Ibf) thrust engine) to convert it to a low thrust system.

d. It incorporated the results of detailed structural, environmental and STS interface

studies.

e. A detailed mass statement (including airborne support equipment (ASE) and consum-
ables) and performance model were available.

f. Schedule time and costs were reduced by using an established design.

Details of the Task I LTPS point design are presented in section 3.4.

In Task II, 3 LTPS designs were developed. Each design was developed for a specific value
of pay%oad packaging density. The 3 values of payload density were 56 kg/m3 (3.5
Ibm/£13), 40 kg/m3 (2.5 1bm/1t3) and 24 kg/m3 (1.5 Ibm/ft3). The LTPS designed for the

56 l<g/m3 payload density incorporated tandem ellipsoidal dome propellant tanks. This
tank shape and arrangement were chosen because:
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a. The high payload density caused the LTPS and payload size to be limited by the STS
Orbiter payload launch mass capacity rather than the cargo bay length. Hence there
was no need to use a more compact tank arrangement.

b.  Ellipsoidal dome tanks are structurally efficient and are therefore lighter in weight
than the alternative tank shapes.

The 2 LTPS designed for the 40 kg/m3 and 24 kg/m3 payload densities employed toroidal
LO5 tanks. This tank shape shortened the length of the LTPS. The reduction in length
was accomplished by nesting the rocket engine in the center of the torus. By shortening
the LTPS for the less-dense payload applications, it was possible to increase the payload
mass delivered to GEO. This increase was possible because the Orbiter cargo bay length,
rather than the total LTPS/payload launch mass, constrained the weight of the LTPS
payload.

The 3 point designs developed for Task Il served as baselines, or starting points, for the
sizing of LTPS for each of the propellant tank insulation concepts studied. These point
designs established the materials, configurations, and physical arrangement of all the
LTPS versions studied. Thermal analysis models were built for the 3 point designs and
propellant tank heat fluxes were predicted for a range of insulation thicknesses. In
addition to heat flux predictions, the point designs also provided parametric data used to
calculate the masses of resized LTPS in the insulation optimization studies.

The following sections describe the LTPS conceptual designs developed for this study.
Groundrules and assumptions adopted for developing the LTPS point designs to support the
Task I thermal analyses and the Task II insulation optimization studies are presented in
section 3.1. Section 3.2 summarizes LTPS design requirements and section 3.3 briefly
describes the technical approach followed in establishing the LTPS point designs. Section
3.4 describes the LTPS design developed to evaluate tank insulation concepts in Task L.
The 3 LTPS conceptual designs developed for the Task Il optimization studies are
described in section 3.5.

3.1 GROUNDRULES AND ASSUMPTIONS

A number of groundrules and assumptions were established prior to developing LTPS
conceptual designs. The following applied to both Task I and Task II LTPS designs:

a. Mission
1. Launch in STS Orbiter
2. Maximum STS Orbiter payload launch mass of 29,484 kg (65,000 Ibm).
3. Payload delivery to GEO

4. Replenishment of liquid propellant to the tanks terminated 4 minutes prior to
liftoff.

5. A 5 minute countdown hold could occur after termination of tank replenish-
ment. If the hold were to exceed 5 minutes, the countdown would be set back
and tank replenishment resumed.

6. Propellant tank venting would cease at liftoff and resume after 90 seconds.



7.  LTPS/payload erection, deployment and checkout would require 43 hours.
8.  The spent LTPS would be transferred to a disposal orbit (GEO + 1852 km) by
two main engine burns.
9. Attitude control required during coast as well as powered flight.
Payload
1.  The Harris hoop column Land Mobile Satellite System (LMSS), described in
Reference 5 was used as the payload configuration for all LTPS designs
considered. The impact of deployed payload configuration on propellant tank
insulation performance was assumed to be minor. The deployed payload
configuration was used in:
(@) determining reaction control system (RCS) propellant and main engine
thrust vector control (TVC) requirements during orbit transfer.
(b) modeling the thermal environment of the LTPS during deployment and
checkout while attached to the Orbiter and during orbit transfer.
2. Payload densities_in the stowed configuration for Orbiter launch were
56 kg/m3, 40 kg/m3 and 24 kg/m3.
Interfaces
1. The LTPS interface with the erecting ASE mechanism was at a ring on the aft
end of the body shell. The erecting ASE was located just forward of the cargo
bay aft bulkhead.
2. The erecting ASE structure and clearance space consumed the following
amount of Orbiter cargo bay length:
LTPS CONCEPT ASE LENGTH
(a) Tandem ellipsoidal tanks 244 cm (95.9 in.)
(b) Toroidal LOX tank 102 cm (40.1 in.)
The assumed dimensions and shapes of the ASE system used in this study are
shown as dashed lines in Figures 3-9, 3-10 and 3-11 of this report.
3. A volume 134 cm in length directly aft of the cargo bay forward bulkhead was
reserved for stowage of two manned maneuvering units (MMU's).
4, The maximum diameter of the LTPS and stowed payload was 427 cm. This

diameter allowed for a clearance of 15cm between the LTPS/payload and
Orbiter bulkheads.

Propulsion System Performance

L.

Main engine thrust was 2224 N (500 lbg).
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2. Oxidizer-to-fuel ratio was 6:1.
3.  Specific impulse was 4560 N sec/kg (465 sec).
e. Environment

1. The launch environment was as defined in Reference 6, "Space Shuttle System
Payloads Accommodation," JSC 07700, Vol XIV Revision F.

2. Solar heat flux was 1352 W/m2.
3. Earth average radiosity was 221 W/m2,
4.  Earth average albedo factor was 0.36.

5. STS Orbiter cargo bay depressurization characteristics based on modified
STS-III flight measurements. Figure 4-2 in section 4.0 of this report shows
measured cargo bay history during the first 300 seconds of the STS-III launch
and the estimated curve used to extend the pressure decay to longer range
times. The Saturn V ascent pressure profile is included for reference.

The following groundrule pertained only to the Task I LTPS:

a. The elapsed time from completion of orbit transfer to payload release and
separation was 24 hours.

The following groundrule pertained only to the three Task II LTPS point designs:

a. The elapsed time from completion of orbit transfer to payload release and
separation was 14 hours. This coast period was reduced from the 24 hours assumed
for the Task I mission timeline because it was felt that all final deployment and
vernier burns could be completed in a shorter amount of time by optimal phasing at
the beginning of transfer.

3.2 LTPS MISSION

This section describes three aspects of the LTPS mission established prior to the
development of conceptual designs. The three topics addressed are:

a. Payload
b. Orbit Transfer
C. Mission Timelines

In section 3.1 Groundrules and Assumptions, it was stated that a single payload
configuration was selected for all LTPS missions considered. However, the mass and
packaged density of the payload were assumed to vary.

The selection of a representative payload configuration was necessary to determine the
size of the RCS propellant tanks and to determine the additional main impulse propellant
required for TVC during powered flight. A payload configuration was also needed to
define the radiative thermal environment imposed on the LTPS during LTPS/payload



erection and deployment from the Orbiter cargo bay and during orbit transfer. LTPS
thermal environment models, described in section 4.3, included the effect of payload
shadowing, reflections, and emitted energy.

Figure 3-1 shows the LMSS chosen as the LTPS payload configuration. This design,
develoned by Harris Engineering, incorporates a deployable structure and is packaged with
the LTPS for a single STS launch. Further details on this proposed satellite design are
contained in Reference 5. When deployed, the LMSS mast is 92.2m in length and the
parabolic antenna disk 122.2m in diameter. The mass baseline LMSS is 4689 kg. This
mass and the resulting inertias, were used in calculating RCS and TVC propellant
requirements and in determining the optimum number of engine burns for orbit transfer.
It was assumed that the results of this mission optimization were valid for all other
payload masses considered.

The packaged LMSS is shown in Figure 3-2. Its package length for stowage in the Orbiter
cargo bay is 9.8m. Cargo bay volume occupied by the packaged LMSS, assuming a
maximum diameter of 4.47m, is 154m3 . For the baseline mass of 4689 kg, the packaged
density of the LMSS is 30.5 kg/m3.

Figure 3-3 shows the LMSS and LTPS in the erected position in the Orbiter cargo bay.
Checkout of both the payload and LTPS would be accomplished with the systems in this
configuration.

Mass and inertial characteristics of the combined LTPS/LMSS are summarized in Figure
3-4 for start of orbit transfer (LEO) and end of transfer (GEO). The values of mass and
inertia shown were used in the determination of RCS and TVC propellant requirements
and optimization of main engine firings for orbit transfer. Projected areas shown were
used in calculating solar pressure and aerodynamic drag.

An orbit-transfer mission analysis was conducted to determine the optimum number of
main engine firings. The objective of the analysis was to minimize the total main
impulse, TVC and RCS propellants required for transfer. The optimum number of engine
firings for maximum payload delivery was needed to estimate the elapsed time required
for orbit transfer; the more firings, the longer the transfer time. Since the total
propellant vent loss due to heat leak was dependent on mission time, the orbit transfer
time affected tank insulation design trades. Therefore, a realistic transfer time was
required for the subsequent insulation performance predictions and payload optimization
studies. The effect of number of engine restarts and trip time on system reliability and
radiation protection requirements for electronics, solar cells, etc., was not included in the
analysis.

A LEO to GEO orbit-transfer optimization model developed by J. V. Breakwell (Refer-
ence 7) was used to predict trip times and total main impulse propellants required for
transfers of 6, 8, and 16 engine firings. TVC and RCS propellant requirements were
predicted for each case, using the LMSS/LTPS inertial and mass properties summarized in
Figure 3-4. It was assumed that TVC was required for yaw and pitch control during main
engine burn, when the LMSS/LTPS was within 30° of perigee. Roll control during main
engine burn and three axis control during coast were assumed to be accomplished by the
RCS. It was also assumed the RCS employed 133.4 N thrusters with a specific impulse of
1618 N-sec/kg. Pointing accuracy was set at 10 and the minimum impulse bit for limit
cycle calculations was 20 msec. Disturbance torques were calculated for aerodynamic

forces, solar pressure and gravity gradient forces. In calculating aerodynamic torques it.

was assumed the LMSS drag coefficient was 3.0. Solar pressure predictions were based on
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an assumed reflectivity of 1.0. Maximum gravity gradient orientation in pitch and yaw
was 20 degrees.

Table 3-1 summarizes the results of the orbit-transfer mission analysis. It can be seen
that the 16 perigee burn transfer required the least total propellant mass. A propellant
mass savings of 313 kg was predicted in going from 8 to 16 perigee burns. However, trip
time increased by 26.3 hours. Since the impact of reliability and additional shielding were
not included in the analysis, a complete evaluation of the benefits of a 16 burn mission
could not be made. It was therefore decided to adopt the & burn transfer for LTPS design
and thermal analysis. It was found in the subsequent thermal analyses, that the propellant
boiloff rate due to insulation heat leak during orbit transfer was less than 2.27 kg/hr for
most cases studied. Hence, trip time did not have a strong influence on total propellant
vent loss in orbit and therefore did not have a major affect on insulation design. For
example, the total propellant vented during a 29 hour transfer would be approximately
66 kg as opposed to 125 kg for a 55 hour transfer. The additional 59 kg of propellant vent
loss would decrease payload mass by approximately 26 kg.

Mission timelines were developed to support the Task ! and Task II LTPS design and
analysis efforts. One objective of establishing these timelines was to define the time
spent in each unique thermal environment of the LTPS mission. There were essentially
three thermal environments imposed on the LTPS; they were 1) ground hold, 2) STS
Orbiter bay, and 3) free flight orbit transfer. The second objective of establishing mission
timelines was to define the operational sequences which influenced propellant tank
insulation design trades. Specifically, there were two timeline events of primary
importance. One was the amount of time elapsed between termination of liquid
replenishment to propellant tanks and MLI evacuation following launch. The second
timeline event was the amount of time the propellant tank vent lines were locked up
during launch.

Tables 3-2 and 3-3 summarize the mission timelines developed for Task I and Task II
studies. They are almost identical with the exception of the elapsed time from
completion of orbit transfer to payload release. In the Task I timeline this period was
24 hours while in the Task Il timeline it was 14 hours. The time between arrival at GEO
and payload release was shortened in Task II because it was determined that the period
between the circularization burn and payload separation could be reduced by optimal
phasing at the beginning of the transfer in LEO.

Mission parameters for the LEO to GEO transfer are presented in Table 3-4. This table
summarizes the velocity increments for each engine firing and shows the apogees and
perigees of the transfer orbits. Total velocity increment for the entire LTPS mission
following Orbiter separation was 4751.1 m/sec. The data shown in Table 3-4 was used in
the Boeing performance and mission simulation program, PMSP, to predict LTPS payload
delivery capabilty.

3.3 LTPS CONCEPTUAL DESIGN APPROACH

The preceding sections described the information established prior to the development of
LTPS conceptual designs. This information consisted of groundrules and assumptions,
interfaces, environments and mission requirements. A brief summary of the procedure
followed in the development of LTPS conceptual designs for the Task I and Task I studies
is presented in this section.
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Orbit Hours Velocity Altitude, km (mi)
Transfer After Increment
Event Launch m/s {ft/sec) Perigee Apogee
Orbiter Separation 50 3.1 (10.2) 222 (138) 222 (138)
Periges Bumn No. 1 51 277.4 (910.1) 222 (138) 1031  (640)
2 62.7 292.0 (957.8) 472 {293) 2066 (1283)
3 64.5 309.8 (1016.1) 663 (412) 3430 (2131)
4 66.7 330.9 (1084.4) 845 (525) 5292 (3287)
5 689.3 356.2 (1168.3) 1024 (636) 7971 (4952)
8 72.4 386.5 (1267.7) 1206 (749) 1213+ (7536)
7 768.8 4234 (1388.8) 1390 (863) 19419 (12083)
8 86.6 469.1 (1538.6) 1579 (981) 35389 (21984)
GEO Circulatization Bum 87.2 17420 (5713.9) - 35863 (22279)
Orbit Trim and Unioad Payioad 103 106.7 (350.0) - -
Burn to Disposal Orbit 103 + 287 (94.1) 35883 (22279) 37715 (23429)
Disposal Orbit Circularization 118 284 (93.2) - 37715 (23429)

Table 34: Task 1l Orbit Transfer Parameters




Figure 3-5 shows the principal steps of the design development process. Input data
included, in addition to the system requirements, initial LTPS design concepts. These
concepts were developed from preliminary modeling estimates of LTPS performance and
simplified orbit mechanics.

Four computer analysis programs were used to support the design process. These analysis
programs were:

a. OPERA - thermal radiation environment prediction. (Appendix A)
b. RADSIM - radiation interchange factor calculation. (Appendix A)
c. SINDA - temperature and heat leak prediction.

d. PMSP - LTPS performance and mission analysis.

Geometric models of the principal structural elements of the LTPS were developed from
the LTPS design concepts established at the beginning of the design process. These
conceptual designs consisted of a general layout, or arrangement, of principal LTPS
subsystems and preliminary estimates of tank size. Thermal radiation properties of the
LTPS surfaces were established from published data for the initially selected materials
and coatings. Highly simplified geometrical models of the Orbiter cargo bay and LMSS
payload were also developed and radiative properties defined for their surfaces. The
geometrical models and surface property information were the orincipal input data for the
OPERA and RADSIM computer programs.

OPERA was used to predict the thermal radiation flux on external LTPS surfaces during
orbit transfer and prior to separation from the Orbiter. Radiation interchange factors
between the LTPS surfaces and between radiatively interacting surfaces of the payload,
Orbiter and LTPS were calculated with the RADSIM program.

Simple thermal models of each LTPS design concept were developed. These models
defined the principal radiative, conductive and convective heat flow paths between major
LTPS/LMSS/Orbiter elements. They also characterized the thermal storage capacity of
the principal LTPS subsystem masses including propellants, tanks, insulation, structure,
engines and avionics. The thermal models, along with thermal radiation environment
predictions supplied by OPERA and radiation interchange information provided by
RADSIM, were input to the SINDA program. SINDA was used to predict heat leaks into
the LHy and LO, propellants from the beginning of the mission, at ground hold, to the end
of mission following insertion of the LTPS into disposal orbit.

Predicted propellant tank heat fluxes were used to calculate values of propellant densitv,
mass loss due to vapor venting, and pressure rise during vent line lockup at launch.
Effective densities of the propellants were affected by heat flux because the volume of
bubbles in the liquid was dependent on boiling rate. The greater the heat flux, the greater
the bubble volume and therefore the less volume available for liquid. Vent loss was
directly proportional to heat flux because it was assumed all heat leak into the propellant
tanks resulted in vaporization and subsequent venting of the vapor. Larger heat leaks
resulted in more initial propellant mass and larger tanks to account for the loss of
propellant during the mission.

Heat leak into the tanks during vent line lockun at lainch caused the ullage pressure of
the tanks to rise. The greater the heat leak, the greater the pressure rise. Peak tank
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pressure depended on assumed ullage volume as well as heat leak. During the vent lockup
period the insulation interstitial pressure was essentially at sea level conditions and
therefore the heat leak into the tanks was approximately the same as during MLI purging.
Hence tank wall thickness and mass depended on the rate of heat leak into the tank during
the ground-hold phase of the mission.

Following the prediction of propellant density and vent loss, new estimates of LTPS tank
volumes, initial propellant mass and tank mass were incorporated into the design model
and new performance predictions were calculated with the PMSP computer program. The
PMSP program employs an iterative technique to converge on a specified mass for the
combined upper stage and payload. Program inputs are orbit characteristics, mission
sequence, propellant loss estimates, engine performance, stage inert mass and tankage
nonpropellant mass relationships. The values of payload mass predicted by the PMSP
program were used to calculate payload packaged length for the particular packaging
density of interest. Then the combined mass and packaged length of the LTPS/ASE/
payload were compared with the constraining values for STS launch. If the maximum
constraining values of either mass or length were not satisfied, new values of tank size
and mass were estimated and the design iterated until the maximum value of payload
mass or length was found. The resulting conceptual designs developed for the Task I and
Task II studies are described in the following sections.

3.4 TASK ILTPS CONCEPTUAL DESIGN

The LTPS design developed for the Task I insulation preliminary thermal analysis is shown
in Figure 3-6. This design is a resized version of an expendible, STS-launched orbit
transfer vehicle developed under contract NAS8-33532 and described in Reference 1. The
total length of the stage is 739 cm, and its diameter is 447 cm. Avionics, RCS propellant
tanks, fuel cells and miscellaneous support equipment are mounted to an aluminum girth
ring located between the LH; and LO, tanks. The 2224 N thrust engine is mounted to the
LO; tank by graphite epoxy struts. Thrust loads are carried through the tank walls to the
tank support struts. The engine is 101.6 cm long with a nozzle exit diameter of 40.6 cm,
and it weighs 38.8 kg. A complete description of this engine design is contained in
Reference 8.

The propellant tanks are sized to carry a total useable propellant mass of 17256 kg.
Volume of the LH; tank is 38.47 m3. The ratio of major-to-minor axes for the ellipsoidal
domes is J2. The height of each dome is 157.8 cm and the length of the cylindrical
center section is 63.5 cm. The LH» tank diameter is 419.4 cm. Volume of the LO» tank is
13.7 m3. The axis ratio of the two ellipsoidal domes which form the tank is {'Zzan.d the
total length of the LO; tank is 244.3 cm. At the start of the mission, the total LTPS mass
is 20025 kg and at burnout its mass is 2393 kg. Payload delivery capability for GEO
missions is 7075 kg for a specific impulse of 4560 N-sec/kg and an 8-burn orbit transfer.

Table 3-5 summarizes specific design features and characteristics of the Task I LTPS.
The body shell, with the exception of the avionics/equipment ring. is a graphite epoxy
sandwich. Tanks are constructed of 2219 aluminum and are cantilevered from the body
shell via bipod strut mounting trusses. The struts used in the LH2 mounting truss are glass
epoxy and the struts in the LO7 truss are graphite epoxy. Strut material selection was
based on an optimization studv that considered the strength, heat conduction characteris-
tics and mass of the struts.

Electrical power is supplied by modified STS Orbiter fuel cells. A 7.8 m? radiator is
located around the periphery of the LTPS body shell to control fuel cell temperature. All
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Graphite/epoxy body shell
2219 Aluminum LH, and LO, tanks
1US avionics components
Passive thermal mangement of avionics
Modified orbiter O5-H, fuel cells
1US power distribution electronics
2224 N thrust main impulse engine
Autogenous main tank pressurization
1US hydrazine attitude control system
Triple inhibit against hazardous fluid leakage
Bipod strut tank support systems

® Glass/epoxy struts for LH supports

® Graphite/epoxy struts for L02 supports
5% Weight margin for existing hardware
15% Weight margin on new hardware

Table 3-5: Task | LTPS Design Features
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other equipment cooling is accomplished passively by radiation from the aluminum girth
ring.

A mass statement for the Task I LTPS is presented in Table 3-6. Total launch weight,
including payload and the fully loaded LTPS is 27100 kg. The airborne support equipment
(ASE), including the structure for securing and deploying the LTPS and payload, has a
total mass of 2554 kg. Thus, the total mass loaded in the Orbiter cargo bay for an
LTPS/payload launch would be 29654 kg.

3.5 TASK II LTPS CONCEPTUAL DESIGNS

This section describes the 3 LTPS conceptual designs developed for the Task II insulation
optimization studies. The designs define the general configuration, subsystem arrange-
ment, mass, dimensions and materials for each LTPS. The purpose of developing these
point designs, as stated in section 3.0, was to:

a. Develop parametric design data for determining the impact of insulation design on
LTPS and payload mass and size.

b. Define configurations, dimensions, masses and materials for propellant tank thermal
analysis models.

c. Determine the masses and sizes of major LTPS subsystems for input to the payload
prediction computer programs used to optimize tank insulation designs.

Figures 3-7, 3-8 and 3-9 show the general configuration, subsystem arrangement and
overall dimensions of the three LTPS point designs developed at the beginning of Task II.
Major differences between the three LTPS designs are evident in the size and shape of the
propellant tanks. As the payload packaging density was decreased, larger and larger
payload lengths were possible until, at about 40 kg/m3, the Orbiter payload volume limit
was reached. At this point, the total length of the combined LTPS, payload and ASE
equaled the available Orbiter cargo bay payload volume length of 16.95 m. Between
payload densities of 56 kg/m3 and 40 kg/m3, the payload mass and LTPS size and mass
remained constant. At payload densities below 40 kg/m3, the payload was sized to {ill the
available Orbiter cargo bay volume. For these cases, the payload mass and the mass and
size of the LTPS decreased with decreasing payload density. The use of torroidal LO;
tanks shortened the LTPS and resulted in increased payload length and mass. The LTPS
for the 56 kg/m3 payload density shown in Figure 3-7 is essentially identical to the Task I
design described in section 3.4. The primary difference is the Taskll version has less
predicted payload capacity. This reduction in payload resulted from Task I thermal
analyses which showed the initial predictions for propellant tank heat leak were
optimistic. The larger values of heat leak resulted in a greater propellant vent loss
(376 kg over the mission) which reduced the payload mass of the Task II design.

The initial mass of the LTPS designed for a 40 kg/m3 payload density (Figure 3-8) is
almost identical to the initial mass of the LTPS designed for a 56 kg/m~ payload density
(Figure 3-7). However, the LTPS designed for the lower density payload,is shown to have
a toroidal LO7 tank. The toroidal tank was selected because the 40 kg/m3 payload density
was tound to be on the border between being a mass-limited or volume-limited case.
Hence, the shorter toroidal tank was selected to maximize payload length, the primary
objective for LMSS-type payloads. The toroidal tank LTPS was found to be slightly
heavier than the ellipsoidal version because the toroidal tank is inherently heavier and
tank and engine supporis also weigh more.



Kg {Ib,p)

SUBSYSTEMS
=3 T 1 = 38.6 (85.1)
AVIONICS. . .ttt it it iineenaannananneann 294.0 (648.2)
POWER SUPPLY AND DISTRIBUTION. . ........... 288.0 (634.9)
ATTITUDECONTROL .. ...vvereeaanecnnncann 62.6 (138.0)
FUEL CELLREACTANTS. . .....covvvvnnnnnansn 39.9 (88.0)
THERMAL MANAGEMENT. .. .....ccovnvvnennn 81.6 (179.9)
TOTALSUBSYSTEMMASS. ... .....civrvrvncsnnnnonans 804.7 (1774.0)
STRUCTURALHARDWARE . . ... .c0vvvinennnennsnsn 821.0 (1810.0)
INSULATION ...ttt iii it iieereeaeanncensnannas 53.5 (117.9)
BODY SHELL .. ... v'iiiniinrenenonananssnnonans 177.8 (392.0)
TANKS . .ttt iiert it inarenrnenneanenasassneanas 370.6 (817.0)
RESIDUALPROPELLANTS. ... .. iiveiinenennnaennns 165.6 (365.1)
TOTALBURNOUTMASS . ...ttt niinreneenaaneansasannnans 2393.2 (5276.0)
MAIN IMPULSE PROPELLANTS ......... e 17256.4 (38050.1)
LOSSES ..t vi ittt iinietennrasanenaeaseannaanas 375.7 (828.3)
TOTALEXPENDEDMASS ... ..it it ireennennaannaennnns 17632.1 (38872.0)
TOTAL INITIALMASS . . ..ottt itetetrreretencnsnteaeeeenneenenenas 20025.3 (44148.0)
PAYLOAD MASS . . .ottt ettt teetrrasinneennsaaaeaeneensanaeennns 7075.0 (15601.0)
N 3P 2554.0 (5630.5)
TOTALLIFTOFFMASS . . ... .ovviiinneneannnn et 29654.3 (65379.5)

Table 3-6: Task | LTPS Mass Summary
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Table 3-7 summarizes the mass of each LTPS, including inerts and expendables.
Subsystem masses which were assumed to be identical to those of the Task I LTPS were:

Engine 38.6 kg
Avionics 294. kg
Power supply and distribution 288. kg
Attitude control 62.6 kg
Fuel cell reactants 39.9 kg
Thermal management 81.6 kg

Propellant vent losses during; 1) ground-hold, 2) before LTPS engine ignition and 3) during
orbit transfer, are based on the thermal model predictions described in section 4. The
tank insulation for the three baseline LTPS designs was helium-purged MLI. Heat leaks
through struts and MLI penetrations caused more than 95% of the propellant vent loss
during the mission. Tank support struts were optimized to maximize payload mass. The
optimization involved a trade between strut mass and propellant boil-off mass and their
combined affect on LTPS payload mass. The primary constraint for the optimization was
the structural performance of the struts. That is, all strut designs were required to
satisfy structural load carrying criteria. It was assumed all designs used the same number
of struts for each tank support system; 24 struts for the LH7 tank and 32 struts for the
LO, tank. Appendix B summarizes the tank support strut optimization study. The
resulting strut designs for the three LTPS propellant tanks are described in Table 3-8.
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4,0 PREDICTED PROPELLANT THERMAL LOADS

Propellant thermal loads (i.e., total heat leak into the tanks) have a significant impact on
LTPS payload delivery capability and therefore are a major consideration in tank
insulation design. Propellant heat leak depends not only on the tank design and mission
phase, but also on the amount and type of insulation. Moreover, the impact of insulation
performance on payload mass is very sensitive to ground-hold environments. The
influence of tank configuration, mission phase and insulation type and thickness on the
propellant thermal load were predicted in this study, and parametric correlations were
developed to aid in the comparison of LTPS tank insulation designs.

Section 4.1 presents the approach used to predict the heat transfer rate to the
propellants. Propellant thermal loads attributed to tank insulation, penetrations, and
support system are discussed in sections 4.2, 4.3, and 4.4 respectively.

4.1 THERMAL MODELING APPROACH

Heat transfer between the LTPS propellant tank(s) surfaces and the external environment
depends on the mission phase. During the ground-hold part of the mission the Orbiter
cargo bay defines the external environment seen by the LTPS. In this study, a steady-
state condition was assumed to exist. Important heat transfer mechanisms during ground
hold include radiation, conduction, and convection. Following lift-off, the Orbiter bay,
LTPS purge enclosures, and MLI are vented to space, eliminating the convection heat
transfer mechanism. After attaining LEO, the Orbiter bay doors are opened. This adds to
the complexity of the LTPS-environment interchange by:

a. Exposing the LTPS external surfaces to direct solar, albedo, and earth long-wave
radiation sources, and

b. Providing the LTPS with a heat sink to deep space.

Upon LTPS/LSS separation from the Orbiter, the cargo bay thermal interaction with the
LTPS ceases.

A Thermal Math Model (TMM) of the Task I LTPS baseline configuration was initially
developed to determine the time-varying nature of the propellant thermal load. The
model accounted for variations in environmental heat sources and heat transfer mecha-
nisms. It also included the effects of LTPS heat capacitance, and natural-convection
during the ground-hold mission phase. The model was designed to allow a wide range of
insulation thicknesses and types (either helium-purged MLI or nitrogen-purged MLI with a
foam substrate) to be evaluated. TMMs of the Task II LTPS design were subsequently
developed from the Task I model. They accounted for differences in tank configuration
and LTPS dimensions.

Thermal models considered two extreme ground-hold purge enclosure environments. In
one extreme, minimum convective coupling between the Orbiter bay and the MLI was
assumed to exist. This condition yielded relatively cold tank insulation temperatures. In
the other extreme, forced convection in the purge enclosure was assumed. This condition
was simulated by setting the MLI outer surface temperature to equal 294°K (709F) during
the ground-hold and initial-ascent mission phases. Physically this extreme could be
achieved by either:
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a. Introducing enough warm gas into the purge enclosure to ensure a warm MLI surface
temperature, or

b. Altering the LTPS design to allow greater thermal contact between the Orbiter bay
and the MLI surface.

This ground-hold environment will be referred to as enhanced or forced-convection, and it
serves to contrast results obtained for the natural-convection environment which would be
difficult, if not impossible to achieve. The natural-convection condition however, was
considered because it represents a lower bound for the ground-hold heat transport
mechanism.

Subsection 4.1.1 describes the LTPS external environments that were used for thermal
modeling. Subsection #4.1.2 discusses the LTPS thermal models that were developed.

4.1.1 LTPS Environments

During the ground-hold and the ascent-to-LEO mission phases, the LTPS environment is
controlled by the Orbiter cargo bay. In developing the LTPS thermal models, the cargo
bay temperatures were assumed to be independent of their surroundings. The Reference 6
cargo bay temperatures were used, and their location-time relationships are depicted in
Figure 4-1.

Radiation and convection heat transfer mechanisms thermally couple the cargo bay with
the LTPS external surfaces prior to launch and during the first few minutes after STS
liftoff. Radiation exchange between LTPS and cargo bay surfaces was determined with
the aid of the Monte-Carlo thermal code RADSIM (Appendix B describes RADSIM). This
code was used to determine the radiation interchange factors between different portions
of the cargo bay and the LTPS exterior surfaces. RADSIM modeling assumed blackbody
behavior for the Orbiter cargo bay. Radiation surface properties of LTPS external
surfaces are givem in Table 4-1.

During ground-hold energy is transferred to the LTPS external surfaces by convection as
well as radiation. Prior to launch the Orbiter bay is purged with nitrogen gas. Natural
convection by the purge gas was estimated by standard Grashof-Prandtl number (or
Rayleigh number) correlations. Furthermore, the correlations were chosen to reflect the
geometric relationship between the LTPS surfaces and the Orbiter. For example,
convection between the cargo bay and the LTPS body shell-avionics ring surfaces was
determined by using a correlation for concentric cylinders. The fore and aft LTPS
closeouts were modeled as cool discs facing upward and downward, respectively. The
correlations were then incorporated into the thermal math models. To a good approxi-
mation, a temperature of 294°K was found to be typical for the external LTPS surfaces
prior to launch.

Heat transfer to the LTPS external surfaces by natural-convection will continue for
several minutes after launch. Figure 4-2 shows the cargo bay pressure-time curve as
determined from the STS Il launch data (data was furnished to Boeing by the NASA LeRC
program manager). The pressure profile for a SaturnV launch is also shown for
comparison. [t is seen that when the gas pressure became lower than 10 torr, the pressure
decay rate was significantly lessened. At this pressure level, gas transport characteristics
begin to change, and the transition between continuum and free-molecular flow regimes
occurs. This may decrease pressure decay rate because of:
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Material /€
Fore and Aft Purge Closeouts Kapton 0.14/0.08
Fore and Aft Body Shell Coating White-Tedlar 1. 0.37/0.77
Avionics Ring and Fuel Cell Radiator FOSR 2. 0.014/0.750

1. Tedlar is manufactured by Dupont. lts optical properties are achieved by adding titanium dioxide.

2. Flexible Optical Solar Reflector (FOSR): Sheldah! P/N G409750, a silvered Teflon film coated with an

tin oxide to facilitate electrical grounding.

Table 4-1: Radiative Properties of the L TPS External Surfaces
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a. Choked flow through the cargo bay external surfaces, and/or
b. Trapping of residual purge gas within the Orbiter bay cavities.

At the onset of the transition gas dynamic regime (a Knudsen number of 10 was used to
define this point) the natural-convection model was replaced by a rarified gas heat-
transport model. Knudsen number is defined as the ratio of gas molecular mean free path
to characteristic distance (the distance between the LTPS body shell and Orbiter cargo
bay, for example). Convection coupling through the slip-flow, transition, and free-
molecular flow regimes continued until the gas pressure reached a level of 10-3 torr, at
approximately 25 minutes after launch. The amount of time required for the Orbiter bay
pressure to reach 10-5 torr was estimated by extrapolating the ascent depressurization
curve in Figure 4-2. References 9 and 10 may be consulted for further information
concerning rarified gas thermal transport. For the remainder of the mission, only the
radiation heat transfer mode connected the external surfaces of the LTPS with the
environment.

After the Orbiter cargo doors are opened at LEO, radiant energy transfer between the
LTPS and its environment changes continually. Figures 4-3, 4-4%, and 4-5 depict the
geometric models that were used in the RADSIM computer program to determine the
radiation interchange factors. Environmental thermal loads on the LTPS external
surfaces were calculated with the thermal code OPERA (Appendix A provides a short
description of both RADSIM and OPERA). The effects of LSS shadowing and reflection
were taken into account. The LSS antenna disk was made of gold-plated molybdenum wire
mesh. Depending on the mission phase, OPERA defined direct and reflected radiative
thermal loads due to solar and earth energy sources. Environmental thermal loads were
calculated for a number of orbit positions to account for the effect of earth shadowing
and a changing LTPS/LSS orientation with respect to the sun and earth.

RADSIM and OPERA were used to define thermal environments and radiation interchange
factors during LTPS/LSS deployment and checkout, LEO to GEO transfer, and LTPS
removal to disposal orbit.

4.1.2 LTPS Thermal Models

Thermal Math Models (TMMs) for the tandem ellipsoidal tank and the ellipsoidal
hydrogen/toroidal oxygen tank baseline LTPS conceptual designs were developed. The
previously described thermal environment heat fluxes were included in them. The
resulting thermal networks were solved by the NASA-standard code SINDA.

4.1.2.1 Thermal Model Description

Figure 4-6 depicts the TMM that was developed for the tandem-ellipsoidal tank LTPS
baseline design. The thermal model for the ellipsoidal/toroidal tank LTPS is shown in
Figure 4-7.

The axi-symmetric LTPS cylindrical shape permitted the use of a two-dimensional
geometry for the TMM thermal network. Layouts of thermal model network nodes are
shown in Figures 4-6 and 4-7 along with important LTPS features. Three-dimensional
radiation interchange between the LTPS and its environment was determined with
RADSIM and OPERA. Circumferential variations in radiation interchange factors were
then area-totaled for each external surface node. For radiation interchange with the
Orbiter and payload, this procedure consisted of multiplying the interchange factors
between all LTPS surface nodes and each Orbiter or payload surface node by the
appropriate LTPS surface node area and summing the products. In the case of solar, earth
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CYLINDRICAL BODY
SHELL (GRAPHITE/EPOXY)

/— MLI OR MLIJFOAM
INSULATION

7.38m
(24.2 ft)

LH2 TANK SUPPORT

STRUTS (FIBERGLASS/
EPOXY)

AVIONICS RING
{ALUMINUM)
EXTENDS AROUND
ENTIRE PERIPHERY

FUEL CELL
RADIATOR
{ALUMINUM)
EXTENDS AROUND
ENTIRE PERIPHERY

LO, TANK SUPPORT STRUTS
(GF?APHITEIEPOXY)

LO2 PURGE
VENT

PURGE CLOSEOUTS ¥ (TYPICAL, 4 PLACES)

| ENGINE NOZZLE

Figure 4-6: Nodal Map of Thermal Model for 56 Kg/m3 (3.5 /bm/ft‘?} Payload Density LTPS
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IR and albedo heat flux, the procedure consisted of multiplying the particular flux (e.g.
solar) predicted for each LTPS surface node by its proper area and summing the products
to arrive at the total solar radiative flux on a particular segment of body shell.

Several heat sources in addition to the environmental thermal loads were included in the
TMM. These heat sources were:

a. Radiation from the engine nozzle to the aft closeout thermal insulation blanket
covering the base of the LTPS.

b. Thermal soak from the fuel cell radiator to the LTPS body shell.

