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Abstract

This report documents the cavitation assessment for the Space Shuttle

Main Engine (SSME) high pressure oxidizer turbopump (HPOTP). In order to do

this, a model of the flow through the pump had to be developed. Initially, a

computational procedure was developed to analyze the flow through the inlet

casing including the prediction of wakes downstream of the casing vanes. From

these flow calculations, cavitation patterns on the inducer blades were

approximated and hence the damage rate estimated. The model correlates the

heavy damage on the housing and over the inducer with unsteady blade surface

cavitation. The unsteady blade surface cavitation, is due to the large

incidence changes caused by the wakes of the upstream vanes. Very high

cavitation damage rates are associated with this type of cavitation. As a

result of the computational procedure, a set of design recommendations for

reducing the unsteady cavitation are given. These include removing the set of

vanes closest to the inducer and modifying the remaining vanes.

.w.+..	 4W - 40-	 r a ..
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1.	 Introduction

The destructive action caused by cavitation has long been a problem of

practical importance with fluid machinery. At the turn of the century, severe

erosion of the propellers on the ships Lusitania and '.Mauretania (1) prompted

the creation of a special commission by the 9ritiih Admiralty to investigate

the problem. It was determined that the damage was the result of repeated

"hydraulic blows" accompanying the collapse of cavities.

After nearly 100 years of research in this area, the problem of

predicting damage on a prototype is still unsolved. This is not due to a lack

of work in this area but rather due to the fact that cavitation damage

involves both solid mechanics and the fluid mechanics of two-phase flows, and

thus is inherently difficult. As noted in a recent article by Hutton [21

there has been some success in empirically predicting when and where

cavitation may begin, but there are difficulties in predicting how serious its

damage effects might be. The literature on cavitation damage is very

extensive and as noted by Hutton [21 "provides absorbing reading for those

with a morbid interest in engineering failures".

The problems associated with the occurrence of severe cavitation damage

in fluid handling machinery are primarily dependent on the degree and type of

cavitation. The majority of all fluid machinery can operate with some limited

degree of cavitation and still provide satsifactory performance although

damage can still occur if operated over longer periods of time , . However,

large amounts of cavitation not only causes severe cavitation damage, but the

accompanying rapid formation and collapse of cavities alters the local

pressure field acting on each blade segment. As a result, net axial and

radial thrusts become random, reaching high magnitudes at unpredictable

1.
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frequencies. The unsteady forces generated in this manner cause severe wear

and damage to bearings and seals.

The practical problem addressed in this report is the reduction of

cavitation damage in the Space Shuttle *lain Engine (SS* , high pressure

oxidizer turbopump (HPOTP) and the improvement of its life expectancy.

Experience with cavitation damage suggests that this is a difficult problem

because it involves (1) a prediction of the pressure field in the turbopump,

(2) a prediction of the cavitation type and extent, (3) the determination of

cavitation impact pressures, and (4) an analvsis of the interaction between

cavitation impact pressure and the material response. All four of these

issues must be addressed in order to predict a cavitation damage rate and

hence the turbopump life expectancy. This problem is further complicated when

one realizes that the turbopump will operate off-design for extended periods

of time. Thus, before developing a damage model, some assumptions must be

made from a detail assessment of the existing turbopump data. This assessment

includes hardware geometry, hardware evidence of cavitation damage, operating

conditions and life requirements.

The characteristics of the SS 11E are given in Table 1 and the SSME

powerhead component arrangement showing the HPOTP is illustrated in Figure 1.

The HPOTP is shown in Figure 2 and its operatin g conditions are listed in

Table 2.

Examination of the turbopump hardware shows that cavitation damage

occurred at the following locations:

1. Housing (casing) upstream and alon gside the inducer,

2. Inducer blades near the tip,
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3. Impeller near the partial blades, and

4. Impeller blades at the exit diameter.

Damage on the impeller is relatively light; however, the damage associated

with the inducer is very severe.

aigure 3 shows schematically that the damage on the inducer occurs i.n an

area located at the blade tip. The most severe damage, however, occurs on the

housing, downstream of the stator vanes and near the leading edge of the

inducer. This damage appears at discrete spots as can be noted in Figure 4

for the left-hand pump housing and in Figure 5 for the right -hand pump

housing. In addition, a band of cavitation damage occurs on the housing near

the trailing edge of the inducer as can be noted in Figure 6.

The deep-pitting cavitation damage occurring on the housing significantly

reduces the life expectancy of the turbopump. A depth of cavitation damage of

0.05 inches in only 30 minutes of operation has been documented by Rocketdyne

and Figure 7 shows the characteristics of a typical pit. This time is

significantly less than the goal of 7.5 hours for the life expectancy of the

turbopumv ( see Table 1).

High damage rates can be expected in this area of the turbopump because

of high inducer tip speed which is in excess of 600 ft/sec. Many

investigators such as '(napp (3] and Stinebring (41 have shown that the damage

rate is proportional to the sixth power of the relative velocity.

The existence cP deep pitting suggests that bubble collarse is occurring

predominantly at these locations. This is possible- if the amount of

cavitation occurring on the inducer varies circumferentially, and could result

from a changing flow incidence angle.

In this report, a model is developed which correlates the heavy damage on

the housing and over the inducer blades with unsteady blade surface

I il
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e avitation. Initially, a flow calculation procedure was developed that gives

the inlet flow distribution at the inducer including the wakes from the

h

j

2

s

upstream vanes. The cavitation type and extent were predicted using the inlet

data, flow conditions and blade geometry. The cavity volume shed was then

used to predict the cavitation damage rate. Finall y , recommendations for a

redesign are Riven that should significantly reduce the cavitation damage

rate.

2.	 Analysis of Existing Design

2.1 Inviscid Flow Calculations

The flow tiirough the High Pressure Oxidizer Turbopump (HPOTP) is very

complicated and the desi gn of its components is critical. It consists of five

blade rows, three of which are stationary, and the flow is turned four times

in a very short distance. This compact geometry is illustrated in Figure 2.

The blade rows are identified as (1) the inlet casing wanes, (2) the stator

vanes, (3) the inducer, (4) the centrifugal impeller, and (5) the exit

diffuser vanes. The flow anal y sis begins with an examination of the first two

blade rows.
(r

The inlet casing is a very difficult component to analyze. Flow enters
i'

through a pipe and is split in half to form a double-section entrance. The

flow is then divided again in each side inlet (left and right), and is thus

symmetric about a vertical axis, but each side inlet is asymmetric about the

axis of rotation. Only a three-dimensional (3-D) code would be able to give a

true prediction of the flow in this element. While there may exist 3-D codes

to solve for the inlet casing alone, it is doubtful that a code exists at this

time that would be able to include the stationary vane rows as well.

Since flow through the inlet casing is predominantly radial for the 	

i

stationary vane rows, a two-dimensional (?,-D) approximation for the inlet
	 'r
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casing was chosen.	 A side view of this geometry is illustrated in Figure 8

rand allows computation of the flow components in the radial (R) and

circumferential (e) directions only.	 The flow will be considered to be

uniform in the axial (7.) direction.

Used on the design drawings of the HPOTP, a 2-D configuration can be

constructed for the inlet casing boundary, the inlet casing vanes, and the

-

i
stator vanes which is illustrated in Figure 9. 	 The fifth stator vane at the

of the inlet has been blended into the casing boundary and provides for

r

bottom

l vertical symmetry of the flow in the inlet.	 It is still impractical, however,

to solve for the flow in this configuration.	 A transformation must be

4 performed to conver^ this radial flow geometry into a linear cascade

t geometry.
L

It is possible to solve for the flow in this geometry if all the

stationary vanes are removed.	 The resulting singly-connected domain can be

solved by using a finite element method.	 A grid-work of triangular elements

1

' is illustrated in Figure 10. 	 k total of 647 nodes and 1180 elements were used

in this configuration.

1 If the flow is assumed to be incompressible (Mach number below 0.3), the

continuity equation in cylindrical or polar coordinates can be written as

t

follows:

aVr	 1 3V 9	Vr

ar + r 36 + r	 0	 (1)

This equation can be made an identify by defining a streamfunction:

Vr = r ae	 Ve = - ar	 (2)

Thus, one has

1 3 2	 a	 1 3 2 ^	 1	 a
r a ar 6 - r-Tae - r Ma +tae -0	 (3)

C
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For irrotational flow (w-0), the Laplace equation results from the definition

of angular momentum and can be written as

	

-wr = a-6 - a
	

a "+ ^±+ 1 ate= 
V2,^' 

3 0	 (4)
a8	 a	

- V
r	 6	 art	 ar	 r 3$2 

This equation can be readily solved by even the most basic of finite element

methods.

The boundary conditions for the streamfunction are a value of 0.0 on the

right vertical boundary and a value of 1.0 on the outer casing boundary. The

value of y' incrFtases linearly from right to left for the top boundary and from

too to bottom counterclockwise for the inner boundary . This results in a

uniform normal velocity at the top inlet and at the inner circular exit. This

does n.,t mean that the tangential velocity at these locations will necessarily

he equal to zero. Because of the geometry of the top inlet, the flow is

everywhere parallel to the side boundaries and there is nothing capable of

sustaining a pressure gradient across the channel which would allow a

tangential component of the flow to exist. As the radius of the inner

circular boundary is reduced to zero the flow here must also be uniform, and

thus no tangential flow component will exist at this boundary. There will

however exist a substantial V 8 component at the radii of interest, that is the

exit of the inlet casing vanes and the exit of the stator vanes.

