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ABSTRACT

The optical path length from a satellite to the earth's surface is

strongly dependent on the atmospheric pressure along the propagation path.

Surface pressure can be determined by measuring the difference between the

round-trip propagation times of laser pulses that are transmitted simulta-

neously at two wavelengths. Although pressure measurements can be made

over the ground and water, the application of this technique to pressure

measurements over the ocean is considered.

The statistical characteristics and the waveforms of the ocean-

reflected laser pulses are studied. The received signal is found to be

corrupted by shot noise and time-resolved speckle. The statistics of time-

resolved speckle and its effects on the timing accuracy of the receiver are

studied in the general context of laser altimetry.

For estimating the differential propagation time, various receiver

timing algorithms are proposed and their performances evaluated. The

results indicate that, with the parameters of a realistic altimeter, a

pressure measurement accuracy of a few millibars is feasible.

The data obtained from the first airborne two-color laser altimeter

experiment are processed and analyzed. The results are used to verify the

pressure measurement concept.
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1. INTRODUCTION

Global measurements of temperature and pressure are essential In all

weather and climate predictions. Forecasting and modeling have been ham-

pered by the lack of measurements in inaccessible regions of the earth's

surface, particularly over the oceans. Consequently, there is considerable

interest in developing remote-sensing techniques for measuring pressure and

temperature from satellites. Pressure is probably the most difficult para-

meter to measure accurately. Korb et al. [1] have proposed a differential

absorption (DIAL) technique for remote sensing of pressure and temperature

by observing the near-IR absorption in the oxygen A band. The feasibility

of their technique was demonstrated experimentally using CW lasers to make

measurements over the horizontal paths. Unfortunately, the technique

places severe constraints on the wavelength stability of the laser.

In a previous paper, Gardner [2] proposed a pressure measurement tech-

nique using a two-color short pulse laser altimeter. This technique was an'

extension of NASA's ongoing two-color ranging program to measure atmo-

spheric pressure [3]. The technique makes use of the fact that the

atmosphere is dispersive and the group refractivity 'is proportional to

pressure; therefore, the difference between the optical path lengths from a

satellite to the earth's surface is proportional to the surface pressure.

The altimeter uses fixed frequencies rather than tunable lasers and is

insensitive to laser wavelength changes. The theory on which the technique

is based is reviewed in Chapter 2.

Although pressure measurements can be made over both the ground and

water, pressure measurement over the ocean is of greatest interest. In a

previous paper [4], we studied the statistics and waveforms of the ocean
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reflected laser pulses. Parts of the results that are relevant to the pres-

sure measurement technique are reviewed In Chapter 3. In addition, we also

study the reflection of laser pulses from sinusoidal and trocholdal waves,

because these waves give rise to glints that can improve the accuracies of

the pressure measurements.

When a short laser pulse is reflected from the ocean surface, the

reflected pulse will be broadened to about twice the width of the range

spread of the wave height. Because the received pulse has a width longer

than the transmitted laser pulse, speckle will cause random small-scale

fluctuations within the received pulse which distort its shape. This

effect is referred to as time-resolved speckle. In Chapter 4, we derive

the statistics of time-resolved speckle. The problem of estimating the

arrival time of laser pulses in the presence of time-resolved speckle is

also considered. The results not only are important to the pressure

measurement technique, but also have applications in general laser radar

and ranging.

The pressure measurement technique requires accurate measurements of

the differential propagation time of laser pulses at two wavelengths. If

the altimeter uses the fundamental and tripled ND:YAG laser frequencies,

picosecond timing accuracies are required to make millibar-level pressure

measurements. The timing problem is complicated by the fact that, due to

the random dynamic nature of the ocean, the mean reflected pulse shape can-

not be predicted a priori. This means optimal estimators such as the maxi-

mum likelihood estimator cannot be used. In Chapter 5, we propose and

study several suboptimal estimators that do not require knowledge of the

pulse shape.

The timing accuracy of the receiver depends on the bandwidth of the

received signal. The signal bandwidth is related to the surface profile
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within the laser footprint. In Chapter 6, we investigate the relation be-

tween the surface profile and the bandwidth of the received signal.

In Chapter 7, we use the results obtained from previous chapters to

estimate the expected timing accuracies of realistic system designs and to

estimate the corresponding accuracies of the barometric measurements.

An airborne altimeter experiment was conducted by NASA personnel on

September 7 and 8, 1983. This initial experiment was basically a shakedown

flight for a series of more extensive flights to be conducted during the

late summer 1984. To veri'fy the theory, the data collected -were processed

by different timing algorithms. The results are discussed in Chapter 8.



2. THEORY OF THE PRESSURE MEASUREMENT TECHNIQUE

The optical path length is defined as the integral of the group

refractive index along the ray path. Because the horizontal refractivity

gradients in the atmosphere are small, the two-way optical path length be-

tween a satellite and the earth's surface for a pulsed laser system is

given by [2]

,rsat (1 + 10~6 V

ocean

N is the group refractivity, r is the geocentric altitude, and 9 is given
O

by Snell's law for a spherically stratified medium. It is convenient to

express Eq. (2.1) as the sum of the straight-line path length R. and an

atmospheric .correction AC:

H AC (2.2)

where

rrsat 10~6 Ngf) f 3<1L. 0 _i_ O
J
r sin 9

ocean

/•rsat dr _
•* sin 6 L

ocean

The first term comprising AC is the velocity correction, while the second

terra is the difference between the geometric lengths of the ray and

straight-line paths.

The atmospheric correction can be evaluated by using an appropriate

model for the group refractivity. Although AC depends on the atmospheric

pressure, temperature, and humidity along the propagation path, it is most

sensitive to pressure. In fact, when the laser is pointed at nadir, AC is
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approximately proportional to the atmospheric pressure at the earth's sur-

face. Therefore, surface pressure can be computed from measurements of AC.

A pulsed laser altimeter measures the round-trip optical path length

R . If the straight-line distance (R.) between the satellite and the laser

footprint on the earth's surface is known, AC can be calculated by using

Eq. (2.2). Because R_ must be known to within a few centimeters for the

approach to be effective, it is probably not practical. As an alternative,

a multicolor altimeter can be used to determine AC by calculating the

difference .between the round-trip optical path lengths measured at two dif-

ferent wavelengths:

AR = Rj - R2 - ACj - AC2 . (2.4)

A theoretical expression for AR can be obtained by evaluating the integrals

in Eq. (2.3). This is done by using the perfect gas law, law of partial

pressure, and the hydrostatic equation to obtain a suitable refractivity

profile. Although the dominant variation of AR with respect to pressure is

linear, there is a small quadratic variation which cannot be neglected. If

Eqs. (2.3) and (2.4) are evaluated and then solved for atmospheric pressure

at the earth's surface, we obtain [2]

R f(A.) + f(A,) 7
a = 4.73 x 10"8 i — . i . , (2.6)

T sin E J " 1/K

b = -2.357 x 1Q-3 + 1.084 x IQ"
8 TK . 1.5 x IQ"" ^ # ^ ^

tan E sin E ~



F(9.H) AR sin E _ , -4
2[f(X,) - f(X0)] 2.24x10 e , (2o8)

F(9,H) = 1 + 0.0026 cos (26) - 0.0003H , (2.9)

K = 1.163 + 0.00968 cos (29) - 0.00104T + 0.00001435P , (2.10)

0.9650 +
r

where

X = laser wavelength (ym),

e = water vapor pressure at the laser footprint (rabar),

P = atmospheric pressure at the laser footprint (rabar),

T » temperature at the laser footprint (°K),

9 - colatitude of the laser footprint,

H » altitude of the laser footprint above sea level (km), and

E = satellite elevation angle.

The function f(X) accounts for atmospheric dispersion which is responsible

for the difference in the measured pathlengths at the two wavelengths.

To compute the surface pressure it is necessary to know AR, E, e and

T. Fortunately, only a crude estimate of the surface temperature is

required. An accuracy of 20-30° is easy to obtain and should be adequate.

A temperature error of 20°C would contribute less than a few tenths of a

millibar to the pressure error for an elevation angle above 30°. Errors in

the measured values of E are also only significant at the lower elevation

angles. Above 50° elevation, the errors in E can be neglected provided
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they are of the order of a millirad or less. The pressure sensitivity to

errors in water vapor is constant with respect to elevation angle. A

10 mbar error in water vapor pressure will contribute -I mbar to the sur-

face pressure error [2]. Since water vapor pressure can approach 40 mbar

when the surface temperature and relative humidity are high, its effect

cannot be ignored. Currently, satellite-based microwave sensors can pro-

vide water vapor pressure information accurate to about 10% [5]. For a

maximum water vapor pressure of 40 mbar, a 10% error in water vapor

pressure measurement corresponds to about 0.4 mbar error in surface

pressure error. So, by using the information collected by the microwave

sensor or by installing a microwave sensor together with the laser

altimeter, the error due to water vapor can be reduced to an insignificant

amount.

In an actual system, the dominant error source is likely to be the

differential path-length measurement. The pressure sensitivity to differen-

tial path-length errors [2] is given by

3P _ 0.212 sin E / _ 1 _,_ ,__x ,, ,-^• = ~c7~\—\ et \ \ (mbar/mm; . QZ.1Z;
0 AK t ̂  A. / — Z^ A— )

This sensitivity depends both on the choice of wavelengths and on the ele-

vation angle. At low-elevation angles the laser pulses travel through

more of the atmosphere so the pressure effects are more significant. In

addition, AR is greater for larger wavelength differences because of

greater differences in group refractivity. 3P/3AR is plotted vs. elevation

angle in Fig. 2.1 for three possible wavelength combinations of fundamen-

tal (1064 nm), doubled (532 nm), and tripled (355 nm) ND:YAG laser

frequencies. When ranging at nadir using the 355 and 1064 nm wavelengths,



E 3
E

f
T-oJ<r

i -

X, = I 06fj.m

\z * 0.53/im
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Figure 2.1. Pressure measurement sensitivity to differential pathlength
errors as a function of the satellite elevation angle.
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the required differential path-length accuracy is 0.6 mm/tnbar, which

requires a timing accuracy of 2 psec/mbar.

Although the pressure sensitivity to errors in AR decreases as the

elevation angle is decreased, other error factors become more significant.

The sensitivity to temperature and elevation-angle errors and the differen-

tial path-length errors increase as the elevation angle is decreased.

Consequently, the best performance will be obtained with the laser pointed

at nadir. When the laser is pointed to within a few degrees of nadir,

Eq. (2.5) can be ,, approximated by

P a - -g- = 2.12 x 102 f(x?^-f(x) AR ~ 0.095e . -(2.13)

In this case, the rms pressure error is approximately

a
P

where a.R, a , and OL are the rms errors in AR, e, and E, respectively.

In Eq. (2.14),

3P
-g- = 0.095 (mbar/mbar) , (2.15)

<mbar/mrad) ; - -(2

and (3P)/(3AR) is given by Eq. (2.12).
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3. LASER BACKSCATTER FROM THE OCEAN

Although pressure measurements can be made over both the ground and

water, pressure measurement over the ocean is of greatest interest. In a

previous paper [4], we studied the statistics and waveforms of the ocean

reflected laser pulses. Parts of the results that are relevant to the

pressure measurement technique are reviewed in this chapter. In addition,

we also study the reflection of laser pulses from sinusoidal and trochoidal

waves, because these waves give rise to glints that can improve the accu-

racies o'f the pressure measurement.

For near normal incidence, the reflection of laser pulses from the

ocean is due mainly to scattering by randomly distributed specular points

on the surface. These specular points arise from ocean-wave structures

with slopes oriented to reflect the signal back to the receiving telescope.

Ocean waves are generated by the joint actions of wind as a disturbing

force, and gravity and surface tension as restoring forces. The larger

waves, with wavelengths greater than ~2 cm, are gravity waves. The smaller

waves, for which surface tension is the restoring force, are capillary

waves. The wavelengths of capillary waves are bounded at the small-scale

end by viscous dissipation to ~1 mm. Since the wavelengths of even the

smallest capillary waves are much larger than an optical wavelength,

diffraction is not important, and the laser backscatter can be analyzed

using geometric optics.

If the laser beam is pointed at nadir and the reflected pulses are

detected by a direct-detection receiver, the mean received signal con-

ditioned on a given ocean surface profile is given by [41, [6]
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E [ S ( t ) | ? J -7<t) = <N> / d2_p b2(_p,z) | f ( t - <JO| 2 * h( t ) , (3.1)

where

2bn(_p,z) = |a(_p,z)|n Sj!/2(_p)// d2_p|a(j3,z)|n e£/2(_p) , (3.2)

and

. 2z , p2 2g(j>) ,, ,.
*- — + ^ ~ — — * (3'3)

Here

<N> = expected number of detected signal photons/pulse,

_p « (x,y) = horizontal coordinate vector on the ocean surface

measured from the center of the footprint,

a(_p, z) = complex amplitude cross section of the laser footprint,

3 (_p) ° power reflection coefficient of the ocean surface,

5(_p) = ocean surface profile,

z = altitude of the laser altimeter,

c = velocity of light,

f(t) ° transmitted pulse amplitude, and

h(t) = impulse response of the receiver electronics.

In this equation ij; is the delay of the reflected pulse. The first term in

Eq. (3.3) is the nominal distance of the target, the second term is the

additional delay due to the curvature of the laser wavefront and the last

term is from the range spread of the target. The power-reflection coef-

ficient depends on the angle of incidence and sea state. For divergence

angles of a few milliradians or less, 6 (_p) is essentially constant within

the footprint.
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The covariance function of Che received signal, which describes Che

fluctuation of the received signal due to shot noise and speckle, is given

by [4], [6]

•> " 7Cs ( tl' t2 ) = <N> / d £ b
2

(-P'z) / d T| f (T - •!>)! h C t j - T) h(t2 - T)
— CO

- / d*_p b4(_p,z) g(tx - t) g(t2 - *) , (3.4)

where

K ~ 1 3̂ -2 (3.5)

<MB >MM ^ ^^

and

g(t) = [f(t)|2 * h(t) . (3.6)

In Eq. (3.4) K is the ratio of the receiver aperture area (A ) to the

speckle correlation area and g(t) is the point target response of the

system. The first term on the right-hand side of Eq. (3.4) is due to shot

noise, while Che second Cera is due Co speckle noise. For a Gaussian laser

cross secCion, K is given by [4], [6]

12 tan 8L\2
(3'7)

where 9_ is the beam divergence (half-angle measured at exp(-l/2) point).

For typical laser altimeter configurations, K is of the order of a few

thousand or larger.

The wave height at any given point on Che ocean is the result of many

wave components that have been generated by the wind in different regions

and have propagated to Che poinc of observation. Since the motions of dif-

ferent wave components are weakly correlated, the central limit theorem can
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be used to argue that the wave height (i.e., surface profile) is Gaussian

distributed. Therefore, over areas which are large compared to the longest

waves on the ocean, £(_p) is usually assumed to obey Gaussian statistics.

Experimental data tend to support this hypothesis. Consequently, the wave

slopes are also Gaussian distributed and independent of the wave height

[4]. Under these conditions, the power-reflection coefficient for normal

incidence is given by [4], [7]

8P = 2 ' -.
4ir(S + 2 tan* ST)

2
where R(0) is the Fresnel backscatter coefficient and S is the mean-square

(MS) value of the total slope. The factor 4ir is needed to convert scat-

tering cross section to reflection coefficient. An empirical relationship
2

between S and wind speed was derived by Cox and Munk [8] :

> = °*°03 +

where W is the average wind speed in m/sec measured at 12.5 m above the

mean sea level.

The expected received pulse can be calculated by taking the

expectation of Eq. (3.1) over the probability distribution of the surface

profile 5. In Figs. 3.1 and 3.2, we show the mean received waveforms for a

laser altimeter that has a Gaussian-shape point-target response g(t). The

point-target response is assumed to have a rras range width (ca ) of 1 cm.
o

In Fig. 3.2, the mean waveforms are plotted for five different sea states.

These figures show that the larger the significant wave height (SWH), the

broader the return pulse. In Fig. 3.2, the sea state is fixed while the

beam divergence is varied. As the beam divergence increases, the trailing
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edge of the pulse is broadened by the wave front curvature effects, and the

return pulse becomes asymmetric. To obtain the sharpest return pulses, it

is necessary to have a small beam divergence which can be achieved rela-

tively easily with laser altimeters. This is more difficult to achieve

with radar altimeters due to their limitation in the antenna size.

The pulse shapes computed using the above approach will accurately

predict the actual pulse shapes whenever the laser footprint is large com-

pared to the periods of the waves. However, if the footprint is small,

the local probability distribution of the surface profile within the

footprint may be considerably different from Gaussian, For pressure-

measurement applications, a small beam divergence angle is desired to mini-

mize pulse broadening due to beam-curvature effects. As a consequence,

the size of the footprint will be small and may not be significantly

larger than the wavelength of the long-period ocean waves. Sea-wave

records often reveal a sinusoidal or trochoidal profile for the dominant

long-period waves which may extend over distances of a. few hundred meters.

In these areas, the surface profile is more suitably modeled as a large

amplitude sinusoidal (or trochoidal) wave with superimposed small amplitude

disturbances (capillary waves or small gravity waves) of short correlation

length. For a sinusoidal wave model, we have

-x + 8J + SjU) , (3.10)

where A is the amplitude of the sinusoidal wave, A is its wavelength, B

is the phase angle and ?i(_p) is the small-scale disturbance. Using this

model, the mean received signal can be expressed as
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OO

E{S(t)} = / d5

b2(j,,z) /" d5l P < C I ) g(t - I* -
»

(3.11)

2 , l I Q
» OO

The integration over C, can be viewed as a convolution, so Eq. (3.11) can

also be written as

E{S(t)} -yE{S(t)|51 = 0} * p^ (--| t) . (3.12)

T.his equation Implies that we need only evaluate the mean waveform for the

5, equals zero case, I.e., E{S( t) [ £. = 0}. The mean received waveform for

any distribution of C. can be obained by convolving the probability density

function of ̂  with E{S(t)|?1 = 0}.