C. Elecrical dissipation by equipment in the avionics bay located between the fuel and
oxidizer tanks.

A brief discussion of each heat source is presented in the following paragraphs.

During orbit transfer, the engine operates for approximately 3000 to 3700 sec for each
perigee burn. Radiation from the hot engine nozzle is incident on the thermal insulation
blanket covering the base of the LTPS. Some of the thermal energy is absorbed by the
blanket and is reradiated to the outer surface of the LO, tank insulation. In the thermal
model, the engine nozzle was treated at a blackbody emitter at a temperature of 1110°K.
The radiation interchange factor between the nozzle and closeout insulation blanket was
calculated by RADSIM. Thermal coupling between the nozzle and aft closeout was
represented by a radiation conductor in the thermal math model.

Thermal soak from the fuel cell radiator to the LTPS body shell was assumed to occur
through the MLI blanket located between the radiator and body shell, and through the
insulating standoffs that served as structural mounts for the radiator. The fuel cell
radiator was sized to reject 1958W of waste heat during orbit transfer. It was 20.47 cm
wide and extended circumferentially around the vehicle exterior. In the thermal model
the radiator was thermally coupled to the vehicle exterior nodes by conduction paths
representing the insulating standoffs and by radiation and conduction paths representing
the MLI blanket.

Electrical power dissipation by equipment in the avionics bay was assumed to be 756W.
This value was based on the OTV avionics power levels described in Reference 1. The
electrical dissipation as assumed to be uniformly distributed around the inner circumfer-
ence of the avionics ring which formed a segment of the vehicle body shell. As shown in
Figures 4-6 and 4-7, this ring is a cylindrical aluminum shell located between the fuel and
oxidizer tanks. Most of the avionics equipment is mounted directly to the avionics ring.
The avionics electrical dissipation was treated as a heat source to node 93 which
represented the entire ring.

The LTPS external surfaces consist of the body shell, the fore and aft purge closeouts, the
fuel cell radiator and an avionics ring located between the fore and aft body shell
sections. The body shell is composed of a Nomex core sandwiched between two graphite-
epoxy face sheets. The internal and external face sheets are thermally connected by
conduction and radiation through the Nomex core. Resistance to heat flow through the
body shell core was conservatively assumed to be negligible in the thermal models, and



the two face sheets were therefore at the same temperature. The mass-averaged
capacitance of the body shell was estimated at 0.96 J/g-9K. Due to differences in layup,
the fore and aft body-shell sections had a mass per unit length of 39.2 and 50.8 kg/m,
respectively. Consequently, the thermal capacitance of the body shell per unit length
differed between the fore and aft section.

The TMM also included a node for the 58.1 kg aluminum avionics ring. Conduction
through the fore and aft purge volume closeouts was assumed to be infinite. Closeouts
were 4 mil aluminized Kapton sandwiched between scrim net for reinforcement. Due to
the thin gage of material used in the closeouts, and the relatively low heat flux levels
through them, the assumption of infinite conduction was reasonable. Heat capacitance of
the closeouts was assumed to be negligible.

Vehicle external surfaces, including the body shell, avionics ring and purge enclosure
closeouts, were thermally connected to the propellant tanks in the LTPS thermal model
networks. Three heat transfer nodes between tanks and external surfaces were included
in the models. These nodes were conduction, convection and radiation.

The structural support system was the principal conduction heat flow path between the
body shell and the tanks. The support system was a bipod strut truss based on the oTV
tank support design described in Reference 1. LHj tank support struts were constructed
of fiberglass epoxy and the LO, tank support struts were graphite epoxy. Table 3-3
summarizes the physical and thermal characteristics of the tank support struts.

Radiative interchange factors between the tank MLI outer surfaces and the interior
surfaces of the body shell, avionics ring and purge closeouts were calculated with the
RADSIM program. Radiative properties of the LTPS internal surfaces are summarized in
Table 4-2. The predicted radiation interchange factors were used to calculate radiation
coupling between the propellant tank MLI blankets and the internal surfaces of the vehicle
body shell and purge closeouts.

In addition to conductive and radiative coupling, the LTPS thermal math models also
included connective heat transfer between the tank insulation and interior surfaces of the
vehicle body shell and purge closeouts. Convective heat transfer occurs during ground
hold operation, after chilldown and fill of the tank, and continues until the purge
enclosure is evacuated during Orbiter ascent.

Two modes of convective heat transfer were modeled. The first was natural convection.
This mode would occur if gas velocities in the purge volume were very small. In order to
calculate the natural convection conductances between purge volume surface nodes, the
characteristic nodal surface area-to-length ratios were first calculated for each nodal
pair. Then the effective convective conductance between surface nodes was calculated
by multiplying the characteristic area to length ratio by the purge gas conductivity and
the free-convection Nusselt number. The Nusselt numbers were determined by standard
Rayleigh number correlations for enclosed gas volumes. The particular correlation used
for each nodal pair was selected on the basis of geometric similarity with the portion of
the vehicle purge volume under considration. Free-convection conductances were
dependent on the temperature difference between enclosure surfaces. Under laminar flow
conditions, the conductance was proportional to the temperature difference raised to the
1/4 power. For turbulent conditions the conductance was proportional to the temperature
difference raised to the 1/3 power.
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Material €IR
Purge Closeouts DAK1 0.03
Body Shell Graphite 0.90
Avionics Ring Aluminum 1.002
MLI DAK 0.03

1 Double aluminized Kapton

2 Blackbody properties were conservatively assumed because of
cavities between adjacent avionics ring equipment.

Table 4-2: Radiative Properties of LTPS Internal Surfaces



Gas pressure in the purge volume during ascent was assumed to follow the Orbiter III
cargo bay pressure cargo bay pressure profile shown in Figure 4-2. Variation of effective
gas conductance with pressure was included in the thermal network model of the purge
enclosure. Thermal transport by rarefied gases was modeled by the methods described in
References 9 and 10.

Figure 4-8 shows the typical one-dimensional (4-node) network used to predict insulation
thermal performance. The foam thermal resistance was modeled with two conductors,
linked in series, and separated by a centrally located node. The foam capacitance was
lumped into this central node. Also shown in Figure 4-8, is the thermal network for the
MLI. As with the foam network, heat transfer was assumed to be in a direction normal to
the propellant tank surface. Thermal energy transport through the MLI was divided into
two components: (1) the basic component which included transport through the radiation
shields and (2) the degrade component which included transport through seams, purge pins,
positioning pins, etc.

A short discussion of each MLI heat transport component follows:
Basic MLI
Heat transfer mechanisms through the basic MLI include:

a. Interlayer radiation between adjacent sheilds of the MLI blanket,
b. Solid conduction through the shield spacers, and
c. Purge gas conduction during the initial mission phases.

The thermal conductance of the thin radiation shields, which had a nominal thickness on
the order of 0.0076 mm, was assumed to have a negligible affect on the overall MLI
thermal conductance. Furthermore it was assumed that the MLI had a constant thickness
throughout the mission, and that MLI billowing during ascent depressurization was
minimal.

Reference 1l presents a combined analytical and experimental study that developed
prediction models for basic MLI performance. Other experimental investigations (e.g.
References 12 and 13) have found good agreement between measurement and Reference
11 predictions. The Reference 11 MLI performance prediction models were developed for
double-aluminized Mylar blankets with silk net spacers. However, they were used in this
study to evaluate MLI performance for DAK blankets with Dacron net spacers because the
thermal conductivity of the radiation shields and spacer has little effect on MLI
performance. Figure 4-9 presents the equations used to predict basic MLI thermal
performance. A volumetric thermal capacitance of 36.43 KJ/m3-9K was assumed for all
MLI blankets.

The radiation and solid conduction heat transfer mechanisms were assumed to be present
during all mission phases. Purge gas convection within the MLI was treated as a gas
conduction problem, and it was assumed that the gas temperature leaving the LI was the
same as that entering the MLI. The MLI pressure decay during launch was assumed to
follow the cargo bay pressure history given by Figure 4-2. The interstitial pressure time
dependency was investigated to substantiate this assumption.

A comparison of Boeing-predicted blanket depressurization with experimental data was
presented in Figure 2-7. The predicted blanket pressure differential, defined as the
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difference between the MLI boundary pressure and the maximum interstitial pressure, was
in good agreement with the data. The pressure decay model used to predict the Figure
2-7 MLI venting characteristics was modified to include Orbiter bay depressurization
history, as given by Reference 5. The subsequent predicted interstitial pressure decay
was found to closely match the assumed boundary pressure, as shown in Figure 4-10.
Consequently, it was decided to use the Orbiter Il depressurization history for the MLI
interstitial pressure decay in calculating the gas conductance component of the MLI
overall thermal performance. A uniform pressure throughout the blanket was assumed.

Interstitial gas heat transfer during the launch phase of the mission was predicted with
information given in Reference 12. Figure 2-6 shows that heat transfer by rarified gases
becomes negligible at pressures on the order of 10-5 torr. This pressure level would be
reached at approximately 25 minutes after launch based on exrapolation of available
Orbiter III flight data (see Figure 4-2).

The foregoing discussion has tacitly assumed that the MLI has been suitably precondi-
tioned so that water vapor outgassing is unimportant. Although outgassing effects may
last for days, it was outside this study's scope to evaluate the trade of MLI blanket
preconditioning versus outgassing effects.

Degraded MLI

Degraded MLI performance results from installation of the blankets on the propellant
tanks. Seams between adjacent blanket panels allow thermal radiation to pass through the
MLI system. Additional degradation is caused by positioning and purge pins that provide a
conduction path which short-circuits the MLI insulation. Prediction of the thermal load
caused by MLI seams and pins is very dependent on the type of installation procedures
used. In this study, the radiation thermal load due to seams was based on the
experimental information for a small-scale test tank described in Reference 13. Since the
small tank described in Reference 13 had more seams per unit tank surface area than the
larger LTPS-type tanks, the seam thermal loads predicted in this study are therefore
conservatively high. Pin conduction was approximated from information found in
References 13, 14, 15, and 16. Figure 4-9 summarizes the equations used to predict
degraded MLI performance.

4.1.2.2 Typical Thermal Math Model Results

Figure #4-11 shows typical post-launch heat flux predictions for helium-purged MLI
insulated LH, and LO5 tanks. Prior to launch, assuming natural convection within the
helium purge enclosure, the insulation heat fluxes were approximately 440 W/m2
(140 Btu/hr-ft2) for the hydrogen tank and 285 W/m2 (90 Btu/hr-£t2) for the ellipsoidal
oxygen tank. Actual experience (Reference 13) with helium-purged MLI systems indicates
the prelaunch fluxes may be as high as approximately 780 to 620 W/mZ2 for the LH, and
LO; tanks respectively. The larger observed fluxes may be due to greater convective
heat transfer coupling in the purge enclosure. Analyses have indicated that the ground-
hold heat flux would be approximately doubled by assuming enhanced (forced) convection
rather than natural-convection in the purge enclosures. Hence, if the test insulation were
subjected to an enhanced convection environment, heat fluxes would be about 880 W/m?2
and 700 W/m2 for LH2 and LO? tanks, respectively, rather than 440 W/mZ2 and 285 W/m?2

as predicted for natural convection.

As can be seen in Figure 4-11, the heat leak rapidly decreased by more than two orders of
magnitude as the MLI evacuated following lift-off. Before the Orbiter bay doors opened
at LEO, the initial heating trend shown for both tanks was caused by aerodynamic heating
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during launch. As the Orbiter bay cooled after leaving the earth's atmosphere, this trend
was reversed. Further cooling occurred after the bay doors were opened at 100 minutes
after launch. Figure 4-12 shows the heat flux history for the LH; and LO; tank
insulations on an expanded time scale for the first 20 hours of the mission.

After the bay doors were opened, cyclic thermal loads occurred because of earth
shadowing and a changing vehicle orientation with respect to environmental heat sources.
Moreover, the average insulation heat flux is shown to increase between consecutive orbit
periods. This slow increase can be attributed to increasing body shell temperatures due to
environmental heating from earth albedo and earth IR. The poor thermal connection
between the MLI and the Orbiter bay environment caused insulation heat fluxes to rise
slowly.

The LTPS and LSS were erected from the cargo bay at 17 hours following lift-off. This
event caused the LTPS external surfaces to cool due to the increased radiation view-
factor to deep space. A corresponding decrease in the insulation heat flux was predicted,
and the MLI heating rate was also reduced. Since the LTPS exposure to the environment
was increased from the previous mission phase, the magnitude of the orbital variations
became larger. Four hours before LTPS/LSS separation from the shuttle, at 46 hours
after launch, the LTPS fuel cells and avionics gear were assumed to be turned on for
checkout. An associated increase in heat leak to the oxygen tank resulted from this
event.

The LTPS and LSS were deployed from the Orbiter at 50 hours after launch. Further
increases in magnitude of the cyclic thermal loads are seen to occur in Figure 4-11.
Moreover, the heat flux peaks for the oxygen tank become larger than those for the
hydrogen tank. Reasons for this behavior are:

a. A larger environmental load on the aft section of the LTPS, and
b. Frontal shadowing of environmental loads on the LH2 tank by LSS.

LEO to GEO transfer was initiated at 61 hours after launch. Although cyclic heat flux
variations continued, the periods became longer as the orbit period increased. Further-
more, the curve shapes between consecutive cycles in Figure 4-11 are seen to be
different. These alterations are caused by a changing orbit trajectory.

Figures 4-13 and 4-14 show the typical predicted heat fluxes for MLI/foam insulations.
The data in Figure 4-14 is identical to that in Figure 4-13 but the time scale for the first
20 hours has been expanded to show the initial decrease in heat flux as the MLI is
evacuated. Due to better ground-hold insulation performance, the initial heat flux is
substantially reduced from the MLI-only case. The predlcted prelaunch heat fluxes to the
hydrogen and elhpsmdal -oxygen tanks were of 75 W/m2 (23.9 Btu/hr-ft2) and 44.0 W/m?2
(14.0 Btu/hr-ft ) respectively. The primary difference between the post-launch heat flux
histories for MLI only and MLI/foam insulations occurs before LTPS/LSS separation from
the shuttle, as seen by comparing Figure 4-11 with Figure 4-13.

In Figure 4-11, which shows predicted tank heat flux for helium-purged MLI insulations,
the heat flux increases slowly following the opening of the Orbiter cargo bay doors and
continues to increase after LTPS/LSS erection. In Figure 4-13 however, the heat flux for
MLI/foam insulated tanks decreases following cargo bay door opening. The principal
reason for this difference in heat flux profiles is the difference in vehicle body shell
temperatures prior to launch. In the case of helium-purged MLI insulated tanks, the
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overall effective thermal conductance between the cold tank wall and vehicle body shell
is relatively high due to the conductivity of helium in the MLI and purge enclosure.
Therefore, the body shell temperature during groundhold was lower than its equilibrium
temperature in the Orbiter cargo bay with the doors open in low earth orbit. Hence,
following launch, the vehicle body shell temperature began to rise causing the purge
enclosure environment to warm and consequently heat flux through the tank insulation
increased.

In the case of the nitrogen-purged MLI/foam-insulated tanks, the net thermal coupling
between vehicle body shell and tanks was considerably less than that of the helium-purged
MLI designs. Therefore, the body shell and MLI temperatures were closer to the assumed
Orbiter bay background temperature of 2979K during ground-hold. Following launch, the
average vehicle body shell temperature, in this case, slowly decreases toward the
equilibrium value for the open-door Orbiter bay environment. Hence the LTPS purge
volume cools and heat flux through insulation slowly drops off.

Since the fore and aft purge volume close-outs were assumed to have no thermal mass,
they respond instantaneously to environmental changes. This response causes the one
orbit period fluctuations superimposed on the long time-constant changes in insulation
heat fluxes shown in Figures 4-11 and 4-13.

Predicted tank MLI outer surface temperatures are presented in Figures 4-15 through
4-18 for the LTPS mission. This data is from the computer analysis that generated the
heat flux histories in Figures 4-11 through 4-14,

Figures 4-15 and 4-16 show the He-purged MLI outer layer temperatures for the LH; and
LO, tanks under a natural-convection ground-hold environment. During prelaunch
conditions, the MLI outer layer temperature stabilized at about 200°K for both tanks. In
contrast, referring to Figures 4-17 and 4-18, the MLI outer layer temperature for No-
purged MLI/foam insulation is about 256°K for both tanks.

During launch the effect of ascent heating on the Orbiter cargo bay caused MLI surface
temperatures to rise. When the cargo bay doors opened at about 100 minutes the
temperature dropped. Cyclic variations in temperatures are due to variations in the
orbital thermal environment. As the LTPS reached geosynchronous altitudes, the
frequency of these variations can be seen to decrease. The drop in temperatures at about
100 hours were caused by orientation of the LTPS away from the sun during maneuvers
prior to burn to disposal orbit.

4.1.2.3 Enhanced-Convection Thermal Modeling

Thermal modeling of forced, or enhanced, convection in the LTPS purge enclosure was
based on the assumption that the warm purge gas held the MLI outer surface temperature
at 2949K. This enabled a closed-form prediction of propellant thermal loads during
ground-hold to be obtained. The thermal math models were used to estimate insulation
performance during the transition from ground-hold to on-orbit conditions, and for orbit
transfer. A qualitative description of the approach which was used is given in the
following discussion.

Insulation heat flux prior to launch was determined by dividing the temperature difference
across the insulation (274°K for the hydrogen tank and 200°K for the oxygen tank) by the
sum of the foam and MLI thermal resistances. Resistance is defined by the thickness
divided by the temperature-averaged thermal conductivity. Prelaunch heat fluxes were
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assumed to continue until about three minutes after launch, when depressurization started
to effect MLI gas conduction.

Ground-hold heat fluxes for the enhanced convection purge enclosure environment were
typicall§ in the range of 473 W/mZ2 (150 BTU/ft2-Hr) for LH, tanks and 350 W/m2 (111
BTU/Ft2-Hr) for LO2 tanks insulated with helium-purged MLI. These fluxes were
approximately double the values that would be predicted from MLI systems of identical
thickness under natural convection conditions. In the case of MLI/foam systems,
predicted heat fluxes for enhanced-convection ground-hold conditions were about
221 W/m2 (70 BTU/Ft2-Hr) for both the LHz and LOj tanks. Identical insulations
subjected to a natural convection environment would allow a heat flux of approximately
126 W/m2 (40 BTU/Ft2-Hr) to enter the tanks during ground hold operations.

Section #.1.2.2 showed that ground-hold conditions influenced the propellant thermal loads
until 50 hours after launch. The transition period from ground-hold to on-orbit conditions
was therefore defined by the time interval from approximately three minutes to 50 hours
after launch.

MLI heat flux for the transition period depended on the amount of MLI and the MLI
temperature prior to gas evacuation. For both the MLI and the MLI/foam insulation
concepts exposed to the pre-launch enhanced-convection environment, the MLI tempera-
tures are relatively warm when compared to the on-orbit MLI temperatures. It follows
that the MLI must cool to attain on-orbit conditions. This situation is similar to the TMM
predictions for the MLI/foam insulations that are exposed to the natural-convection
environments. TMM heat flux predictions were correlated to include the effects of MLI
thickness and prelaunch MLI temperatures on average heat flux. These correlations were
then used to estimate the time-averaged heat flux for all insulation concepts exposed to
the enhanced-convection prelaunch environment. Foam cooling was included in the time-
averaged heat flux to define the insulation performance for the transition period.

For the remainder of the mission, from 50 to 115 hours after lift-off, TMM predictions
were used to define the insulation heat flux.

4.2 PREDICTED INSULATION PERFORMANCE

As stated in the introduction to this chapter, the objective of the thermal analysis task
was to predict propellant tank heat leaks for the LTPS mission. These heat leak
predictions were needed to calculate propellant boiloff losses for tank insulation optimi-
zation based on system payload capacity. It was therefore necessary to generate heat
leak predictions for a wide range of insulation thicknesses for each basic design (i.e.
helium-purged MLI and nitrogen-purged MLI/foam) to ensure that data were available in
the region of optimum thickness. This was accomplished by selecting maximum and
minimum insulation thicknesses along with intermediate values and generating heat flux
predictions for these point designs with the thermal math models.

The predicted insulation fluxes are presented in this section. They are based on the
thermal modeling described in section 4.]1.

Insulation heat flux was predicted for two of the three baseline LTPS conceptual designs.
The designs chosen had packaged LSS densities of 56 and 40 kg/m3. Predicted heat fluxes
for the LTPS design with a 24 kg/m3 packaged LSS density, and a smaller toroidal tank,
were assumed to be identical to those for the 40 kg/m-~ packaged LSS density LTPS
because there was little difference in the predicted MLI performance between the



tandem-ellipsoidal and an ellipsoidal/toroidal propellant tank configuration LTPS designs
when the insulation was evacuated. It was therefore deemed reasonable to neglect minor
configuration differences between LTPS designs, with different-sized toroidal and ellip-
soidal tanks, for prediction of on-orbit MLI performance.

For the prelaunch portion of the mission, heat flux predictions were not of sufficient
accuracy to account for differences due to moderate variations in tank size. The
enhanced convection environment was bounded by assuming a 294°K MLI outer-surface
temperature. As such, there is no difference between the hydrogen tanks, or the oxygen
tanks, for the three LTPS conceptual designs. Hence, the insulation pre-launch heat
fluxes that were predicted for the 40 kg/m3 packaged LSS density LTPS were also used
for the LTPS with a 24 kg/m3 one.

For most of the LTPS mission, the insulation heat flux was time-dependent. The fluxes
were integrated with respect to time, and an average flux for several mission subintervals
was defined. Three subintervals were selected to correspond with the sequential mission
phases of:

a. Ground-hold and Initial Launch Phase,
b. Initial Launch Phase to Orbiter Separation, and
c. LTPS Free-Flight.

Insulation designs were varied to develop parametric correlations for each mission
subinterval. The resulting correlations for predicting insulation thermal performance are
presented in the following subsections.

4.2.1 Ground-Hold and Initial Laurich Phases

Thermal math model predictions showed that the steady-state prelaunch heat fluxes were
not significantly altered until several minutes after launch: 2.5 minutes for helium-
purged MLI, and 2.8 minutes for nitrogen-purged MLI. These times correspond to the
points at which heat transfer by gas conduction is reduced, due to depressurization, and
they were taken to represent the end of the initial launch phase. Prelaunch thermal
conditions were therefore assumed to persist over the first 2.5 to 2.8 minutes of the
mission.

Before insulation heat flux could be predicted as a function of thickness, it was necessary
to determine reasonable ranges of thicknesses that would bound the optimum values. In
the case of helium-purged MLI, this determination is relatively simple. Based on
published tank insulation design information, a thickness range of 0.5 to 10 cm was
selected for helium-purged MLIL.

For nitrogen-purged MLI/foam insulations however, determination of the proper thickness
range was more complicated. The complication arose from the fact that MLI-foam
interface temperatures were specified, and the thicknesses of foam and MLI that gave the
desired interface temperature were dependent on the outer surface temperature of the
MLI during ground-hold conditions. The MLI outer surface temperature was, in turn,
dependent on the heat transfer conditions between the environment and the MLI surface,
as well as the total insulation system thickness.

&3
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The following text describes how the analysis of pre-launch thermal conditions was used
to determine the appropriate range of thicknesses for MLI/foam insulation thicknesses.
Following this description, insulation heat flux predictions for the prelaunch phase of the
LTPS mission are presented.

MLI/Foam Sizing

Nitrogen-purged insulations were designed to enable a specified MLI/foam interface
temperature to be obtained. Three interface temperatures were considered; 144, 200, or
2440K. For a given MLI surface temperature, the total temperature drop across the
insulation system was fixed. The temperature difference across the foam sublayer was
determined by multiplying the total temperature drop by the ratio of the MLI and foam
combination thermal conductance to foam thermal conductance (conductance is defined
as the effective thermal conductivity divided by thickness). The temperature differential
across the foam was added to the tank temperature to determine the interface
temperature for a given MLI surface temperature.

Unlike the enhanced-convection environment, for which the outside surface temperature
of the MLI was equal to 294°K, MLI surface temperatures predicted for natural-
convection environment varied with the type and the amount of insulation. Furthermore,
MLI surface temperatures exhibited a spatial dependency. Colder insulation temperatures
were predicted for the top and bottom of the hydrogen tank and the top of the oxygen
tank.

Figure 4-19 shows MLI exterior surface temperature dependency on overall MLI/foam
insulation conductance. These predicted surface temperatures were used to select MLI
and foam thicknesses for the natural-convection prelaunch environments.

Figure 4-20 illustrates the relationship between MLI and foam thicknesses for different
interface temperatures on the hydrogen tanks. It also shows the importance of the
environmental conditions in selecting insulation thicknesses. For example, with natural-
convection and a 244%K minimum interface temperature, the minimum allowed foam
thickness is about 11 cm. This foam thickness corresponds to a zero MLI thickness.
Increasing the foam thickness to 13 cm requires nearly 1 cm of MLI to be added to
maintain the MLI/foam interface temperature at 2449K. Enhanced-convection prelaunch
environments yield similar relationships between MLI and foam thicknesses (as shown by
the dashed lines in Figure #-20), but much less foam is needed to obtain a given interface
temperature.

Figures 4-21 and %-22 show similar MLI/foam sizing results for the toroidal and ellipsoidal
oxygen tanks.

Heat Flux Correlations

Figure 4-23 shows the predicted ground-hold thermal fluxes for helium-purged MLI. This
figure shows the effect of environmental conditions on insulation heat flux. Enhanced-
convection modeling assumed that the temperature drop across the insulation did not
change with insulation thickness. In this case, the heat flux is therefore inversely
proportional to the MLI thickness. This relationship is the reason for the linear
dependence of heat flux on insulation thickness shown in Figure 4-23 for the enhanced
convection environment. Natural-convection modeling yielded a decreasing MLI surface
temperature with a decreasing MLI thickness. As shown in Figure 4-23, the heat flux for
the natural-convection environment was always less than that for the enhanced-
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convection environment. Furthermore, at larger MLI thicknesses (small values of inverse
thickness) the surface temperature approached the 294°K temperature used for the
enhanced-convection case and the heat flux predictions for the two environments became
identical.

Figure 4-24 shows similar predictions for the ground hold heat leak through MLI/foam
insulations. Insulation conductance, rather than thickness, was used to correlate the heat
flux for these concepts. The insulation conductance was determined by dividing the
product of MLI and foam conductance by their sum.

4.2.2 Initial-Launch Phase to Orbiter Separation

Figures 4-11 and 4-13 showed that ground-hold environments effected MLI performance
until the LTPS and LSS were separated from the Orbiter. During the initial phase of this
transition period, the foam sublayer cooled to within several degrees of the propellant
temperature. After the MLI was evacuated, it also underwent a temperature change from
the ground-hold and initial-launch mission phases.

Propellant heating rates, generated by the TMM(s), were integrated with respect to time.
The thermal load attributed to foam cooling, if any, was subtracted from the total
integrated heat flux to define the heat leak through the insulation. Dividing by the tank
area and the duration of the transition period (&50 hours) yielded a time-averaged
insulation heat flux. As such, this heat flux included the effects of purge gas
depressurization, changing LTPS environmental heat sources, and MLI capacitance.
Figure 4-25 shows the predicted insulation heat flux for helium-purged MLI designs.

Figure 4-26 shows the insulation fluxes pedicted for the MLI/foam insulation. Correlation
of TMM predictions for the MLI/foam insulations was relatively difficult, due to a wide
range of prelaunch thermal conditions. It was found by trial and error that the average
heat flux could be satisfactorily correlated against itself when divided by the product of
the MLI thickness and a maximum temperature potential. This correlation proved
satisfactory for the MLI/foam insulations subjected to either a natural-convection ground-
hold environment or an enhanced-convection environment.

4.2.3 LTPS Free-Flight

Prelaunch conditions had no effect on predicted insulation heat flux histories after
LTPS/LSS separation from the Orbiter. Furthermore, no differences in predicted fluxes
were observed between foam and no-foam concepts with an equivalent MLI thickness.
Figure 4-27 illustrates the time-averaged heat fluxes for the LTPS free-flight mission
phases.

For the 11 hour hold on LEO, there was no significant difference between the hydrogen
and oxygen tank heat fluxes. After initiation of orbit transfer, the average heat flux
became smaller because of reduced albedo and earth-infrared thermal loads. The heat
flux for the hydrogen tank is also seen to be less than that for an oxygen tank with an
equivalent MLI thickness. This relative ordering was caused by the LSS shadowing of the
LTPS.

4.3 PREDICTED TANK PENETRATION HEAT LEAK

Penetration heat leak is attributed to fill, pressurization, vent, and propellant-feed
plumbing lines. Additional penetrations include cables for instrumentation to determine
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the liquid propellant(s) height during the prelaunch mission phase. In this study negligible
heat soak back, through the propellant supply lines, from the LTPS engine was assumed.
This assumption was based on conversations with Pratt and Whitney.

Heat leak through tank penetrations is very dependent on penetration design. For
example, heat leak through the fill line could be greatly reduced if a concentric vent line
could be used. Rather than perform a detailed thermal analysis for the penetrations,
constant heat leaks of 29W and 22W were used for the hydrogen and oxygen tank
penetrations respectively.

4.4 PREDICTED TANK SUPPORT HEAT LEAK

Time-averaged predictions for support strut heat leaks are given in Table 4-3. Table 3-8
of this report summarizes support strut design information.

For each LTPS conceptual design, with the natural convection prelaunch environment, the
prelaunch support strut heat leak for MLI/foam insulated-tanks was larger than that for
tanks insulated with MLI only. This was due to warmer body shell temperatures that
occurred for MLI/foam insulated tanks. Since the strut heat leak is proportional to the
difference between tank wall temperature and body shell temperature, a higher body shell
temperature therefore resulted in greater strut heat leak. The body shell temperatures
for MLI/foam insulated tanks were greater than those for MLI-only insulated tanks
because the lower thermal conductance of Np-purged ML1/foam reduced the influence of
the cold tank on the equilibrium body shell temperature prior to launch. For the
remainder of the mission, little difference between the predicted strut heat leaks for
various insulation concepts was predicted.

For the enhanced-convection pre-launch environment, the LTPS body shell temperature
was fixed at 2949K. Predictions of strut heat leak for the enhanced-convection cases
were found to approximately equal those of the MLI/foam insulated tanks in a natural
convection environment.
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5.0 OPTIMIZATION

This section describes the analytical study of optimum LTPS propellant tank insulation
design and summarizes study results. The objective of this study was to identify the
insulation types and thicknesses that maximize LTPS payload delivery capability for
package payload densities of 56 kg/m3, 40 kg/m3 and 24 kg/m3. Optimum insulation
designs were calculated for each of the 13 design conditions indicated in Table 2-3. Five
insulation concepts were studied. Helium-purged MLI was selected as the state-of-the-art
baseline. The other 4 insulations investigated were foam/MLI combinations purged with
nitrogen. Three of the combination insulations consisted of Rohacell 31 foam and MLIL
Foam-thickness-to-MLI-thickness ratios were selected to give foam-MLI interface tem-
perature of 244°K, 200°K and 1449K during ground hold purging. The fifth insulation
consisted of BX250A foam and MLI with an interface temperature of 200°K.

Two ground hold conditions were studied because it was determined that the assumed
convective environment within the purge enclosure had a significant influence on
insulation thickness and payload mass.

The conditions studied represent the two convective heat transfer extremes that could
occur between the MLI outer layer and the purge enclosure inner surface. In this study
the purge enclosure outer surface was assumed to be held at 2940K during ground hold
operations. For the minimum thermal coupling case, natural convection heat transfer, it
was assumed that the gas in the purge enclosure was stagnant and heat was transferred
from the purge enclosure outer surface to the MLI by radiation and free convection. For
the maximum thermal coupling case, enhanced convection heat transfer, it was assumed
that warm purge gas was circulated in the enclosure and the convective heat transfer
coefficient was large enough to cause the MLI surface temperature to be at 294°K.

An iterative procedure was used to identify the insulation thickness that maximized LTPS
payload delivery capability. The procedure consisted of the 4 following steps which were
repeated until the maximum payload case was found.

Estimate a new insulation thickness by incrementally changing the current value.
Calculate propellant tank heat leak over the entire mission.

Calculate new values of propellant tank volume and wall thickness.

Calculate new values of LTPS mass and length and payload mass and length.

apue

The 3 baseline LTPS conceptual designs described in section 3.5 were used as starting
points for the optimization procedure. A computer program was developed to perform the
LTPS and payload sizing calculations thereby greatly reducing the computational time
required to find the optimum insulation thicknesses. The program was run interactively
with the user estimating new values of insulation thickness and the program responding
with predicted payload mass. For the highest density payload case (56 kg/m3), the
optimization of LTPS payload essentially involved a trade between insulation mass and the
combined masses of vented propellant and tankage. In this case, orbiter payload launch
mass was the prime constraint. For lower density payloads, the principal constraint was
orbiter cargo bay length, and the LTPS payload capability was influenced primarily by
insulation thickness and tank length.
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The insulation optimization study lead to the following significant results:

a. LTPS payload mass was increased by as much as 184 kg (406 lbm) by replacing He-
purged MLI with No-purged MLI/foam combinations when enhanced convection was
maintained in the purge enclosure.

b. For He-purged MLI cases, the natural-convection purge enclosure environment
resulted in the largest LTPS payload masses.

c. For N2-purged MLI/foam combinations, the warm-gas, forced convection condition
in the purge enclosure during ground hold resulted in the largest LTPS payload
masses.

d. From the standpoint of maximum payload capability, the best foam/MLI interface
temperature was 1449K. However, the loss in payload mass in going from 1449K to
2440K was only a maximum of 42 kg (93 lbm).

The following sections describe the details of the insulation optimization study. Ground-
rules and assumptions adopted to simplify the LTPS payload sizing calculations and focus
the scope of the study are summarized. The general optimization approach is described
and the computer program used to predict size and mass characteristics of LTPS and
payload combinations is discussed. Parametric LTPS design data and algorithms contained
in the program are described in detail. In the final section optimization study results are
presented and discussed.

5.1 OPTIMIZATION GROUNDRULES AND ASSUMPTIONS

Groundrules and assumptions were established at the beginning of the LTPS insulation
optimization study to define the scope of the effort and simplify the problem to a
tractable form. The following groundrules were established to define the optimization
study:

a. The mission timeline presented in Table 3-3 applied to all LTPS vehicles.

b.  Shuttle payload mass capability was 29,478 kg (65,000 lbm) at liftoff for all
missions.

c. Shuttle cargo bay length available for the combined LTPS/ASC/payload was 16.95m
(55.6 ft) for all missions.

d. Propellant oxidizer-to-fuel ratio was 6:1 with a specific impulse of 4560 N-sec/kg
(465 sec). Engine thrust level was 2224N (500 Ibg) for all vehicles.

e. Three LTPS packaged payload densities were considered: 56 kg/m3, 40 kg/m3 and

24 kg/m3.

f. Two insulation types were investigated. These were, He-purged MLI and No-purged
MLI/foam.

g.  For MLI/foam combinations, three MLI-foam interface temperatures during ground-

hold purging were considered; 244°K, 200°K and 144°K.



Two foam materials, Rohacell 31 and BX250A were investigated with Rohacell 31
being the baseline material for which the majority of the designs were developed.
BX250A was used in one design for the purpose of comparison with the payload
performance derived with Rohacell 31.

Two thermal environments in the purge enclosure during ground-hold operations
were considered. These environments were:

i. Natural convection, and
2. Enhanced convection in which the outer layer of the MLI was maintained at
2940K.

A number of simplifying assumptions were made to reduce the complexity of the
insulation optimization problem. These assumptions dealt with second and third order
effects which, it was felt, would not significantly impact the results of the analysis,
either in terms of insulation thicknesses or the relative ranking of insulation concepts.

The following assumptions were made in the development of the insulation parametric
data and the computerized LTPS sizing models:

d.

Heat flux through a given thickness of tank insulation was dependent only upon
mission time and the basic LTPS shape. Therefore, the fluxes caiculated for each of
the baseline LTPS vehicles were assumed to be independent of LTPS tank size
perturbations on these basic designs.

Tank heat leak through support struts and insulation penetrations (fill lines, vent
lines, drain lines, etc.) was independent of tank size and mass perturbations. These
heat leaks were assumed to be equal to the values discussed in section 4.4 of this
report for the basline LTPS vehicles.

All heat leak was absorbed by liquid boiling. Except for tank lock-up during STS
ascent, all vapor generated by boiling was vented directly overboard.

The effect of propellant conditioning and pressurization on the mass of vented
propellant was assumed to be identical for all LTPS designs analyzed. Hence the
pressurization system was not modeled.

For a given LTPS, the optimum LH7 and LO5 tank insulation designs were assumed
to be independent. Hence the two tank insulations were optimized separately for
maximum LTPS payload.

Auxiliary propellant consumption was assumed to be equal to the baseline LTPS
values for all vehicle size perturbations about the baseline.

All LTPS vehicles were assumed to have the same V requirement for LEO to GEO
transfer and for GEO to disposal orbit. Orbit transfer parameters summarized in
Table 3-4 were used to calculate mass ratios which were assumed to be the same for
all vehicles.

ASE mass did not change with perturbations in baseline LTPS size and mass.