The finite element solution is illustrated in Figure 11. The streamlines

that are plotted (constant values of y) represent equal incretr•ents of flow.

Lines that are close together indicate high velocities and lines that are

71s
further apart indicate lower velocities. It can he seen that the flow is

indeed uniform at the inlet and the exit. At the indicated radii a

s

substantial V 9 component of the flow is shown to exist. It will be the task

of the stationary vanes to remove this tangential velocity.

a
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11.

The solution technique employed to solve for the 2-D configuration with

vanes is the Modified Douglas Neumann Cascade Program [6]. In this approach

each body or vane is divided into many small segments and at each is located a

source/sink of unknown strength. The Neumann boundary condition is used by

this method and requires that there be no flow normal to any boundary. For

lifting bodies (those that are not symmetric normal to the flow direction),

the Kutta condition is also employed to insure that the flows from both

surfaces exit the body in parallel at the trailing edge. For a specified flow

angle (for example the inlet flow angle) a solution is obtained for all of the

source/sink strengths, the accuracy of which reaches one hunared percent as

the number of points or segments on the bodies becomes infinite. With these

values known the velocity can be calculated anywhere in the field. At

locations far upstream and downstream the calculated velocity will necessarily

be parallel and uniform.

The original Douglas Neumann Cascade Program was developed by the Douglas

Aircraft Corporation [5] and extended the existing solution technique being

employed for isolated airfoils to cascades of lifting or non-lifting bodies.

The program has been modified to include cascades with radial flow, either

inward or outward, and cascades with bodies of varying geometry. Radial flow

cascades are solved by transforming them into linear cascades using a

conformal transformation:

x = Xn r

(5)
y = a

Velocities calculated for the linear cascade are converted to the radial-flow

plane by simply dividing by the radius as follows:
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Special considerations must be taken to account for the inlet casing boundary

since one would not normally consider this element to be a body in a cascade.

If the inlet casing boundary shown in Figure 9 were transformed using

Equation (5) the large body with the dotted lines shown in Figure 12 would be

produced. With the flow proceeding from left to right it can be seen that a

large portion of the flow (aproximately eleven-twelths) would be blocked by

the inlet casing, body number 1. This is due to the flow entering the casing

through the vertical inlet which only accounts for about 30 degrees of the

circumference at a radius of 12 inches. It is therefore logical and accurate

to represent the inlet casing boundary as the streamlined body shown in Figure

12 to facilitate the flow calculation procedure.

It is important to model the flow in the vertical inlet correctly. In

Figure 2 the flow is uniform and directed downward toward the axis of

rotation. At large radii this flow can be approximated as radial. This will

result in a horizontal portion of the boundary in the transformed plane,

Figure 12. Uniform linear flow in this portion of the transformed geometry

most accurately models the vertical section of the inlet casing. This does

result in boundaries in the 2-D geometry of Figure 9 which are radial at large

radii. This type of adjustment is necessary for closure of body number 1 in

the transformed cascade of Figure 12.

The Modified Douglas Neumann Cascade Program was first run for only one

body, that of the inlet casing boundary. For the transformed geometry, 159

points were used to describe this body. The resulting flow solution is

illustrated in Figure 13. If this figure is overlayed with the finite element

solution shown in Figure 11, the two can be seen to correlate exactly. Thus

one irieth ,jd validates the other.

M.

I
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r.

r.

r.

The thirteen inlet casing vanes and four stator vanes were then added to

solve for the flow in the 2-D configuration of Figure 9. Although the vanes

are symmetric about a vertical axis they are each unique when plotted in the

transformed plane. The inlet flow angle was set equal to zero to reflect this

symmetry. The number of points used to describe these vanes ranged from 31

for the stators to over 50 for the largest inlet casing vane. In all, 780

points were used to describe this cascade consisting of 18 bodies. The

spacing used for each body is 2n such that the entire geometry illustrated in

Figure 12 is repeated at the top and bottom to form an infinite cascade. It

took over an hour of CPU time to solve this problem on the VAX 11/782

computer.

The flow solution is first illustrated in the transformed plane in Figure

14. The velocity vectors are plotted based on information at over 300

off-body points. In Figure 15 the flow solution has been transformed back to

the radial 2-D configuration. When compared with the solution for the inlet

casing boundary alone in Figure 13 it can be seen that the vanes have indeed

taken out a large portion of the turning. However, a substantial amount of

tangential velocity still exists and this will have a marked effect on the

inlet flow at the inducer.

The flow through the entire cross-section of the HPOTP can be analyzed

using a streamline curvature method (SCM) [7]. In the SCM program used at

ARL/PSU the effect of each blade row is accounted for by specifying the blade

advance ratio (flow coefficient) and the particular distribution of Vg at the

trailing edge station. The V 9 profile determines the change in angular

momentum effected by the blade row and the advance ratio computes the change

in energy if the blade row is rotating. The SCM program can only solve for

axisymmetric flow, which is essentially 2-D in that no derivatives are allowed
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in me circumrerential (8) direction. It solves the continuity, momentum and

energy equations for the real variables: velocities and pressure. In the

process, the streamline locations are found as well.

The streamline curvature solution is illustrated in Figure 16. The

location of the blade rows are highlighted, including the split impeller

blades in the rotor. The exit diffuser vanes were omitted for this analysis,

but could have easily been included. The inlet portion, although represented

correctly, is not axisymmetric an3 merely serves to feed the flow into the

axisymmetric stator, inducer and impeller portion of the flow channel. A

significant circumferential variation in the flow field was previously found,

since the channel geometry is not axisymmetric until just prior to entering

the stator, station 14. It can be seen however that a plane passed normal to

Figure 16 would closely correspond to the two-dimensional configuration used

in Figure 8.

The flow solution illustrated in Figure 16 is for the case of no turning

added by the blade rows, which for the HPOTP means that the stationary vanes

have taken out the turning imparted by the asymmetric inlet. There is no

appreciable difference between the location of the streamlines when a uniform

(2-D) tangential velocity is added across the span of the inlet casing vanes

and/or the stator. Essentially the SCM solves for the through-flow and this

must be combined with the Douglas Neumann circumferential solution to obtain

the 3-0 picture of what is happening at the inducer inlet.

It now becomes necessary to describe the flow along the various

streamlines in Figure 16 as the flow turns the corner. Five streamlines from

the SCH solution were selected which divide the flow into four equal portions.

There are three locations of primary importance in this part of the analysis:

(1) downstream of the exit of the inlet casing vanes (R - 3.5 in), (2) the

l 
1 

3,

fl
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exit of the stator vanes (2.13 in < R < 2.46 in), and (3) the inducer

measuring station (1.325 in < R < 2.37 in). The corresonding stations for the

SCM solution are shown in Figure 16 as numbers 13, 18 and 22. The flow will

be computed at these locations as it turnes the corner.

The first location at a radius of 3.5 inches will illustrate the flow as

it exits the inlet casing vane row and enters the stator vane row. Here the

flow is assumed radial and is calculated from the Douglas Neumann solution of

the vane geometry in Figure 9. Data points are distributed about the

circumference at every ten Aegrees. These are spline fit and plotted in

Figure 17. The velocities are dimensionalized for the design condition at

100% power level, but could easily be changed to another condition by

multiplying the ratio of the volume flow rates at these two conditions. The

zero degree location corresponds to the top of the circle at this radius, just

downstream of inlet casing vane number 2. Although this is a potential flow

solution the obvious location of the stator vanes illustrates the blockage

that results with these two vanes in the flow on this side of the pump. It is

at this radius that the wakes produced by the inle-. casing vanes will be added

to the potential or inviscid flow (see Section 2.2).

In a similar manner the second location illustrates the flow exiting the

stator vane row. Again the flow is assumed radial and is calculated from the

Douglas Neumann solution. Although the stator was calculated as a 2-D blade

shape the actual length of the vane decreases from hub-to-tip. Five radii are

therefore employed at station 18 to account for this variation. Since the

stator vane exit radius was fixed in Figure 9, the blockage effect at the tip

will be more pronounced than that at the hub. This is illustrated in Figures

18 through 22 for each of the five selected streamlines.

I I
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For both of these locations the radial velocity is integrated to check on

the massflow and dimensionalize the velocity components. The average or

normalized velocity is indicated for each of the radial positions plotted.

When the integration is performed the stream function is calculated as a-

function of circumferential location. From Equation (2) with r constant the

streamfunction becomes

n
0y	 r S V r A8	 (7)

0

These values are normalized by the design massflow to produce values of the

streamfunction from zero to one as theta increases from 0 to n radians.

Since constant values of ^ represent streamlines, the location of a

selected fluid particle can be calculated at each of the two radii. This

links up the locations of importance as the flow turns the corner.

The third location at the inducer station where experimental data are

available is analyzed in a similar fashion with two major exceptions. First,

the streamline changes from the radial direction to the axial direction which

results in a different average through—flow velocity with which to normalize

the flow due to area changes. Second, the law of constant angular momentum

which is employed in the SCM cannot be used for this portion of the analysis.

Recall that the SCM solution is valid for axisymmetric flow only. As the

fluid particle changes radius from that at the stator vane exit to that of the

inducer inlet, the casing will continue to act on it and produce a variation

in the angular momentum of the fluid around the circumference. Thus the

tangential velocity will not always increase as the radius decreases.

The potential flow field at the inducer station is depicted in Figure 23.

There is a noticeable indication of blockage at the two stator locations at

it
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radii towards the tip streamline. 	 This results from the close proximity of

Cthe stator vanes and the inducer leading edge at the outer tip boundary. 	 It

important to note that the massflow falls off towards the bottom of the

r

is

•S inlet.	 This would be expected for an inlet with flow entering at the top.

