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Abstract

Solar flares have been observed intensively for more than two decades at X-

ray energies in excess of 10 kilovolts. We develop a technique for determining

the physical arrangement of a solar flare during the impulsive phase, based upon

a non-thermal model interpretation of the emitted hard X-rays. Our technique

allows us to obtain accurate values for the flare parameters, including those which

describe the magnetic field structure and the beaming of the energetic electrons,

parameters which have hitherto been mostly inaccessible.

Our technique follows the evolution of streaming energetic electrons within

the flare structure The evolution of the electron number distribution, which

is primarily controlled by Coulomb collisions, is evaluated using a steady-state

Fokker-Planck Equation. From the evaluated electron distribution we calculate

the emitted bremsstrahlung X-rays. The power of our technique lies in our ability

to correlate the characteristics of these hard X-rays with the values of the model

parameters describing the flare.

We find that the X-ray intensity height structure can be described readily

with a simple expression based upon a semi-empirical fit to the results from many

models. We also find that the degree of linear polarization of the X-rays from a

flaring loop does not exceed 25 percent and can easily and naturally be as low as

the polarization expected from a thermal model. This is a highly significant result

in that it supersedes those based upon less thorough calculations of the electron

beam dynamics and requires that we reevaluate our hopes of using polarization

measurements to discriminate between categories of flare models.
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We also confirm that one cannot determine satisfactorily flare model para-

meters solely on the basis of spatially unresolved observations. We show how the

full power of our modeling technique enables us to use the recent high resolution

X-ray observations to obtain values for the model parameters appropriate to each

flare, in particular for those parameters which describe the injected electron beam

and which are essential to furthering our understanding of the electron acceleration

mechanisms.
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Chapter I

Introduction

"Solar flares are complex, transient excitations of the solar atmosphere above

magnetically active regions of the surface involving enhanced thermal and radio

emission, hard X-rays, cosmic rays and plasma ejection. Their origin is not yet un-

derstood after more than a century of study since the first recorded observations."

(Sweet 1969).

Solar flares have been studied for an extended period of time and have been

under intensive study for at least the last twenty years. Yet they still represent

somewhat of an enigma, and this despite the fact that the field has seen some

major advances in the years since Sweet's comments were written in 1969. Many

of the fundamental physical processes are far from being understood, including

those which initiate and power the flare. For this reason the study of solar flares

will remain one of the more active programs in Astrophysics for many years to

come.

Sweet described solar flares as being complex, transient and energetic. They

are indeed all of these things. They are manifestations of the diverse physics of

inhomogeneous plasmas with strong magnetic fields. They typically involve the
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bulk motion of up to 1016 g of plasma (Rust et al. 1980) - the equivalent of a small

terrestrial mountain. Solar flares are known to accelerate elementary particles to

energies of hundreds of MeV (Svestka 1975; Brown and Smith 1980; Ramaty et al.

1980), to heat huge volumes of plasma to temperatures of tens of millions of degrees

Kelvin (Moore et al. 1980) and to generate electromagnetic radiation across a

sixteen decade wavelength span from kilometric wavelengths to 7 ray energies. The

total energy budget of a solar flare can, for a typical large flare, exceed 1032 ergs

(Zirin 1966, p455; Brown and Melrose 1977).' The flare is activated over timescales

of seconds to minutes (Kane et al. 1980b), the energy is distributed throughout

a structure which is tens of thousands of kilometers in size and is detectable as

thermal radiation from a hot plasma for many hours thereafter.

Owing to the wide range of size scales from meters to thousands of kilometers,

the wide range of timescales from seconds to many hours, and the huge quantities of

energy involved, solar flares provide the scientist with a unique physical laboratory,

obviously impossible to reproduce on earth. The shear complexity and number of

processes which are active at any one time plus the inherent inaccessibility of the

experimental subject, provide ample justification for why so much data has been

collected pertaining to solar flares, why so much uncertainty as to how they work

still exists and why so much attention will continue to be directed toward their

study.

~ 1032 ergs dwarfs the most destructive of manmade devices - an SS18 missile can deliver
a warhead with more than 1024 ergs of explosive power (Donley 1979, p71) - and easily
exceeds nature's terrestrial limits. A large volcano might produce 1028 ergs of energy over
many, many hours and a large earthquake might release 1029 ergs over very much shorter
timescales.
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1.1 Flare structure.

The early ideas about solar flares (cf. review by Svestka 1966) were formed

from observations taken at optical wavelengths, primarily Ha (the transition from

n = 3 to n = 2 in the Hydrogen atom, wavelength 6562 A, characteristic of tem-

peratures ~8000 K (Zirin and Tanaka 1973)). The Ha emission can depict events

occuring in the chromosphere which is the level of the atmosphere immediately

above the visible surface of the sun (cf. Figure (1.1)). Ha observations show (cf.

Vorpahl 1973; Canfield et al. 1980) diffuse regions of enhanced emission covering

an area of several times 1019 cm2 and lasting from minutes to hours. Embedded

within these enhancements are small, very bright knots covering, usually, less

than 1018 cm2 and having a shorter duration with a lifetime of a few minutes.

Alternately, the largest flares, known as two ribbon flares, show the bright knots

connected together to form two long ribbons which lie parallel to each other. These

ribbons can be 105 Arm or more long and 2 X 104 Arm wide each (Moore et al.

1980), giving a total area in Ha brightening of several times 1019cm2. (See also

Zirin 1966, pp 390-406; Tanaka and Zirin 1973; Zirin and Tanaka 1973; and see

the fronticepiece of Sturrock et al. 1080 for an Ha picture of a large two-ribbon

flare).

The earliest observations were all made from ground-based instruments and

this restricted the observations to visible and radio (~ 10 m - 1 cm) wavelengths

which could pass easily through the earth's atmosphere. The early observations

at other wavelengths were made from high altitude balloons. Then, beginning

after World War II, increasing use was made of rockets and, nowadays, these

observations are frequently made from satellites or space vehicles such as Skylab
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Figure 1.1. The structure of the atmosphere for the quiet (i.e., non-flaring)

sun. The photosphere is the visible surface of the sun. One solar radius is equal to
6.95 X 10s km. The solid curve shows the atmosphere's temperature structure and
uses the bottom scale; the dotted curve shows the atmosphere's density structure
and uses the top scale.
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or the Space Shuttle. Though widening the observational window, until recently

none of the non-ground-based instruments had comparable spatial resolution to

the Ha instruments. In 1973 Skylab was launched and carried with it several

telescopes which could collect radiation across most of the range 3 - 3940 A with

an angular resolution ~2", which corresponds to a spatial resolution ~1500 km

on the surface of the sun. These telescopes sent back thousands of images showing,

for the first time, the geometric structure containing the hot plasma which remains

and gradually cools after the shorter lived impulsive bursts have ceased. The

observations, particularly the Extreme Ultra Violet (EUV) (10 - 1030 A) and X-

ray pictures, showed that flares generally occur in loop like structures which are

rooted in the deep levels of the chromosphere and which project up into the solar

corona (Widing and Cheng 1974; Cheng and Widing 1975; Vorpahl et ai 1975;

Spicer 1977. cf. Figure (1.2)). The loop structure is a curved tube delineated by the

magnetic field and, for the most part, survives throughout the lifetime of a solar

flare (Vorpahl et al. 1975). Flare loops vary immensely in size but are frequently

found to be between 4 X 103 and 20 X 103 km in length and about half as high

as they are long (Cheng and Spicer 1975; Cheng and Widing 1975; Vorpahl et al.

1975). The footpoints of the loops are generally coincident with the knots of Ha

brightening (Spicer 1977). Large flares are often associated with arcades of these

loops stacked closely together. In such cases the Ha knots from adjacent loops

merge to form the two long ribbons.

Early observations at wavelengths other than optical may not have had the

spatial resolution of the Ha images but they did allow the measurement of flare

radiation emitted by many different processes and coming from widely different
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Figure 1 2. A sketch of a flaring loop showing the region of hottest plasma
(shaded region) at the top of the loop and the source regions for the various burst
emissions A typical height for a flaring loop is 2 X 104 km.

parts of the flare structure, and they were able to show the synchrony of different

emissions to wi th in the relative timing calibration of the independent instruments.

As seen in many of these emissions, there are primarily two timescales in the

temporal development of a flare (cf. Kane 1969,1974; de Feiter 1975, Haug 1982).

One of these corresponds to the gradual phase during which the brightness of

the flare increases over many minutes and then decays slowly, often over hours.

This has the appearance of the bulk heating and slow cooling of a large volume of

plasma. The flaring plasma can reach temperatures of tens of millions of degrees

Kelvin, which is hot enough that the spectrum of continuum emission extends

into the X-ray region. It was such X-rays from extremely hot plasmas in which the

Skylab X-ray images were made.
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The other timescale in the temporal development of a flare corresponds to the

impulsive phase. This is always accompanied by gradual phase emission though

the converse does not always hold (Svestka 1975; Haug 1982). The gradual phase

can occur with no detectible impulsive phase, though this may be an instrument

threshold effect. The impulsive phase occurs during the early stages of the gradual

phase. Flares sometimes show what is known as preheating for several minutes

before the impulsive phase and this is seen as a slow and steady increase in the

thermal emission of the preflare plasma (Kane 1974; Vorpahl et al. 1975; Haug

1982). The impulsive stage can last for a few seconds in small flares or for many

minutes in large flares and during this time the intensity of the flare emissions

varies rapidly and widely. The temporal structure of the impulsive phase is seen

most distinctly at hard X-ray energies (> 10 keV X-rays), where the impulsive

emission appears as a sequence of short lived bursts. In relatively small flares

the impuslive stage can be decomposed into discrete bursts, which have similar

structures (van Beek, de Feiter and de Jager 1974, 1976; de Jager and de Jonge

1978). These individual bursts can represent a contrast of up to a factor of three

against the remaining hard X-ray profile, and for them the intensity rises and falls

with an e-folding time of just three or four seconds (Vorpahl and Takakura 1974,

1975; de Jager and de Jonge 1978. Large flares have too complex a time structure

for the decomposition into discrete bursts to be unambiguous (Brown 1975). The

combined effect of many overlapping bursts is to give an X-ray intensity which

is orders of magnitude above the preflare background (cf. Hoyng, Brown and van

Beek 1976).

Some of the emissions at other than hard X-ray energies show a similar burst

or impulsive stage structure, for example microwave bursts (X < 30 cm. de Feiter
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1975; Takakura 1975) and Type III radio (meter) bursts (Smith 1974; Lin 1975;

Rosenberg 1976). Yet other emissions are produced by the response of the solar

atmosphere to the physical activity in a flare. For these the fine structure of the

bursts is smoothed into slower varying but still burst-like brightenings. This is the

appearance in both EUV and Ha.

1.2 Thermal and non-thermal models.

All the emissions associated with the impulsive phase are seen to be well cor-

related. The impulsive Ha, EUV, microwave and X-ray emissions show synchrony

on timescales of seconds and often show good correlations between the size of

their respective fluxes. The Ha and hard X-ray bursts are simultaneous to within

seconds and have broadly correlated fluxes (Zirin, Pruss and Vorpahl 1971; Zirin

1978). Acton (1968) found that Ha flashes occurred only in flares which have a

non-thermal (that is, an excess above thermal) X-ray component and Kane (1973)

estimated that only about 10% of small Ha flares ( Ha importance < 1 ;cf. Zirin

1966, p391) have a clearly discernable impulsive hard X-ray component. At the

other end of the size scale, large flares show white light flashes which are an en-

hancement of the broad band emission from the deep layers of the chromosphere.

White light flashes tend to occur in flares which have a sizeable amount of Ha

emission (Zirin and Tanaka 1973; Zirin 1978).

Numerous studies have found close correlations between the impulsive hard

X-rays and the microwaves, both in time and in flux (Peterson and Winckler 1959;

8
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Kundu 1961; Anderson and Winckler 1962; de Jager and Kundu 1963; Kundu

1963; Bowen et al. 1964; McKenzie 1972; Vorpahl 1972; Kane 1973; Zirin and

Tanaka 1973; de Feiter 1975; Takakura 1975). Similarly between hard X-ray bursts,

microwaves and interplanetary particles (Arnoldy, Kane and Winckler 1967; Acton

1968; Kane 1972b), and between the hard X-ray bursts and EUV emissions (Kane

and Donnelly 1971; Wood and Noyes 1972; Donnelly and Kane 1978; Kane, Frost

and Donnelly 1979). Type in radio emission occurs in "bursts" (starting frequency

~100 MHz or higher) and "storms" (starting frequency ~80 MHz or below)

(Rosenberg 1976) of which bursts are strongly flare associated and storms are

not (Kundu 1961; Anderson and Winckler 1962; de Jager and Kundu 1963; Kane

1972a; Fainberg and Stone 1974; Rosenberg 1976).

These impulsive emissions are strongly correlated and yet they are known

to be generated in different regions of the flare (cf. Figure (1.2)). The Ha and

EUV come from material in the chromosphere (Falciani et al. 1968; Brown 1973b).

The X-rays are predominantly chromospheric but can be distributed throughout

the coronal loop as well. The microwaves come from the very top of the loop

(Marsh and Hurford 1980; Marsh, Hurford and Zirin 1980; Marsh et al. 1980,

1981; Kundu, Schmahl and Velusamy 1982; Petrosian 1982; Kundu 1983) and the

Type in radio bursts and interplanetary particles originate above the flaring loop

in the corona (de Jager and Kundu 1963; Wild, Smerd and Weiss 1963; Kuiper

1973; Lin, Evans and Fainberg 1973). The synchrony to within seconds of emissions

coming from regions which can be as much as 10s km apart requires that the agent

transporting the source energy throughout the flare must move rapidly, much more

rapidly than the plasma electron or ion thermal speeds and maybe as fast as a

9
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significant fraction of the speed of light. This excludes conduction and convection

as the means of energy transport (Emslie, Brown and Donnelly 1978) and strongly

indicates the presence within the flare of electrons which are accelerated to strongly

suprathermal energies (Brown 1973b, 1975). These energetic electrons then stream

along the magnetic field lines from the acceleration site into the chromosphere or

out into the higher corona and give rise to the various impulsive emissions. Such

particles are often seen arriving at the earth and have been clearly identified with

the occurence of flares (Lin 1974a,b).

The mechanisms by which these electrons are accelerated is not yet clearly

understood. The Skylab X-ray images of flare loops showed that the hottest plasma

was usually found at the apex of the loop (Cheng and Widing 1975; Spicer 1977)

which might suggest that that is where the acceleration region is to be found.

The total amount of energy released by a flare is so large in comparson to its

volume that there is only really one source for all that energy. The thermal energy

density of the hottest regions of the flare and the gravitational potential energy

of the flare material fall well short of that required to power a flare (Brown and

Smith 1980). Though there are no accurate measurements of the strength of the

magnetic fields in flaring loops (but see Kundu 1973; Rust and Bar 1973) it is

thought that the energy density of the magnetic field is sufficient (Brown and

Smith 1980). The energy of a flare almost certainly originates as free energy stored

in the non-potential magnetic field of the flare loop structure. It is released through

the annihilation of the magnetic field, a process known as magnetic reconnection.

Several geometries have been proposed for the reconnection process (Cheng and

Spicer 1975; Spicer 1976; Kahler et al. 1980; Sturrock 1980) though it is not clear

10
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which is the most applicable to the solar flare problem. For all the geometries

the actual magnetic reconnection occurs on size scales which are far too small for

there to be any real chance of the reconnection geometry being seen directly in

the foreseeable future. Instead we are limited to observing secondary phenomena,

i.e., the radiations produced by the accelerated particles.

To test the acceleration theories with observations the theories would have to

be developed to a point where they could predict the properties of the electron

populations they produce. Actual electron populations could then be calculated

from the observations and comparisons made. However, theories of the accelera-

tion mechanism are not yet advanced enough for such predictions to be made.

Observations can only be used to give requirements on the acceleration mechanisms

in order that these mechanisms be compatible with experimental data. If the ac-

celerated electrons form a beam which passes from the top of the coronal loop

down to the chromosphere, the amount of energy that the electrons need to carry

in order to produce the observed radiations can be calculated. Of the various im-

pulsive emissions, the X-rays place the most stringent demands upon the electron

beam. The beam strengths required to produce the observed EUV (Donnelly and

Kane 1978, Emslie, Brown and Donnelly 1978; Emslie and Noyes 1978), Ha (Zirin

and Tanaka 1973; Brown, Canfield and Robertson 1978; Zirin 1978) and microwave

(Acton 1968; Ramaty and Petrosian 1972; Anderson and Mahoney 1974; de Feiter

1975) emissions, and to account for the escaping interplanetary electrons (Lin and

Hudson 1971; Lin 1974a,b) are not as high as those required to produce the im-

pulsive hard X-rays. The X-ray data is therefore most frequently used to obtain

estimates of the amount of energy which must pass into the electrons.

11
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One problem arises immediately and is supported by a wide range of X-ray

observations. This is that the energy required of the beam of electrons, in order that

it generate the observed impulsive X-rays, is a sizeable fraction of the total energy

budget of the flare (Lin and Hudson 1971; Brown 1973b; Kane 1973; Peterson,

Datlowe and McKenzie 1973; Hoyng et al. 1975; Hudson, Jones and Lin 1975; Lin

1975; Hoyng, Brown and van Beek 1976; Lin and Hudson 1976; Brown, Melrose

and Spicer 1979). This places an extremely high efficiency requirement on the

acceleration mechanism if it is to release a large fraction of the liberated magnetic

energy into the directed motion of the electrons in the beam without putting

a lot of that energy into bulk heating of the coronal plasma (Smith 1980). An

accompanying problem is that the number of electrons which are required to be

accelerated throughout the lifetime of the impulsive burst can be as high as the

total number of electrons in the entire flaring volume (Brown and Melrose 1977;

Hoyng, Brown and van Beek 1976). This necessitates the bulk motion of electrons

within the flare to continually resupply the acceleration region and it is not clear

that this can be done without generating plasma instabilities which would throttle

the passage of the injected electron beam (Hoyng, Brown and van Beek 1976;

Melrose and Brown 1976; Brown and Melrose 1977; Hoyng, Knight and Spicer

1978; Brown, Melrose and Spicer 1979; Emslie 1980).

For these and other reasons (cf. Kahler 1975; Brown, Melrose and Spicer

1979 for reviews) many have begun to doubt the viability of non-thermal models,

i.e., models which require the presence of a beam of suprathermal electrons. The

objections can all be brought down to the fact that such a beam of electrons is an

inherently inefficient producer of hard X-rays. The electrons pass down through

12
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the flare loop and exchange their energy with the background, flaring plasma.

Only about one part in 104 of the energy in the beam is given up to the hard

X-rays (Brown 1971). If the electrons which produce the X-rays can be part of

a thermal (and therefore very hot in order that high enough energy X-rays can

be produced) distribution, then ideally all the electron energy could be used to

generate radiation and many of the problems with the non-thermal models would

be alleviated. This has been the motivation for the intensive study of the so called

"thermal" models which has been conducted since the mid 1970's (Crannell et al.

1978; Matzler et al. 1978; Brown, Melrose and Spicer 1979; Smith and Lilliequist

1979; Brown, Craig and Karpen 1980; Emslie and Brown 1980; Emslie and Vlahos

1980; Smith and Auer 1980; Brown and Hayward 1981; Emslie 1981a).

In thermal models the energy released by magnetic reconnection is used to

bulk heat the flaring plasma. Ion-acoustic turbulent fronts bottle up the hot

plasma allowing the electrons to acquire a distribution which is relaxed and nearly

Maxwellian (Brown, Melrose and Spicer 1979) and hence be able to produce X-

rays efficiently. In order to reproduce the time structure of the impulsive bursts

the volumes in which the electrons are heated by reconnection must be small and

the number of these heating kernels large (Brown, Craig and Karpen 1980). The

local temperatures in each of the kernels is extremely high ( > 5 X 108 K) and the

kernels cool by turbulent conduction. Those electrons in the hot quasi-Maxwellian

distribution which have velocities greater than ~3 times the thermal velocity are

able to escape through the confining turbulent fronts (Brown, Melrose and Spicer

1979). Therefore, thermal models produce not just volumes of hot plasma, but also

streams of these highest energy electrons which pass through the confining fronts

13
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and act in a manner similar to the beams in non-thermal models (Emslie and

Brown 1980). Therefore, when reproducing the time structure of short impulsive

bursts, thermal models begin to lose their efficiency advantage over non-thermal

models and cease to be as attractive (Brown, Craig and Karpen 1980; Brown and

Hayward 1981).

1.3 Flare emissions.

If the energy requirements of the impulsive radiations cannot rule out one

or the other type of model on theoretical grounds alone then we can look to the

characteristics of the radiations in order to distinguish experimentally between

what are two quite dissimilar distributions of source electrons. The presence of

a suprathermal source for the impulsive radiations should be visible from the

radiations themselves. Whether or not it is, is one of the most long standing of all

the current controversies in solar flare physics.

The EUV emission is thermal emission no matter by what mechanism this

part of the chromosphere is heated. The 10 - 1030 A EUV emission is enhanced

line and recombination emission from plasma with temperatures in the range 104 -

106 K and density > 1012 cm"3 (Donnelly, Wood and Noyes 1973; Donnelly and

Hall 1973; Kane 1973; Noyes 1973). Whatever mechanism provides the heating

to this region (Emslie, Brown and Donnelly 1978) the atmosphere responds by

radiating away the excess energy as EUV and does so synchronously with the rate

at which energy is deposited there (Brown 1973b). The only requirement is that
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the heating mechanism be able to provide enough energy to the EUV radiating

plasma and a suprathermal electron source seems to be more than able to do this

(Wood and Noyes 1972; Brown 1973b; Donnelly and Kane 1978).

The microwave spectrum is only a distant reflection of the source electron dis-

tribution because there are so many operational physical processes in a magnetoac-

tive plasma (cf. Holt and Cline 1968; Ramaty 1969, 1973). The microwaves are

the gyro-synchrotron radiation from electrons in the energy range 10 - 100 keV.

But, under solar conditions, the plasma medium exerts a strong influence upon

the emission, absorption and transfer of gyro-synchrotron radiation. There are

many absorption and suppression mechanisms which can dominate the microwave

spectrum and it is difficult to do more than say that any given spectrum can be

more or less easily obtained from a non-therrnal as opposed to a thermal source

(Arnoldy, Kane and Winckler 1968; Ramaty and Petrosian 1972; Takakura 1975).

Flare associated Type in radio bursts (Smith 1974; Lin 1975; Rosenberg 1976;

Kane et al. 1980b) occur in compact groups during the impulsive phase. They last

for a brief one or two seconds around 100 MHz, starting at a frequency of several

hundred MHz and falling at an initial rate of about 100 MHz per second (Alvarez

and Haddock 1973; de la Noe, Boishot and Aubier 1973). They are radiation at the

coronal plasma frequency stimulated by electrons streaming out through the upper

corona (Lin, Evans and Fainberg 1973). The rate at which the radio frequency falls

can be translated into a velocity for the streaming electrons of roughly one third

the speed of light (Wild, Sheridan and Neylan 1959; Stone and Fainberg 1973).

Type HI bursts have been well correlated with deka-keV interplanetary electrons

(Alvarez, Haddock and Lin 1972) and both are associated with the impulsive phase
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of flares. The electrons which are injected into interplanetary space are probably

not the same ones which are responsible for the impulsive X-rays though they may

be accelerated simultaneously with them (de Jager and Kundu 1963; Kane 1972a;

Lin 1975; Svestka 1975).

For one reason or another, then, impulsive bursts other than at hard X-ray

energies are not well suited to measuring the details of the underlying source

electrons. The impulsive hard X-rays, on the other hand, are a much more direct

probe of the emitting particles (Kane 1973). They are bremsstrahlung from the

electrons as they pass through the flaring plasma'. The emission process provides

an instantaneous measure of the state of an electron and is well understood, and the

solar atmosphere above the photosphere is completely transparent to the passage

of the X-rays. The X-rays which travel directly to the observer can, therefore,

be immediately traced back to the electron source and should provide a clear

indication of it.

1.4 Impulsive hard X-rays.

The first observation of a solar hard X-ray burst was made in 1958 from a bal-

loon over Cuba (Peterson and Winkler 1959). Shortly thereafter several more obser-

vations were reported (cf. Kundu 1961) and the number grew steadily throughout

the 1960's. These early observations had low energy and time resolution. This

The other contending mechanisms for the production of the X-rays: synchrotron from
MeV electrons or the inverse Compton effect, are both unlikely candidates (Korcak
1967a,b, 1971; Kane 1973; Brown and Smith 1980).
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allowed a thermal interpretation to be put to the data (Chubb, Kreplin and

Friedmann 1966) but the accumulated weight of opinion was in favor of the X-

rays being characteristic of non-thermal sources (Winckler, May and Massey 1961;

Anderson and Winckler 1962, 1963; Bowen et al. 1964; Culhane et al. 1964; Acton

1968; Arnoldy, Kane and Winckler 1968; Cline, Holt and Hones 1968; Kane 1969;

Pounds 1970; to mention but a few).

In a review of the then available observations Kane and Anderson (1970) found

that most impulsive hard X-ray bursts could be fit to a power law spectra over the

range 10 keV to several hundred keV, often with a spectral break or steepening

around 100 keV (See also Frost 1969; Cline, Holt and Hones 1968; Frost and Dennis

1971; and for later reviews of hard X-ray observations see Peterson, Datlowe and

McKeuzie 1973; Kane 1974; Brown 1975, 1976; Svestka 1976; Kane ei al. 1980b;

Haug 1982). The spectral index 7 (where 7 is defined as d In J(k)/d In k for a photon

flux J(k) at energy k) is typically ~4 or 5, and 7 < 3 or 7 > 6 are extremely rare

(Datlowe et al. 1977; Haug 1982). There is some indication that very large flares

may have appreciably harder spectra (lower 7) (Chupp, Forest and Suri 1975;

Hoyng, Brown and van Beek 1976) but this is by no means certain (Kane 1973;

Kane, Frost and Donnelly 1979).

A power law X-ray flux is usually taken to imply a power law (i.e., non-

thermal) electron energy spectrum (Haug 1982) though it is extremely important

to remember that this is not a necessary implication, especially when considering

the uncertainties in the data (Chubb 1971; Brown 1974, 1975, 1978). Owing to the

steepness of the spectra many flares are not visible over a large dynamic range, and

for observations spanning 10 - 100 keV the spectral resolution of many instruments
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is often rather poor (Kane et al. 1980b). A typical effective channel width for a

scintillation counter detecting X-rays of an energy E (keV) is several times \/E

(Brown and Smith 1980). Consequently the fitting of a power law spectrum to

the observations is often not unique. An alternate two parameter fit to X-ray data

would be an isothermal spectrum, though these can often be ruled out on the basis

of a power law spectrum being a better fit (Kane and Anderson 1970; Kahler 1975;

Haug 1982). However, there is no reason to expect that the X-ray producing plasma

would be isothermal and hence, a multi-temperature fit would be more appropriate

(Chubb 1971). But, with no guidance as to how the amount of emitting, hot plasma

would vary with temperature, a multi-temperature spectrum can be made to fit

any X-ray data provided a satisfactory emission measure - temperature function

can be found (Brown 1974). Again, the data often does not allow a unique fit to

be made (Craig 1975, Brown 1978).

If the X-ray spectrum is unlikely to clearly discriminate between candidate

distributions for the source electrons then we should look to other characteristics

of the X-rays. One of these is the X-ray polarization and another is the X-ray height

structure within the flare. The X-ray emission anisotropy, though theoretically a

basis for distinguishing between models, is not, in practice, a useful discriminant

(Brown 1975).

A directed beam of source electrons, such as is central to non-thermal models,

has the potential to produce highly polarized X-rays (Elwert 1968), whereas a

thermal distribution of electrons, being essentially undirected, would produce un-

polarized X-rays. On this basis the X-ray polarization can be used to indicate a

preference for thermal or non-thermal X-ray sources. The question of just how
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strongly polarized the hard X-rays from a non-thermal model would be has been

the subject of quite some study in the last fifteen years (Ehvert and Haug 1970,

1971; Haug 1972; Brown 1972; Henoux 1975; Langer and Petrosian 1977; Bai and

Ramaty 1978).

These treatments have been limited by the complexity that a thorough study

would require (Korcak 1974; Brown 1975). They have tended to use simple, i.e.,

idealistic, distributions for the source electrons and for this reason their calculated

values for the X-ray polarization must be treated as upper limits. Their estimates

of 30 - 40% polarization are certainly high enough that hard X-ray polarization

measurements (Wolff 1973) could be expected to provide the sought for discrimina-

tion between models (Emslie and Brown 1980). However, there is not, currently,

a body of clearly reliable observations upon which to rely (Brown 1975; Kahler

1975; Thomas 1975; Somov and Tindo 1978; Mandel'stam referenced in Emslie

1981b; Haug 1982), though there are hopes that this may change for the better in

the near future (Emslie and Rust 1980; Lemen et al. 1982; Tramiel, Chanan and

Novick 1984).

The alternate method of using hard X-ray burst data to provide the all im-

portant model discrimination is to investigate the spatial distribution of the hard

X-rays within the source (de Feiter 1975; Emslie and Rust 1980). The general un-

derstanding of thermal and non-thermal models indicates that in thermal models

the hard X-rays should come predominantly from the top of the coronal loop

where the hottest plasma is contained by the turbulent fronts (Emslie 1981b;

Brown and Hayward 1981). In non-thermal models the hard X-rays should come
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predominantly from the chromosphere where the background plasma density is

high (Brown and McClymont 1975; Emslie 1981b).

Before the recent launching of the NASA Solar Maximum Mission (SMM)

satellite in February 1980, the only means for obtaining any observational infor-

mation about the X-ray height structure was from the occultation of flares occur-

ing just behind the solar limb (McKenzie 1975). Most of the early reports of such

observations were able to show that the hard X-ray source can extend to altitudes

in excess of 20 X 103 Arm above the photosphere (Haug 1982) but they were not

able to provide any accurate spectral information (Brown 1975). More recently,

several stereoscopic observations of flares which are partially occulted to one of

the two telescopes but which are in full view to the other have been reported

(Kane 1983). Such stereoscopic observations resolve a flare into two spatially dis-

tinct source regions and provide hard X-ray measurements with the beginnings of

spatial resolution.

Onboard the SMM satellite is the Hard X-ray Imaging Spectrometer (HXIS)

(van Beek et al. 1980) which can image 3.5 - 30 keV X-rays with 8" angular

resolution (corresponding to ~ 6000 km on the surface of the sun). HXIS is capable

of resolving separately each loop footpoint and the coronal part of the loop for an

average sized flare. The initial reports (cf. review by Haug 1982) have shown that

the regions with the strongest emission of hard X-rays have the flattest spectra and

tend to overly the brightest Ha patches. Also, the regions of strongest soft X-ray

emission are located between the regions of brightest hard X-rays. These HXIS

observations provide support for the non-thermal interpretation of flare bursts

(Duijveman, Hoyng and Machado 1982; Haug 1982).
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1.5 The study conducted.

Yet, as with the X-ray polarization estimates, calculations of the X-ray height

structure in non-thermal models have suffered from the fact that a thorough study

would require a complex and lengthy treatment of the dynamics of the electron

beam. Idealized distributions for the electrons in the beam have been used and,

consequently, the value of the calculated results has been primarily qualitative.

Because of the limited applicability of these qualitative results, there has been

a great need for a full and thorough study of the impulsive hard X-rays from

non-thermal models. With the launching of the SMM satellite carrying HXIS and

the Hard X-ray Burst Spectrometer (HXRBS) (Orwig, Frost and Dennis 1980), the

launching of the Hinotori satellite in February 1981 carrying the Imaging Hard

X-ray Telescope (SXT) (Makishima 1982; Tanaka 1983; Takakura et al. 1983) and

with the latest X-ray polarimeters promising accurate high resolution results there

is a growing body of high quality data needing a comprehensive interpretation.

This data can be used to further test the ability of flare theory to understand

flare observations and, hence, to describe the physical processes active in flares,

provided the theory has been developed to a level commensurate with the quality

of the data. In this manner the data can provide the means for a discrimination

between candidate models which has up to now been lacking.

But there has also been a need for a full study of non-thermal models which

went beyond testing the viability of the theory. The study of solar flare impulsive

hard X-rays has been motivated by a desire to measure the characteristics of

the population of the energetic source electrons, and to use knowledge about the
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source electrons to further understand the acceleration mechanisms which power

the flare.

We have conducted our study of non-thermal flare models with this view in

mind. We have followed a method whereby we construct a general non-thermal

model description of the solar flare physics and from this calculate the charac-

teristics of the impulsive hard X-rays. The model description is very general in

that it allows the geometric structure of the loop and the characteristics of the

electron beam at the acceleration region to be flexibly specified by way of free

parameters. From the description of the electron beam at the acceleration region

a full description of the electron beam at all positions within the flaring plasma is

calculated, and a complete description of the X-rays is obtained. We then correlate

the characteristics of the X-rays with the values of the parameters describing the

flare geometry and the electron beam, and we investigate how the characteristics

of the X-rays change in response to a change in the model parameters. In this

manner we are able to see how the X-rays convey information about the details of

the flare models and the extent to which X-ray observations can be used to obtain

a description of the source electrons.

In Chapter II we expand upon the non-thermal model paradigm and construct

a mathematical description of the evolution of the electron beam within the flaring

plasma. In Chapter in we obtain analytic and numerical solutions to our central

equation and we present a sample of the results pertaining to the evolution of the

electron beam. We do this in order that we may later understand the behavior

of the X-rays in terms of that of the electron beam. In Chapter IV we describe

how we incorporate the production of X-rays by the electron beam into the model
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paradigm. At this stage we have a complete description of the modelling technique

and can proceed with calculating the X-ray characteristics.

In Chapter V we present our X-ray results. We set up a reference model and

give the X-ray results for that model in detail. We then vary the model parameters

and describe how the X-ray characteristics change in response to this. In Chapter

VI we use our modelling technique to fit non-thermal models to the newly available

data and show the extent to which the new data can be used to obtain descriptions

of the population of source electrons in each case. In Chapter YE we summarize

our study and recapitulate our major results.
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The Fokker-Planck Equation

We now look more closely at the non-thermal model paradigm, and pare it

down to make a workable description of our problem. In this chapter we step

through the paradigm, elucidating the processes which play a role in the physical

system and decide which of them we need to incorporate into a description of the

flare physics. We see how the physics determines the mathematical approach to be

followed, we construct the mathematical expression corresponding to our physical

paradigm (the Fokker-Planck Equation) and we obtain the values of the various

coefficients. In Chapter in we shall show how we solve this equation.

2.1 The general non-thermal model.

The physical structure of the loop:

The general physical paradigm comprises a magnetic structure, such as an

arch or tube of magnetic flux, the body of which projects into the corona and

which has footpoints descending through the chromosphere and into photospheric

regions of opposite magnetic polarity (cf. Figure (1.2)). A typical length for the
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coronal part of the structure is 20000 km (Vorpahl et al. 1975). The shape of

the coronal loop is often not at all well determined. The Skylab soft X-ray loops

frequently appeared more long than high though sometimes this may have been

the result of observing an arcade of loops for which the individual loops were too

small to be resolved (Spicer 1977). Loops seen on the limb of the sun suggest that

a typical loop may be roughly half as tall as it is long (Vorpahl et al. 1975). In our

modelling of flares we use loops which are semicircular and which are vertical upon

meeting the transition region. The loops are then symmetric about the vertical

through the top.

The acceleration region:

The mechanisms by which the magnetic energy is released into the plasma are

poorly understood. The size scales over which the energy is liberated may be of the

order of tens of centimeters (Sturrock 1968; Spicer 1976; Brown and Smith 1980),

in which case the processes by which electrons are accelerated cannot be seen

directly. Attempts to model the observed hard X-ray bursts have required that the

accelerated electrons carry a large fraction of the total energy of the flare. A recent

estimate is that at the peak of the bursts at least 20% of the flare power has to go

into accelerating the beam electrons (Duijveman, Hoyng and Machado 1982). The

acceleration mechanism therefore invests a large fraction of the liberated magnetic

energy into the directed motion of the accelerated electrons and not into the bulk

heating the flaring plasma. The understanding of how the acceleration mechanism

can achieve such a high efficiency presents a major theoretical problem (Brown

and Smith 1980; Smith 1980; Duijveman, Hoyng, and Machado 1982).
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The acceleration mechanism is also required to act at a rapid pace, releasing

the flare energy on a timescale of only seconds to a few hundreds of seconds, and to

act on a number of electrons which is of the order of the total number of electrons

in the whole flare volume (Brown and Melrose 1977). The demands made upon

the acceleration processes by the non-thermal model paradigm are prodigious.

Confronted with such a poor understanding of the details of the acceleration

processes, we must be satisfied with treating the energy release region as if it were

a black box. This black box serves to produce the beams of accelerated electrons

which are injected into both limbs of the magnetic arch. As we cannot derive the

distribution in velocity space of the accelerated electrons, the characteristics of the

injected beams are introduced into the problem through the use of free parameters.

One of the results of this research is to show that the parameters describing the

electron beam can be determined from the X-rays which are observed.

The black box acceleration region lies somewhere within the coronal loop

(only ~ 0.1% of the flare-accelerated electrons escape the solar atmosphere (Lin

1974a,b)) and could, in theory, be located at any point along its length. The

observation of hard X-ray bursts coming from the two footpoints of a loop with a

high degree of simultaneity need not suggest that the acceleration region is located

halfway between the two footpoints, that is, at the top of the loop. The transit

time for the energetic electrons to cross from one footpoint to the other along a

loop of average length is measured in tenths of a second and, as such, is shorter

than the time resolution of most observations. There is only one X-ray instrument

which can see clearly such fast time structures: the Hard X-ray Burst Spectrometer

(HXRBS) currently on the Solar Maximum Mission (SMM) satellite (Orwig, Frost
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and Dennis 1980). However, HXRBS has no spatial resolution capabilities and

cannot separate the two footpoint sources from within its X-ray data.

Sky lab soft X-ray observations showed that many post flare loops have the

regions of hottest plasma located at the apex (Widing and Cheng 1974; Cheng

and Widing 1975). This implies that the energy release region is localized and is

near or at the apex of the loop. The emerging flux model of Heyvaerts, Priest

and Rust (1977) and the triggering method of Leach and Emslie (1980) would

both place the acceleration region at that point anywhere along the flaring loop

where the triggering magnetic structure happens to touch first, implying that the

acceleration region may occur at any position within the flare loop. One important

parameter which is to some degree influenced by the position of the acceleration

region is the thickness of flaring plasma between the acceleration region and the

top of the chromosphere. This, however, is the product of the coronal density

and the length of the loop, and these two variables can each range over at least

a decade in magnitude. Consequently, the position of the acceleration region, as

measured by its column depth above the chromosphere, is not narrowly confined,

and should, in each instance, be derived from the observations rather than be

imposed beforehand upon the flare models. We choose to place the energy release

site at the apex of the flare loop and then select loop lengths and densities which

give appropriate column thicknesses for the loops. Since the flare loop is symmetric

about its apex, in our models we consider only one half of the loop, the acceleration

region being located at the top. Since the distribution in velocity space of the

accelerated electrons is to be introduced by way of free parameters, we incorporate
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this black box acceleration region in the form of an upper boundary condition to

our problem.

The structure of the magnetic field:

The magnetic field geometry defining the flare loop is taken to be static,

though the magnetic field itself is not necessarily of uniform strength throughout

the length of the loop. As the beam electrons gyrating about magnetic field lines

pass into regions of increasing field strength, they respond by increasing the pitch

of their gyration and may well have their directions of travel along the field lines

reversed. There is little information as to the strength of the flare magnetic fields

in the corona (for a summary see the discussion preceding the results for models

7 through 11 in Chapter V), though the fields in an active region containing flares

are known to be complex and to have strong gradients. Flare loops may, therefore,

have a significantly varying cross-section throughout their length (Rust and Bar

1973, Withbroe 1978; Vesecky, Antiochos and Underwood 1979; Levine and Pye

1980). In our modelling we must allow for the magnetic field in the loop to increase

its strength many fold in passing down through the loop. In such cases the field

plays a significant role in the evolution of the electron beam. We therefore include

the effects of the magnetic field in our analysis of the beam dynamics and allow

for a wide range of possible field strengths.

The beam of high energy electrons (there is one beam in each limb, but we need

to consider only one limb) passes down within the magnetic structure delineating

the loop. The individual beam electrons gyrate as they move along the magnetic
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field lines. The gyroradius (f^ 500 [B(Gauss)]~ cm for a 20 keV electron) is much

smaller than any of the geometric or dynamic size scales of the plasma. Cross field

diffusion or drifting is therefore negligible (Krall and Trivelpiece 1973, Appendix

I) and the beam electrons remain tied to the magnetic field lines. We consider

each electron to be decoupled in its motions from the other beam electrons and

we ignore any interactions between different electrons in the beam.