Insulation mass per unit volume was assumed to be constant for all vehicle
configurations.
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jo The mass of propellant conditioning, acquisition and servicing (fill and drain)
hardware was assumed to be constant for all vehicle size perturbations about the
baseline LTPS designs.

k. The total tank heat leaks over the LTPS mission were assumed to be constant over
three phases of the mission: 1) ground hold and initial ascent, 2) initial ascent
through separation from the orbiter and 3) free flight to disposal orbit insertion.
These average heat leaks were calculated for each tank shape (cylindrical,
ellipsoidal and toroidal) from LTPS thermal math model predictions.

L. No accounting was made for the effect of tank pressurant on propellant boil-off.

m. A propellant loading uncertainty penalty of 0.5% was assumed for both LH7 and LO2
tanks.

n. Propellant tank self-pressurization during the 90 second lock-up period following
liftoff was based on Centaur tank pressurization measurements (see Appendix E).

o. Propellant losses due to engine starting and stopping were constant for all cases
studied.

p. Tank volume occupied by baffles, acquisition systems, pressurant systems etc., was
assumed to be zero.

5.2 OPTIMIZATION APPROACH

This section describes the approach that was taken to identify the best insulation concepts
for LTPS vehicles designed for the 3 packaged payload densities. Delivered payload mass
to GEO was selected as the quantitative measure for comparing the benefit of each
insulation candidate considered.

The principal independent variables for each insulation type (He - purged MLI, No-purged
MLI/Rohacell 31 foam and No-purged MLI/BX250A foam) investigated, were insulation
thickness and tank percent ullage volume. In the case of MLI/foam combinations, foam
thickness rather than combined MLI/foam thickness, was used as the independent variable.
The reason for this approach, as will be shown in section 5.7 was that for each MLI/foam
interface temperature selected, a large range of combinations of foam and MLI
thicknesses were possible.

A sizing model was developed to predict the mass and length of LTPS vehicles and to
calculate payload mass. This model, which was computerized to minimize computation
time, used the three baseline LTPS vehicles described in section 3.5 as starting points for
vehicle sizing. The model contained parametric information and equations relating
insulation thickness to insulation mass and to tank heat leak for all mission phases. It also
contained information relating insulation thickness and tank percent ullage volume to tank
mass and effective liquid propellant density. Details of the parametric LTPS sizing data
developed for the model are described in section 5.4.

Inputs to the interactive computerized vehicle sizing model included: 1) payload packaged
density, type of purge gas, type of foam insulation, insulation thickness ():either MLI, or
foam if the MLI was Np-purged), MLI/foam interface temperature, and propellant tank
percent ullage volume. The model interactively sized a new LTPS, starting with the
appropriate baseline design (as determined by payload packaged density). Payload mass



was calculated and printed out at a user keyboard terminal. The user then was given the
option of either changing insulation thickness or percent ullage volume, or inputting a
completely new set of variables.

A procedure was developed to rapidly converge on the optimal value of insulation
thickness and percent ullage volume. Starting with the appropriate baseline LTPS, an
incremental change in the independent variables (IV), either insulation thickness or
percent ullage volume, was made and the sign of the partial derivative of MPL/IV was
determined by predicting a new payload mass, MPL. Once the sign of the partial
derivative was established, new values of the independent variable could be selected to
increase payload mass. The value of the independent variable was incrementally changed
until the new value of payload mass was less than the previously calculated value. This
condition identified the general location of the optimum LTPS design. A prediction-
correction technique was then used to converge on the optimum design.

5.3 LTPS SIZING MODEL

The computer programs developed to size LTPS/payload combinations are described in
this section. The programs were used to identify the insulation designs that maximized
LTPS payload delivery capability. Principal program inputs were insulation thickness,
insulation type (He-purged MLI or Np-purged MLI/foam combinations) and tank percent
ullage volume. The programs calculated LTPS and payload length and mass.

Two versions of the program were written (Appendix C). In one, entitled TRADE, it was
assumed natural convection occurred in the purge enclosure during ground hold operation.
In the other program, TRADE2, it was assumed that enhanced convection of warm purge
gas in the purge enclosure maintained the outer layer of MLI at 294°K.

The following subsections describe the computer models. The description is presented in
three parts. First, the primary independent and dependent variables of the models are
described. Program logic flow is briefly summarized in the second subsection. Finally,
computational algorithms and parametric design data used in the programs are described.

5.3.1 Model Variables

Model variables consisted of: 1) the independent variables which were computer program
inputs, 2) assigned values which were assumed to be invariant for the range of independent
variables considered; and 3) dependent variables, which were calculated by program
algorithms, as either final output or values used internally in intermediate computational
steps.

Independent variables assigned by the user were the following:

Independent

Variable Variable

Name Description

PLDEN Payload density, either 56, 40, or 24 kg/m3.
TYPET Type of tank for which the insulation is to be

sized. Either LHo or LO> is specified.
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TYPEG

DELM

TYPEF

DELF

TIM

MLI purge gas. Either helium or nitrogen is
specified. If helium is specified, the insulation
type is MLI only. If nitrogen is specified, the
insulation type is an MLI/foam combination.

MLI thickness for helium purged insulation
cases.

Foam material. Either
BX 250A is specified.

Rohacell 31 or

Foam thickness for those cases which nitrogen
purged MLI is specified.

Interface temperature between foam and MLI
during MLI purging. Used only when nitrogen-
purged MLI is specified.

Percent ullage volume at T-4 minutes (4
minutes before tank lock-up and launch).

These 8 independent variables provided the information needed by the computer program
to size each LTPS and determine its maximum payload mass and length.

LTPS sizing variables which were determined to have a weak influence on the optimum
insulation thickness, were assigned nominal values. These values were held constant for
all stage and payload sizing calculations. The following summary lists the variables that
were held constant and gives the assigned value of each.

1)
3)

4)

5)
6)
7)
8)
9)
10)
1)
12)

13)

14)
15)

Variable Name

BX250A foam density
Rohacell 31 foam density

Heat leak to hydrogen tanks
through insulation penetrations
(excluding support struts)

Heat leak to oxygen tanks
through insulation penetrations
(excluding support struts).
Density of liquid hydrogen
Density of hydrogen vapor
Density of liquid oxygen
Density of oxygen vapor

Heat of vaporization of liquid hydrogen
Heat of vaporization of liquid oxygen

Density of MLI

Mass of hydrogen lost due to engine

Assigned

36.85 kg/m3 (2.3 Ibm/ft3)
30.44 kg/m3 (1.9 Ibm/ft3)
29W (100 BTU/hr)

22W (74 BTU/hr)

70 kg/m3 84.3693 Ibm/ft3)
1.61 kg/m3 (0.1004 Ibm/ft3)
1131.5 kg/m3 (70.633 Ibm/ft3)
5.39 kg/m3 (0.3365 lbm/ft3)
435.0 K3/kg (187 BTU/Ibm)
209.4 KJ/k§ (90 BTU/Ibm
35.08 kg/m> (2.19 Ibm/ft3)
4.55 kg (10.0 lbm)

starting and stopping over the 8 perigee
burn mission, and orbit circularization
Mass of oxygen lost due to engine starting 28.64 kg (63.0 lbm)

and stopping over mission

LTPS body shell weight per foot of length
Maximum payload packaged diameter

39.2 kg/m (26.3 Ibm/ft)
4.48m (14.7 ft)



16)  Maximum length of the LTPS, ASE and 16.95m (55.6 ft)
packaged payload

17) Space shuttle maximum payload mass, 29,478 kg (65,000 1bm)
including ASE, LTPS and payload.

18)  Weight of auxillary propellants (RCS) 51.36 kg (113 Ibm)

Dependent variables calculated by the program, and accessible to the user through
program output, are summarized in Table 5-1. The two principal dependent variables for
MLI and MLI/foam insulation optimization are ) payload mass and; 2) payload length.
The other dependent variables are used in LTPS sizing calculations to determine LTPS
mass and overall length.

These assumptions simplified the sizing model and reduced computation time and cost. In
some instances assumptions were adopted to bound the solution when exact design
information was unavailable. This was the case in the definition of the ground-hold purge
enclosure environment. In other cases, simplifying assumptions were made to eliminate
from consideration design variables that had minimal influence on LTPS and payload
sizing. The elimination of second and third order effects was justified by the lack of
detailed design information available for the baseline LTPS configuration.

5.3.2 Computer Model Logic Flow

The computer program developed to identify the MLI/foam and MLI-only insulation

systems that optimized LTPS payload mass consisted of a main routine and 11 subroutines.

The program was written to operate interactively, prompting the user for input data and
writing out intermediate and final results to assist the user in making input decisions.

A logic flow diagram of the main routine is shown in Figure 5-1. Input information is
provided to the routine through 5 sets of data. Payload density (either 56, 40, or 24
kg/m3) is specified by the user, as are the tank type, ullage volume and purge gas type (He
or Np). If Np is specified, the routine requests values for MLI/foam interface
temperature, foam type and foam thickness. If He is specified as the purge gas, the
routine requests a value for MLI thickness. For No-purged MLI/foam combinations, the
routine calculates the thickness of MLI required to maintain the specified MLI/foam
interface temperature during ground hold. Once the insulation thicknesses are estab-
lished, the routine calls subroutines GRFLX, TRFLX and SPFLX. These subroutines
calculate the average heat leak through the tank insulation during ground hold operations
and initial ascent (GRFLX), initial ascent through LTPS/orbiter separation (TRFLX), and
orbiter separation through disposal orbit insertion (SPFLX).

After calculating heat fluxes, the main routine then iteratively sizes an LTPS for the
given input conditions and calculates its payload capacity. The starting point for all LTPS
sizing is one of the three baseline conceptual designs described in section 3.5 for packaged
payload densities of 56, 40 and 24 kg/m3. Mass property data, tank sizes, payload mass
and stage length (including ASE) are stored for each of these designs. These values are
used by the routine as the first guess at LTPS mass, size and payload characteristics.

Details of the LTPS sizing routine are shown in the Figure 5-2 flow chart. Heat leaks for
the particular insulation design under consideration are used to calculate new values for
vent losses and propellant loading density. Tanks are then resized and weighed and new
values calculated for propellant mass, insulation mass and body shell mass. Once new
estimates of LTPS mass and length are calculated, the routine then predicts payload mass.
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Dependent

Variable Dependent Variable Description

Name

DELM MLI thickness for N2-purged cases

GFLX Heat flux through insulation during gound hold

TFLX Average heat flux through insulation from launch to orbiter separation
SFLXOT Heat flux through insulation from orbiter separation to LTPS disposal

QSTRH1 & QSTRO1

QSTRH2 & QSTRO2

QSTRH3 & QSTRO3

WHPN & WOPN

WH4N & WO4N

WHSN & WOSN

WHBI & WOBI
WHIMP & WOIMP
WHAI & WOAI
WHRES & WORES
WHLU & WOLU
VHTN & VOTN
THINS & TONIS
AHTM & ACTN
HHTN & HOTN
PLMASS

MASE

WBO

WBOP

WINS

wes

HTW & OTW
PVOL

SLN

Heat leak through hydrogen and oxygen tank support struts respectively during
ground hold

Heat leak through hydrogen and oxygen tank support struts respectively from
ascent to orbiter separation

Heat leak through hydrogen and oxygen tank support struts respectively from
orbiter separation to LTPS disposal

Hydrogen and oxygen loading (liquid) at T-4 minutes
Hydrogen and oxygen boil-off from T-4 to T=0 minutes

Additional LH2 and LO2 boiled off during 5 minute contingency hold between T4
and T=0 minutes

LH2 and L02 vented prior to first LTPS motor burn
LH2 and LOz burned during transfer and disposal
LH2 and L02 vented during transfer

LH, and LO, residuals

LH2 and L02 loading uncertainty

LH, and LO, tank volumes

LH, and LO, tank insulation thicknesses

LH, and LO, tank surface areas

LH, and L02 tank lengths

Payload mass

ASE mass

LTPS burnout mass

LTPS inert mass exclusive of tanks, insulation, and body shell
Tank insulation mass

LTPS body sheil mass

LH, and LO, tank mass

Payload volume

Orbiter cargo bay length required for LTPS and ASE

Table 5-1: LTPS Sizing Model Dependent Variables
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Figure 5-1: Insulation Optimization Model Logic Flow
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A convergence check, comparing currently predicted payload mass with the value
calculated in the previous iteration, is made. If the convergence criterion is not satisfied,
a new iteration is entered.

Listings of two versions of the LTPS sizing model are provided in Appendix F. The first
version, TRADE, was developed with the assumption that a natural convection thermal
environment existed in the purge enclosure during ground hold conditions. In the second
version, TRADEZ, it was assumed that enhanced convection existed in the purge enclosure
and the MLI outer layer was maintained at 2940K (700F) during insulation purge.

5.3.3 Algorithms and Calculation Details

LTPS parametric design and thermal performance data was incorporated into the TRADE
and TRADEZ sizing programs. The following table shows where each set of parametric
data resides in the programs and refers to the figure number in this report where the data
is presented graphically. The parametric design data is discussed in section 5.4.

. ) Reference
Data Description Subroutine Name Figure No.

MLI thickness as a function of foam thick- THMIN 420,
ness for MLI/foam interface temperatures 421
of 2440K (-200F), 200°K (-100°F) and and

1440K (- 2000F). 4-22

Heat flux through He-purged MLI during GRFLX 4.23
ground hold as a function of inverse MLI
thickness.

Heat flux through Ng2-purged MIL during GRFLX 4-24
ground hold as a function of effective con-
ductance through MLI and foam.

Time-averaged heat flux through helium . TRFLX 4-25
purged MLI from ascent through

Orbiter/LTPS separation as a function of

inverse MLI thickness.

Time-averaged heat flux through N2-purged TRFLX 4.26
MLI/foam from ascent through

Orbiter/LTPS separation as a function of

effective insulation conductance per unit

thickness of MLI.

Time-averaged heat flux through He-purged SPFLX 4.27
MLI and Np-purged MLI/foam from

Orbiter/LTPS separation through disposal

orbit insertion as a function of inverse MLI

thickness.

Tank mass as a function of tank volume. WTANK 5.4

Tank mass as a function of tank pressure. WTANK 5-3
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Propellant effective liquid density as a REDDEN 5-5 & 5-6
function of percent ullage volume and tank
heat leak during ground hold.

Tank pressure after 90 second lockup as a
function of heat leak and percent ullage ROUTINE IN 5-7 & 5-8
volume. MAIN PROGRAM

Mass ratios for the 8-burn LEO to GEO orbit transfer described in Section 3.2 and for the
insertion of the LTPS into disposal orbit were assumed to be constants for all LTPS
designs analyzed by TRADE and TRADE2. The following mass ratio values were used in
the programs:

Mass of LTPS & Payload prior to first engine burn
Mass of LTPS & Payload after circularization burn

= 2.823

Mass of LTPS prior to transfer to disposal orbit
Mass of LTPS after insertion into disposal orbit

= 1.0229

These ratios were based on the results of vehicle performance calculations for a specific
impulse of #560 N-sec/kg.

The TRADE and TRADE?2 programs employed the following expressions to calculate LTPS
and payload mass.

LTPS ORBITER LIFT-OFF

PAYLOAD =  PAYLOAD - ASE MASS -  PROPELLANT - &“E?ST

MASS 1 MASS LIMIT MASS

LTPS

L ob - PAYLOAD x { AVAILABLE ORBITER - LTPS )
DENSITY CARGO BAY VOLUME VOLUME

MASS 2

where:

ORBITER = 29478 kg (65,000 lbm)

PAYLOAD

MASS

ASE MASS = 2536 kg (5592 lbm) for tandem ellipsoidal tank LTPS and 2548 kg

(5618 lbm) for toroidal LOp tank LTPS

LIFT-OFF - MAIN IMPULSE + START/STOP + VENT + PROPELLANT+ 5-MINUTE
PROPELLANT PROPELLANTS  LOSSES LOSSES LOADING CONTINGENCY
MASS UNCERTAINTY GROUND HOLD

PENALTY PENALTY
INERT = TANK + INSULATION + BODY + MISC STRUCTURE
MASS MASS  MASS SHELL & EQUIPMENT

MASS MASS

AVAILABLE = 16.9 m (55.6 ft)



ORBITER
CARGO BAY
LENGTH

LTPS LENGTH = LH» TANK+ LO3 TANK + 2xLHp TANK + 2xLO3 TANK + FIXED

LENGTH LENGTH INSULATION INSULATION REFERENCE

THICKNESS  THICKNESS LENGTH

The programs compared the two values of payload mass and selected the smaller of the
two as the correct value. If:

LTPS LTPS
PAYLOAD £ PAYLOAD
MASS 1 MASS 2

then the LTPS payload mass was limited by the Orbiter payload mass capability. On the
other hand, if:

LTPS LTPS
PAYLOAD £ PAYLOAD
MASS 2 MASS 1

then the LTPS payload mass was limited by the length of the Orbiter cargo bay available
volume.

5.2 LTPS DESIGN PARAMETRICS

Insulation design was found to affect LTPS mass and length (and therefore payload mass)
in the following manner:

a. Insulation design influences the heat leak into propellant tanks and therefore

impacts:

1.  propellant vent loss,

2.  effective liquid density of the propellant due to vapor bubbles,

3. peak tank pressure due to self pressurization during vent valve lock-up,
4.  tank volume (and length for maximum diameter tanks) and tank mass.

b. Insulation design impacts the inert mass of the LTPS. The greater the insulation
thickness and density, the greater the inert mass.

C. Insulation thickness affects the LTPS overall length, and therefore impacts payload
mass for volume-limited cargos.

d. Insulation thickness affects LTPS body shell mass directly by influencing insulated
tank overall length and indirectly by influencing tank pressure shell length due to
the effect of heat leak on tank volume.
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The relationship between insulation design and the variables affecting LTPS mass and
length were developed and expressed in mathematical terms. These mathematical
relationships provided the parametric data that was used to predict the influence of
insulation design variables on LTPS payload mass and identifying optimum insulation
concepts.

This section describes the parametric design data that was developed for the LTPS sizing
model. The model itself is described in the previous section (5.3 LTPS Sizing Model). The
following specific sets of parametric information are discussed:

a. Insulation parametrics including;

1. the relationship between foam thickness and MLI thickness for constant values
of MLl/foam interface temperature,

2. the relationship between insulation design and heat leak through the insulation,
and

3. insulation mass as a function of thickness and insulation type.

b. Propellant tank parametrics, including the effect of volume on tank mass and the
effect of peak pressure differential (between the inside of the tank and outside) on
tank mass.

c. The influence of heat leak on effective liquid density during ground hold conditions.

d. The effect of ullage volume and heat leak on tank peak pressure due to self-
pressurization during vent valve lock-up.

e. The effect of tank length and insulation thickness on structural mass.
5.4.1 Insulation Parametrics

For the case of MLI/foam insulations, an infinite number of foam thicknesses are possible
for each interface temperature. However, for any value of foam thickness, there exists
only one corresponding value of MLI thickness that will give a selected interface
temperature.

The assumed heat transfer environment between the outer layer of MLI and the outside of
the purge enclosure (the LTPS body shell in this case) affects the relationship between
MLI and foam thickness. For a given value of foam thickness, the greater the thermal
coupling between MLI and LTPS body shell, the greater the MLI thickness required to
maintain a specified interface temperature. The relationships between MLI thickness and
foam thickness were determined by mathematically modeling the heat transport through
MLI/foam insulations as described in section 4.3 of this report. The result of this
analytical effort was a set of linear functions relating MLI thickness and foam thickness.
These relationships are shown graphically in Figures 4-20, 4-21 and 4-22. The solid lines
denote a natural convection environment within the purge enclosure and the dashed lines
represent an enhanced convection environment in which the MLI outer layer was assumed
to be maintained at 2949K. The data in these charts were used in the LTPS sizing model
to calculate MLI thickness for specified values of foam thickness and interface
temperature.



One of the primary results of the initial LTPS thermal analysis, performed under Task I,
was the fact that insulation heat leak during all mission phases (ground-hold as well as in-
space) played a major role in sizing the LTPS.

Insulation heat leak affected payload mass through its effect on: 1) propellant vent loss, 2)
tank volume, wall thickness and mass, and 3) effective liquid density at the conclusion of
tank fill. Since there were to be a large number of LTPS conceptual designs to be
analyzed in the evaluation of optimum insulation combinations, it was necessary to
develop parametric data relating insulation characteristics to heat leak. This parametric
data was required because the cost of performing a full mission thermal analysis for each
LTPS design considered in the insulation optimization process, would have been
prohibitive.

Parametric insulation performance data was developed from the thermal analyses
performed on the 3 baseline LTPS vehicles as discussed in section 4.4. These analyses
predicted the LH2 and LO2 heat leaks from beginning of mission (ground-hold operations)
through LTPS injection into disposal orbit for a range of insulation thicknesses. Time-
averaged tank insulation heat fluxes were calculated from predicted heat leak timelines
(see Figures 4-11 and 4-13).

This calculation was accomplished by first subtracting strut and penetration heat leaks
from the total tank heat leak to obtain the heat leak attributable to the insulation system.
The insulation heat leak was then time-averaged over 3 mission phases and the average
values divided by tank surface area to arrive at average fluxes. The 3 mission phases over
which average heat flux values were calculated were as follows:

a. Ground hold through MLI evacuation
b. MLI evacuation through LTPS/Orbiter separation
c.  LTPS/Orbiter separation through disposal orbit injection.

Time-average tank insulation heat fluxes for the baseline LTPS vehicles were converted
into parametric insulation performance data by correlating the predicted average heat
fluxes with insulation conductance parameters. Figures 4-23 through 4-27 summarize the
insulation performance curves that were developed for the LTPS sizing model. Figure
4-23 shows the relationship between insulation heat leak during ground-hold MLI purging -
and the reciprocal of MLI thickness for He-purged MLI. The reciprocal of MLI thickness
is proportional to the effective conductance of purged MLI (Kyp ). That is,

)

1
— = Kyt (—
SMLI kcond + Krad

where
KyLr= effective thermal conductance per unit area of MLI — W/cm2-9K
MLI = thickness of MLI — cm
Kcond= effective thermal conductivity of purged MLI due to conduction heat
transfer — W/cm-9K
Krad = effective radiation conductivity of purged MLI — W/cm-OK

In the case of the natural convection boundary condition at the outer surface of the MLI,
the heat leak is dependent on tank shape as well as tank type (i.e., LH2 or LO3). This
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dependency on tank shape is due to the fact that the magnitude of the natural convection
heat transfer coefficient at the MLI outer surface is dependent on the orientation of the
surface (i.e., vertical, downward-facing or upward-facing). For the enhanced convection
environment condition, this dependency did not exist since it was assumed that the MLI
outer layer was uniformly maintained at 2949K. Heat leak fluxes ranged from 100 to 600
W/m?2 for the He-purged MLI designs considered in the subject analysis.

Figure 4-24 shows the relationship between insulation heat flux and the overall effective
insulation conductance for N2-purged MLI/foam combinations. Heat leak fluxes ranged
from 50 to 300 W/m2. The fact that heat leak fluxes through MLI/foam combinations
were generally less than half that of MLI-only, for equal insulation thicknesses, was due
almost entirely to the fact that the thermal conductivity of N2 is less than one-fifth that
of He.

Figures 4-25 and #-26 show predicted insulation heat leak flux during the mission phase
extending from MLI evacuation through LTPS Orbiter separation. For the case of He-
purged MLI systems it was found that predicted time-averaged heat fluxes correlated with
the reciprocal of MLI thickness. However, for MLI/foam combinations, it was found that
the stored thermal energy of the MLI and foam (as typified by the temperature gradients
through each) prior to launch, played a significant role in the insulation heat leak flux
during this transition period. Hence, as shown in Figure 4-26, it was found that predicted
heat fluxes through No-purged MLI/foam insulation could best be correlated by the
nonexplicit expression:

Heat flux = f(Heat flux)
S.VILI(TExternal MLI -TTank)

In order to calculate insulation heat flux from the curves in Figure 4-26, it was necessary
to solve iteratively by trial and error.

During the third mission phase, there was little change in the predicted thermal gradients
through either the MLI or MLI/foam insulation. In this phase, from LTPS/Orbiter
separation through disposal orbit injection, the heat leak was controlled almost totally by
the MLI performance. This predominance of the MLI was due to the fact that the thermal
resistance through evacuated VLI was much greater than the resistance through a
comparable thickness of foam. Therefore, as shown in Figure 4-27, it was found that for
both MLI-only and MLI/foam insulations, heat leaks correlated with the reciprocal of MLI
thickness.

The relationship between insulation mass and insulation thickness was assumed to be
expressed as:

Insulation Mass = Tank Surface Area x (foam thickness x foam density + MLI
thickness x MLI density)

This expression ignores the fact that insulation surface area increass with thickness.
However, for the range of insulation thickness considered (0 to 12 ¢cm) this simplification
introduced a negligible error into the mass calculation.



5.4.2 Propellant Tank Parametrics

A parametric study was conducted to determine the dependence of cryogenic tank weight
upon design internal pressures. Such weights were required for their contributions to
mass-limited payload determination and for pressure-volume trades needed to optimize
tank sizing for tank locsidered (0 to 12 c¢m) this simplificatiok-up pressure rises.

The OTV (Reference 1) LH and LOz tank designs were used as baselines in the
development of weight-pressure relationships. The reference identified weights of the
tank membranes, weld lands and tolerances, manhole and local beef-ups and support
structure. The support structure weights were further broken down to the contributions
from the main support ring, struts, strut brackets and pins, and the thrust ring for the LO;
tank. For the purpose of parametric pressure sizing, two basic groundrules were adopted:

a. Weight versus pressure is linear for tank membranes, weld lands, manhole, and local
beef-up components.

b.  Weight of the support structure varies linearly with the change in the total loaded
tank weight, as influenced by variation from (a) above.

The results of the parametric tank weight versus pressure study are shown in Figure 5-3.

This figure shows that the mass of both LO2 and LH7 tanks are independent of pressure
until the wall thickness required for strength exceeds minimum gage. Beyond the
transition region, mass increases linearly with pressure.

Figure 5-4 shows the relationship between tank mass and volume that was used in the
TRADE and TRADE 2 LTPS sizing programs. Values of mass and volume for the
reference LO7 and LH7 tanks are given. Note that the dashed line represents both
toroidal and ellipsoidal LO7 tanks.

5.4.3 Propellant Density

The effective density of the loaded propellant during ground hold operation is dependent
on the heat flux through the tank walls. The presence of vapor bubbles at the tank walls,
as well as those rising through the liquid, in effect decrease the density of the propellant
in the tank. As the heat flux to the tank increases, the total volume of bubbles formed at
the wall, and rising through the liquid, increases. Therefore, the effective density of the
tanked liquid propellant, which decreases with increasing heat flux, can be expressed as:

Effective
liquid density = (vapor bubble volume x vapor density + liquid volume x liquid density)
total volume

The impact of decreased effective density on LTPS mass and size is to increase tank
volume (and length and mass) for a given liquid propellant mass loading requirement.

In calculating the effect of ground hold heat leak (through insulation, tank support struts
and other insulation penetrations) on propellant effective liquid density, it was assumed
that the liquid and vapor phases were in thermodynamic equilibrium at saturation
conditions. Hence all the heat leak through the tank walls was assumed to vaporize liquid.
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Vapor bubble size and terminal velocity in the liquid were calculated by the methods
described in Appendix D. Terminal velocity and average rise distance were used to
calculate average residence time of vapor bubbles in the propellant liquid phase for the 3
baseline LTPS tank designs decribed in section 3.5 of this report. Rise distance was
dependent on tank shape and ullage volume. Therefore, the rise distance in the shorter
toroidal tanks was less than the rise distance in ellipsoidal dome tanks of equal volume.
For a given tank configuration, rise distance decreased with increasing ullage volume.
Since bubble residence time was directly proportional to rise distance, the effective
propellant density, for a given heat leak value, was greater in short tanks than in long
tanks and increased with increasing ullage volume.

Figures 5-5 and 5-6 show typical sets of parametric data that were developed to relate
effective propellant density to ground hold heat flux and percent ullage volume. These
charts are for the ellipsoidal dome LH2 and LO2 tanks of the baseline Task II LTPS shown
in Figure 3-7. The heat flux in these charts is the total ground-hold heat leak to the
propellant, including contribution of the insulation, struts and other insulation penetra-
tions, divided by the total surface area of the tank.

5.4.4 Self Pressurization

As described in the section 3.2.3 discussion of the selected mission timeline, it was
assumed the LTPS propellant tanks were not allowed to vent during the first 90 seconds of
launch. This restriction would be imposed for safety reasons. After 90 seconds it was
assumed that sufficient altitudes would be reached that venting overboard could be
resumed. During the period of no venting the pressure in the propellant tanks would rise.

This tank self-pressurization is caused by continued boiling of the propellant after vent-
valve lock-up at launch. The resultant pressure rise can, under certain circumstances,
determine the peak design pressure of the tank. This circumstance occurs if the pressure
at the end of lock-up exceeds the normal vent valve opening pressure.

The pressure rise during lock-up depends upon the magnitude of the heat leak into the
tank, the mass of liquid in the tank, the percent ullage volume and the thermodynamic
state of the liquid and vapor phases.

A simplified approach was taken in relating tank pressure rise to heat leak and percent
ullage volume. The details of the analysis are described in Appendix E. In essence, for
the purpose of sizing tank wall thickness, it was assumed that the correlations between
pressure rise rate and percent ullage volume and heat leak described in References 17 and
18 were valid for the LTPS. Centaur tank self pressurization measurements made during
actual launches were used to determine the correlation constant.

Figures 5-7 and 5-8 show typical parametric data that were developed to relate tank peak
pressure to heat leak during the first 90 seconds after launch and percent ullage volume.
These charts are for the LH7 and LO3 tanks of the baseline LTPS shown in Figure 3-7,
Similar sets of data were developed for the other two baseline LTPS vehicles.

5.4.5 Structural Mass

Structural mass (i.e., the LTPS body shell and other load carrying structure) is dependent
on tank volume and insulation thickness. As the insulation thickness increases and the
tank volumes increase (in the case of maximum diameter tanks) the LTPS structure must
increase in length accordingly. For the purpose of developing parametric structure mass
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data, it was assumed that each LTPS baseline vehicle had a characteristic length that was
invarient as the tank volume and insulation thickness changed. This characteristic length
included the following elements:

a. Clearance between the LH7 tank forward dome and the payload interface ring.
b. Clearance between the LHp tank aft dome and the LO; tank.

c. Engine and thrust structure between the engine gimbal and LO7 tank aft dome (for

) the tandem ellipsoidal tank LTPS shown in Figure 3-7). For the toroidal LO7 tank
baseline LTPS vehicles (Figures 3-8 and 3-9) this length element consisted of a
standard distance between the exit plane of the engine nozzle and the aft surface of
the toroidal tank.

d. Clearance between the nozzle exit plane and the aft bulkhead of the Orbiter cargo
bay.

The assumed invarient characteristic lengths for the baseline vehicles and all size
perturbations about them were as follows:

ASSUMED

LTPS PAYLOAD
PACKAGED DENSITY

INVARIENT LTPS
LENGTH ELEMENT

56 (kg/m3) 154.7 cm
40 (kg/m3) 184.4 cm
24 (kg/m3) 168.4 cm

In addition to the above invarient dimensions, the LTPS overall length included the axial
dimensions of each tank and twice the insulation thickness on each tank. Thus the overall
stage length was expressed as:

Overall Invarient LH» LO» LH,Tank LO, Tank
LTPS = Length + Tank + Tank +2x Insulation +2 x Insulation
Length Including Length Length Thickness Thickness

Engines, etc

Structural mass was related to changes in LTPS overall length caused by dimensional
changes in the tanks and insulation. The governing expression that was developed for this
relationship was

Structural Mass =

Miny + Ax (L, + Lo +2x Iy, +10,)
(not including tanks) 2 2 2 2

where
Minv = The portion of the total structural mass that is assumed
invarient with changes in tank length and insulation thickness
A = Structural mass per unit length of LTPS body shell (excluding

avionics ring, payload interface ring, fuel ceil radial tank
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support rings, etc. which were included in Myny). The value of
A was calculated to be 39.2 kg/m.

LH2 & Loz Overall length of hydrogen and oxygen tanks respectively.

Iy, &lo, = Thickness of H and O3 tank insulation.

The above expression was used to develop data which related structural mass to LTPS
tank and insulation combined length for each of the 3 baseline vehicles. It was included in
the LTPS sizing model as part of the payload mass calculation algorithm.

5.5 INSULATION OPTIMIZATION RESULTS

Twenty-six LTPS vehicles were sized for He-purged MLI and Np-purged MLI/foam
insulation systems. In each case, the optimum insulation thickness for maximum payload
delivery to GEO was found with the aid of two computer programs TRADE and TRADEZ.
The search for optimum insulation thickness was conducted by using these computer
programs to predict LTPS payload mass for a range of insulation thickness. Once the
optimum value was bounded, a process of estimation and correction was used to converge
on the value of insulation thickness that maximized payload mass. Optimum insulation
thickness for the LO9 and LH tanks were calculated separately. It was assumed that the
optimized insulation thicknesses for the LH2 and LO; tanks were independent. Therefore
the LTPS design that incorporated the independently-optimized LH and LO7 tank
insulation designs was assumed to have the maximum payload placement capability.

Table 5-2 identifies the 13 LTPS optimum insulation designs that were analyzed for each
of the 2 purge enclosure thermal conditions (natural convection and enhanced convection)
assumed to exist during ground hold operations. Key results of these calculations were:

a. The assumed heat transfer environment in the MLI purge enclosure had a major
impact on predicted LTPS payload placement capability. For He-purged MLI
insulated tanks, the natural convection purge enclosure environment resulted in the
greatest LTPS payload placement capability. However, for Np-purged MLI/foam
insulations, payload placement capability was greatest for the enhanced convection
environment. It was found that for He-purged MLI designs, the natural convection
purge enclosure environment assumption lead to LTPS payload placement capability
54 to 208 kg (119 to 459 lbm) greater than the payload placement capability
predicted for the enhanced convections environment. In the case of MLI/foam
combinations, the natural convection environment assumption lead to payload
placement capability as much as 431 kg (950 lbm)below the values predicted for
enhanced convection.

b. The application of enhanced-convection No-purged MLI/foam insulation in place of
natural-convection He-purged MLI either improved LTPS payload placement capa-
bility by up to 26 kg (571bm) for the highest payload packaging density or decreased
it by as much as 56 kg (123 lbm) in the case of the intermediate packaging densities.

C. Propellant vent losses and insulation mass were the two elements of the LTPS that
were most sensitive to changes in insulation thickness. LTPS payload placement
capability was therefore optimized at approximately the point at which the sum of
insulation mass and propellant vent loss mass were minimized.
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d. LTPS payload mass was relatively insensitive to the percent ullage volume selected
for the propellant tanks. The optimum percent ullage volumes ranged from
approximately 10% for the highest payload packaging density to about 0.5% for the
lowest payload packaging density.

e. From the standpoint of LTPS payload placement capability, Rohacelle 31 foam was
preferable to BX250A.

The following text describes the details of the insulation optimization analysis and
presents the results in graphical and tabular format.

Figure 5-9 presents a typical LTPS/payload mass summary generated from the TRADE
and TRADE2 computer program calculations. The solid curves are the results for a
natural-convection purge enclosure environment, and the dashed curves represent the
results for an enhanced convection environment. Payload packaged density was 56 kg/ m3
for both cases and the MLI/foam interface temperature was 1449K. As can be seen, the
optimum LH37 tank foam thickness for the enhanced convection purge environment is only
about 0.56 cm as compared with 1.78 cm for the natural convection environment. This
difference is caused by the fact that the low natural convection conductance between the
LTPS body shell and the tank MLI required additional foam to maintain the selected
MLI/foam interface temperature.

Insulation mass (foam + MLI) increases linearly with increasing foam thickness (MLI
thickness was linearly proportional to foam thickness as shown in Figures 4-20 through
4-22). Propellant vent losses are seen to initially drop off rapidly with increasing foam
thickness and then decrease slowly as larger values of foam thickness are reached. This
phenomenon is caused by the fact that at low values of foam thickness the MLI thickness
is also low (see Figures #-20 through 4-22) and heat leaks during all mission phases are
high. As the foam thickness is increased, the MLI thickness must also be increased to
maintain the desired interface temperature and the heat leak through the insulation to the
propellant is reduced. However, the heat leak through tank support struts and insulation
penetrations is independent of insulation thickness and remains constant as foam thickness
is increased. Hence at large values of foam thickness the total heat leak (and propellant
vent loss) approaches a constant value determined by the strut and penetration heat leaks.

A typical set of results for the optimization of an LTPS with He-purged MLI-covered
tanks is shown in Figure 5-10. This chart shows the predicted influence of MLI thickness
on LTPS and payload length for the case in which packaged payload density is 24 kg/m3
(volume-limited cargo). The dashed lines represent TRADE2-predicted results for the
enhanced convection purge enclosure environment and the solid lines represent the results
predicted by TRADE for the natural-convection environment.