T

2.2 Addition of the Viscous Effects to the Inviscid Flow Analysis

The viscous boundary layer growth on the stationary blade rows will lead

to flow deviation and wake velocity deficits downstream of the vanes. 	 These

effects can readily be included in the flow analysis.	 In the real fluid flow

indicatedcase turning vanes will always achieve less turning than that 	 by

their camber lines.	 The fluid will not exit at the blade angle, but at a

lesser angle.	 In the inviscid analysis the flow is constrained by the Kutta

Ef
condition to exit at the specific trailing edge angle. 	 In order to achieve

the proper flow condition dowrstream of the vane rows, the fluid deviation

must be added to the inviscid 	 This was accomplished by fixingcalculation.

the vane shapes at the leading edge and increasing the stagger angle so as to

force the flow to exit at the deviated flow angle.	 This is illustrated in

Figure 24.	 Thus the flow downstream of the vanes will he at the corrected

angle.

The deviation angle was estimated from the blade geometry and the blade

incidence angle obtained from the inviscid flow analysis. The deviation can

be expressed as

d = do+ed* - p d
	

(7)

where do is the deviation angle due to camber, Ab* is the deviation angle due

to vane thickness and Ad s is the deviation angle due to flow acceleration.

R r.
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a

The deviations due to thickness and camber were obtained by utilizing

empirical data which have been collected by Lieblein [8). The work by

Lakshminarayana [91 was used to estimate the deviation due to flow

acceleration.

It is important to note that cascade relationships were used to estimate

the deviation angles for the vanes inside the casing. However since all of

the vanes in the HPOTP are of different geometry, the calculated deviation

angles are only approximate.

The resulting Douglas Neumann solution shown in Figure 25 indicates an

even greater disparity of the mass flow from top to bottom. Also due to

viscous effects the casing vanes will fail to reduce the tangential velocity

even as much as shown in Figure 15.

The calculated wakes are also added to the flow at the exit to the stator

vanes. Effectively the potential velocity distribution is multiplied by a

wake deficit factor which will be greater than one between vanes and much less

than one at the vane trailing edge location. The wakes will have different

widths and depths due to the process of accounting for the wake diffusion

prior to reaching the inducer leading edge. From Figure 16 it is obvious that

the wakes at the hub streamline will be able to diffuse (or decay)

substantially prior to entering the inducer, whereas the wakes at the tip

streamline will remain narrow and deep. The wakes are diffused by introducing

the streamwise distance between the vane exit station and the inducer station.

This wake deficit factor was obtained in the following manner.

It was assumed that the leading edge of the inducer is located

sufficiently downstream of the casing and stator vanes that the far wake

equations may be used. Schlichting 1101 developed an analytical solution for

.1
r
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the velocity profile in the far wake region using a mixing length concept. In

the far wake region the velocity profile is of the form

V. - V	 .10 	
rS 

11 -1/2 r
	

/7 3/2 - 2

V„	
18 

a	 Cd 
R;	 I - b	 -	 (8)

where	 d is a constant that relates the mixing length to the wake width

( R A 0.18) ,

S is the streamwise distance from the vane trailing edge,

y is the distance from the wake center,

b is the wake half width:

b	 '10 S(S Cd R)1/2	 and	 (9)

Cd is a drag coefficient.

T'.ne term Cd R is found from momentum consideration:

	

p1 ^Cdk - 2 612	
3.2

' V^	
(10)

where 612 is the momentum thickness at the vane trailing edge and VI/V,, is the

local velocity at the same location. The momentum thickness, 612, is

calculated by applying Truckenbrodt's energy-integral method 1111 to calculate

the turbulent boundary layer with a pressure grad.'_ent.

After the wake profiles are calculated they are repositioned at the

trailing edge of the casing vanes. The mass flow at this location is

corrected for the wake blockage by integrating Equation (8) to Five

	

b V„ - V	 !-''
	

-1/2
2 j	 V„—d y - (2b) (9/20) 18 1 6 _Cd Z_
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OF POOR QUALITY
The average velocity deficit over the wake is given as

i

V	
g	 'V. - V	

(12)TO-
	 Vw max ': 

since for y - o at the wake centerline one has

rVW - V	 10	 S 
-1/2

	

V„ . max ^ 18 q	 Cd A_	
(13)

The vane spacing is larger than the wake width so all velocities must be

multiplied by the

9 2b Vm - V
velocity factor a ro

	

20 
U-
	 V. max

to account for wake blockage, where L is the spacing for a particular vane.

The effect of the calculated wakes on the potential flow field is shown

in Figures 26 through 30 for the inlet casing vanes and the stator vanes. The

wake half -width for each numbered vane calculated at the inducer inlet

location is shown in Figure 31. Figure 32 shows the corresponding vane

numbers.

By making use of the streamfunction in the circumferential direction, the

flow is calculated downstream. Thus the wakes from the inlet casing vanes are

transferred to the smaller radius; and, because of the residual tangential

velocity, are shifted to larger values of 8. In several cases the two wa:.es

combine to complicate the flow. For each of the wake distributions the

massflow is integrated and checked. The curves will not all reach 180 degrees

due to blockage of the boundary ( fifth stator vane) at that point.

In a similar manner the wakes are transferred to the inducer station in

Figure 31. The circumferential shift is more obvious when comparing this

figure to the previous ones due to the reduction in radius and streamwise

distances traveled by the flow.

(14)
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3.	 Experimental Verification of Analysis

3.1 Rocketdyne Data

The prediction of the inlet flow to the inducer is a critical part of the

damage analysis. The computational procedure has several key assumptions

which need to nt verified. The flow solution given in Figure 33 shows that

the inducer inlet flow is non-uniform, producing large incidence variations

which result in unsteady cavitation. This type of cavitation causes severe

cavitation damage and high unsteady forces.

	

/.	 Rocketdyne (12] conducted a series of experiments on the SSME HPOTP inlet

in air. For these experiments, a 5-hole probe (13( fabricated at ARL/PSU was

utilized to obtain flow data in the inducer inlet plane. Total and static

f
pressure, axial velocity and swirl angle were obtained as a function of

circumferential angle at four radii. The axial velocity data are shown in

CFigure 34 and the swirl angle data are shown in Figure 35.

C

A brief comparison between the predicted flow field given in Figuro 33

and the measured flow field Riven in Figure 34 shows similar trends. However

f

the magnitude of the wakes are significantly different at the 2.23-inch

radius. It is proposed that these differences are due to separation occurring

	

1	
along the wall in this wake region. The trends in the axial velocity with the

r

radius and the circumferential location are in good agreement.

A better comparison is given in Figure 36 for the axial velocity and in

Figure 37 for the swirl angle at the 1.977-inch radius. For this comparison

the Rocketdyne d y ta were integrated to obtain an average velocity which then

	

s	was used to normalize the data given in Figure 34. These results are in

	

r	excellent agreement.

i

=s %_ , .
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3.2 Student Model Data

Three students from the Department of Aerospace Engineering designed,

built and tested a 2-D model of the inlet casing. This work was part of an

Undergraduate Thesis Program at The Pennsylvania State University.

A full-scale model of the casing was constructed as shown in Figures 38

and 39 with some modifications. The model was designed to be 2-D with uniform

depth in the axial direction. All of the vanes were supported by pins so that

their angle-of-attack could be varied. The shape of the throat area was the

same as the inducer area on the turhopump. The inner throat and diffuser cone

were made to rotate as a unit. This enabled a probe to be rotated

circumferential.y at the inducer inlet plane. A honeycomb was placed in the

inlet to reduce incoming air turbulence.

Results of using fluorescent mini-tufts on the casing walls and vanes for

flow visualization showed that separation was occurring. To eliminate this

flow separation on the casing, suction was applied at various points along the

wall to keep the boundary layer attached. Flow separation was also observed

on several vanes.

Inducer inlet velocity data were obtained using a 5-hole probe. During

these tests, the inlet flow velocity was approximately 175 ft/sec. The amount

of suction required to maintain an attached casing boundary layer was set at

a minimal value which was approximately 1% of the total flow.

A comparison between data obtained by Rocketdyne with the 3-1) inlet

casing and the student 2-D casing is given in Figure 40. Although the

circumferential axial velocity profiles are in good agreement, the position

aryl magnitude of the wakes are not.

F
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4.	 Cavitation Analysis of Existing Design

4.1	 Observed Damage

The locations of damage to the SSME-APOTP are shown in Figures 3, 4, 5,

6, 41, 42 and 43. 	 Since the damage that currently limits the life of the pump

is the deep pitting on the inducer casing, (Figures 4 and 5) the causes and

recommendations for reducing this damage are of primary consideration. 	 The

s
bands of cavitation damage on the casing (Figures 6 and 41), the light damage

on the inducer blades (Figure 43), and the erosion of the inducer blade tips

(Figure 3) will also be included in this analysis.	 The damage at the impeller

exit (Figure 42) and possible causes for premature bearing failure will also

be discussed.

The deep pitting on the inducer casing as seen in Figures 4 and 5 is

concentrated downstream of the stator vanes mainly on the counterswirl side

and to a less extent on the preswirl side.	 The damage could not be due to

} cavitation	 on the stat -3v 	-apes, since the local cavitation number is too high

for cavitation to occur.	 For the flow over the stator vanes the cavitation

number can be defined as:

Pm - Pv
o = 1	 (15)

2 
p V.2

where P„ and V,, are the local values of static pressure and velocity. At the

trailing edge of the stator vanes for the 109% power level * a = 4.7. This is

much to high for any significant amount of cavitation. The damage must be due

to other causes.