Coulomb collisions:

As the electrons move along the magnetic field lines, they interact with the

ambient plasma constituents (electrons and protons). As they pass by the ambient

particles, they undergo Coulomb collisions through which they lose energy and

have their trajectories modified. It is, therefore, through these collisions that the

electron beam evolves within the plasma. With the passage of the beam through a

sufficient depth of plasma, the beam is completely dissipated. Coulomb collisions

are, then, the dominant process controlling the motion of the electrons within the

flaring plasma and are the principal process to be included into our modelling of

a flare. Since this process is central to our non-thermal paradigm, we shall expand

upon our description of it later in this chapter when we consider the mathematical

formulation of our modelling approach.

Heating:

The beam electrons collide with the plasma constituents, electrons and protons

alike, though the transfer of energy is greater to the plasma electrons than to
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the plasma protons in proportions given by the proton to electron mass ratio. The

ambient electrons are heated by the beam and then slowly share their energy with

the ambient protons. This heating of the ambient plasma undoubtedly gives rise to

hydrodynamic motions within it. However, the timescale over which hydrodynamic

effects become significant is large. Chromospheric material is evaporated into

the corona as a rapid response to the impinging electron beam. But the times-

cale on which this hydrodynamic response affects the flaring loop is of the or-

der of the time it takes a hydrodynamic signal to travel the length of the loop

at the sound speed c5~1047'1/2 cm sec"1. For a loop length of 109cm and

a coronal temperature of 107 K, this time is ~ 30 sees. Consequently, the times-

cale over which the effects of heating the ambient plasma by the electron beam

arise is of the order of several tens of seconds. The timescale over which the

beam electrons themselves travel from the top of the loop down into the photo-

sphere is much shorter than this, being measured on scales of hundredths of

a second. Consequently, we take the ambient plasma, as seen by the accelerated

electrons, to be static and assume that the plasma particles remain cold.

Reverse currents:

The high electrical conductivity of the ambient plasma ensures that any local

electric fields appearing within the plasma and associated with the passage of the

electron beam remain small. There will, however, be an electric field generated

across the whole length of the loop. The beam of high energy electrons constitutes

an electric current passing between the top of the loop and its footpoints. Not only
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would this current have a self magnetic energy vastly exceeding its own kinetic

energy but it would rapidly lead to a huge separation of electric charge within

the plasma and would deplete the acceleration region of source electrons were it

not for the reverse current set up in the plasma (Benford and Book 1971; and

see Emslie 1980 and references within). This reverse current comprises a drift of

ambient electrons toward the top of the loop and is of precisely the magnitude

required to ensure exact local charge neutrality and zero local current density

everywhere. This reverse current arises in response to the passage of the electron

beam by way of the large scale electric field set up across the length of the arch

by the attempted charge separation.

The electrons in the beam also experience this electric field and are slowed by

it. In effect, energy is taken from the electron beam to drive the return current.

Provided the current of suprathermal electrons is small, that is, provided the

density of the electrons in the beam is much smaller than that of the ambient

plasma, the reverse current can by maintained by a small electric field giving rise

to a slow drift of the ambient plasma electrons. "Slow" is relative to the maximum

velocity at which the plasma electrons can be driven before they begin to generate

turbulence. This maximum velocity is a sensitive function of the electron to ion

temperature ratio (Kindel and Kennel 1971; Emslie 1981c) and is characterised

by the electron thermal velocity. If the current in the electron beam is low, only

a slow drift of the ambient electrons is necessitated and only a small amount

of energy is taken from the suprathermal beam. If the beam current is large,

the density of the ambient electrons may no longer be high enough to provide

the required reverse current without driving the plasma electrons faster than

31



Chapter II: The Equation

their thermal velocity. Any attempt to establish the reverse current then rapidly

generates plasma turbulence which throttles the reverse current and prevents the

passage of the initial electron beam.

Emslie (1980) has studied the effects of including the reverse current in the

treatment of the electron beam and has obtained an upper limit to the size of the

beam which can pass within the flaring plasma. However, his analysis is incomplete.

He uses a mean scattering treatment to evaluate the evolution of the beam of

electrons and does not consider fully the influence of the electrons which have

been turned around by the combined effects of the electric field and Coulomb

collisions and which are subsequently travelling back toward the top of the loop.

When studying large reverse currents and large reverse current electric fields, it

is no longer sufficient to think of the suprathermal electrons as being removed

from the beam once their pitch angle has been increased to 90° and their forward

motion has ceased. The transverse kinetic energy of the beam electrons will be

greater than the thermal energy of the ambient plasma electrons and therefore

the beam electrons will not immediately become a part of the background plasma.

These electrons will more likely be accelerated back toward the top of the loop

by the reverse current field and will comprise a returning beam of suprathermal

electrons. This returning beam will be present at all depths within the flaring

loop and, as such, will supplement the established reverse current. The presence

of this returning beam will become increasingly significant for injected electron

fluxes of increasing size. For very large fluxes of injected electrons, the current in

the returning beam will be equal to a large fraction of the injected beam current.

Taking this returning current into consideration will reduce the requirements on
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the ambient plasma and hence ease the stability constraints on the size of the

electron beam.

Typically, the number density of the electrons in the beam is expected to

be small compared to that of the ambient plasma (Smith and Lilliequist 1979).

An analysis of the beam dynamics under the circumstances of plasma turbulence

caused by a large beam current and an unstable reverse current would require a

wholely different approach to the problem than is to be developed in this study

and is not to be taken up here. We assume that the reverse current is weak and

stable and that the effects of the reverse current electric field on the evolution of

the beam are small and need not be taken into consideration.

Plasma turbulence:

The passage of the beam through the plasma may also be seen in terms

of the total (beam + plasma) electron number distribution in velocity space.

The presence of the beam may, if it is large enough, create a local minimum

in the total distribution with a "gentle bump" to the high velocity side of it.

Such a distribution may stimulate Langmuir turbulence and plasma waves and

may redistribute energy among the electrons in the beam. The necessary and

sufficient condition for the generation of such a two-stream instability is that the

Penrose criterion be satisfied (Penrose 1960; Krall and Trivelpiece 1973 p472). This

requires that the beam density be sufficiently high and that the "gentle bump" be

sufficiently steep and separated from the main body of the number distribution,

i.e., that of the background plasma. It is uncertain whether the conditions exist
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within a flare to satisfy the Penrose criterion (Smith 1975; Emslie and Smith 1984),

or, if they do, what the level of wave generation and turbulence would be and how

the electron beam itself would be affected. Any analysis of this question would

constitute a major body of research in itself and, as such, cannot be touched

upon here. We assume, again, that the beam density is low enough in comparison

with that of the background plasma and that the beam pitch angle distribution is

sufficiently broad that the Penrose condition is not satisfied and that we need not

consider the effects of the two-stream instability.

Radiative losses:

The electrons, by continuously changing their instantaneous direction of mo-

tion, will emit electromagnetic radiation, primarily through the synchrotron and

bremsstrahlung processes. Both of these are extremely important mechanisms for

providing observational information about the flare. However, the rate at which

the electrons lose energy to radiation is insignificant in comparison with the rate at

which they lose energy through collisions. The rates of energy loss to bremsstrah-

lung and synchrotron radiation are

dE_
dt Bremsstrahlung _4 / E

<LE
dt Coulomb

mec2
(2.1)

(Brown 1971) and
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dE_
dt

dE_
dt

Synchrotron _ n n ^ 1A_3 (B/100 Gauss}2 sin2 a ( E
y.j x iu ,

Coulomb

(Kane 1973) for an electron of energy E and pitch angle a. B is the magnetic field

vector and n,- the ambient plasma density. These energy loss rates to radiation are

sufficiently low that the radiation processes need not be considered as contributing

to the evolution of the electron beam.

All the physical processes which we omit from the treatment of the electron

beam evolution either have a clearly negligible effect upon the beam (energy

losses to radiation, hydrodynamic response of the flaring plasma, beam-beam

interactions) or are extremely nonlinear (reverse currents, plasma turbulence and

instabilities). Not only is the neglect of non-linear processes justified for a dilute

electron beam, it is precisely their omission which makes the analysis of the

beam evolution tractable. The remaining influential physical processes (Coulomb

collisions and the variation of the magnetic field) are not lessened by the diluteness

of the electron beam and must be retained in the treatment. To recapitulate, the

paradigm is as follows (cf. Brown 1971, 1973b; Hudson 1972,1973; Syrovat'skii and

Shmeleva 1972; Petrosian 1973; Kane 1974; Melrose and Brown 1976; Donnelly and

Kane 1978): electrons are injected with a range of energies and pitch angles into a

static and passive flaring plasma from an acceleration region located at the apex of

a semicircular loop The electrons gyrate as they stream along the magnetic field

lines which delineate the flare loop, and they experience the adiabatic scattering

from the magnetic field and Coulomb collisions with the ambient plasma. The
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beam electrons lose energy to the ambient plasma and continually change their

pitch angles. With the passage through a large enough thickness of the ambient

plasma, the beam is completely absorbed. The high energy electrons emit X-ray

bremsstrahlung radiation.

2.2 Mathematical development.

Because we are ultimately interested in using the evaluated details of the X-

ray distribution as a diagnostic tool for probing the physical environment and the

distribution of the electron beam, we need to calculate in detail the distribution of

the beam electrons throughout the plasma. An equation satisfied by the electron

number distribution is constructed in such a way as to describe the evolution of the

collisionally modified beam as it passes from the top of the loop down through the

footpoints. The effect of the acceleration region on the initial distribution of the

beam is incorporated as a boundary condition. Once the full number distribution

has been calculated we shall use it to obtain the characteristics of the X-rays.

The single-particle distribution function:

We now consider how we might best describe the evolution of the beam using

an equation. According to our paradigm, the evolution of the beam is controlled

by Coulomb collisions between the beam electrons and the ambient plasma. We

conceive of the collisions as the interactions between the test particles (the beam

electrons) of known positions and velocities, and the field particles (the background
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plasma) of random positions and velocities, the field being characterised by a

number density n. It is impossible to know exactly the locations and velocities of

each one of the background plasma particles. It is therefore just as impossible to

calculate precisely the trajectory of each of the individual beam electrons even

though the trajectory of a charged particle moving within the combined Coulomb

field of the ambient plasma particles could, in theory, be calculated dynamically.

This collisional interaction must be treated stochastically.

As we cannot calculate the trajectory of each individual electron we cannot

construct a dynamical description of the beam evolution which would incorporate

precise knowledge of the behavior of the beam electrons. We must instead deal with

the electron beam by way of a probability function which describes the probability

of finding an electron at a particular position x within the flaring plasma and with

a particular velocity v (Chandrasekhar 1943). We study the electron beam by using

a single-particle number distribution function in phase space, f(x, v, t), a function

which gives the probability of finding the test particle within an interval d?x dzv

about the coordinates (z, v) at any given time t as f(x,v,t)d?xdzv.

The system described by the number distribution is the beam of electrons

moving through the background plasma where the beam may contain a flux

upward of 1018 electrons cm~2sec~1. It is not immediately obvious that a single-

particle distribution function will contain enough information to describe a system

of N particles where N is such an extremely large number. That it may do so

requires a discussion of the time intervals over which we are interested in having

knowledge of the system.
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There are three significant time intervals for any real gas (Liboff 1969, pp 126;

Wu 1966, pp 47):

1) The shortest time interval TQ is the "dynamical" time and is the charac-

teristic time scale over which a test particle may be considered strongly influenced

by any particular nearby field particle. TQ may be losely equated with the duration

of an individual electron-electron collision.

2) The intermediate time interval IQ is the "kinetic" time and is the charac-

teristic timescale over which the test particle will have undergone many collisions.

The accumulated effect of the many random collisions is a change in the electron's

velocity by only a fractional amount which is small.

3) The longest timescale TQ is the "hydrodynamic" time and is the characteris-

tic timescale over which the beam would come to local thermodynamic equilibrium

with the background plasma.

For a large system such as ours TQ <3C £Q ^ ^b and the three timescales may

be treated as defining three separate regimes. Over timescales £~TO each particle

of an N-particle system is essentially isolated from the body of the system and

is influenced only by those particles in the small volume immediately about it.

Knowledge of the whole system of N isolated particles can only be obtained from

the N-particle number distribution Ftj(x l,... ,x^, v1 , . . . , t/*, f) which contains

explicit information about all N particles.

Over the intermediate timescale £~£Q a particle suffers many collisions and

has its velocity v changed by an amount Au <g[ v. Av is the net effect of the

independent impulses from many interactions. Over this timescale information as

to the particular initial positions and velocities of the particles is lost and the
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particles become, to some degree, correlated. On this timescale the N-particle

distribution function degenerates and may be written as the product of N one-

particle distribution functions, i.e.,

' '
Fu = H /(*', «*, 0- (2-3)

»=l

On the kinetic timescale, therefore, knowing the single-particle distribution func-

tion f(x, v, t) suffices in order to have complete knowledge about the system.

Finally, over the hydrodynamic timescale £~7o the system reaches local

thermodynamic equilibrium and proceeds, by hydrodynamic processes, toward a

global thermodynamic equilibrium. The system has attained a quasi-equilibrium

distribution and is completely described by the first three moments of the one-

particle distribution function, namely the local density n(z), the local fluid velocity

v(x) and the local temperature T(x).

It is, then, the N-particle function which is required in order to describe

the behavior of the beam over very small size and time scales, the one-particle

function which is needed to describe the beam as it evolves, in this case under

the influence of the collisional damping, in the direction of increasing entropy,

and only the hydrodynamic moments which are needed to describe a beam locally

in thermodynamic equilibrium with the plasma. Our interest is in the evolution

of the beam as it approaches local equilibrium with the plasma from an initial

distribution which is very far from equilibrium. We are interested in the earlier

steps by which the beam evolves and we do not follow its evolution through to

the later stages during which it merges with the background plasma. Because,
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ultimately, we shall be looking at the hard X-rays produced by the beam, we are

not interested in the energetic electrons once their energy has fallen below hard

X-ray energies (~ 10 keV). The beam electrons remain, throughout the energy

interval of interest, suprathermal and quite distinct from the ambient plasma. Our

interests are therefore best satisfied by the one-particle distribution.

Coulomb collisions:

The state of a purely dynamical system is governed by the Liouville equation

which describes the conservation of extension in phase space as the system evolves.

Without the collisional interactions between electrons, the beam would stream

along the magnetic field lines and the trajectory of each electron would be governed

by the conservation of the adiabatic invariants of its motion about the magnetic

field. The trajectory of each electron could, therefore, be calculated precisely from

a knowledge of its initial position and velocity. The Coulomb collisions are what

introduces the non-dynamical behavior into the description of the electron beam.

The effects of collisions on the electron trajectories must, therefore, be introduced

by way of a separate ansatz which will allow us to calculate the additional non-

dynamical terms to be used with the Liouville equation (Wu 1966).

The Coulomb interactions are mediated by the electromagnetic force which

is long range in character. This fact severely complicates the analysis of multi-

electron interaction problems. The nature of a long range force is such that the

test electron is influenced more by its interactions with the large number of distant

field particles than it is by its interactions with the few nearby field particles
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(Krall and Trivelpiece 1973 p294; Rosenbluth, MacDonald and Judd 1957). This

manifests itself as a divergence in the value of the scattering cross-section for a

long range force as the scattering angle goes to zero. We must therefore expect

that any collision coefficients calculated on the basis of interactions in a pure

Coulomb field would themselves contain this divergence and would become infinite

as we include the incremental effects on the test particle of the increasing numbers

of increasingly distant field electrons. This divergence can be removed when we

consider the effects of the test particle on the distribution of the field particles.

The presence of the test particle perturbs the distribution of the field particles.

A Fourier analysis of this perturbation shows that it gives rise to two types of

density fluctuation (Pines and Bohm 1952). Those density perturbations which

have a wavelength roughly greater than the Debye length manifest themselves

as collective plasma oscillations. As mentioned above, we neglect in this analysis

of the beam dynamics these oscillations or waves generated in the plasma. The

shorter wavelength density perturbations manifest themselves as a co-moving (with

the test particle) charge cloud which has the effect of screening the field particles

from the test particle's electric charge. This screening arises from the Coulomb

repulsion between test and field electrons and leads to a deficiency of negative

charge with respect to positive charge in the immediate neighborhood of the test

electron. The effective electric field arising from the test electron's charge then falls

more rapidly than as the inverse square of the distance r away from the charge,

and, as a consequence, the interactions between the test particle and distant field

particles are weakened. The effective field is of the form (e/r) exp(—r/X) (Pines and

Bohm 1952) for an electric charge e where X is a suitable scaling length. By using
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this interaction potential instead of the pure Coulomb potential, the resultant

Coulomb collision terms are rendered finite. The end result is exactly equivalent

to our calculating the collision terms using the pure Coulomb interaction potential

and introducing a discrete cut-off in the range of the force at the distance X. X is

frequently taken to be the Debye - Huckel distance \p (Debye and Huckel 1923)

which is the appropriate screening distance for a plasma in thermal equilibrium

and not containing an interspersed magnetic field. For a test particle which has

a velocity well in excess of the plasma sound speed, more appropriate distance

may be the mean free path or, in the presence of a strong magnetic field, the

gyro-radius (Emslie 1978). For now we leave open the question of what value to

use for X. We shall see shortly that it occurs logarithmicly in the collision terms

and that this logarithmic term is, in general, not precisely known. The screening

length X need not be determined to better than approximate accuracy.

By introducing this screening of the test particle we are able to treat the test

particle as if it had no interaction with any field particles which are farther away

than a distance X. There are, of course, many, many particles within this distance

and with which the test particle is simultaneously interacting (of order 109 would

be a characteristic number for the corona). The test electron also experiences large

angle scattering from discrete encounters with the few very nearby field electrons

but, if the test electron has a kinetic energy in excess of approximately 1 keV,

the effects of these individual collisions may well be ignored (Banks, Chappell and

Nagy 1974).
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The Fokker-Planck equation:

For the simultaneous interactions with many field electrons it is incorrect to

think entirely in terms of discrete binary collisions. The very terms "collision"

and "mean free path" are ambiguous (Wu 1966). We therefore hesitate before

constructing our collision terms by invoking the usual Boltzmann stosszahlensatz

and taking the path which leads to the Boltzmann collision integral. Because the

Boltzmann collision integral focusses on discrete binary collisions, it is not quite

appropriate for interactions based upon inverse square law forces and obscures

the true physical situation. We prefer to obtain the collision terms by way of a

different procedure.

Over a kinetic timescale, the modification of a beam electron's trajectory is

relatively small. The value of the distribution function f(x, v, t) for a particular

x, v and t is correlated only with those values of the function at the slightly earlier

time t — A t and at the nearby positions x\, v\ for which x — x\ = v A£ and | v —

t>l |<£ v. The evolution of the distribution function then depends more upon the

local velocity gradients df(x, v, t) /dv about v than on the value of the function

/(x, v, t) over the whole velocity range (Cohen, Spitzer and McRoutly 1950).

Another method, then, by which we can calculate our collision terms, and the one

which is followed in this analysis, is to assume that the evolution of the beam's

number distribution is controlled by a process which is Markovian. This then allows

us to obtain the collision terms by using the Chapman-Kolmogoroff Equation. This

path explicitly describes the effects of multiple simultaneous collisions in terms

of the average rate of change of the electron's position and velocity. However,

when we actually calculate these rates of change we find that it is sufficient to
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use the cross-sections for two-body interactions provided we include the effects of

particle correlations and use the shielded Coulomb potential. We do not in effect

incorporating anything which is not already included in the calculation of the

Boltzmann collision integral. The collision terms obtained by way of the Chapman-

Kolmogoroff Equation in the end turn out to be obtainable from an expansion

of the Boltzmann collision integral about the limit of small angle collisions. The

end result, the Fokker-Planck Equation, may be obtained equivalently by either

method (Lewis 1969, p 115 - 116; Wu 1966, p53).

To construct the collisional damping terms we require a way of incorporating

the effects of collisions. We calculate the time rate of change over a kinetic timescale

of the coordinates of an electron under the aggregate influence of many, many colli-

sions. Over such an interval A£, the electron suffers a mean displacement Au where

Au <& v and is O(A£). This displacement is the sum of many independent impulses

or displacements. To describe the quantity Au by which v changes we define a

transition probability ^f(x, v, Ax, Aw). This gives, as V(x, v, Aa:, Aw) d3xrf3u the

probability of the electron going from an element d^xd^v of phase space about

(x, v) to a similar element about (x + Aa:, v + At;) in time A£. Obviously, as

the electron at no stage ceases to exist, the transition probability has to be nor-

malized such that f V ( x , v , Ax, Av)<f6A = 1. This is the formal definition of

V(x, v, Ax, Au) which is calculated later from a knowledge of the collision cross-

sections and a description of the ambient background plasma.

We now use this transition probability to describe the evolution of f(x, v, t)

making the assumption that the modification process is Markovian. This assump-

tion is that the evolution of the system depends only upon the instantaneous values
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of the system's physical parameters and not upon the system's history. We can

obtain a description of the system at a time t from a full description of the state

of the system at the slightly earlier time t — A£. The evolution of the system

can be seen as the gradual unfolding of the transition probability (Chandrasekhar

1943). The Markovian assumption is indeed an assumption (Gasiorowicz, Neumann

and Riddell 1956); if we were dealing with the N-particle distribution function

FK(XI, . . . , XN, v1, . . . , UN, t) and if all the coordinates of the particles were known

precisely, then we could take the Markovian assumption as being implied by the

dynamical nature of the interactions. We are, however, dealing with a contraction

of the total information of the system in the form of the one-particle distribution

function; and that this contraction should obey the Markovian assumption need

not necessarily follow (Vasicek 1973). That we take it to do so is our assumption.

The mathematical expression of this assumption on the nature of the evolu-

tion of f(x, v, t} is given by the Chapman-Kolmogoroff Equation (Gasiorowicz,

Neumann and Riddell 1956):

J I f(x — Ax, v — Au, t)V(x — Ax, v — AV, Ax,
Ax

(2.4)

where A£ is a kinetic time interval, i.e., A£ is finite (long compared to the dynami-

cal or "collision" timescale) but small (short enough that Av <C v).

The evolution of f(x, v, t) is controlled predominantly by small angle colli-

sions off the many distant field particles and, hence, ^(x, v, Ax, Au) is strongly

peaked about (Ax, Ai>) = 0 and varies smoothly with x and v. We may then

45



Chapter II: The Equation

expand equation (2.4) in a Taylor series about (Ax, Av) = 0 (Liboff 1969, p262).

AX
*\

- Ax • — • [f(x, v, t) V(x, v, Ax, Av) ]
a

- Av • — • [/(x, v, t) *(JB, v, Ax, Aw) ]
af (2.5)

+ 1 Ax Ax : — — - • [/(x, u, 0 *(x, v, Ax, Aw) ]
* ox ox

d2

+ i Au Au : ^— ̂ - • [/(x, u, t) *(x, v, Ax, Au) ]
" OVuV

d2 \
+ Ax Au : ̂ ^ • [/(x, u, 0 *(«, v, Ax, Av) ] I.

Terms higher than second order may safely be ignored (Chandrasekhar 1943;

Rosenbluth, MacDonald and Judd 1957).

We define the mean rates of change:

AX AU

AX

Similarly {Ax/A*}, (Ax Ax/Af).

Ax and Av are integration variables and may be moved through the partial

differentiation with respect to x and v. This then gives
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f(x,v,t)

d2 AaAt;

Collisions
(2.7)

The path of an electron is continuous throughout a collision. Hence, in a time

AJ, Au = O(AJ), Aa; = 0(A£2), and to first order in the kinetic timescale A£ we

can take

(2.8)

Then

df(x ,v , t )
dt Collisions

_ — I—
\^A7

(2.9)

Equation (2.9) is the formal expression for the collision terms and must be added to

the Liouville Equation in order to give the Fokker-Planck Equation (Rosenbluth,

MacDonald and Judd 1957). The result is:

df(x ,v , t ) , _ df(x,v, t ) , ^ df(x,v,t)
dt dx dv

d Ai d ,,
)f(x> u'^ •

(2.10)
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The effects of collisions on the evolution of the beam are contained in the two

terms on the right hand side. The first describes the slowing down of electrons

owing to their sharing of their energy with the ambient plasma electrons. The

second describes the diffusion of the beam electrons in velocity space. The slowing

time and deflection time for suprathermal electrons are of the same order of

magnitude and are generally insensitive to the plasma temperature (Krall and

Trivelpiece 1973, pp302).

The historical roots of the Fokker-Planck Equation can be traced back to

1891 when Lord Rayleigh studied the distribution function for heavy particles

undergoing small velocity changes due to many collisions with light particles

(Vasicek 1973). Einstein subsequently applied the method to Brownian motion in

1906. Einstein's work was generalized in the years 1913 - 15 by Smoluchowski and

paralleled by work in the years 1914 and 1917 by both Fokker and Planck. In 1940

it was realized that the Einstein-Smoluchowski Equation could be derived from

the work by Fokker and Planck and from the 1950's onwards the Fokker-Planck

Equation has been applied to plasma calculations to obtain, among other things,

energy exchange rates and relaxation times.

Before we evaluate the collision coefficients (Au/AJ) and (Av Au/A£), we can

see what degrees of freedom the system has and express equation (2.10) in the form

most natural to our problem. The electrons in the beam are constrained to move

within a flare structure delineated by the magnetic field. The gyro-radius a of an

electron is given by the expression (Jackson 1975, p581)

p±(MeV/c) = 3 X 10~4 B(Gauss) a(cm). (2.11)
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If we take B as being of order 100 Gauss, we obtain

a = 30 cm for a 500 keV electron,
(2.12)

= 6.5 cm for a 10 keV electron.

These distances of order tens of centimeters are generally much smaller than the

size scales of the flare magnetic field variations. The electrons are, therefore, very

efficiently tied to the magnetic field lines with any movement across the field lines

being negligible. The position of an electron need then be given only in terms of

the position of its guiding center along the field line, a distance s, say, from a

reference point defined as s = 0. The guiding center approximation also means

that the electron velocity v has only two independent components. These we take

to be the electron's total kinetic energy E (in units of mec
2) and the cosine of its

pitch angle about the field line, \i. Our number distribution f(x, v, t) thus becomes

f(E,i*,a,t).

Another consideration with which we simplify the Fokker-Planck Equation

comes from an inspection of the rise and fall times of hard X-ray bursts. The

hard X-ray burst e-folding times are measured on timescales of a few seconds (de

Jager and de Jonge 1978) and this may be assumed to be the timescale over which

any variation in the total number of electrons present in the beam occurs^. The

Recently there have been some reports of impulsive hard X-ray bursts having time
structure measured in tens of milliseconds (Kiplinger et al. 1983). These are the fastest
bursts ever reported though that has to be due to the fact that the instrument (HXRBS
onboard the SMM satellite) has time resolution capabilities which far surpass any that
•were previously available (Orwig, Frost and Dennis 1980). These extremely fast events
were clearly seen above the usual, more slowly varying X-ray components which were also
present. These very fast spikes are rather rare and are not to be expected in all events;
most of the events seen did not show time structure on scales of less than one second.
These fast spikes may be due to small scale and short-lived structure in the loop magnetic
field.
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interval for which any electron contributes to the beam is of the order of the

time taken for that electron to travel the length of a coronal loop, a distance of,

say, 109 cm. For electrons with energies sufficient to produce hard X-ray bursts,

this timescale is of the order of O.ls or less. Therefore the beam evolutionary

processes occur on timescales which are much less than the timescale over which

the bursts normally rise and fall (Petrosian 1973). We take df(x,v,t)/dt to be

small compared to the other terms in equation (2.10) and look for a steady state

solution to the Fokker-Planck Equation.

We have f(x, v, t) = f(E, n, s) , satisfying

. df(E,p,a) . . df(E,p,8) . fr df(E,p,a) _
S dl + / / ' dji +E' dE ~

(2.13)

The collision coefficients:

We shall now obtain the coefficients on the left hand side of equation (2.13).

The homogeneous Fokker-Planck Equation (The Vlasov Equation) describes the

collisionless evolution of the beam. The motion of an electron on a helical path

about a magnetic field line involves no work being done on the electron (v •

(vXB) = 0). Therefore E = 0. a is the velocity of the electron parallel to
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the field lines and is equal to p.v(E). The only agent (not including collisions)

contributing to /i is the convergence of the magnetic field; i.e.,

du. dB ds .• • • (2-14)

The adiabatic invariance of the electron's motion gives (1 — \i }/B = constant.

Hence

(2.15)
dB -'<

and

vn( l -n 2 ) dB (1-A*2) dlnB

The homogeneous (collisionless) equation would then be

, , . . . _ 0 (217)
ds 2 ds dp

We need now to calculate the collision coefficients (Au/A£) and (AuAu/Af).

For this we need an expression for V(x, v, Ax, Au) which is now \&(v, Au) under

the elementary assumption that the collision mechanism in no way depends upon

the particular location of the beam electron within the flare loop.

Figure (2.1) portrays schematically the collisional process in the rest frame of

the test particle. The test electron sees the field particles streaming toward it with

an average velocity |u|. Because we treat the field plasma as being cold we may

consider all the field particles to be approaching the test particle with the same

velocity |u|. The scattering cross-section a(B, v) in this frame is the probability of
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incident beam

Figure 2.1. A schematic representation of the Coulomb collision process in
the rest frame of the test particle (Taken from Liboff 1969, p!93). Shown is 0, the
angle of scattering for a Geld particle with impact parameter 6.

a field particle at a distance 6 being scattered through an angle 0 Hence,

(2.18)

A field particle which is scattered into solid angle d£l about (0, ifr) gives an impulse

{Ai>} to the test particle The mean rate of change of v is given by the accumulated

effect of the impulses from all the field particles, i.e., by an integration over all

b, i/j or all 0, 0. Hence,

~ (2.19)

and

(2.20)
n
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where {At;} and {Au Au} correspond to the impulses from individual collisions.

If the ambient plasma contains several constituents, we should add the effects of

each. Then

>) (2.21)

where the subscript i denotes quantities pertaining to particles of type i.

The cross-sections to be used are the fully relativistic Coulomb collision cross-

sections for electrons on free electrons (M011er 1932; Evans 1955, p577; MacDonald

and Walt 1961), for electrons on protons (Mott and Massey 1949; Evans 1955,

p593), and for electrons on neutral atoms, predominantly Hydrogen and Helium

(Snyder and Scott 1949).

As an example of how the collision terms are calculated, we shall demonstrate

the evaluation of (A^/A£) for electron- proton collisions. The other collision terms

all follow suit. We need two things: an expression for {A/i} and a cross-section.

The cross-section for electron-proton collisions is given by Evans as

! /
, v) = -ff(8, v) = - -— -- 7— - r - '- - (2.22)

72
7— - r

/?4(sin4(0/2)J

where 9 is the scattering angle in both the lab frame and the center-of-mass frame

owing to the fact that mp/me 3> 1. a is the fine structure constant, approximately

equal to 1/137.

is the change in the test particle's pitch angle cosine due to scattering

in a direction 9, ij) about the incoming direction. Owing to the coincidence of the
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P,

Figure 2.2. A schematic representation of the Coulomb collision process in
the rest frame of the Geld particles. Shown are the magnetic field direction B,
the instantaneous direction of the incoming electron PQ and the instantaneous
direction of the outgoing electron pi B'PQ = cos a = fi, B'p\ = cosaj = /ij
,ind o' = cos 6

lab and center-of-mass frames, it is a straightforward exercise to obtain A//. For

electron-electron collisions we have to transform into the center-of-mass frame,

follow through the collision and then transform back into the lab frame, a sequence

which is more tedious than it is instructive.
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The coordinates for the scattering of electrons off protons are shown in Figure

(2.2). The initial pitch angle cosine is p = cos a. The final pitch angle cosine is

Hi = cosai. From the geometry of the collision,

cos aj = cos a cos ff + sin a sin 9 COS(TT — ij}}, (2.23)

giving

jij = H cos 0 - (1 - /a2)1/2 sin B cos ̂ . (2.24)

Hence,

= m - n = n (cos 0 - 1) - (1 - A*2)1/2 sin 6 cos ip (2.25)

(cf. MacDonald and Walt 1961). Performing the integration over ip in equation

(2.19) leaves

1 - £2 sin2(0/2) + a7r/?(l - sin(0/2)) sin(0/2)
x - - ' -- a

(2.26)

where 0mjn is the smallest angle of scattering and corresponds to field particles

at the screening distance X. We keep only the dominant terms which are those

terms which integrate to contain the Coulomb logarithm In A ~ ~m^mnr ^e

ratio between dominant and sub-dominant terms is of the order of In A which has a

value of ~ 20 - 30. This allows us to drop the sub-dominant, non-divergent terms
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(Spitzer 1962). Hence, we arrive at

/A/A _ f j i v n p TJ£ JL^ j (cos0-1}sing
\^AT/ ~ /?V ' T ' A* „ -/ sin4(0/2)

47rr0
2 //v

= I-^TT • -:— • nn InA.

"min (2.27)

The Coulomb logarithm:

The Coulomb logarithm is InA = In^n^/flmax)"1- #max corresponds to

large angle scattering off the few nearby field particles and is of the order of

one radian. Its exact value need not be precisely evaluated because the value of

^min *s so Very uncertain. 0mm corresponds to the maximum value of the impact

parameter which is often taken to be the Debye length \p (Cohen, Spitzer and

McRoutly 1950). The use of \p for the screening length is rigorous only for a

plasma in thermal equilibrium and it would not normally be appropriate for a

suprathermal beam of electrons passing through a relatively cold plasma. Spitzer

(1962) quotes Marshak (1941) who gives the correction for a relativistic plasma,

and offers the form
i/o 2^-

In A = In (2.28)
2 e3 \ T r n e J f t

where T and ne are the plasma temperature and electron number density, and

ft = v/c for the fast electron. Again, a is the fine structure constant.

The applicability of this form could well be challenged but the uncertainty all

around is large. Spitzer (1962) quotes observational agreement with this form for
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lnA, though he suggests that this agreement may be a little fortuitous. Another

form for lnA is given by Ginzburg and Syrovat'skii (1964) for cosmic rays passing

through a detector and has been applied to the solar flare problem by Syrovat'skii

and Shmeleva (1972) and Petrosian (1973). This form is

In A = i In [(27r)3A/(™ n (h/mecf^. (2.29)

This form agrees, to within a constant of order unity inside the logarithm, with

the form quoted by Spitzer, and is the form preferred here.

The full results, including collisions with protons, electrons, Hydrogen, and

Helium are

/ A u \ / n n \
( -TT ) = ~ A f i v \ n e \ n A . + np In A + njj In A//- + 4n#e In A.pje I

/AjiA/A 2^ ( i » i . i i//( — — — ) = A (1 — p ) v I ne lnA + np lnA + n# lnA// -

/AEA o \f i(—-.— ) = — A v (7 — 1)1 ne lnA + nu InAr/ + 2nr/e 1:
\ Af / V

with A = 47rr0
2//3472 and

(A')2 = /? V (7 - I)//2 (Evans 1955, p581) g

(A")2 = ^272/2Z2/3a2 (Snyder and Scott 1949).

Here / is the ionization energy of either Hydrogen or Helium in units of mec
2

and Z is the atomic number (1 for Hydrogen and 2 for Helium), a is the fine

structure constant. Typical values for these InA's are expressed in Table I for

ne = 109cm~3.
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Table I

Some typical values for the collision logarithms.

E(keV)

20

100

500

In A

24.9

26.4

27.5

InA^

7.82

9.46

11.2

l*Afce

6.53

8.18

9.94

InAfr

3.31

4.15

5.11

^He

3.08

3.92

4.88

Let us define two collision coefficients C\ and C^ as

= 2?r TO I ne In A + rifj In A.'pj + 2n#e In A//e J

1
2 /= 2 JT TO I ne In A 4- np In A + n^

Our equation (2.13) becomes

df(E,n,s)
ds

d\nB df(E,n,s) _
ds d\i

We can simplify this by using the relationships

(2.32)

(2.33)
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and
2v d

ft dE

Our equation, in its final form, is then

df(E,fi,s) (1-fi2) rflnB df(E, ̂  s)
^ds 2 ' ds ' dfi

2 d /(?!/(£•, 0, a) \ C2 d
j3dE\ 0 ) { *'

(2.36)

This is the Fokker-Planck Equation in the form in which we use it. In the

next chapter we shall solve it numerically to obtain the number distribution at

each point in E, (i, s space. Ultimately we intend to use the electron number

distribution to calculate the X-rays produced by the electrons in the beam. We

can also attempt to solve this equation analytically, and in that way get a feel

for how the solution behaves. In the next chapter we shall explain the method

used to obtain the solution to equation (2.36) using the computer, and shall look

at ways of checking that the numerical solution bears a good resemblence to the

full analytic solution even though we do not have available an expression for that

solution. We can approximate this full solution by obtaining the analytic solution

to an equation which closesly resembles equation (2.36), and this we do. Trusting

that, if performed accurately, the analytic solution to the approximate equation

and the numerical solution to the full equation will both resemble the unavailable

analytic solution to the full equation, we compare the two solutions to see how

much of a likeness they share.
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Solving the equation both analytically
and numerically

This chapter contains three sections. In § 3.1 we investigate the behavior

of equation (2.36), the equation describing the evolution of the electron beam

within the flaring plasma. From equation (2.36) we create three two-term "reduced"

equations, each comprising the spatial derivative and one of the other three terms.

Two of these reduced equations are easily solved. The third one contains the second

order derivative in n, and it is this term which prevents us from obtaining analytic

solutions to the third reduced equation or to equation (2.36). We replace the second

order derivative term by another term which has approximately the same behavior

but which allows analytic solutions to be found. In this manner, therefore, we are

able to obtain analytic solutions not to equation (2.36) but to an equation which

approximates it.

Given that equation (2.36) cannot itself be solved analytically, we obtain

its solutions numerically. In § 3.2 we give a schematic outline of the adopted

numerical scheme and then we use the reduced equation solutions to test the

scheme's accuracy. In § 3.3 we give some numerical results pertaining to the

evolution of the electron beam within the flaring plasma. These results are valuable
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in and of themselves and are an essential step to obtaining the X-ray results,

for they allow simple expressions describing the beam evolution based upon the

results of the full Fokker-Planck treatment. Understanding these electron results

is prerequisite to understanding the X-ray results to be presented in later chapters.

Also in this section, we compare our numerical results with the solution to the

equation we obtained by approximating equation (2.36). This comparison helps us

to understand the numerical results and shows the accuracy and usefulness of the

approximate solution.

3.1 The reduced and approximate equations.

a) Cj = C2 = 0

We shall now investigate the behavior of equation (2.36). Let us consider

first our Fokker-Planck Equation without the collision terms. This situation cor-

responds to the limit of very low plasma density when the evolution of the electron

beam is determined only by the magnetic field structure. We have

df(E,n,s) (I-//2) dhB df(E,fi,s)
d~s -~~~2" ds

In this case, the function f(E,p,s) is independent of the electron energy and we

can drop E as an explicit variable. We define

= f

o ds
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The distribution function then satisfies

, s)

over surfaces of constant E, and for s > 0 and | \L | < 1. The characteristic curves

for equation (3.1.3) are

F- ln(l -») = C (3.1.4)

for constant C, and they show the invariance of B/(l — /z2) along an electron's

trajectory. We specify initial values for the distribution function along the strip

s — F = 0, 1 > /i > 0 of the form /(//, 0) = GQ(H), where GQ(^) can be any

function of our choice. Our solution becomes

,s) = G0([l-(l-/ /2)exp(-F)]1 2Y (3.1.5)

or

1 - ( 1 - ) (3.1-6)
&(s) J

which is equivalent. This is the solution to the first of our reduced equations and

shows that, if an electron's pitch angle is known at s = 0, then its pitch angle

is known for all s > 0. The converse also holds, but note that we assumed that

the magnetic field strength does not decrease as s increases. If B(s) < B(0) for

any s > 0, then not all values of /* are accessible. Note also that the solution is

symmetric with respect to the reflection \i — * — /z.
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Now we set dluB/ds equal to zero and discard the term which describes the

collisionally driven pitch angle diffusion. Retaining one collision term without the

other means that this reduced equation does not describe a physical situation,

though this will not hinder our finding its solution. We use this solution later

to check the numerical code and to describe the evolution of the electron beam

at sufficiently large depths by which the pitch angle distribution of the beam has

relaxed to one which keeps the diffusion term small. We have, from equation (2.36),

2 d
ds

or, rather

5s

where we have used the definition

(3.1.9)

and the fact that the relative energy dependence of C\ is slight. We now create

two new independent variables. Let

(3.1.10)

This integrates to give

Also, let

dr = ZCi ds. (3.1.12)
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r is then a collisional depth as measured along the magnetic field lines. Equation

(3.1.8) now reads

,a) d(j)(E,n,s)
dr d ' '

The characteristics of equation (3.1.13) are the family of curves

T) + T/n = C (3.1.14)

for constant C. r/p. is the collisional depth experienced by an electron which does

not move parallel to the field lines but which has a pitch angle cos~V- These

characteristic curves describe approximately the rate at which an electron loses

energy in passing down the flare loop, if \i is an average pitch angle taken along

the electron's trajectory. They show that an electron starting with an energy E

can penetrate through a depth ^ = \if](E] of plasma, and that, at each depth

T' < r, the electron has left an amount of energy E1 where E' is the solution of

•**')-

The curves (3.1.14) are the relativistic extensions of the familiar expressions for the

range of a beam electron, as given by Syrovat'skii and Shmeleva (1972, equation

6); Brown (1972, equation 7) and Emslie (1978, equation 24a). In Figure (3.1) we

show the energy that an electron has at each depth, as given by equation (3.1.15)

with fi = 1. As we can see by the shape of the curves, once an electron has lost a

significant fraction of its energy it stops thereafter very rapidly.
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Figure 3.1. The rate at which electrons lose energy as a function of penetration
depth w i th in the Qare plasma. The curves are obtained from equation (3.1.15) with
T deOncd by equation (3.1 12) and with n = 1.