It can be seen that the LTPS optimum payload length and mass for the natural-convection
He-purged environment condition occurs at a much lower value of MLI thickness than the
optimum thickness for the enhanced convection condition. In addition, the optimum
payload length and mass for the natural convection case are greater than the optimized
length and mass predicted for the enhanced convection case. The primary impact of the
assumed purge enclosure environment on payload length and mass occurred through the
effect on tank length. For a fixed value of He-purged MLI thickness, the enhanced
convection environment resulted in greater heat leaks during ground-hold. Hence tank
volumes were larger to account for lower effective liquid density (due to boiling) and
greater vent losses after tank topoff.



SSepy wWaisAsqns Sd.l 7 pue peolAed uo ssauyaiy| weo 40 123443 :6-G ainbi4

$SaUNIIYL weoy $SaUJIIYl Weo
u G°| 0l \/\m ul w S0 0
- T e _
wo 0 wo ! 0
b__ & T A0 et 0

3J0-|10q Aouabiyuo) \ $40-{toq Asusbiyuop \\ |

4 P 1
Azureuasun Buipeon uone|nsu| \\\\\\\\“
$8550] 1UAA ~ Joo1 - " T 777 o0t -jo0z
oAIsindoid-1504 ———=— Awutenieoun Buipeon

’,I
| $3380] JuaA \ - |
l1eysApog— . o>_a_:ao.a“man_ \\ ll// doov
e Jooz IeysApog \ ooz

uone|nsu| s3550] 1A i ]
$9SSO| JU9A i eaisjndoid-aly i Joos
aAisindosd-a.g
-100€ -100€
syue ) — 4 exuey .Il,/ J oos
- oot \-{oov ]
1\ 00L's N 00L's \ ,
~1008'v1

{

UQO—>Q& T mmﬂz UQO—)@& . ‘ . ssepy
-0089 . /// \T 008’9 000'S1

~00z'L1 -jooz’sL -{o06'LE
/
4 \\ . 1

siuejjadosd asindust uteyy —==" , .
sjue||adoid esjndwy uiepy Jooe' et —00E°LL -lo01'8t

B Way

JUBWIUOIIAUS UOJID8AUOI-[RINIEN
JUBWUOIAUD UOIIIIAUOI-PINEYUT v e o e
ainesedwa) aoeyteuy yue3 usBoipAy ayl uo weoy | g Sd171 Ausuap peojhed

Weo/| TN (4,00Z-) X v¥L o  1199eyol/ T Pabind-usboniy e pabexdeq (/a1 GE) (W/BY 95 e

127



speojfeqd parwly — ewnjon
104 Y16ua7 S4.1 7 puYy peojAed uo ssauxoryyL | TN 40 1934}3 : 0L —G 8inbr4

SSaUDIL] UOKIR|NSUI SaWI OM |

JUBUWIUOIIAUS UOJIIOAUD?) - POOUBYUY = = == = o=

JUSUWILCIIAUS UO{1D0AUOD - [RINIEN

Nuey ueBAxo syl uo |y pedind-umijey o

Aysuep peojAed psfiexoey .m:\Ea_ 91) nE\ox 1 {4

00Z8

ssepy

projAny
00€8 -

ssouNoI 1IN
w gl ] 90 0
L | v A ]
w ¥ € 1 4 ) 0
r T v \l
- ]
- — , uonensuj ]
—_—— I/ B
=~ quer
llll uebAxQ L
~ 4
) F
"Ill"lll,‘l ‘:ﬂd -
ueBospAy |
/ )
00Z¥ 7
' ,,I'll-lll\\ )
projAey ]
(1214 & .
By -

(A3}
18
ozt
1£4)
:’A4 )

08z
4.4
14:14

1011
9011
00tt
el
L
tzui

14

9l
i
wnbue

sey

uw

128



Typical LTPS payload optimization results for He-purged MLI and Ny-purged MLI/foam
insulation designs are presented in Figures 5-11, 5-12 and 5-13. These charts show the
influence of insulation thickness and percent ullage volume on LTPS payload mass.
Results are shown for He-purged MLI and Ny-purged MLI/foam insulation concepts with a
packaged payload density of 56 kg/m3 (Figures 5 11 and 5-12) and for Np-purged
MLI/foam with a packaged payload density of 24 kg/m3 (Figure 5-13).

Several general trends are evident in these charts. Figure 5-11 shows that payload
placement capability curves for He-purged MLI designs did not have sharply defined
maxima when either MLI thickness or percent ullage volume were varied. Hence near the
optimal values of MLI thickness and percent ullage volume, payload placement capability
was fairly insensitive to small changes in either ullage volume or MLI thickness.
However, for N2-purged ML1/foam insulations, reference to Figures 5-12 and 5-13 shows
that payload placement capability was much more sensitive to foam thickness in the
region of the optimal value. Hence for LTPS designs utilizing MLI/foam tank insulation,
greater modeling accuracy is required to optimize insulation design for maximum payload
mass.

In all cases analyzed, it was found that payload mass was not highly sensitive to percent
ullage volume in the region of the optimal value.

The primary objective of the insulation optimization analysis was to evaluate how
MLI/foam interface temperature affected LTPS performance. The payload placement
capability of LTPS vehicles utilizing No-purged MLI/foam insulation were compared with
the performance of LTPS vehicles utilizing conventional He-purged MLI. In each case,
the insulation system (insulation thickness) and percent ullage volume were optimized for
maximum LTPS payload placement capability. As indicated in Table 5-2, four LTPS
vehicles were optlmlzed for each of three payload packaging densmes (56 kg/m3,
40 kg/ m3 and 24 kg/m 3). Four unique insulation designs were analyzed. One (the baseline
for comparison), was He-purged MLI. The other three were Np-purged MLI/foam
insulations, in which the MLI/foam interface was assumed to be maintained at either
1449K, 2009K or 244°K during purge operations prior to launch. In addition, one LTPS
vehicle was optimized for BX250A foam to assess its benefits relative to the baseline
foam, Rohacell 31.

The effect of MLI/foam interface temperatures on payload placement capabilities of
optimized LTPS vehicles are shown in Figures 5-14, 5-15 and 5-16 for payload packaging
densities of 56, 40, and 24 kg/m3, The predicted performances of optimized LTPS
vehicles utilizing He—purged MLI are shown in each chart for comparison purposes.
Predicted results for the natural-convection purge enclosure conditions are denoted by the
solid curves and the dashed curves represent the predictions for the enhanced convection
environment.

Figures 5-14 through 5-16 illustrate the following predicted trends:

a. The assumed heat transfer conditions in the purge enclosure during ground hold can
have a large impact on LTPS payload capacity. The greatest impact occurs for He-
purged MLI or when the interface temperature of the MLI/foam combination
exceeds 160°K.

b. Generally, for MLI/foam combinations, the forced-convection purge enclosure
environment condition lead to predicted payload mass greater than the value
predicted for the natural convection environment.

129



Aysuaq pabeyoeq peojAed | mt\s q1 S°€) ~w/BY 95
104 | T pabing-winijap 10} SSey peojAed uo awnjop abef/f) pue ssauyIyL | TW 40 19343 ‘L1-G ainbi4

SSANMOIHL W WNWILO IWNTOA 39VI11N
JHL HO4 3NWNTOA 39v 1IN WNNILJO 3HL HO4 SSINMNOIHL
ONIAHVA 40 103443 () T ONIAYVA 40 103443 ()
SSANIIJHL TN
(%) INOTOA 3OVTIN INVL "z : 0
1] S 0 w g ¥ £ T 1 0
r— T h 0 r T T T M M 0
4 - .
Joocr9 400.9
Joog'vt’
JUBWIUOIIAUD
UOH93AUO-padueyU]
JUBWIUOIIAUB .
UO1133AU0J-paduUeYU] 4006 ¥L
SSVYIN
avoOlAvd
~ \1 0089 40089
— - 4 000'S1
N
gl / .
- g 4o001'st
JUSWUOIIAUS
UOII29AUOD-jRINIEN — JUIWIUOIIAUS
UOI123ALO0D-{RINIEN
- 0069 10069 J 00zt
o B W)
SANVL THT
suNvLZOT — —

ITW A39HNd-NNIT3H e

130



Asuaqg pabeyaed peojAed (

/q1 5°c) E\o.v. 96 — uonejnsuj weod/[TW

pabing-uaboyiN 104 sse peojhed ud awnjop mu. 111 pue SSauyoly [ weo 40 133443 :ZL-G 84nbl4

SSINNIIHL WVYOd WNWILLO
3H1 HO4 INNTOA 39VTIN

ONIAHVA 40.103443 (9)

{%) IWNTOA IOVTIN JNVL
ol S 0

— T Vc

IWNI0A 39vV1IN
WNNWILJO FHL HOJ SS3INAIIHL
WVO4 ONIAHVA 40 1933443 (9)

SSINANIIKL WYDd
i

vy ¢t
Y T

ut

-lﬂwN

.WQ %

- 009 009
- 0089 0089
1UBWUONIAUS
UOIIDIAUOD
-jeamieN / UBWUOLIAU
S UO1123AUOD-|RINIEN =
had N
- [EE p——
uCOECOu_>C0
UAWUOIIAUB J 0069 UO1193AU0D-Pasueyu] 0069 -
UONJIAUODI-PIOUBYU] — 6
SINVL S B3
SiINVL ¢o1 — —

JUNLVH3IdWIL JOVAHILNI WVOI/ 1T (45 002°) X ¥l

WYO4 1€ T130VHOUY/ITW GIDUNJ'NIOOHLIN e

008'vi

0061

SSYW
aQvOlAvd

000'St

00L'st

00Z'S1

Rl

131



Ausuaq pabeyaed peojhed (c1y/'a1 G'1)
pabing-uaboiiy 10} ssel peojAed ub awnfop 3b

WNWILAO FHL HO4 SSINNOIHL
WYO04 ONIAYVA 40 103443 ()

SSINMNIIHL WVO4

WNWILJO 3HL HO4 FWNT0A
39V1IN ONIAYVA 40 103443 (9)

(%) INNTOA 39V1IN JINVL

0l 9 0
L v N‘O
{ooLy
JUBWIUOIIAURD
UO|199AUOD-padUEYUT
-100Z¥
JUBWIUOIIAUR —
UO{}J3AUOD
-fednieN
400ty

6

uyBy pZ — uonensuj weod/|TW
ms pue ssauyaly| weo 40 399}43 ‘£L°G anby

IWNT0A 39VI1TN

SS3INNIOIHL WYOd

u z l 0
r- T \
w g v ¢ T | cc 0
-T T T T T M‘ u‘
A 00l ¥
< 0016
4 00C6
SSVW
0ozy aQvOlAVvd
4 ooté
JUBWIUOAIAUS
UOIIDIAUOD-{BINIEN .
JUBLILOIIAUD 1 oove
UO1198AUOD-pBOURYUT
Jooey -
Ya

SUNVLIHY ———
sINvL 01 — —

JHUNLVHIAWIL FOVIUILNI WVOS/ITN (3,002 ) N Pl @
WVO04 LE TT1IOVHOU/I1TW 03IDHNJ-NIDOUHLIN e

132



Aysuaq pabexoed peojAeq (1y/q1 S°€, E\m¥ 96

— ssepy peojAeq paziwiidQ uo aimeiadwsa adejsardf Emom\: J0 3103443 :p1-G aInbi4

JHNLVY3IdWIL JOVIUILNI WVO/ITN

40 O - - 00¢- o9t
o r Y £— T 8“ T —zJ
A 002 001 0
f— T T T jc
Yooeo
* -{ 00¥9
-1 Smm,
-{0099
ATINO TN
-00L9
-
’.’Tll'l
- 0089
WYO4/INN
J4 0069
LNIWNOHIANI NOILOFANOD-AIONVHNI — — B

LN3IWNOYIANI NOILIIANODTVHNLVYN

WVO4 LE TT3OVHOY e

ALISNIQ GVOTAVd GIOVNOVA (gh/al 5E) gW/B1 95 o

4 000'v1

4

-

~oos'v1

] SSYW
avOTAVd

Jooo'st

Yay

133



Ausuaq pabeyoed peojAed m.c\E s Q wy/bY Op
— ssepy peojAed paziwndQ uo ainjesadws | 33ef1a1d]

JHNLVYIIWIL 3OVIHILNI AVOJ/ITN

40 0 0ol 00Z-

weoy/1TW0 199443 :G1-G 4Bl

00€- . 09%
T T T T T T T

| 00Z 00l

L] ] T | #

X —

LNIWNOHIANT NOILO3ANOO-G3ONVHNI — —
WYO4/INK

INIWNOHIANI NOILOIANOD-TVHNLVYN
WYO4d LE TTIDVHOY e

ALISN3Q QVOTAVd G3DVIV (/A1 §T) qw/Br oy o

J\—C

.ﬁspo

-10059

b

i

000'El

005t

000'v1

oog'vt
ql

‘SSVN

avolAvd

134



LINIWNOHIANI NOILIIANOD-TVHNLVYN

Ausuaq pabeyoed peojAed (1/'q1 61
— ssey peojAeq paziwndQ uo 8imesadwsa aaeysad] weo4/7

JUNLYHINIL 3DVIHILNI WVOI/1TW

) gW/bY v
W

40139843 :94-G 91nbry

4 0 0oL 00Z- 00¢- 09t
° f T T —/ N\
N 00C 0ol 0
o T T T L/\J 0 g 0
1006¢ 1 oogs
Joooy -
- o068 o
WYO3/1TW avon >d<.,__
Joory 710008
Hoozy
J oove
ATINO 1TW
Jooey
6% Way

LIN3IWNOYIANI NOILOIANOD-QIONVHNI — — ——

WVO4d LE TT130VHOY e

ALISN3IQ QVOTAVYd A3IOVHIVI Amt\En_ St mE\ax vZ e

135



136

c. For He-purged MLI cases, the natural-convection purge enclosure environment
condition always lead to the greatest payload mass.

d. MLI/foam combinations in which the interface temperature was maintained below
1509K actually improve LTPS pagload placement capability for higher density
payloads. For low-density (24 kg/m?) payloads, LTPS payload placement capabilities
for MLI and MLI/foam insulations were essentially equal for foam interface
temperatures below 170°K and an enhanced convection environment in the purge
enclosure.

Figure 5-17 shows the relative benefits of two candidate foam materials, Rohacell 31 and
BX250A, in terms of optimized LTPS payload mass. In general, it was found that the
Rohacell 31 foam lead to greater payload mass because of its lower density (30.4 kg/m3
vs. 36.8 kg/m3 for BX250A). Average thermal conductivities and specific heats of the
two foams were essentially identical (see Figures 2-1 and 2-2).

Tables 5-3 and 5-4 contain summaries of the 26 payload-optimized LTPS propellant tank
insulation designs identified in the insulation optimization analysis. Table 5-3 summarizes
the results for natural-convection purge enclosure environments and Table 5-4 summar-
izes the results for the enhanced convection cases. In interpreting the results in Table
5-3, it should be remembered that true natural convection conditions would be very
difficult to achieve in the purge enclosure. Forced convection currents due to purge gas
exiting the MLI moving toward the enclosure exit would probably be large enough to
affect the heat transfer environment.

For each LTPS, tank volume, percent ullage volume, optimum values of foam and MLI
thickness, and propellant vent loss and mass consumed by the main impulse engine are
shown. In addition, the LTPS mass and length are given and maximum payload mass is
provided.
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6.0 EXPERIMENTAL PROGRAM PLAN

Task Il in the present program was the development of a preliminary plan to experi-
mentally evaluate the relative performance of MLI-plus-foam and MLI-only insulation
systems and to experimentally verify the insulation performance predictions. The
development of the plan required selection of a testing approach and determination of the
particular parameters and measurement ranges required to meet the test objectives.
Supporting the development of the plan was a preliminary design effort for those
hardware items unique to the test program. Finally, a cost estimate for the experimental
program was formulated.

6.1 EXPERIMENTAL APPROACH

The approach to the Experimental Program Plan represents a compromise between a test
designed for maximum emphasis on measurement of undisturbed one-dimensional heat
flow through the tank wall insulation, and a test designed for full simulation of all thermal
influences in a LTPS application. The first extreme would typically be planned around a
guarded flat plate calorimeter while the other extreme would involve a full scale
cryogenic tank, with realistic full-scale supports, plumbing, insulation attachments, etc.
The approach selected also represents a compromise in costs and potential benefits
between the two possible extremes.

The approach selected for the program plan uses a half-scale liquid hydrogen tank, based
on the shape and size of the tank for the 40 kg/m3 payload density LTPS design from
Task II. The choice of a half-scale tank was felt to be an appropriate compromise
between a full scale tank with its greater fabrication and handling costs and a limited
choice of vacuum chambers, and a smaller tank with its less representative simulation in
terms of area/volume ratio, relative contribution of discrete heat leaks, and less realistic
insulation configuration.

The ellipsoidal tank shape chosen will exhibit wetted area versus liquid level behavior
similar to that of the full scale tank and will afford an opportunity to gain experience in
designing and installing insulation on a tank of this shape. A boilerplate rather than
flightweight tank was selected, to reduce design, qualification, handling, and safety costs.
The effect on the test results of the difference in thermal characteristics between a
boilerplate and a flightweight tank is expected to be insignificant.

The test tank supports, plumbing penetrations, and insulation joints and fasteners will be
designed to perform their primary function with a minimum heat leak to the tank. This
approach, rather than simulated full scale features, was selected in view of the main test
objective of evaluating basic insulation performance.

A purge bag, mounted in close proximity to the tank insulation outer surface, will be used.
This approach, rather than a simulated compartment purge, will minimize the volume to
be purged and will simplify the purge container design by keeping the thermal environ-
ment shroud and most of the tank support structure outside the purge volume. It was felt
that this concept is most likely to be employed in an actual spacecraft as well.

The tanks external thermal environment will be controlled with an electrically heated
thermal shroud. The use of electrical resistance heaters avoids potential problems with
selection of a heat exchange fluid suitable for the desired temperature and with potential
leakage inside the vacuum chamber. The desired low temperatures of the shroud will be
achieved by reducing or terminating power to the resistance heaters and allowing the
chamber cyrogenic shroud to cool the thermal shroud to the desired temperature.
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The experimental program was planned around the use of an existing vacuum chamber
which will be installed at the Boeing Tulalip Test Site. This facility has all provisions for
cryogenic handling and safety required for the tests. The chamber will include an internal
liquid nitrogen shroud to aid in achieving the required vacuum. A schematic of the test
article, in its transportation and handling stand, installed in the vacuum chamber, is shown
in Figure 6-1.

Two complete tests will be performed: one with the tank insulated with an MLI-plus-foam
system and the second with an MLI-only system. The test sequence will be the same for
each test and will be a simulation of the mission timeline defined in Table 3-3, with
deviations dictated by limitations of the facility or the test article, and by objectives of
the test. Stabilized thermal conditions will be attained and held to permit accumulation
of reliable data at the ground hold and on-orbit conditions. Additionally, the launch and
ascent transition in pressure and temperature will be simulated in real time.

The approach to determining the performance of propellant tank insulation systems is to
employ a combination of calorimetry and temperature measurement. Calorimetry will
provide the overall system heat leak, including that from tank supports, lines and
penetrations, as well as the insulation system. Since heat leaks through tank supports,
lines and penetrations will depend on the design of the test article, it is necessary to
determine the heat leak attributable to these design-dependent elements in order to
evaluate insulation system performance.

Heat leak through the insulation system will be calculated by subtracting the heat leak
through insulation penetrations from the total tank heat leak. Temperature gradients
along struts, lines, and insulation support hardware will be measured and thermal analysis
modeling used to calculate heat fluxes. Care will be taken to use materials of known
thermophysical properties in the construction of hardware penetrating the foam and MLI
Multilayer insulation will cover all tank support hardware, service lines and the suspension
system to minimize environmental heating under vacuum conditions.

Thin flat plate calorimeters and thermocouples will be used between MLI and foam layers
to measure insulation performance. Since the calorimeter thermal mass will be much
greater than the insulation thermal mass, the calorimeter temperature will lag that of the
insulation. The rate of decrease in calorimeter temperature after the MLI has been
evacuated will be input to an analytical model and insulation effective conductance
predicted. Thermocouples with low-mass attachments to the insulation will indicate
temperature profiles, providing measurement of instantaneous heat flow under steady-
state conditions.

6.2 EXPERIMENT PLAN
6.2.1 Test Preparations
A number of design, analysis, fabrication, and installation tasks are necessary to ready the

test article and laboratory facilities. These tasks, identified and scoped in a preliminary
manner for the purpose of cost estimates, are:

1. Detailed test plan development.
2. Pre-test predictions of insulation performance and heat leaks.
3 Detailed design of the test article.

o Tank

o Support System

o Insulation Systems

o} Purge Bag
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o Fill and Vent Plumbing
b, Detailed design of instrumentation system.
5. Detailed design of laboratory facility modifications and additions.

o Mechanical
o Vacuum

0 Cryogenic
o Purge Gas
o Electrical

6. Design and fabrication of thermal shroud.

7. Design and fabrication of transportation and handling stand.
8.  Tank fabrication and proof testing.

9. Support structure fabrication and proof testing.

10. Design and fabrication of insulation tooling.

11. Fabrication and installation of insulation and purge bag.

12. Fabrication and installation of laboratory facility hardware.

o Mechanical
o) Yacuum

o Cryogenic
0 Purge Gas
0 Electrical

13. Procurement and installation of instrumentation system.
l4. Test article installation.
15. Systems check-out and instrumentation calibration.

The development of the detailed test plan will include preparation of a test procedure
document. This document will specify all safety and acceptance requirements and will
include a step by step procedure for the preparation and conduction of the tests. Any
changes to this document required during the test will be recorded in the "Official Test
Copy." Such changes will be made only with the approval of the Test Director.

The test procedure document will contain sections defining the actions necessary to be
taken for a test hold condition as well as the emergency backout procedures for critical
component failures. All possible failure modes cannot be covered by procedure, however,
a generalized backup plan will be developed for the known test parameters,

All safety requirements and considerations will be called out in the test procedures. The
call out will be in a general section at the beginning of the procedure or, if specific
requirements exist, as procedural steps in the operational portion of the procedure.

Safety will be a basic consideration in all aspects of the program, from design through
final securing of the test site. Standard Boeing-approved Test Laboratory Safety
Instructions will be followed. The facility design will contain a number of reviews in
which both personnel and equipment safety will be addressed. Major safety design
considerations are listed below:

a. Fail safe mode of operation.
b. Power interrupt/failure will not cause a system failure.

c. All control functions will be manually initiated, computer controlled and have a
manual backup.

d. Lines will be designed for worst case flow conditions and will be pressure-relieved
for system and personnel safety.



e. Any multiple valve systems will be designed such that one valve always remains in a
system safe position.

f. H; detectors will be constantly monitored by the data system.
g. A failure analysis review will be conducted to verify design.

Before each test there will be a Test Readiness Review in which all aspects of the test
will be discussed. This review must be completed to all participants' satisfaction before
proceeding into the test.

The detailed design, planning, and prediction tasks will utilize the preliminary work
performed in the present program and carry that work to the level required to fabricate
hardware and commit the laboratory to the tests. The total modifications and additions
required to prepare the existing Boeing facility for the tests were identified but that work
required to provide basic mission-simulation cryogenic tank testing capability was not
included in the cost estimate. Thus, only those modifications and set-up tasks required to
install the particular tank and its related systems were charged to the experimental
program.

6.2.2 Test Sequence

The planned order of the two major tests is to test the MLI-plus-foam insulation first and
the MLI-only system second. This plan allows installation of the more complex insulation
system in the fabrication shop rather than in the less controlled environment of the test
site. This sequence also permits reuse of the MLI blankets as the MLI-only system after
their use as the outer insulation component in the MLI-plus-foam system.

After the first test, all insulation will be removed from the tank. The MLI blankets will
be returned to the clean room where they were fabricated and trimmed for reinstallation
directly on the tank. They will then be vacuum outgassed, packaged, and returned to the
tank for installation as the MLI-only system. The decision as to retain the tank at the
test site or return it to the fabrication shop for insulation change-over will be made as
part of the detailed test plan.

The timeline for the main tests is shown in Figure 6-2. The events for the two tests are
the same except for the selection of dry nitrogen or helium (indicated by the entries "Dry
No/He" in the Purge System column), as required for purging the MLI-plus-foam or MLI-
only systems, respectively. Some of the undefined time intervals may differ between the
tests of the two insulation systems, as stabilization times may differ. Some of the
undefined time points and intervals will be determined after development of the detailed
test plan and completion of pre-test heat flow predictions, and others must remain open,
to be determined as the tests progress. For the purpose of program cost estimates a
6-day (l44-hr) duration was assumed for each of the tests.

The chamber depressurization, indicated during the Launch Simulation Phase in Figure
6-2, will follow, as closely as permitted by facility capability, the pressure history shown
in Figure 6-3. This profile, based on STS-III measured cargo bay pressure, with a
logarithmic extension, is the same as was used for the Task II trade study analyses
discussed in section 4.0 of this report. The repressurization profile at the end of the test
is not defined but will be determined so as to assure test article integrity and facility
capability.

The thermal shroud temperature profile from the beginning of depressurization through
time point, ty + 54, follows the body shell temperature history used for TaskI and II
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System Status or Event
Phase ;';:'r')" Chamber Shroud Tank Purge System
t, Closs, No Heat GN Purge GN Purge
GN, Purge,
7 orr
Purge and tq Dry Nlec )
Chilt Purge
rge
e t2 1 LH, Fill
2
t3 311 °K | Fult, Top
(100 °F) | Continuously
Ground Hold
Stabilization
ty 311°K Stable Temp.
Ground Hold ‘ (100 °F) | & Boil-Off
Simulation
ta+4 Begin Depress | 311°K Continue End Purge,
Launch (100 °F) | Topping Open Vent
Simulation
t4+6 105 Torr 267°K | Top
(20 °F) Periodically
tg+19 256 °K
(0 °F)
tq+24 244 °k
Orbit (-20 9F)
Stabilization
14+ 49 244 °K
(-20 °F)
tq + 54 200 °K
- (-100 OF) J
tg 200 °K | Stable Temp.
Orbit {-100 °F)
Simulation
tg+2 200 °K Recover LH,
(-100 °F)
Recovery & | tg 311 9K L
Shut-Down (100 °F)
ty Repressurize GN, Purge Dry No/He
) ‘ Purge
tg 760, Torr, No Heat Ambient Temp. ot
Open
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Figure 6-2: Test Timeline
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analyses. The shroud temperature profile from ty into the Orbit Simulation phase is
shown in Figure 6-4. The shroud temperature will be brought back up to 311°K condition
prior to repressurization at the end of the test, in order to minimize possibilities of
condensation in the MLL

During the Ground Hold Stabilization and Ground Hold Simulation phases of the test the
tank will be topped continuously with liquid hydrogen. It was anticipated that the
area/volume ratio of the half-scale tank and the relative significance of the support and
plumbing penetration heat leaks are such that boil-off rates up to 68 kg/hr will be
experienced during these phases. It was felt that the resulting rapid change in liquid level
of a non-topped tank would preclude attaining a stable thermal condition. Therefore,
continuous topping was concluded to be the only choice during these phases.

Boil-off rates are expected to be much lower, i.e., in the neighborhood of 0.454 kg/hr
during the Orbit Stabilization and Orbit Simulation Phases. Therefore it was concluded
that periodic topping of the tank would be a suitable procedure, with quasi-stable
conditions reached between each periodic topping. The preliminary replenishment
criterion is to refill the tank when the ullage volume reaches 2% of the total volume,
which is equivalent to approximately 10% of the tank internal surface area and
approximately 15.2 cm of space between the liquid surface and the top of the tank.
Periodic topping of the tank will continue through the Orbit Simulation Phase, if
necessary to satisfy the above criterion.

The purge system schedule in Figure 6-2 begins by employing laboratory-grade nitrogen.
At the t| time point, the chart shows a change to helium for the MLI-only insulation and,
to dry nitrogen (Dry N5) for the MLI-plus-foam system. The dry nitrogen is that with less
than 140 ppm of moisture, required for the 2440K minimum insulation interface temper-
ature. The preliminary design of the facility gas system, however, includes only one
gaseous nitrogen supply system, and it is planned that all nitrogen used will meet the
moisture content limit specified for the insulation purge. The preliminary plan specifies a
five hour dry-nitrogen or helium purge before beginning to chill the tank to liquid
hydrogen temperature. This period will be reevaluated in the detailed plan, after the
purge system detail design is complete.

The purge schedule in Figure 6-2 indicates the opening of a vent, coincident with the end
of purge flow and beginning of chamber pumpdown at ty + 4. The venting of the purge gas
will be to the chamber interior, both during active purge flow and during chamber
depressurization. When the purge bag design is completed, it may be found that the bag
vent area is sufficient to accommodate outflow during depressurization and that vent
valves are not needed.

Insulation purge will be resumed during repressurization and tank warm-up at the end of
the test, in order to prevent condensation in the MLI

6.2.3 Measurements

The primary measurements, to meet the objectives of the experimental program, will be;
1) flow rate of the boiled-off hydrogen, and 2) temperatures through the thickness of the
insulation. The former will provide the basis for evaluating the total heat flow to the
tank and the latter will provide an indication of heat flux through the insulation.

Valid interpretation of boil-off rate measurements will require supplemental measurement
of temperatures of the liquid in the tank, temperature and pressure in the tank ullage
space, and temperature and pressure at the point of flow measurement. Liquid level in
the tank must also be measured.



|

1]

09

149

awilf SnsIaA ain1esadwaf pnosys jewsdy ] :p-9 9inbly

Y1 4314V SHNOH ‘IWIL
05 or og 0z oL

o

T T T | T

Ph

—00L- 00C
GNOHHS HITWYHD
WNNIOVA O1 G3LLINWOD N1
!O@.
4622
—
. s
m
X
=
>
~
T
—0¢- 5
O
406¢ C
o
-0 m_._
£
h
m
)
-10¢+ >
—
C
e
4642 ™M
—H09 +
J00¢g
001 +

t _
(Y1) LHVLS 1S3)1
do o



150

Temperature profiles through the tank insulation are desired at a number of locations over
the tank in order to assess the effects of non-uniformities in external (thermal shroud)
boundary temperatures or in tank wall temperatures. Although neither of these non-
uniformities are planned, each is possible, due to external convection and liquid hydrogen
stratification, respectively. Non-uniform purging of the MLI and other deviations from
ideal insulation characteristics, such as variations in layer density, variation in contact
intimacy between tank and foam, foam and ML], etc., are expected to cause temperature
profiles to vary from point to point. Temperature measurements on the purge bag will
also be required to evaluate local heat flow.

To further aid in evaluating insulation heat flow, measurements will be required to assess
the heat flow through discrete heat leaks such as support straps and plumbing penetra-
tions. Temperatures measured at selected locations along the major heat paths through
these components will supplement theoretical predictions of their heat leak contributions.

A number of measurements will be required to monitor performance of various test
systems and verify that prescribed test parameters were achieved. These measurements
include chamber pressure, thermal shroud temperatures, liquid hydrogen f{ill flow rate,
purge gas flow, and purge space pressure. Additional measurements required to monitor
facility systems from a performance or safety standpoint will be defined in the course of
detailed test planning and facility design.

Preliminary predictions were made for ranges of some of the major test variables to be
measured, to aid in selection and cost estimation for instrumentation. Liquid hydrogen
boil-off rates are expected to range from near zero to 72.6 kg/hr. Temperatures in the
foam insulation may vary from 20.6°K to 267°K and in the MLI insulation, from 20.69K to
3220K. Liquid levels in the tank must be measured over the full depth of the tank and to
an accuracy of +3.8 cm over the upper 25% of the liquid level range. Test chamber and
purge space pressures will range from 760 torr down to possibly as low as 10-6 torr. The
thermal shroud temperature requirements are from 200°K to 3119K. A maximum power
level of 9 KW to the thermal shroud heaters will be required. Tank internal pressures up
to 17.2 N/cm?2 are expected. The wide range of some of the variables to be measured will
require more than one type of instrument to provide data over the range. Other
measurement ranges will be discussed in a later section on instrumentation.

6.2.4 Analysis and Conclusions

The Experiment Plan includes provisions for pre-test and post-test theoretical analyses of
insulation system and overall cryogenic tank thermal performance. Products of these
analyses will include predictions of temperature profiles through the insulation and purge
bag system and over critical sections of support and plumbing system components.
Additionally, predictions of overall heat leak and boil-off, together with individual
component contributions to this heat leak, will be made. The theoretical predictions will
employ analytical models, solution tools and techniques similar to those used in the Task 1
and II analyses described in this report.

The pre-test analysis will support the detailed test plan and detailed design activities,
aiding in sizing gas and cryogen lines, selecting instrumentation locations and ranges, and
establishing time line events. The pre-test analyses results are also expected to identify
deficiencies in the thermal design of the test article, permitting design changes to reduce
heat leaks. Finally, provided the tests are completed according to planned procedures and
boundary conditions, the pre-test analyses are central to the experimental program
objective of verifying the Task I full scale predictions.



The test results will provide an opportunity for empirically adjusting the model,
properties, or assumptions employed in the theoretical predictions. The post-test analyses
will evaluate these adjustments to achieve improved correlations between experimental
and theoretical insulation performance figures. The post-test analyses will also take into
account deviations in the actual test parameters, relative to the planned values and
procedure.

The integrity of the insulation system in the post-test state will be evaluated by
inspection of the removed components. The foam in particular will be examined for
attachment pad bond failures, cracking, cell collapse or expansion, and other evidence of
damage.

The results of the Analysis and Evaluation Task will be used to form conclusions regarding
insulation performance, prediction capability, and test techniques. Recommendations will
be made regarding further improvements in analytical predictions, insulation system
design, and laboratory test procedures.

6.3 EXPERIMENTAL HARDWARE DESIGN

Preliminary designs for experimental program hardware were developed for aiding the
formulation of realistic cost estimates. Although a number of design decisions were
beyond the scope of the present effort, an attempt was made to resolve those issues that
would have a major impact on program costs. Preliminary or conceptual designs were
made for the test tank and its support and handling hardware, the tank insulation systems,
the laboratory system modifications, and the instrumentation system.

6.3.1 Cryogenic Tank

The tank design is shown in Figure 6-5. Figures 6-6 and 6-7 are the supporting parts list
and construction notes, respectively. The boilerplate tank will be fabricated from
7.87mm 6061-0 aluminum alloy plates. The ellipsoidal heads are shown in the drawing as
built up from preformed welded gores but spinning is an alternate means of forming. The
tank features a single opening, at the top, closed with a flat cover, which includes the
transition coupling. This coupling will accommodate all {ill, vent, and sensor lines to the
tank interior. The drawing shows a 6.35 cm diameter coupling, but this size may be
changed after completion of the facility system detailed design identifies required tubing
and wire bundle sizes. An indium seal is provided to seal the cover.

6.3.2 Tank Support System

After delivery of the tank from the fabricator the tank will be mounted in a transporta-
tion and handling stand and will remain in the stand for the remainder of the program.
The stand design, shown in Figure 6-8, is patterned after that of Reference 18, and is
sized to fit into the vacuum chamber. The stand design features a tank mounting ring
which may be rotated in the stand frame approximately +40 degrees to facilitate access
to lower surfaces of the tank. Removable braces will lock this ring in the level position
when movement is not required for insulation installation and other work. The stand will
be constructed from steel pipe and plate and will be cleaned and coated with low-
outgassing paint suitable for the vacuum chamber environment. The dollies shown in the
figure will be removed prior to vacuum chamber installation to minimize contamination.

The tank will be supported in the stand by 16 Kevlar/epoxy tension straps, illustrated in
Figure 6-9. Kevlar was chosen for its low thermal conductivity and high elastic modulus
and will be employed in a unidirectional tape lay-up. Bonded titanium end fittings will
complete each strap, and turnbuckles will join the 16 support straps to welded steel spider
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Figure 6-8: Tank Transportation and Handling Stand
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fittings which attach to brackets at four points on the stand support ring. The straps and
associated fittings will be sized in the course of the detailed design task.

The tank and its thermal shroud, mounted in the transportation and handling stand, are
ilustrated in Figure 6-10. Consideration will be given to removal of the eight upper straps
during the vacuum chamber tests to reduce heat leak to the tank. This advantage must be
weighed against problems of access and distrubance to the insulation and purge bag.

6.3.3. Thermal Shroud

The thermal shroud will be constructed of 0.32 cm aluminum sheet, attached to the stand
support ring with brackets for easy installation and removal for tank access. The panels
may be either curved, as shown in Figure 6-10, or flat segments. Gaps will be provided
between adjacent panels, adequate for free venting of the enclosed space but small
enough to cause negligible disturbance to uniform radiation exchange between the tank
and the shroud.

Heating of the thermal shroud will be accomplished with Nichrome ribbon resistance
heaters bonded to the panels. Resistance heaters were chosen over fluid heat exchangers
for several reasons. The required shroud temperature range of 200°K to 311°K would
make the choice of a liquid fluid difficult. A gaseous circulating fluid would be
undesirable because of anticipated problems in temperature uniformity due to the
characteristic low thermal capacitance of gases. Any fluid system was expected to be
difficult to design and install for leak-free operation in a vacuum chamber. Low
temperature of an electrical resistance-heated shroud will be obtained by reducing or
shutting off power to the heaters and allowing the chamber cryogenic shroud to cool the
thermal shroud by radiation. Power to the thermal shroud may have to be reduced or shut
off during part of the pump-down period to reduce the possibility of corona arcing.