*Note: All damage calculations will be for the 1097 power level unless stated
otherwise.

.+.ri. i,i
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The local cavitation number on the inducer blade cat, be defined as

P.. - Pv
a	 1	 (16)

2 P O

where W,. is the local relative velocity of the blade section. For uniform

flow and no preswirl at the inducer blade, a value of a = 0.108 was

calculated. With a blade angle of 13.12° (r - 2.32 inches), the relative flow

angle is 4.3° and a cavity length of approximately 33% of the chordlength

should exist. The cavity length was approximated by the analysis discussed in

Appendix A. At the hub a value of a = 0.318 was found and the cavity length

was calculated to be only 7% of the chord length. The calculated cavitation

pattern for this 'steady state' condition is superimposed upon the measured

damage on the inducer blades and is shown in Figure 44. The trailing edge of

the cavity at the tip corresponds to the region of damage on the blade. For

this uniform flow condition the damage should be produced equally around the

circumference of the casing. But how then could the damage be concentrated at

certain areas on the casing?

To answer this question the area where the damage is located provides

part of the answer. In general the deep pits are downstream of the stator 	 F"

vanes. It is probable that, given the close proximity to the inducer leading

edge, the wakes from the stators could be disturbing the flow. A decrease in

axial velocity would increase the relative flow angle and thus the amount of

cavitation. As the blades pass through these wakes some of the cavity is shed

and the resulting collapses are creating the damage. For this reason the wake

analysis was undertaken.
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4.2 Cavitation Pattern Prediction

As a first approximation the cavity length calculation will be performed

assuming steady-state conditions locally in the wake. The local flow velocity

at the inducer blade location can be calculated using the data given in Figure

33. The axial and tangential velocity components and the flow angle were

calculated through the wake for both preswirl and counterswirl sides of the

pump. The cavitation number based on the local velocity on the blade was

calculated using Equation (16). The cavity length was then calculated at

points through the wakes using the analysis discussed in Appendix A.

The cavity length calculations for the existing turbopump design are

shown in Figures 44 and 45 and in Table 3. It would be expected that the most

erosion should occur for both the preswirl and counterswirl sides between 240

and 51°, downstream of casing vane 3 and stator vane 15 (see Figure 32). As

the inducer blade rotates circumferentially there would be a negligible cavity

prior to entering the wake region. A large cavity would grow on the blade

surface as the wake center is reached. Upon leaving the wake the cavity would

be shed from the blade. Table 3 and Figures 44 and 45 also indicate a growth

in the cavity as it passes through the wakes downstream of casing vanes 5 and

6 and stator vane 16. For the preswirl condition the cavities exiting the

wakes are longer than the cavities upon entering. The opposite is true for

counterswirl. Thus. the volume of cavity shed should be larger on the

counterswirl side of the pump. This correlates well with the observed damage

patterns.	
i

4.3 Damage Rate Model

The damage rate (D) is a function of a distribution of bubble collapse

energies, the material response to the bubble collapse, and the duration of
I

exposure. A general expression for the damage rate would take the form 	 i

8	
I

i

a	 I

M

i
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D - F (Vm, as o/aD, na(t), T,,, Dm, h)	 G(M, HT, DG) • H(t/to)	 (17)

where for hydrodynamic considerations,

VW	- reference velocity

a	 - total gas content of the liquid

a/aD - normalized cavitation number

T.	 - reference temperature

Dm	= characteristic size

h	 = flow shape parameter

Aa(t) = time dependent cavitation number

for material response,

M	 = test material (includes erosion resistance and corrosion

resistance)

HT	 = heat treatments of the material

DG	= grain size/microstructure of the material (due to method of

fabrication, etc.)

and for the exposure time

t/t o - dimensionless exposure time.

The total damage for cavitation damage sites would be

n
DT	Diti	 (1$)

and can be expressed as either a total volume loss or as a mean depth of

penetration where the volume loss is divided by the damage area.
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Equation (17) for a particular case is very difficult to determine due to

the many variables; however, for the HPOTP some assumptions can be made.

First of all, one is only interested in comparing damage rates due to changing

flow conditions. Thus, the material response enters as a constant and

Equation (17) reduces to

D = F(Vn , alaD , Aa(t)) H(t/t o )	 (19)cc

For different flow conditions, the geometry of the pump also remains the same;

however, the pump rpm and inflow conditions vary.

The heavy cavitation damage that occurs on the housing has been shown to

be caused by the change in cavity length as the inducer passes through wakes.

Therefore, the damage rate is going to be different for each wake encountered

by the inducer and Equation (19) reduces to a solution of oa(t) which is

approximately the change in cavitation volume.

The change in cavity length as the inducer blade passes through a wake

` has been considered using a steady state analysis.	 It has been assumed that

the cavity reaches a length corresponding to the incident flow at any point in

the wake.	 If the wakes were large with respect to the blade chord this would

be true. For the problem in question the wakes are narrow with respect to the

chord and the time spent in a 20°-wide wake is approximately 0.1 millisecond.

The cavity would thus not have time to reach a steady state condition. The

actual volume of the cavity shed can only be estimated for this condition.

It will be assumed that (1) a steady state cavity is reached before the

blade enters the wake and that a steady state cavity will exist some time

after the blade passes through the wake, (2) a disturbance generated along

I
the cavity wall will propagate with a velocity of We = W.^1 + a which is the

velocity along the free surface bounding a cavity, (3) the disturbance in the

r
I

IL
a^ ..Ar.r..i• ^ —^—	 ^ t.. e- ..	 _	 .._arm-	 srse_ _
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cavity will follow a path corresponding to the flow at the leading edge where

the disturbance was produced, and (4) the cavitation number is nearly constant

through the wake.

As a blade with a steady-state cavity starts to move through a wake, the

blade will see a fluctuating flow angle due to the reduced axial and

tangential velocity at each position. The change in incident flow angle will

therefore create a disturbance at the leading edge of the cavity. The

disturbance will propagate at the fluid velocity along the cavity wall. The

magnitude and direction of the velocity vector at the leading edge is a

function of the position in the wake. If the width of the wake is less than

the length of the cavity on the blade as it enters the wake, then the blade

leading edge will reach the other side of the wake before the initial

disturbance to the cavity shape reaches the cavity trailing edge. This is

important since for the wake cavity model there is no closure condition

specified at the trailing edge. A closure condition could be specified but is

not required for the cases that will be investigated on the inducer blade.

The 'perturbed' cavity shape and shed volume can be calculated by the

following procedure:

(1) The inducer blade leading edge is placed at the exit point of the wake.

(2) The flow angle and velocity at any point through the wake are used to

calculate the cavity contour at the sane point on the blade.

(3) The volume of the shed cavity is

pvol = Volperturb - Volexitss

Qualitatively, the results of such an analysis are shown in Figure 46. For

case 2 in Figure 46, the steady-state cavity after passing through the wake is
3

smaller than the cavity upon entering (typical counterswirl case for the wakes

1
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from vanes 5 and 6). The shed cavity comes from two sources: the

perturbation to the original cavity due to the wake, and the fact that the

cavity volume must decrease even from the incident steady state condition.

This occurs on the counterswirl side since the axial velocity is increasing as

the inducer blades move from 1$0° to 0% For case 3 in Figure 46 (wakes from

vanes 5 and 6 on the preswirl side) the opposite is true. The cavity leaving

the wake is typically larger than the cavity on the blade when entering the

wake. Some of the volume in the 'perturbed' cavity must be used to 'fill' the

cavity leaving the wake. If the wake is not very 'severe', there may be no

shed cavity at all. As can be seen from Figures 6 and 41 for the casing

damage, the erosion on the counterswirl side is much worse than on the

preswirl side for the positions behind vanes 5 and 6 and stator vane 15.

For both preswirl and counterswirl sides the heaviest pitting was

downstream of casing vane 3 and stator vane 15. The steady state cavities

entering and leaving the wake are small (less than 0.1 k/c) for both preswirl

and counterswirl. Thus nearly all the cavity volume generated while the blade

was in the wake would be shed. The analysis for this wake can be applied if

the incident and exit cavities are neglected (this is done because no closure

condition is used for the cavity wake model). This cavitation should be very

severe since the entire 'perturbed' cavity is shed. The amount of damage can

be approximated by the volume of the cavity shed.

Emphasis has been on damage from unsteady cavitation created when the

inducer enters a wake. An analysis is presented in Appendix B which clearly

shows that this type of damage is at least an order of magnitude greater than

its steady ca vitation counterpart.
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4.4 Cavitation Damage at the Impeller Exit and Premature Bearing Failure

i
The cavitation damage at the impeller exit is due to the difference in

pressure across the blade at the trailing edge. The high pressure fluid on

the pressure side will flow towards the low pressure region on the suction

side. Aecause of the sharp trailing edge geometry this flow will separate.

Even though the exit pressure is almost 5000 psia, the local cavitation

number at this location is a - 0.818 since the impeller tip speed is 878

ft/sec. This means that cavitation would occur in a separated region.

Rreaking the sharp edge at the impeller blade trailing edge by rounding the

pressure surface should reduce this problem with a minimum loss in

performance.

The premature bearing failure is likely due to the unsteady forces

generated by the unsteady cavitation on the inducer blades. The proposed

design change should also reduce this problem.