If, for equation (3.1 13), we specify the initial values (j)(r],n,0) =

for arbitrary functions (j)Q and "0, our solution is

(3.1.16)

Again, we use this solution below when we check the accuracy of the numerical

code.
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c)

Finally, we set dlnBfds equal to zero and this time discard the term that

describes the energy degradation of the electrons. From equation (2.36) we obtain

ds ~ /3^2dn dp • -

Again, only half the collisional effects are included, making the situation described

by the solution unphysical. We show that the second order term which forms the

right hand side of equation (3.1.17) can be approximated in such away as to allow

analytic solutions to the Fokker-Planck Equation. In these solutions, the pitch

angle evolution of the electron beam is separated from its energy evolution. That

this treatment gives an accurate description of the beam is borne out by our full

numerical results. In this case, equation (3.1.17) provides a good description of the

pitch angle evolution alone.

We define dr = C^ds/p^^'2' and drop the explicit energy variable E. This

leaves

f\ f\ I V ~ / <1 I* V v ' -

dr ft dfi\ a/i J

Solutions to equation (3.1.18) can be obtained if we replace its right hand side by

another term which, for the most part, has very similar behavior. This replacement

term is obtained from the small pitch angle approximations n ~ 1 and 1 — /z2 =

(1 + n)(l — fi) ~ 2(1 — //). Let us write 2(1 — //) = x2. The new variable x is then

approximately equal to the pitch angle a. In equation (3.1.18) —d/dp is replaced
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by (l/z)d/dx and we obtain

^- . (3.1.19)or xax\ ax J

The zeroeth order Bessel function JQ(WX) satisfies

9 , , Id/ dJo(w:r)\
-ur/o(u>z) = (x—^—-I. (3.1.20)

X O X \ OX J

Any solution to equation (3.1.19) may, therefore, be written as an expression in

the Bessel functions JQ(WX). A completely general expression is

00

f(lt ts) = I e~w2rA(w)J0(wx)dw. (3.1.21)
0

A(w) is a weighting term and is determined by the boundary conditions at T =

s = Q.

Because we have used a small pitch angle approximation, we specify initial

values which fall rapidly with increasing x away from zero. A suitable function is

/(P, 0) = MX) = —2 exp(-*2/*0
2). (3.1.22)

We obtain A(w) by solving equation (3.1.21) at r = 0:

oo

— exp(-x2/z0
2) = / A(w) JQ(WX) dw. (3.1.23)

XQ 0

This is satisfied by

A(w) = w exp(-w2a:o2/4) (3.1.24)
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(Abramowitz and Stegun 1970). This, when put back into equation (3.1.21), gives

f(p, a) = ?— exp(-z2/(4r + z0
2)) (3.1.25)

(4r + *0
2) V *

(Abramowitz and Stegun 1970) as the solution to equation (3.1.19). We see from

equation (3.1.25) another reason why the form (3.1.22) was considered a suit-

able initial function. An electron beam which is initially Gaussian in pitch angle

broadens with increasing depth and yet remains Gaussian throughout. We show

later that this is a good general description of the beam evolution when we describe

some of the numerical results to the full Fokker-Planck Equation.

d) d\nB/ds = 0, C\ = C2 = 27rr0
2ne In A

We now apply our experience with the reduced equations to an examination

of the Fokker-Planck Equation. We obtain a solution not to equation (2.36) but to

another equation which is almost identical to it at small values of the pitch angle,

repeating the procedure we found to be successful above.

We begin with

nn /9 ( „ n r i R a s}\ 9 a ( r., fin n 8\ \J-L] (3.1.26)

which is equation (2.36) with d\nB/ds set to zero. C\ and C% may safely be taken

to be independent of the electron's energy.

We define dr = 47rr0
2ne In Ads (cf. the definitions of C\ and C% in Chapter

n, equation (2.32)) and recall the definitions of (j) and TJ given by equations (3.1.9)
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and (3.1.11). We rewrite equation (3.1.26) in the form

Using our small pitch angle approximation, this becomes

. (3.1.28)
\ r rf x x\ x

Following our previous method, we look for a solution of the type

00

</>(n ,x ,T ) = j g(w,ri,T)J0(wx)dw. (3.1.29)
w=0

This requires that we solve

We define dp/drj = /34/72 and obtain, modulo an integration constant,

p(r/) = ^lnf^-j-2J. (3.1.31)

This gives

which can be written

Let

g(w, r}, T) = ew2p^Z(w, TJ + T) (3.1.34)
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where Z(w, tj + r) is any function of w and tj-f T and is determined by the boundary

conditions. We write the solution (3.1.29) in the form

00

w=0

If we inject

for any ^0(77), we obtain (from equation (3.1.35) with r = 0 )

Z(w, t ,) = w ̂ (rj) exp - « > 2 - + Pfo ). (3.1.37)

Putting this back into equation (3.1.35),

2 ( x2 \
4)(r),x, T) = <t)Q(r, + r) • — - exp -- - - (3.1.38)

r)/

is the solution to (3.1.28), where

(3-1.39)

Equation (3.1.28) is an approximation to the Fokker-Planck Equation in the

form (3.1.26), and its solution is the function (3.1.38). We needed to know whether

or not (3.1.38) is close to the solution of equation (3.1.26) beyond the small pitch

angle regime, for if it is, we would have, in equation (3.1.38), a very useful function

for the further study of the electron beam dynamics. This expression describes the

pitch angle evolution of the beam as well as the evolution of its energy spectrum,

70



Chapter ffl: Solving the equation

and both in very simple and manageable forms making their application most

simple.

The next step was to obtain the solutions to the full Fokker-Planck Equation

with the dlnB/ds term retained. Since we could not solve it analytically, we had

to obtain its solutions numerically. These numerical results were then used for

later calculations of the X-rays emitted by the electrons in the beam. We also

used the numerical results to discover just how well equation (3.1.38) describes the

beam over the full range of E, p and T and, hence, to find out how useful (3.1.38)

can be.

3.2 The numerical treatment.

The equation we wish to solve is (cf. equation (2.36))

df(E,i*,a) (1-A*2)
ds 2 ds ' dp

2 d Cif(E,p,8)\ C2 d ( 2

'
(3.2.1)

This equation is linear, is first order in the derivatives of both E and s, and is

second order in the derivatives of //. In order to construct a numerical scheme for

solving this equation we can use the natural properties of the physical system to

our advantage. Electrons are able to travel in both directions in s space (both up

and down the flare loop) but they can only travel in one direction in E space. In our

paradigm, there is no mechanism by which an electron can be accelerated to higher
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values of E. We can use this by rewriting equation (3.2.1) with the derivative in

E on the left hand side and by using the electron energy as the stepping variable

by which we march forward (downward in E) over the three dimensional surface

containing the solution.

We recal the definition <fr(E, p, s) = f(E, p, s) /@(E). Equation (3.2.1) becomes

(3.2.2)

This is of the functional form

9 UC <b{F\}-7\, n F— (2Cl(p(E) j - t^n,E,

which we write in shorthand notation as (0.4.6)

where </>(£') is just a shorthand form for (j)(E,ii,s) which we use when the

dependence on /z and s can remain implicit.

Equation (3.2.3) can be solved by the trapezium method. This is a one-step

method for obtaining the solution at an energy EQ once the solution is known at

an earlier energy E\. We use this method in the form

(3.2.4)
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where E\ > EQ and E^/2 = (Ei+Eo)/2. We require that the stepping distance

EQ be small enough that we can accurately replace the expression for 7 </>

E \ > E > EQ, by the linear one connecting 510(£i) and 7 <^(£b) • Then

and

(3.2.6)

If the solution (p(E\) is known, then we are able to obtain the solution at the lower

energy EQ by solving the difference equation (3.2.6). We begin by specifying an

initial solution ^(Emax) a* the highest energy point E = .EmaX) and then begin

stepping down, obtaining the solution at each point Et until we reach our lowest

energy £min.

In practice, what we have labelled a point at a value E± is a two dimensional

surface of constant energy. Our solution 0(£",) is a solution obtained at an energy

Et and for all s and /i. Our one-step method for obtaining (p(Eo) by solving

equation (3.2.6) contains an implicit multi-step method for obtaining the function

values over the whole of that surface. The left hand side of equation (3.2.6) is

known at E\ for all s and ft. Let it be equal to BE^SJH), and let us separate

J\(})(EQ) into two components which we denote as fJ^-Eb) and r)s \$(Eo) :
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and

(3.2.7)

We have

(3.2.8)

f ^ contains the second order derivative in /j and requires a multi-step procedure.

This proc.edure can be either explicit or implicit, though implicit methods are

generally more accurate than explicit methods of the same order. We choose to use

an implicit method and, hence, to solve equation (3.2.8) by successive iterations.

We obtain the sequence of solutions <f) (£Q) for m = 0, 1, ... and check for

convergence after each iteration. We continue until we are satisfied that <f) (EQ)

is close enough to (j) (EQ). <j> (EQ) is then our desired solution ^(-£"0) to

equation (3.2.8) and we can proceed to the next, lower energy level.

At the nra iteration we need to solve (3.2.8) afresh using our most recently

obtained solution (f) (Eo) as a starting function. We halve the right hand side

of (3.2.8), evaluate one half using the known function <f>m~l(Eo) and then transfer

it to the left hand side. The residual half remains on the right hand side and is

to be solved to give the next solution in the sequence, namely (j) (EQ). At this

iteration we have to solve
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(3.2.9)

for 0 (.EG)- All the known information from the solution to the previous iteration

(0 (-£"0)) and from the solution at the previous energy level ((})(E\)} is contained

on the left hand side. Let the left hand side of equation (3.2.9) be denoted by b^~l.

Equation (3.2.9) is, in essence, still the one-step difference equation (3.2.6), but we

have rewritten it so that we can now focus on the iterations over the /i, s surface

instead of on the stepping down through E.

We solve equation (3.2.9) by approaching it successively at three levels. The

first level solves the equation over lines of constant E and s; the second level

expands this to cover the whole surface of constant E, i.e., for all s; and the third

level is that which steps down through surfaces of decreasing E (cf. Figure (3.2)).

Level 1:

At each level of constant E, and for each line of constant s, we replace the

</> (EQ) component by its two finite difference equivalents

and (3.2.10)

where As+ and As~ are the forward and backward stepping distances in s. Our

iterations to obtain (f) from (j) are in the form of a sweep from s = 0 to
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•max

mm

Figure 3 2 A schematic representation of the domain spanned by the indepen-
dent variables in the Fokker-PIanck Equation (equation (2.36)) and over which the
solution is obtained The pitch angle cosine n covers — 1 < n < + 1 in KMAX steps,
the depth 3 covers 0 < a < smax and the energy E covers Em\a <E< £max- The
solution is obtained on a surface of constant E with the injected beam distribu-
tion speciGed on the l ine s = 0, 0 < n< +1. The numerical code then steps down
through E ob ta in ing the solution at successively lower values of E.

•s = Smax followed by a return sweep from s = smax to s = 0 (cf. Figure (3.2)).

We use 1)~ on the sweep down and 7)+ on the return. We solve either

. ,r,_i E\ - En n </>'

(3.2.11-)

when we sweep down, or
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(3.2.11+)

when we sweep back, where, as before, everything known is kept on the left hand

side.

£j 0m(£'o, n, s) is a second order expression in derivatives of p. At each value

of fi it relates (J)(EQ,H,S) to ^(E0, \t - A/z,s), (j)(E0,n,s) and (j>(EQ, n + A/z, s).

Hence, equations (3.2.11 — ) and (3.2.11 +) can be solved in the form of a matrix

equation y = Ax. This equation is solved for x, where x is the vector of KMAX

values <f) (Eo,fi, s) along the line of constant E and s, from p = //j = 1.0 to

V- = A^KMAX = —1.0 (cf. Figure (3.2)). A is a KMAX X KMAX tridiagonal matrix and y

is the left hand side of (3.2.11 — ) or (3.2.11 +). This matrix equation may be solved

by factorizing A into upper- and lower- diagonal matrices and then obtaining x

by using Gaussian Elimination.

Level 2:

Level 1 gave the values of <^> (Eo,fi,s) along the lines of constant E and s.

We now solve level 1 at successive values of the variable s. We begin at s = 0

(which corresponds to the top of the flare loop) and make our way down toward

s = smax (cf. Figure (3.2)), solving equation (3.2.11 — ) at each step. We then

return and make our way back to 3 = 0, solving equation (3.2.11 -f ) at each step.

The initial values (fim(EQ,n > 0, s = 0) are set by the pitch angle distribution of
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the injected beam and constitute an upper boundary condition. The solution then

generates the values 0 (£"0, n < 0, s = 0). At s = Smax we use a free boundary

condition. Smax is large enough that the solution values there are negligibly small

compared to those near the top of the domain and can be set effectively to zero.

Level 3:

Having solved level 2 in two sweeps, one down and one up, and having obtained

a solution 0 (fib) for all values of s and //, we compare </> (EQ) with (f)

If they are sufficiently close, we proceed to the next energy level down; if not,

we run another iteration on level 2 and check again, repeating this until we are

satisfied that convergence has been obtained. To proceed to the next energy level

down we take our final solution </> (£Q, p, s) and multiply it by a suitable scaling

factor to give <p (E—i,f t ,s) , our first approximation to the solution at our new

energy level E^\ < EQ. We then start the whole process again at this new energy

level, sweeping from s = 0 to s = smax and back to s = 0, solving equations

(3.2.11 — ) and (3.2.11 +), and obtaining <j) ' '"'(E-i). We continue in this manner

until we have obtained the solution at our final energy level E = -£"mm, by which

time we have solved the Fokker-Planck Equation over the whole volume

•Emax > E > Em^n

smax > s > 0

!>/* > -1-

It is necessary to check that the numerical code is obtaining a satisfactory

solution to the Fokker-Planck Equation. We can isolate the individual terms of
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the Fokker-Planck Equation when we run our numerical code on the computer.

We can then compare these one-term numerical results with the three solutions

(3.1.6), (3.1.16) and (3.1.25), obtained from our analysis of the reduced equations in

§3.1. Should they show good agreement, we make the quite reasonable assumption

that the solution obtained from the full numerical code agrees with the (unknown)

solution of the full Fokker-Planck Equation.

Test #1: If, in our numerical scheme, we set C± = C% = 0 and inject an

electron beam with a pitch angle distribution /(/i,0) = — Arln( l— /*2) for 1 > n > 0,

we should obtain a distribution at all depths s > 0 given by equation (3.1.6), namely

(3.2.12)

where s" is defined in equation (3.1.2).

In Figure (3.3) we compare the numerical results for this case with the above

solution, using k = 2. As we can see, the two results agree quite precisely, except

in the wings I large | ln(l — ̂ 2) | j at large sT This is because we were unable to

specify our initial distribution all the way through to // = 1. The function value

becomes infinite as (1 — p?} approaches zero. The effect of chopping off the initial

function near p = 1 appears in the numerical results as we reach larger r.

Test #2: If we set dlnB/ds = C<z = 0 in our numerical scheme and inject

an electron beam with an energy spectrum which is a power law in r] ( cf. equation

(3.1.11)), i.e., (^)Q(TI) = /o(f?)//3(»?) = 1~5 , we should obtain a distribution at all
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Figure 33 A comparison between the numerical results (dots) from running
our code wi th the collisional terms switched off (Ci = C% = 0) and the exact
solut ion (equation (3 2.12)) (solid lines), a is a measure of depth and is defined by
equation (3.1 2). The injected (3 = 0) electron distribution is specified only for
// > 0 ( the right hand side of the diagram).

depths given by equation (3 1.16), namely

-5 (3.2.13)

with T given by equation (3 1.12).
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We have compared the numerically obtained function (j)(rj, p, T) with equation

(3.2.13). The two results agree perfectly.

Test #3: We now set dlnB/ds = C\ = 0 and inject an electron beam

having a pitch angle distribution which is a narrow Gaussian centered about

fj, = 1 (z = 0). We expect the pitch angle distribution to remain at least

approximately Gaussian and to broaden with depth roughly in accordance with

equation (3.1.25). For small values of x we may identify x with the pitch angle a =

cos""1^). In Figure (3.4) we compare our numerical results (dots) with equation

(3.1.25) (solid lines). The agreement is very good for a wide dynamic range. Not

only does our numerical code accurately solve the reduced equation (3.1.18), but

also the approximation (3.1.19) would appear to hold well for values of n distant

from unity.

From our three checks we see that the numerical code gives very accurate

solutions to the reduced equations. This means that our method handles well

the individual terms of the Fokker-Planck Equation. We can then expect it to

generate accurate solutions to the full equation with all the terms combined. We

do not have an analytic solution to the full equation against which we can check

the numerical code, though we do have the solution (3.1.38) to equation (3.1.28)

which approximates the full equation with no magnetic field convergence. We can

compare our numerical results with the approximate solution (3.1.38) and, if they

are similar, expect both to be very close to the ideal (because unknown) solution

of the full Fokker-Planck Equation.
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Figure 3.4 A comparison between the numerical results (dots) from running
our code with only the diffusion term switched on (C\ = d\uB/ds = 0, C% ^ 0)
and the exact solution (solid lines) to the equation approximating the diffusion
equation, equation (3 1 25). z is our approximation to the pitch angle a near n =
1 and T is the depth parameter (cf text above equation (3.1.19)). The injected
distribution is Gaussian with a0" = 0 04.
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3.3 Some results on the evolution of the electron beam.

In this section we present some results on the evolution of the electron beam

within the flaring plasma. The primary use for these results is to obtain an

understanding of the beam evolution, a prerequisite to looking at the X-ray results

of Chapter V. The distribution of the X-rays will reflect the distribution of the

emitting electrons, and knowing how the electron beam evolves as it passes down

through the flare loop will enable us to correctly interpret the X-ray calculations

and to draw strong conclusions accordingly. These results will also allow us to see

how accurately our approximate solution (3.1.38) describes the evolution of the

beam and to see how useful it can be for further studies of the beam dynamics, for

example, in calculating the rate at which the beam heats the surrounding plasma

or in calculating its ability to generate plasma turbulence.

We shall use equation (3.1.38) to guide us through the presentation of the

electron results. For these results we assume the flaring plasma to be fully ionized

Hydrogen and, in the definition of the depth parameter T, we adopt a mean value

of 20 for the Coulomb logarithm (cf. Table I, Chapter n). This simplifies the

definition of T, allowing us to replace equation (3.1.12) with

dr = 2 X I0~23neds. (3.3.1)

This integrates to give r = N/NQ where TV is the accumulated column thickness

passed through, in units of particles cm~2, and NQ = 5 X 1022cm~2.

When using the numerical code to solve equation (2.36) we use the pitch angle

variable a instead of the variable x which was introduced by our approximation
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analysis. We inject an electron beam with a pitch angle distribution exp(—a2/a0
2)

which, for small a$, is nearly indistinguishable from the form exp(—X^/XQ) used

in equation (3.1.36). We use the solution (3.1.38) but make the simple substitution

of a for x. The energy spectrum of the injected electrons is always of the form

Fo(E) ~ E~ where the spectral index 6 is set for each model. In each case,

therefore, we inject a flux

F(E, it, 0) = FQ(E, /*) ~E~S exp (-a2/a0
2). (3.3.2)

The solution (3.1.38) is most directly applicable when expressed in terms of the

electron flux F(E,ft,s) instead of the function (j)(E,(i,s). The two are simply

connected, with F(E,n,s) = c/32(E)(t)(E, f i ,s) . Our general solution is, then,

, A*, «) = T^TT^oO? + r) • -^ : exp [ — (3.3.3)
a2 "\

fto + r)/

where FQ(T)) is the flux energy spectrum at r = 0. The units of the electron flux

F(E, //, s) are electrons cm~2 sec"1 keV~* ster~l.

Pitch angle evolution:

One of the first things to notice about solution (3.3.3) is that it separates the

beam's pitch angle evolution from its energy evolution. This was the advantage

gained from making a substitution for the second order derivative in p in equation
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(2.36). For clarity let us write F(E,p, s) = F\(Et s)F2(£, n, s) with

Fl(E,s) = f^ F0(i| + r)
P1^] + T)

f 2
F2(E, n, s) = — - exp -- — -

, //, s) describes the pitch angle evolution of the beam. A beam which begins

as a Gaussian of width OQ broadens with increasing depth at a rate which depends

upon the electron energy' . The broadening is controlled by $(ri + T) which, for

Emec
2 < 2 can be replaced by ln(l + 7/77). At r = 0, f (rj + r) = 0. The form of

F%(E, ft, s) shows that the beam's rate of broadening is similar for all energies E,

provided we scale the depth correctly. For all but the highest energies, the correct

depth scaling is by ^ = E2/(E + 1).

In Figures (3.5) through (3.7) we show the pitch angle evolution of the beam

with depth for three different values of OQ, as given by our numerical results. The

curves are labelled according to their value of the scaled depth T/rj. Each diagram,

therefore, represents the beam distribution across a wide range of energies, for the

scaling of depth with rj is found to be well supported by the numerical results. The

first curve in each figure (T/IJ = 0) shows the injected distribution over 1 > p > 0

It is important to bear in mind the distinction between the concepts of the energy of an
individual electron and the (electron) energy which is an independent variable in equation
(3.1.26) and the solution (3.3.3). There is always the temptation to think of the evolution
of the electron beam in terms of individual, real electrons which lose energy and change
their pitch angles as they pass down the flare loop. The solution, however, does not follow
the paths of individual electrons. The electrons described as having a given energy E at a
depth s are not to be considered as having a direct connection with electrons of the same
energy E at any other depth a'.
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Figure 3 5. The pitch angle evolution with increasing depth of the electron
beam for aQ

2 = 0.04 (and 5 = 5, dlnB/da = 0 0). The curves are labelled ac-
cording to their values of T/TJ. For the first curve (T/TJ = 0.0) the continuation of
the injected spectrum is shown by the dotted line. The flux at T/TJ = 0.0 with
90° < a < 180° is reflected back into the loop with 0° < a < 90° to mimic the sym-
metry of the flare loop about its apex. The inset shows the ratio F(E, fi, r)/F(E, n =
l , r) as obtained from the numerical results (dots) and equation (3.3.4) (solid lines).
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plus the distribution of electrons which are then calculated to have returned to the

top of the loop with n in the range 0 > n > — 1. To mimic the flare's symmetry

about the top of the loop, the electrons which return to r = 0 with \n <0 are

reflected back into the loop with a positive \i of equal magnitude. In Figure (3.5)

we show, by the dotted line, the extension of the injected distribution below that

of the reflected distribution. In Figure (3.7) the beam is injected with a uniform

distribution over 1 > ft > 0, but the addition of the reflected component which

is strongly concentrated at small values of | // | gives rise to a maximum in the

distribution at /z = 0. Note that for small a0
2 (Figure 3.5) the contribution of the

reflected flux is negligible.

In Figure (3.5) the behavior predicted by equation (3.3.3) is evident. The beam

broadens with increasing depth and the scaling of depth with r, holds well. In

the inset we show the ratio of F(E,n,r) to F(E,n = 1, r) as obtained from the

numerical results (dots) and expression (3.3.4) for F% (straight lines). The beam is

Gaussian upon injection, blends with the reflected flux as it broadens, becoming

slightly wider than Gaussian, and then relaxes back to a distribution which is

Gaussian, which broadens slowly with increasing T/TJ as predicted and which falls

steadily in magnitude.

One important effect evident in a comparison of Figures (3.5) through (3.7)

needs to be stressed. The beam distribution at depths larger than T/TJ ~ 1 is

identical in each figure and is independent of the narrowness of the injected beam.

Turning to equation (3.3.4), at large T/T), f (t/ + r) becomes larger than a0
2 and the

width of the beam is controlled by f independently of the narrowness of the beam

at r = 0. Beyond r/r;~l, all information as to the narrowness of the injected
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Figure 3 6 The same as Figure (3.5) but for or0
2 = 0.4 Note that the curves

for T/TI = 1.8 and 7 5 are identical to the curves for the same two T/TI values in
Figure (3.5).

beam is lost. This is of significance when, later, we discuss the degree to which

the X-ray results are able to give information about the source distribution of

energetic electrons
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Figure 3 7. The same as Figure (3 5) but for OQ — oo, that is, for an injected
electron beam wh ich is uniform over the range 0° < a < 90°. The flux which returns
to s = 0 w i t h n < 0 is reflected back into the loop. As this reflected flux is
concentrated at small | ft \, the total flux at s = 0 peaks at n = 0. Note, again,
that the curves for r / r j = 18 and 7.5 are identical to the curves for the same two
r/r} values in Figures (3 5) and (3 6).

Spectral evolution:

We shall now look at the energy spectrum of the beam. If we integrate equation

(3.3.3) over all pitch angles \i we see that the expression (3.3.4) for
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integrates to unity, leaving

F(E, s) = f F(E, p, s) dfi ~ Fi(E, s)
(3.3.5)

Our injected energy spectrum F(E, 0) equals FQ(T)) ~£"~ electrons per unit energy

E. From equation (3.3.5) we obtain dF\(E, s)/dE = 0 at E = £max where £max

is given by

. (3.3.6)

The numerically obtained electron flux integrated over pitch angle is given in

Figure (3.8) for 8 = 5 (from the model with a0
2 = 0.04). The injected flux falls

steeply with increasing E. On penetrating through the flaring plasma, the lower

energy electrons lose energy more rapidly than do the higher energy electrons.

The number of low energy electrons is rapidly depleted, the spectrum begins to

turn down and it develops a hump which then moves to higher E with increasing

T. The variation of the hump energy with depth should be as given by equation

(3.3.6). In the inset in Figure (3.8) we show .Emax ^ a function of r as taken from

the numerical results. Their relationship is linear, as expected.

Luhman (1976), in reference to auroral electrons in the earth's atmosphere,

obtained the solution to a simplified electron transport equation which was derived

from the Fokker-Planck Equation. His treatment of the pitch angle diffusion was

rather crude and differed entirely from the treatment in effect here. Notwith-

standing this dissimilarity, we may compare our energy spectra as given in Figure

(3.8) with his results as presented in his Figure 1 (Luhman 1976). Though a direct
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Figure 3 8 The electron energy spectrum at successive depths for the model
with 6=5 (and o0

2 = 0.04, dlaB/da = 0). The curves are labelled according to
their depths r. The inset shows the energy of the spectral maximum as a function
of depth (c/. equation (3 3 6)). The gradient to the right of the maximum is set by
the value of 5, the gradient to the left is set by the Coulomb collision process.
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comparison of the two sets of spectra cannot easily be made their similarity is

clear.

Changing the value of a^ does not affect the spectral evolution as presented in

Figure (3.8), just as changing the value of 6 does not affect the shape of the curves

in Figures (3.5) through (3.7) (though it will affect the variation of the relative

magnitudes of the flux with depth). In Figure (3.8), using a different value of 8

changes the gradient of the spectrum to the high energy side of the hump, but

does not affect the slope on the low energy side.

The influence of a converging magnetic field:

If we now add a magnetic field of increasing strength along the loop, the effects

on the pitch angle distribution of the beam are pronounced. Consider an injected

beam which is narrow and peaked about the downward direction. As electrons

enter regions of greater field strength, they swiftly move to larger pitch angles and

can be reflected, after which their motion is directed toward the top of the loop.

As these reflected electrons are then moving into regions of lower field strength,

their pitch angle continues to increase toward 180° and their motion becomes

increasingly anti-parallel to the field lines. In Figure (3.9) we show the numerical

results for a model which has the same injected electron beam as the model used

for Figure (3.5), but which in addition has a converging magnetic field. The model

has a column thickness of 2.4 X 1018cm~2 from the top of the loop (curve 1)

to the transition region (curve 3). Over this distance the magnetic field strength

increases by a factor of five. The curves are for an electron energy of 78 keV,

92



Chapter HI: Solving the equation

30 60 90 120 150
PITCH ANGLE a (degrees)

180

Figure 3 9. The pitch angle evolution of the electron beam for a model with a
narrow injected beam (aQ

2 = 0.04) and a converging magnetic field. The magnetic
field converges by a factor of five from the top of the loop (curve 1) to the transition
region (curve 3) which is at a column depth of 2.4 X lO1^ cm~2. Curve 2 corresponds
to the mid-point of the coronal loop. Below the transition region (curves 4 and
5) the magnetic field convergence no longer controls the electron beam evolution
because the plasma density there is too high. The electron beam, under the
influence of Coulomb collisions, establishes a smooth profile with behavior similar
to that found in the models without converging magnetic fields.
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which means that, in the corona, Coulomb collisions are relatively unimportant.

Curves 4 and 5 are for successively deeper levels of the chromosphere. For these

the field convergence is no longer the dominant influence on the electron beam.

For a depth half way along the coronal loop (curve 2), the electron distribution

is the sum of many contributions. Electrons with small pitch angles (/* ^ 1) had

even smaller pitch angles higher up and have yet to be strongly deflected by

the magnetic field. Those with larger pitch angles are rapidly approaching their

mirroring depth. Within a short distance they go from having positive /x to negative

fi. Near to being mirrored an electron changes its pitch angle very rapidly and for

this reason the distribution is symmetric immediately about n = 0. Electrons with

fi less than but close to zero in curve 2 were recently mirrored, but those with

more negative p, were mirrored in much lower levels of the coronal loop. When

the mirroring depth falls below the transition region the electrons have to rely on

Coulomb scattering to return them to the corona and for this reason the flux at

fi ~ — 1 is always well below that at p, ~ 0. All the electrons which are mirrored

within the body of the coronal loop together form a beam which moves anti-parallel

to the injected beam. Toward the top of the loop the electron distribution takes on

a two-beam structure, as can be seen in curve 1. The relative size of the mirrored

beam depends upon the relative importance of magnetic mirroring to Coulomb

collisions. For the model shown in Figure (3.9) (the coronal section of the loop has

a column thickness of 2.4 X 1018 cm"2 and the magnetic field strength increases
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five fold) and for 78 keV electrons, the ratio of mirrored to total' injected flux at

the top of the loop is 0.89. For 400 keV electrons it is still 0.89 but for 10 keV

electrons it is 0.51.

The magnetic field reflects the beam electrons without drawing energy from

them. The field, therefore, tends to trap the electron beam in the upper reaches of

the flare loop. Electrons escape from this magnetic bottle if they are continually

scattered by the Coulomb collisions to smaller pitch angles. In this manner they

can reach the lower regions of the coronal part of the loop and a few of them will

reach the chromospheric regions where the plasma density is high enough that the

electrons are no longer controlled by the magnetic field.

Just how effective the magnetic field can be at bottling up the beam is shown

in Figures (3.10) and (3.11). Figure (3.10) shows the rate at which the downward

flux falls with increasing magnetic field strength for three rates of increase of the

field. The downward flux at any depth is the integral over positive /z of p.F, i.e.,

FB(E,s)= f fiF(E,n,s)dti, (3.3.7)

and is also integrated over the cross-sectional area of the loop. Fg is, therefore, a

measure of the electron current passing through the loop, not the current density,

The total injected flux is the sum of two components: the specified injected flux with a
distribution FQ(E, n) (cf. equation (3.3.2)) and the flux which exits the other half of the
flare loop, crosses the top and passes into the half of the loop which we are considering.
Owing to the reflection symmetry of the flare loop about its apex, this second component
of the injected flux is identical to the flux which exits the top of this half of the loop. The
magnitude and distribution of this component are obtained by solving equation (2.36) in
a self-consistent manner.
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i.e., the current crn~2. For each of the three cases shown, the magnetic field

increases with constant d\nB/ds. In terms of the scale depth z, the magnetic field

strength relative to that at the top varies as 10bz where b = 0.0, 0.5 and 1.0 for

the dotted, dashed and solid lines, respectively. The column depth from z = 0 to

z = 3, at 3 X 1018, is insignificant, as shown by the 6 = 0 (dotted) lines. The

downward flux falls in proportion to the magnetic field strengthening. The tighter

the magnetic bottle, the smaller the fraction of the flux which escapes. Figure

(3.11) shows that this behavior is not strongly sensitive to the value of QQ.

Though Figure (3.10) shows that the bottling up of the downward flux is

roughly the same for all energies, this does not mean that electrons of different

energies have the same fate. If the escaping flux is, for example, one one-thousandth

of the flux at the top of the loop, an average electron would be mirrored a thousand

times before it escapes. In traveling up and down the loop this number of times,

it passes through an accumulated depth of 6 X 1021 cm~2. For a low energy (say,

30 keV) electron, this is a large enough depth that the electron stands a greater

chance of being stopped in the corona than of escaping to the chromosphere. On

the other hand, a high energy electron can pass through this amount of material

without being slowed significantly and will have a good probability of escaping

eventually even if it has only a one in 103 probability of escaping at each try. This

means that the magnetic field can trap very efficiently low energy electrons in the

corona, but it would take an extraordinarily strong magnetic bottle to prevent

most of the highest energy electrons from eventually reaching the chromosphere.

The resulting effect upon the X-rays will be seen in Chapter V.
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Figure 3.10. The downward moving electron current within the loop for three
different rates of increase of the magnetic field strength and for a0" = 0.4. These
curves show how effective the magnetic field is at bottling up the electron beam.
The downward current is defined by equation (3.3.7). The magnetic field strength
has the form £?(*) = BQ I0b* for arbitrary BQ. The dotted curves correspond to
b = 0.0, the dashed curves to 6 = 0.5 and the solid curves to 6 = 1.0. The column
depth at a scale depth of z = 3 is 3 X 1018cm~2. The effect on the electron
beam of Coulomb collisions is, therefore, negligible compared with the effect of

the magnetic trapping.
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2. The dotted lines correspond to afl
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to UQ = 0.4 and the dashed ones to aQ2 = oo. The effectiveness of the magnetic

bottle is only slightly dependent upon afl
2-

In this chapter, we have taken the equation that describes the electron trans-

port, we have looked at the individual terms to get an indication of how the

electron beam evolves within the flare and we have described the method by which

the equation is solved numerically. We then looked at these numerical results in
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order to learn how the electron beam actually behaves. We now need to include into

our paradigm a description of the X-ray production by these energetic electrons so

that we may calculate the X-ray characteristics associated with our models. This

we shall do in Chapter IV.



Chapter IV

X-Ray Bremsstrahlung Theory

In the proceeding chapters we structured the physical problem, obtained

its mathematical expression and then looked at the solutions. We now have the

function f(E, //, s) which describes the number density of high energy electrons

throughout the flare loop. Our next step is to combine this with information

describing how the electrons produce the hard X-rays and to ensure that we have

enough information about the X-rays that we can use them as a diagnostic tool

to probe the physical conditions in a flare.

We are interested in X-rays with energies in the range 10 ~ 500 keV. There

are three possible mechanisms by which the energetic electrons might produce

continuum radiation in this interval, the bremsstrahlung mechanism, the gyro-

synchrotron mechanism and the inverse Compton mechanism. Investigating the

viability of these three mechanisms for a broad range of conditions appropriate

to a flare, Korcak (1967a,b; 1971) concluded that bremsstrahlung would be the

primary mechanism producing hard X-rays in flares; this has since been widely

accepted throughout flare X-ray studies (see also Brown 1976; Brown and Smith

There is no line emission in this energy range. The highest energy line seen in the solar
corona comes from fully ionized iron and has a line energy of c~ 6.9 keV
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1980). The other two mechanisms will only become important should the energy

spectrum of the fast electrons not extend down below several MeV.

Accepting that bremsstrahlung is the most likely emission mechanism, we

can expect that unpolarized source electrons will emit only linearly polarized X--

rays (Gluckstern, Hull and Breit 1953; Bannerjee 1958). The plane containing

the polarization vector will be either parallel or perpendicular to the plane of

emission, which is that plane containing the directions of propagation of the

incoming electron and the outgoing photon. The production of the X-radiation

is described by two cross-sections, each giving the probability of emission with

one or other of these two polarizations. We denote the two cross-sections by da\\

and d(7j_ respectively (suppressing for now their dependence on the photon energy,

electron energy and rj, the angle between the electron and the photon).

4.1 Stokes Parameter formalism.

Before we discuss these cross-sections in detail let us consider a method for

describing the X-rays. We need to calculate the X-ray intensity and polarization

for all viewing directions, for a range of photon energies and for all source posi-

tions along the length of the loop. A complete description of a beam of radiation

(labelled according to its source position s, direction fc(0,$), and energy k) con-

tains information about its intensity, its degree of polarization, the orientation

of its polarization plane and its ellipticity (Chandrasekhar 1960, p25). A very

convenient parametric representation of such a description was formulated and
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introduced by Sir George Stokes (Stokes 1852; see also Chandrasekhar 1946; 1960,

p25; Tolhoek 1956; Bekefi 1966, p21). Under this parameterization an elliptically

polarized beam of light is fully described by the four Stokes parameters I, Q,U and

V. Such a representation derives its particular usefulness from the fact that the

Stokes parameters are additive; that is, we obtain the Stokes parameters for (and

hence a complete description of) any beam of radiation by simply adding together

the Stokes parameters for the independent elements of which that beam is com-

prised. The Stokes parameterization is not unique and requires the specification

of a reference plane with respect to which the direction of the polarization vector

can be located. The Stokes parameters for the independent elements are additive

only if all the elements use the same reference plane.

The X-radiation from any particular source position within the flare is the sum

of the independent emissions from each electron in that source region. The problem

of describing the radiation field, then, is reduced to that of obtaining a correct

parametric description of the radiation from each element of the emitting volume.

Obtaining these elemental Stokes parameters from the X-ray cross-sections is a

straightforward process which we now demonstrate.

Consider that part of the radiation field which is emitted with a photon energy

k, in a direction fc(0,<l>) and from a source volume of electrons which is at a

distance s from the top of the loop (cf. Figure (5.1)). For this part of the radiation

field let the Stokes parameters be I(k,e,$,s), Q(k,e,$,s), U(k,e,$,s) and

"V(k, 0, $, s). Consider now the element which is contributed to that beam of X-

rays by those electrons in the source volume which have a kinetic energy E and

which have an instantaneous direction of travel p$ which is at an angle TJ to the
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beam direction k. The first two Stokes parameters for that one element of the

beam, A I, A<2, are given by (Haug 1972; Langer and Petrosian 1977)

A I dkdttk ds dEdtlp = nH(s) f(E, fi, s) (d<r± +

ds dE dOp = nH(s) f(E, p, s) (rfa± - da\\ } dk dOk ds dE d(lp

where dflk = </n(0, $) is the element of solid angle about the photon direction
A

fc(0,<l>), dfip is the element of solid angle about the electron direction po> and

rifj(s) is the local number density of heavy nuclei. The definition of the two cross-

sections, d<r_L and d<r§, specifies the emission plane as the plane with respect to

which the polarization vector is located. Equation (4.1), then, employs the emission

plane as the required reference plane in the definition of the Stokes parameters.

For our purposes here we consider the solar atmosphere to be a plasma of pure

Hydrogen. Helium and elements with a higher atomic number Z have a relatively

low abundance in the solar corona and chromosphere. The bremsstrahlung yield

from the high Z elements is proportional to Z2; hence a significant emphasis is

placed on the contributions of the high Z elements despite their low abundances.

Allowing for these other ions would amount to replacing the ambient plasma

density n// by njj + £^ > 2 Z^ng- This has been estimated at ~ 1.8 nfj by Elwert

and Haug (1971), 1.36w# by Haug (1979) and 1.25 njj by Duijveman, Hoyng and

Machado (1982). The high Z elements do not affect the characteristics of the X-

rays produced; they do no more than introduce a renormalization of the total

X-ray flux. Because of this we do not need to include the high Z elements in our

study.