6.3.4 Insulation System(s)

Insulation design concepts are shown schematically in Figure 6-11. The MLI-foam system
(Figure 6-11(a)) will employ two layers of 2.54 cm thick Rohacell 31 foam panels, formed
to match the tank surface contour, and two 44-layer MLI blankets. Foam panels will be
chamfered at their edges to accommodate differential thermal shrinkage between the
tank wall and the foam. The MLI blankets will have single-step lap joints to reduce joint
heat leaks. Between the foam and MLI blanks will be a single layer of Kapton film with
all seams and penetrations sealed, to prevent gases trapped beneath and within the foam
from contaminating the MLI. The MLI blankets will consist of 0.00076 cm (0.30 mil)
double-aluminized Kapton film and B4A Dacron net spacers.

Figure 6-11(b) illustrates the MLI-only insulation concept. The same MLI blankets that
form the outer part of the MLI-foam system will be used for the MLI-only system. The
MLI-foam system will be installed and tested first, and the MLI blankets will be trimmed
prior to reinstallation as the MLI-only system.

The purge bag, shown in Figure 6-11(b) is a laminated reinforced Kapton film supported
approximately 10 cm (4 inches) from the outer surface of the insulation. The edges of the
purge bag sheets will be joined by taping. Arrangements of gas feed to the bag, gas feed
to the MLI interstices, and venting will be determined in the purge system detailed design.
The purge bag will be supported on stand-off posts attached to the insulation or tank, or
from ties to the thermal shroud panels.

Assembly of foam panels and MLI blankets on the tank is shown in Figure 6-12. Joints in
all adjacent layers are staggered so that no two adjacent seams are superimposed. The
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figure does not shown penetrations that will be required for support straps or details such
as closures at these penetrations, MLI wraps on the straps and fittings, and MLI wraps at
the plumbing penetration.

Tooling for the foam panels will consist of male fiberglass/epoxy molds and either similar
female molds or a vacuum bag. Forming from flat stock sheets will be accomplished in a
hot water bath or in a low temperature (170-190°C) autoclave, as described in Rohacell
vendor publications. Fiberglass/epoxy templates will be fabricated for use as guides for
trimming the panels to shape.

The MLI blankets will be laid up on fiberglass/epoxy male forms similar to the molds used
to form the foam panels. The trim templates for initial trimming and retrimming the MLI
blankets will also be fiberglass/epoxy, similar to those used for the foam.

The layers of the MLI blankets will be held together by Nylon pin fasteners such as the
one shown in Figure 6-13. The button retainers for these fasteners snap into position on
the pin shaft and can be permanently fixed by fusing the shaft to the button with a
soldering iron. These fasteners not only retain the layers but provide a means of lacing
(with Dacron thread) to secure adjacent blanket panels at joints. So laced, the MLI
blankets will form a complete enclosure, requiring only minimum attachment of foam or
inner MLI blankets to the tank. This arrangement of MLI blanket assembly is the same as
that successfully used in the program of Reference 18.

After forming, lay-up, and trimming of the foam and MLI panels, the panels will be pre-
conditioned in a vacuum chamber to remove contaminants and packaged in sealed
containers with dry nitrogen until installed on the tank. Insulation thermocouples will be
installed and wires routed and attached as insulation panels are installed on the tank, as
shown in Figure 6-14.

Foam panels will be attached to the tank by either bonding or by means of Nylon hook-
and-pile pads. If development tests provide that foam attachment by hook-and-pile pads
will not lead to cryopumping and insulation performance degradation, this method will be
used because it will ease the problem of foam removal. Patches of pile material will be
bonded to the tank surface and the mating hook patches will be bonded to the foam
panels. This means of attachment will provide for ease of adjustment and removal of the
foam panels and will allow yielding at the mounting points needed to accommodate the
thermal expansion difference between the foam and the tank. The outer foam panels will
be attached to the inner layer in the same manner and then will be covered with a sealant
to preclude cryopumping of the GN; purge gas. The MLI blankets will be attached to the
tank, the foam, or to each other in a similar fashion. On the MLI blankets the hook or pile
pads will be bonded to the heads or buttons of the fasteners shown in Figure 6-13.

6.3.5 Test Facility

The laboratory facility assumed for planning and costing the experimental program is an
existing vacuum chamber to be located at one of the test pads at the Boeing Tulalip Test
Site. Cryogenic facilities, power, safety, control, and handling services are available at
the site, located within 50 miles of the plant where engineering and fabrication work will
take place.

The vacuum chamber is a 3.7 meter diameter horizontal-access cylinder, shown in Figure
6-15. Rails will be installed in the chamber to permit the insertion and securing of the
test article in its transportation and handling stand. Installation of a liquid nitrogen
cryogenic shroud along the inner walls of the chamber will also be required but is not
considered as chargeable to the Experimental Program. Although the required cryogenic,

165



vonensuj | TW 404 13udlse [ea1dAL E1-9 aunbi4

Z00°0 ¥ S XXX-X NO 3DNVH3I01L
NISIY NOTAN T-1S¥EO0L T3LAZ " LIVN

0000 ) an1s Nid — NO11N8
o—o.ov ¥ (010°0) _
0000 _ . . .
sayouy uy suoisuawIp { ) I gzoo * 9200 — <_om%.w : mw.m_
wd vy suoisuaWIP |IY :3LON , _.’ J
avy (0Z0°0) _ [
1600 —— _ via
(0£0°0)
NISIH NOTAN T-1S¥E0L 13LAZ TLVW - 9700
NOLLNE via
(0Z0°0)
= SSINMNDIHL 100 .
(200°0 V1A £20°0) NOLLYINSNI GNNOoY 11N 4
S00°0 ¥ V10 8500 + |
(100°0 T 010°0) . Acoo.cv ]
$200°0 ¥ G200 == soo0/ ¥ (640 eu \_ sniavy a3 e
000°
000
- - 000 ) 0
L ¥ 24_ 1500

' wia

(100 % 06°0)

2010 % LT'L
‘. -

166



FOAM LAYERS
d Wire R g

Figure 6-14: Insulation Assembly Typical Thermocouple Set Installation and Wire Routin

MLI BLANKETS

167



Jaquey?) wnnep :G|-9 ainbi4

(4 G2)
woL

(Y 51)

w9y
Lrn.lﬁ

168



gas, power, and data acquisition systems are available at the test facility, a significant
amount of design, fabrication, installation, checkout, and calibration work, unique to this
particular program, will be required to test the tank in this chamber.

A schematic layout of test facility cryogenic, gas, vacuum, electrical, and data
acquisition systems was developed to aid in estimating facility modification, set-up and
calibration costs. This layout and basic facility requirements are shown in Figure 6-16.
Individual lines, pumps, valves, tanks, etc., were not sized, but the layout plan provided a
basis for an overall estimate of components and materials, as well as design and
fabrication effort, required to prepare the facility for testing.

The test tank pressure control and hydrogen boil-off flow measuring and vent system is a
key part of the facility system. Layout of this part of the system is shown in more detail
in Figure 6-17. Multiple circuits and devices are required for the back pressure control
and boil-off flow rate measurement because of the wide variation in heat flow to the tank
between ground hold (sea level pressure and MLI purge) simulation and orbit (space
vacuum) simulation.

6.3.6 Instrumentation System

Approximately 300 channels of instrumentation will be used to control and monitor the
pressure gages, flow meters, and temperature sensors for the tests. In addition to
measuring the performance of the test article, the system will include sensors placed at
strategic points to monitor the function of the various facility systems. A list of
instrumentation for primary test measurements appears in Table 6-1. This list does not
include those instruments that are considered as permanent components in the facility
systems to monitor and control their performance.

Determination of the hydrogen boil-off flow rate is the single most important instrumen-
tation requirement for the program and a difficult one to satisfy accurately because of
the expected wide range of flow rates. Three separate flow meter systems are planned,
operating over different but overlapping measurement ranges. Final selection of
particular devices requires further study, as part of the detailed test planning. Instru-
ments considered for this application include hot film anemometers, Matheson mass flow
meters, wet test meters, and Hastings-Radist mass flow meters, such as were planned for
use in the program of Reference 18.

A back pressure control system will be used to maintain a constant pressure in the tank
and a constant hydrogen saturation temperature. A silicon diode thermometer tree with
50 sensors will be used to measure liquid and gas temperatures within the tank and to
determine liquid level. All wires into the tank will be routed through the guarded
connector to minimize heat leak.

Temperature sensors will be attached through the insulation layers and on the purge bag
at 26 locations. Silicon diode thermometers will be used on the tank wall and Type "E"
chromel-thermocouples will be used within the insulation and on the purge bag. Sensor
lead wires, except for those to thermocouples on the purge bag and insulation outer
surface, will be routed so as to minimize absorption of radiant heat from the thermal
shroud.

The thermal shroud will be divided into 28 heat zones for use of independently monitored
and controlled heater arrays. The shroud zones will be initially heated to follow the
temperature profile of Figure 6-4 and adjusted to provide a uniform distribution of
insulation surface temperatures.
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Description Tolerance Instru. Qty
Temperature survey of tank insulation and tank surface (Typ) %0.05 ok Silicon 18
(18 positions) (0.1 °F) diode
on tank
@ 22 °K (40 °R)
. (Typ) £ 0.5 oK Thermal- 108
(£ 1.0°F) couple
in insula, Type
@39 °K (70°R)| “E”
Temperature survey of tank supports and tank connections Typ -~ Silicon 36
16 support (2 SD-4 T/C) diode
2 wire bundles (2 T/C) Typ “E” T/C 68
2 supply and vent lines (2 SD)
Radiant heat shroud temp w/control feedback Typ “E”T/C 29
{4 junctions average)
Chamber pressure
e Barratron — 760 torr - 1 torr 1% Barratron 1
e UHV —1x 10" torr - 1 x 101! * 20% UHV 1
e Grandvill Phillups — 760 torr - 1 x 10'3 +10% GP 1
Tank static pressures and control £ 1% Barratron 1
Fill line temp Typ Silicon diode 1
Purge line temp Typ “E“T/C 1
Vent line temp Typ Silicon diode 1
Diffusion pump temp Typ T/C 1
LN2 shroud temp Typ T/C 8
Tank LN, level +1°F Silicon diode 50
GH, vent rate 1% 3
Purge blanket pressure * 1% scale MKS Barratron 1
0-3 torr
diff head
Blanket flow rate +1% Fisher-Porter 1
flow meter

Table 6-1: Instrumentation List




All calorimeter and flow rate instruments will be calibrated to +1% of reading. The
remaining instrumentation will be +1% full scale.

Calibration of the flow rates, back pressure controller, and calorimeter thermocouples
will require special procedures and test fixtures. Additionally, an installation technique
will have to be developed to insure repeatable thermocouple readings at the desired
accuracy of 0.5°K,

All data lines will be routed through a control system for storage on an 8 track tape. The
data sample rate of once/second will be controlled by this equipment. During the
simulated launch period, selected monitors will be" continuously recorded to provide
transient data. Control system will provide real time monitoring of all active measure-
ments and control functions.

6.4 COST ESTIMATES

The cost estimate for the Experimental Program was developed by integrating two basic
approaches to defining the magnitude of the program effort. In the first approach, a list
of individual tasks constituting the program was formulated and costs in terms of labor,
materials, and other expenses were estimated for each task. The tasks included all those
necessary to plan the program, administer and manage it, prepare for the tests, carry out
the tests, and evaluate and report the results. The test preparation tasks were
summarized in section 6.2.1. The second approach took into account the sequential
dependence and completion time required for the program tasks and led to a schedule of
program activities. The core of this schedule, the portion describing the direct
preparation and execution of the tests, was formulated first and is illustrated in Figure
6-18. Periods for detailed planning and early design work and the beginning of the
program, and for evaluation and reporting at the end, were added to the core schedule.

Review of the task labor requirements permitted adjustment of the schedule in order to
avoid large variations in manning levels and to aid in efficient management, direction, and
coordination. It was concluded from this exercise that a 24 month duration was
appropriate for the program, setting the stage for a final summation of program cost
estimates.

Cost estimates were formulated in 1982 dollars. Labor costs were developed from
estimates of the actual hours required to perform the tasks and burdened labor rates,
which included all overhead and distributed costs except the program fee. Costs of
materials, dedicated equipment, and purchased components were estimated from vendor
quotes, available price lists, or recent experience. Scrap allowances were added to
material quantities where they could be computed, e.g., to film, net, and foam stock for
insulation fabrication. Following standard Boeing practice, an additional yield factor of
1.25 was applied to all raw material quantities as an allowance for additional scrappage,
rejection, or damage. The yield factor was not applied to specifically identified
equipment items or completed components expected to be covered by specifications and
performance guarantees.

Test consumables, i.e., cryogens, gases, solvents, cleaners, and lubricants, were all
considered as overhead items and thus do not appear in the cost estimates.

Estimation of labor, material, and component costs relied heavily on experience from two
recent programs at Boeing. The first was that of Reference 18, which included many
preparation tasks, hardware items, and test procedures similar to those identified for the
present planned program. Cost data from the program of Reference 18, however, is
approximately 10 years old. Where these data were used, a factor of 2.0 was applied to
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Figure 6-18: Laboratory Activity Schedule
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adjust to 1982 dollars. The second source of useful cost data was the ongoing Boeing
Cryogenic Propulsion IR&D program, in which plans are being developed for a test of a
liquid hydrogen tank in the same facility selected for the present planned program.
Except in cases where price quotes were already available, the scope and time scheduled
for the Task IIl effort did not permit a formal request for quote and supplier selection
process for procured items.

For the purpose of labor dollar estimates, five categories of labor were identified, and
hourly rates for each category selected on the basis of the average skill level deemed
appropriate for the tasks of the program.

Contract administration and program utility and housekeeping support were considered
overhead items and are accounted for as part of the burdened rates for direct labor.

Costs for computer time, required for the pre- and post-test thermal analyses, were
estimated on the basis of experience with similar analyses carried out in Tasks I and II of
the present program.

Travel costs for personnel travel to the test site for those employees not assigned to that
location were computed based on $0.20 per mile. Travel costs for presentations at NASA
Lewis Research Center were based on recent actual costs for similar trips. Each of these
three visits was assumed to involve three persons spending one working day at Cleveland.

The liquid hydrogen tank pressure vessel is a significant item in the hardware cost
estimate for the program. Its fabrication cost was estimated two ways and the lower of
the two used in the final estimate. The preliminary design drawing (Figures 6-5 through
-7) was submitted to Boeing Aerospace Manufacturing Organization for a formal
estimate. At the same time an informal estimate was made, based on the cost of the tank
for the program of Reference 18, as produced by an independent fabricator. An arbitrary
$1000 was added to the independent fabricator's cost to account for shipping.

The program fee was set at 7% of the total cost.

6.5 PROGRAM SCHEDULE AND COSTS

The breakdown and schedule of program tasks, at the level used for cost estimating, was
judged too detailed for convenient display on a single chart. Therefore, for summary
documentation purposes, the tasks were organized into four major categories. These
categories are engineering and administration, fabrication and assembly, facility prepara-
tion, and test activities. Charts showing the schedule and cost summaries for tasks under
these four categories are presented as Figure 6-19 through 6-22. These charts show all
costs except the program fee.

In Figure 6-19 the non-labor costs apply to travel for technical direction and coordination
and for reporting, and computer charges for the analysis tasks. The reporting task
schedule does not show monthly progress reports but the cost of preparing these was
included in the labor estimate.

The non-labor entries for the fabrication and assembly tasks, Figure 6-20, are all for
material or hardware procurement. No labor cost is shown for the tank fabrication since
it was assumed as a outside procurement item. Labor for proof tests of the tank (Figure
6-7, Note 15) is included in the test task category, Figure 6-22, although the tests would
probably be performed by the fabricator and added to the cost of the tank.
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The facility preparation tasks of Figure 6-21 are those considered unique to the planned
program and do not include capital expenses that might be required to provide basic
facility capability, not chargeable to this program.

The test activity tasks of Figure 6-22 include all development, proof, checkout, and
calibration tests; fabricability demonstrations; and material examinations; as well as the
main cryogenic tank heat flow tests. The cost of support system component tests was
allotted to non-labor costs for material for specimens to be tested before finalizing the
tank support strap design. Costs for materials used in the foam and MLI fabricability
demonstrations were included in the total costs of these materials tabulated in Figure
6-20.

Summation of costs from the four task categories, plus the program fee, is as follows:

Engineering and administration $ 843,300
Fabrication and assembly $ 430,100
Facility preparation $ 410,300
Test activities $ 321,500

Fee 140,400
Total %2 , 145,600

The total labor required is 39,200 hours and the cost breakdown by major cost sources is:

Labor $1,746,500

Material (including equipment $ 233,100
and purchased components)

Computer $ 10,000

Other non-labor $ 15,600

Fee % 140,400
Total 2,145,600
The program cost estimate was developed largely from a technical viewpoint, as a
summation of its various component parts. It was not subjected to a critical management
and cost control review appropriate to final costing of a program of its magnitude. Inputs
were furnished independently by a number of contributors. It is quite possible that a
closer integration of tasks and a more detailed definition of program flow and resource

requirements would disclose and eliminate duplication or reduce idle time that may
presently exist in the schedule.

On the other hand, as with any research program, there exist a number of high risk areas
in the plan. Greater than anticipated problems in these areas could lead to significant
increases in costs if program objectives and schedule are to be met. Risk areas include
the design and performance of the MLI purge system, integrity of the foam when
subjected to the range of pressures and temperatures required, and the ability to achieve
desired vacuum levels, particularly within the MLI, with the many potential contamination
sources present. Other potential problems are the ability to accurately measure boil-off
rates over the wide range required, achievement of adequate thermal stability in the tank
to permit meaningful interpretation of measured boil-off, and accurate assessment of
discrete heat leaks to permit valid comparison of basic insulation heat flow. Overall, the
program cost estimate is felt to represent a reasonable mean between possible reductions
and potential additional costs. A large uncertainty, however, possible +20%, must be
recognized, at least until a more detailed plan is accomplished.



6.6 TEST PROGRAM RECOMMENDATIONS AND ALTERNATIVE PLANS

Alternative test programs or design variations were considered very briefly with the goal
of meeting all or some of the planned objectives at a reduced cost. Since a large part of
the cost is in preparing the test facility, large cost reductions did not appear possible
without a major change in test approach. It should be pointed out that the present plan,
with its sub-scale tank, will not provide direct verification of the Task I performance
predictions, and thus compromises to some degree that objective.

A further reduction in liquid hydrogen tank size could reduce the cost of the tank,
particularly if forming of the tank heads by spinning, as opposed to the present welded
preformed-gore fabrication, is made possible. Further savings would accrue through
reductions in the material quantities required for insulation, the support stand, and the
thermal shroud. All of these reductions, however, would be a relatively small percentage
of total cost. The disadvantages of greater relative heat leak from penetrations and other
local effects, and the greater departure from full scale are felt to outweight the savings
if the tank size is significantly reduced. If a change to spun tank heads is possible with
only a small reduction in tank size, this modification is recommended.

A single test, that of the MLI-plus-foam system, was considered. This variation would
shorten the program by approximately 1% months and reduce the labor by the hours
required for the eliminated test, insulation re-work, and associated pre- and post-test
analyses. Test article fabrication, materials, and facility preparation, however, remain
unchanged. The potential value of the information lost with this change is very great.
With the potential difficulty in accurately evaluating the discrete heat leaks, an
experimental comparison between the total heat flow with the MLI-plus-foam system and
the MLI-only system may be the most accurate way of evaluating the performance of the
former system. The deletion of the MLI-only test is therefore not recommended.

At the limit of tank down-sizing is a change to a flat plate calorimeter type test. Much
of the preparation, analysis, and support activity for such a test would be on a much
smaller scale than that of the present plan. The cost of such a program would, therefore,
be much less than the present estimate. Properly designed, such a test would provide the
clearest evaluation of heat flow through the basic tank wall insulation. No other
information, such as penetration heat leaks, effects of tank liquid level, stratification,
and pressure variations, or realistic insulation temperature distributions would be
obtained, however. No experience would be gained in designing, fabricating, and
operating insulation and purge systems on a real tank shape. The benefit of hardware and
facility systems which could be carried over to future, even more realistic experimental
programs, would be lost. A flat plate calorimeter test can be recommended as a adjunct
or a preliminary to the present planned program but not as a substitute for it.

Substitution of liquid nitrogen for liquid hydrogen as the test cryogen would yield a
moderate reduction in complexity and costs of certain test facility components, systems,
and safety provisions. Some of the program risks would be reduced but much of the test
realism would be lost. Temperature profiles would be altered so as to seriously degrade
the validity of the Task I analysis verification. Assessment of the ability of the MLI purge
to prevent condensation would be eliminated for all practical purposes. The relatively
small cost saving from this alternative is not considred worth the loss in program value.
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7.0 STUDY CONCLUSIONS AND RECOMMENDATIONS

The results of this study have shown potential benefits can be derived from the
application of a foam substrate beneath cryogenic propellant tank multilayer insulation.
Specific benefits are; 1) increased payloads for LTPS; and 2) reduced operational
complexity due to the use of Orbiter cargo bay N purge gas for MLI purging. In order to
gain the benefit of increased payload mass when compared to MLI-only, it was found to be
necessary to specify enhanced convection heat transfer in the purge enclosure. The
enhanced convection environment provided increased thermal coupling between the warm
Orbiter cargo bay and the outer layer of the propellant tank MLI. Therefore, the outer
layer of the MLI was considerably warmer than it was for the case in which natural
convection was assumed to occur in the purge enclosure. Less MLI and less foam were
therefore required to achieve the desired MLI/foam interface temperature. Comparison
of typical calculated foam and MLI thicknesses showed that optimized combination
insulation thicknesses for natural convection conditions were typically 30 to 500% times
greater than those for enhanced convection conditions. A true natural convection
environment in the purge enclosure, however, would be difficult to achieve. This
condition represents an extreme and was used to bound the problem of defining insulation
designs.

A number of grades of N, were investigated as potential purge gases. The gas used to
purge the Orbiter cargo bay has a dew point of slightly less than 2449K (-219K).
MLI/foam combinations designed for this dew point resulted in the largest payload
penalties of all combination insulations investigated. However, for enhanced convection
ground hold purge enclosure environments, even the insulation designed for the maximum
MLI/foam interface temperature outperformed MLI-only on the basis of LTPS payload
delivery capability. The payoff of using MLI/foam combination insulations was the
greatest for the LTPS designed for the larger payload densities of 56 kg/m3 (3.5 lbm/ft3)
and 40 Kg/m3 (2.5 Ibm/ft3), -

In general, however, considering all payload densities, the best MLI/foam interface
temperature, from the standpoint of LTPS payload mass, was 144°K (-2009F). This
temperature was the lowest value investigated. The difference in predicted LTPS payload
capacity in going from a 144K (-200°F) interface temperature to 2449K (-20°F) was only
about 42 kg (93 lbm). Therefore the payload penalty incurred in selecting the higher
interface temperature appears to be acceptable because Orbiter bay purge gas could then
be used for MLI purging.

For low density payloads, the use of either MLI/foam or MLI-only insulations resulted in
almost identical LTPS payload capacities. However, the benefits of being able to use
Orbiter bay purge gas for MLI purging warrant the selection of MLI/foam insulations for
low-density payload LTPS applications as well as for high-density payloads.

For high-density payload (payload mass-limited) cases, the two factors having the greatest
influence on optimum MLI/foam insulation thickness were insulation mass and propellant
boiloff. The optimum thickness occurred at the point at which the combined impact of
insulation mass and propellant vent loss resulted in maximum payload capacity. The
effect of insulation heat leak on tank self-pressurization and additional propellant for the
5 minute contingency countdown hold had little impact on the optimum insulation
thickness.

In the case of moderate and low-density payload LTPS designs, MLI/foam thickness and
tank volume had the greatest impact on the optimum insulation design. Tank volume was
dependent on insulation performance because mission-integrated heat leak determined the
amount of tank oversizing required to provide volume for propellants lost through venting.
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The optimum insulation design occurred at the point at which the combined impact of
insulation thickness and tank volume resulted in the shortest LTPS.

Estimated program cost for fabricating and testing both a MLI-only and a MLI/foam
insulated % scale tank is 2.1 million dollars. The use of an existing tank as the test article
would reduce program cost by $50,000. The cost of performing the necessary testing is
slightly more than $320,000. Engineering and facility preparation were the other primary
program labor cost items.

Facility preparation costs were based on an estimate of the labor, equipment, and
materials required to prepare the existing Boeing hazardous test vacuum chamber for
testing. Hence, the 0.41 million dollar cost estimated for this effort is valid for only the
Boeing facility. These costs could be considerably less or more, depending on the test site
ultimately selected.

In summary, the principal study results were:

TASKS I AND I

a. The purge enclosure heat transfer environment had a significant impact on insula-
tion design because it determined MLI/foam insulation thickness and affected
ground hold heat leak.

A natural convection environment (essentially stagnant gas conditions) was found to
result in the highest LTPS payload mass delivery capability for He-purged tank
insulation designs. An enhanced convection environment, in which warm purge gas
was circulated in the purge enclosure, resulted in the highest LTPS payload mass for
No-purged MLI/foam insulation designs.

b. In comparing payload capabilities of LTPS utilizing MLI-insulated tanks with those
utilizing MLI/foam, the use of MLI/foam was found to increase payload mass for
cases in which enhanced convection was assumed to exist in the purge enclosure.

c. In comparing payload capabilities of LTPS utilizing MLI-insulated tanks with those
utilizing MLI/foam, the use of MLI/foam decreased payload mass for cases in which
natural convection conditions were assumed to exist in the purge enclosure.

d. In comparing payload capabilities of LTPS utilizing MLI/insulated tanks with those
utilizing MLI/foam, for both purge enclosure environments, it was found the use of
MLI/foam would give the highest payload mass for certain cases. For LTPS with the
highest payload density of 56 kg/m3 (3.5 Ibm/ft3) the use of MLI/foam and an
enhanced convection purge enclosure environment always resulted in highest payload
masses.

For LTPS with the lowest payload density of 24 kg/m3 (1.5 Ibm/ft3) the use of
MLI/foam and either a forced or natural convection purge enclosure environment
always resulted in payload masses less than the MLI-only design with a natural
convection purge enclosure,

e. For MLI/foam combination insulations designed for an enhanced-convection purge
environment, the LH» tank foam substrate thicknesses ranged from a minimum of
0.43 cm (0.17 in) to a maximum of [.83 cm (0.72 in) for all MLI/foam interface
temperatures studied. The least foam was required for the lowest interface
temperature, 1449K (-2009F), and the most foam was required for the highest
interface temperature, 2440K (-200F). LO; tank foam thicknesses varied from 0.23
cm (0.09 in) to 1.93 cm (0.76 in).



For MLI/foam combination insulations designed for a natural convection purge
environment, the LH2 tank foam substrate thicknesses ranged from 1.78 cm (0.71 in)
for a 144°K (-200°F) interface temperature to 12 cm (4.7 in) for a 244°K (-20°F)
interface temperature. LO> tank foam thicknesses varied from 1.12 cm (0.44 in) to
16 cm (6.3 in).

Optimum LH> and LO7 tank MLI thicknesses for He-purged insulations designed for
a natural convection purge enclosure environment ranged from 2.03 cm (0.81 in) to
0.51 cm (0.21 in).

Optimum LH> and LO; tank MLI thicknesses for He-purged insulations designed for
an enhanced convection purge enclosure environment ranged from 6.1 cm (2.4 in) to
2.79 cm (1.1 in).

From the standpoint of maximum payload mass, the best MLI/foam interface
temperature is 1440K (-2000F). However, for combination insulations designed for
the forced or enhanced convection purge enclosure environment, the loss in payload
mass in going from 1449K (-2000F) to 2449K (-200F) was only a maximum of 42 kg
(93 1bm).

The two principal factors which determined the optimum insulation design for high-
density payload LTPS were propellant vent loss mass and insulation mass.

The two principal factors which determined the optimum insulation design for low-
density payload LTPS were propellant tank length and insulation thickness.

TASK III

a.

A Y%-scale LHy tank calorimetric test was defined to measure MLI/foam insulation
performance. Total tank heat leak would be determined by measuring vent mass
flow rate during simulated ground hold, ascent, and orbital conditions. Both
MLI/foam and MLI-only insulations would be tested.

The test program was estimated to require two years to complete. This program
schedule included the design and fabrication of the test tank.

Estimated test program cost, including labor and materials was 2.1 million dollars.

Total program labor costs were 1.75 million dollars for the estimated requirement of
39200 hours.

Engineering and administration costs totaled 0.833 million dollars. Test hardware
fabrication and assembly costs were 0.43 million dollars, including 0.23 million
dollars for materials, equipment and purchased components. Facility preparation
cost was 0.41 million dollars and the cost of testing was 0.32 milion dollars.

Based on the results of this study, areas for additional study have been identified. The
additional studies should be made to finalize the relative merits of MLI versus MLI/foam
insulations for a particular propulsion system and its associated mission or other similar
Shuttle-transportable cryogenic tankage. These studies should address:

o}

o
(o}

the effect of a different mission timeline, e.g. what if a seven-day hold on LEO was
required,

advantages of applying a non-uniform foam thickness to the tanks,

the influence of different ground-hold conditions for a different LTPS configuration,
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o) benefits of a decreased MLI layer density,
o design techniques to preclude N7 condensation on penetrations.

The benefits of MLI/foam insulations should be verified by test. In addition to validating
predicted performance, hardware fabrication and testing are needed to address the
following issues:

a) How much moisture condensation and freezing can be allowed in the Nz-purged
MLI?

b) What is the heat transfer performance effect of condensibles trapped in the seams
and interstices of the foam?

c) What additional costs are incurred by including the foam substrate?



APPENDIX A
RADIATION INTERCHANGE FACTOR AND ENVIRONMENTAL

HEATING ANALYSIS PROGRAMS

A Boeing-proprietary computer program, RADSIM, was used in this study to predict
radiation interchange factors between the Orbiter cargo bay, LTPS and LSS payload
surfaces. A brief description of this program follows: The Radiation Simulation
(RADSIM) program is a computer program which uses a Monte Carlo ray trace technique
to calculate radiation exchange factors (Script-F's). The basic RADSIM program was
developed by Dr. R. C. Corlett of Boeing. Minor modifications to the basic program have
been made and the checkout and debugging of the computer code performed. The present
version of RADSIM (version 4) is compatible with another Boeing-proprietary computer
program, the Orbital Payload Environmental Radiation Analyzer (OPERA) program.

RADSIM incorporates radiation simulation at two wavelengths. The user may specify
either diffuse emission at wavelength 1 or normal emission at wavelength 2. In general
wavelength 1 is used for infrared radiation and wavelength 2 for solar radiation. The
diffuse emission option is then used in determining the radiation exchange factors
(Script-F's) between the model surfaces. The normal emission option can be used, along
with a solar simulator emitting surface, to determine the radiation exchange factors
between the model surfaces and the sun. However, for most cases, the solar calculations
are made in a more appropriate manner with the OPERA.

Five (5) types of primary surfaces can be used to describe the vehicle geometry. These
surfaces consist of trapezoids and segments of cylinders, cones, discs, and spheres. The
primary surfaces can be subdivided into nodes to match that of the thermal math model.
At present RADSIM will accept up to 700 primary surfaces and 1000 nodes. OPERA will
accept up to 500 primary surfaces and 700 nodes.

RADSIM and OPERA calculations utilize both the infrared and solar radiative properties
of the model nodes. The infrared and solar reflectivities can be specified as diffuse,
specular, or a combination of diffuse and specular. In addition, nodes can be specified as
adiabatic (i.e., floating at the radiative environment temperature). Adiabatic nodes are
characterized as one- or two-sided and as isothermal or local adiabatic surfaces.

RADSIM prints out Script-F values from the emitting nodes to each model node. In
addition, the program prints out the estimated statistical uncertainty in the Script-F
value, product of area and Script-F, and the reverse Script-F value. RADSIM also
generates an auxiliary disc file which contains the results in a format that can be used by
utility programs. These utility programs put the results in a form suitable for direct use
in a thermal analyzer program.

OPERA was used in this study to predict total thermal radiation heat flux on LTPS
surfaces. The predicted flux included direct solar, direct earth IR and direct earth albedo
fluxes as well as the total flux from these sources reflected by the Orbiter and LSS
payload surfaces onto the LTPS. The OPERA program was developed to calculate
environmental (solar, planet emission and albedo) heat loads for complex orbiting vehicles.
The improvement that OPERA offers over previous orbital heat load programs is the
inclusion of blockage and reflected (diffuse and/or specular) radiation.

The OPERA heat load calculations are based on a Monte carlo ray tracing technique which
determines the radiation exchange factor (Script-F) with the environmental source (sun,
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planet emission and albedo). RADSIM was modified and incorporated into OPERA to
perform the Script-F calculations. Another existing program, SPARAD (Space Radiation)
was modified and incorporated into OPERA to perform the orbit mechanics calculations.

OPERA uses the Script-F arrays to determine the environmental heat load on each nodal
surface. A nodal heat load-time array is generated by OPERA for direct use with BETA
(Boeing Engineering Thermal Analyzer) or SINDA (Systems Improved Numerical Differ-
encing Analyzer) in the determination of the temperature-time profile of the complete
thermal model. OPERA was also written such that it could be used directly as a
subroutine to BETA.

OPERA calculates the geometric relationship between vehicle, sun and planet for both
circular and elliptical orbits as a function of orbit position and time. The vehicle
orientation can be specified as one of twenty-four (24) standard planet oriented or
twenty-four (24) standard sun oriented cases. Other orientations can be specified as any
fixed inertial orientation or a subroutine can be used to specify any orientation desired.
In addition, a spinning vehicle can also be specified.

At present OPERA will calculate heat loads for up to forty (40) orbit output points in a
single run. These output points can be specified as evenly spaced in mean anomaly (time)
or the user can directly input the orbit output points to be used. The user may also
specify that terminator and/or shadow crossing points be included in the output points.

At each orbit point, OPERA calculates each component of the environmental heat load on
the vehicle model nodes. The user can specify any combination of solar, albedo and planet
IR sources to be used in this heat load calculation. The calculations include the effects of
blockage and reflection of the incident radiation.

OPERA prints out the Script-F values from each node to the specified environment source
at each orbit output point. Heat load arrays are printed out for each environment source
as well as the total for all sources on each node.

OPERA will also store the heat load arrays on disc files in a format that can be used by a
thermal analyzer (e.g., SINDA). OPERA will also generate disc files which can be used to
plot the vehicle geometry, nodal heat loads as a function of time, and the vehicle orbit.



APPENDIX B

TANK SUPPORT STRUT OPTIMIZATION

Symbols

A Tank surface area~ m2

Ao Baseline tank surface area ~m2

£1(V) Function relating mass of tank membranes, weld lands, etc. to volume

f2(V) Function relating mass of support ring, struts, and other support hard-
ware to tank volume

I Tank support strut cross sectional moment of inertia ~ cm#

L Strut lengthea cm

r Radius of tank cylindrical sectiona m

r' Toroidal tank minor radius~ m

B Baseline toroidal tank minor radiusasm

r] Strut outside radius ~ cm

rp Strut inside radius~~cm

t Thickness of LH7 tank cylindrical section wall~e m

th Wall thickness of buckling-designed strut ~ cm

io Baseline tank support strut wall thickness.~cm

ts Strut wall thickness~cm

ty Wall thickness of tension - designed strut~-cm

tw New calculated strut wall thickness as determined by total loaded tank
weight#-cm

v New tank volume ~m3

Vo Tank volume from baseline OTV (Reference 1)~ m3

W LTPS loaded tank weight~ kg

Wa Calculated value of weight for LOj tank membranes, weld lands,
tolerances, etc., based on weight - surface area relationship ~ kg

Vo Reference 1 OTV loaded tank weight ~kg

W, Calculated value of weight for LOj tank membranes, weld lands,
tolerances, et.c, based on weight - radius of curvature relationship ~ kg

LA Weight of tank membranes, weld lands, tolerances, manholes, local beef-
ups, etc., for Reference 1 OTV tank ~ kg

W Weight of support ring, struts and other support hardware for Refer-
ence 1 OTV tank ~kg

e Density of tank wall material~ kg/m3

For Task II, the heat leak to the cryogenic tanks attributed to the tank support struts was
initially based directly on the support strut designs for the orbital transfer vehicle (OTV)
of Reference 1. For the three Thermal Math Models investigated in Task IIB it was
decided that a more realistic representation would result if the support strut design took
into account the variation in strut properties as determined by structural requirements, an
approximate weight optimization, and variations in configuration geometry. Configu-
ration geometry affects allowable strut length, and total tank weight can affect strut
cross sectional area, leading to differences in strut conductances from those of the OTV
baseline. Strut length can affect payload weight allowance through strut weight and
through thermal conductance influence on propellant boil-off.

It was further decided that the configuration influence on strut sizing, and thus on strut
heat leak, would be established for only one set of nominal characteristics for each of the
three payload density configurations. Effects of differences in insulation design, either
from the various prescribed purge gas temperatures or from variations to optimize the
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designs, are expected to have a minimal effect on strut sizing. The exclusion of strut
resizing from insulation design iterations contributed to keeping the optimization effort in
scope.