5.	 Recommendations for Cavitation Damage Reduction

5.1 Casing Vane Modifications

The analysis of the existing stationary vanes in the HPOTP clearly

indicates that the vanes must be altered to improve the turbopump's cavitation

performance and hence reduce cavitation damage. Modifications will strive to

minimize the fluid turning at the inducer, equalize the massflow around the

circumference of the inlet, and reduce the sensitivity to flow incidence. The

last of these criteria will be considered first.

There is a bonafied reason to use airfoil shapes in the redesign of the

inlet casing vanes. Regardless of the camber or amount of turning that a vane

is to accomplish, typical vane shapes always emoloy a rounded leading edge and

a sharp trailing edge. Due to the uncertainty in the exact angle at which the

flow will encounter the vane at the leading edge, a rounded surface will allow

F
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the flow to Vass beyond the leading edge without flow separation on either the

pressure or suction surface. The trailing edge is made as thin as possible to

minimize the possibility of flow separation.

A :standard NACA 65-0012 series vane shape was used as a base design for

the new stationary vanes. The camber offset was increased for each vane until

the desired amount of vane turning was produced. For this analysis the

trailing edge thickness was set equal to zero. The thickness was

p

added normal to either side of the camber line up to the maximum thickness at

30 percent of the chord. At this point it was then added to the suction side

In an exponential manner until at the trailing edge all of the thickness was

L^	 added to the suction surface.

The Douglas Neumann Cascade Program solves for the flow at any location

in the cascade. Although the flow at the trailing edge must be in that

direction, the inviscid flow between vanes can still exhibit a substantial

degree of turning different from that indicated by the adjacent vanes. Thus

some overturning may be required to direct the flow radially at the exit of

the stationary vanes on the average.

Several redesigns were considered. Although the analytical results show

that a substantial improvement in the flow field can be obtained, the vanes

should not be considered a final design. As will be pointed out, the casing

boundary plays a significant role in the guidance of the flow, and a new

design should incorporate a redesign of the casing as well.

The stator vanes serve no useful purpose hydrodynamically. While they

might be essential structurally, their presence in the flow field only serves

to aggrevate the situation at the inducer because of their close proximity.

The current redesign employs six vanes instead of four but makes them

one-third shorter. The actual number and size of these vanes should be
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dictated by structural considerations. The bottom stator vane should be

incorporated into the redesign of the inlet casing boundary. While the new

stator vanes will locally divert the flow, they will have no impact on the

flow at the indticer and could readily be removed from the design

considerations.

The inlet casing vanes were increased in number from 13 to 15. This will

serve to maintain the force level on each vane since more turning will now be

expected of the vane row to eliminate the tangential component of the

velocity. They were spaced equally at their trailing edge (radius of 4

inches) between the top and the casing boundary at the bottom. The amount of

turning was calculated to allow the flow to enter the vane raw with no

appreciable incidence and to exit radially. In some cases fluid turning

angles close to 90 degrees was indicated. This is typical for inlets of this

type where the flow is first directed tangentially by the casing near the

upper inlet and then must be turned radially, effectively increasing the fluid

i
turning before reducing it. Again, this emphasizes the important roll that

the design of the casing boundary plays.

The vanes were uniformly decreased in chord length from the top casing

vane, number 2 to the bottom vane, number 9. Vertical symmetry was

employed to balance the side forces on the shaft. Obviously the downward

force will still be substantial. The inviscid flow was calculated to produce

radial flow at the radii corresponding to the inducer station, thereby

eliminating any tangential velocity.

A typical vane shape of 45 points is illustrated in Figure 47. This vane 	 s

is nondimensionalized by the chord and the dotted camber line illustrates how	 ;-

i
the thickness near the trailing edge is shifted towards the suction surface.

In all, 22 bodies (vanes) are now used in the cascade with a total of 1092
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F_l	
points. The redesigned cascade took 2 1 /2 hours to run on the computer. Me

flew solutions and new vane shapes are illustrated in Figure 48. The stators

}
are now cut at the trailing edge at the same radius from inner to outer

streamline and the wake flow produced by these two vane rows is shown in
a

EE	

Figure 49. These wakes will be more diffused when they reach the inducer due

ti the increased distance between the stator trailing edge and the inducer

leading edge.

The flow field at the inducer leading edge is shown in Figure 50. With

the reduction of the tangenLial velocity the flow becomes more uniform at the

inducer and the circumferential massflow distribution is nearly constant.

Note that the casing boundary is still responsible for some fluid turning

towards the bottom of the inlet at large values of 0. This turning can only

be removed by redesigning the bottom of the inlet casing.

As can be noted in Figure 50, the deepest wakes are produced by the six

stator vanes. It appears that due to the location of these vanes (in close

proximity to the inducer leading edge) the wakes will always be the worst and

perhaps be the controlling factor for cavitation damage. It is recommended

that these vanes be removed if possible.

The va ^. sh.pes in Figure 48 were designed to produce radial flow by an

inviscid flow analysis. Due to the viscous boundary layer, additional turning

will have to be placed in the vanes to achieve the same turning as predicted

by the inviscid solution. This is accomplished by adding the flow deviation

angle to the blade camber angle. The leading and trailing edges were held in

place ( thus the chord remains constant) and the camber increased to include

the fluid deviation angle. The camber offset distribution was altered to

I
s

.t

i

I.

Fis

place most cif the additional camber towards the traiing edge so as not to

disturb the flow and hence the incidence angle at the vane leading edge.
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newly designed varc^s with offset am illustrated in Figure 51. A typical vane

is illustrated in Figure 51 and can be compared with Figure 47 to see the

effects en the camber of the fluid deviation. Coordinate data for the

redesigned vanes are given in Appr_-ndix C.

If it is required to thicken the trailing edges of the redesigned vanes,

this thickness can easily be added to the suction surface as indicated by the

dotted line in Figure 47. In this way the flow is still guided by the

pressure surface and the vanes are thick enough to be cast.

The vane ofL'sets were estimates from a deviation analysis similar to that

discussed in Section 2.2. Using cascade data for the vanes in the casing is

an approximation which has a high risk. The proposed vanes do more flow

turning than the existing vanes and hence larger offsets are required. Thee to

the lack of available data for vanes in the accelerating flow created by the

casing, it is strongly recommended that air tests be conducted to verify or

adjust the vane geometry to meet the rquired flow performance.

5.2 Cavitation Damage Analysis

The cavity length calculations, based on the worst wakes, for the new

designs with and without stator vanes are shown in Figure 53 and in Table 4.

There are a number of improvements for both redesigns over the existing

turbopump. These can be summarized as follows:

(1) The flow velocity is more uniform, thus the cavity lengths entering and

leaving the wake are nearly equal.

(2) The velocity deficit is reduced significantly for the redesign with no

stator vanes.

(3) The widths of the wakes are reduced.
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The expected reduction in the rate of cavitation damage is proportional

to the change in shed cavity volume. For the worst wakes, comparing the

existing design to the redesign without stators.

bold	 (shed cavity volume)old

( shed  cavity volume new 21.1	 (20)

Dnew

6.	 Summary

A model has been developed that correlates the severe cavitation damage

on the high pressure oxidizer turbopump (HPOTP) casing with the inducer

unsteady cavitation. A computational procedure was used to analyze the flow

through the inlet casing including the prediction of wakes downstream of the

casing vanes. The predicted flow at the inducer inlet compares very favorably

with the experimental data obtained by Rocketdvne.

The analysis of the HPOTP clearly shows that the inlet casing vanes must

be altered to significantly reduce the cavitation damage rate. However, any

redesign should reduce the vane sensitivit y to flow incidence, equalize the

distribution of the mass flow around the circumference of the inlet, minimize

the swirl at the inducer inlet and, if possible, eliminate the stator vanes in

front of the inducer.

Using the damage analysis presented, the damage rate for the proposed

redesign is reduced by a factor of 21. The proposed redesign uses a

conventional vane shape and the vanes are cambered more than the original

vanes to significantly reduce the swirl component of the velocity. In

addition, the inlet casing vanes were increased in number from 13 to 15 to

reduce the forces on the vanes at the bottom of the casing.

The following conclusions can be made:

s

r.
f.

f
c
r

r.

F.
r
I
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(1) The cavitation damage problem on the HPOTP results from the unsteady

interaction of the inlet casing and stator vane wakes and the cavity flow

over the inducer blades.

(2) The existing vanes produce separated flow and large wakes which combine

to gi^,a severe velocity deficits at the leading edge of the inducer.

Also, a significant amount of fluid turning exists downstream of the

vaneR.

(3) The stator vanes should be removed, if possible, due to their close

proximity to the inducer blades.

(4) A redesign of the inlet casing vanes is required to greatly improve the

cavitation damage rate occurring on the housing.

(5) A complete redesign should address the shape of the casing boundary as

well.

(6) The redesign should also reduce unsteady cavitation and bearing forces.