Expected received pulse shapes were calculated for several values of

beam divergence using the sinusoidal model. The results which are plotted

in Fig. 3.3 show strong reflections from the wave crests and troughs.

These reflections or glints occur because of the relatively large surface

area at the crest and trough altitudes. The sharpness of the observed

glints Is directly related to the beam divergence. When the divergence is

large, beam-curvature effects broaden the reflected pulses. The rise time

of the crest reflection is limited only by the transmitted pulse width,

beam divergence, and the receiver bandwidth. The tail at the trough

reflections is primarily due to beam curvature effects. In Fig. 3.4, we

calculated the results for three different ocean-wave heights. The wave

height of the ocean can be inferred from the received pulse by measuring

the separation between the crest and trough returns.

When the laser is pointed slightly off nadir ,in a direction normal to

the wave fronts, the received pulse broadens, and multiple glints appear
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because of reflections from successive wave crests and troughs. This is

illustrated in Fig. 3.5 for a nadir angle of 1°. A sinusoidal wave model

was used with a wave height of 1 m (crest to trough) and a wave period of

10 m. Crest reflections are responsible for sharp peaks in the first half

of the pulse, while trough reflections are responsible for the structure in

the second half. At 1° off nadir for a 10-m wave period, the range dif-

ference between successive crests (or troughs) is ~17.5 cm. These results

suggest that it may be possible to measure the crest-to-trough wave height

and wave period as well as SWH using a short-pulse laser altimeter. This

is not possible using microwave altimeters because the curvature effects

due to the large beamwidths (~l-2°) obscure the crest and trough reflections.

In the actual ocean, the wave crests tend to be relatively high and

sharp, while the wave troughs are comparably smooth and shallow. In some

cases, the wave is more suitably modeled as a trochoid [9], i.e.,

Q (̂.P) (3.13)

and

x = x - Asinf-l1 x + e) . (3.14)o \A o /

For a sinusoid the profile depends sinusoidally on x, while for a trochoid

the profile depends sinusoidally on x , which is related to x by Eq. (3.14),

a non-linear transformation. The difference between a trochoid and a

sinusoid can be seen from the following reasoning. For simplicity, let

3 = 0, so the wave crest occurs at x = x =0. We have

x > x -A/2 < x < A/2o

x = x x = A/2, -A/2 (3.15)
o

x < x -A < x < TA/2, A/2 < x < A .
o
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For points around the crest, x > x, the decay of a trochoid from its peak

is faster than a sinusoid, so its peak is sharper. For points near the

trough, x < x and the rise from the trough is slower, resulting in a

smoother trough. In Fig. 3.6, we plot sinusoidal and trochoidal waves

for a trough-crest wave height of 2 m and a wavelength of 10 m. Indeed,

the trochoid is sharper around the crests and smoother around the troughs.

Since trochoids have sharper crests and smoother troughs, we expect

the reflections from the crests to be weaker and the reflections from the

troughs to be stronger than in .the case of sinusoids. This is born out by

the results shown in Fig. 3.7. For trochoidal waves, the reflections from

the troughs are enhanced. These results should be compared with Fig. 3.3.

Obviously, the ocean-surface profile is not a perfect sinusoid or

trochoid. The Gaussian model and the sinusoidal wave model can be viewed

as the two extremes. The actual received pulse shapes are likely to lie

somewhere between the broad smooth pulses, which result from the Gaussian

model, and the highly structured shapes, which arise from the sinusoidal

model. For the pressure-measurement application, a small laser beam

divergence angle is desired to minimize pulse broadening due to beam-

curvature effects. Therefore, the received pulses are expected to exhibit

fine scale structure due to strong reflections within the laser footprint.

Later we will see that this fine structure is an Important factor In

achieving the picosecond (i.e., millimeter) timing accuracies which are

required for measuring atmospheric pressure.
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4. TIME-RESOLVED SPECKLE

4.1. Introduction

For pressure measurements over the ocean, the ocean surface is the

ranging target. Since the ocean surface is rough on the optical scale, the

reflected laser pulses are corrupted by speckle. In this chapter, we study

the statistical properties of speckle and its effects on the ranging

accuracies of laser altimeters. The results not only are important to the

pressure measurement technique, but also have applications in general laser

radar and ranging.

Since the first discovery of the laser speckle phenomenon, there have

been many studies treating its statistical properties. However, these stu-

dies have been either for CW laser illumination [10], [11], or for a pulsed

laser where the width of the received pulse is comparable to the correla-

tion length of the speckle-induced fluctuations [12]. This latter case

applies when the reflecting surface, or target, is rough on the optical

scale but has a range spread which is much smaller than the laser pulse

width. The speckle causes random fluctuations of the total received energy

and is an important noise phenomenon in target detection.

With the advent of mode-locking and Q-switching technologies, laser

pulses of a few picoseconds in durations are common today. The narrowness

of the transmitted pulse promises higher accuracies in applications like

remote sensing and ranging. In practice, most targets will have range

spreads that far exceed the width of the laser pulse. Such would be the

case for reflections of short laser pulses from airplanes, the ocean sur-

face and the ground. The received pulse will be broadened to about twice

the range spread of the target. The pulse shape is related to the geometry
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of Che target. la this case, the received pulse has a width longer than

the correlation length of the speckle-induced fluctuations. As a con-

sequence, speckle will cause random small-scale fluctuations within the

received pulse which distort its shape. Similar phenomena can also occur

for extended flat diffused targets, where the broadening of the received

pulse is due to the wavefront curvature of the laser beam and for con-

tinuously distributed targets in the atmosphere. A computer-generated

example of a speckle distorted pulse is shown in Fig. 4.1. This phenomenon

is referred to as time-resolved speckle.

For applications like target identification and remote sensing of sea

states [4] , the waveform of the received pulse is used to characterize the

target. Therefore, knowledge of the statistics of time-resolved speckle is

important. In some other applications such as laser ranging and the

pressure measurement technique considered in Chapter 2, estimation of the

arrival time of the returned pulse in the presence of time-resolved speckle

is the problem.

In this chapter, we first derive the statistics of the detected

signal. Then the problem of estimating the arrival time of laser pulse in

the presence of time resolved speckle is considered. In Section 4.5, we

study partially developed time-resolved speckle. A specific example is

treated to illustrate the approach taken in the analysis.

4.2. Statistics of the Detected Signal

In this section, the statistical properties of the detected signal for

laser pulses that have been reflected from a diffuse target are considered.

The results are derived for a direct detection-type receiver system, which

consists of a receiving telescope followed by a photodetector.
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Let the observation interval be (0,T) and the observations be the pho-

toelectron counts in N time bins each with width T . The observations will
o

be denoted by the photoelectron count vector k, and

k = (k^ kN) , (4.1)

where k is the photoelectron count within the i time bin.

The statistics of k are related to the signal field a (r,t) received
1 S ̂ ™

over the past T seconds. Within the i time bin, the signal energy

received by the system is

W. - / ° dt / d2rja (r,t)|2 , (4.2)

"-"'o *R
where we have assumed a simple aperture weighting function, which takes on

the value 1 inside the aperture and 0 outside the aperture. A_ is the

receiver aperture area. For reflections from a diffuse target, a (r,t)
S """"

follows circular complex Gaussian statistics [10].

We can also write W as an infinite sum by performing a modal

decomposition on the received field a (r_,t). Using the Karhunen-LoeVe
S

expansion, we have

CO

a^JL.t) - I °£ *m
(i»t) ' (1 * 1)T

0 < c <- iT
0

 (4*3)

m=l

where (1)1 } form a complete orthonorraal set of basis functions, and o 's are

uncorrelated. Since a (r,t) has circular complex Gaussian statistics, thes ̂ ~

coefficients a 's are circular complex Gaussian variables, which impliesm

that they are independent.

By substituting Eq. (4.3) into Eq. (4.2) and making use of the ortho-

normal .properties of ty 's, we have
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Wt- I |c£|2 . (4.4)
1=1

This shows that the signal energy received within the 1 time bin consists

of contributions from infinitely many modes. The energy associated with

each mode obeys the negative exponential distribution and is independent of

the energies of the other modes. In the absence of photodetector satura-

tion, the following relation holds:

kt- I nj , (4.5)
m=l

where n is the photoelectron count in the i bin due to the m mode.

i. i 2
The distribution of n when conditioned on (a | is Poisson, and since

|a | is negative exponentially distributed, n is a Bose'-Einstein

variable. The probability density function of k, is then the infinite

convolution of the probability density functions of n , i.e.,

j) - p(nf) * p(nj) * ... . (4.6)

Evaluation of Eq. (4.6) involves solving the eigen equation and carrying

out-the infinite convolution. Simplifications are-possible with some

approximations.

For the 1 time bin, the observation volume, which is the outer pro-

duct of the receiver aperture area with the time interval, can be regarded

as consisting of M. subvolumes or correlation cells [10], [13], with the

energy density being approximately constant within each cell and statisti-

cally independent of the energy densities of all other cells. The energy

associated with each correlation cell is assumed to obey the negative expo-

nential distribution, with the mean energy in each subvolume taken to

be the same. This is equivalent to assuming the solutions of the eigen
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equation in the Karhunen-Loe*ve expansion have only M. non-zero eigenvalues,

each of the same value [14], [15]. It turns out that for a simple aperture

weighting function, this is a reasonable assumption [10].

Under the above assumptions, the energy W received during the

i time bin is gamma distributed, obeying the probability density function

W.\M.I
exp wi (4.7)

where W is the mean value of the signal energy in the i bin W..

Mathematically, this is nothing more than matching the actual probability

density function of W with a gamma density function. Since in practice,

we will only be able to calculate the first and second moments of the

intensity of the received signal, the most natural and simple way to choose

the parameters of the approximating gamma density function is to match the

mean and variance with the actual values.

The expressions for the mean and variance of W can be obtained by

using Eq. (4.2) together with the properties of the circular complex

Gaussian fields; the results are.[4], [6]

_ ir ,
W - / ° dt / d r J (r,t;r,t) (4.8)
1 "-̂ o \ " ̂ "

and

var<W ) - / T° dt / T°- dt / d2r / d2r. |j Cr_ ,t ;_r t ) |2 ,
1 U-1)T l (1-1) T 2 A_ ^ A_ 2 a l l 2 2

° o -R -R (4>g)

where J is the mutual coherence function of the received field.

For reflections from diffuse targets, the mutual coherence function

can be calculated using the Fresnel reflection formula together with the



31

properties of Che circular complex Gaussian fields; Che results are [4], [6]

Q / d% b2(jp,z)jf(c - <0i
2 (4.10)

and

AR

(4.11)

where Q is Che expecCed received energy per pulse. The remaining variables

were defined previously in Chapter 3.

For a Gaussian shape transmitted pulse intensity with rras width o , we

have the following simplified results,

and

where

(4.12)

(4.13)

d2p G(of,t (4.14)

F2(t) (4.15)

G(a,t) - —==— exp
/2ir a 2 a

(4.16)
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F.(t) is the mean received pulse shape and F2(t) is the waveform of the

variance of the received signal. Both are functions of the target.

By substituting Eq. (4.12) into Eq. (4.8) and making the assumption

that T is much smaller than the width of F ( t ) , we have

(4.17)

The variance of W can be calculated from Eqs. (409) and (4.13)

2 it it It + t.\
v a r ( W . ) - - 2 - / ° dt. / ° dt G(/2a .t -t ) F * L

1 K l - 2 f l 2 * 2

Tl dT
2

F2(T2)

+ / dT. Gt/Iov.T.) / T. dT, F(T7)[> ,
_ * I A / J l \ _ A * f~

-T

(4.18)

where we made the following changes of variables:

Tl - Cl *

and

C2)/2 '

(4.19)

(4.20)

Assuming the width of F (t) is long compared with T , and T is large com-

pared with a , we have

t

°

2a O O

(4.21)
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Finally, the parameter M. of the gamma density function can be obtained by

matching the degree of freedom of the gamma density function with the

signal-to-noise ratio,

w? K

M will be referred to as the number of speckle correlation cells in the

t"h
i time bin.

If the laser footprint is uniform, or if the target is small compared

to the laser footprint and the width of the transmitted laser pulse is

small compared to the range spread of the target, F.(t) and F_(t) given by

Eqs. (4.14) and (4.15) are approximately equal and we have

M1 = K FjUr^Tj . (4.23)

Since F,(iT )T < 1 , M. is always smaller than K. Equation (4.23) is not a

good approximation of Equation (4.22) in the leading and trailing edges of

the received pulse where it could predict values of M. smaller than one.

M. should always be greater than one.

For the case when the receiver can not resolve the return waveform so

only the energy of the received pulse is observed, the number of speckle

correlation cells is simply K [12]. For a target with large-range spread,

only part of the target area is illuminated within one time bin and the

area available for interference is smaller. As a consequence, the size of

the speckle is larger and M. is smaller than K.

Since W. is gamma distribtued with parameter M. , the distribution of

k can be shown to have a probability density function given by [12]
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F(k + M) / M \-k / k" \-M+ • (4-24)
Here

(4.25)

n is the quantum efficiency of the photodetector and <N> is the expected

number of photoelectrons per pulse. When M is an integer, Eq. (4.24)

is the negative binomial density function.

For most laser receivers T is longer than the transmitted pulse width.

For this case, the photoelectron counts from different time bins are

statistically independent. The joint density function of k is then

N
P(l?) = H p(k.) . (4.26)

This equation forms the basis for the analysis on receiver timing in

Section 4.3.

We will look at some specific target configurations. The first

example Is an extended flat diffuse target that covers the entire laser

footprint. For simplicity, we assume the target to have uniform reflec-

tivity. This is a good model for reflections from the ground, sands or

walls of large buildings. In this case, the broadening of the received

pulse is due to the curvature effects of the laser beam.

Assuming a Gaussian laser cross section with a radius a (exp(-l/2)

point), we have

a.' 2
K (4.27)

For normal incidence, the mean and variance of W. can be calculated to give
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v^2
2 2 2c z af czito erfc

/2~
(4.28)

and

Q2CZTQ

2 exP

r 2 2 2c z af

k
czit

o
2 erfc

czcr.

2 a"

IT
(4.29)

Equations (4.28) and (4.29) are plotted in Figs. 4.2 and 4.3 for three dif-

ferent laser beam divergence angles. The number of speckle cells in the

, th
time bin is given by

M*i

KCZT _o ,2= x— erfc
^

cza-f _

2/2 a*i

ito
/2~af

_

/
/ erfc
/
/

cza, ir
(4.30)

which is plotted in Fig. 4.4. The figure shows that M, starts increasing

when the leading edge of the laser pulse illuminates the target; it remains

constant after the trailing edge of the pulse arrives at the target. This

can be seen from the formula of M. shown in Eq. (4.30). When the entire

pulse illuminates the target, i is large and M. is approximately given by

Mis — (4.31)
X z

which is constant with time. Equation (4.31) does not depend on o , so the

curves of M in Fig. 4.4 for three different beam divergence angles coin-

cide with each other.

For non-normal incidence, additional broadening due to the tilt of the

target dominates the pulse shape. Neglecting the curvature effects, we

find both the mean and variance of W to be Gaussian in shape; they are
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plotted in Figs. 4.5 and 4.6. M. is plotted in Fig. 4.7. M, is constant

in time.

The next target we consider is a finite size flat plate. The

geometry of the target is shown in Fig. 4.8. The face of the plate is not

normal to the incident beam, instead, the plate is slanted with an angle 9

and, therefore, has a non-zero range spread equal to the length of the

plate times sin 9. This model can represent reflections from roofs,

billboards or one facet of a vehicle.

We shall assume the center of the plate is situated at the center of

the laser footprint. For a rectangular plate of size I m long by h m wide,

the mean and variance of W can be calculated to give

QCTS I ~T
< 4/Tir tan 9 a. erfi

£ cos 9
2/2"

i +
4 tan2 6 a2

•exp 1 -

i +
4 tan' 6

erf

/ i sin
f

1 / c2«J\ /o- /, 1 f

\ f / 2 2
\ / 4 tan 9 of

9 /1 <k

/ 4

/Tc<jf

2 2
c af

tan 9 o2

- erf
/ iT

O

/ 2 2U 3 ( , c af
V V1 4 tan2 9o2

/ 2 2

o ( , C af

/ 4 tan2

vTcaf

\
2 \

9 o 2

/
(4.32)
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Time Bin Width =67 cm
Torget Distance =500 km
Receiver Aperture Area =100 cm2

Beam Divergence Angle = O.I mrad
Loser Wavelength = 1064 nm

(I)

Nadir Angle' (I) 5°
(2) 10°
(3) 15°

TIME BIN NUMBER

Figure 4.5. Mean received pulse shape for reflection from an infinite
flat diffuse target. Non-normal incidence. Magnitude scale
is relative.



41

.065 T

Time Bin Width = 67 cm
Target Distance = 500 km
Receiver Aperture Area = 100 cm2

Beam Divergence Angle =0.1 mrad
Laser Wavelength = 1064 nm
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Figure 4.6. Waveform of the variance for reflection from an infinite flat
diffuse target. Non-normal incidence. Magnitude scale is
relative.
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Time Bin Width =67 cm
Torget Distance =500 .km
Receiver Aperture =100 cm2

Beam Divergence Angle =0.1 mrad
Loser Wavelength =1064 nm
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Figure 4.7. Number of speckle correlattoa cells for reflection from an
Infinite flat diffuse target. Non-normal incidence.
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Plate Target

9

8
Laser

Figure 4.8. Geometry of the finite size plate target.
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var(Wt)

K/ir o. a- erf I cos 9

2°i

/ 16 tan2 9
I 41

w Oj C O»

•exp 1 -
1 +

2 2c af

4 tan2 6 a2

2 2c o-

erf

sin 9 /I + 2 2
4 tan 6 o*

2 2
c a.

co.

