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TECHNICAL MEMORANDUM

TETHERS IN SPACE; — BIRTH AND GROWTH OF A NEW AVENUE
TO SPACE UTILIZATION

1,0 INTRODUCTION

It is interesting to recognize that almost all of our past, present, and planned future spaceflight
concepts and missions and most of their technical elements have been thought about, conceived, and
predicted in some way or another many decades, sometimes almost a century ago, by profound
visionaries. All these prophets were modest men who in their daily lives performed rather down-to-
Earth work like teaching (Tsiolkovskii, Goddard, Ober'th), city utility maintenance (1-lollniann), car racing
(Valier, Opel), and others. Most of today's space mission planners have jrnowing! j or unknowingly
drawn from these early, often long-dormant, ideas which became alive when their time had come. One
of these early visions from about ninety years ago whose time has come involves a rather unusual element
of space transportation. We have to understand that in those days rockets into space were believed to be
centuries away in the future; however, the human urge to leave Earth and to enter space was rather
strong in the minds of a few. What more natural way was there than to think of a tall tower reaching
into space and to use it to mechanically move up into the unknown.

This report will trace the evolution from these early thoughts to today's concepts and projects
involving very long structures -- tethers — and describe their expected beneficial utilization in almost all
areas of space flight in the near and far future.

2.0 VISIONARY STRUCTURAL SPACE ACCESS CONCEPTS

It seems to be in the nature of human conceptualization that radically new ideas usually involve
their most advanced applications, omitting the many beneficial, small steps of the rocky path of an evolu-
tionary engineering development. In the following we shall review the most significant advanced tether
concepts, many of whicli exceed the realm of practical application. It is also interesting to note that
several advanced tethe r concepts have been re-invented a number of times, in the following ail
was made to trace the first publication of each of these concepts.

2.1 Dreams of Earth and Space

The earliest report available on terrestrial access to the weightless environment of space by
mechanical means was described by Tsiolkovskii in 1895 [1].  In thus fascinating report lie considers,
among countless other things, ways in which an environment without terrestrial gravity could be created
(Fig. 1). He proposed an equatorial tower reaching beyond geostationary altitude. He said: "Upon
ascending such a tower, gravity decreases gradually, not changing direction; at a distance of 34,000 verst
(1 verst = 3500 ft) gravity is totally eliminated. For that reason at a still higher altitude it is displayed
with a force directed away from the critical point; the direction is reversed so that a man's head faces
Earth."

He continues elsewhere in his report and proposes to apply this to other planets as follows:
"On this second similar planet stood a tower of an extreme height, the ends of which were thin, much
as a spindle, and without any means of support. We walked beneath this castle in the air, wondering
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Figure 1. Early orbital °;ower and skyhook concepts.

why it did not fall on our heads. The point is that the top part aspires to fly due to the centrifugal
force; while the lower part pulls in the opposite direction. The form and placement is such that the
equilibrium is invariable observed,"

2.2 The Heavenly Funicular (Artsutanov)

Sixty-five years passed after Tsiolkovskii's idea when the Russian engineer Y. N. Artsutanov [2]
generated an idea in 1960 which can be considered a reversal of Tsiolkovskii's tower. Instead of erecting
a tower on Earth pointing toward space he conceived one "anchored" in space and pointing toward
Earth, touching and being connected to the Earth's surface at the equator (Fig. 1). A cable would be
deployed up and down from a geostationary satellite, the lower one would be secured to the Earth's
surface while the outer cable would carry a ballast so the center of gravity would be maintained in
the geostationary orbit.
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Artsutanov was also t1m first one to be concerned about the required strength of the cable
material and the first one to calculate a cable of constant stress along its length according to LVOV [3].

The purpose of this "funicular" was to serve as a cosmic elevator. He calculated a balanced lift energy
system where the work obtained from launching payloads from the outer part would equal the energy
demand to lift the payload up the hnner part. The lifting speed would be about 1000 km/lir and result
in a transportation capacity of 12,000 tons a day (LVOV) [3].