An analysis was conducted which shows that the non-uniform flow entering

the inducer causes the severe cavitation -damage that exists in the HPOTP.. The

redesign of the stationary vanes is an initial attempt to significantly reduce

the cavitation damage rate. It is strongly recommendO that a series of tests

be performed on any redesigned inlet casing to verify that the improvement in

the cavitation damage rate will be met. These tests should he conducted along,

with continued efforts at refining the computational analysis.
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Table 1

SPACE SHUTTLE MAIN ENGINE CHARACTERISTICS

Engine Operation MPL - RPL - FPL

Thrust

Vacuum 360K - 470K - 512K

Chamber Pressure 1957 PSIA - 3012 PSIA - 3283 PSIA

Area Ratio 77.5

Specific Impulse (Nom)

Vacuum 455.2

Mixture Ratio 6.0

Life 7.5 Mrs
55 Starts

Specification Dry Weight 6957 Lbs
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Table '

HPOTP OPERATING CONDITIONS

Power Level MpL RPL FPL

Percent Thrust Level 65 100 109

Pump Inlet Pressure, PSIA 3 4 377 390

Pump Inlet Temperature, °R 68 170 171

Pump Inlet Density, lb/ft 3 70.5 70.2 70.1

Pump Inlet Flowrate, lb/sec 712 !068 1160

Pump Disch Pressure, PSIA 2513 4290 4790

Pump Disch Temperature, °R M 192 196

Pump Disch Density, lb/f t3 70.6 70.3 70.2

Pump Head Rise,	 ft 4474 7915 8893

Pump Speed, RPM 20298 28349 30367

Pump Power, HP 8385 22571 27663
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Table 3

Calculation of Cavity Lengths for the Existing Design
(Worst Wakes)

R - 2.37 Inches

Position	 Flow Angle	 Cavity Length
9, Degrees	 a, Degrees	 Chord Length

Preswirl Side
3

Entering Wake 3 24.3 -1.1 0.08 Pressure Side
In Wake 3 35.9 6.4 0.40 Suction Side
Leaving Wake 3 50.7 0.2 0.02 Suction Side f

Entering Wake 5 81.9 2.2 0.20 Suction Side
In Wake 5 88.7 7.0 0.43 Suction Side
Leaving Wake 5 95.4 3.2 0.27 Suction Side !

Entering Wake 6 95.4 3.2 0.27 Suction Side
In Wake 6 110.4 8.1 0.46 Suction Side
Leaving Wake 6 121.9 4.1 0.34 Suction Side

Counterswirl Side
}

Entering Wake 3 50.7 1.3 0.08 Suction Side
In Wake 3 35.9 6.5 0.40 Suction Side
Leaving Wake 3 24.3 0.1 0.00 Suction Side

Entering Wake 5 95.4 4.3 0.35 Suction Side
In Wake 5 88.7 7.5 0.44 Suction Side
Leaving Wake 5 81.9 3.6 0.30 Suction Side

Ente*-ing Wake 6 121.9 4.7 0.36 Suction Side
In Wake 6 110.4 8.5 0.47 Suction Side
Leaving Wake 6 95.4 4.3 0.35 Suction Side

4

i

A /

-45-
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Table 4 ^.I

Calculation of Cavity Lengths for the New Designs
(Worst Wakes)

R	 2.37 Inches

Position	 Flow Angle	 Cavity Length
9, Degrees	 a, Degrees	 Chord Length

Without	 51.2	 3.6	 0.30	 tl

Stators

55.6	 6.0	 0.39	 g'

59.6	 3.6	 0.30

With	 80.8	 '.8	 0.32
Stators

85.-	 7.0	 0.43

87.5	 3.8	 0.32

ri

c_s

1

1- t

3 ^:
's



•e
w •
1 •

ORS :!NAL PAG'7 i {

OF POOR QUALITY

W ^
ata,

W ag

x N

x	 t
O	 v

0

V	 E

Z 

J

.	
1

W	 T
Lr^ d 1N cW Z C

BOO	
y

m 
I	

- —z! 7 —	 —, , " ---7

oc
W

4m Z
W CMN_

_C ap

X ^O^

Z
LAJ

W

CD
ZOct
DC

a
F—
zW
z

AO
C	 f

O
V

a
W

adW
O^1
CL.	 r
W

^	 I
W

^ZW ix
^m
W
C9
CL

-_1

t 1 	 ^

p	 1^

199Z -oKJl

f



C.
V.
D
C.
O
m

z
W

x
Q
W

rV)
M I

W
w
CL

v
0

a
2

r

fl

R
E
d

v

N

1+

C:

r

ORIGINAL PACE i9
OF POOR QUALITY

jp
— J L.r-s r _ — - --



Rpmi

ORIGINAL PAGE 18
OF POOR QUALITY

zo Ŵ
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Ô U
U

ON000

( sdj) kilOO13A IVIGVb
(sdj) A110013A ldIIN39NVI



RZ

C

C
.^ CIC^r
^ C

0

1

LL
J

_ C.,

CWY
Q

C

L--	
C^	

u
00	 00

O O O O

8

'C

M
^t

'l.

..r

N
T

1

r

ti
v

ell

v
w

a^
.ti
s

-%7-

ORIGINAL PAGE I$
OF POOR QUALITY

UIN



ORIGINAL PAGE IS

OF POOR QUALITY

rF

.9prww^--- V
	 m

-78-

7 taure 12. '7chematic Showing V aiis Nltmnarq

I



2
0

O

c^

CD

O

O O

J
J _

F— s

Q W t 1

Z o^ W +

O

CD
^^ e

E N
cn r-

M M
009
^o cT^

II	 II
Cr a

cs
W-

WY
Q^

JQ
X
a

JQ
F—
W

Z

N

-i9-
ORIGINAL PAGE ISOF POOR QUALITY

^— NJ	
Ma

z C	 ~^° n°O	 II .o o^ r-+ cn
Cd	 .-i	 'O	 r--+ N N

^-	 O O 4 0 t?am
pp 

O	 00 CD

(ds j) AI I DO13A 1VI XV
(sdj) AII 0013A 1VIIN39NVI

O

WYQ

.9N

.-r



ORIGINAL PAGE 18
OF POOR QUALITY

-•80-

96I

8

x

Ls

v
r

7

Y.

V

•I.

s.

J
1
V

0^

2

51

'ki-DOMA ND"



33830 MAUS

f
l

3
-si-	 t)RiGIwAL PAGE IN

OF POOR QUALITY

r:
r.
r.
c
r.
r

r	 ^
f	 ^

I:
I:
I
i

C5

5
mz

ug

soon

5

r

.y

Q'

V ^

Z

a
s

M

I ^



-87_

ORIGINAL PAGE 1

Of POOR QUALM

.%

• ^ r
l

1.J

N'f

O W

1

NW i Z N
^ C

'O O

W

LitW

J

G O ^
j W '"' O

U LC Q
°- m Q^Op A1100MA IV I XV S S31N01 S N3W l a

.

i 1

i

i

N }
L 5`

? C

>:	 too i

^a r

r
I

L

V r.

W-0

r.
O

r^ ck: G W

J^c

00 ^. T

•l ^

O -^

i



ORIGINAL PAGE 19
OF POOR QUALITY

VE

V)
V)
<

T

77

-00

LU

LLJ

CV U rz

O

I

(f)G P) 31ONV -11mulMS



-84- tj

ORIGINAL PAGE IS

OF POOR QUALITY

CL

gm .1 =



-85— f

ORIGINAL PAGE 19
OF POOR QUALITY

to O

z U
Q

=

N	 F-
t/)	

J

W J z

C^
z

X
^	 !

Z
o

O
,=

W
m -

N f— LU H—

W V
Q

O D
W
z LLJ

z
O P:-

MWW
Q̀J

LLJ
O

J zL ^.
J

O
LLJ

4. V O -

CL z
W
I— =
N

L.1 =
a

Q

Q X
a

-LL_ LLJ

~ OJ— — — _
x Q LLJ

W LPL O

— m m

L_ J v i
c	

i^

u r
LtJ
W

I

O z zU

t

i

i



!,

-SO-

PAGE t9
QUALE:

F—

zW

W
un
F— (J1
z .^W W
W
Cr W
^ z

.^ W W
^ ^ Y

I!	 1

O	 y `

^^	 O

1+110013/ ld I Xd S S31N0 I SN3W 10

M

NM	 "

O	 r
N

1

N
.t

a^

o p
d
pJ
--J	

1

Q
r ;7-:

z	 ^.	
r

W
W	 -
LL	 i

CO
r-4

U

L	 1

Is

i

i

O	 c

t
s l

r',L
t



W
N Qz ^0 00 W
z cn ,= z o
W
^

W
= C..1Z W

0
—

W

D z ce-
O

C7zC
J W

H ^ J
-

a
Q Q

^.

Q
t

um >t—	 `o

LR
O
^O

0

	

_^	 F

Xw
LU

	

^-	
U w	

a

—00°_¢

	

.c	 -
o

J W

W

CL

N	 i

Q CS	 ^

O r	 T	 t

U Ww; C)	 _ Z
^ 0^>
0

Lt1	 t11 J
r-+ , U1 =

O	 r+ t^11 ^ ^	 I

O
O N

^	 I
^

N

L z
o=o

C) v cn J
R

L	 j	 s

.—i^ W O J ^	
I



wi

r ^_

.l
1J

..L

J Q
T GY

C.vL
C K

.J

r

n
i

t
cc

r^

(3J	 W
Q
Q

1

j }

i

^i

4

ORIGINAL PAGE 1S
OF POOR QUALM

-88-

W

W

CD Ln

^ < D
C p p

F— (/7 Z Cn

F--	 GC

j w F-̂pO

zO

O

U LLJ



ORIGINAL PAC` 1.3-1

OF POOR QUALITY,

.-89—

z
O_
F-

v v

w

z0
^^ 3

c w

^ w
c

J 4-

c

u

R
T w
c
r _'
c e

C r

Y

c t
a

C .-

r^
R

c y
^ L

T

i

W r

M i



O

O

^
^ W to

W

^ W

CL

O o^

O

z WY

O

O ^^

W U1O Y ZQ Q

i0

O

U'%
Q ^+

4.
1 M
O W WYd Z

4.0
CDZ W> YQ
WJ

O

O

O

O

to
O

O
W
heQ

Z

f
•Y
it-

^J

V

4.

w
cr

L 3

c
CL

J
^^
rL 3

OR!GMiAL PAGE 69

OF POOR QUALM

O

cr
O ^-

tn W ^O
O YZ

to

-90--

O	 O

O
	

O

O	 O



,c c
}ti
r..( Y

~ N

J '^

mL :..1

^ C

^cu
R^

7

L

U
's

'i
P

ORIGINAL PAGEE !,S
OF POOR QUA! IT V

O O O

O ~
tc) t
O O O Qz

io

^ j

O O

O O 0

^ •o
O y
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APPENDIX A

Steady-State Cavity Calculation Procedure

A method developed by Stripling and Acosta [141 was used to calculate the

size and shape of the cavity on inducer blades. The flow was modeled for a

helical inducer by a free-streamline calculation of the flow through a

semi-infinite cascade. The flow was assumed to be two-dimensionai,

irrotational and inviscid. A wake or dissipation model simulates the blockage

that occurs due to the mixing at the cavity trailing edge which is the

condition emphasized when the cavity is less than the chord length. The flow

is then confined within the cascade blade passage and the chord assumed to be

infinitely long.