The radiation, being bremsstrahlung from unpolarized electrons, has no cir-

cular polarization. This is easily understood if we think in terms of the classical
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description of the emission mechanism. An electron emits because it is accelerated.

During a collision the electron's trajectory remains within the plane of emission

defined by the direction of motion of the incoming electron and the force vector

pointing toward the scattering center. The physical system is then symmetric with

respect to reflection in this plane and, therefore, so must be the emitted radiation.

Any left circularly polarized radiation is matched by an exactly equal amount of

right circularly polarized radiation. The sum of the two is always linearly polarized.

This absence of any circularly polarized radiation means that the fourth Stokes

parameter for the element of radiation, AV, is identically zero, and this result is

independent of the reference frame (Chandrasekhar 1960, pp25). Henceforth, we

shall work with only the first three Stokes parameters.

The third Stokes parameter for the element of radiation, AW, also happens to

be zero. This is because, by the above physical symmetry, the X-ray polarization

direction has to be either parallel or perpendicular to the plane of symmetry.

This symmetry plane is the plane of emission which also serves as the reference

plane in equation (4.1). It is this coincidence of the symmetry and reference planes

which causes AW to be zero (cf. equation (4.2) with ip = 0.) When we change

the reference plane, as we are about to do, the third Stokes parameter need no

longer be zero. We must, therefore, retain it in order that the linear polarization

be correctly described.

We now add together all the individual elements which contribute to that

part of the radiation field we are considering. The Stokes parameters for each

element are defined with respect to that element's plane of emission. These different

elements of radiation all come from electrons with different directions of travel
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and hence different reference planes. Before we can add the Stokes parameters for

each element to give the Stokes parameters for the entire beam we must specify

a common reference plane. For now we shall define this common reference plane

to be that plane containing the beam direction k and the direction r, where f is

any well defined direction in space. If the three elemental Stokes parameters in the

new reference plane are denoted by dl, dQ and dll respectively we obtain (Haug

1972),

dl dk dttk ds dE dftp = nH(s) f(E, ft, s) (dff± + d<r\\) dk d(lk ds dE rffip

dQ dk dtik ds dE dftp = nH (s) f(E, p, s) (d<r± - da\\] cos 2^ dk dftk da dE dtip

dll dk dQ,k ds dE dflp = riff(s) f(E, fi, s) (rfcrj_ — da\\) sin 2tjj dk dttk ds dE dOp

(4.2)

where ip, the angle between the old reference plane and the new one, is given by

cos ̂  = (po X fc) • (f X fc) (4.3)

Once this transformation has been performed, the Stokes parameters for the

independent elements of the beam may be added together to yield the Stokes

parameters for the whole beam. If we denote the aggregated Stokes parameters

by I(k,Q,$,s), Q(k,&,$,s) and U(k, 0, $, s) , we can, with a little spherical

trigonometry and by integrating over the correct populations, obtain a complete

description of the X-rays in the form
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oo
f r f

A ® Ql file //O i fiQ I tin Q) fill I, vy, TT, ol LUV U d « J > UO —^ I 14/f 1^ UU I
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dE
r,=0 J=cos rj E=k
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cos 2^

sin 2i A_L - dff\\j

dk dfi. ds

(4.4)

What remains is to express the X-ray intensity and degree of polarization in

terms of our three Stokes parameters. The intensity of radiation in the beam is

given by the first parameter, I. The degree of linear polarization is given by II =

I fi + Z2 I // and the angle between the polarization plane and the reference

plane, x, is given by tan2x = U/Q (Bekefi 1966, p22).

We note here that we have described a method by which we can obtain

the intrinsic characteristics of the flare's X-rays, that is, the characteristics of

the radiation at the source. We have not considered the possibility that these

characteristics may be modified by scattering of the X-rays between source and

observer. The X-rays can be either photo-absorbed or Compton scattered; though

for energies above ~ 15 keV scattering is the primary mechanism (McKenzie 1975;

Langer 1978). The cross-section for Compton scattering decreases with increasing

photon energy and is no larger than the classical Thomson cross-section, which

has a value of 6.6 X 10~25 cm2 (Tucker 1975, p!53). For an X-ray in the 20 -

100 keV range to be scattered out of its original forward hemisphere it has to pass

through at least 1024 cm~2 of solar material. This places the solar X-ray limb at

an altitude of ~300 km above the visible limb or, which is much the same, in an
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atmospheric region of density ~6 X 1014 cm~3 (McKenzie 1975). The corona and

chromosphere, having much smaller densities than this, are clearly transparent to

hard X-rays, and those X-rays which are emitted away from the photosphere reach

the observer unmodified.

However, flares do not sit very high above the photosphere and it is very

difficult for any of the currently available X-ray telescopes to separate those X-

rays which are seen directly from those which are seen only after they have been

reflected by the solar photosphere. HXIS is the only hard X-ray telescope with

the capability to image its source. Its fine field of view has a spatial resolution of

~5000 km on the sun's surface. This is not sufficient for HXIS to clearly resolve

the albedo patch from the X-ray source, yet the albedo patch is bright enough

that, at the low energy end of the hard X-ray range, its presence affects the data.

An investigation of the effects this reflected contribution has on the measured

characteristics is well beyond the scope of this present work and will be left to a

later study (Leach, Langer and Petrosian 1984). All the results presented here are

understood to refer only to the intrinsic X-rays.

4.2 X-ray bremsstrahlung cross-sections.

Earlier in this chapter we expressed the Stokes parameters in terms of the two

cross-sections da±_ and dcr\\ (cf. equation (4.4)). Let us now turn our attention to

how these two cross-sections are obtained.

The bremsstrahlung process is one in which an electron makes a transition

from an initial state of momentum po to a final state of momentum p and, in so
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doing, emits a photon of energy k. The final electron energy states are distributed

continuously throughout energy phase space and hence the emission process gives

rise to continuum radiation. The cross-section depends upon the square of the

absolute value of the matrix element for the transition. The matrix element is

an integral over the initial and final electron wave functions and the expression

for the scattering potential field. The difficulty in evaluating exact expressions for

the emission cross-sections arises from the difficulty of obtaining suitable electron

wave functions.

Precise electron wave functions have been obtained only for the two extremes

of non-relativistic and ultra-relativistic electrons. Sommerfeld (1931; see also Kirk-

patrick and Wiedmann 1945) used the exact non-relativistic Coulomb wave func-

tions and the dipole approximation to calculate the bremmstrahlung cross-sections,

but the theory is only meant to apply for /?o (= VQ/C where VQ is the incoming

electron's velocity) -C 1 (Koch and Motz 1959), so it is not appropriate when

the initial electron kinetic energy is greater than a kilovolt or so. At the other

extreme, the cross-sections have been calculated using fully relativistic Coulomb

wave functions (Bethe and Maximon 1954; Olsen, Maximon and Wergeland 1957;

Olsen and Maximon 1959), but these are applicable only to extremely relativistic

electrons with energies in excess of about 50 MeV (Koch and Motz 1959; Lee et

al. 1976).

Cross-sections for the intermediate range of electron kinetic energies (from a

few keV to a few tens of MeV) have, so far, been obtained in two ways. The

first was by using the Born approximation for the electron wavefunctions. The
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second, and more recent, was by solving numerically the applicable form of the

Dirac Equation.

The Born approximation treats the electron transition as being due to per-

turbations of the electron's wave function, generated by the photon and by the

Coulomb field of the proton (Bethe and Heitler 1934; Heitler 1954, pp242). The

electron wave functions which one then uses to evaluate the matrix elements are

incoming and outgoing plane waves. The perturbation theory is taken to first order

and is good provided the expansion parameter is small, i.e., provided

«l (4.5)
o i

where a (= 2xe2/hc) is the fine structure constant, 0Q = VQ/C, fi\ = v\/c and

Z is the atomic number of the target material, in our case unity. Hence, the Born

approximation formulae should become less reliable as either /?Q or f3\ decreases.

An electron with a kinetic energy of 10 keV has 2ir a//3 = 0.24, which means

that we should hesitate before using Born approximation cross-sections with our

lowest energy electrons or when the outgoing electron is left with ^ 10 keV of

the initial kinetic energy. For such cases the Born approximation theory can be

corrected. By comparing the Bethe-Heitler (1934) Born approximation results with

Sommerfeld's exact, non-relativistic results, Elwert (1939) obtained the requisite

correction term which has since become known as the Elwert Factor. The correc-

tion is given as a renormalization of the cross-sections arising from a renormaliza-

tion of the electron wavefunctions, and it smoothly extends the use of the Born

approximation into the non-relativistic regime.
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The one restriction on the use of Elwert's correction is that, according to the

original derivation, it is not designed for the high frequency ("tip") limit (Pratt

and Tseng 1975). This limit arises when the photon takes almost all the electron's

available kinetic energy and the outgoing electron is left with ft\ c± 0. This high

frequency limit turns out to be a very important domain for our problem. A steep

electron energy spectrum, such as is often implied by the X-ray observations (cf.

§ 5.1), means that, in general, photons of a particular energy k will tend to have

been emitted by electrons with kinetic energies E which are not, on the whole,

very much larger than k. An electron with E 3> k has a greater probability of

emitting a photon of energy k than does an electron with E ~ k, though this

probability is easily outweighed by the greater number of lower energy electrons

implied by the observations. Consequently, it is in the tip region of the X-ray

spectrum that we would like to have the most precise cross-sections.

The reason that the Born approximation theory cannot be used in the high

frequency limit is that, in these situations, the field of the proton (or nucleus)

strongly distorts the outgoing electron wave function from that of a plane wave

(Elwert and Haug 1969). The Born approximation cross-sections vanish in the

limit k —»• E whereas cross-sections based upon the exact point-Coulomb wave

functions do not.' First order results correcting the Born approximation theory in

this "tip" region were obtained by Fano, Koch and Motz (1958) and Fano (1959).

Actually, for the more realistic case of a screened potential, the cross-sections eventually
do vanish when the outgoing electron has a low enough energy. Calculations suggest
that this does not occur until the outgoing electron energy is less than ~ 100 eV (Pratt
and Tseng 1975). This behavior occurs over too small an energy interval to be of any
significance to our current work.
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Ten years later, Elwert and Haug (1969) extended Ehvert's original (1939) results

to take them into the high frequency limit. They re-evaluated the Elwert Factor

and this time expressed it as a function of the emission angle 17. They found that,

for low Z elements and for k not too close to E, the re-evaluated correction is

approximately constant for all values of 77 and has a value equal to that of the

original Elwert Factor. As k approaches E, the correction remains constant and

equal to the Elwert Factor for those values of q over which most of the photons are

emitted. In the limits of forward and backward emission, the correction becomes

larger than the Elwert Factor, though the overall cross-section remains relatively

small. We conclude, then, that the Elwert Factor successfully extends the use of the

Born approximation theory into the two important domains excluded by equation

(4.5); that is, the high frequency and non-relativistic limits.

More recently, it has become possible to solve numerically the relativistic

Dirac equation for an electron in a Coulomb field, and to do so with a high

degree of accuracy. In a series of papers (Tseng and Pratt 1970; 1971; 1973; 1974;

Pratt and Tseng 1975 and Lee et al. 1976) Tseng, Pratt and their co-workers

evaluated the bremsstrahlung cross-sections for initial electron kinetic energies

ranging from 1 keV up through 5 MeV. They compared their results with the

Born approximation formulae at all values of the emission angle from 0 to TT and

for all values of x (= k/E) between 0 and 1. They believe that their numerical

inaccuracies are no more than ~ 1% and that in most cases they are better than

0.5% (Tseng and Pratt 1971).

The outcome of their considerable body of work is that the corrected Born

approximation formulae are shown to be good (to within a few percent in most
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situations) for small values of Z and over a broad range of energies (Tseng and

Pratt 1973; Lee et al. 1976). They claim good agreement of their many results

with some recent experiments (Tseng and Pratt 1973; Kuckuck and Ebert 1973;

Tseng and Pratt 1974), though there is a shortage of experimental data, especially

polarization data, in the correct energy range suitable for such a comparison. They

support the work of Elwert and Haug (1969), showing that the Elwert correction

serves well in the high frequency limit, especially for low values of Z (Tseng and

Pratt 1971; Pratt and Tseng 1975). They note that there is a discrepancy between

the theory (Fano, Koch and Motz 1958; Fano 1959; Elwert and Haug 1969) and the

experimental results (Starek, Aiginger and Unfried 1972) pertaining to emission

at the tip of the spectrum, with the experiments indicating higher cross-section

values than the theory by a factor of roughly 2-4 (Pratt and Tseng 1975). They

note that their results, agreeing with the theory and not the experiments, leave

the discrepancy unresolved.

The outcome of all this is that the Born approximation results seem able

to serve our needs here. They have been thoroughly studied and would appear

to have an accuracy which is commensurate with the accuracy of the electron

results described in Chapters n and ffl. For the two bremsstrahlung cross-sections,

then, what we need are Born approximation expressions which are appropriate

for electrons in the range of several keV to MeV and which are differential in

the incoming electron's energy, photon energy and emission angle. Suitable cross-

sections have been obtained by Gluckstern and Hull (1953) and, notwithstanding

the criticism of Starfelt and Koch (1956) who claim that the Gluckstern and Hull

cross-sections do not hold well outside the low frequency limit, they have been
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supported by the work of Fronsdal and Uberall (1958) and by Tseng and Pratt

(1973). The Gluckstern and Hull cross-sections do, still, require the Elwert Factor

correction.

In addition to electron-proton bremsstrahlung there will be a contribution to

the X-ray production from electron-electron bremsstrahlung (Joseph and Rohrlich

1958). However, the electron-electron system has no dipole moment and the brem-

sstrahlung cross-sections, evaluated by the usual dipole approximation, subse-

quently vanish. Calculations extending beyond the dipole approximation are ex-

ceedingly complicated because of the exchange character of the electron-electron

interaction. The available results indicate that electron-electron bremsstrahlung

will make a significant contribution (of order 25%) to the total X-ray output

only at photon energies above several hundred keV, and then only for the for-

ward photons produced by a highly anisotropic distribution of source electrons

(Haug 1976). In all other cases the spectral index of the total X-ray flux does not

significantly change (Starfelt and Koch 1956; Koch and Motz 1959; Haug 1976).

Hence, we shall not need to consider further this uncertain contribution to the

X-ray bremsstrahlung.

We now have our complete method. We have a flaring loop through which

passes a beam of electrons. The beam is fully described at each point by the number

distribution function f(E, /*, s) which is obtained numerically as the solution to

our major equation, the Fokker-Planck Equation. These beam electrons generate

X-rays according to the cross-sections described above and the X-ray information

can be expressed in terms of a Stokes parameter representation. We are now
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in a position where we can select any non-thermal model description of a flare,

incorporate its physical characteristics into the coefficients in the Fokker-Planck

Equation and calculate the corresponding characteristics of the X-rays produced.
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The X-Ray Results

In this chapter, which is divided into two sections, we discuss hard X-rays

within the framework of non-thermal models. In § 5.1 we survey the literature

pertaining to the characteristics of the impulsive hard X-rays from a solar flare.

We discuss the theoretical estimates of the X-ray polarization, directivity and

spectrum, and the pertinent X-ray observations. We survey only that literature

concerning the X-ray results for a spatially unresolved flare, leaving a discussion

of theoretical and observational work on the X-ray spatial structure to the next

chapter. In §5.2 we present the hard X-ray characteristics as calculated for a series

of flare models according to the method explicated in Chapters n, in and IV. We

choose one model to act as a reference and for this we describe our X-ray results in

some detail. We then discuss our other model results, focussing primarily on how

the X-ray characteristics change in response to the difference in model parameters.

With this presentation of our results we greatly expand upon the hitherto

available, primarily qualitative, theoretical understanding of non-thermal model

impulsive hard X-rays. We give a quantitative evaluation of the correlations bet-

ween the X-ray characteristics and the model parameters. We also demonstrate

that each X-ray characteristic on its own has only a limited ability to indicate the
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values of the source model parameters. Thus we favor coordinated observational

programs which simultaneously measure several of the X-ray characteristics over

uncoordinated programs aimed at measuring just one of the flare's X-ray charac-

teristics.

5.1 Literature Survey.

Much of the active dispute in the study of solar flares revolves around the

question of whether the processes giving rise to the observed hard X-ray bursts

are thermal or non-thermal in nature. Models of increasing sophistication have

been studied and observations of increasing resolution and reliability have been

collected. Despite this the major controversy (thermal or non-thermal?) still exists,

partly because of the lack of a clear understanding of how to use the observations

to put constraints upon the models. The literature contains some dispute as to

the X-ray characteristics expected from non-thermal models, viz. how large a

directivity and polarization to expect and what the X-ray spectrum can tell about

the energy spectrum of the source electrons. We shall now survey briefly the

literature pertaining to the X-ray characteristics from non-thermal models and

shall compare the theoretical results with the experimental measurements where

available.

Polarization and Directivity:

In 1968, Elwert recognized that the impulsive hard X-rays emitted by an

anisotropic electron distribution would be polarized, and that X-ray polarization
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observations would be a suitable means of determining the nature of the source

electron population (Elwert 1968). In a series of papers (Elwert and Haug 1970;

1971; Haug 1972) Elwert and Haug calculated the X-ray polarization and direc-

tivity from a beam of electrons in which all the electrons moved along a vertical

magnetic field and had the same, unchanging pitch angle a'. For the particular

case a = 0 they obtained X-ray anisotropies (the anisotropy being expressed in

the form Jmax/Jmin where Jmax, Jmin are ^e X-ray intensities in the directions

of maximum and minimum emission, respectively) which increased from ~7.5 at

10 keV up to ~ 120 at 300 keV. The polarization changed only slightly with X-ray

energy and was ~70% at 50 keV. The X-ray anisotropy fell as the electron's pitch

angle was increased and it almost disappeared (was ~1.4 at 50 keV} for the case

a = 90°. The degree of polarization also fell but not by as much. It stayed at

30 - 50% reflecting the high anisotropy of an electron distribution where all the

emitting electrons have the same pitch angle.

The next step forward in complexity was to allow for changing electron pitch

angle. Brown (1972) used a mean scattering treatment to imitate the effects of

Coulomb scattering of the beam electrons by the flaring plasma. The scattering

treatment calculated a mean energy and pitch angle for the electrons at each

The physical situation corresponding to unchanging electron pitch angle is known as
the "thin-target" approximation. The electron beam is considered to be passing through
a sufficiently tenuous background plasma that the effects of Coulomb collisions on the
beam electrons are negligible. The corresponding X-ray results are known specifically as
thin target results. The alternate situation, known as the "thick-target" case, considers
the electron beam to pass through enough of the background plasma for the collisions
to change the electrons' energies and pitch angles. In the limit of large plasms column
thicknesses the electron beam is completely absorbed. The corresponding X-ray results
are known as thick-target results.
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depth but could not introduce dispersion. Brown's beam electrons were injected

with a pitch angle of zero degrees into a vertical magnetic structure. He obtained

X-ray directivities (/(0 = 0°)//(0 = 90°) for viewing angle 0) of ~2 at 10 keV

increasing to ~ 6 at 150 keV and degrees of polarization ranging from ~ 30%

at 10 keV to 45% at 150 keV. By comparing the results he obtained for models

with and without the inclusion of his scattering treatment, he estimated that the

inclusion of scattering made the X-ray polarization fall to approximately half the

values obtained for the models without scattering. He noted that the polarization

also fell slightly with a flattening of the electron energy spectrum but he claimed

that this did not have a significant effect upon his results.

These two studies form the principle bodies of work aimed at calculating the

intrinsic X-ray polarization and directivity for the thin and thick target cases.

Three more-recent studies included the contributions of the photospheric albedo

(Henoux 1975; Langer and Petrosian 1977; Bai and Ramaty 1978). Of the X-ray

flux which is incident upon the photosphere, as much as 70% at peak reflection

energies (20-40 keV) and much less at higher and lower energies (Santengelo et al.

1973) can be turned around to join with the flux which was initially directed away

from the solar surface. But if the original X-ray source directs many more times

the number of X-rays down into the sun than it does away from it, the reflected

contribution can have a large affect on the observed X-ray characteristics. All

three studies found that the albedo contribution significantly reduced the X-ray

directivity from that in the source, especially at photon energies of 50 keV or less,

but that it had a smaller effect upon the degree of polarization. They obtained
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polarizations for the observed X-ray flux in the range 30 - 50% which was of the

same order as that for the sources they used.

These early attempts to quantify the expected degree of polarization were,

necessarily, based upon idealized flare models. They used highly anisotropic elec-

tron distributions and linear flare geometries, not because these are demanded by

experimental data but because of the need to simplify the mathematical treatment.

Together these works suggest that the impulsive hard X-rays should typically

have an anisotropy of order 2-3 and polarizations of order 30 - 40%. However,

the simplified loop geometries and electron distributions used must mean that

these values can only be taken as upper limits and that they may not reflect

the true potential of X-ray measurements from flares. Giving due allowance to

the model simplifications Korcak (1974) suggested that a thorough and realistic

treatment might obtain lower polarizations, closer to 20%. Hudson is reported to

have been more skeptical (see Brown 1972, p443). He expected that a complete

treatment which allowed for the total absorption of the electron beam by the

flaring plasma would obtain much smaller, if not negligible, directivities and

polarizations altogether.

Observations of flare impulsive hard X-ray directivities and polarizations, as

they stand, are far from definite. It is not possible to surround an individual

flare with many X-ray telescopes and to measure directly the variation of X-ray

intensity with flare orientation. Kane and his co-workers have reported stereoscopic

observations of eight flares using X-ray telescopes onboard the ISEE - 3 and

PVO spacecraft (Kane et al. 1980). The difference in viewing angle of the two

spacecraft varied from 13° to 79° among the eight flares. A comparison between
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the observations from the two telescopes showed that the sizes of the flares as

measured by each telescope differed only slightly. These discrepancies could be

accounted for by different albedo contributions and by the calibration uncertainties

between the two spacecraft. The conclusion drawn from the study was that the

observations were consistent with isotropic X-ray emission in the energy range 50

- 100 keV.

An alternative approach to measuring the X-ray directivity is to resort to a

statistical study, using as many flares as possible, of the frequency of observation

of flares at different positions on the disk. However, there is a wide variation in

intrinsic flare parameters from flare to flare and there can be no certainty that

a statistical study will tell much unless it draws upon an enormous base of data

(Brown 1975). The earliest of such statistical studies used a small sample of X-ray

flares seen at hard and soft X-ray energies. Two studies selecting from a common

database (Ohki 1969; Pinter 1969) obtained different results. Ohki found a strong

decrease in the number of observed hard X-ray flares with increasing heliographic

angle whereas Pinter found the distribution to peak at a heliographic angle of 40°

- 50°. In addition to this discrepancy, the X-ray observations did not themselves

record the position of the flare on the solar disk. The times of occurence of the

X-ray bursts were compared with those of Ho flares listed in Solar-Geophysical

Data, and the X-ray bursts were associated with the Ha flares on the basis of time

coincidence. It is, therefore, important to allow for the distribution of Ha flares

across the sun's disk. The probability of seeing an Ha flare varies quite strongly

with the flare's central meridian distance (CMD) and decreases with increasing

CMD (Drake 1971). Of the sizeable fraction of Ohki's and Pinter's initial sample
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of X-ray bursts which could not be associated with any of the reported Ha flares,

the chances are that many of them came from flares occuring near the solar limb.

The distribution of Ha associated X-ray bursts, therefore, does not represent the

distribution of the X-ray burst frequency. Neither Ohki nor Pinter allowed for this

Ha CMD variation. Drake (1971) made this allowance and obtained no significant

dependence of the X-ray burst occurrence on heliographic longitude. His conclusion

was that there was no evidence for emission directivity. This was supported by

two further studies both of which were, again, based upon rather a small number

of flares (Phillips 1973; Pizzichini, Spizzichino and Vespignani 1974).

Kane, in summarising the pre-1974 studies, concluded that there was no clear

indication of anisotropic emission for the impulsive hard X-rays (Kane 1974).

Batlowe and his eoworkers (Datlowe, Elcan and Hudson 1974; Datlowe and Hudson

1975) found no significant variation in the relative frequency of observation of hard

X-ray bursts with longitude, using a collection of 123 bursts seen by OSO - 7. In

a later, more thorough, study (Datlowe et al. 1977) an upper limit was put on the

amount of limb brightening or darkening observed. Using measurements of the

burst brightness at 20 keV, the estimate of the variation in flare brightness from

disk center to limb was 1 (+63, -40)% at the 95% confidence level. All told, the

consensus on the observed degree of anisotropy is that there isn't any, but the

uncertainty in this result is high.

The polarization results are every bit as unclear. Early measurements of 20 -

40% polarizations made by instruments onboard the Intercosmos series of satellites

(Tindo et al. 1970, 1972a,b; Tindo, Mandel'stam and Shuryghin 1973. See also

Nakada, Neupert and Thomas 1974; Thomas 1975) were criticised by Brown,
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McClymont and McLean (1974) for the way that the in-flight calibration had been

performed. The polarimeter was calibrated on the assumption that the gradual

emission from the decay phase of flares would be unpolarized. The objection was

that, though the intrinsic radiation might well be unpolarized, the albedo radiation

would not be, and that the sum of the two would be polarized. The criticism was

rejected by Mandel'stam, Beigman and Tindo (1975) on the basis that this effect

would be too small. The rejection was supported by the calculations of Henoux

(1975) who showed that the resultant polarization from an isotropic source would

be ~ 5%, and by a later series of measurments (Tindo, Shuryghin and Steffen

1976) obtaining less than 5% polarization during the decay phase of a flare. But,

though the initial criticism was illfounded, it is still not clear that the earlier

Intercosmos results are at all reliable (Mandel'stam, quoted in Emslie 1981b, but

see also Brown 1975 and Kahler 1975)

The most conclusive assessment of the Intercosmos polarization results has

been given by Somov and Tindo (1978). They quoted the results from observa-

tions of thirteen flares and from these selected three which they claimed to be

clean results. They reported polarizations of 40% ± 20%, 16% ± (5 - 8)%, and

21% ± (5 — 8)%. These can be taken to indicate that some polarization is present

(at the 20% level) though just how much remains undetermined. The polarization

vectors for these measurements were closely alligned with the directions connecting

each flare to the center of the solar disk. This is in agreement with the predictions

of non-thermal modelling and would indicate that the albedo contribution was

not significant (Kahler 1975). But, in another review (Haug 1982), the polarization

vector is reported to have shown large fluctuations in time and this is taken to

122



Chapter V: X-ray Results

indicate unreliability in the results. However, another interpretation of the large

fluctuations could be that the individual bursts, occuring during the long integra-

tion time of the measurements, might have come from different loop structures and

that this would have caused the vector's direction to fluctuate rapidly. Obviously,

the Intercosmos results do not stand well alone and need to be either corroborated

or refuted by other, more reliable, measurements.

We have recently been apprised of polarization measurements of solar flares

made by an instrument onboard the Space Shuttle Columbia (Tramiel, Chanan

and Novick 1984). The polarimeter resolved 5 -21 keV X-rays into nine energy

channels and had five second time resolution (Lemen et al. 1982). However, again,

the in-flight calibration method is questionable. The device was calibrated on the

assumption that the X-rays from a flare located at disk center would have to be

unpolarized, and this need not be the case. The details of these observations and

their interpretation by non-thermal flare modelling are given in Chapter VI. In

brief, the measurements indicated flare polarizations of 3.4 ± 2.2% which were

taken as being consistent with emission from either an isotropic thermal source or

from a non-thermal model source with an isotropic injected beam.

X-Ray Spectrum:

Since the very earliest (balloon-borne) measurements of solar flare hard X-rays

(Peterson and Winckler 1959; Vette and Casal 1961; Winckler, May and Massey

1961; Anderson and Winckler 1962, 1963; Bowen et al. 1964; Culhane et al. 1964)

attempts have been made to determine the nature of the X-ray spectrum. Of
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concern was whether the X-rays came from a source of electrons with an isothermal

Maxwellian or a power law spectrum, as this would be an indication of the type

of physical processes active in a flare. The reasons for choosing these two types

for categorizing the spectra is that they are the simplest types of spectra to use.

They are both two parameter fits and the early data did not have sufficient energy

resolution or accuracy to warrant better.

Reviews of the observations (Kane and Anderson 1970; Kane 1974; de Feiter

1975; Brown 1975; 1976; Kane et al. 1980b; Haug 1982) have concluded that most

impulsive phase hard X-ray spectra are not indicative of an isothermal source. If a

multi-temperature thermal plasma were to be invoked, then temperatures well in

excess of 108^C would be required (Brown 1974; Crannell et al. 1978; Elcan 1978).

Such high temperatures do not necessarily militate against thermal models. Given

that enough energy is released to power the flare and that this energy is initially

released in very small volumes, such high temperatures are plausible (Brown and

Smith 1980).

However, neither are the X-ray spectra always simple power laws. The best

fits are often to a double power law spectrum

k-^ W k e V < k < k Q

k-^ k 0 < k

where J(k) is the photon number spectrum per unit photon energy k. The break

energy lies in the range 70 keV < &o < 120 keV (Kane and Anderson 1970), the

low energy spectral index in the range 2 < 71 < 7.0 with 7 < 3 and 7 > 5.5 being

very rare (Kane and Anderson 1970; Lin and Hudson 1971; Frost and Dennis 1971;
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Peterson, Datlowe and McKenzie 1973; Datlowe et al. 1977; Kane et al. 1980b;

Haug 1982), and the break in the index is 72 — 71 ~2 (Brown 1972). Occassionally

the power law behavior is seen to extend down below 10 keV (Kahler and Kreplin

1971; Peterson, Datlowe and McKenzie 1973), and in a very large flare can extend

to many hundreds of keV (Chupp, Forest and Suri 1975; Hoyng, Brown and van

Beek 1976; Lin and Hudson 1976). There is some dispute as to whether or not

very large flares generally have harder spectra. Several summaries have shown

very little correlation between the peak flux and the spectral index (Kane, Frost

and Donnelly 1979; Kane et al. 1980b). Despite this, the large events of August

1972 did have appreciably harder spectra (Chupp, Forest and Suri 1975; Hoyng,

Brown and van Beek 1976).

The theory behind X-ray production is well understood and, consequently,

obtaining the X-ray spectrum from a known distribution of source electrons is quite

straightforward. If the flux distribution of the emitting electrons is N(E) ~ E~5

per unit electron kinetic energy E, and if the non-relativistic Bethe-Heitler cross-

section is used, then the X-ray spectrum is

° i +
/ — — in - V / \dE ~ JTT1 (5.1.2)

E k

with 71 = 6 + 1 (Holt and Ramaty 1969; Syrovat'skii and Shmeleva 1972; Brown

and McClymont 1975). Alternately the X-ray spectrum may be obtained not

from the distribution of the source electrons but from the distribution of the

injected electrons. The injected distribution is related to the overall distribution

of electrons in the source by the assumption that the energetic electrons eventually
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lose all their energy through Coulomb collisions. If the injected electrons have the

distribution FQ(£) ~E~°i, then the X-ray spectrum obtained is again J(k) ~ Ar~71

but with 71 = 61 - 1 (Brown 1971; Hudson 1972; Brown and McClymont 1975).

Consequently, a power law X-ray spectrum has come to indicate a power law

spectrum for the electrons, either in the source or at injection (Haug 1982).

Improving the theoretical sophistication means that the X-ray spectrum cal-

culated for the above electron distributions changes. If the relativistic X-ray cross-

section is used and the spectrum is measured for different viewing angles, the

relationship between 71 and 8/Si can change by as much as ~ 1.0 (Brown 1971,

1972; Petrosian 1973). If we allow for the presence of neutral Hydrogen in the

chromosphere the collisional evolution of the electron beam is changed. This results

in a small change in the X-ray spectrum (Brown 1973a).

Several affects can be included which will tend to produce a knee in the X-ray

spectrum. The knee may arise from a cutoff in the electron number distribution at

an energy of roughly 100 keV (Kane and Anderson 1970), an increased probability

of escape for the higher energy electrons or their greater synchrotron losses (Elwert

and Haug 1971), the relativistic beaming of high energy photons (Petrosian 1973)

and/or the effects of the photospheric albedo (Tomblin 1972; Santengelo et al.

1973; Langer and Petrosian 1977; Bai and Ramaty 1978). The spectral knee may

also arise if not all the source is fully visible. The visible part of a source which

is partially obscured from view, such as can occur when the flare is located just

behind the solar limb, will not necessarily have an electron energy distribution

which is a single power law even if the injected and whole-source distributions are.

The electron distribution for a partially occulted source will be steeper at high

126



Chapter V: X-ray Results

energies than at low energies and this will lead to a concomitant X-ray spectral

break of 72 ~ 71 — 2 (Brown and McClymont 1975). This may also be the source

of the observed steepening of spectra as flares cross the limb (Datlowe, Elcan and

Hudson 1974; Datlowe 1975; Datlowe and Hudson 1975; Roy and Datlowe 1975;

but see also Datlowe et al. 1977; Hudson 1978).

The inverse problem, that of obtaining the electron spectrum from the ob-

served photon spectrum, is not as trivial as the above studies would have us expect.

It has been suggested that the inverse problem is comparatively ill-posed (Craig

and Brown 1976; Brown 1978). A small uncertainty ~ 5% in the determination of

the photon spectrum can translate into a large uncertainty ~ 100% in the derived

electron spectrum (Craig and Brown 1976). This would imply that widely different

electron distributions would be able to generate similar photon spectra. In this

case a power law X-ray spectrum need not imply a non-thermal source for the

electrons. Forms other than a simple two parameter fit for the electron spectrum

can be satisfactorily applied to the observations (Brown 1974, 1975; Craig 1975).

Though the overall electron spectrum for these multitemperature thermal fits is

not widely different from a straight power law spectrum, they do imply different

physical processes occuring in the flare. As the motivation behind studying the

X-ray characteristics in the first place was to use them to determine the nature of

these processes, it would appear that the X-ray spectrum is not a good source of

information on the X-ray producing electrons. This has, indeed, been supported

by Hoyng, Melrose and Adams (1979) who find that power law X-ray spectra are

generated by many different electron distributions and that these spectra are,

therefore, insensitive to the details of the processes active in a flare.
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This brief literature survey has shown several things. It was initially hoped

that X-ray observations could be used to determine whether the processes active in

a flare conformed more to the thermal or non-thermal type of model. Based upon

studies having different degrees of simplicity and upon the available observational

data it has been shown that:

the X-ray directivity is strongly affected by the photospheric albedo and is

very difficult to measure satisfactorily, either directly or indirectly.

the X-ray spectrum is too general a characteristic and, tending to fall steeply

with photon energy, is not easy to measure accurately.

the X-ray polarization may be as high as 30 - 40% but is probably lower.

Theoretical polarization estimates suffer from the conflicting requirements of

accuracy and tractability and there is no body of clearly reliable observations

upon which to rely.

There may be hope for reliable polarization measurements in the near future

and for these to be of any value they must be accompanied by a full and thorough

theoretical analysis of the polarization which can be expected according to the

models. Other than this, an alternate method by which the X-rays can be used

to indicate a preference for one or the other type of model is to turn to the

X-ray height distribution (Emslie and Rust 1980). In the following section we

shall give the results of our study of the X-ray characteristics according to non-

thermal models. We shall describe our results for the X-ray spectrum, directivity

and polarization, and shall describe the behavior of these and the X-ray intensity as

functions of source position within the flare. In Chapter VI we shall take up again
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the idea of using the X-ray height distribution to discriminate between models and

shall show that it can, in fact, give much more information than simply categorize

flares.

5.2 X-ray characteristics from non-thermal models.

We now look at the characteristics of the X-rays calculated from a variety

of our flare models. In this manner we are able to obtain a general picture of

the X-ray characteristics to be expected of flares, and to explore the correlations

between the X-ray characteristics and the flare model parameters.

The reference frames:

Our information about the hard X-rays is obtained through the Stokes para-

meter formalism, as explained in Chapter IV. This requires the specification of an

observation frame and a reference plane. We shall define a global reference frame

for the observations, which is that frame containing the flare loop in the y,z plane

and the (planar) photosphere in the x,y plane (cf. Figure (5.1)). We define the two

viewing angles 0 and $ as shown, with G being the polar and $ the azimuthal
A

angular coordinates of a photon having a direction of propogation fc and an energy

k (in units of mec
2). The polar axis is the outward normal to the surface of the

sun and zero azimuthal angle corresonds to the positive y direction. The reference
A

plane for locating the direction of the polarization vector is the one containing k,

or the direction of observation, and the surface normal z.
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— y

Figure 5.1. The orientation of the flare loop within the global observation
frame. The (planar) solar surface is the z,y plane and the loop is in the y,z
plane. Shown also are the observation angles 0 and $ for a photon with direction
k The global observation frame is the frame used when discussing the spatially
unresolved X-ray results for the whole loop.

Whenever we discuss the radiation from the loop as a whole we shall, im-

plici t ly , be t a l k i n g about the radiation as measured in this global observation

frame. In these cases we shall have no need for any spatial resolution of the flare

loop and so we shall treat the whole loop as if it were a point source. We then

obtain the Stokes parameters for the whole loop by simply adding together the

Stokes parameters from each position along the loop, thereby ignoring the small

source displacements (and the corresponding small variation in observation angles)

which arise by vir tue of the finite size of the loop.
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To investigate the behavior of the X-ray characteristics as functions of source

depth we divided the whole loop up into adjoining segments. By virtue of the

symmetry of the loop about the x,z plane we concern ourselves only with one half

of the loop and we choose that half which projects into the positive y half-space.

We divide the coronal portion of the loop into m segments for which each segment

is an arc of length 90/m degrees. At the end of the coronal portion (the end of the

jrrn segment) the magnetic field direction is vertical and remains vertical as the

loop penetrates deeper in toward the photosphere. This chromospheric part of the

loop is then divided into a number of contiguous vertical segments.

In the next chapter it will be necessary to ensure that the loop has length and

density specifications which match the values indicated by observations. But, as

we found in Chapter HI, the best measure of location within the loop is not the

spatial distance s (cm) of any point but its accumulated column depth N (cm~2).

We therefore specify the X-ray source heights by the source segment and to each

segment we assign a mean column depth. This mean column depth is the column

depth of a point half way along the length of the segment. Describing the radiation

in terms of the overlying column depth N removes the obfuscating effects of the

rapid change m background plasma density and hence emission intensity per unit

volume or distance which is encountered upon crossing the transition region from

the corona into the chromosphere (cf. Figure (1.1)).

At times we find it convenient to use a dimensionless measure of the column

depth, just as we did in Chapter in. When looking at the evolution of the electron

beam within the plasma we saw that its behavior at different energies was similar

if the depth parameter was suitably scaled. The depth parameter we used we

131



Chapter V: X-ray Results

named r and it was related to the column depth N by r = 47rr0
2 In AN, with

a mean value chosen for In A. The inspiration for this came from the equations

(2.32) and (3.1.12) with nds replaced by dN. We now attempt a similar scaling

of the column depth and we shall find that its usefulness is, indeed, borne out by

the X-ray results themselves. As in Chapter III we use the scaling T = N/NQ with

= 5 X 1022 cm~2.

We need to define the observation frames for each loop segment. The global

observation frame defines a polar axis (the z direction) for the loop as a whole, and

is the most appropriate and yet versatile observation frame for when we compare

our results with data from spatially unresolved flares. The source of the X-rays,

however, is the electron beam and the direction in space which is the natural axis

for describing the beam electrons is the direction of the loop magnetic field. The

motion of the electrons is such that at each point along the flare loop we have

azimuth al symmetry of the electron number distribution about the magnetic field

direction. As shown by Haug (1972), when the electron distribution is symmetric

about an axis, the third Stokes parameter U, taken with reference to the frame

containing the axis of symmetry, is identically zero. This condition implies that

the plane of polarization is either in the plane containing the photon and the axis

of symmetry or is perpendicular to it.

For the chromospheric part of the flare loop the polar axis of the global

observation frame coincides with the axis of symmetry of the electrons, i.e., the

magnetic field direction. This is not so for the coronal part of the loop. In the

corona the magnetic field changes direction continuously but smoothly. When we
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divide the coronal loop into its m segments, each segment has only a relatively

small amount of curvature and has a mean magnetic field direction which is the

direction of the magnetic field at the middle of the segment (cf. Figure (5.2)).

Thus in each segment there is only a relatively small asymmetry about this mean

direction. If we now define, for each segment, a local observation frame which

takes the mean magnetic field direction as its polar axis, and if we refer the Stokes

parameters for each segment to the plane containing the photon and the local

polar axis, then we shall find that for each segment the third Stokes parameter is

small relative to the second. The physical interpretation of this is that, in each local

frame, the plane of polarization is close to being either parallel to or perpendicular

to the local reference plane. Henceforth whenever we discuss the variation with

source height of the X-rays we shall implicitly be referring to the local observation

frames. For the chromospheric part of the loop the local and global frames coincide.