2 2
4 tan 9 a.

2 2c a.

- erf

Jl sin 8 /I 2 2
4 tan 9 o.

ca,

ft /l + 2 7
4 tan 6 o.

(4.33)

with K given by

K -

I cos 9

2/2
erf

A2 2 Ji cos
X z erf—=—-

h
(4.34)

When the plate is small compared to the laser footprint, K is simplified to

A ah cos 9
K = R n „ . (4.35).2 2

X z

The mean and variance of W are plotted in Figs. 4.9 and 4.10 for three
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Time Bin Width = 0.9cm
Target Distance = 300m
Plate Size = Im x 0.05m
Receiver Aperture Area = 100cm
Laser Wavelength = I064nm

Slant Angle of the Plate
(1) 35°
(2) 45°
(3) 60°

TIME BIN NUMBER

Figure 4.9. Mean received pulse shape for reflection fron a finite size
plate. Magnitude scale is relative.
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Figure 4.10. Waveform of the variance for reflection from a finite size
plate. Magnitude scale is relative.
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different slant angles of the plate. The number of speckle cells is

plotted in Fig. A.11. The number of speckle cells starts increasing when

the leading edge of the laser pulse illuminates the plate; it reaches a

constant value when the trailing edge of the pulse arrives at the plate.

The number of speckle cells starts decreasing when the leading edge of the

pulse leaves the end of the plate. When the whole laser pulse illuminates

the plate, M. maintains a constant value given by

Mi
KCT erfo

i. cos 9

_ 2«i
e\

A /if tan 9o erf ~£ cos 9"

2/2"^

r ACT a. erf
R ° i 2/2a.

2 2
X z tan 9 erf

(A.36)

For finite-size targets, the relative sizes of the target and laser

footprint are important factors in determining the return pulse shape. For

example, if the length of the plate is increased from 1 meter, which is the

length of the plate used for Figs. A.9, A.10, and A.ll, to 3 meters, the

corresponding plots become Figs. A.12, A.13, and A.1A, which are similar to

the return waveforms from an infinite-size target.

Another target we consider is a Gaussian random surface. This is a

•good model for reflection of laser pulses from the ocean surface. For

negligible curvature effects, the expected received pulse shape is Gaussian

[A]. If the transmitted laser pulse is short compared to the surface

height variation, F (t) and F (t) will be approximately equal, and
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Time Bin Width = 0.9cm
Target Distance = 300m
Plate Size = Im x 0.05m
Receiver Aperture Area = 100cm*
Laser Wavelength = I064nm

(I)
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Slant Angle of the Plate
(1) 35°
(2) 45°
(3) 60°
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60. 100. 140. 1S0.

TIME BIN NUMBER

Figure 4.11. Number of speckle correlation cells for reflection from a
finite size plate.
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Time Bin Width = 2.7cm
Target Distance = 300m
Plate Size= 3m x 0.05m
Receiver Aperture Area = 100cm2

Laser Wavelength = 1046 nm

Slant Angle of the plate1

(1) 35°
(2) 45°
(3) 60°

20.

TIME BIN NUMBER

Figure 4.12. Mean received pulse shape for reflection from a finite size
plate. Magnitude scale is relative.
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Time Bin Width = 2.7cm
Target Distance = 300m
Plate Size = 3m x 0.05m
Receiver Aperture Area = 100cm
Laser Wavelength = I064nm
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Figure 4.13. Waveform of the variance for reflection from a finite size
target. Magnitude scale is relative.
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Time Bin Width = 2.7cm
Target Distance = 300m
Plate Size = 3m x 0.05m
Receiver Aperture Area = 100cm
Laser Wavelength = I064nm
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Figure 4.14. Number of speckle correlation cells for reflection from a
finite size plate.
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(4.37)

where o_ is the rras height of the surface profile. In this case, M, is

roughly proportional to the pulse shape.

In summary, the received signal in the ic" time bin is gamma distri-

buted with parameter M , and when M is an integer, the photoelectron count

is negative binomial distributed. M is the signal-to-noise ratio of the

received energy and is referred to as the number of speckle correlation

cells. From the examples considered, we find that the mean received wave-

form is closely related to the geometry of the target. The statistics of

time-resolved speckle also depend on target geometries.

4.3. Estimation of Arrival Time

In laser ranging and altimetry applications, the arrival time of the

returned pulse, denoted by T., is of interest. In this case, Eq. (4.26)

can be written explicitly as

N F(k, + M.(T,)) / M.(T.)\-k. / k". ( t,)\-M. ( O
= IT , * L xx 1 + Ml + * J -1-1 t k(

1 d (4.38)

The Maximum Likelihood (ML) estimate of the arrival time is the value of

t, that maximizes the likelihood function p(icJT ), i.e.,
d d

arg max [p(kJT,)]
T,a

=» arg max [in p(k|Td)] , (4.39)
Td

where arg max[F(x)] denotes the argument x that maximizes F(x). By substi-
x

tuting Eqs. (4.38), (4.25) and (4.22) into Eq. (4.39), we have
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N

1=1

N N
+ M(T,))- I fcir(k, + i) - I tor(M.(r,))

i d . _ . i . _ , i di=l

KF.(iT - T.) \ N
~-^ — - I M <

1=1

<N>F (it - T,)

• arg max
Td

N
- I kt1=1 ,

(4.40)

Assuming that the received pulse always stays inside the observation inter-

val for all values of T., so that there are no end effects, we obtain

ML
arg max

Td

N

1=1 i

jjwv -T) *<WTd» - J

2" o d;

N

I l

1=1 - V
(4.41)

where we have made use of the following relation

£nF(x) •(--i: Jtax - x + -r £n2ir x > 1 (4.42)

Assuming the summations of M.(T,) over i to be independent of T , we have
i d d

T, = arg max
ML T, 1=1

Mi(Td)}

- I k to 1
1=1 x * <N>F2(iTQ -

(4.43)

When the footprint is approximately uniform over the target area and the

width of the laser pulse is short compared to the range spread of the

target, F. and F. are approximately equal. Equation (4.43) reduces to

arg max
ML

arg max(H(T.)] (4.44)
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The performance of T, will be analyzed based on a procedure similar
ML

to that used by Bar-David 116].

If H(T,) is differentiable, we haved

0 . (4.45)
r.
dML

ML

If the actual arrival time of the pulse is denoted as T. , then H( T.) can

be expanded using the Taylor series expansion centered around T, as

,2

H(Tdo) + *(Tdo)(Td *

.)'
(4.46)

Differentiating Eq. (4.46) with respect to T, and using Eq. (4.45) yield

H(Tj 0 - H(Tdoj (T, H(T. (4.47)
-ML ~" ~ML

from which it follows that the error of the estimator is

e = T, - T,
d°

(4.48)

provided H(T, ) * 0. This constraint excludes strictly rectangular pulses
do

from this analysis.

The bias and variance of the estimator can be written as

B[e] =-E[H(Tdo)/a(Tdo)3 (4.49)

and

var[ e] (4.50)

where the expectations are over the observation vector k.
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Assuming E [H( T )] » var[H( T. )], such that H( T . ) can be replaced

by its expected value, we have

E{H(T. )}
E[e] = -- .. d° (4.51)

E{H(rdo)}

and

var[H(T, )]
var[e] = —~ ^— . (4.52)

E2{H(Tdo)}

E[H(Td o)] is given by

E[H(Td o)]

N
- I M . ( T . > E{ta(k. + M , ( T , ))} . (4.53)

i-1 i d° 1 i do

To proceed further, we note that

£n(k, + M . ( T . )) = £n(lT4 + M, ( T, )) + *n[l
^i + V W

= ta(k + M . ( T . )) += ~f , (4.54)
i x do k + M ( T )

where we have separated k, into a deterministic part k. and a zero mean

random part Ak, . The validity of Eq. (4.54) requires

(4.55)
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which is satisfied when Che received signal level is high or when the

number of speckle cells is large.

Substituting Eq. (4.54) into Eq. (4.53) yields

, - Tdo>
oo

s KTQ / Fj to Fx => 0 ; (4.56)
«• oo

therefore, the estimator is unbiased. The variance of H( T, ) is
do

var[H(T )] - 1 =
NT MjCt^)

ldo var(Aki) . (4.57)

From the probability density function of k shown in Eq. (4.24), we have

var[Ak.] = k +-p . (4.58)i i n .

By substituting Eqs. (4.58), (4.25) and (4.23) into Eq. (4.57), we obtain

E[H(TdQ)] is given by

E[H(Tdo>] - Mi(tdo) to, + Mi(tdo))

N .. _ N M7<Tdo
= I M, (T, ) fci(k. + M.(T, )) + V =. *•. i do i i do , *•. v ( T - h M f r )i^ do;
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where use has been made of Eq. (4.54). Finally, by substituting these

results into Eq. (4.50), we have for the ML estimator

var[ e] = (7^ + ±) ^ T ' (4'61)

' N Fi \

£tJ

As a comparison, the ML estimator derived for the case of negligible

speckle noise is [13], [16],

N
r. = arg max
to Td

in (4.62)

It will be interesting to see how this estimator performs in the presence

of speckle. Employing the same procedure used above, we find it to be

unbiased and the variance of its error is given by

r i •*• l j^ l l—i \ i/ // ,~\var[e] = -^- ^— + - -77-= , (4.63)

which reduces to Eq. (4.61) when F and F are equal. This indicates that,

under the assumptions made in analyzing the two estimators, i.e., shot

noise and speckle noise are not severe, their performances are

indistinguishable.

It can be seen from Eq. (4.63) that the timing error is smaller for

waveforms with larger first derivative. The effects of signal bandwidth on

the timing performance will be further discussed in Chapter 5.

We shall use Eq. (4.63) to calculate the timing performances for the

target geometries considered in Section 4.2. For normal incidence from an

infinite flat target, the mean received waveform corresponds to Fig. 4.2.
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The ranging accuracy is calculated and plotted in Fig. 4.15 versus the

average number of photoelectrons. From the figure, we see that in the

limit of high signal energy all three curves have the same accuracy limit

set by speckle. This is expected because they have the same number of

speckle cells as shown in Fig. 4.4. For non-normal incidence, the mean

waveform was shown previously in Fig. 4.5 and the ranging accuracy is

plotted in Fig. 4.16. For both normal and non-normal incidence cases,

geometries that give rise to sharper received pulses result in better

timing accuracies.

For the finite-size plate target considered in Section 4.2, the return

waveform was found to depend on the relative sizes of the plate and the

laser footprint. Therefore, we expect the ranging performance will also

depend on the size of the plate. For a plate length of 1 meter, the mean

waveform corresponds to Fig. 4.9; the ranging performance is calculated and

plotted in Figure 4.17. It is interesting to note that, although for a

slant angle of 60°, the return pulse is broader than that of a slant angle

of 35', the ranging performance is actually better for the same signal

level. This can be explained by examining the slopes of the return

waveforms shown in Fig. 4.18. For the 60° case, the ends of the plate are

located closer to the center of the footprint, so when the laser pulse

first hits the front end of the plate, the increase of the reflected energy

is larger. Therefore, the slope of the leading edge of the reflected pulse

is larger. For the 35° case, the ends of the plate are farther away from

the center of the footprint, so the slope of the leading edge of the

reflected pulse is smaller. From Eq. (4.63), we see that waveforms with

larger slopes or bandwidths result in better timing accuracy. We need to

keep in mind that in Fig. 4.16 the performance is plotted versus the
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average number of photoelectrons. For a fixed laser output energy and

fixed plate size, the average number of photoelectrons will decrease as the

slant angle increases. In practice, this has to be taken into account in

comparing the timing performance.

For a 3 m long plate, the return waveform is shown in Fig. 4.12, and

the slope of the waveform is plotted in Fig. 4.19. The ranging perfor-

mance is shown in Fig. 4.20. In this case, a 45° slant angle results in

the worst timing performance. Again Figs. 4.21 and 4.22 clearly show that

waveforms with larger derivatives permit better .timing accuracy.

For a Gaussian received pulse shape with ras width CL,, Eq. (4.63) can

be evaluated to give

var[e] = -- + 1 , (4.64)

where we have approximated the summation by an integral. If <N> » K, then

the timing accuracy is limited by speckle; on the other hand, if K » <N>,

the timing accuracy of the receiver is shot noise limited.

A suboptimal estimator that could be simpler to implement is

N
T = arg max
d<

vv (4.65)

which is the discrete time analog of the correlation receiver or matched

filter. Again, the estimator can be analyzed by Bar-David's [16] method.

It is easy to show that the estimator is unbiased, and its error has a

variance given by

, N , N ,
1 V l̂ r, . 1 V 1?̂ »

var[e] N

i=l
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Figure 4.19. Slope of the mean pulse shape shown in Figure 4.12. Magnitude
scale is relative.
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When both F. and F~ are equal to a Gaussian pulse shape with rras width o_,

we have

Comparing Eq. (4.64) with Eq. (4.67), we find that T. has a rms
c

timing error which is about 25% greater. In critical timing applications,

it may be necessary to use the better estimator T, .
to

From the above results, we can see the effects of speckle on the

receiver timing performance. When speckle is present, the mean-square

timing error is increased by a factor of <N>/K. If K is much larger than

<N>, the effects of speckle on timing are negligible. But if <N> is

comparable to or even greater than R, speckle will degrade the timing

performance significantly.

4.4. Computer Simulation

Since Eqs. (4.63) and (4.66) were derived under the high signal-to-

noise assumption, they are not accurate for low signal levels; other

methods must be used to determine the estimators' performances for weak

signal returns. A computer simulation of maximum likelihood estimators has

been developed by J. B. Abshire and J. F. McGarry at NASA Goddard Space

Flight Center (GSFC) for this purpose. This simulator was an extension of

earlier work [17] used to evaluate the low-level timing performance of

estimators with shot noise only. A summary of simulation results was

recently presented [18].

The simulation is performed by dividing the observation interval into

512 time bins and using the computer to generate the photoelectron counts

in each time bin. The probability density function of the photoelectron
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count in the 1 time bin p(k.) was given previously in Eq. (4.24). For an

integer value of M. , p(k̂ ) becomes

/k +M - 1\/ k. \k M M
p(k.) - * 1 }[=-* - =-* - , (4-68)

which is the negative binomial or Pascal probability density function.

The negative binomial distribution originates from a sequence of inde-

pendent Bernoulli trials. In such trials, each trial has a fixed proba-

bility of success, p, and fixed probability of failure, q. The probability

of k failures prior to the r success [19] is given by

( <-q)k Pr
k/

IT + k - 1\

k
prqk . (4.69)

This probability density is called negative binomial. The derivation of

this formula is straightforward after observing that the r success

occurs on the (r 4- k) trial if and only if (r - 1) successes and k

failures occurred in the first (r + k - 1) trials and they are followed by

a dingle success.

Comparing Eq. (4.68) and (4.69), Abshire and McGarry found that the

probability of observing k photoelectrons in the i time bin was equal

to the probability of k failures prior to the M success in a sequence

of Bernoulli trials with probability of success equal to M /(M. + k ).

Using this analogy, they generated k. by conducting a sequence of Bernoulli

trials and counting the number of failures which occurred before the

M, success occurs. The advantage of this approach is that the Bernoulli

trial can be implemented easily and efficiently on a computer. The computer
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generates uniform random numbers between 0 and 1. Whenever the generated

number is less than a threshold, the trial is classified as a success. The

threshold is chosen to be the same as the probability of success, which is

MI/(MI +Y1) for the i
th time bin.

In general situations, M may not be an integer and Eq. (4.24) does

not reduce to the negative binomial distribution. In these cases the simu-

lator rounds M to the nearest integer value. This quantization of M only

introduces small errors if M is large.

The simulator was run for a raised cosine waveform, which can be

expressed as

F(t) -1 (l + cos-jp t) ; -fitly . (4.70)

M. is calculated using Eq. (4.23) and rounded to the nearest integer. If

M, falls below 1, it will be replaced by 1. The results of the simulator

are compared with the theory in Fig. 4.21. The agreement between the

theory and simulation is better for high-signal level and for large K.

This is expected, because in deriving the theory, we have assumed a high

signal-to-noise ratio, so that the approximation that leads to Eq. (4.63)

is valid.

For K equal to 5040, the transition occurs at signal energy about 1000

photoelectrons, where the simulation and the theory come into agreement.

At this signal level, the average number of photoelectrons in each time bin

is only about 2. In practice, the signal level is usually higher and the

theory is expected to predict the timing performance accurately.

The simulator has two limitations. The first is that in its present

form it can only work with integer values of M.. In principle, we can
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generate the counts for a non-integer M. by first generating a gamma

distributed variable, then use it as the mean function in a Poisson random

variable generator, and generate the desired variable. Although this

approach requires more computer time, it gives more accurate results for

low values of M . This extension of the simulator is presently underway at

GSFC. The second limitation is that the timing resolution is limited by

the finite number of time bins (presently 512) in the simulator.

Therefore, the arrival time of each simulated waveform can only be an

integer multiple of .the width of a time bin.

The error introduced by the timing quantization can be calculated by

using the fact that it is uniformly distributed over one time bin.

Therefore it has a standard deviation of 0.29 (I//IT) time bin. This is

equivalent to an error of 5.6 x 10 (0.29/512) when normalized by the pulse

width. The quantization noise is not important for the results shown in

Fig. 4.21, but it is the limiting factor when the timing error is small.