2.3 The Sky-Hook (Isaacs, et al,)

While Arthur C. Clarke seems to be the next in line of reviving Artsutanov's funicular in 1963 (41,
he appeared to have not pursued this any further,

In 1966, Isaacs, et al., published tli?ir well-known brief paper on "Satellite Elongation Into a
True `Sky-Hook' " [5]. It is interesting to note the "Science" editors' and reviewers' reservations for
publishing this paper, The prime concern of this paper was the tether material question, The authors
conclude that the required theoretical strength of the cable material is more than two orders of mag-
nitude greater than that of available engineering materials. The authors, though, realize that practical
applications may be passible on the moon's farside, Jovian moons, or Mars where the acting forces would
be greatly reduced (Fig, 1),

2.4 Low Altitude Geostationary Satellite (Collar and Flower)

In 1969 Collar and Flower [6] suggested a very long tether connecting a satellite located beyond
the geostationary distance with another satellite positioned at a relatively low altitude such that the
center of gravity was located at the geostationary distance (Fig. 1), The use of this lower passive com-
munication satellite would involve greatly reduced power to maintain signal strength in communications.
The authors, of course, were concerned about the tether materials problern and considered aluminum
and graphite whiskers, glass and carbon fibers, and others.

The authors appear to be the first to assess meteorite damage to tethers and conclude that a 0.2
mm tether of 50,000 km length would be severed by a micro-meteorite in about 1 hour, Ten • ierature
effects by the lower satellite's and the tether's passage through the Earth's shadow would result in tether
length (and lower satellite altitude) changes of about 40 km under favorable dynamic conditions.

2.5 The Orbital Tower (Pearson)

In 1975 I=uarson [7] picks up Artsutanov's idea. (Fig. 1) and provides a good assessment of critical
issues involved; particularly, lie is the first to analyze some of the tether dynamics including tidal force
effects and traveling waves along the tether. He calculates that the tower material deployment would
require 24,000 flighty, of a super-shuttle with 30 times the payload of the present orbiter,

Two y(^ars later, in 1977, Pearson extended his concept to lunar applications [8] (Fig. 2). This
includes .lunar satellites at the libration points Ll and L2 attached by tethers to the lunar surface,
These satellites would launch lunar payloads throughout cislunar space and, in forming lunar halo orbits,
would provide continuous communication with the lunar farside (Fig. 3). Material for a lunar base could
be supplied from Earth without landing vehicles..
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Figure 3, Lunar lialo orbit for farside communication [81,

2,6 The Space "Necklace" About the Earth (Polyakov)

As a special advanced tether concept we shall consider Polyakov's "necklace" which he published
in 1977 [9] (Fig. 4). His concept consists of several equally-spaced "funicular" (Artsutanov) reaching
from the equator beyond geostationary altitude with payload carrying elevators going up and down, or
being launched from the far end. Between the funicular beyond geostationary altitude, various stations
are located and 'interconnected in a circular fashion by tethers, thus fonning a ring around the orbit,
This ring is fastened to the funicular and the complete configuration forms a stable equilibrium.
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Figure 5. Orbital Skyhook (Y. Artsutanov, 1969; McCarthy/Morevac, 1977).
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Figure 4. Space necklace (Buckminster 17-ulle., 1951; G. Polakov, 1577; A. C. Clark, 1977).

2,7 The Non-Synchronous Orbital Skyhook (McCarthy/Moravec)

This last advanced concept shall conclude the very great variety of past, granr'iose tether applica-
tions, This is a wheel tether based on an idea by Artsutanov [10] in 1969 and described in more detail
by Moravec [ 11 ] in 1977 (Fig, 5). A satellite in low circular equatorial orbit has two long tethers
deployed in opposite directions. The system rotates in the orbital plane in the same sense as the Earth
rotates, The tethers touch the Earth's surface during each rotation such that the velocity of the lower
tether end cancels the orbital motion of the cable carrying satellite. Tile system acts like two spokes of
a wheel rolling oil the equator, Tile Earth touching tether can lift about 2 percent of its own mass at
each contact in an optimum configuration and could laanch it at over 13 km/sec from the outer end to
Mars or Venus,

i
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3.0 EVOLUTION WWARD A TUTHERI;1) SATELLITE SYSTEM 	 OF

There is a large stele front the tar-o,.aching advanced concepts of the visionaries down to those
concepts that are not only possible with the technologies of today and the near future but that also show
potentials of profound technical and economical benefits and improvements to a great variety of
presently planned space missions as compared to alternative approaches, This does not detract frond the
value of these prophetic concepts because some of those may be considered as distant goal setters that
provide direction for future developments,

3.1 Iultl.3l, Sporadic Tether Activities and Studies

In September and November of 1966 the Gemini XI and XII spacecraft together with the Atlas-
Agena D spent atage, performed the first two tether in space application experiments (pig, 6) j 121, ; the
idea originated according to D. L. Lang (NASA/Johnson Space Center) with the late Richard P. Giloolcy,

Figure 6. Gemini spacecraft/target-veliicle tethered configuration:

Basically, two modes of tethered space vehicle operations were explored in the Gemini program..
One mode of operation consisted of intentionally inducing an angular velocity in the tethered system by
translational thrusting with the spacecraft propuxsion system. The other mode involved tethered, drifting
flight during which the effect of gravity gradient on the motion of the system was of interest. These
two modes of tethered vehicle operation were completely successful and verified ;he analytical assump-
tions and calculations.