We shall not quote the results in the form of the values of the Stokes para-

meters themselves. Instead we shall present the results in the more usual forms

employing the directivity, degree of linear polarization, spectral index and relative

intensity of the radiation.

Directivity:

The directivity A(fc, 0, T) is a measure of the anisotropy of the radiation

intensity and, in the literature, can be found to be defined in any of several ways.

The definition we shall adopt is

(5.2.1)
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Figure 5 2 The division of the loop into segments, and the magnetic field
directions at the mid-point of each segment. These directions are the polar axes of
the local observation frames. Owing to the only small amount of loop curvature in
each of the coronal segments the Stokes parameters in the local observation frames
are essentially independent of the azimuthal angle $. These local observation
frames are the ones used when we discuss the evolution of the X-ray characteristics
w i t h depth w i t h i n the flare For the chromosphere (/V > 2.4 X 101^ cm~^) the local
and global observation frames coincide. For all local and the global frames the x
directions coincide

where I(k, 0, 4>, r) is the first Stokes parameter and

,T) =-- /(/:, 0, 4>, (5.2.2)

Owing to the near azimuthal symmetry of the X-rays in the local observation

frames, I(k, & , $ > , T ) barely depends upon <l>. The results do not warrant an ex-

position of their variation with this azimuthal angle and, when we give our results,

we shall select for quotation the values at $ = 90° (the x direction, which coin-

cides for all the local and the global frames). We shall often find use for a direc-

tivity ratio d(k, T), a more transparent measure of the radiation anisotropy. This
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we define as the ratio of the maximum to minimum values of A(Ar, 9, T) taken over

the whole range of 9.

max o < 9 < * ( A(fc, 0, r) )
> T) = —• - = — ~ / A / . ^ >>• (5.2.3v '

Using the directivity ratio allows us to more easily present the results for many

models.

Polarization:

The degree of linear polarization II(A:, 0, T) , which is the percentage excess of

the radiation which is polarized perpendicular to the plane of polarization above

that which is polarized parallel to it, is obtained from the Stokes parameters in

the form

'e' r> = i(t.e.*.r) <5-2'4>
(Chandrasekhar 1960, p33). When quoting the results in the text we shall often

refer only to the maximum value of the polarization, namely

p(Jb , r ) = max U(k ,Q,T) . (5.2.5)

The sign of II is determined by the angle of inclination of the polarization

vector to the reference plane. This angle we call x and it is given by

X = } tan-^I/f*. 0, <!>, r)/Q(k, 0, *, r)) (5.2.6)
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for 0 < x < 7T/2 (Chandrasekhar 1960, p33). Owing to the definition of the local

observation frames which we are using we find | U \ -C | Q \ and the polarization

vector is either nearly perpendicular (x — JT/2) or nearly parallel (x — 0) to the

reference plane as Q is either positive or negative. In equation (5.2.4) II, therefore,

has the sign of Q.

One final word while we are setting up the terminology for the discussion of

the X-ray results. In studies of X-ray cross-sections one of the primary variables

in terms of which a photon is described is its hardness x, where x is the ratio

between the energy k of the photon under consideration and the energy E of

the particle which emitted it, i.e., x = k/E. Cross-sectional results are as often

presented in terms of x and E as they are in terms of k and E. The terminology

describes photons for which x~ 1 as being "hard" and photons for which z~0 as

being "soft". Unfortunately, this terminology conflicts to some extent with solar

physics terminology for which the terms "hard" and "soft" X-rays refers to X-rays

of energy greater than or less than a characteristic energy usually taken to be

10 keV. This conflict in the terminology can be the source of some confusion and

we shall, therefore, now specify the sense in which the words "hard" and "soft"

are used in the coming discussion of our X-ray results.

When discussing the production of X-rays by the beam electrons there is no

adequate substitute for the variable x = k/E. This variable is the one in terms

of which the X-ray characteristics are most easily understood and upon which

they most strongly depend. For this reason the terms "hard photons" and "soft

photons" will always refer to photons for which x~ 1 and x ~0, respectively. When

discussing X-ray observations and particularly when comparing flare X-rays with
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other flare emissions, for example, microwaves or Type HI bursts, the behavior of

high energy ( > 10 keV) X-rays is markedly and significantly different from the

behavior of low energy ( < 10 keV) X-rays. The vast body of literature devoted

to the subject of flare X-ray emissions rather demands the use of the terms "hard

X-rays" and "soft X-rays" when discussing either of these two types of X-ray

behavior. For this reason hard and soft X-rays, when these terms are used, will

always refer to X-rays of energy greater than or less than 10 keV, respectively.

The key to keeping the two meanings of "hard" and "soft" apart (other than the

context of the discussion) is their use with either the words "photon" or "X-rays".

Hard photons are always those for which r~l. Hard X-rays are always those

for which k.mec
2 > 10 keV. Whenever possible the use of the terms hard or soft

X-rays will be avoided in preference to the terms high energy or low energy X-rays.

Specifying solutions to the equation:

In order to completely specify a solution to the Fokker-Planck Equation

(equation (2.36)) we must specify

a) The ranges of the independent variables E, p, a.

b) The coefficients Cb C2, and d\nB/ds.

c) The boundary conditions.

These are not much changed from those used for the electron results and

discussed in Chapter m. Briefly:
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a) The distance s (cm) is measured along the magnetic field from the top of

the flare loop which is designated s = 0. The bottom of the flare loop is embedded

in the low chromosphere or photosphere and need only be deep enough that the

flux of high energy electrons reaching the bottom is sufficiently attenuated from

that injected at the top. For all of the models considered the domain of calculation

was extended through a distance sufficient to give a total column depth in excess

of 4 X 1022 cm~~2, a depth sufficient to reduce the flux of 500 keV electrons by

more than three orders of magnitude (cf. Leach and Petrosian 1981 and Chapter

ni).

The pitch angle cosine p, is measured relative to the direction of the magnetic

field and /i = 0 corresponds to motion directly away from s = 0. The electrons

are allowed the complete range of pitch angles a (= cos"1 fi) from 0° to 180°

throughout the whole of the loop. This is in contrast to the earlier work (Elwert

and Haug 1970, 1971; Haug 1972; Brown 1972; Petrosian 1973) for which the

electrons either had a fixed and unchanging pitch angle or for which the scattering

treatment had no facility for incorporating those electrons which are scattered into

H < 0 and which thereafter return toward the top of the loop. The range of fjt is

-!</*< +1.

The electron kinetic energy E (in units of mec
2) varies in effect from a lowest

energy -E"mjn upwards indefinitely but, in practice, from E^^ to an upper energy

•Emax- The impulsive X-rays are occassionally observed in flares down to energies

as low as 5 keV but in most cases are only unambiguously observed from 10 keV

upwards (Kane 1974). We therefore take E^^ to correspond to electron energies
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of 10 keV (Emin = 0.01957 mec
2). Few observations of the impulsive X-ray

continuum extend to photon energies as high as 500 keV, and all the observed

spectra above 100 keV are so steep that the flux of photons at 500 keV is negligible

compared to the flux in the lower, more accessible, energy ranges. There is then

no real need for us to take our X-ray calculations to energies of more than several

hundred keV. Another consequence of the general steepness of X-ray spectra is

that far and away the major source of photons with an energy k is electrons with

energies of the same order and certainly with energies less than three or four times

k (Korcak 1974). In all cases it is sufficient for us to impose an upper cutoff in the

energy spectrum and to take our calculations no further than an upper electron

kinetic energy Fmax which corresponds to 1 MeV (.Emax = 1-957 mec
2).

These domains over which the solutions, i.e., the model flares, are taken, are

kept constant from model to model.

b) The coefficients C\ and C% (cf. equation (2-34)) require the specification of

the background plasma's constituents and their number densities. A flaring plasma

would consist primarily of Hydrogen with roughly a 20% relative abundance of

Helium and trace amounts of all the heavy elements up to Iron. The heavy elements

are important for radiative diagnostics but have too low an abundance to make any

noteworthy contribution to C\ and C^. The inclusion of Helium would not change

the behavior of the coefficients C\ and C*2 and would only lead to a renormalization

of the order of 20%. This renormalization will not affect the correlations between

electron and X-ray characteristics which are being investigated and, as such, we

shall keep the model atmosphere simple by overlooking the presence of the Helium.

139



Chapter V: X-ray Results

We shall utilize model atmospheres which are 100% Hydrogen and 100% ionized

throughout (see Brown (1973a) for the possible effects of changing the ionization

levels deep within the chromosphere).

The number density ne>p(s) cm~3 of the atmospheric constituents (electrons

and protons) is of importance in conjunction with a measure of the size of the

loop. The X-ray results will be given either in terms of the number column density

N (cm~2) for which
3

N(s) = j dN = j np(s) ds (5.2.7)
0

or in terms of the dimensionless parameter r — N/N$. Hence we need only take

care to specify a particular form for the density when we have a non-constant

magnetic field strength along the loop, i.e., non-zero d\nB/ds. For all the models

ne = np = 109 cm~3 in the corona and the coronal loop length is 2.4 X 109 cm.

We recall that the Skylab ATM results showed loop sizes ranging from as low as

3.6 X 108 cm up to ~ 1010 cm, with 2 X 109 cm a good typical value (Vorpahl et

d. 1975). Our loop length and coronal density give a coronal column depth to the

transition region, Afyz, of 2.4 X 1018 cm~2. This value is typical for the quiet sun

(Vernazza, Avrett and Loeser 1973) but not for flares. More typical values for solar

active regions are ~ 1019 cm~2 (Basri et al. 1979) and as high as ~ 1021 cm~2 for

solar flares late into the decay phase (Machado et al. 1980). The main reason for

using a rather low value for A^z is to facilitate our seeing the early evolution of the

injected electrom beam, particularly the early pitch angle evolution, and the ways

in which the X-rays respond. It also allows us to isolate the effects of the magnetic

field structure on the beam electrons and, hence, on the X-rays. The coefficient
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d\nB/ds is specified in terms of the ratio of the magnetic field strength at the

transition region to that at the top of the limb. We have little indication as to what

values for d In B/ds may be typical for flares (though see our discussion preceding

the results for Model 7, Model 8 and Model 9 later on in this chapter) and we

have therefore chosen values which allow us to see most clearly the nature of the

relationship between the X-ray characteristics and the magnetic field convergence

(cf. Table n for the values of d\nB/ds in our models).

c) For an upper boundary condition we need to specify the electron number

distribution for the beam which is injected into the flare limb from the top (s =

0) and we should allow for the fact that our solution deals with one limb of a

symmetric (two - limbed) flare loop. For a lower boundary condition we must

know how to allow for electrons entering the domain of the solution from beneath

(electrons with 90° < a < 180° at the bottom of the loop) ,

The electron number distribution which we specify at the top of the loop is

a function f(E,n,Q) = fo(E,fj,). Early studies of the beam dynamics tended to

assume a highly collimated injected beam primarily because such a distribution

made the analyses tractable (Kane 1974). More recently it has been suggested that

we should expect a broad distribution in pitch angle (Hoyng and Melrose 1977;

Hoyng, Melrose and Adams 1979; Petrosian 1982). We see from the analysis in

Chapter El that the electron number distribution, if given at r = 0 in the form of

a Gaussian in pitch angle a, will relax to a Gaussian which continues to broaden

with increasing depth. With this as an indication we shall inject electrons with

a pitch angle distribution of the form exp (—a2/a0
2J and shall leave the value of
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a0
2 to be specified for each flare model. In this manner we shall have access to

a complete range of beaming from highly collimated (a0
2 <£ 1) to uniform (QQ =

oo).

Observations indicate that impulsive X-ray spectra can often be well fitted to

a power law function in energy with a spectral index 7 in the range 3 < 7 < 5.5 (cf.

§5.1) This suggests that the electron distribution at injection should be described

by a power law energy spectrum with a spectral index 6 in the range 3.5^5^6

and with all values in this range being permissible. We shall inject electrons with

a power law spectrum and we shall leave the value of 6 to be specified for each

flare model (cf. Table n). The injected flux distribution we use is, therefore,

F0(E, p) ~ E~5 exp (-a2/a0
2). (5.2.8)

The Fokker-Planck Equation (equation (2.36)) will generate for us the flux of

electrons which are scattered through large angles and which then return to the top

of the limb with negative values of /i. This flux may be considered to supplement

the flux which is injected into the other limb of the loop. We should not neglect

these electrons which cross the plane of symmetry of the loop for their number

can sometimes be large. We include these electrons by reflecting those which exit

at s = 0 and with p, in the range — 1 < /i < 0 back into the loop. The flux which

returns to s = 0 with a particular (negative) value of \i is simply added to the

flux which is being injected into the loop at the pitch angle of equal magnitude.

This mimicking of the symmetry of the loop we do for all our models.
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The final boundary condition pertains to the bottom of the domain of the

solution. In a flare the electron beam passes down toward the photosphere until

all of the beam electrons have been thermalized at which point the beam is no

longer considered to exist. In our models we truncate the domain at a depth

which is sufficiently great that the flux of high energy electrons there is several

orders of magnitude below that which was injected at the top. Ideally, we should

include the flux of suprathermal electrons which, at that bottom depth, would

have negative pitch angle cosines and would enter our domain from the direction

of the photosphere. In practice, again, this flux is sufficiently small at all electron

energies that we may safely neglect it. This we do for all our models.

From the above discussion we can see that there are three parameters which we

have left to be specified in our models. Two of these (or0
2,6} describe the injected

electron distribution through equation (5.2.8) and the third (d\nB/ds) describes

the rate of convergence of the magnetic field. We can therefore categorise our

models according to the values of these three parameters and can look at how the

X-rays behave from one model to the next in order to correlate the behaviour of

the X-ray characteristics with the values of these model parameters. In Table II

we give the models, the results of which we are now ready to discuss.
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Flare models:

Model 1

Model 1 is the reference model against which the results of the other models

are compared. We therefore discuss the results for Model 1 in some detail.

X-ray intensity:

In Figure (5.3) we show the normalized X-ray intensity I(k, T) as a function

of depth r and for several photon energies k. We define I(k, T) to be the fraction

of the total X-ray emission (the total number of photons produced) at a photon

energy k (in units of the electron rest mass energy mec
2), emitted per unit of depth

T. The normalization for I(k, T) is such that, for each photon energy k,

OO

f I(k,T)dr = L (5.2.9)
0

To obtain the true or unnormalised X-ray intensity as a function of depth, which

we may call J(k, T), one needs only to multiply I(k, T) by the whole loop X-ray

spectrum J(k), which, for Model 1, is ~Af~'lf where 7 = 4.3 (cf. Table HI).

The first thing to notice in Figure (5.3) is that the form of the curves at each

energy is similar. At small column depths the intensity is nearly constant, declining

only slowly with increasing depth. In the vicinity of a characteristic column depth

which varies from 6 X 1018 cm~2 for 10 keV X-rays (k = 0.0196 mec
2) to 4 X

1021 cm~2 for 500 keV X-rays (k = 0.978 mec
2) the curves turn down and,
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Table E

The values of the model parameters.

MODEL

1

2

3

4

5

6

7

8

9

10

11

6

5

4

3

5

5

3

5

5

5

5

5

«o2

0.4

0.4

0.4

00

0.04

0.04

oo

CO

oo

0.04

0.04

d\nB/ds

0.0

0.0

0.0

0.0

0.0

0.0

2.9 (-10)

6.7 (-10)

1.34 (-9)

6.7 (-10)

1.34 (-9)

B(Niz)/B(Q)

1.0

1.0

1.0

1.0

1.0

1.0

2.0

5.0

25.0

5.0

25.0

The electrons are injected with a flux F(E,a,r = Q)~E 5exp{ — a2/a0
2} for

pitch angles 0 < a < n/2 and energy 10 keV <Eme<? < 1 MeV. B(Niz)/B(0) is

the ratio of the magnetic field strength at the transition region to that at the top

of the loop.

from then on, have a constant gradient. The curves are parallel at large column
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Figure 5 3 I ( k , r ) vs r for Model 1 I (k , r ) is the relative rate of emission
with depth as given by the numerical results, in the form of the fraction of the
total emission at that photon energy k per uni t T. T is a dimensionless measure of
the column depth and is equal to N/NQ where N is the overlying column depth
and N0 = 5 X 10" cm~-. I(k, T) is normalized so that /0°° I(k,r] dr = 1. At both
large and small c o l u m n depths the curves are parallel (gradients —2 5 and 0.0,
respectively) and the envelope to the curves has a gradient of —1.04

depths, each having a gradient dIn /(A:, r ) / d \ n T ~ —2.5. The tangent envelope

has a gradient which is very nearly equal to —1.0.

These X-ray intcnMty curves are taken from the results of the full Fokker-

Planck treatment and yet their form suggests that we could possibly find a rela-

tively simple expression for the function I(k, T) which is good for a wide range of

k and r. These X-ray curves closely follow the evolution of the electron flux for a

similar energy This points to photons of an energy k coming predominantly from

electrons of energy E, with E^k One quick look at the X-ray bremsstrahlung

146



Chapter V: X-ray Results

cross-sections (cf. Koch and Motz 1959 for cross-sections without the Elwert cor-

rection and Pratt and Tseng 1975 for cross-sections with the exact Coulomb cor-

rection) shows that the cross-section actually falls as x (= k/E) increases toward

unity and is either zero or finite at x = 1 according to whether or not the Coulomb

correction is included. However, this lessening of the cross-section as x approaches

unity, or as E approaches k, is much less rapid than the corresponding increase

in the number of electrons which become available for X-ray production. Owing

to the quite considerable steepness of the electron energy spectrum infered from

almost all flare impulsive bursts, the excess in number of electrons with E ~ k over

those with E 3> k more than compensates for the relative difficulty of producing

hard (i.e., x~l ) photons. The predominant source of photons k is then electrons

E with £~ k and it is reasonable that the photon flux closely follows that of the

electrons at a similar or slightly higher energy. The closeness of the correlation

can be expected to increase with increasing electron spectral index. This is, indeed,

borne out by our later X-ray results.

Let us now obtain the simple expression in k and r which describes the curves

for I(k, T) in Figure (5.3). We take as a strong indication of the form of I(k, T)

that all the curves show the same gradient at large column depths, the value of

the gradient being —2.5, and that, at small column depths, the curves are nearly

independent of r. The cross over from the small to the large column depth regimes

is energy dependent. Let us then suggest a form

-25 (5.2.10)
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where g(k) controls the energy dependence of the transition from small to large

column depth behaviour and A(k) ensures the correct normalization. A(k) gives

the behaviour of I(k, r) with k at r = 0 and g(k) gives the scaling which makes

the curves similar as functions of depth. The normalization requires that A(k) be

of order g(k)~ l. We recall that the energy scaling indicated by both the numerical

results to and the analytic treatment of the Fokker-Planck Equation in Chapter

HI was by rj = E2/(E+l) (cf. equation (3.1.11)). Plotting I(k,0) versus k2/(k + l)

shows clearly that A(k) behaves like a(k + l)/k2 for constant a.

The normalization is

, T ) d r = f a(^}(l + r • g(k)}'2'"dr
Q \ K ^ (5.2.11)

1-5 V k2 g(k) -

Let us then try g(k) = (k + l)/bk2 and a = 1.5/6 for some constant 6. The

determination of 6 then comes from finding the correct normalisation NQ in the

equation relating our column depth variables r and N. From Chapter IE we found

NQ = 5 X 1022 cm~2 to be well supported by the electron results and it would

be the obvious choice for the depth scaling in these results as well. On the whole

this scaling is well supported by the X-ray results and we shall continue to use

it, pointing out as we go where a differently valued or energy dependent scaling

would be preferable. If we retain NO = 5 X 1022 cm~2, then 6=1. We arrive at

for the variation with column depth of the fractional X-ray intensity for Model 1.
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Figure 5 1 The ratio between l (k , r ) as given by the numerical results for
Model I and l ( k , r ) as given by equation (f> 2.12) for the intermediate range of
T over w i n c h the I (k , T) curves t u rn down Equation (5 2 12) is obtained from a
semi-empir ica l fit to the f u l l numerical results

To see how well this expression fits the X-ray curves of Figure (5 3) we show,

in Figure (5 1), the ratio between the numerical values of the X-ray intensity (as

plotted in Figure (5 3)) and the values from equation (5.2.12), for the middle range

of r where the curves are changing from small r to large T behavior. Two remarks

can be made about Figure (5 4) The raggedness of the curves arises from the

d i f f i c u l t y of M'lec t i n g an appropriate value of T for each loop segment. Some of the

high T segment^ are wide enough that the X-ray (lux can drop as much as a decade

from the beginning to the end of the segment. This presents a problem which is

similar to the deconvolution problem one meets when trying to fit a spectrum to

a series of X-ray count rates, one from each channel of a detector. In our case,
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to select a representative value of r for each loop segment, we need to know the

variation of the X-ray intensity within each segment, and that variation is different

for different X-ray energies. Hence, no one value of T can satisfactorily represent

each segment at all energies. The value of I(k, T) calculated from equation (5.2.12)

depends quite sensitively on the value of T used, at least once the curves have

begun to fall and r is no longer very much less than k2/(k +1). Therefore, a small

discrepancy between the value of T used and the optimal value for that segment and

k can produce the raggedness seen in Figure (5.4) even though both the numbers

plotted in Figure (5.3) and the numbers obtained from equation (5.2.12) vary

smoothly with T.

The second remark on Figure (5.4) is that the curve for 210 keV is consistently

high for all T. We may expect the best fit value for NQ to vary slightly with k as

does In A with E and, indeed, the fact that the curve for 210 keV is consistently

high suggests that a lower value of NQ would be more appropriate. The numerical

results are in the form of a number of X-ray photons emitted per loop segment

of known column thickness in N. This has to be converted into a fraction of the

total emission per unit T before Figures (5.3) and (5.4) can be drawn. Using a lower

value of NO would decrease the thickness of unit T as measured in terms of N,

and would decrease the estimate of the fraction of the X-rays emitted per unit T.

Hence the 210 keV curve in Figure (5.4) would be lowered.

We conclude that, for a wide range of photon energies, equation (5.2.12)

accurately describes the numerical results obtained from the full treatment. Even

if we ignore the slight energy dependence of A^, the equation stays within roughly

20% of the computed X-ray intensities at both large and small column depths.
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This accuracy is itself the order of the general accuracy of the computed X-ray

values.

When, later on in this section, we analyse the results for our other models we

shall be able to observe how broad or how limited is the use of an equation of the

form (5.2.12) for a range of model parameters. We shall see that the exponent,

given as —2.5 in equation (5.2.12), is directly related to the electron spectral index

and that it behaves as —6/2 for our entire range of 8. We shall, for now, assume

this general form for the exponent and shall leave its verification until we have

had the opportunity to look at the X-ray results from other models.

Let us note here a few of the results which we can draw from equation (5.2.12)

with 2.5 replaced by 6/2 . If the X-ray spectrum for the loop as a whole is of the

form J(k) ~ k~i counts per unit k, then the X-ray emission at each height T is of

the form

J(k, r) = J(k) • I(k, r)

(5.2.13)

This implies that the spectrum at the very top of the loop (such as may be seen

for a heavily occulted flare or for a large flare seen with very good X-ray imaging)

s

/(A:, r ~ 0) ~ - (5.2.14)v ' ' £2+7 v '

For k <£ 1, (i.e., for deka keV X-rays), J(k, T ~ 0) ~ k ~ + ^ which is two orders

of magnitude steeper than the spectrum for the whole flare. This is in agreement

with the observed steepening of the X-ray spectrum as flares cross the solar limb

(cf. §5.1) and the earlier modelling of Brown and McClymont (1975).
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Equation (5.2.14) indicates a flattening of the X-ray spectrum with increasing

photon energy. Alternately, if we assume a power law spectrum for the top of the

loop, for example J(k, r ~ 0) — A;"7 , then equation (5.2.14) indicates a spectrum

for the whole flare of the form

(5'2'15)

This spectrum displays a "knee" reminiscent of the knee which is often to be found

in spectra drawn from X-ray observations of solar flares (cf. §5.1). However, this

behaviour does not contribute to the observed spectral knee because the steepening

shown in equation (5.2.15) occurs rather too slowly and would lead to a knee energy

k ~ 1, (corresponding to ~500 keV X-rays) which is in disagreement with the

above mentioned observations.

Returning to (5.2.13) we can obtain the expected X-ray spectrum should the

sources be visible only down to a column depth NQ (or TO). We have

, T < T O ) = / J(k,T)dr

(5.2.16)

For a particular value of TO and for relatively small k, TO(& -1- !)/& ^> 1 and

J(k, r < TO) ̂  J(k). (5.2.17)

For the same value of TO but for relatively large k, To(Ar + l)/fc2 <£ 1 and

r < TQ) c=: J(k). . (5.2.18)
k2
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If k is still small, though larger than TQ, then k < 1, TQ(k + I)//:2 <£ 1 and

J(k, T < TO) ~ J(k)/k2. (5.2.19)

A comparison between equations (5.2.17) and (5.2.19) indicates that the spec-

trum for a flare which can only be observed down to a column depth TQ will show a

spectral knee, this time with the break being a change of order two in the spectral

index. The knee occurs around TQ(/: + l)/&2 — 1.0. For a photon energy of, say

80 keV, (k + 1)/A;2 ~ 50 which would indicate a value of TQ c± 1/50 or NQ ~

1021 cm~2. This is to be found near the upper chromosphere. Figure (5.5) shows

equation (5.2.16) evaluated at a range of values TQ with and without the whole loop
t

spectrum J(k) folded out. For TQ = 10~2 Figure 5.5a shows that the spectral knee

occurs somewhere between 30 and 80 keV. Setting TO(/; + l)/fc2 = 1 for TQ = 10~~2

gives k ~ 54 keV. This is shown as the vertical mark on the TQ = 10~2 curve in

Figure (5.5b).

Let us now return to Model 1 and the numerical X-ray results. In Figure (5.6)

we show the normalised X-ray emission I(k, h) which is the fraction of the total

X-ray emission per unit height as a function of source altitude h (km). Coronal

sources have positive altitudes, chromospheric ones have negative altitudes and

note the change of altitude scale on passing through the transition region. Figure

(5.6) is a combination of Figure (5.3) and the density-height structure which is

shown in the inset.

The coronal density is constant and the total column depth to the transition

region is small for all energies shown. Consequently the coronal emission is flat.
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The emission rate at all energies jumps up at the transition region by an amount

equal to the jump in the density. As the electron beam flux begins to drop, with the

flux at lower electron energies dropping first, the X-ray emission follows suit. The

X-ray emission peaks for each photon energy as the rate at which the electron flux
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1.0

io ao no 70 100 2.00 tyoo 700 1000

k
Figure 5 r>b The X-ray flux for a source which can be seen only down to

a depth TO, as given by equation (5.2 16) This equation is based upon the semi-
empirical Gt to I(k, r) (equation (5.2 23)) Figure (5.5a) has a whole loop spectrum
J(k)~-k~* f w i th 7 = 2.3 and, in equation (5 2.23), S = 3. The spectral knee is
visible most clearly in the TQ = 10~2 curve though it is not very pronounced (it
is even less pronounced for larger values of 7 and 5). To assist seeing the spectral
knee, Figure (5 5b) has the whole loop spectrum folded out It also has 6 = 5. The
vertical lines on each curve show the energy for which TQ (k + l) /k~ = 1. These
are the energies about which the spectral knee for each depth is centered.
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Figure 5.6 I ( k , h ) vs h for Model I I (k ,h) is the fractional rate of emission
per unit alti tude h, ?>hown for each of four X-ray energies k. The corona is to
the left of h = 0 (wh ich corresponds to the transition region) and has positive
altitudes, the chromosphere is to the right of h = 0 and has negative altitudes.
Note the different scales on either side of h = 0 Along the top is shown the
overlying co lumn depth N for each altitude. The transition region occurs at a
depth 2.4 X 1018 cm~- The inset shows the variation of the plasma number density
(Hydrogen masses per cm~3) with altitude within the flare.

falls increases beyond the rate at which the atmosphere becomes more dense. The

lower energy photons, therefore, peak higher in the chromosphere. These results

confirm the earlier work of Emshe (1981b) and Brown and McClymont (1975).

The rapid jump in I(k,h) upon crossing the transition region does not mean

that the coronal part of the loop is relatively invisible when seen against the

brightness of the footpoints in the chromosphere. The physical extent of the

156



Chapter V: X-ray Results

coronal loop is so great in comparison to that of the chromospheric part that the

integrated emission coming from above the transition region can be higher than

that coming from below. The percentage of the total emission which is produced

above the transition region is, for N^z = 2.4 X 1018 cm~2,

k (keV)

16

30

78

210

%

10

2.8

0.45

0.09

The percentages for a transition region located at a column depth

2.3 X 1020 cm"2 would be

k (keV)

16

30

78

210

%

94

75

32

8

Consequently, if, say, HXIS were to image a flare which had a column thickness

of 2.3 X 10 cm between the top of the coronal loop and the transition region,

almost all the radiation in the 10 - 30 keV channels would appear to be coming

from the corona with the footpoints making only a small contribution in its
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highest energy channel (22 - 30 keV). However, with increasing photon energy,

the footpoints become relatively brighter and at energies of several hundred keV

the corona would be all but invisible.

X-ray Spectrum:

Shown in Figure (5.7) is the X-ray spectrum for the whole loop seen along three

orthogonal directions, the x, y, and z directions of the global observation frame

(cf. Figure (5.1)). The spectra are well represented by power laws in photon energy,

with spectral indices differing by ~ 0.4 between the vertical and horizontal viewing

directions (for comparison with earlier treatments see Brown 1972; Petrosian 1973).

In Table El we give the values of the three spectral indices 73., 7,., and 7^ for

this and subsequent models. The behaviour of the x, y and z indices is common

to all our models: the x and y indices are essentially the same and differ from the

z index by up to 0.5. The close similarity between the spectra seen in the x and

y directions suggests that spectral observations could not distinguish between two

similar flares which had the same longitude on the sun's disk (the same 0 in Figure

(5.1)) but different orientations (different <£>). However, the difference between the

x (or y) spectra and the z spectra would imply a spectral difference between

otherwise identical limb and disk-center flares. Our results imply that limb flares

should, on the whole, have slightly harder spectra than disk flares though this

does not correspond to what is actually seen. Datlowe and his coworkers (Datlowe,

Elcan and Hudson 1974; Datlowe 1975; Datlowe and Hudson 1975; Datlowe et al.

1977) saw little to distinguish limb flares from disk flares except for a tendency
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for limb flares to have slightly softer spectra. One effect which could account for

this discrepancy is the contribution of the solar albedo which, though not present

with limb flares, may be very significant for disk-center flares (cf. §5.1). Also, for

a flux limited sample, the mean spectral index depends upon the relative fluxes in

the z versus the x (y) directions (Petrosian 1975).

Figure (5.8) shows the variation of the X-ray spectrum with depth for Model 1.

Because of the only slight variation in the X-ray intensity with 0 and <£, the spectra

shown here are integrated over 4;r steradians of viewing direction. Curves 2 through

7 show the spectra for sources at various depths. The spectrum begins as a typical

thin target spectrum, representing the X-rays from a source electron distribution

which is essentially unchanged from the injected distribution. The spectral index

over the range 30 keV and above is approximately 5.9, 0.9 larger than the electron

index 6 and generally as one would expect on the basis of less exact modelling

(cf. Brown and McClymont 1975). However, the thin target spectrum (curve 2)

contains a steepening at lower energies. The spectral index for the range 10 -

30 keV is 6.5, a full 1.5 steeper than the electron spectral index and 0.6 steeper

than the index for the higher energy range. This slight excess of lower energy

photons arises from the fact that the electrons in the beam were injected with

a significant amount of collimation (OQ = 0.4, cf. Table II), and this spectral

steepening increases with decreasing OQ. We shall return to this point more fully

when we examine the results for Model 4 and Model 5.

This low energy spectral steepening rapidly disappears as the source moves

deeper through the loop and it is no longer present in curve 3. Thereafter the low
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Figure 5.7. The X-ray spectrum J(k) in three mutually orthogonal directions
X, y and z, for Model 1. J(k) is in units of photons cm~~sec~ l3ter~ lkeV~ l,
arbitrarily scaled. The dots show the numerical results and the lines the best fit
power law spectrum through them. The spectra are positioned vertically for ease
of presentation; the actual intensities in the y and z directions have been reduced
by factors of 10 and 100, respectively.
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Figure 5 8 The evolution of the X-r;iy spectrum wi th depth for Model 1. All
the spectra are integrated over 4/r steradians of viewing angle. Curve 1 is the
spectrum for the whole loop and has been moved upward vertically by a factor
of 10. Curves 2 through 7 correspond to sources at depths N and each has been
moved vertically by a factor /. Curve 2, N = 3.0 x IO17 and / = 10°; Curve 3,
N = 4.6 X IO18 and / = IO"1, 4, 1 9 x IO19 and 10~2; 5, 6 8 X IO19 and 10~3;
6, 4.7 x IO20 and 10~4; 7, 6 2 X IO21 and 10~5
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energy end of the spectrum becomes flatter than the high energy end as the X--

rays reflect the reduced penetration of low energy electrons. This turn over in the

spectrum moves to higher energies with increasing source depth and the spectrum

as a whole falls in step with the drop in the number of high energy electrons

initially present in the injected beam.

The spectrum for the whole loop (curve 1) is the sum of the spectra for

each depth and it has an index which is c± 0.7 less than the electron index 6.

Even though this spectrum is the sum of many spectra, most of which are not

simple power laws, the fact that the break energy in the individual spectra moves

through to very high photon energies with sufficient depth means that the overall

spectrum is again close to being a single power law. All our models give whole loop

spectra which, if they were to be observed by any of the currently available X-ray

telescopes, would be unambiguously classified as single power law spectra having

indices as given by Table IE. The values quoted for 8 — 7ajj are calculated for

the range 16 to 210 keV and are as accurate a fit to the numerical results as are

the x, y and z spectra shown in Figure (5.7). A single power law X-ray spectrum

is, apparantly, unavoidable for a power law injected electron flux and is broadly

insensitive to the particulars of the individual models.

There is a slight correlation between the spectral index and the degree of

magnetic trapping. However, the spectral index cannot be used to indicate the

presence of such trapping unless there are other measurements at hand which can

independently determine the electron index. As Table HI shows, S — 7ajj lies in the

range 0.2 to 0.7 which means that the X-ray spectral index cannot determine the

electron index to better than ±0.3. This range of uncertainty is not large unless
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Table

The X-ray spectral indices for each model.

MODEL

1

2

3

4

5

6

7

8

9

10

11

1x

4.4

3.3

2.4

4.3

4.3

2.3

4.4

4.6

5.2

4.2

4.5

fy
4.4

3.3

2.4

4.3

4.3

2.3

4.4

4.6

5.2

4.2

4.5

1z

4.8

3.8

2.8

4.4

4.6

2.7

4.7

5.1

5.5

4.7

4.7

7top ~ S

1.1

1.0

1.0

1.1

0.9

0.9

0.7

0.8

0.9

0.6

0.7

*-^a!l

0.7

0.7

0.5

0.7

0.7

0.5

0.6

0.4

0.2

0.7

0.5

The indices are taken over the energy range 16 keV < k me<? < 210 keV. x, y and

z are three orthogonal directions; x and y are in the plane of the solar surface, z

is the outward normal. 7top is the index for the top segment of the loop, 7a|j is

the index for the whole loop. Both are integrated over 4n steradians of emission

angle.
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we wish to calculate anything relating to the size of the electron beam, such as the

amount of energy which the beam carries, the rate at which it heats the flaring

plasma and evaporates chromospheric material or the size of the reverse current

which it engenders. In these cases an uncertainty of 0.5 in the electron index can

translate into an uncertainty of more than half a decade in the obtained results.

We hereby add strong support to the argument that the X-ray spectrum is not

a good tool for obtaining more than a general measure of the underlying electron

population.

X-ray Directivity:

The X-ray anisotropy is only vaguely evident in the variation of spectral index

with direction as presented in Figure (5.7) and Table HI. A more transparent

measure of the anisotropy is the directivity ratio d(k, r] defined by equation (5.2.3).

There are several effects which contribute anisotropy to the X-rays and several

effects which tend to bring about isotropization. Any X-ray anisotropy arises

from a combination of the anisotropy in the distribution of the electrons and the

anisotropy in the angular distribution of the radiation emitted by each electron.

As such the angular distribution of the radiation from each part of the flare loop

will tend to reflect whichever of these two distributions is smoothest. If either the

distribution of the electrons or the distribution of the emitted radiation from each

electron is isotropic then the radiation itself will be isotropic.

Firstly, the electrons do not radiate isotropically. The emission cross-section

as a function of the angle TJ between the electron and the photon has a maximum
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which, for non relativistic electrons, is at rj ~ ;r/2 and which moves toward smaller

values of ij as the electron energy increases. (For low and intermediate energies

see the figures in Tseng and Pratt 1971; for high energies see those in Koch and

Motz 1959.) Secondly, the electron distribution is not isotropic. At each depth

within the flare the electrons collectively define a prefered direction by their bulk

motion within the loop. However, this electron anisotropy is moderated by the

fact that the individual electrons each follow helical paths. As every electron path

has rotational symmetry about the direction of the magnetic field, the distribution

describing all the electrons will display this symmetry as will also the X-rays which

these electrons produce. As all electron pitch angles are represented, the electron

distribution will tend to be a smooth function in pitch angle. Consequently, only

for high energy photons and strongly beamed electrons can we expect the X-ray

distribution to be highly anisotropic.

In Figure (5.9) we show the directivity A(£, 0,r) (cf. equation (5.2.1)) for

Model 1 at three photon energies and for a range of source heights. The upper

curve in each box is the directivity for the whole loop. Curve 1 is for the top of

the loop and shows the degree to which the X-rays reflect the anisotropy of the

source electrons. Model 1 has OQ = 0.4 for which the ratio of the flux of electrons

at p = 1 to that at p, = 0 is 2 X 10~3. At no energy do the X-rays reflect

anywhere near that amount of electron anisotropy, though the X-ray anisotropy

does increase with photon energy owing to the X-ray cross-sections becoming more

directional. As the X-ray source moves deeper through the flare loop the electron

distribution broadens and hence the radiation becomes increasingly isotropic, with
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0 306090120150 306090120150 306090120150180
VIEWING ANGLE, 0 (degrees)

Figure 5 9 The X-r;iy directivity as a func t ion of viewing angle 0 and for
three energies k, for Model 1. A ( f c , 0 , r ) is deflned by equation (5 2.1). 0 is the
polar angle re la t ive to the appropriate polar axis. The upper curve in each box
shows the directivity of the flare as a whole, multiplied each time by a factor of
four in order that it stand clear of the rest of the diagram. It is measured in the
global observation frame for which the appropriate polar axis is the normal to the
surface of the sun (cf Figure (5 1)). 0 = 0° corresponds to flares seen at the
center of the solar disk and 0 = 90° to flares seen at the solar limb. Curves 1
through 4 correspond to sources at different depths within the flare For these the
directivity is measured in the local observation frames for which the appropriate
polar axes are the directions of the local loop magnetic field (cf. Figure (5.2)).
Curves 1 through 4 correspond to sources at depths N. Curve 1 corresponds to
3.0 x 1017; 2 to 6 8 x 1019; 3 to 4.7 x 1020 and 4 to 6.2 X 1021. Therefore the
local observation frames for curves 2, 3 and 4 coincide with the global observation

frame.
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the directivity in the forward direction (0 = 0°) falling and that in the backward

direction (0 = 180°) increasing.

For a source which is sufficiently deep, the electron distribution at all energies

will be nearly isotropic and hence the directivity curves at all energies will be flat.

However, the intensity of the radiation from such a deep source will be relatively

small, the electron flux having dropped so much by then, and the contribution of

such deep sources to the whole loop totals will be negligible. The radiation from

the whole loop is therefore not typical of the radiation from the deepest source

but is typical of that from a characteristic depth, where that characteristic depth

varies with photon energy and is of the same order as the characteristic depth

obtained from the intensity curves of Figure (5.3), i.e., r~k2 /(k + 1). In Table

IV we give the directivity ratios d(k, T) for many depths and photon energies. As

can be seen from Figure (5.9) most of the directivity ratios are the ratio between

the counts at 0 = 0° to the counts at 0 = 180°. We also give the directivity

ratios for the loop as a whole and show that these are higher than the ratios for

the deepest sources alone.

Polarization:

In the same way that the electron beam can produce anisotropic radiation it

can produce polarized radiation. The degree of linear polarization is a combination

of the degree of anisotropy of the electron distribution and the degree of polariza-

tion of the X-rays that each electron is able to produce. Either an isotropic electron

distribution or a situation in which the radiation from each electron is unpolarized

will give rise to unpolarized flare X-rays.
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Table IV

The X-ray anisotropy for Model 1 .