Ground rules adopted for tank support strut sizing for the 3 LTPS configurations are listed
below:

L. Retain number of struts per tank from the OTV design.
2. Retain the outside diameter of struts from the OTV design.
3. Struts are tangent to the tank contour at the attachment ring.

4, With the OTV struts as baseline, vary strut wall thickness with tank weight and strut
length, to establish minimum acceptable wall thickness based on the worst case
conditions determined from either tension or buckling-stability-design criteria.

5. On the LH tanks, retain existing OTV design strut angle configuration.

6. On the LO7 tanks, retain end-to-end strut configuration (maintain common attach-
ment point for adjacent struts at the body shell and the tank support ring).

A one-time optimization study, utilizing the preceding ground rules, was conducted to
determine strut lengths to minimize the payload mass penalty associated with the
hydrogen and oxygen tank support systems for each LTPS configuration. The payload
mass penalty accounted for propellant boil-off attributed to strut heat leak and that
associated with the strut mass. Where the optimized strut length was greater than the
allowable lengths imposed by LTPS avionics ring geometric constraints, the largest
allowable strut length was selected. Table Bl lists the final strut lengths which were used
to establish strut wall thicknesses and, subsequently, strut thermal conductances.

The tank weight affecting strut sizing was taken as the total loaded tank weight. It was
then assumed that the strut wall thickess would vary in direct proportion to the tank
weight.

Thus,
W W (B-1)
to Vo
ty = new strut wall thickness as determined by tank weight.
to = strut wall thickness for OTV strut design.
w = loaded tank weight, LTPS configuration.
W, = loaded tank weight, corresponding OTV tank.

Additional groundrules adopted for the tank support strut optimization analysis are as
follows: )

l. Use the OTV (Reference 1) tank volumes and weights as baselines.

2. LH> tank will always have a cylindrical section and only this section changes with
volume.

3. Membrane weight vs. volume for the LHj tank varies directly with area of constant
gage cylindrical section.
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4, Ellipsoidal LO2 tank membrane weight varies with tank surface area in accordance
with a spherical area/volume ratio.

5. Toroidal LO, tank membrane weight varies with area for change in volume
accomplished through a change in minor diameter only (outside diameter remains
constant).

6. For all LO7 tanks, include weight change due to membrane gage change required by
change in radius of curvature.

7. Assume weight increments for weld lands, tolerances, manhole and local beef-ups
vary in proportion to membrane weight changes.

8. Assume weights of non-containment items (support ring, strut fittings, etc.) vary
with changes in total loaded tank weight.

For the LH» tank,

W Yy Y2
_W1+W2 = £1(V) —W1+W2+ £2(V) W———1+W2 (B-2)
where
W1 = weight of membranes, weld lands, tolerances, manhole, local beef-ups,
for OTV tank.
W = weight of support ring, struts, other support hardware, for OTV tank.
fl%V) = direct factor on weight from volume variations.
£2(V) = effect of volume variations through containment vessel weight change.

Under groundrules (2), (3), (7), and (8),
Votf (5 -1)
- Vo

Awl 2tg A\ (B-3)
f]lv) = 1 + T 1+ W - 1+ WiF
2V, t 9 (% -1)
(o]
fo(v) = Wor&W1 . Wo + r (B-4)
Vo W
where
t = thickness of cylindrical section wall
§ = density of wall material
N = new tank volume
Vo = tank volume of baseline OTV tank
r = radius of cylindrical section
W, = loaded tank weight, corresponding to baseline OTV tank
For the properties and dimensions of the baseline LH2 tank (Reference 1),
W N
WI—+W2 = 33776 + .66224—\/- (B-5)

0



For the ellipsoidal LO5 tank,

W w
1 2 (B-6)
£1(V) 3 + f2(V) WieWy

_w_
Wi+Wo Wi+W2

where the nomenclature is defined as before.

Here,
wWp = W w 2/3 1/3
£10V) = 1 + AV AT =(%\ +(!) o (B-7)
W1 Wi LA o v,
where,
Wa = new W) as affected by change in surface area
W, = new W; as affected by change ir127§1dius of clt7r3vature
Wo + AW Wo + Wl((-\\,-/) * (-\\il ) B )
o -
f20V) = ——— - 0 (B-8)
Yo Vo
Again, incorporating the values for the baseine LO, tank,
2/3 1/3
W v v
WeW, © .45929(V—0) + 45929 (Vo) + .081414 (B-9)

For the toroidal LOy tank, with a fixed outside diameter (Groundrule (5)), and baseline
dimensions and weights taken from the Task I, 40 kg/m3 (2.5 Ib/£t3) payload density
toroidal LO7 tank configuration (Figure 3-8).

W = Wa + W 1/2 1/2
fl(V) = 1 + A_l. _A_ _r -1 = !) + v ) -1 (B-10)

Wl Wl Wl Vv A

0 o}
where
A = new tank surface area
Ao = baseline tank surface area
r = new tank minor radius
ro = Dbaseline tank minor radius
W, W Wo + WifofV )1/ 2
tvy= °F o %7 l(z(vo 2/ (B-11)
L) Vo
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Then, for the toroidal LO2 tanks,

1/2
_W_ _ 91858 (Y) + 081414 (B-12)
+W2 V0

Since the insulation system of primary interest in the current program, the MLI/Foam
system, results in considerably greater tank insulation weights than the MLI-only system
of the OTV, the insulation weights were excluded from the preceding weight-versus-
volume relations. Instead, conservative estimates of MLI/Foam weights for the individual
tanks were added after computation of volume-determined tank structural weights.

Tank mass versus tank volume trend relationships (Equations (B-1), (B-2), and (B-3)), are
plotted in Figure 5-4. Although the mathematical expressions differ for the ellipsoidal
and the toroidal LOy tanks, for a moderate range of (V/Vy), the plotted curves are
practically equivalent and are so shown in the figure. For the baseline and groundrules
used, the center opening of the toroidal tank vanishes at V/Vqy = 1.761, setting an upper
limit on the toroidal LOj tank curve. Tank structural weights taken from these
relationships are shown in Table Bl.

The effect of strut length on wall thickness for a buckling-stability-designed strut was
based on an assumed constant buckling criticality. For this,

1 - const. (B-13)

and
I = 1/4 TT(rlq - rzq), for a circular tube (B-14)

I moment of inertia of strut section

L = strut length
ry = outside radius of strut section
ro = inside radius of strut section

From the expression for I, with

tg = r-r2
tg << Cls

I = Trp 3t
and therefore,

Tr] 31:5 = const.

(B-15)
L2
Thus, for constant buckling criticality, tg is proportional to L2,
The final strut wall thickness is found from:
LY w
th = to (T. ) < » buckling-designed (B-16)
o o



tt =1t % : :
o 1 tension-designed (B-17)

Results of application of these relationships to the 3 configurations are shown in Table Bl.
Table B2 summarizes the final strut lengths, wall cross section areas and conductivity

expressions.
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APPENDIX C

TRADE PROGRAMS FOR LTPS SIZING AND INSULATION OPTIMIZATION

Two interactive computer programs were written to assess the LTPS payload capacity.
Program development was based on the methods presented in section 5.

Figure C-1 illustrates the typical input required and the detailed output supplied by each
program. As such, the output provides:

Intermediate calculations, if requested

The effect of thermal loads on LTPS design features

An itemized propellant inventory

Mass and volume statements for the LTPS conceptual design and LSS payload
A summary of the input data and the LTPS deliverable LSS mass.

0O 0O0OO0O0

Note that an abbreviated output option is available, which only gives the last six lines.

Figures C-2 and C-3 present the two interactive programs. Program TRADE as initially
written was used to evaluate the insulation integrated performance for natural-convection
ground-hold environments. This program was subsequently simplified to reflect enhanced-
convection ground-hold environments, and it was, therefore, named TRADEZ2.

Each program contains numerous comment statements, that aided in program develop-
ment. They also serve to help the interested reader in understanding the program(s).
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200

Do you want calculation details?yss

ackaged plglOId denaitye 2.5 , lbmﬁg
ype 1.»1: thydrogen or oxygen)t hydrogena
tank vilage volume at 4=4 sin.e 2.0 %

Do you want nitrogen or helium pur?o ges? nitrogen
Aype foam (Rohacell 31 or BX 250R)1 Rohacall 31

MRinlmum sllowabie interiacs tesperature=s -200, — %F
foam thickness (inches)s 2.9

END OF INPUT DATA

type Lanke EM F"OF .
saxisus foam temperaturse <-0.4438SE+02

fosm resistances 9.337738E+082 Hr-#2.PF/BTU -
ALI thicknesss ©.3263E+90 fest _r_——°F

minimus MLI surface temperaiures  ©.9062E+01

MLI resistancer 9.3166E+82 — Hr-t2.°F/BTU

ainimum conductances 8.152819€-01 5 Hr-02°F/BTU
minimum {nterface tempsrature calculatede -9.2000E+03 — F ’
2
ground-hold insulation fluxe 0.69377E+01 ——BTU/Mrf
average foam tesmperaturse -9.27117€+23 of
average intarface temperstures ~9.19348E+03 F
average MLI tamperatures -9.71901E+Q2 % 2
average transition heat [luxe 9.46663€E-01 2BTU/h -Hr
due Lo ground-hold conditionse 9.15032E+00 8TU/RS | 5
due to foam coolinge 0.201216+01 ———————BTU/Rt
(foam capacitance® 9.41850€-01)—8BTU/Ib_F 2
- due Lo MLI cooling and heat leaks @.64712E-01 5~ BTU/f
(MLI transition heat fluxe 8.12956E-02)— BTU/Hr-ft 2
due to deplousd-LEQ holde 9.61800E+20 7 BTU/ft
(ML1 heat {lux for LEQ holde 9.56190E-01) — BTU/Hr-fr
orbit~transfer insulation fluxe 9.477682E-91 BTU/Hr-f2
Hydrogan/Oxygen tank heat lesk due tot
psnotrations= 102.0/ 74.8 BTU/Hr
struts for Lha mission phasss,
round-hold and Llastial ssceats 12.87 247.0 8TU/hr
ank-unlock %o 52 hourse 12.97 203.9 BTU/Hr
LTPS 1gnition to disposal orbite 8.9/ 183.9 BTU/Hr
7 iterations were mads
starting last iteration values-
stage lenglhe 23.814 2
area-weighisd insulation wass® 0.1034E+01 ——————— b /Tt
Rank geomeiry! hydrogen oxygcn
height> 13.409 4.352 ft
area« $67.483 909.569 ——n®
voh‘tzo-‘ ‘o §357.838 454.804 ———f1
ant inventoryt
prope propollan! loads $383.69 32124.19 — ®m
SARREE h o W
minule tl-off» . .
in —-1— Ibm
maxisus tank pressuree 19.855 psia
vapor ullage at lock-upe 2.97 %
tank ulla?. at lock~-up® - 3.03 %
(tank ullage st -4 smin." 2.69) %
(4 minute boil-of = {.444) b
{reducad propellant demsitye 4,36 —p 3
(Lank volumese 1257.83) — ™ 3
conatante 142, —————— Pugid
propeilant heating rate-~ 39237.0 BTU/Hr "BTU
propellant nessr §382.2 LI
ot!gca tank welghte a7e.5 b
Rydregea tank weighte 382.2 b m

Figure C-1: Example of TRADE Program(s) Input and Output



aevw itteration values~-

propel lant 1nv-ntorztl°'d- hgd;gg;n 35?55u N el L

4 P iarte bo \-of{ 1.44 Q.24 e

minute boil-otie . . b
§ mtnute boil-offe 1.80 e.30 — ___/m
pre-propulsive boil-offe 44.80 187.67 — °m
burnad for dolia-Us 6245.16 314790.86 ——— b

vented during \ranafere 39.27 154.80 —/1__p
stnrt/ciop lossess 10.09 €3.800 —m8 | ™
residualse 14,00 86.00 m

loading uncertaintye
tank geomeilryt

26.92 160.61 — I 5 °m

3

voluse» 1257.78 454,79 ———— 12
insulation thickness® 9.493 9.000 —f 2
areac 567.47 $89.53 — 1t

heighte 13,409 4.352 —

previous value of paylosd masss

Rew payload masae

sass limited payloade 15769.8 r b
i S
urnout masss 4903. b

(prise burnout masss 4377.0)-——{::,bm
t(insulation masse sgs.ay— . m
(hody shell masss 388.6)—"  m
(tan! welghta= ?62.7) b
(loading uncartainty {ropollants- 187.85)— o
(contingancy hold boil-offe .4) b
(residual prepellantse 100.0)~—1___T
expendad propellantas 37215.1—————————————1____:21_
(vent losses bafors ignitione 232.5) B ®m

(propelliants burnsde

13510.3 ?mmm
13510.5 —ib m

(vent losses afier tgnations 193.5)—___, m
(start/stop lossese 30— ™ o
volums limited payloads  13519.5 b
payload densitys 2.50 bt
payload volumae 5404.21 "k
(new stage lengthe e3.81)—__ 4
(stags lcnzth w/0 inaulated tankae 6.88)—__
(hvdro en Lank lengthe 13.,409)—___#«
(length wso insulations 11.,394)——*
(oxygen tank lengtihe 4.,352) —— ft
(leagth ws/o insulstione 4,352) — ft
type insulated tankt EM

minimum interface tesperatures
B fonm Lhicknesss
ALl Lhickneasss

ullsge volume at i~4 minutose
peylosd masse

Figure C-1: Example of TRADE Program(s) Input and Output (Concluded)

-200.0 deg F
2.86009 inches
3.9153 inches
2.9 X
13510.3 pounds
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This interactivo program assesses the impect of iasulation
systems on the LTPS pavload capacity. Insuiation systems
are oither helium purged ML! or nitrogen=-purged MLI/foam
insulations.
English units (Btu, Ib, ft, deg F and Hr) are used throughout
the program, exctept where notsd,
Nomenclature- .
PLMASS: payioad mass
PLDEN: payload density
TYPET: type tank; either sllipsoidal hydrogen (EH), ellipsoids]
oxygsn (EQ), or toroidai oxygen (TQ)
TYPEG: type purge gas; either nitrogen or helium
TYPEOT: type LO2 tank; either toroidal or ellipsiodal
TYPEF: type foam; sithar Stepan 8X 250 A or Rohacei!l 31
DENF: foam density
DELF: foam thickness
DELM: MLI thickness
TTANK: tank temperature
THM: minimum outside surlace temperature of MLI
THA: average » b
TIM: minimum MLI/foam interface temperaturas
TIA: average . -
84: tank ullage volume at 4 minutes before launch

TYPE 2

FORMAT{' Do you want calculation details?',$)
ACCEPT 3, DETAILS

FORMAT (A1)

ASSIGN INDEPENDENT VYARIABLES

TYPE §

FOAMAT (' packasci -avioad densitys ', $)

ACCEPT 6,PLDEN

FOAMAT (F10.90)

TYPEOT3' N’

IF(PLDEN.EQ.1.5 .OR, PLDEN.EQ.2.5) TYPEOT='T’

IF(PLDEN.EQ.3.5) TYPEOQOT='E’

I{F(TYPEOT.EQ.'N’') GO TO 4

TYPE 12

FORMAT(' Type tank (hydrogen or oxygenl): ',$)

ACCEPT 13, TYPET

FORMAT (A1)

IF(TYPET.EQ.'Q" .OR. TYPET.EQ.’0’) THEN

TTANK==290.

TYPET='TOQ’

IF(TYPEOT.EQ. 'E’) TYPET='EO’

GO TO 19

ENDIF

TTANK=-423,

IF(TYPET.EQ."H* .OR. TYPET.EQ.'h’}) TYPET3'EN’

g }$;EY;§T'NE"EH' LAND. TYPET.NE.'EO' .AND. TYPET.NE.'TQO’) GO TO t1{

2 FORMAT(' tank ullago volume at t-4 min.= ', $)
ACCEPT 23, 54

3 FORMAT(F10.0)

c SELECT INSULATICH CONCEPT

30 TYPE 31

k]| FORMAT(' Do you w~ant nitrogen or helium purge g9as?' , Sl

ACCEPT 32, TYPEG
32 FORMAT (A1)

B ABOOB® N0 ONONOOO

- —
[ 2 2 - T

Figure C-2: TRADE Computer Program Listing
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40
41

42

11
72

73
82
83

90
1

o060

IF(TYPEG.EQ.'H' .OR. TYPEG.EQ.'h’) THEN

-FOR HELIUM PURGED MLI AND NO FOAM

TYPEQ="H’

TIMSTTANK

TYPE 41

FORMAT(’ MLI thickness (inches)=z ’ 8$)

ACCEPT 42, DEM

FORMAT(F10.0)

DELM=DELM/12.

DELF=0.

TYPE 91

@0 TO 200

ENDIF

<FOR NITROGEN PURGED ML! WITH A FOAM SUBSTRATE
TYPEG:S'N’ ‘

TYPE 62

FORMAT(' type foam (Rohacell 31 or BX 250A}: ',8)
ACCEPT 63, TYPEF

FORMAT (A1)

TEST='N"’

IF(TYPEF.EQ.’R’ .OR. TYPEF.EQ.’'r’') TYPEF='R’
IF(TYPEF.EQ.’B’ .OR. TYPEF.EQ.'b’') TYPEF='B’
IF(TYPEF.EQ.'A* .OR, TYPEF.EQ.'B’) TEST='0K’

IF(TEST.EQ.’N') GO TO 61

DENF=1.9

IF(TYPEF .EQ.’B’') DENF=32.3

TYPE 72 .

FORMAT(' Minimum allowable interface temperaturez ',3)
ACCEPT 73, TIM

FORMAT(F10.0)

TYPE 82 '

FORMAT(’' foam thickness {inches)z ' 8$)
ACCEPT 83, DELF

FORMAT(F10.0)

DELF=DELF/12.

TYPE 91

FORMAT (' END OF INPUT DATA'/)

aGFLX=0,

PLMASS=0. :

SEE |F ENOUGH MLI1 HAS BEEN ADDED TO SATISFY THE
MINIMUM INTERFACE TEMPERATURE REQUIAEMENT
FKaFOAMK (TYPEF,TIM, TTANK)

RF2DELF/FK

TEMAX=THMIN(TYPET, (1./RF})

|F(TFMAX.LT.TIM) THEM

TYPE 99

FORMAT(®' !!!not enough foam to satislty the minimum ',
interface temperature requirement!!! */)

30 TO 9000

ENDIF

FIND A SATISFACTORY ML THICKNESS

DELTA=10./60.

DELM=-DELTA

DO 190 121,200

DELM=DELM + DELTA

THM=TiM+50.

DETERMINE THE MINIMUM ML] SURFACE TEMPERATURE PREDICTED

BY THE THERMAL MATH MODEL (THM) BY VARYING THE MLI THICKNESS

Figure €-2: TRADE Computer Program Listing (Continued)
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204

108
108

OO~

190

—
©
a0

<€«
w

Y R

OOORNOOO
(=]
o

DAOO

DO 105 J4=1,50

THMO=THM

GK=GASK(TYPEG, THMO, TIM)

RAM=DELM/GK

GMIN=1./(RF+RM)

THMsTHMIHITYPET ,GMIN)
IF(ABS(THA-THMO) .LT.0.001) GO TO 109
CONTINUE

TYPE 103, J, GMIN,DELM, THMO, THM
FORMAT(14,1X, 'iterations performed’,

¢+ /' 1'ithe minimum ML! surtface °,

+ ‘temperature was not found!!!’,

+ /' GMIiN= "E15.7,

¢/ DELM= 'E12.4,

+ /' OLD MINIMUM TEMPERATURE= * E15.7,
+ /' NEW " " s’ E15.7/)
Q0 TO 9000

CONT I NUE

SEE |F ENOUGH FOAM HAS BEEN ADDED TO ATTAIN THE DESIRED
MINIMUM INTERFACE TEMPERATURE
TITEST=TTANK + RAF/(RF+AM)# (THM=-TTANK)

IF(ABSITITEST-TIM).LT.0.001) GO TO 199

IF(TITEST.GT.TIM .AND. DELTA.GT.0.) GO TO 190
{F(TITEST.LT.TIM .AND. DELTA.LT.0.} GO TO 190
DELTA=-DELTA/2.

CONT I NUE

TYPE 198, |

FORMAT(14' iterations performed’,
¢ /' !1'insufficient iterations performed to attsin ',
./ "the desired minimum interface temperature!!!’'/])
CONTINUE

PREDICT THE INSULATION HEAT FLUX DURING GROUND-HOLD (GFLX)

AND ON-ORBIT MISSION PHASES OF: DEPLOYED ON LEO (SFLX) AND
LEO TO DISPOSAL ORBIT TRANSFER (SFLXOT).

IF(TYPEG.EQ. H') THEN

CALCULATIONS TO DETEAMINE THE HELIUM PURGED ML! GROUND-HOLD FLUX
USE A CONDUCTANCE DEFINED BY 1/MLI THICKNESS (INVERSE INCHES)

GMiIN=t./(DELM»12.)

ENDIF

GFLX=GRFLX(TYPET,GMIN, TYPEG)

SFLX=SPFLXI(DELM)

€30.89

IFITYPET.EQ. 0’ .OR. TYPET.EQ.'TO') C=0.91

SFLXOT=CxSFLX

IFITYPEG.EQ.'H’'}] GO TO 291

PREDICT THE TIME-AVERAGE INSULATION FLUX FAOM TANK UN-LOCK

TO INITIATION OF ORBIT TRANSFER (90 SEC TO 61 HA): TFLX

INITIALLY FIND THE AVERAGE GRAOUND-HOLD MLI AND FOAM
TEMPERATURES (TMA & TFA)

TFA2-500.

T1A=-5Q0.

TMA=-500.

0C 290 1131,3

IF(.1.EQ.1) THEN

DELTA=DELF

TC=TTANK

ENDIF

IFCIV.EQ.2) TC=TFA

IF(11.EQ.3) THEN

Figure C-2: TRADE Computer Program Listing (Continued)



209

210
a1

220
290

-C
291

©
~n

QOO O O O PO

L B BRI B K A

DELTA=DELM

TC=TiA

ENDIF

DELT=100.

THO=TC-DELT

TKI=GFLX#(DELTA/2.)

DO 210 131,100

THSTHO+DELT

1F(1}1.EQ.3) THEN

GK=GASK (TYPEQ, TH,TC)

TEST=GKn(TH-TC)

GO TO 209

ENDIF

FK=FOQAMK (TYPEF,TH,TC)

TEST=FKN(TH-TC)

IF(ABS(TEST-TK().LT.0.0001) GO TO 220
IF{TEST.LT.TKiI .AND. DELT.QT.0.) GO TO 210
IF(TEST.QT.TK) .AND. DELT.LT.0.) GO TO 210

DELT=-DELT/2.
THO=TH
TYPE 211, II,I, DELT,THO,TH,TC,TEST
FORMATI(’ 11='14,4X,14* iterations performed’,
/' !!'linsufficient number of iterations performed to ',
/’ determine the average insulation temperature!!!’,
/' DELT= 'E10.4,
/’ THO= 'E10.4,
/' TH= 'E13.8§,
/' TC= '£13.8,
/' TEST= 'E13.%5/)
80 TO 9000
IF(II1.EQ.1) TFA=TH
IF(11.EQ.2)TIA=TH
IF(1).EQ.3)TMA=TH
FOR THESE AVERAGE TEMPERATURES, THE INTEGRATED THERMAL LOAD

(PER SQUARE FOOT OF TANK SURFACE AREA) QTR MAY
NOW BE FOUND.
=DUE TO GROUND-HOLD COMDITIONS
QF=0.
CFz0.
TEVAC=32.8/60.
IF(TYPEG.EQ. 'H'! TEVAC=2.5/60.
QATR=QFLX % (TEVAC - 90,/3600,)
IF(TYPEQ.EQ.'H') GO TO 292
-QUE TO FOAM CCOLING
CF=FOAMCI(TFA, TTANK)
QF3 DENFXDELFuCF# (TFA-TTANK)
=DUE TO ML| COOLING AND INSULATION HEAT LEAK
TAMFLX=TRFLX(TYPET,DELM, TMA, TTANK, TYPEG)
QTRM=TRAMFLX»% (50 .-TEVAC)
=DUE TO INSULATION HEAT LEAK WHILE DEPLOYED ON LEO
QLEQ=SFLXN(61.-50.)
SUMMING TO FIND THE INTEGRATED HEAT LEAK,
QTR=QGTR+QF +QTAM+QLEOD
THE TIME-AYERAGED |NSULATION FLUX 1S DEFINED AS
TFLX= QTR/(61.-90./3600.)

DETERMINE THE STRUT AND PENETRATION THERMAL LCADS

QPENQ=74.

QPENH=100.

CALL STRUTQ(PLDEN,TYPEG,QSTRH1,Q3TRH2,QSTRH3 ,QSTRO1,Q5TRO2,QSTRO3)

Figure C-2: TRADE Computer Program Listing (Continued)
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206

(s XrXeXeX7)

ASSESS THE PAYLOAD MASS FOR THE SELECTED INSULATION CONCEPT,
TANK CONFIGURATION, AND TANK ULLAGE YOLUME
INITIALIZE PARAMETERS
|F(PLDEN.EQ.3.8) THEN

WASE=5586.

PLMASSN=18607.

WBOPz4041,

WORES=134,

HHTN=144.5

HOTN=92.2

WHPN=5533.

WOPN=32900.

AHTN2600.

AOTN=z30S.

VHTN=1338.

VOTN=484.

WPSCAR=323.

LENGTHS: STAQGE=SL, STAGE W/0 TANKS OR INSULATION=SLO,

STAGE W/0 FORE BODY SHELL=SLB

SLN=298.8/12.

$L0=60.9/12,

SLB=161.6/12.

ENDIF
IF(PLDEN.EQ.2.5) THEN

WASE=5612,

PLMASSN=15239.

WBOP24377.

WORES= 86,

HHTN=144.5

HOTN=27.4

WHPN=5520.

WOPN=32853.

AHTN=600.

AQTN=429.

VHTN=13188.

VOTN=z489.

WPSCAR=323,

SLN=2245.7/12.
SL0=72.6/12.
SLB=108.7/12.

ENDIF
IF(PLDEN.EQ.1.5) THEN

WASE=$612.

PLMASSN= 9731,

wB0P=3388.

WORES= 88§,

HHTN=116.7

HOTN=22.0

WHPN=3926.

WOPN=233867.

AHTN=483.

AOTN=377,

YHTN= 964,

VOTN=3348.

WPSCAR=293,

SLN=206.2/12.

§L0=66.3/12.

SLB8= 96.2/12.

ENDIF

Figure C-2: TRADE Computer Program Listing {Continued)



00

W03S=63.

WHSS=10,

WHRES=14,

WAINS=2.19%DELM + DENFuDELF
TINSSDELM+DELF

ITERATE ON THE PAYLOAD MASS

DO 1998 1T=1,50

INITIALIZE ITERATION VARIABLES
HHT=HHTN

HOT=HOTN

WHP=WHPN

WOP=WOPN

WHA=WH4N

WO4:=WO4N

WHS2WHSN

WOS=WOSN

AHT2AHTN

AOT=zAOTN

VHT3VHTN

YOT=VOTN

SLz28LN

PLMASSsPLMASSN

DETERMINE PROPELLANT DENSITIES
IF(TYPET.EQ. 'EH’ ) THEN
ODEN=70.633

DENL=4.3693

DENV=0.1004

VTzVHT

ENOIF

(FITYPET.NE. 'EH" ) THEN

HDEN= 4.3693

DENL=70.833

DENV=0,33868

vT=vVoT

ENDIF

ROEN=REDDENI(TYPET,PLDEN, S4,VT,GFLX,DENL,DENY)
IF(TYPET.EQ. EH') HDENZADEN
IF(TYPET.NE. 'EH') ODENSADEN
DETERMINE THE MAXIMUM TANK PRESSURE: PMAX
W4=W04

WP=WOP -W4

CONST=21790.

VOLUME=vOT

AREAzAOT

IF(TYPET.EQ. 'EH’ ) THEN

W4zWH4

WP=WHP -W4

CONST=142,

VOLUME =VHT

AREAZAHT

ENDIF

80 S4 + (100,.%W4)/ (RDENNVOLUME)
S0V= S0 + (100.-SO)»(DENL-ADEN)/{DENL-DENVS
PMAX2 18, + CONSTH(GFLXXAREA)®(80./3600.)/(S0YnWP)
ASSIGN A LTPS BURNOUT MASS: ¥WBO
= INSULATION MASS

WINS=AQTHWAINS

IF(TYPET.EQ. 'EH’) WINS=AHTHNWAINS
-FORE BODY SHELL MASS
WBS=26.34%(SL-SLB)

Figure C-2: TRADE Computer Program Listing (Continued)
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c =TANK INERT WEIGHT
CALL WTANK(TYPET,PMAX,VHT,VOT,OTW,HTW)
WBOSWBOP + Wi NS+WBS+ (OTW+HT¥) +,005% (WOP +WHP ) « (WH5+W05) + (WHRES+WORES)
c DETERMINE THE PROPELLANT LOADING AT THE TERMINATION OF TOPPING
c FOR HYDROGEN (WHP) AND OXYGEN (WOP)
PiIMP2 WIMP(WBO,PLMASS,WPSCAR)
WHIMP=PIMP/T.
WOIMP=6 ., #PIMP/7.
¢ ASSIGN TIME DEPENDENT PROPELLANT VENT LOSSES
HFGH=187.
HFG0=90,
IF(TYPET.NE. 'EH’ ) THEN
WO4N= (GFLX#AOT+QPENC+QSTRO1)%(4./60.) /HFGO
WOSN= (GFLX®AOT+QPENQ+QSTRO1)%(5./60.) /HFGO
WOB!=(QTAXAOT+ (QPENO+QSTRO2)%(61,.-90,/3600.))/HFGO
WOA 1= (SFLXOTHAOT+QPENO+QSTRO3IN(115.-81.)/HFGO
WH4AN= (QPENH+QSTRH1)%(4./60.)/HFGH
WHSN= (QPENH+QSTRH1}%(5./60.) /HFQH
WHBI=(QPENH+QSTRH21%(61.-90./3600.) /HFGH
:uslzlcPENHOOSTHHS)!(115.-01.l/HFGH
IF(TYPET.EQ. EH’ ) THEN
WHAN= (GFLX#AHT+QPENH+QSTRH1)%(4,/60.) /HFGH
WHSN= (GFLX¥AHT «QPENH+QSTRH1)%(5./60.) /HFGH
WHB 12 (QTR¥AHT+ (QPENH+QSTRH2)%#(81,-90./3600.) ) /HFGH
WHA |2 (SFLXOTHAHT+QPENH+QSTRH3 ) # (118,81, ) /HFGH
WO4N=(QPENO+QSTRO1)%(4./680.)/HFGO :
WOSN= (QPENQ+QSTRO1)%(5./60.) /HFQO
WOB13(QPENO+QSTRO2)%(61,-90./3600.)/HFGO
:gs::IQPENOOQSTRO3l*(115.-61.)/HFGO
WOPN= {WOAN+WOSN+WOB | +WO IMP+WOA | +WOSS+WORES) /0.995
WHPN= (WHAN+WHSN+WHB | +WH IMP +WHA | +WHSS+WHRES) /0,995
c SIZE PROPELLANT TANKS® FOR LENGTH AND AREA
VHTN=WHPN/HDEN
VOTN=WOPN/QDEN
IF(TYPET.EQ.'EH’ ) THEN
VHTNaVHTN/t1.-54/1400.)
THINS=TINS
TOINS=0.
ENDIF
IF{TYPET.NE. ' EH' ) THEN
VOTN=VOTN/(1.-S4/100.)
TOINS=TINS
THINS=0,
ENDIF
CALL TANKS(PLDEN,VHTN,THINS,VOTN,TQINS,
+ AHTN,AOQTN,HHTN,HOTN)
c DETERMINE INSULATION EFFECTS ON THE STAGE LENGTH,
DUMMY 120,
DUMMY 239,
CALL TANKSIPLDEN,VYHTN,DUMMY1,VOTN,DUMMY2,
¢+ Al,A2,H1,H2)

DETEAMINE PAYLOAD MASS FOR VOLUME-LIMITED (PLMASSV) AND
MASS-L IMITED (PLMASSM) CASES

WEPROP= (WOB|+WHBI)+(WOIMP+WHIMP) + (WOA([+WHA!]+(WOSS+WHSS)
PLMASSM= 85000, - WASE - WBO - WEPROP

SLN=SLO+HHTN+HOTN

PLVOL= 170. » (55.3-SLN)

PLMASSV=PLYOLNPLDEN

OO0

Figure C-2: TRADE Computer Program Listing (Continued)
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¢

1898
1089

0O OCeHOHO

9908

9010

9020

L]
L 4
*

1 4
*

L3 2R 2K BE JE BE BN 2 B 2

L 20 2R 2B R B I 4

*
*

L B R BE K K B BE 2R 2N J

(PLMASSY.LE.PLMASSM) PLMASSN=PLMASSV
(PLMASSY.GT.PLMASSM) PLMASSN=(PLMASSM+PLMASS) /2.
(1T.EQ.1) GO TO 1993

ST FOR CONVERGENCE OF THE PAYLOAD MASS
TEST=ABS{PLMASSN-PLMASS)

IFITEST.LT.1) GO TO 9000

CONTINUE

TYPE 1999, PLMASS,PLMASSN

FORMATI(' !!lconvergence to determine the payload mass ',

‘'was not reached!!!’,
/' PLMASS:= 'Fl 2.2,
/° PLMASSN: 'F12.2)

OUTPUT PROGRAMING:
IF(DETAILS.NE.'Y' ,AND. DETAILS.NE.’y’) GO TO 9100
GIVE THERMAL MATH MODELING PREDICTIONS
IF(TYPEG.EQ. 'H’' ) THEN
-FOR HELIUM PURGED ML! AND NO FOAM
TYPE 9908, TYPET, DELM, GFLX,
TFLX, OGTH QF, QTRM, TRHFLX QLEOQ, SFLX,
SFLXOT
FORMAT(/’ type tanks ' A2,
/' MLI thicknesss '3X,E12.4° feet’,
/' g9round-hoild insulation fluxs '3X,
/' sverage transition heat flux= *2X
/’ due to ground-hold conditionss
/’ due to foam coolings
!/’ due to MLI cooling and heat lea
/’ (ML) transition heat flux= 'SX,
A due to deployed-LEQO holds
/’ (ML heat flux for LEO hold= '3
/' orbit-transter insulstion fluxs 'E
G0 TO %030
ENDIF
-FOR NITROGEN PURGED ML WITH A FOAM SUBSTRATE
TYPE 9010,TYPET, TFMAX,RF, DELM, THM,RM, GMIN, TITEST
FORMAT(/' type tank= ' A2,
/' maximum foam temperature= 'E13.5,
!’ foam resistances '4X,E14.6,
/° MLI thicknesss 'E12.4' feet’,
!’ minimum ML| surface temperatures 'E12.4,
/' ML! roesistances '15X,E14.4,
/'’ minimum conductance="'E15.6,
/' minimum interface temperature calculateds 'E12.4)
IF(GFLX.EQ.0.) GO TO 91900
TYPE 9020, GFLX,TFA,TIA,TMA,
;;tﬁérosTR. QF ,CF, QTRAM,TRMFLX, QLEOQ,SFLX,

o™
cud w v ma )
mmummmu-

u—._.

P X

k

[~ X7 R N7 N ]

LD £ LR G 6D GO R

-‘)‘ MII

FORMAT {
/' ground=-hold insulation fluxs 'E13.9,
/' average foam temperatures *$X,E13.5,
/’ average interface temperatures 'E13.5,
/’ averiage MLI| temperaturez '6X,E13.5,
/’ average transition heat fluxs 'E13.6§,
/’ due to ground-hold conditionss 'E13.5,
/7’ due to foam cooling= 'E13.58,
/’ (foam capacitances '9X,E13.5°) ',
/"’ due to MLI cooling and heat leaks'E13.5,
/’ (ML] transition heat fluxz '$X,E13.5")",
/’ due to deployed-LEOQ hold=s '7X,E13.5,

Figure C-2: TRADE Computer Program Listing (Continued)
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+ /0 {ML] heat flux for LEO hold= '3X,E13.8')’,

¢ /' orbit-transfer insulation flux= *E13.5)
IF{TMA.LT.~425.) GO TO 9900

9030 TYPE 9031, QPENH,QPENO, QSTRH1,QSTRO1, QSTRH2,QSTRO2,
+ QSTRHI,QSTROI

9031 FORMAT(/' Hydrogen/Oxygen tank heat leak due to:’,

/' penetrationss 'F6.1'/°F6.1,

/' struts for the mission phases,’',

/’ ground-ho!d and initial ascent= 'F6.1'/'F6.1,

A tank-unliock to 60 hours= 'F6.1'/°F6.1,

!’ LTPS ignition to disposal orbit= 'F6.1'/°F6.1])

IF(PLMASS.EQ.0.) Q0 TO 9900

GIVE DETAILS OF PAYLOAD ASSESSMENT

TYPE 9050, IT, SL,WAINS, HHT, HOT,AHT, AOT VHT,VOT,

+ WHP ,WOP, VH4 '04 wns w05
8050 FORMAT(/|4' ntoratuons were made’,
/' starting last iteration values-',
/' stage length=2"F10.3,
/' area-weighted |nsulat|on mass3'E18.4,
/' tank geometry: hydrogon'4x oxygen’,
/' height=',17X,2F10.3,
areas’ ,17X,2F10.3,
/7’ volume=',17X,2F10.3,
I: propeliant inventory: '

> * e e

D I B N R K B 2N J
-

/ propellant Ioad"ZFlO
!/’ 4 minute boil-0ff3’'2F10,
7’ S minute boil=-0ff='2F10

TYPE 9060, PMAX,
+ S0V,S50,84,%W4 ,RDEN,VOLUME, CONST, (Q
*+ OTW,HTW

90860 FORMAT(

LX®AREA), WP,

+ /' maximum tank pressure='4X,F10.3,

+ /0 vapor ullage at lock- up-’lX.Fio.z.