In 1972, Analytical Mechanics Associates, Inc., updated a Marquardt Corporation study of 1963
„n the rescue of stranded astronauts with a tether. During the Skylab studies in 1967 tethers were con-
sidered in connection with the Apollo Telescope Mount. All these sporadic, uncoordinated, individual
efforts were of value in their own narrow field of interest but lacked an overall goal orientation.
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3,2 Convergence of Efforts

It was not until the early 1970's that systematic efforts began to investigate the complex
dynamics of long tethers in space, their utilization for a wide spectrum of scientific and operational
applications, and the critical technologies associated with their use.

Among the first to investigate tether dynamics and tethered spacecraft motions were Eads and
Wolf [ 131 in 1972. They studied selected problems dealing with orbiting tethered body systems and
developed a relative motion orbit determination program. They analyzed the effects of gravity gradient
and orbit excentricity and of oscillations and rotations on tether forces, An apparent first attempt was
made to deCne types of control actions needed for an accurate placement of tethered masses,

Tine first practical application of an orbiting tether was developed by Grossi in 1972 in the fonrr,
of ail 	 antenna to generate Ultra Low Frequency (ULF) emissions by stimulating natural micro-
pulsations in the plasma medium. This wire was to be 20 to 100 kill long and to be exciicd by a
Shuttle-borne transmitter,

Radlopiiysics measurements oil long wire radiator by means of a tethered subsatellite was first
proposed by Gross! in 1974, Additional experiments with magnetouneters and gravity gradiorneters were
suggested by Colombo. This research culminated in a formal report. published in 1974 [141. A patent
was granted to both Colombo and Grassi in 1978 oil 	 Connected By Means of a Long Tether
to a Powered Spacecraft,"

This paper was followed in the same year by a report by Colombo, et al, [151, which consti-
tuted a major milestone in tether analysis and applications. It was this report that initiated NASA's
own in4iouse eftn-ts in this area, Colombo and his colleagues Gaposchikin, Grossi, and Weiffenbach
proved the gre.- i poy ' ntial of a Shuttle-borne tethered satellite of contributing significantly to the scope
of sclo,-Wfip. *v estiigations by the Shuttle orbiter, This paper proved that a tethered satellite system
(` sSkyhook" ,.ystem) was practical in that it defined In a preliminary way, a system with a subsatellite
deployed 100 kia below the orbiter at an altitude of 110 kill with either a stainless-steel rope or a special
wire alloy with high strength/high temperature cliaracteiistics. The considerable scientific potential in
the areas of atmospheric and nnagnetospheric science experiments as well as in gravity-gradient measure-
ments is outlined here for the first time.

Shortly after this key report was published, a complementary paper by Dobrowolsy, Colombo and
Grassi (1976; discussed the electrodynamic interaction of long conducting tethers in near-Earth orbit

1 61 A first analytical approach was developed to evaluate these electrodynamic interactions affecting
a conductor moving in the ionosphere, Computer models were developed for the distribution of the
induced potential along the tether and the resulting current.

Fronn now on NASA activity in tether applications in space increased rapidly, primarily due to the
considerable internal and external promotional efforts of Ivan Bekey of the Office of Spaceflight at
NASA Headquarters, The first tether tension control law for tethered subsatellites deployed along the
local vertical had been developed by Rupp [ 171 of NASA's Marshall Space Flight Center ill 	 An
uninterrupted sequence of analytical and design work began. In addition to Smithsonian Institution's
and Marshall Space Flight Center's efforts, theoretical tether dynamics studies using computerized models
were performed by the European Space Agency, Aeritalia, McGill University, the University of
British Columbia, Martin Marietta Aerospace Division, Ball Aerospace System Division, Control
Dynamics Company, and others.

^9
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These studies have served to define tether behavior during deployment, station keeping, and
retrieval operations in addition to defining control laws necessary for operating tethered satellites.

In 1982 Harvard Observatory launched a 40 km altitude balloon with a tethered payload deployed
to a distance of 12.5 kill and proved tlry successful mechanical reel deployment and retrieval of very long
tethers from a free-flying vehicle.