Depth

(cm"2)

3.0 (+17)

2.1 (+18)

5.8 (+18)

2.0 (+19)

1.0 (+20)

8.4 (+20)

1.3 (+22)

whole loop

Energy (keV)

16

2.8

2.7

2.5

2.3

2.1

2.0

2.0

2.2

22

3.4

3.2

3.1

2.8

2.5

2.3

2.4

2.6

80

4.2

4.0

3.9

3.6

3.1

2.8

2.8

3.1

50

6.2

6.1

6.0

5.6

4.8

4.0

3.6

4.2

78

9.5

9.4

9.3

8.9

7.7

5.9

4.8

6.0

102

12.6

12.5

12.4

12.1

10.7

8.0

6.2

7.6

210

31.4

31.3

31.2

30.8

28.9

22.2

14.6

17.1

The anisotropy, defined in equation (5.2.3), is the ratio /max/^min where /max

and «/mjn are in the directions of maximum and minimum X-ray flux, respectively.

As can be seen from Figure (5.9), these two directions are usually antiparallel.

The degree to which each electron produces polarized radiation is clearly

shown by the series of diagrams in Tseng and Pratt (1973) (their Figures 1 -

10) giving the degree of polarization as a function of electron-photon angle rj for

a wide range of electron and photon energies. For low and intermediate energy
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electrons, that is for electrons with energies up to, say, £"~200 keV, the shape of

the polarization curves with TJ, typically, have the shape of a bell. The polarization

vanishes for photons emitted in the forward and backward directions (T) = 0° and

180°, respectively), rises rapidly for more obliquely emitted photons and then holds

to a maximum value for a spread o f » / around 90°. The top of the bell is slightly

skewed toward values of ij less than 90°, and the higher the electron energy the

more skewed toward the forward direction it is. The height of the bell, that is

the maximum degree of polarization, increases steadily with photon hardness, i.e.,

with x = k/E, where the numerical value of the degree of polarization is, on

the whole, approximately that of x itself. Hard photons (for which x is close to

unity) have the potential to be almost 100% polarized whereas soft photons (for

which x is small) can only display small degrees of polarization. As discussed in the

previous chapter, flares produce only linearly polarized X-rays and, for electrons

with low or intermediate energies, the prefered plane of polarization is always the

plane parallel to the emission plane.

As the electron energy increases above ~ 200 keV the bell shape moves entirely

into the forward direction so that the degree of X-ray polarization at rj = 90° is

small. For electrons with energies which are intermediate to high the polarization

for photons emitted into the backward hemisphere (90° < r} < 180°) is small and is

in the perpendicular plane. As the electron energy gets larger (E 3> 200 keV) that

half of the polarization curves which corresponds to backwardly emitted photons

begins to develop its own bell shape and for this the prefered plane of polarization

is the perpendicular plane. Again, the magnitude of the polarization is roughly
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proportional to x though the maximum degree of polarization tends to be lower

than is found for the X-rays from lower energy electrons.

The above behavior of the polarization curves should show through in our

polarization results. A highly collimated electron beam will give rise to polarization

curves which, as functions of viewing angle 0, will have the characteristic bell

shape of the emission polarization curves in rj. A broader or more isotropic electron

distribution will give rise to an X-ray polarization which will retain most of the

smooth and typically bell-like structure of the emission polarization curves but

the height of the bell, the maximum degree of polarization, will be lower.

In Figure (5.10) we show the polarization curves for Model 1 giving four source

depths and three photon energies. The abscissa is the viewing angle 0, the angle

between the direction of observation and the direction of the local frame's polar

axis. The ordinate is the percentage degree of linear polarization. Curves 1 through

4 are for sources at successively greater depths and the upper curve in each box

is the polarization for the loop as a whole.

After the discussion of the previous two pages, the results are easily un-

derstood. The electron beam is injected into the top of the loop with an inter-

mediate amount of collimation (cf. Table II) and hence the thin target polarization

results (curves 1) retain the distinctive bell-like shape though with some lowering

of the polarization magnitude. As the source moves deeper, the electron beam

broadens, the polarization magnitudes fall and the shape of the curves changes

slowly reflecting the increased role being played by beam electrons with p < 0.

The high energy photon results reflect the more complicated structure of the high

energy polarization curves.
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0 306090120150 306090120150 306090120150180

VIEWING ANGLE, ©(degrees)

Figure 5.10. The same as Figure (5 9) but for the X-ray polarization FI(A;, ©, T)
(cf equation (5 2.4)). The upper curve in each box gives the polarization for the
loop as a whole Curves 1 through 4 correspond to depths 3.0 X 1017, 1.9 X 1019,
47 x 1020 and 6 2 x 1021.

The values of the maximum degree of polarization at each energy and depth

are given in Table V. At each energy the polarization falls with increasing source

depth, and the whole loop polarization is that of a characteristic depth which,

as with the earlier directivity results, increases with photon energy For example,

Table V shows that, for 16 keV photons the characteristic depth lies somewhere

between 2 X 1019cm-2 and 1020cm-2 (NQk2/(k + 1) = 4.75 X 1019cm~2) and

for 78 keV photons it is close to 8 X 1020 cm~~ (NQk2/(k + 1) = 1.01 X 1021).

Strikingly, at the very top of the loop where the electron beam has the same
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Table V

The maximum degree of X-ray polarization (%) for Model 1 .

Depth

(cm~2)

3.0 (+17)

2.1 (+18)

5.8 (+18)

2.0 (+19)

1.0 (+20)

8.4 (+20)

1.3 (+22)

whole loop

Energy (keV)

16

30

25

20

14

6
*
5
*

10

11

22

30

27

23

18

10
*
5
*
5

12

30

30

29

26

22

13
*
5
*
3

12

50

30

29

28

26

19

10
*
4

13

78

30

30

29

28

23

14
*
5

14

102

29

29

28

27

24

16
*
6

14

210

25

25

24

24

22
*

18
*

10

13

The maximum is for polarization parallel to the observation frame unless otherwise

indicated by an asterisk.

degree of anisotropy at all energies, the degree of polarization does not begin to

vary with photon energy until above 100 keV. Throughout the body of the flare

the polarization increases with increasing photon energy reflecting the fact that

the electron beam is always more anisotropic at high electron energies than at low

electron energies. Looking at the whole loop, the polarization is again insensitive to
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photon energy and does not vary significantly over the whole range from 16 keV up

through 210 keV. As any currently obtainable polarization measurements of solar

flares have no spatial resolution this insensitivity of the whole loop polarization

with respect to photon energy is worth recording. X-ray polarimeters do not need

to strive for high energy resolution in order to obtain interesting flare polarization

results. If a polarimeter could filter out the low energy hard X-rays so that it

was collecting only photons of a high enough energy that thermal contamination

was negligible (for example 25 keV and above), it could advantageously use the

insensitivity of the whole loop polarization to X-ray energy by collecting a wide

span of photon energies into its measurements and thereby allowing itself much

better counting statistics.

Having energy resolution at the low energy end of the hard X-ray range could

also be useful, though, as it would enable an estimate to be made of the degree of

contamination by unpolarized X-rays from a thermal source (cf. Emslie and Vlahos

1980). Such thermal contamination would be felt most at energies up to about

10 keV. If the degree of polarization measured were to increase with photon energy

over the range, say, 5-20 keV, it would be an indication of thermal contamination

and would imply that the uncontaminated results at all energies should be close

to those found at the higher (20 keV or above) energies. There is currently at least

one instrument (Lemen et al. 1982) which claims to have sufficient accuracy and

energy resolution over the range 5-20 keV that it would be capable of detecting

such an effect. The results of a recent observation by this instrument onboard the

Space Shuttle Columbia (Tramiel, Chanan and Novick 1984) did show a tendency
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for the measured polarization to increase with X-ray energy over this range though

the data is not accurate enough for conclusive results to be drawn.

The most significant of the results shown in Figure (5.10) and Table V is that

the maximum degree of polarization for the whole loop does not exceed 15%.

Earlier calculations based upon much simpler modelling obtained polarizations in

the range 30 - 50%, though due acknowledgement was given to the fact that,

because of the model simplifications, these values would have to be taken as upper

limits and that a full and thorough treatment would probably obtain somewhat

lower values (cf. §5.1). The results of just such a full and thorough treatment are

now seen to give values considerably lower than the earlier estimates. It appears

that the non-thermal flare models need not give rise to polarizations which are

an order of magnitude higher than those obtained from thermal models. We shall

discuss this point more fully as we look to our other models and see how this

maximum figure, which is 15% for Model 1, varies from model to model.

Models 2 and S - The effects of changing the spectral index.

From Table n we can see that Model 1, Model 2 and Model 3 are the same

except for having different electron spectral indices. By comparing the results from

these three models we should be able to ascertain the dependence of the X-ray

characteristics upon the electron spectral index.

Figure (5.11) shows the normalised X-ray intensities as a function of column

depth for Model 1, Model 2 and Model 3. Figure (S.lla) is a reproduction of Figure

(5.3). For all three models the X-ray curves retain the same self-similarity which

174



Chapter V: X-ray results

10

10'

. 78

10V

10
-1

10
-2

I I
GRADIENT 1.04

10-5 10" 10
-3 10-2 10

-1

10

10'

10

10

10

GRADIENT 1.00

10-5 10
-4

IO-3
10

-2 10
-1

Figure 5 l la , 5 . l ib

175



Chapter V: X-ray results

10'

1CT

10

10'

10'
-1

10
-2

_ I

•GRADIENT 0.97

10-5 10
-4

10

T

-3 10,-2 10-1

Figure 5 1 Ic. I(k, r) vs. T for Model 1, Model 2 and Model 3. Figure (S.lla) is
a reproduction of Figure (5 3) The gradients at large T are -2.5 (Model 1), -2.0
(Model 2) and -1 5 (Model 3)

was present in Figure (5.3). Where Figures (5.1 la), (5.lib) and (5.lie) differ is

p r i m a r i l y in the gradient of the curves at large column depths. The gradients are

2 5, 2 0, and 1 5, respectively from which we obtained the substitution 8/2 for the

exponent in equation (5 2.12)

We can show from our earlier electron results that this is the expected form

for the exponent. If we look back to equation (3.3 5) we see that the electron flux

at an energy E and a depth r behaves as

(5.2.20)
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where r) = E2/(E+l). For a particular photon energy k, the X-ray flux generated

by the electrons is

00

/ ( A r , r ) ~ h(E,k) F0(rj + r)dE (5.2.21)

where h(E, k) gives the relative weights of the contributions to the photon flux

from electrons with an energy E. h(E, k) is related to the emission cross-sections

and is obviously independent of the column depth T.

The curves in Figure (5.11) show that the power law behavior of I(k, T) on T

is to be found at large column depths, that is, for T/TJ 3> 1, and that it is most

clearly pronounced in the lower energy curves. Hence, in equation (5.2.21) we may

approximate 77 with E* and r] + T with T. FO(IJ + T) is obtained from our injected

energy spectrum F0(E)~E-5. FQ(IJ + r)~F0(£2 + r)~(£2 + T)-5/2~T~5/2.

/32(r/ + r) is approximately constant and equal to unity for large T whereas /?2(r?) =

/32(E) ~ 2E for small r]. We have, then,

oo

I(k, T) ~ T~5/2 I g(E, k) dE (5.2.22)
k

where g(E, k) is a function of E and k but not of T. We can, therefore, expect the

large T behavior of I(k, T) which is shown in Figure (5.11). At large depths, the

flux of low energy X-rays falls in accordance with the penetrating power of the

electrons. The electrons which can penetrate to relatively large T were injected at

the top of the loop with relatively high energies and are correspondingly much

fewer in number.
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The general form of equation (5.2.12) is, then,

In Figure (5.12) we show a comparison between the curves of Figure (5.11) and

the values given by equation (5.2.23), with Figure (5.12a) being a reproduction

of Figure (5.4). As mentioned in connection with Figure (5.4), the fact that the

210 keV curve is consistently high indicates that a smaller value of NO is ap-

propriate for higher photon energies. The raggedness in the plots, also mentioned

earlier, is due to the difficulty in obtaining one value of T to represent each depth

bin well at all photon energies.

From Figure (5.12) we must conclude that equation (5.2.23) represents an

accurate fit of a simple equation to the full numerical results and that its accuracy

is strong for a wide range of photon energies, source depths and electron indices

8. From Figure (5.12) it appears that the accuracy of equation (5.2.23) increases

slightly with increasing 5, i.e., that the accuracy correlates with the strength of

the initial premise which was that photons k tend to come predominantly from

electrons E with E ~ k. It may also be noted here that the envelopes drawn to

the curves in Figure (5.12) have gradients which are very nearly equal to —1.0.

Equation (5.2.23) has an envelope with a gradient of —1.0 and this result is

independent of A:, r and 6.

The spectral results for Model 2 and Model S are given in Table HI. The

behavior of the whole loop spectral index with viewing direction is essentially the

same as that shown by Model 1. Likewise, the variation of spectral shape with
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Figure 5 12c. The ratio of f ( k , r ) from the numerical results to I(k,r) from
equation (5 2 23) for Model I, Model 2 and Model 3 Figure (5.12a) is a reproduction
of Figure (5.4).

depth, the spectra show a progression from thin to thick target with the transition

energy increasing with depth Table III shows that the relationship between the

thick and thin target indices and the electron index is maintained across the change

in b The low energy steepening of the thin target spectrum due to the electron

beam collimation is present to a similar degree in the results from Model 2 and

Model 3, as it is for Model 1.

In Figure (5.13) we show the directivity curves for Model I, Model 2 and

Model 3, with Figure (5.13a) being a reproduction of Figure (5 9). The directivity
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Figure 5.13a, 5.13b
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Figure 5.13c The X-ray directivity as a function of viewing angle for Model
1, Model 2 and Model 3 Figure (5 13a) is a reproduction of Figure (5 9).

results are not strongly dependent upon the electron spectral index or, as is the

same, upon the mean photon hardness The shapes of the X-ray cross-sections

(shown graphically by Koch and Motz 1959 and by Tseng and Pratt 1970, 1971)

indicate that the emission anisotropy decreases only slowly with decreasing photon

hardness and too slowly to be observed in Figure (5.13) Table VI shows the effect

on the X-ray directivity of a change in 6. In the range 20 - 100 keV, the directivity

falls slightly on changing 6 from 5 to 4 but it then rises again on changing 6 from

4 to 3. This behavior is real. There are two effects working here, both of which are

small but which work on the directivity m opposite directions. Figure (5.11) and
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Table VI

The anisotropy of the whole loop (spatially integrated) X-rays.

MODEL (a0
2)

1 (0.4)

2 (0.4)

3 (0.4)

4(oo)

5 (0.04)

6 (0.04)

7(oo)

8(00)

9(oo)

10 (0.04)

11 (0.04)

16

2.2

2.2

2.3

1.8

2.4

2.5

1.4

1.2

1.1

1.7

1.3

22

2.6

2.5

2.7

2.1

2.9

2.9

1.6

1.4

1.2

1.9

1.5

EE

30

3.1

3.0

3.1

2.4

3.4

3.4

1.9

1.6

1.3

2.2

1.7

lergy (ke

50

4.2

4.1

4.2

3.2

4.9

4.6

2.5

2.1

1.6

3.0

2.2

V)

78

6.0

5.5

5.6

4.1

7.1

6.4

3.3

2.8

2.1

4.0

2.9

102

7.6

7.0

7.1

5.1

9.4

8.3

4.0

3.4

2.5

4.9

3.5

210

17.1

15.7

15.1

10.3

24.2

19.4

7.8

6.6

4.6

8.3

5.8

Indicated alongside each model number is the value of the pitch angle parameter

equation (5.2.23) both show that, for lower 8, the X-ray flux falls off less rapidly

with increasing r than it does for high 6. This means that, for any whole loop
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results, the relative contribution from large T sources is greater for small 6 than

for large 8. The X-ray directivity decreases with source depth and, for the above

reason, the whole loop directivity should fall with decreasing 8. The second effect is

that a lower value of 6 means flatter electron spectra at all depths and, therefore, a

greater relative contribution to the X-ray results from high energy electrons, again

at all depths and for all photon energies. At each depth the high energy electrons

are more beamed than are the low energy electrons, and at all photon energies the

high energy electrons produce more highly beamed radiation (due to the relativistic

beaming) than do the low energy electrons. The increased contribution from high

energy electrons when 8 is low leads to a greater directivity in the X-ray results at

all depths and, consequently, to a greater directivity in the results for the whole

loop. These two effects, one of which reflects an increased contribution from large

T sources and the other of which reflects an increased contribution from the high

energy electrons, together explain the variation in directivity shown for Model 1,

Model 2 and Model S m Table VI.

The polarization results for Model 1, Model 2 and Model 8 (i.e., the polarization

as a function of <5) show a different behavior. In Figure (5.14) we show the X-ray

polarization as a function of viewing angle, with Figure (5.10) being reproduced

as Figure (5.14a). The maximum degree of polarization for the whole loop has, by

Model 3, fallen almost to zero. To the effects which brought the maximum degree of

polarization of Model 1 down from 30 - 50% (Brown 1972) to around 15% (cf. Table

V) - the absence of strong electron beaming and the addition of loop curvature

- we must now add the effect of having softer (smaller k/E) photons. The softer

photons of Model 3 are much less strongly polarized than are the harder photons
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Figure 5.14c The X-ray polarization as a function of viewing angle for Model
1, Model 2 and Model 3. Figure (5 14a) is a reproduction of Figure (5.10)

of Model I and the maximum degree of linear polarization for the whole flare is

now below 5°o. It is no larger than the polarization expected from an isotropic

source with the contr ibut ion of the photosphenc albedo included (Henoux 1975).

This shows clearly the need for a detailed and thorough calculation of non-thermal

X-ray results such as has been conducted in this thesis, for these results show that

ear l ier and simpler modell ing has given rise to somewhat exaggerated polarization

es t imates
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Modela 4 and 5 - The effects of changing the injected electron beaming.

A comparison of the results for Model 1, Model 4 and Model 5 will allow us

to see how the X-ray characteristics depend upon the degree of beaming of the

injected suprathermal electrons. Let us briefly recall the electron results of §3.3.

For Model 1, the electrons are injected with a pitch angle distribution which

is a Gaussian of moderate width. The distribution broadens as the beam passes

down the loop but at all depths the beam is still visible as an excess, though at

great depths only a slight excess, of electrons with a pitch angle of 0° over those

with a pitch angle of 90° (cf. Figure (3.6)).

For Model 4, the injected distribution is uniform over the range 0° - 90°.

Those electrons which have a velocity component parallel to the magnetic field

begin to move down the loop. Within a short distance the beam establishes a broad

Gaussian profile which then remains as the beam penetrates deeper through the

loop (cf. Figure (3.7)).

For Model 5 the injected distribution is a very narrow Gaussian; or0
2 = 0.04,

which means that the flux per steradian at a pitch angle 30° is already l/1000th

of that at zero degrees (cf. Figure (3.5)). This highly collimated beam broadens

rapidly within the flare and, after having traversed a depth r for which r/r/ ~ 1,

is indistinguishable from a beam which had much less collimation at r = 0.

In Figure (5.15) we compare the fractional emission I(k, T) for Model 1, Model

4 and Model 5 as a function of depth and for several energies. Below a depth T

for which r(l + k)/k2 ~ 1 the models can barely be distinguished on the basis of
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Table VE

The maximum degree of X-ray polarization (%}.

MODEL

(-5, "o2, 0)

(5, 0.4, 1)

(4, 0.4, 1)

(3, 0.4, 1)

(5, oo, 1)

(5, 0.04, 1)

(3, 0.04, 1)

(5, oo, 2)

(5, oo, 5)

(5, oo, 25)

(5, 0.04, 5)

(5, 0.04, 25)

Energy (keV)

16

11

7

2

9

18

4

15

14

13

9

11

22

12

7

2

10

17

4

16

15

12

10

11

30

12

7

2

11

17

4

18

15

11

11

13

50

13

8

3

11

17

4

18

16

12

11

14

78

14

9

4

11

18

5

17

16

14

11

15

102

14

9

4

10

17

5

17

15

14

11

16

210

13

9

5

8

15

7

13

12

11

9

12

The models are labelled according to the values of the three parameters 5, or0
2

0(=B(N iz)/B(Q)).

the intensity of their X-ray emission. Significant differences between the models

can only be seen at small values of T, for which Model 4 gives a relative excess
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Figure 5 15. I(k, T) as given by the numerical results for Model 1, Model 4 and
Model 5. Model 1, Model 4 and Model 5 are identical except for having different
values of a0

2 (cf. Table II). For clarity the curves for each energy are moved
vertically by the indicated amount. I(k, T c^ 0) for Model 4 is approximately
sixteen times I(k, r =± 0) for Model 5.

189



Chapter V: X-ray results

of X-rays while Model 5 produces a considerable deficiency. This may easily be

understood, r is measured along the magnetic field lines and is the column depth

traversed by an electron which at all times moves strictly parallel to the loop axis,

that is with a pitch angle of zero degrees. Electrons with non-zero pitch angles

encounter a greater column thickness of material than is indicated by the value of

T; with each incremental step dr an electron with a pitch angle cosine \JL passes by

(No/n)dr particles cm~2. This means that electrons with non-zero pitch angles

produce more X-rays per incremental increase in the loop length traversed than

will electrons with pitch angles zero, in the ratio 1 : ft. The broader the electron

beam the larger the beam's mean pitch angle and the greater the X-ray emission.

The difference in X-ray production rates between the two extremes, Model 4 an(l

Model 5, exceeds a factor of ten at very low column depths. With increasing depth,

both models converge toward Model 1, which is the best fit of the three to equation

(5.2.23) for I(k, T) . When comparing the results for Model 1, Model 2 and Model

3, we saw that equation (5.2.23) was accurate for a wide range of k, T and S. We

now see that it is also good for a spread of a0
2 about the median value, becoming

less accurate as QQ becomes either large or small.

The swiftness with which the X-ray results for Model 4 and Model 5 converge

toward those of Model 1 depends upon the photon energy. This is the origin of the

low energy steepening of the thin target X-ray spctra to which we have already

drawn attention. At a depth T = k2/(k + l) for k corresponding to 16 keV X-rays,

the rate of production of 16 keV X-rays will be roughly the same for all three

models. At that same depth T the rate of production of, say, 78 keV X-rays will

still be strongly influenced by the value of a0
2. Models with a small value of a0

2 will
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still be underproducing high energy X-rays at a depth where the low energy X-rays

are insensitive to a0
2. In terms of the X-ray spectrum at each depth this implies

that, for Model 5, the spectrum for the top part of the coronal loop should be

steeper around 16 keV than it is at much higher photon energies. With increasing

source column thickness, the position of this steepening moves to higher photon

energies, though it is soon overwhelmed by the flattening of the low energy end of

the spectrum which comes about from the collisional losses of low energy electrons.

For small source column thicknesses, the X-ray deficiency of Model 5 exceeds an

order of magnitude (I(k, T ~ 0) for Model 4 divided by I(k, r ~ 0) for Model 5

~ 16) which means that the spectral index can increase by more than unity. For

the top segment of the loop in Model 5 the spectral index for the range below

22 keV is 8.7 whereas for the range above 30 keV it is 5.8. The results quoted in

Table m do not show clearly this low energy steepening because they are obtained

from fitting a single power law over too wide a range, namely 16 - 210 keV'. We

recall that for Model 1 the index below 22 keV was 6.5 and above 30 keV was 5.9.

There should be a marked weakening of this effect in the first segment spectrum

of Model 4, and this is indeed found in the numerical results. The first segment

spectral index below 22 keV minus that above 30 keV is 0.3 for Model 4-

This steepening of the low energy end of the thin target spectrum by strongly

collimated electron beams is a new result for non-thermal models. It is also a

highly significant result, as we shall show clearly in the next chapter when we

discuss some recent HXIS data. In the absence of polarization measurements, this

spectral steepening is the only means by which the X-ray data can indicate the

degree of electron beam collimation. The effect is found at low hard X-ray energies.
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Figure 5 l(5c The X-ray directivity as a function of viewing angle for Model
1, Model 4 and Model 5. Figure (5.10a) is a reproduction of Figure (5.9).

However, it is in precisely this range, 10 - 30 keV X-rays, that HXIS forms its hard

X-ray images

Returning to the results for Model 1, Model 4 a°d Model 5, in Figure (5 16)

we show the X-ray directivity As expected, the thin target directivity correlates

closely with the pitch angle structure of the electron beam For Model 4 (Figure

(5.16b)), the X-ray directivity is initially very weak and it strengthens as the source
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moves deeper within the flare, thus following the behavior of the electron beam as

shown in Figure (3.7). For Model 5 (Figure (5.16c)), the directivity is initially very

strong and it weakens rapidly as the electron beam broadens. Recall that at great

depths the pitch angle distribution of an electron beam was independent of the

value of ctQ. This shows up in the directivity results in that, at 16 and 78 keV,

curve 4 (for a source depth of 6.2 X 1021cm~2) is identical for each of the three

models. Curve 4 is not quite deep enough for this congruity of the curves to be

seen at 210 keV. For Model 5 the top segment curves (curves 1) show that at low

energies the maximum emission occurs for 6 < 180° and that this peak moves to

larger 0 as the X-ray energy increases. Evidence of the initial amount of electron

beaming can be found in the directivity results for the whole flare (c/. the upper

curves in Figure (5.16), and Table VI). Again, these are intrinsic directivity results

and it is not clear that any such indication of the electron beaming would show

up in actual flare directivity measurements.

The effects of electron beaming show through more clearly in the polarization

results. These we show in Figure (5.17). For Model 4 (Figure (5.17b)), the polariza-

tion is, initially, almost entirely in the perpendicular direction and is of order 20 -

30%. As the source moves deeper and the electrons establish a downward moving

beam the polarization crosses into the parallel direction. Therefore, whereas the

directivity strengthened as the beam was being established, the polarization falls.

The strongest polarization for Model 4 is found at the top of the loop and is in

the perpendicular (positive II) direction.

For Model 5 (Figure (5.17c)), the highly collimated beam of electrons generates

large (70 - 80%) degrees of linear polarization. As the source moves deeper within

194



Chapter V: X-ray results

i i i i
78 keV

0 306090.120150 306090120150 306090120150180

VIEWING ANGLE, ©(degrees)

i i i i r
210 keV

0 306090120150 306090120150 306090120150180

VIEWING ANGLE, ©(degrees)

Figure 5.17a, 5 17b.

19!)



Chapter V: X-ray results

0 60 120 60 120 60
VIEWING ANGLE, O (degrees)

120

Figure 5.17c The X-ray polarization as a funct ion of viewing angle for Model
1, Model 4 and Model 5 Figure (5 17a) is a reproduction of Figure (5.10).

the flare, the polarization falls and, beginning with the low energy photons, is

eventually very similar to the results of the other two models. The consequences

of t h i s convergence in the results are felt most strongly in the polarization curves

for the whole flare - the upper curves in each box and Table VII. Even for such a

highly collimated beam as is present in Model 5 the majority of the X-rays are not

produced until after the beam has substantialy relaxed, that is, until below the

depths T ~ k~/(k + 1) The X-rays which are emitted below these depths cannot
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contain any information about the initial collimation of the X-ray beam. Hence,

even for Model 5, the polarization for the whole flare is characteristic of a broad

electron beam. From Table VII we can see that the whole loop polarization for

Model 5 is greater than that for Model 1 but it is still only of the order 15 - 20%,

compared with Model 1's < 15%. For Model 4, the polarization is c± 10%. For

all three models, the polarization changes only slightly with photon energy in the

range 10 - 100 keV.

Model 6 - The effects of low 6 and low a0
2 combined.

These results show the response of the whole loop polarization to a change

in C C Q . The smaller the value of a0
2 the greater is the X-ray polarization, though

even the smallest values of a^ do not give polarizations which are as large as

those obtained by the earlier modelling attempts (cf. §5.1). High degrees of initial

electron beaming generate whole loop X-ray results of at most 20% polarization.

A uniformly injected electron beam generates ~ 10%. The results for Model 2 and

Model 8 showed the response of the whole loop polarization to a change in 8. The

smaller the value of 8, the lower the X-ray polarization. Model S, for which 8 = 3,

gave rise to whole loop polarizations ;$ 5%, polarizations much smaller than the

10 - 15% for Model 1 (8 = 5). The results for Model 6 (Figure (5.18)) show the

combined effect of having a highly collimated electron beam and a low value of

5. The polarization is initially large (~70%) in response to the smallness of a0
2.

With increasing penetration within the flare the electron beam broadens and its

energy spectrum flattens. Both the broadening and the flattening contribute to the
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Figure 5 18. The X-ray polarization for Model 6. For comparison with Model
5 (Figure (5 17c)). Model 5 and Model 6 both have a highly collimated injected
beam (aft = 0 04), but Model 5 has 5 = 5 whereas Model 6 has 5 = 3.

rapid fall off in the degree of X-ray polarization which is observed for increasing

source depth Comparing curves 4 in Figures (5 17c) (6 = 5, a0
2 = 004) and

(5 18) (8 = 3, ao2 = 0.01) the polarization is less for Model 6 than for Model 5

reflecting the fact that the energy spectrum is much flatter.

By comparing the whole loop polarization curves in Figures (5.17c) and (5.18),

and by turning to Table VII, we are able to see which of the two effects, that of

a small 6 or that of a small OQ-, dominates the results for Model 6. Clearly, the

former effect overwhelms the latter. Despite having a strongly collimated injected

beam, Model 6 shows whole loop polarizations which are as low as ~ 5% for a

wide range of X-ray energies. The X-ray directivity for Model 6 is only slightly

lower than that for Model 5, which means that still many more X-rays are beamed
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into the photosphere than escape directly from the flare to the observer. In such a

case any measured X-ray polarization from a flare described by Model 6 will have

had to have been contributed by the photospheric albedo (Henoux 1975; Langer

and Petrosian 1977; Bai and Ramaty 1978).

The impetus behind theoretical and observational studies of hard X-ray pola-

rizations has been the belief that non-thermal models predict high degrees of pola-

rization and that thermal models predict very low degrees of polarization. This led

to the hope that a passably accurate polarimeter, without the need for an imaging

capability, would be able to distinguish unambiguously between a predominance of

thermal over non-thermal or of non-thermal over thermal hard X-rays, and, hence,

would be able to indicate the nature of the energetic electron distribution. We now

see that this underlying belief was not well founded. Our flare models have shown

that any observations of large linear polarization can only come from viewing thin

target sources, but that from these the X-ray luminosity will be relatively low in

comparison with that from the whole flare. Currently available instruments, not

having sufficient spatial resolution to be able to take separate measurements from

different parts of the whole flare, can only expect to see, at best (high 7, narrow

injected electron beam), X-ray polarizations not in excess of 25% and, at worst

(low 7, broad injected electron beam), X-ray polarizations of the order of just a

few percent. Consequently, only with a very accurate X-ray polarimeter viewing an

optimal flare (large 7, highly collimated electron beam, limb position to eliminate

any albedo X-rays) would there be a chance of the X-ray polarization indicating

any preference for non-thermal over thermal processes.
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Models 7 through 11 - The effects of a converging magnetic field.

Of the parameters with which we label our models we have so far left one

of them unchanged. We now discuss the response of the impulsive hard X-rays

to a change in the magnetic field strength along the length of the loop. A field

which increases in strength with distance away from the top of the loop acts

as a magnetic bottle trapping the energetic electrons near the regions of lowest

field strength. For rapidly increasing magnetic field strengths the electron current

moving down through the loop falls in proportion to the increase in field strength,

as shown by our results in Chapter IQ (cf. Figures (3.10) and (3.11)). The bottling

up of the electrons in the upper reaches of the loop will be reflected by the height

distribution of the X-rays in the form of an increasing fraction of the X-rays at

each energy coming from the corona.

It is not easy to get a good sense of how much the magnetic field strength

varies throughout a flaring loop. There are, as yet, no accurate measurements of

the magnetic field strength in the corona. The photospheric fields are measured

by Zeeman line splitting (Zirin 1966, pp 367-375), but this technique cannot be

extended into the corona because the plasma density there is too low. Photospheric

measurements indicate that the magnetic field strength near to sunspots are of

the order of 1 - 3 X103 Gauss (Zirin 1966, p373; Brown and Smith 1980), but

the photospheric fields cannot by themselves give a clear indication of the field

strengths in the corona. Flares are associated more with complex photospheric

fields than they are with large photospheric fields and they tend to occur where the

photospheric magnetic field gradients are steepest (Zirin 1966, p456; Brown and

Smith 1980). This means that a simple equating of magnetic field strengths between
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the photosphere and corona will not suffice. Neither will the more complex drawing

of potential field lines from the photosphere up into the corona suffice. Flares do

not occur in potential field geometries. A potential magnetic field structure is a

relaxed structure of lowest magnetic energy and as such cannot provide the energy

needed to power a flare. There are observational indications that the post flare

loops remaining after the gradual phase of a flare are close to being potential field

structures and that they represent the relaxation of the magnetic field strength

from that which obtained before the flare occurred (Zirin 1966, p456; Kundu 1973;

Rust and Bar 1973). For a particular flare burst Kundu (1973) estimated that the

chromospheric field strength dropped from roughly 4 X102 Gauss before the burst

to 102 Gauss after it. On another occasion Rust and Bar (1973), by modelling

potential fields to observed post-flare loop geometries, obtained estimates of the

post flare loop strength from 50 - 80 Gauss at the top of a loop to ~ 1300 Gauss

at the footpoints near a sunspot. These numbers can be used to give order of

magnitude estimates of the magnetic field structure for a flaring loop.

Another method of obtaining estimates of the field variation which, again, ap-

plies to quiescent loops rather than flaring loops, uses the gradual phase thermal

emissions. Skylab X-ray photographs have shown by high resolution imaging that

the loop cross-sectional area changes along the length of the loop (Vesecky, Antio-

chos and Underwood 1979). Obtaining the emission measure of the thermal radia-

tion as a function of temperature and applying it to models of stable loops has

indicated the need for a gradual divergence of the magnetic field by of order 4 -

5, coming mainly at the top of the loop where the temperature exceeds 3 X 106 K

(Withbroe 1978; Vesecky, Antiochos and Underwood 1979; Levine and Pye 1980).
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Together, all these estimates, which are based upon quiet, i.e., non-flaring

loops, indicate that the magnetic field strength may vary by as much as a factor

of 20 from the top of the loop to the footpoints. The few measurements taken from

burst observations indicate that the loop magnetic field strength can vary widely

from flare to flare (Karpen 1980; Marsh et al. 1980, 1981) but that the variation

with position along a single loop is gradual (Petrosian 1982). As it is likely that

the magnetic field strength at the top of the loop is higher before and during an

impulsive burst than after it, these impulsive measurements are compatible with

the post flare measurements.

From this brief survey we see that we can expect flare magnetic field strengths

to increase between the top of the loop and the photosphere by any amount up

to a factor of 20 or 30. On this basis, for our models we have selected (constant)

values for the parameter dlnB/ds which give magnetic field strength ratios of

1, 2, 5 and 25 between the top of the loop and the transition region. Because of

the large difference in the density between corona and chromosphere, a constant

d In B/ds throughout the whole length of the model loop implies a large d In B/dr

in the corona and a small dlnB/dr in the chromosphere. The influence of the

magnetic field convergence is therefore most manifest in the corona.

In Figure (5.19) we show I(k, T) for Model 4, Model 7, Model 8 and Model 9.

The top of the transition region is shown at a value of log^o f — —4.3 and the

chromosphere is to the right. The magnetic field traps the beam electrons in the

corona and the degree to which it is effective is directly shown by the X-rays. A

small amount of trapping (Model 7) leads to a considerable enhancement in the

production of coronal X-rays at all photon energies. Increased trapping leads to
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10' -

10

Figure 5.19. I(k, T) for Model 4, Model 7, Model 8 and Model 9. The vertical
line at logjo T — —4.3 marks the top of the transition region. The corona is to the
left and the chromosphere to the right. The rates at which the coronal magnetic
fields converge, given as the ratio of the magnetic field strength at the top of the
transition region to that at the top of the coronal loop, are 1 (Model 4), 2 (Model
7), 5 (Model 8) and 25 (Model 9). All four models have 5 = 5 and a0

2 = oo.
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Table VIE

The coronal X-ray emission as a percentage of the emission from the whole loop.

MODEL

4

7

8

9

B(Nte)/B(0)

1-

2

5

25

16

21

46

68

82

22

13

35

58

76

SO

8

26

47

67

50

4

14

28

52

78

2

7

15

35

102

1

4

10

26

810

0.3

1

3

11

The emission as a function of X-ray energy and the rate of magnetic field conver-

gence. Each model has 5 = 5 and «0
2 — °°- The column thickness between the

top of the loop and the transition region is 2.4 x

increased production of X-rays at the very top of the coronal loop and to a decrease

in the production of X-rays at the transition region and in the chromosphere. The

behavior of /(Ar, T) with r below the corona does not change from model to model

other than to reflect the reduced percentage of the X-rays which are produced

there. The chromospheric density is high enough that the effect of a changing

magnetic field strength is not noticeable against the effect of Coulomb collisions,

even for the 210 keV X-rays.

Table VIII gives the proportion of the X-ray flux at each energy which is

coronal. At low X-ray energies (for example, 16 keV} the coronal proportion

initially increases rapidly with the magnetic trapping but then saturates. The
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Figure 5 20a The X-ray directivity as a function of viewing angle for A/orfe/
5, Model 10 aud Model 11. These three models each have 5 = 5 and a0

2 = 0 04,
they differ only in the degree of magnetic trapping (cf. Table II). Figure (5.20a) is
a reproduction of Figure (5.16c).

large increase in the amount of trapping between Model 8 and Model 9 cannot

lead to a large increase in the proportion of coronal X-rays simply because the

coronal proportion is already so large. The change is more easily seen in the

fraction of the X-rays which are produced below the corona, where the production

of 16 keV X-rays roughly halves from Model 8 to Model 9 At high X-ray energies
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Figure 5 20b, 5 20c.
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(for example, 210 keV) even a large degree of trapping (Model 9) does not cause a

large fraction of the X-rays to become coronal, and, hence, the change in I(k, r)

below the corona between Model 4 and Model 9 is only slight. For Model 9 high

energy electrons are efficiently trapped in the corona and cross the length of the

loop many tunes before they eventually escape. However the corona is sufficiently

thin to high energy electrons that most of the high energy X-ray emission is still

to be found outside the trapping region (c/. §3.3).

Figure (5 20) shows the X-ray directivity for Model 5, Model 10 and Model 11.

Curve 1 is the X-ray directivity for the top segment of the coronal loop. Curves 2
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through 4 are for successively deeper parts of the chromosphere. At the top of the

coronal loop the directivity is extremely flat at all X-ray energies and the emission

is roughly isotropic. Below the corona, the magnetic field is no longer the dominant

inf luence on the electrons. The X-rays become more directional as the electrons

establish a downward travelling beam (cf. Figure (3.9)). The whole loop directivity

(the upper curve in each box) reflects the degree of convergence of the magnetic

field to the extent that the emission is primarily coronal or chromospheric. The

whole loop directivity at 16 keV is flat whereas that at 210 keV is not.
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Figure 5 21c The X-ray polarization as a function of viewing angle for Model
5, Model 10 and Model 11. Figure (5.21a) is a reproduction of Figure (5.l7c).

Figure (5 21) shows the X-ray polarization for the same three models. The

complexity of Curve 1 hints to the complexity of the electron pitch angle distribu-

tion for a narrow injected beam with a strongly converging magnetic field (cf

Figure (3.9)) The maximum degree of polarization in the corona is small, being

less than 10% Below the transition region, the X-ray polarization at all energies

steadily returns to that of a source without trapping. The whole loop polariza-

tion reflects the predominance of coronal or chromospheric emission as the X-ray

energy is either low or high.

This brings to a close our discussion of the model results. We have in this

chapter presented a sample of the X-ray results for a wide range of non-thermal
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models. We have shown how the X-rays respond to variations in the details of the

non-thermal models, specifically to changes in the three modelling parameters <5,

OQ and din B/ds. We have discussed the results in terms of how the X-rays reflect

the behavior of the underlying source electrons and have given a quantitative

understanding of the accuracy to which the electron model parameters can be

inferred from the X-ray measurements.

In the next chapter we shall demonstrate how what has been learned from the

X-ray models can be applied to X-ray observations. The general non-thermal model

has been thoroughly analyzed and we can now apply our modelling techniques to

some of the most recent hard X-ray data. We show that non-thermal models can

be obtained which describe the observed flares, and that through these models we

obtain much more information from the observations than was heretofore possible.
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Studies of X-ray Observations

We have, so far, covered the early theory and data on solar flare impulsive

hard X-rays and have thoroughly discussed the results from our models. We

have detailed the relationships between the X-ray characteristics and the model

parameters and have quantified the extent to which the X-ray characteristics can

reveal the underlying flare model. We showed that none of the X-ray characteristics

from a spatially unresolved flare is able to give us precise values for the model

parameters. The X-ray spectral index displays no more than a gross correlation

with the electron index and can only give an estimate of its value (cf. Table HI,

Chapter V), the extrinsic directivity is difficult either to measure directly or to

evaluate indirectly and, even then, is only uncertainly related to the intrinsic

directivity, and the total degree of polarization for the spatially unresolved X-rays

may be no more than that which is expected from the sum of the direct and

reflected (albedo) X-rays from an isotropic source.