Therefore, if the simulator is to be used for waveforms that result in a

normalized timing accuracy better than 0.0005, more time bins are required.

Unfortunately, an increase in the number of time bins is usually accom-

panied by a quadratic increase in the computer execution time. This execu-

tion time is the limiting factor with the present simulator.

Since the computer simulation results and the theory are in good

agreement for high signal levels, this verifies the theory's validity in

that region. The simulator establishes the ML algorithm performance at low

signal levels.

4.5. Partially Developed Speckle

In previous treatments of the time resolved speckle, we have assumed a

fully developed speckle, i.e., the speckle follows the circular complex
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Gaussian statistics, which Is generally true for diffuse targets or for

targets with many reflection centers. For some targets, the speckle is

only partially developed, and the distribution of the speckle is not

Gaussian. An example of the partially developed speckle is laser reflec-

tions from the LAGEOS.

The Laser Geodynaraic Satellite (LAGEOS) was launched in May 1976 and

was designed as a passive long-lived target with a well-defined orbit [20].

As such, it functions as a reference point in the inertial space and by

ranging to it, sets of ground-based laser systems may recover their indivi-

dual geometry, their positions with respect to the earth's center of mass,

or their positions with respect to an inertial reference. In order to

enhance its reflectivity as a laser target, the satellite is covered with

optical cube corners which retroreflect any incident optical signal. There

are a total of 426 cube corner reflectors. The LAGEOS has a diameter of

60 cm and is orbiting at an altitude of 5000 km. Simple calculations show

that, even for a reasonably large receiving telescope, say 1 meter in

diameter, the individual retroreflector on the LAGEOS can not be resolved.

During the prelaunch testing at the NASA-GSFC in December 1975 and

January 1976, there had been concerns about the pulse-shape fluctuations

due to the coherency effects [20]. This is due to the fact that there is a

random phase associated with the optical field reflected from each

retroreflector. When the reflected fields overlap in time at the receiver,

interference causes the returned power to vary randomly. However,

receivers with enough resolution to experimentally observe this pulse-shape

fluctuation or time-resolved speckle were not available at the time of the

prelaunch testing. The purpose of the work here is to provide a theoretical

analysis of the statistics of this partially developed time-resolved speckle.
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Using the Fresnel diffraction formula, the optical field on the plane

of the receiving telescope is

aR(jr,z,t) = c exp
-ik_r

1=1 V
c) «p- «

where

(4.71)

c - (T /X z) exp[-i2k z]
o a o o

(4.72)

and

, (4.73)

where a „(£., z) is the complex amplitude cross section of the laser foot-

print, T is the intensity transraittance of the atmosphere, k is the

wave number, and X is the wavelength of the laser. N is the total number

of retroref lectors, 8. is the effective reflecting area of the

i retroref lector, which is related to the angle of the incident laser

beam and the orientation of the retroref lector. In practice, most of the

(5. *s are zero due to the shadowing effects. <j>. is the random phase angle

associated with the reflection from the i reflector; we assume <J>. 's to be

statistically independent of each other and uniformly distributed between 0

and 2ir. JK is the transverse coordinate of the i reflector and S-. is its

displacement relative to the reference plane.

For a direct detection receiver, the received power is given by

N N
r r

P<O A.(t)A,,(t) exP[i(A -<1 S - 1 rW(r) exp(ik r-(
~~- o—

N N

k=l
(4.74)
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where V?J(_P) is the two-dimensional Fourier transform of W(r), the aperture

function.

Since the individual reflectors on the LAGEOS cannot be spatially

resolved, Eq. (4.74) can be simplified to

P(t) H

N' r
exp[i<fr]o

2
» (4.75)

where we have made use of the following relationship,

• (4-76)

Since 4>, 's are random, P(t) is also random. This fluctuation of the

received power is due to the coherent additions of fields with random pha-

ses. Because the number of components is not large enough to warrant the

use of the central limit theorem, the statistics are different from that of

a fully developed speckle. The probability density function of P(t) is

derived in the following.

Let the dummy variables x. , y , X and Y be defined by the following

equations ,

(|cQ |2 AR)1/2 A1(t) cos ^ , (4.77)

(|cQ |2 AR)1/2 A t( t ) sin ^ , (4.78)

N

X = I x . (4.79)
i=l 1

and

Nr
. (4.80)
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Without loss of generality, we shall assume all A. 's(t) to be real. Since

$. *s are uniformly distributed, the probability density function of x, can

be obtained by a simple change of variable. The results are

Xi

=» 0 ; otherwise, (4.81)

the corresponding characteristic function is

* <u) - / dx. p (x,) exp[-l<*,J - J (|c |Al/2A.(t)w> , (4.82)
i* — * x i i o o R i .

where J (a) is the Bessel function of the first kind, zero order.
o

Using the fact that $ 's are independent, we have

N N
r r 1/9

* (ui) = n <j> (u) = n J (|c [AyV(t)u) . (4.83)
X i=l x i=l ° ° R i

Similarly, we have

1/2
«>(«)- U J (|c |Aj/4A.(t)u) . (4.84)
Y i=l ° ° R 1

The joint characteristic function of X and Y is defined as

00 OO

4> (u,v) = / dX / dY p (X,Y) exp[-i(uX + vY) ] . (4.85)
X,Y — -« X,Y

Making the following changes of variables

~2 ~2 1/2
r - Or + ̂  r' , (4.86)

9 » arctan(Y/X) , (4.87)

5 - (u2 + v2)172 (4.88)

and
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0 = arctan(v/u) , (4.89)

we have

2ir
Ou>v> = / dr / d9 p (r,9) exp[-irc cos(S- 9)] . (4.90)
XY o o r'°

Since X and Y have the same distribution, it is reasonable to assume that r

and 9 are circularly symmetric, so that r is independent of 9 and 9 is uni-

formly distributed between 0 and 2ir. Under this assumption, we have

CO

XY

12. 2
* (u,v) = / dr -p (r) J (£r) = / . dr p (r) J (r/u •+ v ) . (4.91)
XY o r ° o r °

Letting v equal 0 in Eq. (4.91), we obtain

00

(u,0) • $ (u) - / dr p (r) J (ur)v J
Q r o

CO

= / drr[pr(r)/r]Jo(ur) . (4.92)
o

$ (u) is recognized to be the Hankel transform of p (r)/r. Using the
X r

inverse Hankel transform, we get

00

,p (r) = r / duu .<J> (u) J (ur) ., r _>. 0
o X

- 0; r <.0 . (4.93)

Finally, since P(t) is the square of r(t), we have

,1/2,1 1/2
p_(P) =-7 / duu ̂  (u) J (uP1'*) , P > 0
t £ .£* O "~"o X

=0 ; P < 0 , (4.94)

which is equivalent to Eq. (63) of Barakat [21],
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Using Eq. (4.83), the probability density function of optical power

can be written explicitly as

N

pp(P) = (1/2) / du
r

1=1

.1/2, u JQ(uP
l/2) P > 0

- 0 ; P < 0. (4.95)

In principle, pp can be calculated for all t and for all possible ranging

geometries, although the computation can be complicated. In practice, we

are interested in the statistical properties of the detected signal, and

usually knowing the first- and second-order moments of P(t) is sufficient.

In this case, it is not necessary to evaluate Eq. (4.95).

The mean power can be obtained from Eq. (4.75) directly:

N
r 2

AR I |A,(t)[ „ (4.96)

The autocovariance function of P(t) is given by

2 "r 2-4^ ivi>i
N

>(4-97)

where we have made use of the fact that the retroref lectors cannot be

spatially resolved by the telescope.

Let the impulse response of the photodetector be h(t) and its quantum

efficiency by n; the mean and covariance functions of the output S(t) are

given by



E[S(t)] -* h(t)
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(4.98)

and

T) h(t2 - T)

h dT dT h(tl " V h(t2

(4.99)

For simplicity, we assume the transmitted laser pulse and the receiver

impulse response are both Gaussian in shape, with nns width af and a,

respectively. In this case, we have

KlSCt)] -F^-l |cj2

_

c(/oj+ a2, t - *

and

V

t,+t-

hf

-G(/2

7 0/4 CT]



78

n
hf

G(/2Vô of,

(4.101)

where

2z/c - —cz (4.102)

p is the coordinate of the center of the satellite. The first term in-~o

Cq. (4.101) is due to shot noise while the second term is due to speckle.

We see that shot noise has a correlation length of about 2/2~ a , and
ry f\ • I A

speckle has a correlation length of about 2/2"(a + af) » Also, we find

that for the second term in Eq. (4.101) the terms inside the double sum-

mations are significant only when \l>. and i|>. satisfy

2/2 (4.103)

or

2 2x

- (— --*-) + - (5. - O < 2/2 a, .1 cz cz / c si j f
(4.104)

Since p /cz, the optical beam curvature term, is very small, we have

equivalently

of . (4.105)

This shows that only the reflections from reflectors that are separated

vertically less than the width of the transmitted pulse will interfere with

each other. For a transmitted pulse width of 24 psec, only reflectors that
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are separated less Chan 2 cm will cause interference, but for a pulse width

of 2 nsec, reflections from reflectors as far as 42 cm apart will interfere.

Therefore, to minimize speckle, a shorter laser pulse should be used. In

this case, only when two or more retroreflectors happen to lie on the same

plane will there be intereference.

We plot the waveforms for two possible LAGEOS orientations and the

results are shown in Figs. 4.22 and 4.23. In the figure, the rras widths of

the transmitted pulse and receiver impulse response are both equal to 1 cm.

The time and the .magnitude scales in the figures are ..relative. From the

figures we see that, while the variance due to shot noise is proportional

to the signal, the variance due to speckle may not be. For example, in

Fig. 4.23, the leading edge of the return pulse is caused by the reflection

from only the first reflector; no interference occurs so there is no

speckle. In Fig. 4.24, we show the results for the same geometry as in

Fig. 4.23, but both the widths of the transmitted pulse and receiver

impulse response are doubled. In this case, the long transmitted laser

pulse smooths out the received pulse, and the return from the individual

reflector cannot be temporally resolved.

4.6. Summary

In this chapter, we studied the statistical properties of time-resolved

speckle and the effects of time-resolved speckle on the timing performance

of the receiver. The results indicate that, in general, the presence of

time-resolved speckle causes the mean square timing error to increase

roughly by a factor of <N>/K. If K is smaller than <N>, the timing

accuracy is limited by speckle.

Since the theory is derived under the high signal-to-noise ratio

assumption, the timing performance of the receiver in the low signal level
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case can be more accurately obtained by a computer simulation. The results

from the theory and simulation come into good agreement when the signal-to-

noise ratio is high.

There are targets that give rise to partially developed speckle. The

reflections of laser light from a specific target, the LAGEOS, are investi-

gated to illustrate the approach taken in analyzing partially developed

time-resolved speckle.
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5. ESTIMATION OF DIFFERENTIAL ARRIVAL TIME

5.1 . Introduction

To infer pressure, we need to measure the difference in the round-trip

propagation times between two pulses which were transmitted simultaneously

at two different wavelengths. In this chapter, we first evaluate and com-

pare the performances of various timing algorithms. The relation between

the timing accuracy and signal bandwidth is investigated in Section 5.3»

In Section 5.4, timing algorithms are compared for simulated ocean

reflected pulse shapes. In Section 5»5, the transmitter effects are con-

sidered. The effects of the sampling process are studied in Section 5.6.

5.2. Timing Algorithms

The Maximum Likelihood (ML) estimator for the differential delay can

be expressed as

Ti2._ • (T2 ' VML
ML,

arg max[p(S (t) ,S ( t ) | x )] - arg raax[p(S. (t) ,S,(t) j t )] ,1 2 2 1 2 1
2 l (5.1)

where T. and T. are the arrival times of the laser pulses at the two wave-

lengths. In Eq. (5.1) S (t) and S~(t) are the received signals at wave-

lengths A. and A_.respectively. T^^ and 2̂wt are the ML estimates of

T and T when both S1 and S« are observed.

Since the two wavelengths are widely separated, the speckle-induced

fluctuations at the two channels are uncorrelated. Also, since the shot

noises of the two channels are independent, Eq. (5.1) can be simplified to
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T , =. arg max[p(S,(t)|T,)] - arg raax[p(S, (t) | T. ) ]
ML T, * T, L

- T, - T, , (5.2)
ML ML

A A

where T2,_ and -r^ are the ML estimates of individual channels. Equation

(5.2) shows that the ML estimate of the differential delay is simply the

difference of the single channel ML estimates of the arrival times of the

two wavelengths.

The single channel ML estimate of the arrival time when speckle is not

severe was given previously in Chapter 4; the integral version of the esti-

mator [13] is written here for convenience

arg
f " - 1

max / dt S.(t) in S (t + T ) , 1-1,2 (5.3)

T L— J

where S. is the expected value of S.. Unfortunately, implementation of the

ML estimator requires prior knowledge of the expected received pulse shape.

Because of the random and dynamic nature of the ocean surface, the received

pulse shapes will change randomly as the surface profile within the

footprint changes. Since it is not possible to predict the expected pulse

shapes a priori, a suboptimal estimator that does not require knowledge of

the pulse shape is needed.

If the laser beams at the two wavelengths are aligned so that their

footprints overlap, the reflected pulse shapes will be almost identical.

We can write S and S as

T(t) = <N> F(t) (5.4)

and
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"§"2(t) = <N2> F(t - TIZ) , (5.5)

where F(t) is the normalized mean received waveform. One of Che simplest

techniques for estimating the differential propagation time is to calculate

the peak of the correlation function of the two received pulses

r *
iax / dt S
T L~<°

T =• arg max / dt S (t) S (t + T)
T L~<° J

• arg max [R.-(T)] , (5.6)
T

where R._ is the cross correlation function.

Assuming R._(T) to be differentiable, we have

R12(T12) - 0 . (5.7)

By expanding R._(T) in terms of the Taylor series expansion centered around

the actual differential delay T._, we can write [16]

R,2(T )
e - T,, - T,_ = - ..1Z 1Z , (5.8)

where e is the error of the estimator.

If the shot noise and speckle are not severe so that
*• f\ ••

EJR12(T12)} » Var{R12(f12)}, then the bias and Mean Square Error (USE)

are given by

E{R (T )}
Bias = E{e} = —̂-— (5.9.)

and

2 EOi (T )}
USE = E{e } = s-̂ —̂ -- . (5.10)
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The numerator on the right-hand side of Eq. (5.9) can be written

explicitly as

( r ) } = d t " ( t ) - T ( t +

dt F(t) F(t) . (5.11)

Equation (5.11) is zero if the entire return pulse always stays inside the

observation interval. Therefore, the correlation algorithm is unbiased.

The MSB given by Eq. (5.10) can be evaluated as follows:

E dt / dt Sl(t
-

- / dt / dt, R
— OO —00 I

T2 = T12J

1 2 2

and

(5.12)

- -
E { R ( t - 2 ) } - = / .dt S ^ O - — -S2,(t + T)

-« 3 T

where

T=T
12

By substituting Eqs. (5.12) and (5.13) into Eq. (5.10), we have

(5.13)

. (5.14)

/ dt /
— oo *• —oo

RS2
(tl + VC2 + T2)

MSE
Tl'VT12

dt



/ dtl / dt2 W Sl(t2> S2(tl + V S2(t2 * V

94

dt S2(t

2 r o,
^-M dt, 'i

.— 00 —09
W Si(t2) V

dt S2(t

CS(trt2) S2(tl S2(t2 + V

/ dt SjCt) S2(t -I- TIZ)

! /

dt SjCt) S2(t

T2)

(5.15)

The first term on the right-hand side of Eq. (5.15) equals the square

of the bias, which was shown previously to be zero. The second and third

terms are the first-order terms. They represent the errors from corre-

lating the received signals with their corresponding mean waveforms. The

last term is the second-order term. It is the additional error from corre-

lating two fluctuating pulses. If the mean pulse shape were known in

advance and each received pulse were correlated with its mean waveform,

then the sum of the second and third terms would be the total error. Since
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we do not know the mean pulse shape, we correlate the two received pulses

with each other. In this case both pulses are distorted by speckle and

shot noise and correlating two distorted pulses gives rise to the addi-

tional second-order error term.

For a target that gives rise to a Gaussian shape mean received wave-

form, Eq. (5.15) can be evaluated in closed form. While the detailed

calculations are shown in Appendix A, the results are

MSE
1 £3/2

+ M 2 / 2 4 U J + 4 + 4 ) 3

. K2' ,0 2 . , 2 . 2.3/2 , 2 . 3 2 2,3/2
(2 c^ + 2 af * atp) ^ °h "*" T af + 2 <V

, 2/2
+ ' L

<N1>.<2 <N2>K1 / 2 2.3/2 x 2 3 2 2.3/2
-. xaf) ( a h H - y af

<N1XN2> o3(a2 + 2a^24)

2, 2 , 2 , 2,3

where af and a are the rms widths of the transmitted pulse intensity and

receiver impulse response, respectively, and a_, is the cms time spread of

the target.
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For the case of reflection from a very small or point target, q_ = 0,

Eq. (5.16) reduces to

/ l I \ 2/f oj(o? + o2)3
MSE \ f " f
MSE

!

1

2 < N2>V<

20J (a 2 <

1 /7 — / _l_2/2 a^v <J» "*"^ + ,^2
 (

•4> 3

2.3
«c /

°h '"T < J f )

<N1XN2> _3,_2 , ̂2,3/2 ' (5'17)

Here we see that speckle does not contribute to the first-order timing-error

terms. In this case, the target does not cause any broadening in the

return pulses. Therefore, the speckle-induced fluctuations have a correla-

tion length as wide as the received pulse. The effect of speckle is only to

cause the amplitude of the received pulse to fluctuate and not distort the

received pulse shape. Since the speckle only affects the amplitude of the

received pulse, it will not degrade the correlation. However, shot noise

still causes distortion of the received waveforms because it has a correla-

tion length which is smaller than the pulse width.