All these theovatical studies and practical techniques culminated in an effort where this knowledge
would be the basis for one single system; the Tethered Satellite System, The result will be a system that
can achieve 100 kill deployment distances with new tether materials, control laws, and the supporting
subsystems. This system has become an official NASA project,

4,0 THE BROAD FIELD OF BENEFICIAL TETHER APPLICATIONS IN SPACE

4.1 general

The ongoing Tether Satellite System project which is targeted for implementation in the later
years of this decade is but one of the large number of uses of tethers which open up entirely new
i,wenues of space utilization by using the space environment and the forces acting in space as the primary
means to accomplish their objectives. Very quickly it became obvious that the tethered satellite system
was only the beginning. Since 1979 a whole spectrum of tether applications has been generated by
many individuals, M. Cross! and G. Colombo of the Smithsonian Astrophysical Observatory and Ivan
Bekey of NASA's Office of Spaceflight became the prime movers within NASA toward tether applica-
tions in space. They were joined by industry, academia, and NASA Centers who in concert conceived
an ever increasing family of concepts, a process which is still continuing.

The following tether application categories have been established and are under investigation: 	 f

4.2 Electrodynamic Interaction: of Tethers (Fig, 7)

A conducting, insulated tether orbiting the Earth interacts with the ionospheric plasma and
with the Earth's magnetic field, This generates a voltage potential the effects of which can be used for 	 ;4
power, propulsion and for generating very low frequency radiation of electromagnetic waves,

The potential to generate power requires that a low impedance current path be created which
collects electrons from and returns them to the ionospheric plasma. One method of creating tills path
includes the collection of electrons ors a conducting sphere (Fig. 8) carried as the tether payload, trans-
mission of current along a conducting tether, and ejection of electrons near the Shuttle with an electron
gun, The load exists in series along the conduction path. An experimental package to generate power by
this method is scheduled to fly oil 	 first Shuttle/tetlicr mission (TSS 1) in 1987. The payload is being
designed and bur r by Aerilalia (Italy), the remainder of the package is being designed and built by Martin-
Marietta (USA), and the effort is being coordinated and managed by the T,I arsirall Space Flight Center
[18].

Utilization of tether for propulsion requires that the current be reversed in direction and
generated by an on-board source of energy, Tile generation of ULF and ELF communication waves
requires that a modulated current be applied to the tether,

8
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The electrodynamic tether can be used in a great variety of ways, It can provide peak power to
an orbiting spacecraft supplementing solar arrays and on board batteries. It can be used as a practically
unlimited energy storage system for example for a space station. The electrodyminlic tether would
supply needed power during the dark part of orbit. Sow array will provide required power during the
daylight part of the orbit a nd in additions ,provide power to the tether thus creating a forward force that
will boost the orbit, thus storing energy in the form of altitude gain. A preliminary assessment of this
application indicated that approximately 40 percent of the mass and about 25 percent of the cost of the
power systems could be saved by the use of an electrodynamic tether system.

4.3 Tether Applications To Transportation

Tether applications to transportation may be classified in the following general categories:

1) Angular momentumn exchange -- applications in which tethers are used to effect favorable
angular momentum exchange Between spacecraft/payloads, spent stages, etc, (rigs. 9 and 10).

2) Remote operations — tethers used to move objects to more favorable vantage poi.its for
observation, sensing, etc,

3) Forcing systems - use of tethered objects to interact with natural, media (atmosphere, mag-
netic field, etc,) and thereby produce desirable forces on the overall system (Fig. 11).

A good example of a quite benef;:;ial angular momFntuns exchange operation involves the tethered
deployment of an orbital transfer vehielf; into a higher altitude. In addition to the initial altitude gain
which depends on the tether length there is the orbital excess velocity of the vehicle. Both factors result
in a net propellant saving or payload gain as compared with conventional methods,

Figure 9, Angular momentum exchange.
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Figure 10, Remote docking — payload transfer.
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Another. example is the orbital boost applied to a space station by deploying the Shuttle orbiter
or external tank on a tether downward (Fig, 9), A promising operation is also a tether deployed remote
docking adaptor which could rendezvous with and retrieve a payload from the orbiter cargo bay. This
would eliminate docking of the orbiter with the space station (Fig. 10).

A tether application not yet under study is the tethered atmospheric sail which, if tinder proper
control, could apply lateral force vectors to the orbiter allo ying a gradual plane change if so desired
(Fig. 11).

Overall, research is pritnarily directed to extend our knowledge and understanding of the tlleo-
retieal and technical feasibility, behavior, technical and operational risks, technology requirements and
overall costs and benefits as compared with conventional propulsive means,

4.4 Tethered Spacecraft Constellations

A constellation is a tethered configuration with at least three separate tethered masses. This
definition is important since all other tether configurations have two masses.