The free-streamline flow is mapped in the hodograph plane to simplify the

cavity calculations. A schematic of the flow in the physical and hodograph

planes is presented in Figure A1. The hodograph variable is defined as:

:i

^i

i

-
dF

 dz =u-iv
	

(A.1)

where u and v are the x and y velocity components in the physical plane and

z = x+iy.

F =	 + i W
	

(A.2)

 1

is the complex potential of the flow with p being the velocity potential and W

the stream function. The physical coordinates of the flow are found by

determining the functional relationship between F and i and integrating A.1.:

U :	I
D1
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To solve A.3 the following boundary conditions in the hodograph plat

hold:

(1) The real axis and	 We are streamlines

(2) 0 is a stagnation point, therefore

d^	 0( ^ = 0) =

(3) Streamlines in the hodograph plane, near the origin corresponding to the

flow at infinity, are uniform and inclined at an angle a to the axis.

From Bernoulli's equation the velocity along the cavity wall W e is:

We = W" fl + a
	 (A.4)

where wm is the upstream velocity and a is the cavitation number given as:

P
a	 1^	 c	 (A.5)

2 
p W.2

The coordinates of the flow are then found from A.3. The coordinates of the

cavity length and height are found from:

z =x+iy

=c+ih

= z(4 = W C ) -z(4=-WC)

_ _	
r
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APPENDIX B

F	 Unsteady Cavitation and Erosion

The destructive action caused by cavitation has been a practical problem for

many years.	 Erosion of ship propellers and hydraulic turbine blades can cause

a loss in performance leading to eventual costly maintenance or replacement of

the damaged parts.	 The damage is caused by the collapse of the vaporous

cavities as they move into a high pressure region.	 Upon collapse, enormous

pressures are generated.	 If the cavity collapse occurs near a boundary,

1.
damage can occur.

Accurate prediction of cavitaiton damage is very difficult. 	 After nearly

100 years of research in cavitation, the problem of calculating the amount of

erosion for a given prototy pe is as yet unsolved. 	 The lack of success is

because cavitation damage involves both the fluid and solid mechanics and thus

is inherently difficult.

The attack caused by	 Pthe collapse of one cavitation bubble occurs over a

very small area (or the order of hundredths of a square millimeter) and in a

very short time interval (measured in microseconds). 	 Both the hydrodynamic

aspects of the cavity flow and the material response to the impact loading

caused by the cavity collapse must be considered.	 The problem is further

r

comp licated by possible interactions between cavitation and corrosion.

In analyzing the inducer blade and casing damage it was assumed that aY	 g	 g	 g
a

steady sheet of cavitation would exist on the blade in uniform flow. 	 Any

cavity length fluctuations arise from the blade passing through the wakes.

i
This sheet type	 is	 blade tipof cavitation	 often observed near the 	 on surface

ship propellers.	 Most conventional surface ship propeller blades have low

thickness to chord length ratios and low camber.	 The typical blade sections

at the tip are similar to the inducer blade profile for the oxidizer pump.

1
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It has been reported that when a surface ship propeller blade passes

through the wake caused by the hull, severe noise, vibration and structural

damage (blades and hull) can result. In a recent paper presented at the Joint

Symposium on Design and Operation of Fluid Machinery, June 1978, Cumming,

et.al . [151 measured the effect of wakes on the cavitation damage rate for

some surface ship propellers. The results for two tests, one with and one

without an upstream wake, are presented in Table B1. The mean velocity, test

duration and cavitation number were approximately equal for both tests. Since

the flows were similar except for the wake any change in damage rate should be

due to the unsteady flow. The total pitting rate was approximately 2.48 times

higher for the flow with the wake. The wake was approximately 60° wide. If

the difference in the pitting rate were due solely to the wake then the

pitting rate in the wake is nearly 8.9 times higher. While the pitting rate

is one measure of the damage the size of the individual pits should also be

considered.

For an approximation the pits are assumed to be conical sections with a

constant diameter to depth ratio. The damage data is reduced to a total

volume of erosion per unit area per hour. The volume erosion rate is 140

times higher for the wake region than in uniform flow. Thus, decreasing the

velocity deficit and wake width can greatly reduce the damage rate. The

assumption that the pits have a constant diameter to depth ratio probably is

conservative. It was shown by Stinebring [41 for a cavitation damage study

in the incubation zone that generally, the depth/diameter ratio increases with

increasing diameter.

Another study of surface ship propellers by Wilson et.al . [161 for Naval

Auxiliary Oilers (AO-177 class) studied the vibration and damage problem due

to wakes. The ships had severe vibration transmited through the hull and

ss a ..4

l

i^

i
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damage on the propeller blade trailing edges near the tip. They attributed

the cause of the problem to the unsteady cavitation on the blades as they

passed through the hull wake. The cavity would grow while in the wake, then

break off and collapse against the trailing edge when leaving the wake.

Adding a special fin upstream of the propeller reduced the wake deficit which

reduced vibration and damage. Observations also showed that in addition to

reducing the rolume of cavitation, the cavity also collapsed in the free

stream away from the blade.

These are just two examples of the increased damage due to the unsteady

cavitation produced on bladec passing through wakes.
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Table B1

Run U5	 a - 3.44

Run W1	 a - 3.51

Size Distribution of Pits
(X of Pits Within Size Range)

Diameter Run U5 Run W1
(mm)

< 3.0 36 9
3.0-4.1 47 19

4.2-5.3 11 12

5.4-6.4 3 13
6.5-7.4 3 12
7.5-8.4 12

8.5-9.5 10

9.6-10.6 3
10.7-11.7 3
11.9-12.9 2

13.0-14.0 1
14.1-15.0 1

15.1-16.1 2

16.2-17.3 1

Pitting Rate - 540 pits /cm2/hr

Pitting Rate - 1340 pits/cm2/hr
i

^-	 -- 2R	 - ----

C (R)

II

¢	
i

I•

3

V - 1/3 n R2(C(R))

- (C/3) n R3

^l

(W1) - 89.2c - 24.3
(US)	 3.7c

1

W1 - U5	 ^360
0\

,

Pte;

- 140
us

W1 - US	 /360°
8.9

U5	 6O=
a

Average Over	 Volume Loss
One Revolution	 Rate

Average Over	 Volume Loss
Wake	 Rate

Average Over	 Pitting
Wake	 Rate
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APPENDIX C

Coordinate Data for the Redesigned inlet Casing Vanes

The following sets of coordinates can be used to .onstruct the nearly

designed vanes. All dimensions are in inches and the vane shares are numbered

as in Figure 48. The x-axis is positive to the right of the page and the

y-axis is positive to the top of the page.
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-4.55 4 67 3.93974
-4.5bh91 3.94704
-4, s g o6o 3.95069
-4.60104 3.94679
-4.62496 3.43574
-4 1 6x.050 3.91301
-4.7JA07 3.87005
-4.81374 3.73779
-4.4i9il 3.54913
-5.09 4 33 3.31454
-5.049*6 3.0009
-5.04050 2.77199
-4.97479 2.50564
-4.85628 2.26750
-4.69591 2.07143
-4.50973 1.921b5
-4.31502 1411619
-4.12549 1.74925
-3.95707 31'11168
-3,81716 1.69209
-3.71026 l.b9H6b
-3.67227 1164a56
-3.64564 1.637b3
-3.62706 1.6b654
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X
--------

Y
--------

-3.99357 0.22#003
-4.f)1000 0.22235
-4.03571 0.21732
-4.01I U5 0.21040
-4.lb919 () , 19h.34
-4.297o7 0.19050
-4.45270 0,19702
"162290 0.22539
-4.79410 0.2530
- 4 .95271 0.372=•2
-5.0034 11.4 9113b
-5.19bi5 0,b3586
-5.27814 O.AO130
-5.33914 0,96437
-5.37706 1.17819
- 5 .39604 1.3094U
-5.40379 1.54246
-5.40969 l.t 6315
-5.41396 1.73947
-5.42462 1.7b461
-5.43929 1.80571
-5.45202 1.f171f!+
- 5.404 1 1 1 . V7003
-5.47b48 1,61487
-5.492 ,13 l.fi09bl
-5.508b4 1.7v34b
-5.53215 1.76445
-5.56041 1.7141h
-5.61415 1.57045
-5.55350 1.37R3b
-5.66264 1.1529E
-5.62924 0191246
-5.54552 0.67976+
-5.41130 4,.67846
-5.24334 0.3037b
-50*6o3 0.16780
-4.84020 6.12162
-4.63871 0.09714
-4.45300 O.iv +.^1
-4.293 .13 n.13:b1
-4,16502 O.1b322
-4.0bE75 O.f ycs37
-4.03472 0.21204
-4.010	 E 0.22193
-3.99357 0.226o3
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X	 Y
-------- --------