For reflections from the ocean, the most realistic case is a » a

and o_ » a, . The MSE for this case is
T n

4
2/2 a2
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(5.18-)

From this we see that the second-order terms are roughly proportional to

°T—r- . To prevent the second-order terms from becoming too large, a, should

not be too small compared to OL,. This means that the resolution of the

receiver should not exceed the bandwidth of the returned signal.

The ML estimator given in Eq. (5.3) correlates the received pulse with

the logarithm of the mean pulse shape. It is interesting to consider

correlating the received pulse at one wavelength with the logarithm of the

received pulse at the other wavelength, i.e.,

r °° i
T - arg max-M dt S (t + T) An S (t)V . (5.19)

T l-<«> J

If S. has a high signal-to-noise ratio, we have

to S x ( t ) - lufS^t) + ASjU)}

_ AS.( t)
3 to S.(t) +=-± . (5.20)

Using Eq. (5.20), we find the bias and MSE of the estimator are given by

CO •

/ dt 1F2(T + T12) ZnT

Bias =

/ dt S2(t + T12)

/ dt F(t) to F(t)

/ dt F( t) to F( t )
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dt S2(t + T) to Sj(t

AS,
to

.2 -
/ dt S (t + T) in S,( t)

12J

dt S2(t

to to S [(t2)
Sl ( t2 )

/ dt S2(t + T12) to Sj

(5.22)

For a Gaussian return pulse shape, we have

2 2

>̂"}"<N2T

"Vh

6
aT

6
°T (5.23)

where we have assumed a to be large compared with a, and a. . Comparing
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Eq. (5.23) with Eq. (5.16), we find correlating with the logarithm of the

other pulse has slightly smaller first-order terras, but it has second-order

4 4terms that are proportional to o^/a, which can be much larger than those

of the correlation receiver, which are proportional to cC/a*.

One can also find the peaks of both return pulses and use the separa-

tion time between the peaks as the estimate, i.e.,

arg max (S2(t)} - arg max (5.24)

The estimator is unbiased because the mean .positions of the peaks are iden-

tical at two wavelengths. The timing error can be found from Eq. (5.10) to

be
VarJ-^r S2(t)

MSE
t=t

- Sl(t)

2raax. t=tI max.

t=t
2 maxj

dt
S,(t)

t=tIraaxJ

CS2
(tl>C2)

W'lmax .

(5.25)

where t. and t_ are the locations of the peaks of S. and S?, respec-

tively. For a Gaussian return pulse shape, this equals

MSE

• 2 j. 2 .u 2 >> 3 , 2 -L. 2>
1 A ̂ ° h + °f + °T) (°f + V

2.3/2
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, I , 1

For a target with negligible range spread so that ou = 0, the MSE reduces

to

2f 2 . 2,3
I 1 \ °f h af

+ ̂ V' < ( « + 2o>

which is independent of the speckle averaging. This is true because

speckle does not distort the received waveforms and, therefore, does not

change the positions of the peaks. Comparing Eq. (5.27) with Eq. (5.17),

we find the peak-detection algorithm performs about the same as the corre-

lation receiver for point targets. On the other hand, for a target with

large-range spread, the performance of the peak detection algorithm is

5 5

MSE = ( x», ^ + v»T v I i + I 17 "*" ~v~~ } / 9 0\ 1 /O
VK1 V 2/2 '- ' -W-

which when compared with Eq. (5.18) shows that peak detection is inferior

to the correlation receiver. The difference is large when OL, is large.

This difference occurs because when a_ is larger than o, and af, shot noise

and speckle will cause fluctuations within the received pulse, which make

the peak position shift back and forth.

We can also use the separation between the centroids of the two pulses

as the estimate, i.e.,

i = (Centroid of S (t)) - (Centroid of S (t))

/ dt t S2(t) / dt t SL(t)

•~ -- ̂ -
/ dt S (t) / dt S (t)
_ .Ml ™ _«<• ^
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It can be shown that, under the assumption 'that S and S have the same

waveform, the estimator is unbiased and has a MSE given by

/ dt / dt t t C ( t j . t ) / dt / dt t t C ( t l .t )

M S E - — - - - - i - + ̂  - - - - - 2 -

_ + _L_ + J_ + U} 2 + /_L_ + _L_\ 2 (
X> + <N2> KL

 + K2/ar + \<N!> <N2>/0f '

which is true for general waveforms if a_ is taken to be the rms width of

the time spread of the target. The MSE of the centroid algorithm depends

only on the time spread of the received pulse while the performance of the

correlation receiver depends on the slope of the received pulse. For a

given time spread of the received pulse, the correlation algorithm can be

better or worse depending on the bandwidth of the pulse. This will be

further discussed in Section 5.4.

In Table 5.1, we list the estimators considered above and their per-

formances for the Gaussian mean pulse shape in the o » a and a »

a, case. Comparing the performances of these estimators for the Gaussian

•'mean 'pulse shape, '-we find computing- the centroids perfo'rms best. The

correlation receiver follows. This is reasonable because for Gaussian

pulse shape, the implementation of the ML estimator shown in Eq. (5.3)

reduces to calculating the centroids. This can be seen from the following

derivations:

T = arg
ML

r °° — i
maxj / dt S (t) Jin S (t + T H

r * i
arg max^ / dt S (t) in G( o, t + T. )[•

T. L-» -1 x J
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PERFORMANCES OF TIMING ALGORITHMS FOR GAUSSIAN MEAN PULSE SHAPE, ASSUMING
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AND a f .

Timing Algorithm Mean-Square Timing Error

Correlation Algorithm

1.54«N1>~
1-t-K~1-KH2>"

1-HC^1) a2.

. 4 , 4
3/2

-1 -1 -1 -1 2<^4

Correlation Algorithm
(pulse shape known a priori)

•
2 - arg max [/ dt SjCt)T2(t+t)l

«

- arg max [/ dt S (t)? (t+t) ]
T -• l

Correlation with Log Waveform

2 - arg max [/ dt S2(t+T)Zn SjCt)]

4 6
"r

6

,'2(2a2>o2)2
h f

Correlation with log pulse shape (Optimum)
(pulse shape known a priori)

~12 - arg max [/ dt S^OtaS^t + T) j

-

- arg max (/ dt S^t) toS^C

Peak Detection

arg max [S2(t)l - arg ,nax

«N _
2 /To3

_
2,2/3

T12 " (Cencrold of - (Centrotd of
« «

/ dt t S 2 ( t ) / dt t Sj( t)

•a o»

! dt S2(e) / dt S^t)
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arg max<| / dt[-(t + T )* S ( t ) /2o^]j- , (5.31)
T. L-oo i J

A

which means T. satisfies
nL

H f °° -) 9\
•~j / dt(t + Tir S i(t)/2a M . - 0 , (5.32)

which is equivalent to calculating the centroid,
00

/ dt tS^t)

T -— . (5.33)
ML

/ dt S.Ot)
— 00

However, for general waveforms, calculating the centroids could be far from

optimal.

5.3. Frequency Domain Representation of Timing Error

From the above results, we restrict our attention to the correlation

and centroid algorithms. For general waveforms, the performance of the

correlation receiver has to be calculated numerically. The MSE can be

expressed in terras of the bandwidth of the received signal. Equation (5.13)

can be written as

32 — '

3r2 2

J- ^ i j ^ i i / \ i ̂
= 2r •• ^ l ^ s ^ ^ l

— OB

(5.34)

where

v -ioit
(Ji (u) » du) ^ e

r 2 ~]
/ d2£b2U,z) exp -f- (a* + a2) exp[iu>.|;] . (5.35)
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<j> (to) is the Fourier transform of the mean received pulse shape. For anys

function a(t) we usê ?{a(t)} to denote its Fourier transform. In arriving

at Eq. (5.34), we have made use of the following Fourier transform rela-

tionship

oo oo

/ dt a(t)b(t) --^ / do)̂ ?{a(t)}̂ ?{b(t)}* . (5.36)
— 00 —00

Equation (5.12) can be written as

00 00 2

RS2
(tl + V'2 + V

a2

e ™1T12 e
 <

(5.37)

where

!U>2) = / dtl \ dt2 RS (trt2) e "I 1 e ̂ "̂2 . (5.38)
-oo -co

R_ (a),,aj-) is the two-dimensional Fourier transform of R (t. ,t«). In
o, I £ o. 1 i

arriving at Eq. (5.37), we have made use of the following Fourier transform

relationship,

OB

b(t1,t2) -- j /
4ir"" •""

(5.39)

which is the two-dimensional version of Eq. (5.36). Using Eqs. (5.34) and

(5.37), we have
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(5.40)

The Fourier transform can be calculated using the FFT algorithm and the

integrations can be done digitally, although the computation time can be

substantial due to the presence of two-dimensional transforms and integra-

tions. However, by considering Eq. (5.40) alone, it is not clear what is

the relationship between the timing error and the characteristics of the

received signal. By substituting the explicit expressions for R,,, we can

express the timing error in terms of the bandwidth of the received signal.

The intermediate steps are shown in Appendix B; the results are

<N t>
 T <N2> T Kj K2 ;

4/1

<NI

CO

s

-.1 . ,,2[ ,

f X E2 X n2

2 E 2 ^ 2 E

OL Oi "* O^
Tl Ti f

<"lX"2>«ll K,K2^T7
1 ^ h f

^

/rf ,. 1 _2 l l
2 B L ^^ , 2 ^ 2 1U >•

5 ° h + a f J . , l 2 a h + ( J f J l

>K2^°h+ CTf <N2>Kl /2ah+ *f

(5.41)

where

O n
da) a> j <f> ( ai) j

(5.42)

and
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(5.43)

B is the RMS bandwidth of the received pulses, and a is a dimensionless

factor which typically varies between 1 and 2, depending on the surface

profile. For Gaussian-pulse shape, a equals 1.54. Since the second-order

terras are roughly proportional to (I/a.) , to keep the second-order terms

from becoming very large, the resolution of the receiver (I/a ) should not

be too large. Equation (5.4) shows that timing error is inversely propor-

tional to the signal bandwidth. This is expected since high-bandwidth

signals will contain fine structures which improve the performance of the

correlation timing algorithm.

5.4. Comparison of the Correlation and Centroid Algorithms

We will evaluate the performance of the correlation and centroid

algorithms numerically for a set of simulated ocean return waveforms. The

waveforms we use are a raised cosine superimposed with smaller scale modu-

lations. That is

F(t) = (1 + cos (2wt/D)) + A(l - cos (2irt/d))n , -D/2 ± t <_ D/2 , (5.44)

where d is smaller than D. Here the variable n is used to control the

sharpness of the modulation. The larger the value of n, the sharper the

peaks. This approximates the ocean return signal plotted in Fig. 3.5 for

off-nadir pointing.

We first compute the results for a smooth raised cosine, which is

obtained by letting A equal zero. The rras timing error is plotted versus

expected photocounts in Fig. 5.1 for a speckle number K = K = 50,000.
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Figure 5.1. Comparison of the correlation and centroid algorithms for a
simulated received pulse shape from a Gaussian ocean surface.
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The centroid algorithm performs better In this case, which is expected

because the centroid algorithm performs better for the Gaussian pulse shape

and the raised cosine resembles the Gaussian.

Next, we use a waveform that approximates the return from a sinusoidal

ocean shown previously in Fig. 3.5. The approximation is done by letting n

equal 4, A equal 0.94 and D/d equal 12. The results are shown in Fig. 5.2;

the performance of the correlation receiver is significantly better,

because the waveform has a relatively large bandwidth due to the presence

of the sharp structures. The rms bandwidths of the waveforms shown in

Figs, 5.1 and 5.2 are calculated to be 0.272 and 2.717 GHz, respectively.

In Fig. 5.3, the power spectra of the two waveforms are plotted. Indeed,

the waveforms shown in Fig. 5.2 have more high-frequency energy. While the

performance of the centroid algorithm remains nearly the same for both

waveforms, because the mean square widths of both waveforms are approxima-

tely equal, the performance of the correlation algorithm improves signifi-

cantly with the increase of the signal bandwidth. From the above results,

we conclude that, to achieve picosecond timing accuracy with ocean

reflected pulses, the correlation algorithm should be used. In Chapter 6,

we consider the effects of the footprint on the bandwidth of the received

signal.

In Fig. 5.4, we show the performance of the correlation receiver for

three different values of speckle number. At the strong signal limit, the

performance is limited by speckle. The amount of speckle averaging deter-

mines the timing error. At the weak signal limit, the performance is

limited by shot noise and the timing error is less sensitive to the number

of speckle cells. In all cases, the timing accuracy improves as the signal

strength and speckle number increase. Single shot accuracies of ~10 psec
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appear to be feasible with ocean surface targets when the expected photo-

counts for both pulses approach a few thousand. The timing accuracy can be

improved further by averaging the measurements from many shots.

5.5. Transmitter Effects

In practice, the expected waveforms at the two wavelengths may not be

exactly the same. This can be due to misalignment of the transmitted

laser beams and different beam divergence due to the diffraction effects or

due to turbulence. When the mean waveforms at the two wavelengths are not

the same, the correlation receiver can become biased, with a bias given by

OB

K{R.,<TI9)} / dt-
Bias = -- £f__Lf — = - ̂ ±

/ dt S^t) T2(t
= 00

*do> ico

2 *
du> oj ,

(5.45)

and the MSE given previously by Eq. (5.40) becomes

/ d c ^ / du)2 R w ) R ( u ) f a ) e 1 1 2 e ^ 2 1 2

(5.46)
2 *da) u) (»

This result is expanded into a form suitable for numerical computation in

Appendix C. As an example, suppose one channel has a very large footprint,

so that it has a mean pulse shape which looks like Fig. 5.1. Suppose the

other channel has a small footprint and a mean pulse shape that looks like

Fig. 5.2. The bias of the correlation algorithm is found to be zero
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because although the waveforms are different they are not shifted with

respect to each other. The timing error can be evaluated and the results

are shown in Fig. 5.5. Compared with Figs. 5.1 and 5.2, we see a degrada-

tion in the performance, which is expected, because the correlation between

the two waveforms has decreased.

5.6. Sampling Effects

In practice, the output of the receiver or photodetector is usually

sent into a waveform digitizer and the sampled and digitized data are

recorded by a computer for future processing. If the waveforms are sampled

at a fixed interval, T , then the output of the waveform digitizer can be

tTo

modeled as

Y. = / dt S(t) + n. x (5.47)
1 <1-»*0

and

1) « , (5.48)

whera Y. is the i-th sampled data point, n is the additive noise

introduced in the sampling and digitizing processes. Here n. is due to the

quantization in the digitizing process and the noise of the waveform digi-

tizer. To avoid losses in the high frequency content of the signal,

usually T is chosen to be short compared to the impulse response of the

receiver. In this case, we have

Y£ = S(iTQ) TQ + QI . (5.49)

Next, we consider the effects of n. on various timing algorithms.

Since the analyses of timing algorithms usually involve differentiations, a

discrete process like Y. can not be readily analyzed. To overcome this
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Figure 5.5. Performance of the correlation algorithm when the mean pulse
shapes at two wavelengths are different. One wavelength has
mean pulse shape corresponding to that in Figure 5.1. The
other wavelength has mean pulse shape corresponding to that
in Figure 5.2.
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difficulty, we can approximate Y with a continuous process Y(t),

Y(t) = S(t) + n(t) (5.50)

and

Vtl't2) +Rn(tl't2)

Go 2 > , (5.51)

where o^ is the correlation length of the noise, which is on the order of

-the width of the .digitizer element spacing T ,-N ,is the noise energy. The
tl + t2

function G(cj2» - 5 - ) is introduced to keep the total noise energy

finite in the correlation process, and 0. is chosen to be large compared

to the support of S(t), so that the noise power is essentially uniform.

By substituting R (t-.t.) with R^t-.t-) into the previous equations,

we find additional error terms are introduced. The MSE of the correlation

receiver, given previously in Eq. (5.15), is increased by an additional

amount MSE1 , which is given by

32

MSE' r - _ j:
< j dt S.(t) S2(t + T.-
(.-0>

2

(5.52)
_ -\ dt st(t) s2(t
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In Eq. (5.52), we have neglected the higher-order terras which are generally

very small. By substituting the expression for R into Eq. (5.52), we

obtain

MSB' - I—-r + — — . (5.53)
<N1>

2 <N2>
2 "2

The computation leading to Eq. (53) is given in Appendix D. For a

Gaussian-pulse shape, MSE' becomes

/ . . \2/2~N (a2 + a? + a2)3/2

MSB' - —±-7 + —±-7 — - . (5.54)
\<NI>^ <N2>7 °2

From Eq. (5.54), we see that for the correlation receiver the additional

timing error introduced by the sampling-digitizing process is usually

small, because it is proportional to N /o_ and a_ is very large.

For the peak detection algorithm, the additional error can be found

from Eq. (5.25) to be
,2 ,2
3 Vtl't2)** * *• *_ b ._ W » » »» — n -- A w ^ 1T1 ̂  ff *t =t =t I 2

1 2 2max . l * .,1 2 Iraax
.(5.55)

For a Gaussian received pulse shape, Eq. (5.55) becomes

7 7 7 7 7

/ i i \ V4°2 ~ v(0f+ "h"1" v

°f + ah + 4>
^ . (5.56)

which is proportional to N /a.o,. N / a. can be large and the additional
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error for the peak detection algorithm can be significant when the signal

levels <N.> and <N»> are not very large. If peak detection is to be used,

it is advisable to make the correlation length of the noise o. larger.