A great variety of possible spacecraft constellations is possible (Fig. 12). Ongoing studies will
show which ones are practical and beneficial,

Figure 12. Tethered constellations,
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Gravity gradient stabilized constellations have great value in measuring various gradients in space,
e,g,, magnetic fields and plasma density gradients and compositions. Drag stabilized constellations aze
expected to derive their stability from drag differences between forward and rearward tethered spacecraft.
This concept will be studied in the near future together with constellations using a combination of gravity
and drag forces for stabilization,

In contrast to these static constellations, NASA is investigating various dynamic Concepts. Rota-
tionally-stabilised constellations have similar characteristics as described in Section 4,5.b, A combination
of rotationally- and gravitationally -stabilized concepts has been under investigation and has quite limited
margins of stability, An interesting tether concept is the dynamic tether which runs between spacecraft
over pulleys. The continuous momentum transfer Keeps the masses apart. Certain dynamics problems
need solutions in this concept.

4.5 Gravity Utilization Through Tethers

4.5.a. Gravity Gradient Stabilized Tethers

Any mass that is deployed by a tether from a spacecraft shifts the system's center of gravity out
of the spacecraft along the direction of the deployed tether. Consequently, any points along the tether
outside the center of gravity are subject to gravity gradient forces. These forces are quite different from
so-called "artificial gravity" because they depend entirely on the presence of a central gravitational field,
Artificial gravity is generated by a rotating system anywhere in space.

Gravity gradient farces depend on tether length and the magnitude of the tether end masses
(Fig. 13). The gravity acceleration level, of . aurse, depends only on tether length.
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Figure 13. Gravity gradient forces.
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The generation of these small gravity levels with a gravity gradient stabilized tether is of con-
siderable scientific and technical interest (Table 1), An application of great promise is the storage and
transfer of propellants between spacecraft and tethered fuel depots (Fig. 14).

TABLE 1, TETHERED SATELLITES GRAVITY UTILIZATION
CATEGORIES AND EXAMPLES

CA'T'EGORY EXAMPLES

SCIENCE ANIMAL/PLANT GROWTH CRYSTAL GROWTH, FLUID
SCIENCE, SIMULATIONS IN CHEMISTRY/PHYSICS

TECHNOLOGY FLUID STORAGE, ATTITUDE CONTROL SIMPLIFICATION,
OTHER SUBSYSTEM ENHANCEMENTS

MEDICAL STUDY/REDUCE EFFECTS OF ZERO—G ON HUMANS.
INVESTIGATE MEDICAL PRODUCTS/SERVICES IN LOW G

HABITABILITY IMPROVE MAN'S PRODUCTIVITY AND COMFORT BY
PROVIDING SOME LEVEL OF GRAVITY

OPERATIONS ORBITAL REFUELING INSTRUMENT/ANTENNA FARMS,
TETHERED TMS FOR SPACECRAFT RETRIEVAL

i

.	 s
i

u	
^i

la. Stationrrethered Dewar Loading OTV
Ib. Station/Tethered Dewar loading from STS Tanker

Figure 14, Tethered propellant concepts.
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These are true artificial gravity systems as compared with gravity gradient systems, The advantage
of rotating systems is the capability of generating much higher force fields with relatively short tethers
than is possible with gravity gradient systems where tether masses may exceed the attached payload
masses above a few hundredths of a g force,

An interesting fact is that the artificial gravity force becomes highly variable in low Earth orbit
if the tether rotation rate is near the tether's orbital rate, resulting in fluctuations of the force magni-
tude between zero and some positive and negative maxima (Fig, 15), This range, therefore, is unsuitable
for low gravity experiments that require constant forces. A gravity gradient tether would be a solution
in these cases,

Since rotational tether systems are inertially stable, care must be taken in their use in connection
with a spacecraft with a different mode of stability, e.g., Earth oriented.
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Figure 15. Tethers for artificial gravity.
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4.6 Tethered Test facilities and Technology

This tetlir,r applications category covers all tether missions which utilize the outer atmosphere
(90 to 200 km) as either a test bed for the thermal stability of structures and materials or as a hyper-
sonic "wind tunnel" facility to test aerodynamic models, These applications appear w be economically
quite superior in comparison with equivalent ground-based facilities, The indicated altitudes (fig. 16)
are atmospheric areas from slip flow through transition flow to the region of free molecular flow. All
projects requiring accurate configuration aerodynamic performance data will benefit from these tests.