-3.79444 -1.2h50P
-3.RU093 -1.27519
-3.P29;5 -1.264'11
-3.R540? -1.3(45h
-3.93974 -1.15491
-4.u5( 1 36 -1.41344
-4.187SS -1.46 697
-4.343AJ -1.50546
-4.50913 -i.51q%0
-4,0044 -1.49749
-4.01919 -1.44232
-4.94621 -1.35531
-5.063 6iS -1.2402 ►
-5.1x5 ►)0 -1.09967
- 5.24 9 i0 - ►► . q 4i 44

-5.317.12 -0.7/764
-5.3 1) 1)'25	 -().62'.iy7
-5.41 1-10 -!1.5020)5
-5.42956 - (1.45196

-5.45020 -0.41554
-5.4h667 -0.40214

-5•4h10)h -^
► .3'yy94

-5.442 ,) 4 -x.39625
-5.50i16 -0.40086
-5.51224 -0.413ul
-5.5214) -( ► .43126
-5.53199 -().40)245
-5.54371 -0.5145 0
-5. SbO ib -0.65596
-5.533+1 Q -0.n34h7
-5.461.33	 -1.03,147
-5.3*897 -1.23454
-5.2 5-- 	 -1.41'1'16
-5. 0 64 ,32 -1.55530
-4.A90 ,)b	 -1.t+4(iU1
-4.b88U6 -1.66139
-4.45174 -1.A6722
- 4.3122k' -i.A1b69
-4.15536 -1.54274
-4.02648 - 1.4oOeS
- 3.924 .45 -1.30E9
-3.951.;6 -1.3146q
3.92621 -1.29373

-3.90777 -1.27679
-3.7' AAgP -i.26508

ORIGINAL PAGE IS
OF POOR QUALITY
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1 ^	 i

VA t k R d

X	 Y

-------- --------

-3.05^ b6 -2.57171
-3.06631	 -2.59t211
-3.07735 -2.t.iu12
-3.04312 -2,63696
-3,14055 -2.70706
-3.20945 -1.76945
-3.29G3i1 -2.RY132
-3.40956 -2.96862
-3.53531 -3.03810
-3.b7 f; 3t	 -3.08062
-3.aoo97 -3.09t41
-3.94152 -3.07219
-4,074n3 -3.02629
-4.20704 -2.95619
-4.33332 -2.A6b55
-4.44641 -2.76723
- 4 .54640 -2.67159
-4.h29,47 -2.59337
-4.662RO -2.55252
-4.69316 -2.54350
-4.71222 -2.53955
-4.72514 -2.54110
-4.733n1 -2.54549
-4.73910 -2.553Ge
-4.74211 -2.5o6j0
-4.7:227 -2.56363
-4.73A7S -2.61157
-4.72631 -2965503
-4.07616 -2.76502
-4.59280 -2.89590
-4.47607 -3.02447
-4.32E14 -3.14612
--1.15688 -3.23320
-3.97275 -3.27496
3.76E+63 -3.27821

•3.51721 -39731b2
-3.46715 -3.14966
-3.34424 -3.04514
-3.24610 -2.93023
3.17202 -2."1871

-3.11865 -2.72729
-3.06465 -2.h4170
-3.07370 -2.41245
-3.0b5J1 -2,59176
-3.05Abb -2.57771
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Y

r.'.	 -3.S15b3
-1.53703

3.7	 •3.55313
2?	 -.1.51:5b1
25 -3.63m39
21	 -3.71715
12 -1.yua7o
41 -J, 00394
)u -3,49403
16 -9.07104
4u	 -4. I J()oh
14 -4.17059
11 -4.19484
,k -4.20507
1 Q -4.20238
16 -4,19083
14 -4.17ry34
20 -41 1b611
i 1 -40o3400.340
1" -4,16568
73 -4.17142
72 -4.17914
41 -4.ibiOS
52 -4.19369
)2 -4 .2U 496
Jb -4.21721
36 -4.2352b
i6 -4.25753
32 -4.30532
19 -4.35153
28 - 4.33 350
70 -n.39513
31 -4.37949
57 -4.3350E
67 -4.26342
51 -4.16953
1 U -4,06037
57 -3.905A
o3 -3.83244
46 -3.72979
Jl -3.6441b
14 -3.57744
74 -3.55305
31 -3.5373:
42 -3.52563

3

f
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X	 Y

ORIGINAL PACE Is
OF ppOR QUA-1-11V

-l. 451 53 2.27437
-1.45330 2.27943
-1 1 45511 2.2039!;
-1.457'e1 2.29025
-1.493+7 2130900
• 1,473±S 2.33450
-1.4d6tiA 2.36:,-45
-1.5019 x. 2.40399

-1.52013 2.04553
-1.54940 2.4- GOj +
-1.56,237 2.53704
x 1.58619 2.58395
-1.i112b 2.62947
-1.53719 2.b7ldl
-l.ab^ul 2.70931
-1.^^ y J ► 0 2.74046
-1.71506 2.7o399
-1.7.1 x )4 2.77943
-1.74512 2.7381
-1.757x5 2.76579
-1.76414 2.71581
-1.77011 2.76366
-1.77448 2.76221
-1.77749 1.77966
-1.7+3139 2.774o2
-1.7,443 2.76846
-1.78705 2.75398
-1.7117x3 2.74799
-1.74302 2.720b5
-1.77225 2.68799
-1.75497 2.65130
-1.73214 2.61144
-1.70482 2.5690
-1.67414 2.S27b9
-1.64167 2.48652
-1.6u539 2.44690
-1.57645 2.4u9p0
-1.54646 2.37560
-1.51891 2.345x2
-1.49526 2.32091
-1.47634 2.30111
-1.40210 2.26715
-1.=x5727 2.26247
-1. 4 5 4 02 2.27897
-1 "' 5163 2.77E+32

i

I

i.

t.

i

3
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E
I
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V ,^ '.r", T	 1 h

X Y

•2,h 1H51 0,+y751
-?..^+21b2 U.^+a?7c
-2.h7.e1t+ ^.6^1)73
-2.63213 0	 0360
-2.t% 4 Q 49 V.67293
-2.b74o4 ( ► .hd4e1
-2.70576 1).Fy91

-2 0 742/2 (.1171569

-2.7b4•!6 01733t%A
-2.k31101 0 75129
-2.B7bQb 4.77114
-2.Y2757 0.76807
-2.57703 O.NO472
-3.01517 0.N170
-3o070dO 11,A2h 52
-3.11044 O.A31 i2
-3.2.440 0.03121
-3.17?0 0.421)05
-3.3b251 0.82291
-3.IVOo 1 ► 0.644760
-3.19574 0.61316
-3.19911 0.80730+
-3.2U63h O.HO364
-3.20101 0.79972
-3.2%)udl 0.79297
-3.19bo5 0.7Kb54
-3.1937h 0.77612
-3.18611 0.76994
-3.16450 0.7i3O3
-3.13421 0.7j569
-3.09649 4172186
-3.05251 0.70359
-3.Q04U6 0.69'109
-2.95298 C.b87bv
-2. Q uO9b 0.67992
-2.P4970 0.673K4
-2.60073 0,6640
-2.75554 O.bo469
-2.71510 O.Fnl9b
-2.6tg O8v 0.0001C
-2.65345 4.F6676
-2.63359 O.bSd4G
-2.62679 0,,SS@24
-2. #^22u2 0.65793
-2.61961 0.65751
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X	 Y
-------- --------

-2.35'4 Ps	 - 1 .321147
-2.35("14	 -1.32176
- 2.3021 ,,5	 -1.32331
-2.3x917 -1.32Sd5
-2.3Rt;17 -1.331174
-2.41430 -1.3392S
-2.44 A41 -1.35003
-4.4is2b -1.30327
-2.52 7 1c+	 -1.374%)b
-1.57770 -1.3951h
-1.52157 -1.416JS
-2.66474 -1.43717
-2.711256	 -1.45-762
-2.7uO33 -1.44341
-2.7442d -1.50776
-7.93145 -1.53134
-2.N5 13 / h	 -1.55503
-2.873 13	 -1.577 /(,
-2.b78i3 -1.58752
-2.RSO44 -1.59i92
-?,kd13S -1.6036Q
-2.87977	 -t.61-)2m
-2.N7d^2 -1.5132
-2.47545 -1.61707
-2.97t17 -1.6 216 5
-2.86516 -1.625u3
-2.65544 -1.52779
-2.94419 -1.*2469
2.81734 -1.52594
-2.7d413 -1.61704
-2.74651 - 1.601ab
-2.70542 -1.56133
-2.ob230 -1.55i41
-2.61812 -1.5291b
-2.5'155R	 -1.49301+
-2.53 4 15 -1.46730
-2.44509 -1.4304
-2.45914 -1.40331
-2.42R14 -1.343511
-2.40144 -1.36130
-2.3+1119	 -1.34353
-'1.366 4S -1.33010
-2.31146 -1.32555
-2.357'72 -1.32251
-2.354.6 -1.32347
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