, can be done by smoothing or low-pass filtering the sampled sequence.
XtlxS

For the centroid algorithm, we find the sampling-digitizing process

introduces an additional timing error which can be found from Eq. (5.30) to

be givenjjy ^ » „

/ dtL / dt2 tjt2 Rn(cltt2) / dtx / dt2 tjt2 Rn(t1,t2)

MSE' = — - - - , - + ̂ - 1= - -

• "•"'
This value is usually small for a reasonable signal strength.

The effects of sampling on the timing accuracy for a Gaussian mean

pulse shape are summarized in Table 5.2. We conclude that correlation and

centroid algorithms are not sensitive to the noise introduced by the

sampling-digitizing process, but peak detection is more sensitive. For

peak detection, it is advantageous to first smooth the sampled data.

S.7. ...Summary

The ML estimator for differential arrival time cannot be implemented

due to the lack of prior knowledge of the mean pulse shape. Among the

suboptimal estimators investigated, the correlation algorithm can achieve a

signal shot accuracy of ~ 10 psec if the reflected pulse has time structure

or glints. The performance of the correlation algorithm is found ti

miprove with the bandwidth of the received pulse.

If the mean received pulse shape at the two wavelengths is not the

same, bias and additional error are introduced into the correlation
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TABLE 5.2.

ADDITIONAL TIMING ERROR DUE TO SAMPLING NOISE

Timing Algorithm Additional -Mean-Square Timing Error

Correlation Algorithm «N1>~2 + <N2>~2)2/2No( a2 + o£ +

Centroid Algorithm «N,>~2 + <N0>~
2) N ( a2 - 0.25 ff2)

1 2 O 2 1

Peak Detection «N,>~2 + OJ_>~2) N ( <j2 + o? + a2)3/a?a01 2 o r n T I Z
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algorithm. Therefore, Che laser beams at the two wavelengths should be

carefully aligned.

The sampling of the receiver output can introduce additional noise.

The correlation algorithm is found to be less sensitive to the sampling

noise than the peak detection algorithm.
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6. BANDWIDTH OF THE OCEAN REFLECTED PULSE

From Chapter 5 we found that the timing accuracy of the receiver

depends on the bandwidth of the received signal. In this chapter, we study

the effects of the surface profile and altimeter parameters on the band-,

width of the received signal. The expected bandwidth of the received pulse

that has been reflected by a Gaussian distributed ocean surface is eva-

luated under the conditions that the profile correlation length is much

less or much greater than the footprint radius.

The bandwidth of the received signal defined previously in Chapter 5

has an expected value given by „

p>
Ct~

/
- 2 1 t ^ 1 2a <i> la I <£ ( ())) 1

s
— OO

oo

/ du)[<{> (a,)}2

s». -co " J

CO

t 2 i2j d u > o > E { [ $ ( <i>) | }
— CO (6.1)

/ dot E {| $ ( u>) [ }
™OO

where the expectation is with respect to the Gaussian surface profile.

From E.q. (5.35), we have

2 2 2
-(/(0.+0,)

" f
4 4

4 IT z tan 9,

2 2 d
( .2 2z tan 9_
/ d o e T e

cz

•E{e c ~X ~M , (6.2)

where we have assumed a Gaussian laser footprint with a radius of z tan 9

at the exp(-l/2) point. For a Gaussian surface profile with rras surface

height a_, we have

E{
2

(6.3)
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where R (p p ) is the normalized autocorrelation function of the surface
c, —1 —2

profile £.

We first assume L » z tan 9 and a quadratic autocorrelation function

with RjCjJj.jXj) given by

(6.4)
2L

where L is the correlation length of the surface profile. The case of

L « z tan 8 is treated later.

,By . -substituting ,Eqs. (6.3) and (6.4) into (6.2) -and making the

following changes of variables

and

(6.5)

(6.6)

we have

2 2 2
-oi (o+a.)e f ^2 f ,2

I d .£, / d J

2 2
2z tan 8L

4 44 ir( z tan 9 )

o 2 22u) a
5 -o

2 2 2
2 -ID ( Op+a )

ye f h

2 + (oh "*" af)

(6.7)

Here

2 . 2.1/2
ah + o f)

-202

2z tan tan2 1/2

z tan 9i « L9T (6.8)
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By substituting Eq. (6.7) into Eq. (6.1), we obtain

2 Ye'^2 Y2

E{B*} = i 2~T * z tan 6^ « L (6.9)

/^T(oJ + a2) erfc[y] ah + af
n r

For the case when L « z tan 9 , the autocorrelation function can be

approximated by a delta function. Therefore,

2 . *
-u> A^ +• i

E { | 4 (u) "
S

XUI/ I J 4 4
4ir z tan 9_

2 , 2 . 2 . 4
^af + °h+--

where

2 ^ / 2 ^ 2 4 2 . 2
Y -»• ( af + ̂  + — j a ) a)

2 v a2 -»-— a2!172

f 2 C

2z tan

In this case, the expected bandwidth is

2 2 +-L 2

(6.10)

L « z tan 9m (6.11)

(6.12)

YI ( -H a .
c c

L « z tan 9

Combining the results for both L » z tan 9 and L « z tan 9 , we can

write
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E{B2}

2 . 2
°h + °f

L » z tan 9,

L « z tan 9,.

(6.13)

2 2 . 4 2

where

ye-Y

/if erfc[ y]
(6.14)

and

c ( o ? +

2z tan 8

2z tan 9

,-1/2

vl /2

L » z tan

L « z tan

9T

9T

(6.15)

The results for a flat surface can be computed by letting a equal zero.

When L » z tan 6 , If the received pulse shapes are dominated by beam cur-

vature (tan 9 is large) or surface effects (o. Is large), y will be small.

If the curvature and surface effects are negligible, y will be large. On

the other hand, when L « z tan 9_, y will be large when a. is large. In

these two limiting cases, A simplifies to

-7= Y« 1
/TT

Y » i

(6.16)
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To evaluate Che expression for the bandwidth and timing error, we

2 2 1/2
assumed c(a + a-) « a_ < z tan 6_. This means that the surface rms

height is large compared to the point target response width but small com-

pared to the radius of the footprint. For small footprints, the solution

for L » z tan 9 is probably the most applicable so that

2 ? 1 / 9

°f ) ° z tan
MSE 5

L » z tan et, (6.17)

For large footprints the solution for L « z tan 9 is the most applicable,

and

4a0_
L « 2 t a n e T (6.18)

where we have given only the first-order terms of Eq. (5.41) for simplicity.

Because the wave height is typically of the order of tens of cen-

timeters, a Jc. will usually be a few nanoseconds or larger. Picosecond

time resolution is probably not feasible when the footprint is large.

However, when the footprint is small and the surface correlation length is

large, picosecond accuracy is possible if the system parameters are pro-

perly chosen. The requirement for a large correlation length is equivalent

to requiring a glint within the footprint.



125

7. LINK EQUATIONS

In this chapter, we use the results obtained from previous chapters to

estimate the expected timing accuracies of realistic system designs and to

estimate the corresponding accuracies of the barometric measurements.

The expected number of received signal photons was calculated in

Ref. 4 for Gaussian ocean wave statistics:

n Q T2^ - NO) |2 -
"o a z2 ^

n is the receiving system efficiency, hf is the signal photon energy, Q is
2

the total transmitted energy, and T is the two-way atmospheric transmit-

tance. The ocean reflectance |R(0)| depends on wavelength and water com-

position. From the near IR to the near UV, the ocean reflectance is ~2 %
2

[22]. The factor (S + 2 tan 8 ) in Eq. (1) is related to the solid angle
2

of the reflected signal. In a perfectly calm sea S = 0, so the solid

angle of the back-scattered signal is equal to the solid angle of the laser

2
beam. For an isotropic surface, S is related to the MS surface roughness

and profile correlation length (L):

S2 = 2 a2/L2 . (7.2)

2 2
Bufton et al. [23] recently reported measurements of S = |R(0) | MrrS

for a variety of sea states, nadir angles, and laser wavelengths. Their

measurements were obtained at wavelengths of 337 nm, 532 nm, and 9.5 urn

using an airborne lidar. At the visible and near UV wavelengths, the ocean

reflectance (8 ) for low wind speeds was ~6%. Equations (3.8) and (3.9) of

Chapter 3 are consistent with these results.

If we use this value for 8 in Eq. (7.1) and the parameters listed in

Table 7.1 for a satellite-based altimeter, the expected signal photocount
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is <N> = 1300. The speckle number calculated using Eq. (3.17) is

K = 50,000. In this case, speckle is negligible, and the shot noise is the

dominant source of timing error. From the data plotted in Fig. 5.4, we see

that the single shot timing error for this case is ~18 psec. The error can

be reduced to ~2 psec by averaging the timing measurements from 100 shots.

If the fundamental (1064 nm) and tripled (353 no) YAG laser frequencies are

used, a 2 psec timing error results in a pressure error of ~1 mbar (see

Fig. 2.1).

TABLE 7.1.

PARAMETERS OF A SATELLITE-BASED LASER ALTIMETER

Receiving System Efficiency : 10%
2

Receiver Aperture Area : 0.1 m

Two-way Atmospheric Transraittance: 0.5

Altitude of the Satellite : 400 km

Laser Beam Divergence Angle : 100 yrad

Total Transmitted Energy : 250 mJ
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8. AIRBORNE ALTIMETER EXPERIMENT DATA ANALYSIS

8.1. jutreduction

An aircraft experiment was conducted on September 7 and 9, 1983, at

the NASA facility-on Wallops Island, VA. The experiment was to test the

flight performance of the instrumentation and to measure the correlation

properties of the raultiwavelength ocean reflected return pulses. GSFC per-

sonnel including Abshire, McGarry and Rowe conducted the flight experiment,

while the data reduction and analysis were performed at the University of

Illinois.

The experiment was performed on board the NASA WFF Electra airplane.

A picture of the airplane is shown in Fig. 8.1. The laser ranging system

used in this experiment, including the laser, computer, waveform digitizer

and other electronics, is the same equipment used in previous horizontal-

path experiments [24], [25], [26]. Figure 8.2 is a picture of the computer

system on board the aircraft. Figure 8.3 is a picture of the equipment

rack on the aircraft. Figure 8.4 is a picture of the arrangement of the

equipment on the aircraft.

On September 7, before the flight, the altimeter was first tested by

ranging horizontally to a cube corner reflector. The system worked well on

the ground. However, after the aircraft took off and ascended to the

ranging altitude, the receiver did not detect any reflected laser pulses.

After the flight, the ranging system was carefully examined. The problem

was caused by the vibrations that occurred during the flight which caused

a misalignment between the receiving telescope and the detector.

On September 8, before the aircraft took off, two ground calibration

data sets data were collected by ranging to a white plate. Then the

aircraft took off, headed east over the ocean, and the altimeter started
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Figure 8.1. A picture of the NASA Electra airplane,
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Figure 8.2. A picture of the computer system on board the airplane.
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Figure 8.3. A picture of the equipment rack on board the airplane.
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Figure 8.4. A picture of the interior of the airplane showing the laser
power supply, the laser and the transmitting optics.
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collecting data. During the three-hour flight, the system operated

smoothly except for a temporary computer failure due to a loose circuit

board. The problem was fixed during the flight. Tn this flight, data were

taken over the ocean at both 305 m (1000 ft) and 1219 m (4000 ft) altitudes.

They are the first data that furnish information on ocean reflection pro-

perties with 8 cm height resolution [27].

8.2. Data Analysis

A typical recorded waveform collected at 305 m altitude is shown in

Fig. 8.5. The pulse on the left corresponds to the return at 355 nm (UV),

and the pulse on the right is the return at 532 nm (Green). The time scale

in the plot is the number of digitizer elements. The temporal spacing

between the elements is 39 picoseconds so that the full scale range is

20 nsec. The actual flight time of the green pulse is shorter, but it is

passed through an electrical delay line so that both pulses can be recorded

on the waveform digitizer side by side. Due to this arrangement, the

separation time between the two pulses will decrease with altitude, instead

of increase.

On some of the recorded waveforms, double peaks in both return pulses

were observed. An example is shown in Fig. 8.6. This occurred in some of

the returns from the ocean at both 305 m and 1219 m altitude and also in

some of the returns from the white plate. The separation between the

closely spaced two peaks exceeds 1 nsec in some returns.

Because a separation of 1 nsec is equivalent to a target range spread

of 15 cm, which is not the case for the white plate target, and unlikely

for the ocean target. The laser has a beam divergence angle of approximately

500 urad (full width at 10% points); therefore, the footprint has a size

of ~15 cm at 305 m altitude and ~60 cm at 1219 m altitude. An ocean-wave
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Figure 8.5. A waveform recorded at 305 ra (1000 ft) altitude.
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Figure 8.6. A waveform recorded at 305 m (1000 ft) altitude.
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height difference of 15 cm within a 60 cm footprint is possible, but is

much less likely within a 15 cm footprint. We conclude that double pulsing

of the laser is probably the cause of the double peaks in the return pulse.

In future experiments, the resolution of the receiver will be increased so

that this ambiguity will no longer exist.

After the flight, the collected data were first run through a sorting

program, in which every waveform was scrutinized to reject unsatisfactory

ones. A waveform is rejected if any of the following conditions occur:

signal level too low (no energy detected at one or two wavelengths), signal

level too large (outside the dynamic range of the waveform digitizer), and

signal not recorded completely due to a triggering problem. The good wave-

forms are then processed to extract the differential arrival time between

the two pulses.

The first technique used for timing was the correlation technique.

This was done by first calculating the correlation coefficient of the two

return pulses. The correlation coefficient p is defined as
N
I x(i) x(i + j)

N l/2 j+N J 1/2
(8.1)

-j+i thwhere x(i) represents the output of the i digitizer element and N is the

number of points used in the correlation. p(j) is normalized so that if

the two pulses have exactly the same shape it achieves its maximum value of

one. We calculated the correlation coefficient instead of just the corre-

lation function because the correlation coefficient also furnishes infor-

mation on the degree of similarity of the pulse shapes at two wavelengths.

The delay value that maximizes p was then used as the differential arrival

time estimate. That is,
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A

TIZ = [arg max p(j)] TQ , (8.2)

where r is the temporal spacing of Che digitizer elements. For this
o

A

experiment T is 39 picoseconds for all the data. Therefore, T. _ can only

assume quantized values in integer multiples of T . In retrospect, the

experiment could have been improved by using a faster digitizer sweep

speed. However, at the time of the experiment, there was no way of knowing

how wide the return pulse would be. Therefore, a slower sweep speed was

used to make sure the entire return waveform could be recorded.

The quantization problem can be partially remedied by fitting a curve

through the correlation function and finding the peak of the fitted curve.

A second-order polynomial was chosen as the fitting curve, because most

return pulses resemble Gaussian pulses and a Gaussian is well approximated

by a quadratic near its peak. We first tried using 5 or more points to

perform the least square curve fitting. However, because the fitted curve

did not pass through all data points, there were cases when the peak of the

fitted curve was smaller than the original correlation peak. Therefore, we

decided to use only 3 points around the correlation peaks for curve

fitting. In this case, the fitted parabola will pass through all 3 points.

The success of the 3-point curve fitting requires a high signal-to-noise

ratio for the data points used. This requirement holds for the points near

the correlation peaks.

A. history plot and histogram of the timing and the correlation coef-

ficient are shown in Figs. 8.7 and 8.8 for the 305 m altitude data.

In Fig. 8.9, two recorded waveforms collected at 1219 m altitude are

shown. The timing results are shown in Fig. 8.10. Statistics of the

correlation coefficient are shown in Fig. 8.11.
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For both 305 m and 1219 m altitude data, the correlation coefficient

has average values approaching 0.99. This high average value of the

correlation coefficient indicates that the pulse shapes at the two wave-

lengths are very similar even on the pulse-to-pulse basis. This is

encouraging for the pressure measurement technique because similar wave-

forms are essential.

In Fig. 8.12, two recorded waveforms from a white plate target are

shown. The corresponding timing and correlation coefficient results are

given in Figs. 8.13 and 8.14. In Fig. 8.15, we plot two recorded waveforms

from a cube corner reflector. The timing results are shown In Fig. 8.16

and the results for the correlation coefficient are given in Fig. 8.17.

In Table 8.1, we summarize the above results. From the results, we

find the data obtained from ranging to the white plate have the smallest

timing fluctuations, the highest mean correlation coefficient and also the

smallest standard deviation of the correlation coefficient. It is reason-

able that the returns from the white plate would have a higher signal-to-

noise ratio than the returns from the ocean, but it seems that the returns

from the cube corner reflector should have an even higher signal-to-noise

ratio. This was not the case, probably because the ranging to the cube

corner reflector was performed in daytime with the presence of a strong

turbulence during the experiment.

The data obtained at 305 m and 1219 m altitudes can be used to verify

the pressure measurement concept. From Appendix E, the differential arri-

val time measured at 1219 m and 305 m should differ approximately by
-305/h -1219/h

AT = 1326(e s - e s)

» 126.6 psec , (8.3)
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TABLE 8.1.

SUMMARY OF THE RESULTS OBTAINED FROM THE CORRELATION TECHNIQUE. THE

90 % CONFIDENCE INTERVALS OF MEAN AND STANDARD DEVIATIONS ARE SHOWN.

Data Set

305m
altitude
data

1219 m
altitude
data

White
plate
target

Cube
corner
target

Separatioi

Mean

7995 psec

[ 7989,8001]

7888 psec

[7877,7899]

8093 psec

[8089,8097]

8094 psec

[8090,8098]

i Time

STD

63 psec

[60,67]

91 psec

[84,101]

40 psec

[38,43]

43.95 psec

[41,47]

Correlation "C

Mean

0.986

[.984,. 988]

0.989

(.988, .990]

0.991

(.990, .992]

0.979

[.978,. 980]

oef f icient

STD

0.023

[.022, .025]

0.010

[.009, .011]

0.007

[.006,. 008]

0.008

[.007,. 009]
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where h is the atmospheric scale height, taken to be 8787 m. From thes

experimental data, the difference in differential arrival time is 106

picoseconds. Taking into account the fluctuations in the aircraft altitude

and the quantization in the waveform digitizer, the 20 psec difference bet-

ween the theory and the experiment is considered to be within the accuracy

of the experiment.