FREE MOLECULE FLOW

2	
(MONTE CARLO SOLUTIONS)

TRANSITION FLOW

SLIP FLOW

1CC K^
	

(NAVIER - STOKES EQUATIONS)

do

Figure 16. Aerodynamic research regions.

The tether technology work covers the various dynamic simulation capability requirements,
engineering instrumentation, and tether materials research.

4.7 Present NASA Tether Application Studies

NASA's present studies in tether applications are based on two major efforts that took place in
1983, One was an Applications of Tethers In Space Workshop in the summer of 1983 and the other was
the development of a four-year NASA Program Plan on tether applications by an inter-Center NASA
Task Group, The 1984 NASA efforts in this area are based oil 	 recommendations of these two
sources (Table 2),
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TABLE. 2, TETHER APPLICATIONS IN SPACE — PRESENT STUDIES

u

f

rti

ELECTRODYNAMIC
INTERACTIONS

TRANSPORTATION GRAVITY
UTILIZATION

CONSTELLATIONS TECHNOLOGY
AND TEST

DYNAMIC STABILITY AND SELECTED TETHER APPLI- TEYHER ORBITAL SELECTED TETHER APPLI- SHUTTLE TETHERED AERO-
POWER/DRAG GENERATION CATIONS IN SPACE REFUELING CATIONS IN SPACE THERMODYNAMIC RES. FAC,

EMERGENCY PEAK POWER TETHER PAYLOAD RELEASE TETHER APPLICATIONS
GENERATOR ORBITAL PUMPING AND TECHNOLOGY

ENVIRONMENTAL INTER- TETHER ASSISTED SSUS
REQUIREMENTS ASSESS-
MENTS

ACTION MODEL
TETHER DYNAMICS ROLES CF TETHERS ON AN
ANALYSIS EVOLVING SPACE STATION

DISPOSABLE TETHER
P/L LAUNCH

5.0 ISSUES AND PROBLEMS OF TETHER APPLICATIONS

There are two classes of issues and problems associated witli tethers in space. First, the long
tether in space is the only element of space systems that is entirely and irrevocably dependent and
functionally rolying on the natural forces acting in space, gravitational and plasma interactions and drag
and the complex variations of these forces. These are the causes of certain system issues and problems.
Secondly, tethers in space are only stressed in tension and therefore are the most efficient structural
elements possible, resisting imposed stresses with the minimum quantity of material. Ilowever, this fact
makes tethers environmentally vulnerable. A 1 min diameter tether 1.00 km long has a projected area
of 100 1112 , large enough to be damaged by meteorites over extended periods of time. These are tether
materials issues and problems,

5.1 Systems

Primary systems issues and problems lie in the areas of tether stability, dynamics, and operations.
For instance the configuration stability of certain constellations using drag stabilization is poorly under-
stood at present. General stabilization problems occur during deployment and retrieval of individual
constellation elements. Individual simulation models must be developed for each constellation con-

.	 figuration.

The issues associated with tether dynamics and control laws are being addressed at present and
continued updating and expansion of the computer programs can be anticipated. A significant systems
issue is the impact of potential tether operations on a space station, particularly if we anticipate multiple
tether applications. Different attitude requirements between stations and tethers must be studied, One
of the primary system problems to be addressed is the mass of the tether deployment system and the
tether mass itself because these masses enter into almost every trade-off with propellant and other savings
in comparisons with conventional means of achieving any desired goals.
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Since the stress on a tether depends on its length, the size of the end masses and its orbital
altitude, the tether must have a high strength and a low density — that is a high strength-to-mass ratio,
By dividing the allowable material stress by its density multiplied by the gravity acceleration one obtains
a figure of merit for Jether materials, the critical length of a tether as shown in Figure 17, doing above
250 or so kilometers of tether length in low Earth orbit requires tethers of constant stress or exponen-
tially tapered tethers to accommodate heavier masses. Present tether applications will utilize protectively
coated Kevlar'9 for non-conducting tethers and a metallic core with insulation for conducting; tethers.
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Figure 17. Characteristic length versus density for various materials
(adapted front. Reference 7).

Other critical technology issues are tether dynamics and the associated required control laws.
The dynamic behavior of long tethers within a gravitational field is quite counter-intuitive. Therefore,
each considered tether application requires very carefully developed dynamic algorithms and computer
simulations in order to understand its behavior, This is especially critical in tether constellations in
general and in special cases where stability is expe,:ted to be achieved by both gravity gradient and
atmospheric drag forces, Much work needs to be done in this area.