Given that spatially unresolved X-ray data is unable to convey precise in-

formation about its source, we must look for other ways by which we may use

the X-rays to further our understanding of solar flares. We shall now consider

the height structures of the X-ray characteristics, specifically the X-ray intensity
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and spectrum, and shall show how the results of Chapter V can be used when

interpreting spatially resolved X-ray data.

6.1 X-ray height structures.

Preliminary indications from the early use of flare models suggested that

thermal and non-thermal flares would have different X-ray height structures. The

strongest sources of thermal X-rays would be the regions of hottest plasma, found

at the sites where the magnetic energy is released, presumably near the top of

the loop. The brightest X-ray emission from a non-thermal beam of electrons

would come from regions of high plasma density, that is, from the chromosphere.

Consequently, the non-thermal X-rays would be emitted primarily from the foot-

points, located low in the solar atmosphere. All the early hard X-ray observations

(pre Skylab, the OSO series up to and including OSO-7 for example) were whole

sun observations and could not distinguish directly between the impulsive hard

X-rays emitted from the top of the loop and from the footpoints. There was only

circumstantial evidence to go by. Impulsive hard X-rays show a strong temporal

correlation with the burst Ha and EUV emissions, both of which come from transi-

tion region layers and below. This correlation was taken to indicate a preference for

non-thermal X-ray sources. But then occultation experiments showed that some

large flares have a measurably large amount of their impulsive X-ray source lo-

cated at altitudes in excess of 104 km above the photosphere and therefore in

regions of low density (Kane 1974; Roy and Datlowe 1975). This suggested that
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the simple thick target, non-thermal model was not sufficient and various thermal

and non-thermal models were invoked in order to account for these results.

Brown and McClymont (1975) realized that the height distribution of the

X-rays was potentially a good way to distinguish between different flare models.

The calculated X-ray height structure is model sensitive and can be compared

with observations in order to indicate a preference for those models which give the

best agreement. However, the X-ray height structure is sufficiently model sensitive

that these X-ray calculations have to be comprehensive for the results to be at

all reliable. Brown and McClymont calculated the X-ray height structure for non-

thermal models using the Brown (1972) mean scattering treatment of the electron

beam and found that the amount of X-ray emission from coronal or low density

regions was simply proportional to the coronal column thickness encountered by

the electron beam.

The Brown and McClymont results could, then, explain the high altitude X-

ray sources but, in so doing, they implied that non-thermal models might not

necessarily be distinguishable from thermal models solely on the gross features

of the X-ray height structure. In this case more sophisticated modelling would be

required. A step was taken in this direction by Emslie (1980, 1981b). His treatment

of the non-thermal electron beam used a mean scattering analysis for the effects

of collisions but also introduced the effects of a reverse current. His thermal X-

ray model included the high energy tail on the isothermal Maxwellian electron

distribution from electrons which escape from the confining turbulent fronts and

which then together behave like a non-thermal beam. He compared the X-ray

height distributions from the two types of model and found both types of model
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capable of producing a mixture of coronal and chromospheric emission. He also

showed that if these height distributions were convoluted with a filter representing

the angular resolution of the best X-ray imaging telescopes, the resulting X-ray

height structures from the two types of model would, indeed, begin to lose their

dissimilarity. He thus recognised that the instrument resolution then (and now)

available is not sufficient for an unambiguous matching of theoretical models to

individual observed X-ray height structures and that many observations of large

flares will be necessary before the accumulated data can allow a preliminary

discrimination between contending flare models.

We are now in a position to advance the theoretical study of non-thermal

model hard X-ray height structures more than one step further. Our technique

allows us to make the most accurate yet evaluation of the electron beam dynamics

and to properly include the influences of Coulomb collisions and the magnetic

structure of the flare loop. But we also have complete model flexibility in that

we are free to vary continuously all the parameters of the models. This allows us

take actual flare observations and to use an iterative approach to obtain a model

which best describes the flare. We can use the Chapter V explanations of the

general correlations between the X-ray characteristics and the model parameters

to indicate a beginning set of parameter values for a trial fit of a model to the

flare hard X-ray observations. We can then compare our numerical X-ray results

for that trial model with the details of the observational data in order to refine our

models to obtain a best fit for that particular flare. This final best fit model would

provide a complete description of the structure of the flare including a description
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of the injected energetic electron distribution, obtained from agreement of the

calculated and observed characteristics of the hard X-rays.

In this chapter we present several studies which use the spatially resolved

X-ray data which has recently become available. We select a few flares which

have been reported with sufficient data that we can, by applying our modelling

techniques, obtain reasonable constraints upon the flare model parameters. We

are, of course, limited to the small number of flares for which there is adequate

spatial information and then to the accuracy of that data. We certainly hope that

in the near future many more reports of high quality spatially resolved data will

appear. One thing that our studies will show is that, when using the full power of

our modelling technique, we can obtain unique and complete descriptions of flares

from the data.

There are, to date, no reports of hard X-ray polarization measurements which

include any degree of spatial resolution. In the future, should such data become

available, it would greatly improve the determination of how highly collimated the

electron beams are when they are injected into the flaring plasma at the accelera-

tion site. This would be of enormous help in understanding the processes which

generate the initial electron beams. Without such spatially resolved polarization

data, however, the electron population and, hence, the acceleration processes, are

not so directly accessible and they must be inferred less directly from the measure-

ments of other X-ray characteristics.

We are similarly without any definite measurement of the degree of conver-

gence of the magnetic field throughout the corona. The effects of any magnetic
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trapping are most pronounced in the corona. Magnetic trapping increases the

effective column thickness of the coronal X-ray source material beyond that which

actually separates the acceleration site from the transition region. It also decreases

the interval between the thick and thin target spectral indices for any one model.

As a generalisation obtained from a small number of studies, for most flares any

increase in the coronal magnetic field from the top of the loop to the transition

region is small. Only one of the studies which we are about to present required the

use in our models of a coronal magnetic field with increasing strength. That was

obtained because one flare was divisible into two regions having very dissimilar

X-ray fluxes but similar X-ray spectra. For that one flare, though, we were able

to obtain only an approximate lower limit to the degree of magnetic trapping

given in the form of the ratio of the magnetic field strength at the top of the

transition region to that at the top of the loop. We were not able to put a specific

value on the ratio of magnetic field strengths. This general weighting away from

strongly converging magnetic fields is compatible with the studies by Withbroe

(1978) and Levine and Pye (1980) based upon obtaining the correct differential

emission measure to Skylab EUV and soft X-ray measurements. Likewise our

generalization is compatible with the recent study by Petrosian (1982) based upon

the locations of impulsive microwave sources in which it was concluded that any

spatial variation of the coronal magnetic field strength would have to be slight.

The type of spatially resolved X-ray data which we do have available is X-ray

flux and spectral data with the beginnings of spatial resolution. There are two

sources of such data. One is the Hard X-ray Imaging Spectrometer (HXIS) on

board the Solar Maximum Mission satellite (van Beek et al. 1980; 1981) which
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was launched on February 14th, 1980, has six energy channels covering the range

3.5 - 30.0 keV, is capable of 8" X 8/; angular resolution (corresponding to ~

6000 km X 6000 km on the surface of the sun), and has a time resolution of 0.5

to 7s depending on the mode of operation. HXIS is the first instrument to have

imaging capabilities at hard X-ray energies but its sensitivity is such that only

strong flares with plentiful hard X-ray emission are capable of being imaged in

the higher energy channels (Duivjeman, Hoyng and Machado 1982). This severely

reduces the value of HXIS data for our modelling technique which requires that the

X-rays be of a high enough energy that the possibilty of thermal contamination be

low. Indeed, only one flare which has been seen by HXIS, that of April 10, 1980,

was bright enough and has been thoroughly enough reported to be of use to us

here.

The other source of hard X-ray data which has the beginnings of spatial

resolution is S. R. Kane and his coworkers. They have data from stereoscopic

observations of flares by two telescopes, one an X-ray spectrometer onboard the

ISEE - 3 (International Sun Earth Explorer - 3) spacecraft, and the other an X-

ray spectrometer onboard the PVO (Pioneer Venus Orbiter) spacecraft. The two

telescopes are capable of viewing the sun from widely separated positions and can

provide stereoscopic observational data of events which occur within both their

fields of view. The ISEE - 3 instrument (initially described by Anderson et al.

1978) has undergone recalibration and, in its current condition, is described by

Kane et al. (1982). It covers the energy range 26 - 3170 keV in twelve channels,

with time resolution better than 0.5s for the first four channels (up to photon

energies of 398 keV) and with somewhat poorer resolution in the higher energy
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channels. The PVO instrument was initially described by Kane et al. 1979 and

redescribed by Kane et al. 1982. It covers the range 100 - 2000 keV in four energy

channels and has time resolution comparable to that of the ISEE - 3 instrument.

The estimated uncertainty in the relative responses of the two instruments is given

as a calibration uncertainty estimated to be ^ 10% (Kane et al. 1982). These two

instruments are capable of rudimentary spatial resolution when a flare which is

viewed simultaneously by both of them is seen by one telescope as being partially

occulted by the solar limb, yet is in full view (unocculted on the solar disk) to

the other telescope. Two such observations of one flare provide hard X-ray data

from the whole flare and from just that part which was not occulted from either

instrument thus dividing the flare into two spatially distinct regions.

6.2 The flare of April 10, 1980.

We turn first of all to one flare which was imaged by HXIS. The flare, which

occured on April 10, 1980, was first reported by Hoyng et al. (1981) [ hereafter

HMD ] and has subsequently been studied and presented by Machado, Duivjeman,

and Dennis (1982) [ hereafter MDD ] and Duivjeman, Hoyng, and Machado (1982)

[ hereafter DHM ]. The flare showed soft X-ray type behaviour in the first three

HXIS channels (3.5 - 11.5 keV) indicating that the flare contained a volume of

plasma which was heated at the time of the impulsive burst and which then cooled

during the decay phase. The remaining three channels (11.5 - 30 keV) showed a

short lived hard X-ray burst of duration ~ 20s. HXIS was able to resolve the flare

into three distinct regions (cf. Figure (6.1)). Two of these regions (regions A and
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C) showed the largest count rates in the hard X-ray channels (11.5 - 30 keV}. The

other region (region B) produced most of the soft (3.5 - 11.5 keV) X-rays and had

weaker emission at hard X-ray energies than regions A and C. Regions A and C

were spatially separated with region B between them and all three regions could

be clearly separated in the X-ray images, i.e., there was little overlap of region B

into the pixels which imaged regions A and C. These three regions each covered

an area of 8" X 16", i.e., each filled two HXIS pixels, though the actual size of

the emitting regions may have been much smaller. During the impulsive phase the

hard X-ray time profiles of regions A and C showed a strong similarity to each

other. HMD compared the positions of regions A and C with Ha pictures from Tel

Aviv. To within the pointing accuracy of HXIS regions A and C were coincident

with the Ho; kernels. DHM, from an overlay of a magnetogram, placed regions

A and C on opposite sides of a neutral line, locating them in regions of different

polarity.

Based upon all these observations, the flare structure was described as being a

compact loop in the corona (region B in the HXIS field), with footpoints descending

into the chromosphere and seen as regions A and C. The footpoints brighten

simultaneously in hard X-rays and the loop peaks at a later time in the softer

X-rays. HMD give the observed number of counts over a 13.5 second integration

time during the hard X-ray burst for regions A, B and C, and these are reproduced

here in Table DC. The data clearly shows that the impulsive emission from regions

A and C is of a harder character than that from region B. HMD apply their fitting

routines to the hard X-ray count data for regions A and C and obtain a best fit

power law spectrum for the footpoints of 7 = 5.5 ±1.0. The HXIS hard X-ray data
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Figure 6 1 The dare which occurred at N12, W42 on April 10, 1980, as seen
by HXIS in the energy channel 16 - 22 keV (from Hoyng et al. 1981). The location
of the regions A, B and C are shown (see text). Each pixel corresponds to an
angular resolution of 8" x 8" which is equivalent to ~6000A-m x 6000km on the
surface of the sun

was not sufficient to rule out a thermal fit to the footpoint spectra, for which fitting

a multi-temperature hot plasma to the X-ray data would have required plasma

temperatures higher than 1Q8K. The Hard X-ray Burst Spectrometer (HXRBS),

also on the SMM satellite, observed the same event (but without any spatial
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resolution of the flare) and measured a power law X-ray spectrum for the whole

flare with a spectral index of 5.5.

MDD contrasted the emission between the footpoints and the loop in the range

16 - 30 keV and estimated the emission ratio (between footpoints and loop) at

these energies to be ^2:1. MDD add that what spatial overlap there may have

been in the HXIS images of the three regions would have smoothed the brightness

contrast between the regions. (When MDD apply their own modelling to the data

they allow for this overlap by subtracting a contribution equal to one third of

the loop emission from the footpoints.) This means that in the energy range 16

- 30 keV the footpoints are considerably brighter than the coronal loop and,

consequently, that the column thickness of the coronal loop was not large.

MDD and DHM compared the data to the X-ray height structure of the

dissipative thermal model of Brown et al. (1980) and Brown and Hayward (1981)

by using the hard X-ray modelling of Emslie (1981b). They reported that the model

predictions were in contradiction with the observations. They then applied a non-

thermal thick target model to the data, using the results of Hoyng, Brown and van

Beek (1976). They estimated the flux of high energy electrons and the power in

the electron beam, and integrated these over the burst duration. They derived an

upperlimit to the beam energy of 6 X 1029 ergs in electrons with energies E > EQ

for EQ = 20 AreV, or, which is equivalent, 1030 ergs for EQ = 16 keV. These

estimates are within the total flare energy budget of several times 1030 ergs but

are a large fraction of it. DHM also estimated the loop length to be 3.5 X 109 cms,

the column thickness of the coronal loop to be ATcorona < 5 X 1019 cm~2 and the
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Table DC

The flare of April 10, 1980.

HXIS Channel (keV)

11.5 - 16.0

16.0 - 22.0

22.0 - 30.0

A+C

305

95

36

B

174

27

4

(A+C)/B

1.8

3.5

9.0

= 5.5 from HXRBS (HMD)

Impulsive Burst FWHM = 20 seconds (MDD)

^Corona < 5 X 1019 Cm"2 (DHM)

loop length = 3.5 X 109 cms (DHM)

0.3 < nio < 1.4 (DHM)

Beam energy 1030 ergs above 16 keV (MDD)

Peak beam flux 2.8 X 1028 ergssec~l (MDD)

Sources are: Duijveman, A., Hoyng, P., and Machado, M. E., 1982, Solar Physics,

81, 137, [DHM]. Hoyng, P., Machado, M. E., Duijveman, A., and 21 others, 1981,

Astrophysical Journal Letters, 244, L153, [HMD]. Machado, M. E., Duivjeman, A.,

and Dennis, B. R., 1982, Solar Physics, 79, 85, [MDD].

coronal denisty to be 0.3 < HIQ < 1.4 where HIQ is the particle density in units of

1010 cm~3.
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Let us return to the data given by HMD. We shall now apply our modelling

technique to this hard X-ray data and shall obtain a best fit of our non-thermal

models by finding appropriate values for the physical parameters in the Fokker-

Planck Equation. We shall be able to improve substantially upon the rough es-

timates obtained by the earlier studies.

We shall ignore for now any cross-contamination between regions A, B and

C and shall add together the counts for the footpoint regions A and C. This we

do because our model considers only half the coronal loop and one footpoint. As

region B covers the whole coronal loop we must either halve the counts of region B

or include together both footpoints. We take the latter course so that our derived

electron beam strengths will be appropriate to the whole flare and not just half.

We cannot use the HXIS count data directly to obtain an estimate of the hard

X-ray spectral index, as each energy channel has a different counting efficiency and

a different energy resolution. However, we can use the channel-by-channel ratios of

the counts for B to the counts for A + C to obtain the difference between the best

fit spectral indices for B and for A + C. By plotting the (A + C)/B data given in

Table IX we obtain 7 B — 7 AC — 2.5. We use this with the HXRBS estimate of the

index for the whole flare which was 7^ ~ 5.5 We can, then, vary our trial model

to obtain the observed flux ratios between the footpoints and the coronal loop

(regions A + C and B) in one-keV-wide energy channels at energies of 11.5, 16,

22, and 30 keV. These are the numbers we shall be fitting with our results. Their

precision can be no greater than the precision of the quoted X-ray counts which,

unfortunately, owing to the smallness of the number of counts in the higher energy
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HXIS channels and to the fact that HXIS only gives us three energy channels to

work with, is not high.

We now have to use these X-ray data to obtain the parameters and coefficients

in the Fokker-Planck Equation. We begin with the fact that both loop and foot-

points are well fitted by power law spectra over the range 11.5 - 30 keV and that

the difference in the indices is 7 B — 7 AC — 2.5. In § 5.2 we saw that the average

difference between thick and thin target spectra for our models was ~ 1.7 and

that injecting a very narrowly collimated electron beam (small a0
2) gave rise to a

low energy steepening of the thin target spectrum. 7e — 7AC) at 2.5, therefore in-

dicates that we should choose a small value for a0
2, say, 0.04 for our first modelling

attempt. Our model results show clearly that the gap between the thick and thin

target indices closes as the amount of magnetic trapping is increased. Therefore,

we should also set d\nB/ds = 0.

HXRBS measured a whole loop spectral index of 5.5. To reproduce this we can

try an electron spectral index 5 = 6.0. We have no clear indication of the column

thickness of the coronal loop Ncorona other than that obtained by DHM. We shall

adopt their value for the distance between the top of the coronal loop and the

footpomts (1.8 X 109 cm) and shall use a uniform coronal density of 2 X 1010 cm~3.

This gives a coronal loop column thickness of 3.6 X 1019 cm~2 which is compatible

with the DHM estimate. Once we have the results from running our first model

we can adjust the coronal density to give better agreement with the HXIS data.
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Our first trial model has the parameter set

8 = 6.0;

<*0
2 = 0.04;

dlnB/ds = 0.0;

^Corona = 3.6 X 1019 Cm~2.

We ran this to see how well it would fit the HXIS data quite expecting to have

to make several iterations before we obtained the best fit model.

We looked at the results from this trial model and found:

1) Our value of 7 B — 7 AC f°r H-5 - 30 keV X-rays was 2.9. This was too high

and suggested that a larger value of o/0
2 was needed.

2) The spectral index for the whole flare was 5.5 which told us that we did

not need to change our value of 6.

3) The X-ray flux ratios between the loop and the footpoints at 11.5, 16, 22

and 30 keV were all betweeen a factor of two or three too high. This meant that

the coronal column thickness used was approximately 2.5 times too large and that

our coronal density should be reduced by this much. Bearing in mind that a larger

value of QQ would increase the loop flux relative to the footpoints flux (cf. Figure

(5.15)) we reduced the coronal density by a factor of three.

Another iteration beyond this one and we had a good fit to the HXIS data

(within the uncertanties in the data) with a model having
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6 = 6.0;

a0
2 = 0.1;

^Corona = 1-4 X 1019 cm~2;

Beam energy 2.7 X 1029 ergs above 16 keV;

Peak beam flux 4.4 X 1027 ergs sec"1.

Given the way we used the X-ray data to obtain the beginning values for

our model parameters and then iterated to converge upon a best fit model, this

parameter set is quite unique. There is a small amount of leeway for increasing

the value of d\nB/ds provided we compensate by reducing a0
2; the two changes

counteract each other for very small values of d\nB/ds. Any larger values for

dlnB/ds rapidly make the model incompatible with the data as then no value

of oiQ2 would be able to reproduce the required 73 — 7 AC- When we scale our

model to the MDD peak flux estimate of 25 photons cm"2 sec"1 keV~^ at

20 keV we obtain a peak power in electrons with energies greater than 20 keV

of 4.4 X 1027 ergs sec"1. This is significantly lower than the MDD estimate of

2.8 X 1028 ergs sec"1 above 20 keV . If we take a FWHM for the impulsive burst

of 20 sees (MDD) we obtain a beam energy of 2.7 X 1029 ergs in electrons with

energies greater than or equal to 16 keV. This we can contrast with the DHM

estimate of 1.0 X 1030 ergs.
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Several points should be emphasized:

1) Our estimate of the column thickness of the coronal loop (that is, the

entire coronal loop, not just one half of the arch) is /Vcor0na = 1-4 X 1019 cm~2.

Active region values of the column depth of the transition region N^z are typically

~3 X 1019 cm~2 (Basri et al. 1979). Empirical flare estimates, which are often

based upon the later stages of a flare's developement by which time there has

been considerable evaporation of chromospheric material into the corona, tend to

obtain higher values for N^z (~ 1021 cm~2; Emslie, Brown and Machado 1981).

These HXIS results therefore indicate that models of the impulsive stage and of

impulsive phenomena should use not late flare model atmospheres but active region

atmospheres.

2) DHM and MDD provide rough estimates of the energy and power in the

beam and note that their values are smaller than (though they are large fractions

of) the total flare budget. One problem which has arisen from previous non-

thermal modelling of flares has been the high efficiency required of an acceleration

mechanism which puts a large fraction of the total flare energy into the directed

motion of the accelerated electrons and not into heating the plasma. The estimate

for the required beam energy given by our full Fokker-Planck analysis of the

beam dynamics and with the relativistic Coulomb and X-ray bremsstrahlung cross-

sections is considerably lower than the estimate given by the less exact methods

used by MDD and DHM. The HXIS data upon which our modelling is based is

far from precise and as a consequence our value for the beam energy can be no

more than an estimate. However, our estimate of the peak beam power is less than

the MDD and DHM estimates by a factor of more than six. Properly calculating
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the electron beam dynamics may allow a much needed lessening of the efficiency

requirement on the acceleration mechanism from a figure of ^20% (Duivjeman,

Hoyng and Machado 1982) - a figure worrisomely high - down to a figure of ~3%,

which is altogether much easier to accomodate.

3) It is the difference between the X-ray spectral indices of the loop and

footpoints which allows us to treat the loop as a thin target and the footpoints

as a thick target. It is that the difference is greater than 1.5 which provides a

measure of the collimation of the electron beam. Under these circumstances the

X-ray data can provide a measure of the pitch angle spread of the injected beam

even in the absence of spatially resolved polarization measurements. With our full

modelling technique the X-ray data shows that the electron beam is neither too

highly collimated (an injected beam with all the electrons having a pitch angle of

zero would have given a thin target X-ray spectrum which would have been far

too steep) nor is it almost isotropic. Our best fit model has a value of a^ = 0.1.

If we were to allow for the possibility that some of the loop hard X-rays were

produced by a hot thermal source, then subtracting those thermal hard X-rays

would harden the loop X-ray spectrum and would lead to a larger value of a^ in

our best fit model. We then treat our derived value of a0
2 = 0.1 as a lower limit

for this parameter. The electron beam is, then, less than highly collimated.

With this study of the flare of April 10th, 1980 we have shown how our

modelling technique can be used in conjunction with spatially resolved flare hard

X-ray data to derive values for all the model parameters. With our discussion we

showed how we incorporated various aspects of the hard X-ray data to arrive at an

initial set of values for the model parameters and how the final model parameters
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are interrelated in that a change in the value of one parameter can require an

adjustment in the values of the others. Thus used, the X-ray intensity and spectral

data is able to reveal estimates of the electron beam collimation and the rate of

magnetic field convergence as well as the electron spectral index and the column

depth to the transition region.

Let us now turn our attention to the second body of data selected for inves-

tigation. These come from steroscopic observations of fortuitously positioned flares

by two X-ray telescopes which are separated by a wide viewing angle. Though

neither of the X-ray telescopes has imaging capabilities, their relative observing

characteristics are well known. Consequently, any flare which is in full view to

one device and is partially occulted from the other is effectively resolved into

two spatially distinct parts: an upper part which is visible to both devices and a

lower part which is seen by only one. Occultation of the lower part of a limb flare

is provided by the fact that the chromosphere is relatively transparent to hard

X-rays, whereas the photosphere is opaque. The transition from transparency to

opaqueness is very rapid as the density scale height at the top of the photosphere

is so short (McKenzie 1975).

We shall begin by looking at one flare which was viewed stereoscopically on

Oct 5, 1978. Then we shall look at a series of three flares which occured in rapid

succession on Nov 5, 1979 and which came from the same active region. These four

flares have been discussed recently by Kane (1983) and have been the subject of

earlier studies: Oct 5, 1978 in Kane et at. (1979) and Brown, Hayward and Spicer

(1981), but see also Kane et al. (1982), and Nov 5, 1979 in Kane et al. (1982).
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6.3 Stereoscopic observations of the flare of October 5, 1978.

We begin with the flare of Oct 5, 1978. This flare occurred in an active region

approximately 15° behind the east limb of the sun, which led to the flare being very

highly occulted from ISEE - 3 and only slightly occulted from PVO . The angular

separation between the two telescopes was 12.5°. ISEE - 3 saw only those parts

of the flare which were at altitudes in excess of 25,000 km above the photosphere

and PVO those above 700 A r m ' . Using these occultation heights, Brown, Hayward

and Spicer (1981) have attributed a column thickness of NI £ 1019 cm~2 to the

upper region seen by ISEE - 3 and a column thickness of Njj ̂  5 X 1021 cm~2 to

the larger region seen by PVO. This lower limit to N% is based upon a quiet sun

atmospheric density profile and is in all likelihood a rather conservative estimate.

Using active region density profiles (Basri et al. 1979), we derive a slightly higher

estimate of N^ — 1022 cm~2. This column depth is large enough to stop those

beam electrons which are injected with energies ^ 250 keV, but is not quite large

enough to allow PVO to see the entire flare. Our results can be used to obtain not

just the source column thickness visible to ISEE - 3, but also that visible to PVO.

The results given by Kane (1983) are in the form of a spectrum for ISEE - 3 and

in the form of flux values at mid-channel energies for PVO. The ISEE - 3 spectrum

These estimates of the minimum source heights visible to ISEE - 3 and PVO need not
be precisely known, and are not of themselves very interesting. The exact values of the
occultation heights depend upon the exact position and orientation of the flare which,
because the flare occurred behind the solar limb, are not available. Our work here will
give estimates of the column thicknesses of the source regions visible to the ISEE - 3 and
PVO telescopes. These can then be used to obtain occultation heights, though to do so
requires that we make uncertain assumptions about the density height structure of the
flaring plasma. The results are only of use for checking compatibility with the estimates
offered by Kane (Kane et al. 1979; Kane 1983).
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is a fit to the observed counts in the five energy channels from 26 keV to 121 keV'.

For comparison with the PVO results at higher X-ray energies, this spectrum

is extrapolated with a constant spectral index. The PVO fluxes at mid-channel

energies (150, 350, 750 and 1500 keV) are obtained from the PVO channel counts

by a fitting routine which uses the assumption that PVO sees the same spectral

index as does ISEE - 3 (S. R. Kane, personal communication). This is unfortunate

because the PVO results themselves do not support this assumption. If we take

the quoted PVO fluxes and the given ISEE - 3 spectral index, we can deconvolve

the PVO results to obtain the actual counts taken in each of the PVO channels.

We can then fit a spectrum through these data points'. To the first three PVO

channels we obtain a best fit of 7pvo — 2.3. If we use just the first two channels,

we obtain 7pvo — 2.1. The datum for the third PVO channel lies somewhat

below the extrapolation of the spectrum taken from the first two channels. This

we expect owing to the fact that PVO cannot see the flare all the way down to the

photosphere; an increasing amount of the higher energy X-rays are occulted from

PVO as well as from ISEE - 3. We shall use the low energy channel estimate of

7 PVO — 2.1 to indicate a first guess electron spectral index on the basis of PVO

being able to see enough of the flare that the X-rays in the first two channels are

thick target. We shall then fit our results to the PVO mid-channel count rates and

adjust NZ to give the correct channel 3 flux. The ISEE - 3 data is more accurate

This process of obtaining the original counts from the quoted mid-channel flux values
and then recalculating self consistent mid-channel flux values assumes that the PVO
detectors have a uniform response function across the width of each channel. Any error
introduced by non-uniformity in the detector response functions should not be large for
the re-evaluation of the PVO spectrum obtained here.
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than the PVO data as it is a spectrum fitted to data from five relatively narrow

channels at energies from 26 - 121 keV.

The results to which we shall fit our model are then:

ISEE - 3

A power law spectrum 5.5 X 104 k(keV)~^ 4 photons cm~2 sec"1 keV~l from

26 to 121 keV, extrapolated up to 750 keV.

Flux = 2.45 X 10~3 @ k = 150 keV,

— 1.39 X 10~4 @ k = 350 keV,

= 1.04 X 10~5 © k = 750 keV.

PVO

Flux = 0.32 X 10"° @ k = 150 keV,

= 5.25 X 10~2 @ k = 350 keV,

= 7.30 X 10~3 @ k = 750 keV.

Flux ratios Flux (ISEE - 3)/Flux (PVO)

Ratio = 7.66 X 10~3 @ k = 150 keV,

— 2.65 X 10~3 @ k = 350 keV,

= 1.42 X 10~3 @ k = 750 keV.
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We begin by estimating 5. The PVO flux at 150 and 350 keV are nominally

fit by a spectral index of 2.1, the ISEE - 3 data by an index of 3.4. We anticipate

that the PVO observations represent a thick target spectrum up to an energy

~500 keV and that the ISEE - 3 observations represent a relatively thin target

spectrum down to 26 keV. We therefore select a first try value 6 = 2.6. We can

take N\ ~ 1019 cm~2 as suggested by Brown, Hayward, and Spicer (1981) for the

column thickness of the source material visible to ISEE - 3. We shall need to take

N2 ^ several X 1022 cm~2 in order to make the first two channels of the PVO

data be thick target. As the difference in spectral indices ISEE - 3 to PVO is no

larger than the average for thin to thick targets for our models we shall also begin

with a medium ag2 of 0.4 and with d\nB/ds = 0.

When we begin fitting a model to this flare one thing quickly becomes obvious.

This is that for ISEE - 3 to see thin target X-rays down to 26 keV and for PVO

to see thick target X-rays up to 500 keV, we would need A/2 to be very much

larger than NI, sufficiently so that we would then obtain flux ratios ;< 10~5, that

is, about two orders of magnitude lower than was observed. If we decrease A^

or increase NI enough to give a better agreement between the calculated and

observed flux ratios, we make either the PVO results almost thin target or the

ISEE - 3 results almost thick target, severely reducing the gap 7 BEE - 3 — 7 PVO

from 3.4 — 2 1 = 1.3 to < 0.7. We need to keep 7 ISEE - 3 — 7 PVO as high as 1.3 and

at the same time achieve the correct flux ratios. One way to do this is to increase

the collimation of the electron beam by reducing the value of OQ. This steepens

the thin target spectrum and delays the low energy flattening which comes in with

increasing column depth. We can also use the fact that the ISEE - 3 spectrum was
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a fit to the range 26 - 121 keV and that the flux values at the higher energies (150,

350, and 750 keV) were obtained by extrapolation with constant spectal index. If

we increase NI the X-rays from the upper part of the flare seen by ISEE - 3 will

become intermediate between thick and thin target and the spectrum will develop

a gentle knee separating the low energy and high energy ends of the spectrum.

The index for the low energy X-rays will be smaller than that for the high energy

X-rays. It is the spectrum over the range 26 - 121 keV which needs to have an

index of 3.4. The spectrum for the range above 121 keV can be steeper provided we

remember that the flux ratios we were given were obtained from the extrapolated

ISEE - 3 spectrum above 121 keV and not from the calculated spectrum. We can,

then, increase N\ to increase the ISEE - 3 flux provided we reduce a0
2 to ^eeP

7 ISEB- a — 3.4 for 26 - 121 keV X-rays. We then need to search for one value of

N<2 which will simultaneously give the correct spectrum to the PVO mid-channel

fluxes and the correct flux ratios between the extrapolated ISEE - 3 spectrum and

the PVO counts. If no single value of A^ will give this, then we need to adjust a^

and N\ (and maybe also <5) until we find one value which will.

After some experimentation, the model which best fit the flare was:

S = 2.6;

af = 0.04;

NI = 3.8 X 1020 cm"2;

AT2 = 2.6 X 1022 cm'2.
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This fitted the ISEE - 3 data between 26 and 121 keV and the flux ratios

(between PVO channels and between PVO and ISEE - 3) within ±5% of those we

were trying to achieve. There are, again, a couple of comments to be made:

1) Our best fit model has a very small value for a0
2. This was obtained from

the necessity of keeping a large value for 7 ISEE -3 — 7 PVO and not having flux

ratios which were too small. A large a0
2 was unable to give a satisfactory fit to

the data, for if we had adjusted NilN% to give the correct flux ratios for a large

ag2, we would have needed to settle for 7 ISEE-3 ~ 7pvo~0.7. If we draw from

this a requirement on the size of the errors in the PVO data in order for us to not

be able to use the observations to contraindicate a large a0
2, then the errors in

the PVO data would have to be large; the PVO counting rate in the third channel

would have to be in error by a factor of three or more, assuming the counting

rate in the first channel to be good. This is well beyond the PVO calibration

uncertainty (Kane et d. 1982) and beyond the indicated error in the data (Kane

1983). Therefore we are able to conclude that this particular body of data requires

a model with a highly collimated injected electron beam. The best fit value to a0
2

is 0.04.

2) The early estimates of the position of the flare and consequently the amounts

of the flare visible to the two telescopes can be revised in the light of our N\ and N%

values. The flare occurred behind the left limb of the sun. The only active region

close to the limb with which the flare could have been associated was McMath

15587, located ~ 15° behind the east limb at the time of the flare. If we use our

value of A/2 and the atmospheric results of Basri et al. (1979), the minimum altitude

visible to PVO is approximately 550 km above the photosphere. This places the
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flare roughly 14.7° behind the limb as seen from the earth. Our results, then,

do not contradict the locating of the flare in McMath 15587. Our value of N\,

at 3.8 X 1020 era"2, is substantially above that estimated by Brown, Hayward

and Spicer (1981) and suggests that a large volume of flare material was visible

to ISEE - 3. Owing to the flare being positioned well behind the solar limb the

altitude of the top of the flare loop must have been large for such a large volume

of the coronal loop to have been visible. If we assume that that part of the coronal

loop visible to ISEE - 3 was of roughly the same length as the part occulted away,

i.e., 25000 km, we obtain densities within the loop of ^lO11 cm~3. Such high

values for the thickness and density of the coronal loop suggest that the flare was

seen late in the impulsive stage for which a substantial amount of chromospheric

evaporation had taken place.

With this flare we have shown how the need to fit one non-thermal model

to the X-ray data from two telescopes has enabled us to obtain a unique set of

parameter values and hence to obtain a complete description of the flare. Again,

it was having two X-ray spectral indices which were substantially different from

each other which allowed us to determine a value for a0
2, the parameter measuring

the collimation of the electron beam, and dlnB/ds, the measure of the magnetic

field convergence. We found that the data required a strongly collimated electron

beam and no field convergence. We can also use the same property to show the

uniqueness of the derived model. Having PVO see a harder spectrum at high X-

ray energies than ISEE - 3 saw at low energy X-rays meant that N% had to be

large. The flux ratios then required that N\ be sufficiently large, for which the

top volume seen by ISEE - 3 was found to be intermediate to thick target for low
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energy X-rays. Keeping the ISEE - 3 spectral index the correct amount above the

nominal PVO index then required that a0
2 be small and d\nB/ds be negligible.

If either of these last two conditions is relaxed the model rapidly ceases to fit the

data. Consequently, the model's uniqueness is assured.

6.4 The three similar flares of November 5, 1979.

We shall now discuss Kane's results for the three stereoscopically observed

flares of November 5, 1979. The three flares came from the same active region

(Hale region 16413) and occurred within a total period of six hours. They were

all within full view of ISEE - 3 and were increasingly occulted from PVO, and all

three had very similar spectra. Because of their similarity there is a temptation,

as noted by Kane, to treat the observations of the three flares as if they were

a sequence of three observations of one flare. In this manner Kane obtains three

points on a plot of X-ray intensity vs. height, and a spectrum to fit each point. We

can attempt to fit these three points using our modelling techniques. The data and

results for these three flares are presented by Kane (1983) and were first published

in Kane et al. (1982).

We shall label the flares in chronological order as flares 1, 2 and 3 (they occur

as flares 3, 4 and 5a in Kane (1983)). Flare 1 occurred at a location S 13.4°, E 49.0°.

This gave ISEE - 3 a viewing angle of 51.6° and PVO one of 90.0°, the viewing

angles having an uncertainty of ~1°. Both instruments were able to see this

impulsive burst in its entirety, and the measurements from the two telescopes were

237



Chapter VI: X-ray Observations

in close agreement. The ISEE - 3 data from the first 8 channels (26 - 562 keV) and

the PVO data from the first three channels (100 - 1000 keV) are very well fit by a

power law spectrum with an index of 3.0. Their respective flux measurements agree

to better than 10%. This is consistent with the calibration uncertainty between

the two devices. Flare 2 occurred four hours and eight minutes later at a location

S 14.2°, E 44.6°. This gave ISEE - 3 a viewing angle of 47.8° and PVO one of

94.3°. Consequently, ISEE - 3 could see the whole flare whereas PVO was able

to see only those parts of flare 2 which were more than ~ 2000 km above the

photosphere. The ISEE - 3 data from 26 - 900 keV is well fitted by a power law

spectrum with an index of 3.3. The PVO data in the range 100 - 500 keV has a

slightly lower flux, as may be expected, but is clearly consistent with the ISEE -

3 spectrum. Flare 3 occurred at S 15.4°, E 44.0° almost two hours after flare 2,

and the ISEE - 3 and PVO viewing angles were 47.7° and 94.8°, respectively. This

allowed PVO to see all those parts of flare 3 which were at more than ~ 2500 Arm

above the photosphere. Again, the spectral shapes from the two observations are

closely similar, but with the PVO flux now being substantially less than the ISEE

- 3 flux. The spectral index based upon the ISEE - 3 26 - 900 keV channels was

3.15.

The three flares, as well as having very similar spectral indices (3.0, 3.3 and

3.15) were also of nearly equal intensity to PVO. As the third flare was substantially

occulted from PVO this means that the three flares were not of equal intrinsic

brightness. From the ISEE - 3 measurements, flare 3 was approximately a factor

of ten brighter during the impulsive phase than was flare 1. This, on its own, need

not necessarily deter our hopes of treating all three flares as three examples of one
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"typical" flare. However, there are other reasons for questioning this approach. For

each of the three flares both PVO and ISEE - 3 measured the same spectral index.

Yet flare 3 was strongly occulted from PVO which was only able to see ~ 7% of

the hard X-ray flux. Because PVO and ISEE - 3 measured the same spectral index

over the 100 - 500 keV range the flux ratios (PVO to ISEE - 3) at 150 and 350 keV

(the PVO mid-channel energies) were the same, i.e., 1%. However, on the basis of

our non-thermal model results, we would expect the altitude above which 7% of

the 150 keV X-rays were emitted to have been higher than that above which 7%

of the 350 keV X-rays were emitted. The PVO to ISEE - 3 flux ratios at these two

energies would, in that instance, be different, with the flux ratio at 150 keV being

larger than that at 350 keV.

We use the expression obtained in Chapter V for I(k, r) (equation (5.2.23)) to

see what source thicknesses are required for 7% of the 150 keV and 7% of the

350 keV X-rays. Using the nominal value 5 = 4, equation (5.2.23) predicts that 7%

of the 150 keV X-rays would come from above a column depth of 1.1 X 1020 cm~2,

while 7% of the 350 keV X-rays would need a column depth of 4.4 X 1020 cm~2.

These two column depths would normally correspond to the upper chromosphere or

above and would be separated by a distance equal to many times the photospheric

density scale height. If the levels in the photosphere where the 150 and 350 keV

photons are occulted are to differ from each other, they would do so by a distance

of order only one photospheric density scale height.