For comparison, we processed the data collected at 305 m altitude and

the data collected from ranging to a cube corner reflector using other

estimation schemes. These two sets of data are chosen for comparison

because the ocean is an example of a target with range spread, while the

cube corner reflector is an example of a point target.

From Chapter 5, we know one of the simplest techniques for estimating

differential arrival time is to find the separation time between the peaks

of the two pulses. For the 305 m altitude data, the results are shown in

Fig. 8.18. The standard deviation of timing is 176 picoseconds, much

larger than that of the correlation algorithm. For the cube corner reflec-

tor data, the results are shown in Fig. 8.19. The peak detection yields a

timing error of 49 picoseconds, which is not far from the 44 picoseconds of

the correlation algorithm. This is consistent with the theory derived in

Chapter 5, which states that, for range spread targets, the peak detection

performs significantly worse than the correlation algorithm, while for

point targets, the performances of the two estimators are close. Also,

from Chapter 5, we know that the peak detection algorithm is more sensitive

to noise introduced by the waveform digitizer than the correlation

algorithm. This partially explains the slightly inferior performance of

the .peak detection algorithm for the cube corner reflector data.



151

8.49T

^ 8.32'
c
"-' 3.24'
Ul
2 8.16

8.08 '
z Oft.O 8.W

< 7.92'

< 7.84
CL
Ul 7.76
CO

7.68

•

-

, . . ...
. .

7l€° 1 36 72 1«7

••

••

143

-•

-

178 213 249 284 32« 35"
WAVEFORM NUMBER

# OF POINTS GREATER THAN 8.400
# OF POINTS SMALLER THAN 7.600

TOTAL NUMBER OF WAVEFORMS =

ns = 0
ns = 4

355
AVERAGE SEPARATION TIME = 203.6

7.956
STANDARD DEVIATION = 4.507

176
99

81 '

H 72 '

i « •
O .,
O 54 •

fe "
or 36
CD 27

1) 18

9

a , , • 1

ELEMENTS
NANO SEC

ELEMENTS
PICO SEC

j (

7.6» 7.68 7.76 7.84 7.92 *M 8.«8 8.16 8.24 8.32 8.4«

SEPARATION TIME (ns)

Figure 8.18. Timing history and timing histogram for the data obtained at
305 m altitude, using the .separation between the two peaks
as the differential arrival time estimate.



152

8.50

~ 8.42

•5 8.34

jg 3.26

K 8.18

2 8.10
O
H 8.02

Or 7.94

O. 7,8€
UJ
CO 7.78

7.70

.
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The centroid detection algorithm was also used to calculate the dif-

ferential delay. We used a total of 75 points around the peaks to calcu-

late the centroids, and the timing results for the 305 m altitude data are

shown in Figure 8.20. Compared to peak detection, the timing error is

improved; it is 118.7 picoseconds. The corresponding results for the cube

corner reflector are shown in Fig. 8.21. The timing error is 50 picosec-

onds, which is slightly larger than the 49.1 picoseconds of the peak

detection algorithm. This is recognized to be caused by the inclusion of

the ringing .noise of the .waveform digitizer in calculating the .centroids.

The return pulse from the cube corner reflector occupied a width narrower

than 75 points, so using 75 points in calculating the centroids includes

the undesirable data points that correspond to the ringing of the digi-

tizer. We then used only 50 points in calculating the centroids. The

results are shown in Fig. 8.22; the timing performance is improved to

46 picoseconds.

From Chapter 5, we know that the ML estimator correlates the received

pulse with the logarithm of its mean pulse shape. Because the mean pulse

shape is not available, the ML estimator can not be implemented.

Correlating one return pulse with the logarithm of the other return pulse

will not be optimum, but it is interesting to see how it performs. We

first correlated the UV pulse with the logarithm of the green pulse. The

results are shown in Fig. 8.23 for the 305 m altitude data. The standard

deviation of timing is 84 picoseconds, which is not as good as the 63 pico-

seconds of the correlation algorithm. In Fig. 8,24, two recorded waveforms

and their logarithms are shown. Taking the logarithm enhances the small

amplitude fluctuations, .which are mostly .due to ringing and digitizer

noise. The quantization effects also become more apparent after taking the
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logarithm. The corresponding results for the cube corner reflector data

are shown in Fig. 8.25; the timing error is a large 105 picoseconds.

Looking at the timing histogram in Fig. 8.25, we find the poor timing per-

formance is caused by the presence of a few estimates that are signifi-

cantly below mean. Two recorded waveforms and their logarithms are shown

in Fig. 8.26. Again, we find ringing becomes very pronounced after taking

the logarithm.

We then correlated the logarithm of the UV pulse with the green pulse;

the results 'are -shown in Fig. 8.27 for the 305 m altitude data. The .timing

error is 68 picoseconds, better than the previous case, but still not as

good as the correlation algorithm. The results for the cube corner reflec-

tor data are shown in Fig. 8.28; the timing error is reduced to only

43 picoseconds, which is close to the 44 picoseconds of the correlation

algorithm. This can be explained by noting the fact that, for a point

target, the individual received pulse has the same shape as the mean pulse

shape, which is just the impulse response of the system. The difference is

that the individual return is corrupted by ringing and noise of the digi-

tizer. Therefore, for-a .point ...target, if-ringing is.not severe, corre-

lating one received pulse with the logarithm of the other pulse is a good

approximation of the ML estimator. This explains why it performs quite

well. For both data sets, we find the algorithm that takes the logarithm

of the UV pulse performs better than those taking the log of the green

pulse, probably because the UV pulse has less of a ringing problem than the

green pulse.

Finally, we correlated the logarithms of both received pulses. The

results for the 305 m altitude data are shown in F-ig. 29; the timing error



160

en
c

UJ
2
H

2?
g
K

o:
0.
LJ
CO

O • * J

8.37-

3.29'

8.21-

3.14"

3.w
7.98'

7.90

7.82

7.73

.

.. '. •..; :v -. ••'•'•;•••••/.:.•' -. • •..- '.'••.'.-'•'•:
»* V * ""* %* •. " ' " . " * * • • * "*'" * * *"• •*

i 31 61 91 121 191 180 210 249 279 3«
WAVEFORM NUMBER

# OF POINTS GREATER THAN 8.448 ns = 0

# OF POINTS SMALLER THAN 7.667 ns = 0

TOTAL NUMEEJ
AVERAGE SEP<

STANDARD DE<

25 '

23 '
CO
H- & •

o i3

0 15
U_
O 13

0^ 1» •
LJ ™
00 3 '

3

0 J

? OF WAVEFORMS = 300
WATION TIME = 204.9 ELEMENTS

8.007 NAWO SEC
NATION = 2.498 ELEMENTS

105 PICO SEC

j

' .1 .111. J ,.l ..ill'1

cf •? ft f a^ •> oa f ao a AI

I

i

!
Iliiiii . '

s a «.t a -54 a ?a a T? o

SEPARATION TIME (ns)

Figure 8.25. Timing history and timing histogram for the data collected
from ranging to a cube corner reflector. Results obtained
by correlating the UV pulse with the logarithm of the green
pulse.



161

UJ
O

133 155 SOS 257 337 35

TIME SCALE

UJ
O

i 3Z ivo 155 £36 237 2»;7 35E •tiO •ci -31

TIME SCALE

Figure 8.26. Two recorded waveforms and their logarithms. Cube corner
reflector data.



162

If)

UJ
2
H

A
R

A
T

IO
N

CL
UJ

H.41'

8.33"

8.25

8.17'

8.W

8.02

7.94'

7.86

7.78

7.71

7.63

.-

K • • • ' ' '. • • • • • . . •'• .; :'.' •-. '-..•'.'••' ' . ."

' . - • • • ' • . ' • . ' • . . ''•'.. - ••" •'•' " '"•••' ..••'.'••'.-.'.

M ^M ^M A fl^ t J-* A^f\ M4*» *\ A A «\̂ 1 4 *V^A "»« 355

WAVEFORM NUMBER
# OF POINTS GREATER THAN 8.408999 ns = 0
* OF POINTS SMALLER THAN 7.628000 ns = 0

TOTAL NUMBER OF WAVEFORMS = 355
A'.ERAGE SEPARATION TIME = 204.0896 ELEMENTS

7.972250 NANO SEC
STANDARD DEVIATION = 1.764449 ELEMENTS

68.92381 PICO SEC

en

oo

or
UJ
CD

27 '

24 '

21 '

18

15

12 '

9 '•

!. 1 (II

7.63 7.71 7.78 7.86 7.94 8.02 8.10 8.17 8.25 8.33 3.41

SEPARATION TIME (ns)

Figure 8.27. Timing history and timing histogram for the data collected at
305 m altitude. Results obtained by correlating the logarithm
of the IJV pulse with the green pulse.



163

8.53'

_ 8.45'
at
^c 8.37'

U 8.29"

P 8.21

Z 8.14'
O
P 9.06'

IT 7.98'

Q- 7.9«
UJ
<" 7.32-

7.74'

• * " — * . * * . * • ' . • ."

"*.. • f ., /, * » . . , • " .

« * * * • *•

." '. '•' .X " " " . • " *• - •

' »

i

1 31 €1 91 121 151 184 210 240 279 30<

WAVEFORM NUMBER

* OF POINTS GREATER THAN 8.526 ns = 0

# OF POINTS SMALLER THAN 7.745 ns = 0

TOTAL NUMBE
AVERAGE SEP

STANDARD DE

35 •

32 '

H 28

§ 25
O
-0 21
U_
0 iB

1 "
^ 7

4

e ,

R OF WAVEFORMS = 300
ARATIQN TIME = 206.9 ELEMENTS

8.084 NANO SEC
VIATIQN = 1.09S ELEMENTS

42 PICO SEC

•

c

•

•

, t M iiL.
^« ^ MM ** /*A ^ ^\«^ A Ay* e% * t n ^t n ^A n Y^ rt AC O

SEPARATION TIME (rrs)

Figure 8.28. Timing history and timing histogram for the data collected
from ranging to a cube corner reflector. Results obtained
by correlating the logarithm of the IIV pulse with the green
pulse.



164

—c
UJ

f~
z
O
t-
or
a.
LJ<D

8.25'

8.17

8.10'

8.02

7.54

7.86

7.78

7.71

7.S3

7.55

- ' • ' • • • - . " . ' •

" • •. • - . ' . • '• . • '. V" .. .••.'•

• " * " " " " * * • * " " , " * " " " . * • • • . • ** • * *

'••'-.•'."'"•' '•' ..' "; .'"•'-•"•••> :-• - '/ '.'•' • ''. '• .•'•'*
p . - • ' • ' - . . . . -

1 36 72 107 143 178 213 249 284 320 3£
WAVEFORM NUMBER

f OF POINTS GREATER THAN 8.331 ns = 0

* OF POINTS SMALLER THAN 7.550 ns = 0

TOTAL. NUMBEf
AVERAGE SEP/

STANDARD DE<

20 •

18 '

h- 1S

14
o 12 .
0 1Z

o w

or 8 '
CD €
^e»

i «z i
A *

? OF WAVEFORMS = 355
ORATION TIME = 201.6 ELEMENTS

7.878 NANO SEC
NATION = 2.651 ELEMENTS

103 PICO SEC

i I

1 1 1 . 1 1 1

i i

! Ill
iiiillll.t! .

7.5S 7.63 7.71 7.78 7.86 7.94 8.02 8.19 8.18 8.25 8.33

SEPARATION TIME (ns)

Figure 8.29. Timing history and timing histogram for the data collected
at 305 m altitude. Results obtained by correlating the
logarithms of both pulses.



165

is 104 picoseconds. The corresponding results for the cube corner reflec-

tor are shown in Fig. 8.30; the timing error is 100 picoseconds. After

taking the logarithms, the correlation between the two pulses decreases,

because the uncorrelated noises are emphasized by the logarithm. From the

above results, we conclude that the logarithm algorithms should be applied

only to mean waveforms, or signals with very high signal-to-noise ratios.

The results from the different algorithms are summarized in Table 8.2.

8.3. Altitude Dependence of the Received Signal Energy

During the experiment, it <was found -that the return signal level

remained about the same when the altitude of the aircraft was increased

from 305 m (1000 ft) to 1219 m (4000 ft). According to the link equation,

_2
the signal level should vary inversely with the altitude squared (z ).

Therefore, the signal level at the 305 m altitude should be 16 times the

signal level at 1219 m.

_2
This deviation of the signal level in lidar systems from z dependence

has been studied by Harms [28], [29], He found there are two mechanisms

that cause power loss at sraall-to-medium target distances. First, in a

system with shadowing of the main .mirror by a central obstruction, such as

a secondary mirror, the overlap of the transmitted beam with the receiver

field of view is often incomplete. Second, because the telescope is

usually focused at infinity, the light backscattered from a target at

sraall-to-medium distances is not completely focused onto the detector.

Both .effects cause power losses that can be significant at small target

distances.

In Appendix F, the received signal level is derived taking into

account both effects. In Fig. 8.31, the relative signal level is plotted

versus altitude for four different detector sizes. The detector is assumed
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TABLE 8.2.

COMPARISON OF THE RESULTS FROM DIFFERENT TIMING ALGORITHMS. THE 90 %

CONFIDENCE INTERVALS OF THE TIMING ERRORS OF THE ALGORITHMS ARE SHOWN.

Algorithm Timing .Accuracy

305 m Altitude Data Cube Corner Data

Correlation

Peak detection

Calculate
centroid

Correlate the
UV pulse with
log of the
green pulse

Correlate log
of the UV pulse
with the green
pulse

Correlate log
of both pulses

63 psec
[60,67]

176 psec
[166,188]

118 psec
[111,126]

84 psec
[80,90]

69 psec
[65,74]

104 psec
[98,111]

44 psec
[41,47]

49 psec
[46,53]

46 psec
[44,50]

105 psec
[99,114]

43 psec
[40,46]

100 psec
[94,108]
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to be at the focal plane, or the telescope is focused at infinity. From
_2

the figure we see that, if the detector is very large, the z dependence

is maintained, because all the energy collected by the telescope is

detected and the assumption behind the link equation is valid. For the

aircraft experiment, the detector is situated at the focal point of a

telescope with an effective focal length of 14.47 m. The detector of

interest has a 3.175 mm (1/8 inch) radius. From Fig. 8.31, we see the

theory does predict a nearly equal signal strength at 305 m (1000 ft) and

1219 m (4000 ft) altitudes. When calculating the.maximum allowable alti-

tude based on ground-based tests over short paths, the effects must be

taken into account.

In Fig. 8.32 we show the results for the case of no central obstruc-

tion. In this case, light loss at close distances is due to the fact that

the target is not focused onto the detector. The out-of-focus intensity

pattern spreads out over a larger area, and only a portion of it is sensed

by the detector. In Fig. 8.33, we show the effects of the telescope

focusing on the relative signal level. In the figures, when the telescope

is focused at 305 m, the detector is the .position where the image of a

target 305 m away will form. In the figure, we see that the maximum

received energy is obtained at a given altitude when the target is focused

onto the detector. As a comparison, in Fig. 8.34, we plot the results for

a telescope without the central obstruction.

From the above results, we see that the altitude dependence of the

received signal energy observed in the experiment can be accounted for by

the central obstruction of the telescope and the finite size of the detec-

tor. For future experiments, these results can be used to more accurately

predict the received signal level.
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3.4. Summary

In this chapter, we analyzed the data obtained from the first airborne

multiwavelength altimeter experiment. The data were processed with dif-

ferent timing algorithms. Taking into account the confidence intervals of

the results obtained, we found that the correlation algorithm probably has

the best timing accuracy.

A study was done on the altitude dependence of the received signal

level. The results obtained explained the signal level observed during the

experiment.
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9. CONCLUSIONS

Atmospheric pressure can be measured from a satellite by observing the

change with frequency in the optical path length from the satellite to the

earth's surface. Because the optical path-length difference is relatively

Insensitive to surface temperature and water vapor pressure, only rough

estimates of these parameters are required. Therefore, the major error

source is likely to be the differential path-length measurement. For a

nadir viewing altimeter using the fundamental and tripled YA6 laser fre-

quencies, the differential propagation delay is approximately 52 cm. For a

pressure accuracy of 1 mbar the differential delay must be measured with an

accuracy of 0.5 mm or 2 psec. Instrumentation such as the streak tube

camera which is capable of meeting these timing requirements is currently

available.

To achieve the high timing accuracy needed, the receiver has to cope

with not only shot noise but also time-resolved speckle. Time-resolved

speckle causes fluctuation of the received energy, distorts the received

pulse shape and degrades the timing performance. This study showed that

generally the mean square timing error Is increased by a factor of <N>/K,

due to the presence of time-resolved speckle. Fortunately, for realistic

altimeter systems, K is usually very large (~50,000).

Among the timing algorithms considered, we found the correlation

algorithm to be most promising. The accuracy of the correlation technique

improves as the bandwidth of the received signal increases. The success of

the technique depends on the presence of specular reflections or "glints"

within the footprint which preserve the high-frequency content of the

transmitted pulses. Under this condition, we found that, by using the

correlation algorithm to determine the differential propagation delay,
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single shot accuracies of ~10 picoseconds can be achieved when the expected

signal photocount approaches a few thousand.

As for the surface profile, we found that for glints to occur within

the footprint, the profile should have a long correlation length, so there

will be large areas where the surface elevation remains nearly constant.