A summary of presently recognized issues and problems of the various tether application cate-
gories is given in Section 6,1, Tables 3 and 4,
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6,0 TETHER APPLICATIONS IN SPACE PLANNING

6,1 Tether Applications Workshop Results

In the summer of 1983 about 150 representatives of government, industry, and academia par-
ticipated in an historical workshop on tether applications, Existing and new applications were discussed
analyzed, evaluated, and assessed. The results of these deliberations were carefully documented [19]
and a summary of the findings is shown in Table 3, A special working group tin science and applica-
tions came forth with recommendations summarized in Table 4.

TABLE 3, WORKSHOP PANEL SUMMARY APPRAISALS OF CONCEPT CATEGORIES

CATEGORY ELECTRODYNAMIC GRAVITY TECHNOLOGY
lNYEHACTIONS TRANSPORTATION CONSTELLATIONS UTILIZATION AND TEST

PARAMETERS

•FEASIBILITY EXCELLENT FEAS. P/L BOOST,
VV

FEASIBLE IN LEO EXCELLENT EXCELLENT FEASIBILITY
•COST BENEFIT POT, GOOD COST BENEFIT BOOST

ORBITER DEBOOST COST BENEFITS AND GOOD COST BENEFIT OF TETHERED "WIND—
TUNNEL PROJECT';

•OPERATIONAL POTENT. POTENTIAL OPERATIONALPO-
IAL IS CONSIDER-

POTENTIAL GREAT COST
A D OPERAT ONALIT0000 OPER, POT. M'"ET—IS-EBOOST ABLE 0000 DPER.POT.

ORBITER DOCKING POTENTIAL
P/L BOOST
(UPPER ST.GEI

•PRINCIPAL TECH- TETHER MATERIALS TETHER MATERIALS NEW SIMULATION RELIABLE DOCKING & TETHER MATERIAL
NOLOGY REQUIRE— HIGH VOLTAGE TECHN. TETHER DYNAMICS MODE L6 AND CONTROL TRANSFER MECHANISMS DYNAMIC MODELING
MENTS

ENERGY STORAGE LAWS MALFUNCTION PLANNING

PLASMA CONTACTOR ORBIT CORRECTIONS
MA INTA IN ING

CR 	
ATYESIRED

ULF/ELFCOMMUNI-
CATION

ISSUES; POWER VARIATIONS UPRATED TETHER, STA914ITY FLUID STORAGE TANK IMPRQVEQ SATELLITE

-DESIGN OVERALL IMPEDANCE HARDWARE DEPLOYMENT PROCE— DEPLOYMENT O	 EMTRACK
REMQ TE

TIC, T SYSTEM
SS OPEflA-

e PERFORMANCE RADIATION LOSSES PASSIVE DEPL,/RETE, DURES DYNAMICS TION
-OPERATIONAL RADIATION DETECT- USER ACCEPTANCE MASS EXCHANGE TETHER PLUS ROTATION

ABILITY OVERALL LACK OF DYNAMICS
UNDERSTANDING MAINTENANCE

CRITfCALE01 — COLLECTION BODY SY"uTEMSDEFINiT10N MASS MOVEMENT NONE MENTSONED
SEE

GENERATION OF AN
ENGINEERING DYNAMICNEERING QUESTIONS EMITTER PROPERTIES ALONG TETHERS REQUIREMENTS" MODEL

•REQUIRED PROOF PLASMA CONTACT NOT DEFINED TSS DERIVATIVE. MISSION SPACE STATION EX— IN SITE ENVIRONMENT—
OF CONCEPT TESTS DEVICES

CO GONTHOLLED ELEVA— PERIMENTS AL DATA NEEDED
WAVE EMISSIONS & TOR
PLASMA PARAMETERS

PLASMA WAKESAND
FREE FLYING OEPLOYER—

DRAG EFFECTS PALLET-END MASS EX-
PERIMENT

CHARGE EMISSION

PRIORITY EXCELLENT SCIENCE EXCELLENT EFFICIENCY BENEFITS, PRODUCT— PRIMARY APPLICATION KEY TO ALL APPLICA-
BENEFITS NO ALTERNATIVES OVER ALTERNATIVES IVITY AND APPLICATION TO SPACE STATION TION BENEFITS

NEAR TERM APPLIC, UNKNOWN AT PRESENT AND PRODUCTIVITY
ALTERNATIVES NIGH PRODUCTIVITY TO BOOST SATELLITES NEAR TERM EFFORTS