LIV A tank ullage at lock-up="$5X,F10.2,

¢ /" (tank u!lage at t-4 min.=2’8X,F10.2°)",
¢ /) (4 minute boil-off3'14X,F10.3')",

. /" {reduced propeilant density='5X,F10.3')’
./ {tank volume='20X,F10.2')’,

s / constant='18X,F10.1

* /] propeliant heating rlto='4X.F9 1,

+ /’ propeliant mass='10X,F10.1,

¢+ /' oxygen tank weight= °*F10.1,

+ /' hydrogen tank weight='F10.1]

TYPE 9070, WHPN,WOPN, WH4N,WO4N, WHSN,WOSN, WHBI! ,WOBI,

+ WHIMP,WOIMP, WHAI ,WOAL, 'HSS.'OSS. WHRES , WORES,

*+ (0.003%WHPN), (0.005%WOPN),

+ VHTN,VOTN, THINS,TOINS, AHTN,AOTN, HHTN,HOTN
9070 FORMATI(

¢+ /' new iteration values-',

. ¢ /' propaliant inventory: hydrogen’'4X’oxygen’
e/ propellant load='2F10.0,
./ 4 minute boil-off="2F10.2,
+ /! 5 minute boil=-0ff3°2F10.2,
v/ pre-propulsive bo:l-off"2F10.2.
LI burned for delta-Vs'2F10.2,
LI & vented during transfer='2F10.2,
+ /" start/stop losses= '2F10.2.
+ /" residuals='2F10.2,
LA loading uncnrtlnnty='2FIO.2.
+ /' tank geometry:

Figure C-2: TRADE Computer Program Listing (Continued)
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9090

000

9900
9970
971

9975
9976

+ / volume='2F10.2,
+ /7 insulation thickness='2F10.3,
+ /[’ areaz’'2F10.2,
v/ heightz*2F10.3)

TYPE 9090, PLMASS, PLMASSN, PLMASSM, WASE,

+ WBO,WBOP,WINS, 'BS (OTVOHT') 0. OOSI(WOPN*'HPNJ {WHSN+WOSN) ,

* ('HRES#!ORESI

+ WEPROP, (WOB | +WHB 1), {WOIMP+WHIMP) , (WOAI+WHA1), (WOSS+WHSS),

+ PLMASSV PLDEN, PLVOL SLN,SLO, HHTN H1,HOTN,H2
FORMAT (

+/’ previous value of payload mass="F10.1,

¢/’ new payload massz'14X,F10.1,

s/ mass |imited pasyloads*2X,F10.1,

o/ ASE mass=’15X,F10.1,

v/’ LTPS burnout mass='6X,F10.1,
+/’ {prime burnout mass= 'F10.1°)°,
+/* (insulation masss 'F10.1’),
o/ (body shel| masss 'F10.1')’,
*/’ {tank weightses= 'F10.1')’,
+/’ {loading uncertainty propellantss’F10.1’)"*,
+/° (contingency hold boil-off= 'F10.1’) ',
o/ {residual propellants= 'F10.1')°,
+/’ expended propeliants='4X,F9.1,
o/ (vent losses before igni!ion-'4x.F10 1')',
v/’ (propeliants burneds= '4X,F10.1' ),
+/ (vent losses after ignition= '4X,F10.1')’,
+/° {start/stop lossess '4X,F10.1')°
¢/ volume |imited payload='F10.1,
¢/’ payload densitys’15X,F4.2,
¢/ paylioad volume=’10X,F10.2,
v/ (new stage length= 'F10.2')°,
+/’ (stage length w/o insulated tanksz'F9.2')’,
*/’ (hydrogen tank lengths= 'F10.3°)°’,
+/ (length w/0 insulstions 'F10.3°)°’,
+/' (oxygen tank lengths 'F10.3')'.
+/’ {length w/o insulations 'F10.3')’)
ABBREVIATED RESULTS OF INSULATION IMPACT ON PAYL

TYPE 9101, TYPET,TIM,(DELF¥12.), (DELMN12.),54,PLMASS
FORMAT(/’ type insulated tank:’sx.Az.
* /' minimum interface temperature='F10.1°' deg F',
+ !’ foam thickness='F10.4° inches’
+ /'’ ML! thickness='F10.4' iaches’
. /' uallage volume at t-4 minutes='F10.2’ %',
. /' payload mass='F10.1' pounds’')
CONTINUE WITH PROGRAM?

IF{TYPEG.EQ. ' N’ ) THEN

TYPE 9970

FORMAT(///® Piek another foam thickness? ',$)

ACCEPT 9971, CASE

FORMAT (A1)

IF(CASE.EQ.’Y’ .OR. CASE.EQ.'y’') GO TO 81

ENDIF

IF(TYPEG.EQ. 'H' ) THEN

TYPE 997¢ ‘

FORMAT(///' Pick another MLI thickness? ',$)

ACCEPT 9976, CASE

FORMAT (A1)

IF(CASE.EQ.'Y’' .OR. CASE.EQ.'y') GO TO 40
ENDIF

Figure C-2: TRADE Computer Program Listing (Continued)
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9980
9981

9990
9991
999¢

TYPE 9980

FORMAT(’' Select another ullage voliume? ',$)
ACCEPT 9981, CASE

FORMATI(A1)

IF(CASE.EQ.'Y’' .OR. CASE.EQ.’y’') GO TO 21
TYPE 9990

FORMAT (' Redefine optmization problem? ’,$)
ACCEPT 9991, CASE

FORMAT (A1) .
IF(CASE.EQ.'Y' .OR. CASE.EQ.’'y’'] G0 TO 1
sTOP

END

SUBROUTINE STAUTQ(DEN, TYPEQ,QH1,QHZ,QH3,Q01,Q02,Q03]
IF(TYPEG.EQ.'H') Q0 TO $0
FOR NITROQEN PURGE GAS
IF(DEN.EQ.3.5) G0 TO 1¢
{F(DEN.EQ.2.5) GO TO 20
{F(DEN.EQ.1.5) G0 TO 30
FOR THE OXYGEN TANK
Q01:420.

0023333

Q03=2

FOR THE HYDROGEN TANK
QH1312

QH2=10. 9

QH338.9

Q0 TO 99

FOR THE OXYGEN TANK
Q013247.

Q02=203.

Q03z183.

FOR THE HYDROGEN TANK
QH1312.8

QH2210.9

QH338.9

@0 TO 99

FOR THE OXYQEN TANK
Q012264

Q02=217.

Q032196

FOR THE HYDROGEN TANK
QH1213

QH2=11. 0

QH329.$

G0 TO 99

FOR HELIUM PURGE GAS
IF(DEN.EQ.3.5) GO TO 60
IF(DEN.EQ.2.5) Q0 TO 70
IF(DEN.EQ.1.5) GO TO 80
FOR THE OXYGQEN TANK
Q01=328.

Q02:332.

Q033289.

FOR THE HYDROGEN TANK
QH1= 7.8

QH2210.9

QH3=8.9

GO0 TO 9¢

FOR THE OXYGEN TANK

Figure C-2: TRADE Computer Program Listing (Continued)



70

9

10

20

Q01:=180.

Q02=202.

Q033183.

FOR THE HYDROGEN TANK
QH1=2 7.5

QH2z10.8

QH3=z8.9

a0 TO 99

FOR THE OXYGEN TANK
Qo13171.,

Q02=216.

Q03=3196.

FOR THE HYDROGEN TANK
QH1s 8.0

QH2=11.8

QH3=9.5

RETURN

END

SUBROUTINE WTANK(TYPET,PMAX,VHT,VOT,0TW,HTW)
POREFa24.

PHREF =212,

TANK MASSES AT THE REFERENCE PRESSURE:

=FOR THE HYDAOGEN TANK
WHRAT=0.66224%(VHT/1721.) + 0.33776
HTW=WHRAT%507.

-FOR THE OXYGEN TANK

WORAT=0.45929% ((VOT/537.)un(2./3.)+{VOT/S87.1%%(1./3.))+ 0,081414
OTW2WORATN4186.

DETERAMINE TANK PRESSURIZATIONM EFFECTS ON THE TANK WEIGHTS: PEFF
IF(TYPET.NE. EH’ ) THEN

=FOR THE OXYGEN TANK

PRAATIPMAX/POREF

PEFF30.903

{F(PRAT.GE.0.794) PEFF=0.528+0.472%PRAT
IF(PRAT.GE.1.000) PEFF=0.541+0.439%PRAT
OTW=QTWNPEFF

ENDIF

|F(TYPET,.EQ. EH" ) THEN

PRAT=PMAX/PHREF

PEFF20.794

1F(PRAT.GE.0.562) PEFF=0.529+0.471%PRAT

IF (PRAT.GE.1.000) PEFF=0.222+0.778%PRAT
HTW=HTWNPEFF

ENDIF

RETURN

END

SUBROQUTIME TANKS(PLDEN,VHT,THINS,VOT,TOINS,AHT,AOT,HHT HOT]
FOR THE HYDROGEN TANK

VTVHT

TINS=THINS

80 TO 100

AHTZAT

HHT=HT

FOR THE OXYGEN TANK

vTzvoT .
TINS=TOINS

IF(PLDEN.EQ.J3.5) GO TO 100

G0 TO 200

AQTZAT

Figure C-2: TRADE Computer Program Listing (Continued)
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HOT=HT
G0 TO 998
FOR ELLIPSOIDAL DOME TANKS,
DETERMINE THE MAXIMUM TANK VOLUME WITH NO BARREL SECT!ION
Q0 DMAX=2168./12.-2.2TINS
VNBMAX=(3.1416/6.)% (DMAX#%3,) /SQRT(2.}
|F (VNBMAX.GT.VT) GO TO 110
c SIZE THE BARREL SECTION
VDOME SSVYNBMAX
DTANK=DMAX
BARAZ(3.1416/4.)%DMAXN%2,
BARL={VT-VDOMES) /BARA
Q0 TO 199
c REDUCE TANK DIAMETER TO SATISFY VOLUME CONSTRAINT
110 VOOMES=VYT
EIQEK;(G.usaﬂTIZ.)/3.1410!VO0MES)!!|1./3.)
¢ DETERMINE THE TANK HEIGHT AND AREA
199 HT=BARL+DTANK/SQRT(2.)+2.%TINS
ATZ3.1416% (BARL#DTANK + 0.8116%¥DTANKN%2.)
IF{VT.EQ.VHT) GO TO 10
a0 TO 20
¢ FOR TOROIDAL OXYGEN TANKS,
200 OR=(169./12.-2.uTINS) /2.
ROLD=SQRT(VT/(2.%3.1416%%2,40R))
DO 210 131,100
RNEW=SQRT{(VT/(2.#3.1418%%2.) + ROLD¥%3.)/0R)
|F{ABS(ROLD-RANEW).LT.0.0001) GO TO 220
210 ROLD=ANEW
TYPE 211, VT,OR,ROLD,RNEY
211 FORMAT(' ft!!convergence on toroidal tank minor radius *,
+ 'did not occur!!!’,
¢ /' VT= 'E13.5,

-0

+ /' ROLD= 'E13.5,
+ /' RNEW= 'E13.9)
220 HT22.%RANEW+2 . 2TINS
AT=4,.%3 . 1416082, % (CA-ARNEW) #ANEWNN2,
GO TO 20
999 RETURN
c END
FUNCTION WIMP (WBO,PLMASS,WPSCAR)
WP2:=WBO®(0.0229)
WGEO=WBO+WP2+PLMASS
WP1=WQEO®(1.823)
WIMP= (WP1+WP2) -WSCAR
RETUAN
c END
FUNCT!ON REDDEN(TYPET,PLDEN,S4,VT,GFLX,DENL,DENV)
c HEAT FLUX FOR CORRELATION (S IN WATTS/SQUARE FOOT
BO=(1.-DENL/DENV)%(0.293%QFLX}/(VTN(1,-54/100.)}
IF(TYPET.EQ.'EH’ .AND. PLDEN.NE.1.5) GO TO 10
IF(TYPET.EQ."EH’') GO TO 40
IF(TYPET.EQ.'EQ’') GO TO 20
IF(PLDEN.EQ.2.5) GO TO 30
IF(PLDEN.EQ.1.5) GO TO S50
10 A0=0,03353
A12-0,4417E-2
A2:0.6122E-3

Figure C-2: TRADE Computer Program Listing (Continued)
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20

30

40

$0

Figure C-2: TRADE Computer Program Listing (Continued)

A3==0,3046E-4
GO TO 98
A0=20.1689
A12-0,2237E-1
A220.3030E~2
A3=-0,1508E-3
GO TO 98
A0320.1423
A12-0,.1669E-~1
A220.2348E-2
Ad2-0.1201E-3
80 TO 98
A020.02319
A13-0,3096E-2
A230.4185E-3
A33-0.2062E-4
Q0 TO 98
A0=0.1014
A13=0,1118E-1
A230.1483E-2
A323=-0.737SE-4

YIAOGAINSA4eA2NS4002 , +AINS4uN],
- REDDEN=DENL + BOnY

RETURN
END

FUNCTION GASKI(TYPEQ,TH,TC)
IF(TYPEG.EQ.'H') G0 TO 50
FOR NITROGEN QAS

A30.01286
822.0767E-$

IFITH.EQ.TC) THEN

GASKZA+B8%TH
Q0 TO 100
ENDIF

TKIisA® (TH=-TC)
a0 TO 99

K120

IF(TC.GT.-406.1G0 TO 59

-t
Q
]
-
(2]

1.735E-4

3-244,

A = —A R  —Ag = A e O — A DI — =}
VOO MR =N ETAOMNMO NN ——NE
o TP e () A o e s o FE o e B §) e —

-4

(2]

o

-—f

=TH

* B/2.%(THN%2.-TCu%2.)
FOR HELIUM PURGE GAS

3TKIl « Al#(THI-TCI)
TH.EQ.THI) GO TO 99

E

TC.QT.-244.)Q0 TO 69
4:-400.) TCI=TC
TH.LT.<244.) THI=TH

+ BI/2.%(THIu%2, =-TClan2.)

TH.EQ.THI) GO TO 99

TC.QT.-244.) TCI=TC
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Al=0.0779

Bl=1,253E-4

TKISTK) ¢ AIN(THI=TCI) ¢ BI/2.%({THI%%2,-TCiN%2,)
99 GASK:z TKI1/(TH-TC)
100 RETURN

FUNCTION FOAMK (TYPEF,TH,TC)
{F(TYPEF.EQ.'B’) GO TO 50

c FOR ROHACELL 31 FOAM
IF(TH.EQ.TC) THEN
FOAMK=0.0148 ¢ 3,167E-5%TH
80 TO 99
ENDIF
A30.0148%(TH-TC)
B2{J.167E~5/2. )% (THN"2, -TCun2.)

TK12A+8
FOAMK=TK|/{TH=-TC)
GO TO 99
¢ FOR BX 250A FOAM
§0 TK1=20.

IF(TH.EQ.TC) THEN
FOAMK=0.0172 + 3.ST1E-Sa#TH
IF(TH.GT.~-90.) FOAMK=0.0119 - 2, 345E-58#TH
IF(TH.GT.5%.) FOAMK=0.0085 + 3,777E-SuTH
G0 TO 99
ENDIF
THLIM=TH
IF(TH.GT.53.) THEN
A=0.0085%(TH~-55.)
BI(3 . TTTE=-5/2.)% (THN%2, 55, 482,
TKI12A+B+1.6065
THL IM=-90,
ENDIF
IF(TH.GT.~-90., .AND. TH.LE.S55.) THER
A20.0119%(TH+90.,)
B2(2.34SE-5/2.)%(THu%2,-90,.4%2,)
TKizA+B
THLIM==90.
ENDIF
S0.0172%(THL IM=TC)
BS(3.S57T1E=5/2. )0 (THLIMuN2,~-TCu%2.])
TXISTK] + A+B
FOAMK=TK !/ (TH=TC}

99 RETURN
END

FUNCTION FOAMC(TH,TC)
IF(TH.EQ.TC) THEN
FOAMC=1.E-10

G0 TO 99

ENDIF

THL IM=TH

X120,
IF{TH.QT.=233.) THEN
20.2724%(TH+233.)
B2(8.214E-4/2. )% (THN%2,.-233.%202.)
TK1zA+8

THL IM=-233.

ENDIF

20.1809%(THL IM=TC)

Figure C-2: TRADE Computer Program Listing (Continued)
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10

20

10

20

30

S0

B2(3.430E-4/2.)# (THL IMX%2. ~TCxx2.)
TKI13TK! + A+8

FOAMC=TK1/(TH-TC)

RETURN

END

FUNCTION THMiN(TYPET.G)

IF(TYPET.EQ.'EH') GO TQO 10

IF(TYPET.EQ. EQ’) B0 TO 20

IFITYPET.EQ.'TO’) GO TO 30

THMIN=83.-5501 . %G+46606.%G##2, 217731, #Gun3, 2371997 . #Gu%d,
IFIG.LE.0.125) GO TO 99
THMIN=5.-2269 . %G+4016.#Gun2,

IF{G.LE.0.214) GO TO 99

THMIN==222,-345.2%G

IF(G.LE.0.55) GO TO 99

THMIN=-410,

GO TO ¢9

THMINST7S ,-5622 . #G+55386 , uGx%%2,-228533 . %Gund .
IF(G.LE.0.085) GO TO 99
THMINS=54.-1139. 4G+ 1477 . %GH%2,

IFIG.LE.0.25) GO TO 39

THMIN2-219.-112.84G

{F(Q.LE.0.8) GO TO 99

THMIN=-280.

G0 TO 99
THMINS80,-4800.4G+44412.%0GH%2,=17T7053 ., #Gx#3 .
IF(G.LE.0.082) QO TO 99

THMINS =27 . =1134 . #G+1399 . #Gun2,

|IF{G.LE.0.25) GO TO 99

THMINZ=193.-140.284

IF(G.LE.0.63) GO TO 93

THMIN=2-280.

RETURN

END

FUNCTIOM GRFLXI(TYPET,G,TYPEG)
IF(TYPEG.EQ."'H') GO TO 4¢
IF(TYPET.EQ. EH’) GO TO 19
FI(TYPET.EQ.'EQ') GO TO 20
{TYPET.EQ.'TQ') GO TQ 30

|

|

Y

Y232.1+189.%G

GO TO 99
Y=371.ne-11os.*euu2.v2352.»0xa3.-1975.uexn4.
IF(G.LE.0.4) GO TO 99
¥233.+71.2%G

G0 TO 99
Y2314 . #G=624 ., %Gun2,
IF(G.LE.0.25) GO TO 923
Y231.+39.4%G

80 TO 99

IF(TYPET. EQ.'EH'] GO 70 59
FITYPET. "€0°) GO TO 60
TYPET, EQ "TO') GO TO 79

§2.
G.GE.0.50) THEN
1.6

£
IF(G.LE.0.153) GO TQ 99
0

Fi
0.
g1
Fi
=5

Figure C-2: TRADE Computer Program Listing (Continued)
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ENDI
YZA+8%GQ

GRFLX=Y
RETURAN
END

FUNCTION TRFLX(TYPET,DELM,TH,TC,TYPEG)

FOR HELIUM PURGED ML| AND NO FOAM THE AVERAGE THERMAL LOAD THROUGH
THE ML1 18 CORRELATED AGAINST 1/ML! THICKNESS (INYERSE INCHES).
THESE PREDICTIONS ARE BASED ON TMM RESULTS, WHERE THE MLI IS
VERAY COLD DURING THE GROUND-HOLD MISSION PHASE.

X21./(DELM®12.)

DELTAU=S0.0632

IF(TYPET.EQ. EH’' ) THEN

¥=(3,38+8.68%X)/DELTAU

IF(X.LT.0.2) Y¥Y=323.58%X/DELTAUY

ENDIF

IF(TYPET.NE. 'EH' ) THEN

¥Y=(3.00+4,.92%X) /DELTAU

IF(X.LT.0.2) Y=19.92%X/DELTAU

ENDIF
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O 000

90

91

3

L 2 B BN S 3L R B R BN S N J

IFITYPEG.EQ.'H’) GO TO 93
FOR NITROGEN PURGED ML| WITH A FOAM SUBSTRATE

~ASSIGN A MAXIMUM AVEAAGE THERMAL LOAD PAEDICATED ON A SIMPLIFIED

ANALYSIS.
YMAX=6.

-ASSIGN ITERATION PARAMETERS FOR NITROQEN PURGED ML WITH A

FOAM SUBSTRATE
DEN=DELM* (TH=-TC)
XXs3.5/1000.
B1287,

A2320,187

B2:=3.72
IF(TYPET.EQ. EH’') THEN
XX34.2/1000,

B1:58,

A2:20.223

B2:28.20

ENDIF

INITlALlZE ITERATION PARAMETERS
YTEST=0

00 %0 |=1 300

YIYTEST

X=Y/DEN

Az20,

B=81

IF{X.QT.XX) THEN

A2A2

8282

ENDIF

YTEST= A + Bu{Y/DEN)
IFIYTEST.GE.YMAX .AND. B.EQ.B2) THEN

YTEST3YMAX

ENDIF

IF(ABS{Y-YTEST).LT.0.001) GO TO 98

CONT I NUE

IF CONVERGENCE WASN'T REACHED-

TYPE 91, |, DEN,XX,B1,A2,B2, Y, YTEST,X,A,8

FORMAT(14' iterations made’,

/' 1'llinsufficient number of iterations were made ’,
i to determine the transition heat leak!!!’,

/' DEN= 'E13.5§,

/' XX= ' ,3X,E12.4,

/' Bi= ' 3X,F10.2,

/° A2= ' ,3X,F10.3,

/' B2= ' ,3X,F10.2,

/° Y= * 3X,E13.5,

/' YTEST= 'E13.8,

/' X3 ' E12.4,

/' A= '2X,F10.3,

/' Bz '2X,F10.2/)
TAFLX3Y
RETURN
END

FUNCTION SPFLX(DELM!
IFIDELM.EQ.0.) THEN
SPFLX=21.E10

80 TO 99

ENDIF
X31./(DELM™12 )

A=0,

Figure C-2: TRADE Computer Program Listing (Continued)
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B=0.22
1F(X.GT.0.%) THEN
A30.0356

Bz0.107

ENDIF
IF(X.Gg.i.SO) THEN

90

.GT.4.0) THEN
.148
0.074
ENDIF
SPFLX= A ¢+ BuX
29 RETURN
END

¥
O 2> = ML CD 3>
" uTNE N
[-Tad-X-X-3
o —- o
noo
@

Figure C-2: TRADE Computer Program Listing {Concluded)
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32

This interactive program assesses the impact of insulation
systems on the LTPS payload capacity. Insulation systems
are oither holium purged MLI or nitrogen-purged ML1/foam
insulations.

English units (Btu, b, ft, deg F and Hr) are used throughout
the program, except where noted.

Nomenciature~

PLMASS: payload mass
PLDEN: payload density . .
TYPET: type tank; either ellipsoidal hydrogen (EH), ellipsoidal

oxygen (EOJ, or toroidal oxygen (TO)"
TYPEG: type purge gas; either nitrogen or helium
TYPEOT: type LO2 tank; either toroidal or ellipesiodal
TYPEF: type foam: sither Stepan BX 250 A or Rohaceli 31
DENF: foam density
DELF: foam thickness
DELM: ML| thickness
TH: outside surface temperature of the MLI
Tl: MLi{/foam jnterface temperature
TTANK: tank temperature
S4: tank ullage volume at 4 minutes before launch

TH=790.,

TYPE 2 -

FORMAT(' Do you want c¢alculation detsils?',s)
ACCEPT 8, DETAILS

FORMAT (A1)

ASS|GN INDEPENDENT VARIABLES
TYPE &

FORMAT (' packaged payload densitys ',$)
ACCEPT 8 ,PLDEN

FORMAT(F10.0)

TYPEOT="N’

IF(PLDEN.ECQ.1.5 .OR. PLDEN.EQ.2.5) TYPEOT='T’
IF(PLDEN.EQ.3.5) TYPEOT:='E’

IF(TYPEOT.EQ.'N’) GO TO 4

TYPE 12

FORMAT(’ Type tank (hydrogen or oxygen): ’,$)
ACCEPT 13, TYPET

FORMAT (A1)

IF(TYPET.EQ.’0* .OR. TYPET.EQ.'0’') THEN
TTANK2-290.

TYPET=2'TO"

IF{TYPEOT.EQ.'E’) TYPET='EQ’

G0 TO 19

ENDIF

TTANK==-423.

IF(TYPET.EQ.'H' .OR. TYPET.EQ.'h') TYPET='EH’
}:;EY;;T.NE.'EH' .AND. TYPET.NE.'EQO' .AND. TYPET.NE.'TO') GO TO t1
FORMAT (' tank ullage voiume st t-4 min.z ',8)
ACCEPT 23, S4

FORMAT(F10.0)

SELECT INSULATION CONCEPT

TYPE 31

FORMAT{' Do you want nitrogen or helium purge gas?’ . $)
ACCEPT 32, TYPEQ

FORMAT (A1)

IFI(TYPEQ.EQ.'H' .OR. TYPEG.EQ.'h’] THEN

Figure C-3: TRADEZ2 Computer Program Listing
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40
41

42

61
82

63

7"
72

73
82
83

-0

[t XeXe Xy X -X"J

ROOOOO O O O

=FOR HELIUM PURGED MLI AND MO FOAM

TYPEG=s'H’

TIi=TTANK

TYPE 41

FORMAT(' MLI thickness (inches)z ', ,8)

ACCEPT 42, DELM

FORMAT(F10.0)

DELM3DELM/12.

DELF=0.

RF=0.

AM=0.

TYPE 91

a0 TO 200

ENDIF

=FOR NITROGEN PURGED ML! WITH A FOAM SUBSTRATE
TYPEQ='N"

TYPE 62

FORMAT(’ type foam (Rohacei! 31 or BX 250A}: ',$!
ACCEPT 63, TYPEF

FORMAT (A1)

TEST=2'N’

IF(TYPEF.EQ.'R* .OR. TYPEF.EQ.'r’') TYPEFz2'R’
IF{TYPEF.EQ.’B' .OR. TYPEF.EQ.'b*') TYPEFz='B"'
IF(TYPEF.EQ.'R* .OR. TYPEF.EQ.'B’') TEST='0K’
IF{TEST.EQ.'N’') GO TO 61

DENFz21.9

IF{TYPEF.EQ. 8') DENF=2.3

TYPE 72

FORMAT{' MLI/toam interface temperstures ',$)
ACCEPT 73, TI

FORMAT(F10.0)

TYPE 82

FORMAT(’ foam thickness (inches)s ',3)
ACCEPT 83, DELF

FORMAT (F10.0)

DELF=DELF/12.

RF=0,

AM=0,

TYPE 91

FORMAT (' END OF [NPUT DATA'/)

FIND THE ML! THICKNESS

-<CALCULATE THE FOAM RESISTANCE (RF)

FXSFOAMK (TYPEF,T1, TTANK)

REZQELF/FX

~DETERMINE THE GAS CONDUCTIVITY

GK=QASK(TYPEQ,TH,TI)

THE ML1 THICKNESS 1S CALCULATED BY CONTINUITY OF HEAT FLUX
DELM=GK# {TH=TI)#AF/(T1-TTANK)

THE ML1 THERMAL RESISTANCE (RM) 1S NOW FOUND BY

AM=DELM/QK

PREDICT THE INSULATION HEAT FLUX DURING GQROUND-HOLD I[QFLX)
AND ON-QRBIT MISSION PHASES OF: DEPLOYED ON LEO (SFLX) AND
LEQ TO DISPOSAL ORBIT TRANSFER (SFLXOTJ,

IF(TYPEQG.EQ. 'H') THEN

GKzGASK (TYPEG, TH, TTANK)

AM=DELM/GK

ENDIF

Figure C-3: TRADEZ2 Computer Program Listing {Continued)



QINS=1./(RF+RM)

GFLX=QINSH(TH=-TTANK)

SFLX=SPFLX (DELM)

C=0.8%

IF(TYPET.EQ.’EQ’ .OR. TYPET.EQ.°'TO*) €=0.91
SFLXOT=CuSFLX

PREDICT THE TIME-AVERAGE INSULATION FLUX FROM TANK UN-LOCK
TO INITIATION OF ORBIT TRAMNSFER (90 SEC TO 81 HRJ: TFLX
INITIALLY FIND THE AVERAGE GROUND-HOLD ML! AND FOAM
TEMPERATURES (TMA & TFA)

TFAs=500.

TIA=-500.

TMA=-500.

IMIN31

IF(TYPEG.EQ."H’ )THEN

IMIN=3

TFASTTANK

TIA3TTANK

ENDIF

DO 290 | I1=(MIN,3

IFCI1.EQ.1) THEN

QOO0

DELTASDELF
TCIZTTANK

ENDIF

IF(11.EQ.2) TCI=TFA
IF(11.EQ.3) THEN
DELTA=DELM

TCIsTIA

ENDIF

DELT=100.
THIQ3TCI-DELT»1.
TKISGFLX#(DELTA/2.)
DO 210 1=1,100
THISTHIO+DELT
IF(11.EQ.3) THEN
QK=QASK (TYPEQ, TH!,TC!)
TEST=AK* (THi-TC!)
G0 TO 209

ENDIF

FK= FOAHKITYPﬁF THI,TCH)
TEST=FK*(THI-TC!)

209 1F(ABS(TEST-TK1).LT.0.0001) GO TO 220
IFITEST.LT.TKI .AND. DELT.GT.0.) GO TO 21
IFITEST.GT.TKI .AND. DELT.LT.0.) GO TO 21
DELT=2-DELT/2.

210 THIO=THI
TYPE 211,

21 FORMATI'

I' LT,THIO,TH!,TC!,TEST
{
1tlinsu

¢

E

X,t4’ jterations performed’,

at number of iterations performed to ',

e the sverage insulation temperature!!!’',

cer s e e
S~ \
iy
=
o
"

* 220
290

i,

I.EQ.2) TIASTHI

| .EQ.3) TMASTHI

THESE AVERAGE TEMPERATURES, THE INTEQRATED THERMAL LOAD
ER SQUARE FOOT OF TANK SURFACE AREA) QTR MAY

Figure C-3: TRADE2 Computer Program Listing (Continued)
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NOW BE FOUND.
QF=0, ‘
CFsQ.

~DUE TO GROUND-HOLD CONDITIONS

TEVAC=2.8/60.

IFITYPEG.EQ."'H’) TEVAC22,.5/60.
QATA=GFLX # (TEVAC - 90./3600.)
IF(TYPEG.EQ. H’) GO TO 292

-DUE TO FOAM COOLING
CFSFOAMC(TFA, TTANK)
QF= DENFNDELFNCFu(TFA=TTANK)

-DUE TO MLI COOLING AND INSULATION HEAT LEAK
TAMFLXSTRFLX(TYPET,DELM, TMA, TTANK, TYPEQ)
QTRM=TRMFLX%(50.-TEVAC)

=DUE TO INSULATION HEAT LEAK WHILE DEPLOYED ON LEO
QLEO=aSFLX%(81.-50.)

SUMMING TO FIND THE INTEGRATED MEAT LEAK,
QTR=QATR+QF +QTRM+QLEO

THE TIME-AVERAGED INSULATION FLUX IS DEFINED AS
TFLX= QTR/(861.-90.73600.)

DETERMINE THE STRUT AND PENETRATION THERMAL LOADS

QPENO=T4.

QPENH=100.

CALL STRUTQ(PLDEN,QSTRH1,QSTAH2,QSTRH3,QSTRO1,Q8TRO2,QSTRO3)

ASSESS THE PAYLOAD MASS FOR THE SELECTED INSULATION CONCEPT,
TANK CONFIGURATION, AND TANK ULLAGE VOLUME
INITIALIZE PARAMETERS

IF(PLDEN.EQ.3.5) THEN

WASE=5586.

PLMASSN=15607.

WBOP34041.

WORES=134.

HHTNZ144.5

HOTN=92.2

WHPN=3533,

WOPN=32900.

AHTN=600.

AOTN=305.

VHTN=1338.

VOTN=484.

WPSCAR=323.

LENGTHS: STAGE=SL, STAGE W/0 TANKS OR INSULATION=SLO,

STAGE W/0 FORE BODY SHELL=3LB

SLN=298.8/12.

$L0=60.9/12,

SLB=2161.6/12,

ENDIF

IF(PLDEN.EQ.2.5) THEN

WASE=S8612,

PLMASSN=15239.

WBOP=4377.

WORES= 386,

HHTN=2144.5

HOTN=27.4

WHPN=§520.

WOPN=32853.

AHTN=600.

Figure C-3: TRADE2 Computer Program Listing (Continued)



AOTN=429.
VHTN=1358.
VOTN=489.
WPSCAR=323. |
SLN=245.7/12.
SL0372.6/12.
SLB=108.7/12.
ENDIF
IF(PLDEN.EQ.1.5) THEN
WASE=5612,
PLMASSN= 9731,
WBOP=3988,
WORES= 88,
HHTN=116.7
HOTN=22.0
WHPN=3926.
WOPN=23367.
AHTN=483.
AQTN=377.
VHTN= 964,
VOTN=2348.
WPSCAR=293.
SLN=206.2/12.
$L0=86.3/12.
SLB= 96.2/12.
ENDIF

w0SS=63.
WHSS=210.
WHRES=14,
WAINS=2,19%DELM + DENFXDELF
TINS=DELM+DELF

ITERATE ON THE PAYLOAD MASS
00 1998 1T=1,50

INITIALIZE ITERATION VARIABLES
HHTSHHTN

HOT3HOTN

WHP SWHPN

WOP 3WOPN

WHA=WH4N

W04 =WO4N

WHS SWHIN

WOS=WOSN

AHTZAHTN

AOT3AQTN

YHTIVHTN

VOT=VOTN

SLaSLN

PLMASS=PLMASSN

DETERMINE PROPELLANT DENSITIES
{F(TYPET.EQ. EH' ) THEN
ODEN=70.633

DENL=24.3693

DENV=0.1004

- YT2VHT

ENDIF

IF{TYPET.NE. EH’ ) THEN

HOEN= 4.3693

DENL=270.633

DENV=0.3365

VT=voT

Figure C-3: TRADEZ2 Computer Program Listing (Continued)
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ENDIF

ROEN= REDDEN(TYPET PLDEN, 54 VT,GFLX,DENL,DENV}
IF(TYPET.EQ.'EH’) HDEN=HDE

IF(TYPET.NE.'EH') ODEN=RD E

DETERMINE THE MAXIMUM TANK PRESSURE: PMAX

W4:=W04

WP=WOP-W4

CONST=1790.

VOLUME=VOT

AREA3AQT

{F{TYPET.EQ. 'EH" ) THEN

W4z WH4

WPSWHP -W4

CONST=142,

VOLUME=VHT

AREASAHT

ENDIF

$0s S4 + (100.»w4)/(RDEN®VOLUME)

S0V= SO0 + (100,.-SO)%(DENL-RDEM)/(DENL-DENV)

PMAX3 18. + CONSTM(GFLXNAREA)%(90./3600.)/(SOVNWP)

ASSIGN A LTPS BURNOUT MASS: w80

=~ |NSULATION MASS

WINSSAQOTHWA NS

IF(TYPET.EQ. EH’) WINS=AHTHWAINS

-FORE BOOY SHELL MASS

WBS=26,34n(SL-5L8)

=TANK INERT WEIQHT

CALL WTANKI(TYPET,PMAX,VHT,VOT,O0TW, HTW)

WBO=WBOP +WINS+WBS+ (OTW+HTW) +.005% (WOP+WHP ) ¢+ (WHS+WOS ) + (WHRES+WORES)
DETERMINE THE PAOPELLANT LOADING AT THE TERMINATION OF TOPPING
FOR HYDROGEN (WHP) AND OXYGEN (WOP)

PiMP= WIMP (WBO,PLMASS,WPSCAR)

WHIMP2pP IMP/T7,

WOIMP=S %P IMP/7,

ASSIGN TIME DEPENDENT PROPELLANT VENT LOSSES
HFGH3187.

HFQ0=9%0.