The condition is satisfied by sinusoidal and trochoidal waves.

Experimental results from the first airborne altimeter experiment con-

ducted at Goddard's Wallop Flight Facility show a high degree of correla-

tion between the received pulse shapes at the visible and UV wavelengths.

This is essential to the success of the pressure measurement technique.

Although this initial experiment was not designed to provide data of suf-

ficient accuracy to permit actual barometric measurements, they were used

to verify the concept of the pressure measurement technique. We processed

the data with various timing algorithms. The results show a general

agreement with the theoretical performances of these algorithms. The

results also indicate the superiority of the correlation technique.

Currently, work is underway at NASA-Goddard to upgrade the altimeter

system. An image intensified streak tube camera with timing resolution of

~2 picoseconds will be used to replace the waveform digitizer used in the

initial experiments. Extensive airborne experiments using the new system

are scheduled for the summer of 1984. With the much higher timing accuracy

of the new system, the data collected will be used to demonstrate the

feasibility of the technique for the pressure measurement over the ocean.

This dissertation work began with the study of the statistics and

waveforms of the ocean reflected laser pulses. The results are not only

essential to the pressure measurement technique, but also have applications
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in remote sensing of sea states. Then, the statistical properties of time-

resolved speckle and estimation of arrival times in the presence of both

shot noise and speckle were studied. The study was done in the general

context of laser altlmetry and the results obtained are new in the area.

For completeness, an example of partially developed time-resolved speckle

was also studied.

The central problem of the dissertation work is the estimation of dif-

ferential arrival time. Various algorithms were proposed and studied. The

relation between timing accuracy and bandwidth of the received signal was

established. These results enable the prediction of the accuracy of a

realistic pressure measurement system.

Data analysis was also a major part of the dissertation work. The

data were processed with different timing algorithms and the results were

compared with the theory.
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APPENDIX A

EVALUATION OF THE PERFORMANCE OF THE CORRELATION ALGORITHM
FOR A GAUSSIAN MEAN RECEIVED PULSE SHAPE

From Chapter 4, the mean and covariance functions of the received

signal can be written explicitly as

, t) , (A.I)

S2(t) = <N2> G(/o£ + C2 + q2,, c ~ T12} (A'2)

CS1
( tl» t2 ) " <N1> G(/2V el * t2) G(V/V2 + af

<N,>2

G( /?< + a , t t - t 2 ) G ( a / 2 + 0/2 + q , ( t j + t 2 ) /2 )

(A.3)

and

CS2
( tl» t2 ) = <N1> G( 2a r. , t, - t,) G(/a2/2 ^h i 2 v h

T/o2h*^- ' i -V

• « ? * 4

-H < t ( t 1 + t2)/2 - T12) . (A.4)

The denominator on the right-hand side of Eq. (5.15) can be calculated

by aaking use of Eqs. (A.I) - (A.4),

— a2 _ I2 f" T I
/ dt S (t) -?— S (t + T) I - J / dt <N1XN2> - —

| t-T12J t-. L ^ + °f +



178

161K02 2 2 3 "*• , *• \ J
(A.5)

The numerators of the four terms on the right-hand side of Eq. (5.15)

are evaluated as follows:

,2

1 Z — «• — «•

<V2<V2Tr^r{/°°dti /Xi i L—«• —"»

S2(t2

4 - < , T "

WT12

.2 3
3^3x2

Tl'T2'T12

,2 r -
dt

VT2 L-- ' -
^ "̂̂ "̂ "̂̂ îT •< ^^ *\

(Ao6)

T1=T2=T12

- C2)

V

•G(/a2/2 + o t2)/2
T1=VT12
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<N.i.> <Vfc ,2 r «
1 2 3 j r . t

K2 3VT
2U- 11.

t2)/2

3—2 3~T Tl +

•G[/a-+To f + 7 ap . 2~
T =S T 3 T

1 2 12

32 J-^/r/^2 . . 2 . 2
K2 3Ti3T2 l̂ ""'"11 ' fcuf + °r'

2 3 2 T l + T
2 J

°f +7 °r' —2 Ti2Jf

<N1>2<N2>( a2 -»- a2)

WT12

of

2 7 2
<N >^<N,>^ al,

1 * T (A.7)3/2
2a2 + a 2 ) 3 / 2 (a 2 + a2

 +|

Following the same derivations, we have

1 2 U- * -« ' ' * - - - "1 * "J| TJ-T -TIZ
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<NL><N2>

2 2 2
^ Z

KI W2(2a2 2o o2)3/2 (a2 2 * f a2)3/2

(A.8)

The last terra ±a

WT12

a2 f *
<N.XN_> - " U dt. / dt,

1 2 3Tl3T2l— X i- '

•G(/2oh,t1 - - T2) t2)/2

T2)

<NXN_>

- T
12

2 r «
WT12

dt

•G(A2/2 i + t2)/2) G(/2/a J - T2)

(T

T1=VT12

•G(/ff2/2 + a2/2 j + t2)/2)
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+ a + + t >/2 (T + T )/2 - T

<N,>2<N,>2

1 2

12

K1K2
3VT2U.

j + t2)/2)

a2/2 t2)/2
T1=T2=T12

<NiXN2> 1 2
G ( 2 oh«Ti - 2a T2)/z

<N1><N2>
(c(^/2a2 + o2,
I h f

T =• T ** tTl 2 12

K

<N1>
2<N2>

2

<N1><N2>(a2 + a2,)

T2)/2 -

VT2=T12

2 2

4,
3/2 3/2



Finally, by using Eqs. (A.5 - A.9), we obtain

^B 1 O 0 *5

/ , , \ 2/2(0.. + Oulfae + -
MSE _ I i . i t r

2/2"

2/f

2 _,_ 2^3/2 f 2 . 3 2 . _ 2>3/2

2 2 2 2 2 3
. 1 2(a f -K qr)(af -K^-K OT)

< N > < N > 3 , 2 ^ , 2 ^ . 2^3/2
1 2 ^ ( o ^ + Z a j + Za,,)

The results are used in Chapter 5,
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.„ S2 .M S2 2<N > <N > o^
1 (A.9)
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APPENDIX B

DERIVATIONS LEADING TO THE FREQUENCY DOMAIN REPRESENTATION OF TIMING ERROR

From Chapter 4, for a general mean waveform F(t), we have

= <N> F(t) , (B.I)

<N2> F(t - T12) , (B.2)

/t, + t.
Cs1

(ti't2) - <Ni> G^ V

<N,>2 r* ~ /t, + t~
— 1 (B.3)

and

/t, + t
CS ( tl ' t2 ) = <N2> ~ i n f ' ' ^ "' * 2

<N,>2 /-= =• ft + t-
^ f->f /"*r/_^ i_ _^ *. ^ «/ ^ *• _ * i /T» A\

where we have assumed the width of F(t) to be much larger than a, and a,.

The mean square error is written here for convenience:

MSE

<N >2<N >2 . - ,
1 2 J f do> a.2!* ( • - * |21 2

s

(S2(t1 + TI) S2(t2 + T2) GS (tj + 1^12 + T 2 ) )M

5—3 IVVlii (B.5)

<N.> <N,> r - , n ~\ n
' f do) o> I*

' s



The numerator on the right-hand side is calculated as follows:

S2(tl + V S2(t2 +
T1=T2=T12

<H XH2>
- o o - o o

,t - t ) p

<N1>'<N2>"
dtl / dt2

By assuming a and a, to be small, we have

2 °» °°
3T a- / dt / dt, Cs (t,,t2) "SjU, + T.)ot, 9T~ i ' _ & a, i f- f. L L

< N > 2 < N > 2

* dt

T2(t2

F(t.)

F'(t2)

(B.6)

<N.XN
<N >2<N.>2

l

<N

» » ..
- / dt F(t)

— -o,

< N > < N

By the same reasoning, we have

7 00 00

/ dt2 ( t l) T1(t2) c

<N >2<N >2 =.

t l f t 2 H- r2
VT12

<N2> duj

(B.7)

(B>8)

The other non-zero term is
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/ dtj / dt2 C ( t l f t 2 ) C H- T j . t j + TJ

| l~ T o 12

3VT2 ^

/<N,XN0>2 < N f >
2 < N 0 > v

/ T + T
dT F(T) FT + ^—L - T

" / T.
•/ dT F(T) F T + —

V

T +T

- T
12,

1 2
G(2/o2 + 02,T1 - T2) / dT F(T) F|T + -J-2- 12/

1 2 dT F2(T) +

' < N > 2 < N > < N . X N > 2 \

dT F(t)

dT F ( T )

+ -i- G(/I/2a2 + a2 0) / dT F(T) F(T)|

<N.>2<N >2

2 .0) J dT F2(T)

i G(2/a2 + a2 0) / dT F(T) F(T)
h f

<NL><N2>

16ir /Ta a.
1 9 , 5
i_- / du,|<|. (o,)p - / du u

8,

[2ah + af

- da,
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- do,
2 „ „ U2 + a

2 -»

(B.9)
\ + °f "1"2

By substituting Eqs. (B.6-B.9) into Eq. (B.5), we obtain Eq. (5.41).
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APPENDIX C

EXPANSION OF EQUATION (5.46)

Following the same derivations shown in Appendix B, and making changes

for the difference in mean waveforms, we have

00 * - - io)T, io>T,
/ dto. / du_ to, cou Rg (topi*,) RS (u, .o^) e 1 e L

-<*> -<*> - 1 2

/ du to <J> (to) <{>- (to),
Sl S2

< N > 2 < N > 2 ] -
1 2 If" 1 I I *I d(o -=— < [ioK))- (u)] * [io)<!>0 ( w ) ] > $- (to)

* y IT I T:s S I TS

<N XN >
V-

16ir/2ir a

1 J -«• (. 2 2 J 1

fl " 2 * 1K—7 / do) <() (u) $_ (10) - / dto u> <(> (to) 4),, (to)

^XN^2 <N1>2<Nj

I , 2 *- -T- / dto to $c (u>) $c (
2 — S2 Sl

/
O O I / O O

i •+• a, K. K0 I /a. + Opn r 1 2 >• n t

00 00

•/ dto <|>0 (to) ij»c (to) - / doj to ((>_ (u) <f>c ((o)^- . (C.I)
S2 Sl — S2 Sl

This result is used in Chapter 5.
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DERIVATIONS LEADING TO EQUATION (5.53)
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dt
2 -«•

Rn ( ti V

/ dt S.( t) -2-=-
„-« 1 3T

S2(t + T)

T=T
12

+ S 2 ( t l + T1> S 2 ( t 2 + T 2 >
1~T2=T12

dt S(t) S2(t + T)

T=T
12

F(t2) G(ai,tl - t2)
Cl + V

dt F(t) F(t)

<N2>
2) / dt F2(t) G(a2,t)

dt F(t)

NQ«N1>2 + <N2>2)G(02 ,0) —/ do. u»2 |<f ' ^'2

- da>

(D.I)

du to

where we have made use of the fact that o. is very small and a. is large

compared to the width of the received waveform.
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APPENDIX E

EXPECTED DIFFERENTIAL DELAY FOR THE AIRCRAFT EXPERIMENT

For the aircraft experiment, we can write the atmopsheric correction

as

raircraft 10~6 N
A C 2 2/rocean

where we have neglected the term due to the difference between the

geometric lengths of the ray and straight-line path.

From Ref. [30], the group refractivity is given by

N 2 80.343 f(X) |- . (E.2)

If a zero temperature lapse rate is assumed [31] the pressure P will vary

exponentially with altitude:

P = P __ , (E.3)
I s

where

RT

h is the atmospheric scale height and

P = surface pressure,
S

h = altitude of the aircraft,

M •» molecular weight of air,

R « universal gas constant,

T « surface temperature (QK),
s

G = acceleration of gravity.
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By substituting Eqs (E.2) and (E.3) into Eq. (E.4), we have

hA C 5 _ e x p _ _
sin E s s\ h

(E.5)

where

N - 80.343 f(A)- . (E.6)
S L

3

For E - 90°, P - 1010 mb and T = 300°K, the scale height equals 8787 m

and the difference of the atmopsheric correction at two wavelengths is

AAC 5 4.76(m)(l - exp[-h/hg])(f(X̂  - f̂ )) . (E.7)

For the aircraft experiment, A. = 0.532 \m and X_ » 0.355 ym which results

in

AAC " 0.3978(m) (1 - exp[-h/h ])
s

- 1326(ps) (1 - exp[-h/h ]) . (E.8)
S

The results are used in Chapter 8.
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APPENDIX F

EFFECTS OF TELESCOPE CENTRAL OBSTRUCTIONS ON RECEIVED SIGNAL LEVEL

To study the effects of the central obstruction of the telescope on

the received signal level, we assume a target with uniform reflectivity and

negligible range spread. The analyses here closely follow that of Refs.

[28] and [29].

Let r and r, be the radius of the primary mirror and central obstruc-

tion (secondary mirror), respectively. Referring to Fig. F.I, the detector

is situated on the optical axis, at a distance D behind the primary lens,

while the obstruction or secondary mirror of the telescope is located at a

distance S, in front of the lens. The primary lens forms an image of the

target on to the image plane. For a target at distance z, if the lens has

a focal length f, the image is located at distance I(z) behind the lens,

where I(z) is related to f and z by the thin lens formula:

1/Kz) + 1/z => 1/f . (F.I)

The light back scattered from a point r of the target is focused onto

the image plane and causes an irradiance dS(r,,z) at point r., where

r. =• r . A pencil of light back scattered to a surface element dA

around r. will illuminate an annulus in the detector plane around r, with

an irradiance of

dS(r.,z)dA
dS(rd,z) 7 77 , (Fi2)
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Figure F.I. Georffitry of the optical setup.
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where S(r,,z) and S(r, ,z) are the irradiances in the detector and image

plane, respectively, r, is related to r. by r, = •=•? — T r< • r ^s tne outer

radius of the annulus, which is related to r by
P

- "•»

Equation (F.3) can be obtained from observing the geometry shown in Fig.

F.2. Equation (F.3) is still valid when D > I(z) if we repalce (I(z) - D)

by its absolute value.

The total irradiance at r , is provided by all the pencils of rays for

which the principal rays intersect the detector plane within a circle

around r, with radius r excluding those rays within a circle with radius
rfe

r — . The corresponding marginal points in the image plane form an annu-
P

lus with an outer radius r given by
m

and an inner radius equal to r — . This can be seen from the geometry
ttt ITp

shown in Fig. F.3.

Assuming a Gaussian footprint with a radius at exp(-l/2) point equal

to z tan 9 , the irradiance at the image plane is given by

_ _

1 1 1
iKr; - rj) 2<£

S(r z) -- 2_r— 2 -- i— • e , (F.5)
1 Z^ 2lTOj

where

al = z tan ST -^- = I(z) tan 9T . (F.6)

Since we are only interested in the relative signal level, in Eq. (F.5)
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Figure F.2. Ray tracing of the telescope.
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Detector Plane

Image Plane

Figure F.3. Geometry of the detector plane and image plane.
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we have omitted a proportional constant for simplicity. The constant takes

into account transmitted laser power, reflectivity of the target and

atmospheric transmittance.

By making use of Eqs. (F.5) and (F.2), we can express the irradiance

at the detector plane as

(F.7)

I rb Iwhere A(r ,rr-r. ]/Afr , — r, ] denotes the integration region, an annulusm D d ' ^ m r D d ' = > »
p rb I

with outer radius r , and inner radius r — centered around — r,.ID 31 r D d
P

By making changes of variables, we can write

S(r.,z)

2
rp 1 ,

r z 2iro* A.(r ,c i m
_2 2
1 rd

2 2 2
ro 2°ID

2 2 2 e

V al

rK d2r exp
0 ) / A f r — — , 0)ni r

" |r - I. r
 2"

2 a
1p

_ r^

f
rm . 2°I T /

Irrd\/ rb dr r e il — j-l ,
rm— VDa! /

(F.8)

where I is the modified Bessel function of the first kind, zeroth order,
o

The total power received by the detector E(z) can be obtained by

integrating S(r,,z) over the detector area,
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R,
E(z) = 2IT / drd rd

o

2irr2 R, 2o2D2 r 2 a2 /lrr.\P f d . I f m , I , / d
*- / dr. r. e / r, dr r - - '2 2 2 J d d J *b o\ 2 /

r z a, o r™T~ \D*r I
L m p ^ (F.9)

Again by making changes of variables, we can write E(z) as
2

z 2 2
~ R. -„ 2z tan_/ . Zjr r a u jE(z) » j dr r e

2z z p

r P | 1 " P + D ' " 2 z 2 t a n 2 9 T / \

I d^e TIO 2 'S fl • (F'10)

\z tan 6my

If the radius of the detector R, is very large, i.e., R, » z tan 9_,

Eq. (F.10) can be simplified to

',I'-T*3
E(z) ^ / dp p

z2
(F.ll)

which is inversely prportional to the distance squared. This functional

dependence is expected when all the energy collected by the telescope is

intercepted by the detector. On the other hand, if the detector is very

small so that R. « z tan 9_, I in Eq. (F.10) can be approximated by 1 and

E(z) simplifies to



E(z)

2
2ir tan 9

/ z z\2

\ Ei 1
2 tan2 8_D2

1 - e l

2 , z . z *rb l -T + "D
2z2 tan2 8T
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z . z
T + 17f D

2 2
2z tan

- e (F.12)

When the detector Is situated at the image plane, i.e., when the

target is focused onto the detector, the power received by the detector is

*
E(z)

(F.13)

2 it / ° dr.
0 1

1T'-rp rbJ
2

r, S(r l f«)

R2 -

292 I2(z)
1 - e i

which is generally larger than the power obtained when the detector is at

any other position.
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