One way that we can reconcile having equal PVO to ISEE - 3 flux ratios

at 150 and 350 keV for both flare 2 and flare 3 is to invoke a large amount of

magnetic trapping of the electrons. We need to invoke a large enough degree of
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trapping that the trapping rate becomes essentially independent of the electron

energy for electron energies of 150 keV and above. As we increase the degree of

coronal magnetic trapping in our models, a larger and larger percentage of the

X-ray flux comes from above the transition region. In our models we would need

to juggle both dlnB/ds and the coronal density in order to achieve flux ratios

which are independent of X-ray energy. Kane (1983) quoted altitudes of 2000 Arm

and 2500 km above the photosphere for the occultation altitudes of flares 2 and 3,

and flux ratios at 150 and 350 keV of 45% for flare 2 and 7% for flare 3. A large

degree of magnetic trapping in our models would be able to make 45% of the very

high energy X-rays come from above an altitude of 2000 km. But if, at the same

time, only 7% of the same X-rays is to come from above 2500 km altitude, then

either the flare loop is exceptionally short (maximum altitude « 2600 Arm) or all

of the magnetic trapping is effected in the last 500 Arm of a loop which is much

taller. Neither of these options is quite satisfying and both suggest that there is

difficulty in using these three separate flare observations as three examples of one

"typical" flare.

What we shall do is this. Because all the relevant electron (Chapter ffl) and

X-ray (Chapter V) results we have given so far have used a constant dluB/ds,

that is, have had the magnetic trapping distributed evenly throughout the coronal

loop, we shall not now attempt to model a flare having all the magnetic trapping

effective over only a small part of the loop. We shall, instead, construct a model

which has a sufficiently strongly converging magnetic field that the X-ray flux

ratios are roughly constant across the interval 100 - 500 keV, and we shall obtain

estimates of the column thicknesses of material visible to PVO for flares 2 and 3.
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This will, of course, show that flare 3 presented a much smaller emitting volume to

PVO than did flare 2 despite the two flares having very similar occultation heights.

We saw from the electron and X-ray results how a large degree of magnetic

trapping is manifested in our models. The downward electron flux or current falls

with the increase in the magnetic field strength (ef. Figures (3.10) amd (3.11)). The

electrons bounce backward and forward across the loop with a small probability

of escaping from the trapping region with each attempt. There is, then, a small

current of electrons which passes out of the trapping region (the region within

which the magnetic field dominates the electron beam evolution, i.e., the corona)

and into the chromosphere. Because this escaping current is small compared to

the downward current at the apex of the loop, the upward current (the current of

mirrored electrons travelling back toward the loop apex) is almost as large as the

downward current at each point within the coronal loop. The generated X-rays are

produced by both the upward and the downward electron flux. For this reason, the

X-ray flux at any point within the trapping region is controlled by the behavior of

the magnetic field and the total column thickness over the entire trapping region

and not just the local field strength and particle density about each point.

The parameters in our models which we need to adjust in order to obtain the

correct X-ray fluxes are, then, the amount by which the magnetic field converges

over our entire trapping region and the total column thickness of that region. This

is in contrast to the more usual technique for adjusting the model parameters which

is to adjust these parameters only for the region between the top of the loop and

the occultation height. If the trapping region extends below the occultation height,
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then what happens to the electron beam below the occultation height affects the

production of X-rays above it.

Table VIII and Figure (5.19) show that, for high energy X-rays, if the coronal

column thickness is small, the majority of the X-rays can still come from the

chromosphere even if the degree of magnetic trapping is large (cf. Model 9, Figure

(5.19)). In this case, the flux ratios (corona to chromosphere) will still be energy

dependent. To obtain flux ratios which are roughly independent of energy we

need to have a situation where the large majority of the X-rays are emitted from

within the trapping region itself. Consequently, we need not only a large amount of

magnetic trapping but also a substantial column thickness for the trapping region,

Nfa, in order to make the X-ray flux ratios relatively constant over the interval

100 - 500 keV. The 150 Are V and 350 keV flux ratios will converge as the coronal

column thickness is increased.

In our models we need to find values of B(N\iZ)/B(Q) and N^z which are large

enough to make the 150 keV and 350 keV flux ratios roughly equal. We use the

relative calibration uncertainty between the PVO and ISEE - 3 X-ray telescopes to

indicate that the calculated X-ray flux ratios at 150 and 350 keV need be no closer

than within 10% of each other. Having them this close quarantees that >95% of

the 150 and 350 keV X-rays will be generated in the corona. We then need to find

the depths within the trapping region (corona) above which 45% and 7% of the

X-rays are produced. These depths will correspond to the occultaion heights for

flare 2 and flare 3, respectively.

Increasing either B(N\iZ)/B(Q) or Wtz will make the 150 and 350 keV flux

ratios converge. Therefore the models will be able to give only a lower limit to
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for each B(Niz)/B(0) or, alternately, a lower limit to B(NtiZ)/B(Q) for each 7Vtz.

If we reduce A^z, we need to increase B(N^Z)/B(0) by a commensurate amount

in order to keep the flux ratios within 10% of each other. Likewise, if we reduce

B(Ntz)/B(Q), we need to increase A^z, except that if we reduce B(N^Z)/B(0) far

enough, the required value of A^z will be so large that the magnetic field will no

longer dominate the electron beam evolution and Coulomb collisions will again

become important. At this stage the flux ratios will begin to diverge again. We can

obtain a rough estimate of this minimum value of B(N^Z)/B(0) below which no

value of N^z is able to give flux ratios which are within 10% of each other.

We ran a series of models (all with a0
2 = oo) in order to obtain pairs of values

B(N^Z)/B(Q) and A^z which gave flux ratios at 150 and 350 keV (the fraction of

the total 150 (350) keV emission which is generated in the trapping region) which

were within 10% of each other, and which gave a whole loop spectral index of

~ 3.2. One such model had

6 = -2.5,

Niz = 1019cm-2,

B(Niz}/B(0) = 150.

For this model the column thicknesses of material visible to PVO were ~ 1.5 X

1018cm~2 (flare 2) and ~ 2 X 1017cm~2 (flare 3). In creasing B(N\jZ)/B(0) allowed

us to reduce A^z by an approximately equal amount. Decreasing B(N^Z)/B(0)

required that we increase A^z by somewhat more than an equal amount. Another

suitable model had
6 = -2.5,

Ntz = 5 X 1019cm-2,

B(Niz)/B(0) = 60.
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(B(Ntz)/B(Q) reduced by a factor of 2.5 from the previous model and A^z increased

by a factor of 5) for which the source thicknesses were ~ 8.6 X 1018crrj~2 and

~ 1.1 X 1018cm~2, respectively. Further decreasing B(N^Z)/B(0) required that

Nfa rapidly increase and from then on no value of N^z gave adequate flux ratios.

We therefore estimate the lower limit to the amount of coronal trapping, as given

by the ratio of the magnetic field strength at the transition region to that at the

loop apex, at ~ 60.

In this study we used the fact that the PVO to ISEE - 3 flux ratios were

constant across an energy interval to indicate that any model constructed to fit the

data would need a large amount of coronal trapping of the electrons. The models we

used probably do not represent well the actual flares themselves, though we cannot

know whether it is more likely that the flares had a highly uneven distribution of

trapping throughout the coronal loops or that flare 3 had an exceptionally short

loop. The value of the models is primarily to show how our modelling technique is

to be used with flare data of this type and to put a numerical value on the amount

of magnetic trapping indicated.

6.5 Some recent polarization results.

While this thesis was being written, a preprint was circulated containing some

new and very timely results. Tramiel, Chanan and Novick (1984) reported the

flight of an X-ray polarimeter onboard the Space Shuttle Columbia and their

observations of several solar flares on March 29, 1982. Though their experiment
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suffered from a certain amount of detector contamination and though one may

raise an objection to their in-flight calibration method, these results are probably

the most reliable flare polarization measurements currently available. The authors

observed seven flares in all, five of which were grouped within 18 degrees of disk

center.

Of the seven flares observed the authors used the two which were closest to disk

center for the in-flight calibration of their polarimeter. They assumed that the X-

rays from these two flares would be unpolarized by virtue of the flares' being so near

to the disk center. This assumption can be challanged. Formally, the measurement

of a polarization requires mention of both the polarization vector's magnitude and

its orientation. The reporting of its orientation requires the definition of a reference

plane and the one usually taken is the plane containing the line of sight and the

normal to the sun at disk center. For a flare positioned at disk center, this reference

frame cannot be defined. Therefore, neither can the direction of the polarization

vector. However, this need not imply that the polarization vector is itself a null

vector. A flare produces photons independently of whether or not the photons are

seen and their polarization measured. The beam of photons streaming away from

the sun in a direction parallel to the local surface normal will have a polarization

vector with both a magnitude and a direction, and these can be measured with

the same techniques as for any other beam of photons. The measurement of the

polarization direction is rendered ambiguous owing to the lack of a reference plane.

However, the measurement of the polarization magnitude need not be null. There

is, perhaps, a tendency to confuse this behavior of the polarization vector when

seen along the polar axis of the reference frame with the necessity that a beam
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of radiation be unpolarized when it is emitted in the forward direction in the

emission frame. In the emission frame the usual reference plane, which is defined

as that containing the direction of motion of the emitting particle and of the

photon, cannot be defined owing to the fact that the two required directions are

parallel and coincident. However, in this case there is also a physical symmetry

whereby the emission process recognizes no preferred plane with which to locate

the direction of linear polarization. Hence the net linear polarization, which is the

sum of many vectors each having a randomly selected orientation in space, must

necessarily be zero.

This confusion may have led to an invalid calibration of the polarimeter. The

effect of this would be to redefine the quoted polarization results to be polarizations

relative to that of the two calibration flares. The question of what the absolute

polarization of these two disk center flares may have been, were it not zero, remains

unanswerable. Proceeding with this one qualification, the authors Tramiel, Chanan

and Novick measured flare polarizations which were consistent with a random

distribution of statistical fluctuations about zero polarization. They interpretted

this as indicating a null polarization for all the flares. More particularly, they

singled out one of their observations, that of a flare which was well removed from

the solar disk and for which they observed separately the early impulsive phase.

This flare was also observed by ISEE - 3 which allowed for an independent estimate

of the flare's spectral index. For this one flare the authors recorded "no significant

polarization", and quoted their results as 3.4±2.2% for the polarization integrated

from 5.0 to 21.1 keV. The results for each energy channel were considerably more

noisy and showed an increase in the X-ray polarization with channel energy. If real,
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this increase in the polarization with X-ray energy would indicate that the lower

energy results were partially contaminated by an admixture of purely thermal (and

hence presumably unpolarized) emission. If so, the effect of this contamination

upon the integrated (over X-ray energy) polarization results would be to reduce

the measured polarization below that which would otherwise have been observed.

We may now look at the implications of this latest low polarization result for

our non-thermal flare modelling. The authors accept that a low measured polariza-

tion implies that the source electrons are essentially isotropic. They compared their

data with the several theoretical results available in the literature, including those

contained in Leach and Petrosian (1983) which are drawn from the research con-

tained within this thesis. They found that their data were marginally inconsistent

with a model having small a0
2 and large d\nB/ds, which implied that they were

strongly inconsistent with a model having a small a0
2 and zero d\nB/ds. The

authors claimed that their data were consistent with a model having a0
2 = oo,

that is an isotropically injected electron beam.

We are in a position where we can select and use models which are more

appropriate to their particular observation than the ones which they drew from

Leach and Petrosian (1983). This allows us to give a better indication of how well

non-thermal models can fit their results than could the authors. The crucial piece

of information which we need in order to fit an appropriate model is the X-ray

spectral index. This can be obtained from the ISEE - 3 observations. Over the

energy range 11.6 keV < E(keV) < 100 keV the X-ray spectrum had an index of

3.3. Over the lower energy range 5 - 11.6 keV the index was 7.2. This strongly

suggests that the lower energy photons (5 - 11.6 keV) were a mixture of thermal
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Figure 0.2. A comparison between the measured polarization for the impulsive
phase of the flare of March 29, 1982 (taken from Tramiel, Chanan and Novick
1984) and the results from two models. The flare had a spectral index of 3,3 and
therefore the two models have <5 = 4. The solid line corresponds to a model with
G0

2 = 0.4 and a coronal magnetic field of constant strength. The dashed line
corresponds to a model with stronger beaming (a0

2 = 0.1) and a magnetic field
which increases in strength by a factor of twenty over a coronal column thickness
of 1 0 1 9 - 2cm

and non-thermal photons and that the integrated result of 3.4 ±2.2% polarization

is lower than would have been measured had the estimate been made only from

the data of the higher energy channels above 11.6 keV.

An X-ray spectral index of 3.3 indicates an electron index at injection S ~ 4.0.

The results taken from Leach and Petrosian (1983) by Tramiel, Chanan and Novick

(1984) were for an electron index of 5, a value steeper by unity than it needed to
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have been. We know from the results of Chapter V that flatter electron spectra

produce less highly polarized X-rays than steeper electron spectra. Changing from

8 = 5 to 8 = 4 introduces a marked reduction in the model polarization results.

We can compare the Tramiel, Chanan and Novick data with the results from

models having 6 = 4 and can estimate the maximum amount of electron beaming

which will allow the models to remain compatible with the data. The error bars

on the data (cf. Figure (6.2)) are large enough that we cannot place strict lower

limits on a0
2. However, we can see from Figure (6.2) that a model with a0

2 = 0-4

and zero dlnB/ds would be compatible, as would a model with stronger electron

beaming and a converging magnetic field (a0
2 = 0.1 and a twenty fold increase

in the magnetic field strength over a column depth of 1019 cm~2). Figure (6.2) is

taken from the recently prepared report by Leach, Emslie and Petrosian (1984)

which discusses the Tramiel, Chanan and Novick (1984) results in the light of the

results contained within this thesis.

6.6 Summary.

In this chapter we presented four studies which have used the modelling

techniques developed in this thesis. In the first three we showed how we can

use our method with recent X-ray data to obtain complete descriptions of the

flares studied. These descriptions are the most complete descriptions which have

heretofore been obtainable using non-thermal modelling techniques in that they

contain information pertaining to both the pitch angle distribution of the electron

beam and to the magnetic structure of the flaring loop. We have shown that our
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modelling technique is flexible and that we can obtain best fit models which are

as unique as the precision of the data will allow. With these three studies we

showed that the newly available high quality data contains enough information

that, properly analyzed, a complete description of the flare can be extracted. In

the future it can be hoped that many more reports will become available for study,

especially reports containing reliable polarization measurements. This would give

us the opportunity to analyze a substantial number of flares with our modelling

technique and for a record of many flare descriptions to be accumulated. This

could lead to the recognition of classes of flares grouped according to their physical

structure and their associated X-ray characteristics, especially according to the

pitch angle structure of the injected electron beams. If so, the flare descriptions

obtained through our modelling technique could provide the basis for an improved

understanding of the acceleration mechanisms which have to date remained quite

inaccessible.
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Summary and Conclusions

Now is the time to step back and review this body of work, restate its

objectives and highlight our conclusions. We shall begin by recapitulating the ideas

from which we took our motivation. We shall follow quickly the path by which

the investigation unfolded, and we shall then concentrate one by one on each of

our major results. We shall outline how we have used our results in conjunction

with some of the very latest high resolution observations and shall indicate how

this thesis has fulfilled the objectives which we set for it.

7.1 Summary.

Though the sun as-a-star is quite well understood, the Sun as a unique

physical system of its own displays an abundance of complex phenomena which tax

prevailing experimental and theoretical ingenuity. Solar flares are among the most

energetic and interesting of the sun's phenomena and yet the understanding of the

impulsive phase, during which much of that energy is liberated over very short

timescales, is still incomplete. The emitted impulsive radiations can be measured
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from radio through to 7-ray energies, yet some basic questions are still unresolved

as is the primary question: How, specifically, do solar flares work?

Many answers could be extracted from observations of the impulsive radiation

if we only knew how to make full use of the data collected. From out of a huge

stock of observations, the major part of which has been collected over the last

couple of decades, the principal idea which has emerged is of highly accelerated

electrons streaming through the flaring plasma and redistributing huge quantities

of energy. This energy most likely originates as free energy contained in the pre-

flare magnetic structure. It is liberated from the magnetic field through a process

of reconnection and is used to create a population of extremely energetic electrons.

These electrons, which constitute the primary agent of the impulsive phase, then

carry the energy throughout the rest of the flare. A small fraction of the flare

energy is emitted in the form of impulsive radiation and is most frequently observed

in the radio, optical, extreme ultra-violet and X-ray wavebands. Another fraction

of the flare energy is carried away by the escape of high energy particles, some

more of it is used to drive mass motions, but most of it is redistributed throughout

the flare plasma, giving rise to bulk heating and generating the attendent thermal

radiation at all wavelengths.

All of these phenomena tell something about the underlying energetic elec-

trons. Once the characteristics of the energetic electrons have been evaluated, the

fundamental problem of how those electrons were accelerated can be unravelled. If

that can be done, significant progress will have been made toward a more complete

understanding of a solar flare as a physical system. Of the various flare phenomena,

the impulsive radiations are the most closely related to the energetic electrons.
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Of these impulsive radiations the X-rays represent the most direct probe into

the details of the electrons' population. Learning to read the emitted X-rays is

therefore the necessary first step toward removing the obstacles in the way of a

better understanding of solar flares.

Yet, despite the large number of observations of the impulsive hard X-rays

accumulated over the last two decades, no concensus on the description of the

electron population has emerged. Several theoretical models have been developed,

each giving priority to one or another aspect of the overall problem, yet no one

model has encompassed the full diversity of the X-ray data. Part of this problem

has stemmed from an unclear knowledge of the limits of what the observations

can tell us. There has been a real need for a thorough-going study of the energetic

electrons' behavior within the flare plasma and of the correlations - which must

exist - between the measurable and quantifiable hard X-ray characteristics and

the characteristics of the electron population that produces them. Now that we

have performed just such a study we are better able to obtain the nature of the

electron population from the impulsive hard X-ray measurements.

The first part of our study was to understand the behavior of the high

energy electrons. Once we had that in hand we could incorporate the relatively

well-understood processes of X-ray production and then learn to recognise the

behavior of the electrons from that of their X-rays. In Chapter II of this thesis

we developed a model for following the evolution of the electron population. We

set up the geometry of the flare magnetic structure and discussed the appropriate

mechanisms which come into play as the energetic electrons, in the form of a beam

which is injected into the top of the flare structure or loop, pass down within this
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flare structure toward the solar photosphere. We did not confine the electrons to

having any particular, preconceived distribution upon injection into the top of

the loop. We left ourselves free to invoke any beam distribution necessary and

we did this by parameterizing the description of the beam. This gave us two free

parameters which we could then fix as needed.

We saw that the primary agent determining the behavior and evolution of the

electron beam was Coulomb collisions within the flaring plasma. This necessitated

a stochastic treatment of the electron beam dynamics and led to a description of

the electron population by way of a single-particle number distribution. We then

discussed how to translate the physical paradigm into an equation which would be

obeyed by this electron number distribution, and, in the last part of Chapter II, we

evaluated the necessary coefficients. We obtained an equation, the Fokker-Planck

Equation, from which could be extracted the details of the electron's behavior

during the flare's impulsive phase.

In Chapter ID we set about solving this equation. Like so many other contem-

porary plasma physics problems this one did not allow an analytic solution and we

were forced to use a large computer in order to obtain the solution in numerical

form. We explained how best to rewrite the equation and, from an inspection of its

components, we devised a heirarchical approach to obtaining the solution which

employed implicit, finite difference techniques and Gaussian Elimination on what

is essentially a tridiagonal matrix. We also devised means to assure ourselves that

the end product of our labors would be a numerically evaluated function which

bore a close likeness to the ideal (because unknown) solution of the exact equation

which we had set out to solve.
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We found an approximation to our Fokker-Planck Equation which did admit

to an analytic solution. This approximate equation was based upon the behavior of

the Fokker-Planck Equation in a restricted domain of the independent variables.

Consequently, we could not be certain that the solution of this approximate

equation, extended beyond that domain, would bear a good likeness to either

the numerical solution or the ideal solution of the Fokker-Planck Equation. We

compared the analytic solution of the approximate equation with the numerical

solution of the Fokker-Planck Equation and found them to be in good agreement.

We then looked at the behavior of both the analytic solution and the numerical

solution in order to understand how the electron beam evolved as it passed down

from the acceleration region through the flaring plasma. This understanding of

the beam dynamics was a necessary prerequisite for our making sense of the X-ray

results which were to be obtained in a later chapter.

Satisfied that we had the evolution of the electron beam adequately described,

we needed to incorporate the production of the X-rays, first into our paradigm

and then into our computer code. The latter objective primarily required the

numerical integration, over several variables, of a kernel which was composed

of the electron distribution and the X-ray cross-sections threaded together by

a substantial amount of spherical trigonometry. As such it was more a matter

of precise bookkeeping than of cracking conceptual nuts. The former objective,

that of incorporating the X-ray production into our paradigm, required that we

determine what information we wanted to get from the X-rays and that we then use

X-ray cross-sections adequate to our needs. In Chapter IV we introduced the Stokes

parameter formalism for the X-rays and described briefly the means by which the
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Stokes parameters could be evaluated from the two cross-sections describing the

production of X-rays with either of the two independent linear polarizations.

The several available forms of those two cross-sections are all rather cumber-

some and have restrictions on the domains over which their use is justified. We

were able to find, for these two cross-sections, expressions which would serve us

well over the whole range of electron and photon energies of interest, though these

expressions still relied upon an important correction term to ensure their validity

over that whole range. These cross-sections are not without some debate as to

their accuracy though they have generally been well supported in the literature.

Most significantly, they have been given very strong validation by a recent body of

work which has used the power of present day, large computers to obtain an ac-

curate numerical evaluation of the cross-sections throughout precisely that domain

in which we are interested. We could, then, confidently meld these cross-sections

with our electron number distribution and be sure of obtaining, with an accuracy

more than adequate to the task, all the information required about the hard X-ray

radiation field from the beam of high energy electrons.

At this stage we were fully able to start investigating the correlations between

the X-ray characteristics and those of the electrons from which the X-rays had

come. But in order to use what we could learn from our X-ray calculations we

needed to know more precisely where previous studies, both theoretical and ex-

perimental, had left us. We needed to survey the questions that had been raised

by other scientists' labors and evaluate the extent to which the intensive study

of solar flare hard X-rays had provided us with a firm platform from which to
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progress. Our investigation in the first part of Chapter V revealed that earlier at-

tempts to model both the dynamics of the electron beam and the X-rays produced

therefrom were necessarily rather inexact. They served more to give a qualitative

idea of the relationships between the X-rays and the electrons than to give precise

values to the electron characteristics derived from the X-ray observations. The

observational results were similarly indefinite. Solar flares span such a wide range

of sizes and are such complex experimental subjects that the data can often appear

to be inhomogeneous.

In the second part of Chapter V we presented a broad outline of the results

obtained from our numerical calculations. Our first need was to order the results to

make them sensible. To accomodate a wide range of possible flare geometries and

any type of injected beam, we had left unspecified many of the model parameters.

One advantage gained from looking at the electron results of Chapter El was that

we had seen that the important parameter measuring depth within the flare was

not the geometric location of any particular region, but its accumulated column

depth from the site where the electron beam was injected. This took away the

emphases on the coronal density and the coronal loop length, both of which

are variables which can take on a wide range of values. It allowed us to specify

one parameter, the column thickness of the coronal part of the loop, and this

parameter remained fixed throughout all our work. In addition, it meant that the

most informative way to present the results on the height structure of the X-rays

would be to give them not in terms of the spatial location of the X-ray source but

in terms of its column depth within the flare.
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This left us with three parameters with which we could label our electron

models and their X-ray results: the two parameters which we had created to

allow the full range of possible injected beam distributions, plus a third which

described the magnetic structure of the coronal loop. We created eleven models

from eleven sets of this triplet of parameters and described the X-rays that each

model produced. As our objective was to learn how to correlate the X-rays with

the electrons, we chose one particular set of the triplet of values to represent our

standard or reference model, and we naturally dealt with this model first. These

results we described in full, giving the X-ray characteristics in terms of the X-ray

intensity, spectrum, polarization and directivity, all as functions of photon energy,

photon direction and source depth within the flare. We also integrated our results

over the entire volume of the fiare so that we could give the characteristics of

the X-rays as emitted by the flare as a whole. This was desirable because almost

all currently available data has this integration already performed and because,

by comparing the whole loop results with the results at each depth, we could see

how the curvature of the flare loop influenced the X-ray results, something which

previous studies had not been able to provide.

Once we had become entirely familiar with the X-rays from this first model

we compared them with the results from our other models. This allowed us to

see what the individual effects of changing each of our three model parameters

were. We were able to see how the X-rays changed in response to a change in the

distribution of energy among the energetic electrons, to a change in the degree

to which the electrons were collimated by the acceleration mechanism, and to a

change in the influence of the magnetic field which defined the flare loop. We then
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looked at the combined effects of changing two parameters at the same time, to

see how the effects from changing each parameter separately would either combine

or compete in their influence upon the X-rays produced. This allowed us a clearer

idea of the extent to which the X-rays would be able to inform us as to the nature

of the underlying electron population.

7.2 Conclusions.

We shall now discuss some of the more important conclusions which have

come out from our examination of the X-ray results.

(1) The X-ray intensity as a function of source depth within the flare followed

closely the general evolution of the electron beam. This enabled us to find a simple

expression which described very well the relative rate of X-ray production as a

function of source depth within the flare, for all photon energies. We defined the

relative intensity /(A:, T) to be the fraction of the total X-ray emission at a photon

energy k (which is in units of the electron rest mass energy), emitted per unit

of our dimensionless column depth parameter r. (T = N/No where N is the

accumulated column depth traversed by the electron beam and is given in units

of cm~2. NQ ~ 5 X 1022 cm~2 and the normalization is f^-Q I(k> T) dr = 1). We

initially obtained the function I(k, T) from an empirical fit to the X-ray intensity

curves obtained from the numerical results of Model 1 . We then turned to our

other models and generalized the expression to describe the hard X-ray height

structure at all energies and for most situations. We could not describe easily the
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X-ray height structure for those models that had a converging magnetic field, but

we did obtain a fit which was very good for a broad range of the other two model

parameters, that is, a fit which was good for any value of the electron spectral

index 8 and for all but the most strongly collimated of electron beams. We were

able to include models having different degrees of electron beaming within this one

expression because the majority of the X-rays are not emitted until after the beam

has been substantially decollimated. Only close to the electron acceleration site is

the degree of initial electron beaming the dominant influence upon the variation

of the X-ray intensity with source height. This means that once the electron beam

has penetrated within the flare beyond a characteristic distance, the intensity of

the subsequently emitted X-rays is determined only by the electron beam's gross

features. This makes the X-ray height structure easy to describe. It also has other

important consequences and these we shall discuss in item (5).

Our general expression for /(/r, T) , namely

-
fits accurately enough to the results from the full Fokker-Planck treatment that

we advise its use when modelling to a limited set of X-ray data or to data

which is insufficiently accurate to allow reasonably certain limits to be put on the

model parameters. In such a situation, using the full Fokker-Planck treatment is

expensive and unwarranted. Equation (7.1) can be of great use to those who do

not have available either computing facilities or the actual computer code with

which our detailed results have been obtained. The expression easily supersedes
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the general guidelines most people use when, for example, distinguishing between

thick and thin target emission or when talking about most of the X-ray emission

being either coronal or chromospheric, either from the loop or from the footpoints.

(2) The second important result to come from this work is that the spectrum

of the X-rays from a spatially unresolved flare is almost completely insensitive

to the particular details of that flare and cannot be used to give an accurate

determination of the flare parameters. The X-ray spectrum is the result of having

integrated over and, hence, having averaged out, most of the structure of the flare.

To generate the spectrum the X-ray source function, which in our system is the

product of the X-ray cross-sections with the density of the emitting electrons, is

integrated over all electron directions, over all contributing electron energies, and

over the entire volume of the flare. The one component which determines the large

scale structure of the X-ray spectrum is the energy spectrum of the underlying

fast electrons. This means that if we inject electrons with a power law energy

spectrum, we obtain an X-ray spectrum which has, almost exactly, a power law

structure. Almost all the information on the geometry of the flare or the spatial

structure of the beam electrons within the flaring plasma is lost. Any remaining

information only manifests itself as slight, smooth modifications on the overall X-

ray spectrum. Most X-ray telescopes do not have the necessary energy resolution

to detect any real small scale structure on an X-ray spectrum that can fall through

several decades in intensity over just one decade in X-ray energy. Furthermore,

any structure to the X-ray spectrum which can be detected is not able to release

its information about the flare unless we know from independent measurements

the initial energy spectrum of the beam electrons.

261



Chapter VII: Summary and Conclusions

On its own, a flare's X-ray spectrum is unable to give much information about

that flare's geometry or about the spatial structure of the energetic electrons. The

spectrum is also unable to give definite information about the energy distribution

of those electrons. Our results show clearly that there is only a loose correlation

between the X-ray and electron spectral indices. This means that if the spatially

integrated X-ray spectrum is the only information that we have about the X-rays,

then we cannot determine the electron spectral index to better than an uncertainty

of ±0.3. This may not sound like too large an uncertainty until we wish to estimate

the total energy carried by the electron beam or the rate at which the beam

evaporates chromospheric material into the corona, in which cases an uncertainty

of a half in the spectral index can lead to an uncertainty of half a decade in the

beam energy content.

In addition to this uncertainty in the determination of the electron spectral

index from the X-ray spectral index, we have to bear in mind that a power

law energy spectrum for the electrons is not the only distribution able to give

a power law energy spectrum to the X-rays. A non-isothermal distribution of

sufficiently hot electrons can be adequate, in which case the spatially unresolved

X-ray spectral index cannot even allow us to determine the gross features of the

electron distribution. It should then be most clear that the spatially unresolved

X-ray spectrum, on its own, is not a good source of information about a flare.

(3) One large step forward can be taken by removing just one level of integra-

tion of our source function, that is, by looking at the X-ray spectrum without the

spatial integration. Though the spectrum from the entire flare loop is a rather

poor source of information, the spectra from different regions of the flare contain

262



Chapter VII: Summary and Conclusions

structure beyond a simple power law form, structure which is distinctly related to

the electron populations which are found in those different regions. This makes the

variation of the X-ray spectrum with position along the flare a more appropriate

object of investigation.

There is obviously a much closer correlation at each height between the X-

ray spectrum and its local source electron distribution than there is between the

spatially integrated X-ray spectrum and the electron distribution at injection. And

ideally, that part of the loop which we would most like to separate out and to look

at in isolation is the very top. For it is here that the electron distribution is closest

to that at injection. There has been little room for any beam evolution to erase the

information carried by the beam about the conditions in the acceleration region

and it is, consequently, here that the X-rays can tell us most directly about the

processes involved in the creation of the electron population.

Our models show that the X-ray spectrum from, say, just the top half of

the coronal loop, need not be a power law even though the injected electrons

had an energy spectrum which was one. The X-ray spectrum for the top of the

loop can acquire some shape according to the degree of electron beaming (strong

beaming steepens the low energy end of the photon spectrum) and, in the absence

of accurate polarization data (see item (5) below) this could be one of the few

means by which a determination of the electron collimation could be made.

The local X-ray spectrum can display additional structure, for example by

developing a knee which moves to higher energies as the thickness of the top

segment of the loop is increased. This is because the rate at which the ambient
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plasma modifies the distribution of the beam electrons varies with electron energy.

A given column thickness of plasma can be relatively thin to high energy electrons

(hence high energy photons) and at the same time rather thick to the lower energy

electrons which produce most of the low energy photons. This causes the low

energy end of the electron spectrum to flatten with increasing source depth while

the high energy end stays relatively unchanged. The X-ray spectrum reflects this

development by acquiring a knee whereby the lower energy X-rays have a smaller

spectral index than do the higher energy X-rays. The position and extent of the

knee in the spectrum can indicate the thickness of the source material seen and,

especially if the electrons are highly beamed in the beginning, can indicate the

presence of a rapidly increasing magnetic field strength along the coronal loop.

(4) Our next result pertains to the directivity of the X-rays and to the ob-

servational contribution of those X-rays which are initially beamed away from

any observer but are then reflected back toward the observer by the solar photo-

sphere. Our conclusion is that these backscattered X-rays can, in some cases, make

a significant contribution to the observations.

The intrinsic directivity of the radiation from a solar flare would be a hard

thing to measure. It would require surrounding a flare with many X-ray detectors

each of which has the capacity to separate in its measurements the direct X-

rays from those which are reflected by the photosphere. This being essentially

impossible, we can only make indirect measurements of the variation with direction

of the total (direct + reflected) X-ray flux. Other studies have shown that, at an

X-ray energy of 30 - 50 keV the flux of backscattered photons is approximately

20 - 30% of the flux initially beamed into the photosphere. If the flare has an
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intrinsic directivity which sends, say, four times as many photons down toward the

photosphere as it sends up away from the sun, the contribution to the observations

from the backscattered photons could well be as large as the contribution from

the photons which are seen directly.

With our modelling techniques we are able to calculate the intrinsic flare

directivities but we cannot include the effect of photospheric backscattering. Our

intrinsic results show that, at an X-ray energy of 50 keV, the ratio of the flux

beamed straight down into the photosphere to that beamed away from it can vary

from as low as 1.5 up to ~5 (cf. Table VI). The intrinsic directivities may then

be large enough that the backscattered X-rays make a significant contribution to

the observations. The intrinsic results also point to limb brightening of flares and

to a hardening (or flattening) of the X-ray spectrum as the position of the flare

moves from the center of the solar disk to the limb (cf. Table HI). This does not

agree with the observations, such as they are, and may be another indication that

the backscattered photons need to be considered.

(5) Up to now our hopes of being able to distinguish between the so-called

"thermal" and "non-thermal" models have rested upon the assumption that the

two types of model would give rise to widely differing polarization signatures. Then

the measurement of either a high degree of X-ray polarization or an almost zero

degree of X-ray polarization for any one flare would be a definitive indication

of the appropriate type of model. The difficulty has been with obtaining reliable

polarization measurements, not with interpret ting them once they have been col-

lected. These expectations no longer hold. We show by our results that, as well

as being able to give rise to X-ray polarizations which are clearly higher than
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those from thermal models, non-thermal models are also able to generate, quite

naturally, X-ray polarizations which are every bit as low as those which are to

be expected from a thermal source. Consequently large polarization measurements

would still point unequivocally to non-thermal flare processes but low polariza-

tion measurements are ambiguous and can arise from either type of model. The

situation is a little complex.

The degree of X-ray polarization is determined by the convolution of two

functions, the distribution of the electrons and the cross-sections for X-ray produc-

tion. If either the electron distribution is isotropic or the X-ray cross-sections for

the two independent linear polarizations are identical, then the resultant degree of

X-ray polarization will be zero. The non-thermal models will only give high X-ray

polarizations to the extent that both the electron distribution is anisotropic and

the two cross-sections are unidentical.

The results from Chapter HI showed how a beam of electrons evolves as it

passes through the flaring plasma. Any beam, no matter how strongly collimated at

injection, becomes increasingly isotropized as it penetrates further down through

the atmosphere. Below a depth which depends upon the electron energy followed

but which is not large, the beam no longer carries any information about its initial

degree of collimation. As mentioned in item (1), it is below this depth that the bulk

of the X-rays are emitted. Therefore, the X-ray emission from the whole source

will have the character of the emission from a highly broadened electron beam,

with only a weak signal remaining to indicate the initial electron collimation. A

spatially unresolved measurement of the X-ray polarization must then give rise

to a low result. Our calculations using the full Fokker-Planck treatment of the

266



Chapter VTI: Summary and Conclusions

beam evolution show that the highest degree of polarization obtainable from the

non-thermal models, even with optimum model parameters, is of the order of 25%

(cf. Table X). Until X-ray polarimeters with high spatial resolution capabilities are

developed we cannot expect measurements of flare polarizations which go beyond

this upper range.

But this range is only an upper limit and is for optimum non-thermal model

parameters. The X-ray polarization can easily be lower than 25% and as low as

the values expected from thermal models. The primary reason is that the degree

of X-ray polarization is a sensitive function of the electron spectral index. The

cross-sections for bremsstrahlung X-ray production are functions of the photon to

electron energy ratio x. Photons are known as being "hard" if the photon energy

is nearly equal to that of the electron from which it came, in which case the ratio

i will be close to unity. Conversely, photons are "soft" if the photon energy is

much less than the electron energy and the ratio x is small. The two cross-sections

for the production of X-rays with one or the other of the two linear polarizations

behave differently as functions of the variable x and are most similar to each other

when x is small. As a consequence, a beam of hard photons, all else being equal,

will be more highly polarized than a beam of soft ones.

An electron distribution which has a flat energy spectrum (low spectral in-

dex) will give rise to X-rays in which more of the photons are soft than will an

electron distribution which has a steep energy spectrum. We must then expect

that our models which have the flatter X-ray spectra will also have the lower X-

ray polarizations. This we find to be overwhelmingly true. The influence of the

electron spectral index upon the degree of polarization is sufficiently strong that it
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Table X

The maximum degree of polarization (%) for 16 keV X-rays.

8

3

4

5

6

"o2

oo

<5

8

10

10

0.4

<5

8

11

16

0.04

<5

11

20

25

0.01

6

13

21

25

can mask the influence of the electron beaming. Our upper limit of 25% polariza-

tion is for a highly collimated electron beam with a very steep energy spectrum.

If we reduce the electron spectral index 6 from 6 to 3, the polarization, again

for a strongly collimated electron beam, falls to around 5 - 6%. A sample of our

results are given here in Table X. From the literature we see that it is common

knowledge that the stronger the beaming of the electrons is, the larger will be

the X-ray polarization. However, just how large a degree of X-ray polarization can

be obtained from a highly collimated beam of injected electrons is generally over-

estimated, and knowledge of the dependence of the degree of X-ray polarization

on the spectral index of the electrons is not at all widespread.

The overwhelming message of the conclusions from our research is that the

ideas on how to use the impulsive phase hard X-ray signature as a diagnostic tool
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giving information about the energetic electrons and the acceleration mechanisms

in a solar flare need to be rethought. We can learn almost nothing from the X-ray

spectrum unless we have spatially resolved data. The intrinsic X-ray directivity

is impossible to measure satisfactorily, and the X-ray polarization, even if it is

accurately known, may be of no help in discriminating between substantially

different physical processes which produce the source electron distributions. Again,

this last point will probably be overcome only with the development of polarimeters

with good spatial resolution capabilities.

However, making use of spatially resolved data to obtain a description of

a flare need not depend upon our being able to measure the spatially resolved

X-ray characteristics with the same degree of accuracy with which we can cur-

rently measure the unresolved characteristics. We have developed modelling tech-

niques which use the full power of our Fokker-Planck treatment to obtain a good

description of a flare from X-ray observations which have only the beginnings of

spatial resolution. This is most timely because it is exactly that type of data, X-

ray data with the beginnings of spatial resolution, which has started to become

available over the last few years. The early results from the Hard X-ray Imaging

Spectrometer (HXIS) onboard the Solar Maximum Mission satellite, the Imaging

Hard X-ray Telescope (SXT) on the Hinotori satellite and the stereosopic results

from the Pioneer Venus Orbiter (PVO) and the International Sun Earth Explorer

- 3 (ISEE - 3) are examples of hard X-ray data containing just an initial amount of

spatial resolution. They can give us separate X-ray intensity measurements from

two parts of a flare loop; HXIS by imaging and distinguishing between a flare's

coronal loop and its footpoints and PVO/ISEE - 3 by viewing a flare which is
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partially occulted from one of the telescopes by the solar limb but which is in full

view to the other. Data such as this allows us to use the modelling techniques

which we have developed to obtain values for the flare parameters based upon a

best fit of our models to the data. We then know the structure of the observed flare,

including the characteristics of the injected electron distribution, and this we can

use toward forming an understanding of the acceleration mechanisms themselves.

In Chapter VI we gave several examples of how to use the full power of

our modelling techniques in conjunction with the data now appearing. We have

drawn from the published literature examples of flares imaged by HXIS or seen

stereoscopically by PVO and ISEE - 3. These examples have been reported with

sufficient data that we can determine, within just a couple of model iterations, the

non-thermal model which is necesary to reproduce the flare. We illustrate how the

modelling technique is to be used; we draw from the literature that data which we

need and we put it in the required form so that we can set a model to it. We explain

how we synthesize this data to estimate simultaneously values for all our model

parameters, for a change in one parameter can often necessitate a readjustment

of all of the other parameters, and we then explain how we use the results of our

computer runs to zero in on a best fit model.

With so few flares being sufficiently well reported we can do no more than

show the power of our technique as it is applied to each set of data. In the future,

should we be able to use our technique on a greater number of flares, we would hope

to discover that there are trends and similarities between all flares or between flares

grouped according to a suitable classification. This would give important clues on
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the mechanisms responsible for the acceleration of the electrons and would be of

great assistance in understanding the physics of solar flares.

Our study, which investigated the correlations between the impulsive hard

X-rays and the parameters of the flare model which produced them, has gone on

to show how to make full use of the X-ray data which is currently being collected.

It has shown how this data can give us otherwise unavailable information on the

structure of solar flares and, in particular, crucial information bearing upon the

population of the energetic electrons.
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