IF(TYPET.NE. 'EH’' ) THEN

WO4N= (GFLXNAOT+QPENO+QSTRO1)#(4./60.) /HFQ0O

WOSNzZ (GFLXNAQT+QPENO+QSTRO1)%(5,/60.)/HFGO

WOB 13 (QTANAOT+ (QPENO+QSTRO2)%(61.-90./3600.)) /HFGO

WOA 1= (SFLXOT#AOT+QPENO+QSTRO3 % (115,.-61,)/HFQQ

WH4AN= (QPENH+QSTRH1)%(4./60.) /HFGH

WHSNa (QPENH+QSTRH1)%(5./80.)/HFAH

WHB |3 (QPENH+QSTRH2)%(81.-90./3600.) /HFGH

:H:::IQPENH+QSTRH3]*(113.-61.l/HFGH
JF(TYPET.EQ. 'EH’ ) THEN

WHAN= (GFLXRAHT+QPENH+QSTRH1 )% (4./60.) /HFGH

WHINS (GFLX®#AHT+QPENH+QSTAH1)%(5./60.) /HFGH

WHB I3 (QTRNAHT+ (QPENH+QSTRH2)%(61.-90./3600.) ) /HFQH

WHA IS (SFLXOTHAHT+QPENH+QSTRH3 )% (113,-61.) /HFGH

WO4N= (QPENO+QSTRO1)%#(4./80.) /HFGO

WOSN= (QPENQO+QSTRO1)%(5./60.) /HFGO

WOB = ({QPENO+QSTRO2)%(61.-90,/3600,) /HFGO

!ga::(QPENO*QSTRO3l!l115.-61.l/HFGO

WOPNz (WO4N+WOSN+WQB | +WO IMP+WOA | +WOSS+WORES) /0,995

WHPNZ (WHAN+WHEN+WHB | +WH IMP+WHA | +WHSS+WHRES) /0.995
SIZE PROPELLANT TANKS' FOR LENGTH AND AREA
VHTN=WHPN/HDEN
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VOTN=WOPN/ODEN

IFITYPET.EQ. EH' ) THEN
VHTN=VHTN/(1.-84/100.)

THINS=TINS

TOINS=0.

ENDIF

IF(TYPET.NE. 'EH' ) THEN
YOTN=VOTN/11.-84/100,)

TOINSSTINS

THINS=0.

ENDIF

CALL TANKS(PLDEN,VHTN,THINS,VOTN,TOINS,
¢ AHTN,AOTN,HHTN,HOTN)

c DETERM!NE INSULATION EFFECTS ON THE STAGE LENGTH,

oUMMY1:20.

DuMMY2=0.

CALL TANKS(PLDEN,VHTN,DUMMY1,VOTN,DUMMY2,
+ A1,A2,H1,H2)

DETERMINE PAYLOAD MASS FOR VOLUME-LIMITED (PLMASSY) AND
MASS-LIMITED (PLMASSM) CASES
WEPROP= (WOB!+WHB|)+(WOIMP+WHIMP) ¢ (WOAI+WHA I} + {WOSS+WHSS)
PLMASSM= 65000. - WASE - WBO - WEPROP
SLNZSLO+HHTN+HOTN
PLVOLS 170. » (35.6-8LN)
PLMASSV=2PLYOLNPLDEN
IF(PLMASSVY.LE .PLMASSM} PLMASSN=PLMASSY
IF(PLMASSY.GT.PLMASSM) PLHASSN=(PLHASSMOPLMASS)/z.
IF(IT.EQ.1) GO TO 1998
TEST FOR CONVERGENCE OF THE PAYLOAD MASS
TEST2ABS(PLMASSN-PLMASS)
IF{TEST.LT.1) QO TO 9000
1998 CONTINUE
TYPE 1999, PLMASS,PLMASSN
1999 FORMAT(' !!lconvergence to determine the payload mass ’,
¢+ 'was not reached!!!’,
+ /' PLMASS: 'F12.2,
+ /' PLMASSN: 'F12.2)

[z Xz Xy

c

000 IF(DETAILS.NE.'Y' .AND. DETAILS.NE.'y’) GO TO 9140
GIVE THERMAL MODELING PREDICTIONS
TYPE 9010, TYPET, RF, DELM,TH,RM, QINS
9010 FORMATI(/’ type tanks ' A2,
/' foam resistancez '4X,E14.6,
/' MLY thickness=z 'E12.4' teet’,
!’ ML| surface temperatures= 'E12.4,
/' MLI resistance= '18X,E14.4,
/' insulation conductancez 'E15.86)
TYPE 9020, GFLX,TFA,TIA,TMA,
+ TFLX, QGTR, QF ,CF, QTAM,TAMFLX, QLEO,SFLX,
¢ SFLXOT
9020 FORMATI

"]

c .

g OUTPUT PROGRAMING:
c

¢+ /' ground=-hold insulation fluxs 'E13.5,
¢ /' average foam temperatures *$X,E13.3,
¢ /" sverage interface temperatures 'E13.5,
+ /"’ average ML| temperaturesz '6X,E13.5,
* /' average transition heat fluxs "E13.5,
¢/ dues to ground-hoid conditionss '£13.5,
LA due to foam cooling=2 'E13.5,
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9030
9031

92080

9060

9070

L B BE BK BE K R 3K 3N 2R 2N J

LI (foam capacitances '9X,E13.5')°',

+ due to ML! cooling and heat [eak='E13.85,

L A (MLl transition heat flux= '§X,E13.5')’,
v/ due to deployed=-LEO hold= '7X,E13.5,

+ /" (ML! heat flux for LEO hold= '3X,E13.5')’,
+ /' orbit=transfer insulation flux= *'E13.5)

IF(TMA.LT.-425.) GO TO 9900
TYPE 9031, QPENH,QPENO, QSTAH1,QSTRO1, QSTRH2,QSTROZ2,
+ QSTRH3,QSTRO3
FORMAT (7' Hydrogen/Oxygden tank heat leak due to:’,
/' penestrations= 'F6.1'/'F6.1,

/' etruts for the mission phases,’',

/’ ground-hoid and initial ascent= 'F6.1°'/'F6.1
1’ tank-untock to 60 hours= 'F8.1'/°F8 .1
/'’ LTPS ignition to disposal orbits 'F6.1'/'F6.1

GIVE DETAILS OF PAYLOAD ASSESSMENT

TYPE 90580, IT, SL,WAINS, HHT,HOT,AHT,AOT,VHT,VYOT,
+ WHP ,WOP ,WH4 , W04 ,WHS ,WOS

FORMAT (/14 jterations were made’,

/° starting last iteration values-',

/° stage length="F10.3,

/' area-weighted insulation masss'E13.4,

/' tank geometry: hydrogen'4X’oxygen’,
VA heights' , 17X,2F10.3,

/' areaz' 17X,2F10.3,

/’ vofumez’' ,17X,2F10.3,

/' propellant inveatory: ',

/7’ propeliant loads'2F10.2
7/’ 4 minute boil-0off='2F10.2
/' S minute boil-off=’2F10.2
TYPE 9060, PMAX,
+ SOV ,S0,S4,W4 RDEN,VOLUME, CONST, (GFLXMAREA), WP,
+ QTW HTYW

FORMAT (

L 2K K BE BN J

+ /' maximum tank pressures’'4X,F10.3,

v/ vapor ullage at lock-up='1X,F10.2,

/" tank ullage at lock=-up='5X,F10.2,

LI A (tank ullage at t-4 min.='8X,F10.2')°
LI {4 minute boil-0ff="14X,F10.3')",
v/ (reduced propellant density='5X,F10.3’)’,
¢/ {tanak volumez'20X,F10.2'})",

v/ constant="18X,F10.1,

s+ /] propeliant heating rates'4X ,F9.1,

¢/ propeliant masss'10X,F10.1,

+ /' oxygen tank weights 'F10.1,

¢+ /' hydrogen tank weight='F10.1)

TYPE 9070, WHPN,WOPN, WH4N,WO4N, WHSN,WOSN, WHBI WOBI,
* WHIMP ,WOIMP, WHA| ,WOA|, WHSS,w0SS, WHRES,WORES,
+ (0.005%#WHPN), (0.005WOPN},
.Fg:;:iVOTN' THINS,TOINS, AHTN,AQTN, HHTN,HOTN
{

+ /' new jteration values~',

+ /' propelliant inventory: hydrogen'4X’'oxygen’,
. /" propellant load=2'2F10.0,

+ /" 4 minute boil-offz'2F10.2,

+ /[ S minute boil=off='2F10.2,

L& pre-propulsive boil=0ff='2F10.2,

v/ burned for delta-vz'2F10.2,

* /[ vented during transfer='2F10.2,

LA start/stop losses='2F10.2,
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$090

¢
9100
9101

9800
3970
9971

997§

. /0 residuals=’2F10.2,
VA . loading uncortalnty='2F1o 2,

¢ /' tank geometry:

¢ /[ volumez'2F10.2,

LV A insulation thicknesss'2F10.3,

+ /" areas’'2F10.2,

¢ height='2F10.3)
TYPE 9090, PLMASS, PLMASSN PLMASSM, WASE,

+ WBO,WBOP ,WINS, IBS IOTWOHTwl 0. oosnlwopuowupu
* IWHRESO!ORESI

+ WEPROP, ltOBIOVHBIl,(VOIMP#HHIMP).

* PLMASSV.PLDEN. PLVOL,SLN,SLO,HHTN,H1,HOTN, H2
FORMAT (

+/' previous value of payload mase='F10.1,

+/' new payload mass=3'14X,F10.1,

*/ mass |imited payload='2X,F10.1,
o/’ ASE mass='13X,F10.1,
/" LTPS burnout mase='6X,F10.1,
+/ (prime burnout masss 'F19.
¢/ (insufation massz 'F10.
¢/’ (body shel! mass= "F10.
¢/’ (tank weightas 'F10.
+/ (losding uncertainty propellants='F10,
+/’ (¢ontingency hold boil-off= 'F1Q.
e/ (residual propefliantss 'F10.
+/ sxpended propeilants="4X,F9.1,
+/ (vent losses defore 4gn|t|on='4x.F1o.1
/" (propeliants burneds= "4X,F10.1
o/ (veat losses after ignitionz '4X,F10.1
+/’ (start/stop lossess "4X,F10.1
o/’ volume |imited payload='F10.1,
+/’ payload densitys’'15X,F4.2,
+/ payload volume='10X,F10.2,
+/’ (new stage lengths 'F10,
¢/ (stage length w/o insulated tanksza'F9,
o/’ (hydrogen tank lengths 'F10.
*/ (loength w/o insulations 'F10.
*/ (oxygen tank lengths= 'F10.
+/’ (length w/o0 inosulations= 'F10.
ABBREVIATED RESULTS OF INSULATION IMPACT ON P
TYPE 9101, TYPET,TI,(DELF%12.),(DELM®12.),54,
FORMAT(/® type insulated tank: '8 '
* /7’ MLl interface temperatures 'F10
. /' foam thicknesss'F10,
+ /° ML| thicknesssz'F10.
+ /' wullage volume at t-4 minutesz'F10.
+ 7’ payload mass='F10,.
CONTINUE WiTH PROGRAM?

IF(TYPEG.EQ. 'N' ) THEN

TYPE 9970

FORMAT(///' Pick another fosm thickness? ',$)
ACCEPT 9971, CASE

FORMAT (A1)

IF({CASE.EQ.'Y' .OR. CASE.EQ.'y') GO TO 81
ENDI(F

IF(TYPEQ.EQ.'H’' ) THEN

TYPE 9978

FORMAT(///' Pick another MLI thickness? ',$)

ACCEPT 9976, CASE

),
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9976

9980

9981

9990
9991
9999

99

FORMAT (A1)

IFI(CASE.EQ.'Y' .OR. CASE.EQ.'y') GO TO 40
ENDIF

TYPE 9980

FORMAT(' Select another ullage volume? ',8)
ACCEPT 9981, CASE

FORMAT (A1)

IF{CASE.EQ.'Y' .OR. CASE.EQ.'y’) G0 TO 21
TYPE 9990

FORMAT(’ Redofine optmization probliem? ’,$)
ACCEPT 9991, CASE

FORMAT (A1)

IF(CASE.EQ.'Y* .OR. CASE.EQ.’'y'}) GO0 TO 1
STOP

END

SUBROUTINE STRUTQ(DEM,QH!,QH2,QH3,Q01,Q02,Q03)
FOR A WARM BODY SHELL
IF(DEN.EQ.3.5) Q0 TO 10
IF(DEN.EQ.2.5) GO TO 20
{F(DEN.EQ.1.5) GO TO 30
FOR THE OXYQEN TANK
Q01:420,

Q02:333.

Q03=289,

FOR THE HYDROGEN TANK
QH1=212.8

QH2=10.9.

QH3I=3.9

g0 TO 99

FOR THE OXYGEN TANK
Q012247

Q023203.

Q03:1383.

FOR THE HYDROGEN TANK
QH1312.8

QH2310.9

QH3I=8.9

8O0 TO 99

FOR THE OXYGEN TANK
Q013264.

Q023217.

Q03=196.

FOR THE HYDROGEN TANK
QH1=213.7

QH2=11.8

QH3z29.3

RETURN

END

SUBROUTINE WTANK(TYPET,PMAX,VHT,VOT,O0TW, HTW)

POREF=24,

PHREF=22.

TANK MASSES AT THE AEFERENCE PRESSURE:

~FOR THE HYDROGEN TANK

WHRAT=0.66224# (VHT/1721.) + 0.33776

HTW=WHRAT®S507,

-FOR THE OXYGEN TANK

WORAT=Z0.45929% ((VOT/587. )#%1(2,/3,)+(VOT/S587 . )u%(1./3.))+ G.081414
OTW=WORATX416.

DETERMINE TANK PRESSURIZATION EFFECTS ON THE TANK WE!QHTS: PEFF

Figure C-3: TRADEZ2 Computer Program Listing (Continued)
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210

IF(TYPET.NE. 'EH’ ) THEN

-FOR THE OXYGEN TANK

PRAT3PMAX/POREF

PEFF20.903

IF(PRAT.GE.0.794) PEFF=0.528+0,472%PRAT
IF(PRAT.GE.1.000) PEFF=0.541+0,459%PRAT
OTW=OTWRPEFF

ENDIF

IF(TYPET.EQ.'EH’ ) THEN

PRATPMAX/PHREF

PEFF=0.794

IF(PRAT.GE.0.562) PEFF=0.529+0.471%PRAT
IF(PRAT.QE.1.000) PEFF=0,222+0.778%PRAT
HTW2HTWSPEFF

ENDIF

RETURN

END

SUBROUTINE TANKS(PLDEN,VHT,THINS,VOT,TOINS,AHT, AOT,HHT, HOT)
FOR THE HYDROGEN TANK
YTaVHT

TINS=THINS

G0 TO 100

AHT=AT

HHT =HT

FOR THE OXYGEN TANK
VT=voT

TINS=TOINS

IF(PLDEN.EQ.3.5) GO TO 100

G0 TO 200
AOT=AT

HOT=HT
G0 TO 999

FOR ELLIPSOIDAL DOME TANKS,

DETERMINE THE MAXIMUM TANK VOLUME WITH NO BARREL SECTION
DMAX=169./12.-2.8#TINS
VNBMAX=(3.1416/6.3% (DMAX#%3,)/SQAT(2.)
{FIVNBMAX.QT.YT) GO TO 110

SIZE THE BARREL SECTION

VOOME S=VNBMAX

DTANK=DMAX

BARAZ(3.14168/4.)%#DMAXNN2,
BARL3(VT-YOOMES) /BARA

G0 TO 199

sggagg T#NK DIAMETER TO SATISFY YOLUME CONSTRAINT
gIaEKo(G MSQRTI(2.)/3.14168VDOMES)%%(1./3.]
DETERMINE THE TANK HEIGHT AND AREA
HT2BARL+DTANK/SQRT(2.)+2.%TINS
AT=3.1416%(BARLNDTANK + 0.8116%DTANK®R2,)
IF(YT.EQ.VHT) GO TO 10

GO0 TO 20

FOR TOROIDAL OXYGEN TANKS,
OR=(169./12.-2.%TINS) /2.
ROLD=SQRT(VYT/(2.#3.1416%%2,%0R))

DO 210 1=1,100
RNEWSSQRT((VT/(2.%3,1416%%2.) + AOLD®*®3 .} /O0R}
IF(ABS(RQOLD-RNEW) .LT.0.0001) GO TO 220
ROLD=RANEW

TYPE 211, VT,OR,ROLD,ANEW

Figure C-3: TRADE2 Computer Program Listing {Continued)
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220

10

20

30

40

$0

232

LR 2B 3 2N 4

FORMAT(® !!lconvergence on toroidal tank minor radius ',
'did not occur!!!’,
/' ¥T= "E13.§,
/' ORs 'E13.§,
/' ROLD= 'Et3,.

S,
/' RNEWs 'E13.5)
HT=2.%ANEW+2 .2TINS
AT=24.%3.1416%%2, % (OR-ANEW) #RNEWNN2,
Q0 TO 20
RETURN
END

FUNCTION WIMP (WBO,PLMASS ,WPSCAR)
WP2=WBO%{0.0229)
WGEO=WBO+WP2+PLMASS
WP13WGEON(1.823)

WIMPZ(WP1+WP2) -WSCAR

RETURN

END

FUNCTION REDDEN(TYPET,PLDEN,S4,VT,QFLX,DENL,DENY)
HEAT FLUX FOR CORRELATION IS IN WATTS/SQUARE FOOT
B0=(1.-DENL/DENV)®(0.293%GFLX)/(VT#(1.-54/100.1)
IF(TYPET.EQ. EH' .ANO. PLDEN.NE.1.5) GO 7O 10
F(TYPET.EQ. 'EH’) GO TO 40

F(TYPET.EQ.'EQ’') GO TO 20

F{PLDEN.EQ.2.5) GO TO 30

;(PLDEN.EQ.l.Sl GO0 TO $0

A220,6122E-3
A32-0.3046E-4
GO TO 98
A020,1689
A13-0.2237E-1
A220,3030E-2
A32-0.1508E-3
GO TO 98
A0=0.1423
A13-0.1669E-1
A220,2348E-2
A33-0.1201E-3
GO TO 98
A020,02319
A13-0,3096E-2
A230,4185E-3
A32-0.2062E-4
G0 TO 98
A020,1014
A12-0.1118E-1
A220,1483E-2
A32-0.737SE-4
Y3A0+AT1NS4+A2NSANNT , +AI NS4RS,
REDDEN=DENL + BOxY
RETUAN

END

FUNCTION GASK(TYPER,TH,TC)
IF(TYPEG.EQ."H') GO TO 50
FOR NITROGEN GAS

Az20.01286

Figure C-3: TRADEZ2 Computer Program Listing (Continued)



B=2.6767E-S
IF(TH.EQ.TC) THEN
GASK=A+BNTH
G0 TO 100
ENDIF
TKISAN(TH=-TC) + B/2.%(TH¥#2,=-TCan2.)
Qa0 TO 99

c FOR HELIUM PURGE GAS

50 TKi=0,
IF(TH.EQ.TC) THEN
QGASK=8.33E-4 » (TCu%0.74)
a0 T0 100
ENDIF
IFITC.GT.-405.)60 TC 5%
TCIz2TC
THI==406,
IF(TH.LT.=-406.) THI=TH
Al=0.1428
8123,044E-4
TKISTK] « AIN(THI=TCI) ¢ BI/2. #(THI#N2,=TCiun2,)
IFI(TH.EQ.THI) GO TO 99

89 CONT | NUE
IF{TC.QT.-244,)G0 TO 689

TC12-400
{::TC .GT.-406.) TCI=TC
lFlTH LT =244.) TH!=TH
Al=0.
Bl=1, 73SE-4
TKIZTKI o AIN(THI=TCI} + BI/2.M(THI#2,~TCIun2.)
IF(TH.EQ.THI) @0 TO 99
59 CONTINUE
TCl3-244.
IFITC.GT.-244.) TCI=TC
THI=TH
Al=0.0779
Bis31.253E-4
TKISTKI + AI®(THI=TCI) » BI/2.M(THI¥n2,-TCI¥n2,)
99 GASK2 TKI/(TH=TC
100 RETURN
c END

FUNCTION FOAMK (TYPEF,TH,TC)
IF(TYPEF.EQ.’B') Q0 TO 590

c FOR ROHACELL 31 FOAM
IFI(TH.EQ.TC) THEN
FOAMK=0.0148 + 3. 167TE-SuTH
GO TO 99
ENDIF
S0.0143%(TH-TC)
B2(3.167E=5/2. )% ({THN%2, ~TCh%2,)

TK13A+8
FOAMK=TK |/ (TH-TC)
GO TO 99
c FOR BX 250A FOAM
50 TK1=9.

IF(TH.EQ.TC) THEN

FOAMK=0.0172 + 3 ,571E-58TH

IF(TH.QT.-90.) FOAMK=0,0119 - 2.348E-5#TH
IF(TH.GT.55.) FOAMK=0.0085 + 3.777E-S5#TH
G0 TO 99

Figure C-3: TRADEZ2 Computer Program Listing (Continued)
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a3 O000 O W

234

ENDIF

THL IM=TH

IF{TH.GT.5$5.) THEN
Az0.0085%#(TH-55.)
BS(3.TTTE-S5/2.) )% (THn»2 =55, 2n2,)
TKI=A+B+1.5065

THUIM=-90,

ENDIF

|F(TH.QT.~-90., .AND. TH.LE.S55.) THEN
A20.0119%(TH+90.)
B2(2.345E-5/2. )% (THx%#2,-90 . #%2,)
TKI=A+B

TRLIM=-90.

EMDIF

A=0.0172%(THL IM-TC)
B=(3.57T1E=5/2. )% {THL IMu%2, -TCxn2,)
TKIsTK] + A+B

FOAMK=TK|/(TH-TC)

RETURN

END

FUNCTION FCAMC(TH,TC!
IFITH.EQ.TC) THEN
FOAMC=1 .E-10

. G0 TO 99

ENDIF

THL IM=TH

TK1=9.

IF{TH.GT.=233.) THEN
A20.2724%(TH+233.)
BS(9.214E-4/2. )% (TH*n2, =233 .%%2,)
TK12A+B

THL IM=-233,

ENDIF

AS0.1609%(THLIM-TC)
B2(3.430E-4/2.)%(THL IM%%2, =TCx»2,)
TKI=TK] + A+B

FOAMC=TKI/(TH=-TC)

RETURMN

END

FUNCTION TRFLX{TYPET DELM,TH,TC,TYPEG)

FOR NITROGEN PURGED ML| WITH A FOAM SUBSTRATE OR HELIUM PURGED
MLI WITH A WARM BOUHDARY TEMPERATURE,

-ASSIGN A MAXIMUM AVERAGE THERMAL LOAD PREDICATED ON A SIMPLIFIED
ANALYSIS

YMAX=6.

-ASSIGN ITERATION PARAMETERS

DEN=DELM» (TH-TC)

XX=3.5/1000.

B1:57.

A220.187

B2=3.72

IF(TYPET.EQ. EH'} THEN

XX=4.2/1900.

81=538.

A2:0.223

82=5.20

ENDIF

INITIALIZE ITERATION PAAAMETERS

YTEST=0.3

Figure C-3: TRADEZ2 Camputer Program Listing (Continued)
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91

99

LK K B0 SR BN 2R BE K B 2 2% J

DO 90 1=1,300

T= A + Bu(Y/DEN)

{F(YTEST.GE.YMAX .AND. B.EQ.B2}) THEN
YTEST3YMAX

ENDIF

IF{ABS(Y-YTEST).LT.0.001}) GO TO 93

CONTINVE

IF CONVERGENCE WASN'T REACHED-

TYPE 91, |, DEN,XX,B1,A2,B2, Y, YTEST,X,A,B
FORMAT (14’ iterations made’,

/' 1ttinsutficiont number of itarations were made ',
A to determine the transition heat leak!!!]’
/' DEN= 'E13.5,

/° XX= ', 8X,E12.4,

/' B1= ', 3X,F10.2,

/° A2= ' ,3X,F10.3,

/' 82= ' ,3X,F10.2,

/' Y3 ' 3X,E13.§,

/' YTEST= 'E13.§,

/' X2 ' E12.4,

/' A3 '2X,F10.3,

/' Bz '2X,f10.2/)
TRAFLX=2Y
RETURN
END

FUNCTION SPFLX(DELCM)
IF(DELM.EQ.0.) THEN
SPFLX=31.E10

Q0 TO 99

ENDIF
X31./(DELM®12.)
A30.

B8=0.22
[F(X.GT.0.5) THEN
A20.056

829.107

ENDIF
IF(X.GT.1.59) THEN
Az0.083

820,090

ENDIF

IF(X.QT.4.0) THEN
A30.143

§:0.074

ENDIF

SPFLX= A + BxX
RETURN

ENOD

Figure C-3: TRADE2 Computer Program Listing (Conciuded)
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APPENDIX D

PROPELLANT EFFECTIVE TANKING DENSITY ANALYSIS

Symbols

AL Area of tank wall below liquid free surface asm?2

h Maximum depth of liquida m

hf§ Heat of vaporization of propellanta Watt-hr/kg

M Combined mass of liquid and entrained bubbles ~ kg

ML Mass of liquid~ kg

My Mass of vapor bubbles~ kg

M v Rate at which liquid mass is converted to vapor~ kg/hr

qL Heat flux through-tank wall area wetted by liquid~ Watt/m?2

rg Bubble radius~ cm

S Percent ullage volume

Tp Time required for bubble to rise from nucleation site to free surfacea
sec

Tp Average bubble residence time in liquid phase ~ sec

VTt Bubble terminal velocityas cm/sec

VT Volume-averaged bubble terminal velocity ~ cm/sec

V* Tank volume below liquid free surfaceas m3

VL Total volume of liquid v m3

VT ' Total tank volume ~ m

Vy Total volume of bubbles ~ m3

Vg Average bubble velocity - cm/sec

Z Depth of nucleation site below liquid free surface ~cm

€L Liquid density~.kg/m

Q Vapor densitya kg/m

?¥ Effective density of tanked propellant ~ kg/m3

This appendix summarizes an analysis performed to estimate the influence of heat flux on
the effective density of propellants residing in LTPS tanks during ground operations.
Effective density is defined as the mass of liquid and vapor bubbles, excluding the ullage,
divided by the volume occupied by the two phase mixture. In the analysis described
herein, the volume occupied by the two phase mixture is simply the difference between
total tank internal free volume and the ullage volume.

The presence of vapor, in the form of bubbles interspersed within the liquid phase, is
caused by boiling at the tank walls and other solid surfaces in contact with the propellant.
The higher the heat leak to the propellant/surface interface, the more rapid the boiling
rate and hence the more bubbles that are present in the liquid. For a fixed liquid height in
the tank, the volume occupied by bubbles displaces a certain mass of liquid phase that
could otherwise be used for propulsion. Hence, it is desirable to minimize heat leak
during ground hold operations.

As stated above, the effective density of tanked propellant is the mass of liquid and
bubbles divided by the total volume occupied by both phases. That is

2 * = M—i (D“l)
€ -
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where M* My + M

1

V*

Vy + VL

The total mass of vapor contained in the liquid at any instant is the rate of vaporization
times the residence time of bubbles within the liquid. In equation form this may be
expressed as:

My = MV x—Tl'-B (D-2)

The residence time of an individual bubble was defined for this study to be the elapsed
time from which the bubble detached from the wall until it reached the free surface. This
definition required the following two assumptions to be made:

a. The bubbles rose through a layer of saturated liquid near the wall and therefore did
not collapse.

b. The bubble growth time, from inception until detachment from the wall, was small
compared to the rise time.

The first assumption is reasonable because the liquid near the vertical walls will warm to
saturation conditions through heat conduction and free convection. Mechanical mixing via
liquid jet pumps or other devices could be used to carry subcooled liquid to the walls but
such an approach would be complex and costly.

The second assumption is also reasonable because of the large size of the tanks and the
high predicted heat flux levels during ground-hold (see Figures 4-23 and 4-24).

The time required for a bubble to rise to the free surface from its nucleation site at depth
Z can be expressed mathematically as

Tp = Z/GB (D-3)

To find the average rise time—TB for all bubbles having average velocity Vp, we must
integrate over all nucleation sites and divide by the depth h of the fluid.

h
- 2’( Z/Vp dZ (D-4)
Tg =

h

At this point it is necessary to make some assumptions about the size and velocity
distributions of bubbles. Following the equations of Reference 20 for bubble terminal
velocity in liquids under normal gravity, one can calculate velocity as a function of bubble
radius. The results of this calculation for LHo at 1 atm are shown in Figure D-1. It can
be seen that predicted terminal velocity is independent of effective bubble diameter when
the diameter exceeds 0.23 cm (0.1 in).

It was assumed for the purposes of simplification that diameters of most of the bubbles
were larger than the value at which terminal velocity was independent of size. The
justification for this assumption was based on two arguments: First, collisions between
bubbles due to differing velocities will almost always result in coalescence and bubble



growth. Hence, the natural tendency during bubble rise is for the average bubble
diameter to increase, and for the velocities of most bubbles to approach the size-
independent value. Second, since the bubble volume and vapor mass are roughly
proportional to the cube of the radius, the mass-average (or volume-average) bubble
velocity is very closely equal to the size independent value. This can be shown by
assuming_initially that bubble size is uniformly distributed. The volume-average terminal
velocity vt is then

'R 3
- é‘ vr rg drp (D-5)
VT =

G
B
n

Figure D-1 shows volume-average terminal velocity approaches the size-independent
velocity for Hy bubble radii greater than 0.23 cm (0.1 in). If we look at only the value of
the integrj'xl of equation D-5, we find that it is very small for small diameter bubbles due
to the rp” term. Hence, the value of volume-average terminal velocity for the entire
population of bubbles is relatively insensitive to the actual size distribution of small
bubbles.

Figure D-2 shows the predicted size-independent terminal velocities and corresponding
minimum bubble radii as functions of tank ullage pressure for both the LHy and LOj
tanks. These calculations were performed using the Reference 20 equations. Minimum
effective bubble radius is the value of characteristic bubble dimension above which rise
velocity is independent of size.

The values of terminal velocity shown in Figure D-2 were substituted into equation D-4
and average bubble rise time calculated for the LH and LO7 tanks of the three baseline
LTPS vehicles (see Figures 3-7, 3-8 and 3-9). The independent variable for these
calculations was tank percent ullage volume which determines the liquid depth, L.

Values of average rise time, Tp, were substituted into equation D-2 and the total mass of
vapor contained in bubbles was calculated as a function of percent ullage volume. In using
equation D-2, the rate of vaporization, My, was dependent on ullage volume because only
the heat entering the tanks below the free surface contributed to boiling. My can be
expressed as

q; x AL (D-6)
ht

My =
g
Substituting equation D-6 into equation D-2 and solving for MV/E:IL gives

hfg

Figures D-3 and D-4 show the calculated values of Mv/&[L as a function of ullage volume
for the Task II baseline LTPS LH2 and LO2 tanks.
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Referring back to the definition of effective density * in equation D-1, we see it can be
written as

(.)* = My + My (D-3)

V*, the volume below the free surface, can be related to percent ullage volume by the
expression

ve = (1-5 )vr (D-9)

S
100

The mass of liquid, ML, below the free surface is the liquid density times the difference
between the volume below the free surface and the volume of bubbles, Vy = My,

Therefore, M can be expressed as ev
M
ML = ((1 - S )vp - __V) -
L=, T (D-10)

100 ev
and equation D-8 can be rewritten as
_ owy- ef(a- i)vT-ﬂ) (D-11)
e* - L 100 Cv
(1-3) V1
100

Substituting (My/q, ) q, for My into equation D-11 and rearranging gives
g \WMy/q;7q \) g

?* ) (l - %X?_Y_) ElL + @L (D-12)
- L

(1-3) vt
100
where
(My) = £(S)see Figures D-3 and D-4
L
&lL = function of insulation design, purge gas, and purge enclosure

environment.

Equation D-12 was solved parametrically for values of percent ullage volume, with heat
flux to the liquid as the independent variable. These calculations are summarized in
Figures 5-5 and 5-6 for the 24 kg/m3 (1.5 tbm/ft3) payload density LTPS tanks.



APPENDIX E

PROPELLANT TANK SELF-PRESSURIZATION MODEL

Symbols

a,A empirical constants

M mass of in tank

P pressure

P pressure at end of tank lockup
Pi initial pressure

Q heat leak rate into tank

S percent ullage volume

t time

This appendix describes a mathematical analysis performed to predict the pressure rise in
LTPS tanks during vent system lockup at launch. The analysis is based on empirical
equations developed by M. H. Blatt and reported in Reference 17.

The expressions developed by Blatt to correlate measured tank pressure rise rate with
heat leak, percent ullage volume and liquid mass were of the form:

. a
dt SM

where dP - rate of pressure rise
dt

If it is assumed that Q S, and M are constant with time during lockup, equation E-1 can
be integrated and the pressure at the end of the lockup period expressed as:

5 .a

P = P; + A(Q) t (E-2)
SM
Values of the constant A published in Reference 17 were the following:
LHy Tanks in 1-"g" environment: A = 100
LH; Tanks in 0-"g" environment: A = 8l
LO, Tanks in 0-"g" environment: A = 1450

It was shown in Reference 17 that, to a good approximation, the value of a could be
assumed equal to unity for a 1-"g" environment. Since the publication of Reference 17,
additional studies of cryogen tank self-pressurization have been conducted. The test data
from two of these studies, reported in References 21 and 22, were combined with the
Reference 17 data and new correlations developed. Figure E-1 shows the correlations
that were developed for LH» tanks in 1-"g". The solid line is a least squares fit of
Reference 21 and 22 data. As can be seen, the expression
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dt SM (E-3)

gives the best fit of Reference 21 and 22 data. At values of Q/SM = 200 BTU/lbm-hr, the
Reference 17 data also fell reasonably close to this line. For comparison purposes, the
Reference 17 correlation for LH tank self-pressurization is shown as a dashed line labled
dP/dt = 100 Q/SM. Also shown is an analytically derived curve for surface evaporation.
For surface evaporation it is assumed all the heat leak goes into either boiling or heating
the vapor in the ullage volume. The liquid phase is assumed to receive no heat and,
therefore, remains isothermal at the initial temperature. The surface evaperation model
represents the extreme condition which would result in the most rapid pressure rise. A
condition approaching surface evaporation may actually occur in practice. The unshaded
diamond data point in Figure E-1 represents measured pressure rise in the Centaur LH7
tank during ground hold. This data point is fairly close to the surface evaporation line.

Figure E-2 shows the measured pressure in the Centaur LHp tank during ground hold and
launch of the TC-5 flight. An initial rapid rise in pressure occurred from T-27 seconds
until launch. This rise rate is approximately that predicted for surface evaporation. At
launch, agitation of the liquid and resultant slosh caused the vapor pressure to collapse
until thermal equilibrium was essentially established between the ullage and liquid. At
this point, the pressure rise resumed.

An effective average pressure rise rate was determined by drawing a straight line
between the pressure at start of lockup and the final pressure before vent valve opening.
As can be seen in Figure E-2, the measured final pressure rise rate follows this line
closely.

The half-shaded diamond data point shown in Figure E-1 represents the etfective average
pressure rise rate for the Centaur LH tank from Figure E-2. This data point falls very
close to the dP/dt = 100Q /SM line, but is also reasonably close to the dP/dt =
142 Q/SM.

Based on consideration of all measured LHp tank self-pressurization measurements,
including the Centaur data, it was decided to use the empirical equation

dP - 142 Q (E-4)
dt SM

to predict LTPS LHo tank pressure rise during lockup. For the LO; tank under l-"g"
condition the following equation was used:

dP - 1790 Q (E-5)
dt SM

The value of the constant, A = 1790, was determined by ratioing the 1-"g" and 0-"g" LHj
tank pressure rise equations from Reference 17 and multiplying by the constant from the
LO tank (A = 1450) pressure rise equation for 0-"g".
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APPENDIX F

SYMBOLS AND DEFINITIONS

Abbreviations

BTU British Thermal Units
oC Degrees Centigrade
cm Centimeters

OF Degrees Fahrenheit
ft Feet

g Grams

in Inches

] Joules

oK Degrees Kelvin

kg Kilograms

K3J Kilojoules

km Kilometers

KW Kilowatts

Ibg Pounds force

Ibm Pounds mass

m Meters

min Minutes

mm Millimeters

N Newtons

ppm Parts per million .
sec Seconds

T Temperature

W Watts
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Acronyms

ASE
DAK
GEO
He
LEO
LHy
LMSS
LO,
LSS
LTPS
MLI
MMU
N2
OPERA
OoTVv
PMSP
RADSIM
RCS
SINDA
STS
TMM

TvC

Airborne support equipment

Double aluminized Kapton

Geosynchronous earth orbit

Gaseous helium

Low earth orbit

Liquid hydrogen

Land Mobile Satellite System

Liquid oxygen

Large space structure

Low thrust propulsion system

Multi-layer insulation

Manned Maneuvering Unit

Gaseous Nitrogen

Orbital Payload Environmental Radiaiton Analyzer
Orbit transfer vehicle

Performance and Mission Simulation Program
RADiation SIMulation computer program
Reaction control system

Systems Improved Numerical Differencing Analyzer
Space Transportation System

Thermal math model

Thrust vector control
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