-PRODUCTIVITY EXCELLENT NEAR REQUIRED
-NEAR TERM APPL, TERM APPLICATIONS

i

6,2 Tether Applications Program Planning

Based on the detailed results of the tether applications workshop, a working group representing
six NASA Centers, developed six individual project plans for each tether applications category which
then were integrated into an overall four-year program for the Office of Spaceflight (Fig,' 18). NASA
activities are following this plan since the beginning of this year.
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TETRA TITHER APPLICATIONS TO
TRANSPORTATION

TESCON TETHERED SPACECRAFT
CONSTELLATIONS

ELIOT ELECTRODYNAMIC iNTERACTIC
OF TETHERS

GUT GRAVITY UTILIZATION BY
TETHERS

TAT TECHNOLOGY d TEST
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TABLE 4, WORKSHOP PANEL ON SCILKH AND APPLICATIONS APPRAISAL SUMMARY

AERONOMY
^.	

GEODYNAMIC$ REMOTE SENSING

EXPLOITATION TSS INSTRUMENTATION TSS BELOWAND ADOVS TSS WITH OPTICAL IN
OF EXISTING DIF4111ENT INCLINATIONS ORBITER STIIUMENTS AT LOW
SYSTEMS DIFFERENT LOCAL TIMES MAGNETOMETER BOOM AL1IIUDE

DIFFEHENTSEASON$ GRAVITYGRAOIOME*ER SPECTRAL AND SPATIAL
POLAR ORBIT PRECISION ALTITUDE MEASUREMENTS

EXISTING MEASUREMENTS OF&OM= MULTI-SPACECRAFT TETHER IDENTICAL INSTRUMENTA,
SYSTEMS WITH POSITION CHANGES GRAVITY ANDMAGNETIC TION ON ORBITER AND
MULTIPLE SEVERAL SATELLITES ON FIELDGRAOIENTS SA79LLITE
PAYLOADS ASTRING UPWARO AND DOWN- MEASUREMENTS ATOIFFE-

MASS SPECTROMETERS, WIND WARD MEASUREMENTS RENT VIEWING ANOW
DIRECTION, DENSITY, IONISA^
TION

LOWER ALTI- MEASUREMENTOF GLOBAL OBSERVATIONS GREATLYIMPROVED
TUDE MEASURE- MOST IMPORTANT PRO S IN LOW ALTITUDE RESOLUTION BY LOW
MENTS CESSESBETWEEN 00 ALTITUDE SENSING

AND 170 Km ALTITUDE

TETHERED LONG DURATION MEASURE- PLANETARY MAGNETIC
AUTONOMOU MENTS, FIELD MEASUREMENTS
MULTIPLETS PLANETARY ATMOSPHERES

ROTATING TWO SPACE ^ r	 .^.
CRAFT ABOUT CENTER OF
MASS,

SUB-TET14ER MEASUREMENTS OF VERTI-
CAL STRUCTURE OF
ATMOSPHERE

E

PROGRAM	 PROGRAM PLAN
PLAN	 SCIENCE AND
TAS	 APPLICATIONS

PROJECT PLAN
TETRA

PROJECT PLAN.
TESCON

PROJECT PLAN
ELIOT

PROJECT PLAN
GUT
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Figure 18. Tether applications program plan development.

20



.i.

k

7.0 THE PROMISE OIL TETHERS W SPACE

The major contribution of the early and recent visionaries on the use of lore fathers in space,
is the recognition that movement in space is possible without rockets, that the large reservoir of energy
residing in the ionosphere care be tapped by tethers, and that multiple spacecraft at different altitudes

}	 can fly with a common orbital period if joined by Wt hers. The present NASA efforts directed by the
Office of Spaceflight constitute a well coordinated and structured approach to demonstrate the most
prvruising tether applications during the next ten yeah. The potential benefits in form of mission cos.:
reduction, improved operational mission efficiency, and particularly, the expansion of mission scenarios
are already being recognized in  several application categories (Section 4,0).

Since the number of tether applications in space appears almost limitless and since the only
constraints are tether ;materials and the laws of nature and of economics, it is hard to predict where the
maim inroads of tethers are going tea occur, There are, however, certain areas that show great promise
for the future and present priorities bear this out, The following criteria established these present
prior n'ls;

1) Needs or special benefits

2) Tethers are the only way to accomplish the tasY6 or there are equivalent alternatives

3) Relative quantity of knowledge or results gained
k

if

4) feasibility of near-terns application,

According to these criteria we have;

Priority I; Electrodynamic Interactions

o Prove des maxinnum potential benefit in tlnc power generation mode

o Alternative approaches appear less efficient and productive

o Ncar-term applications have already been initiated (TSSI),
r

Priority II; Technology r end Test; Tether Applications to Transportation

+	 These two categories seem to be next in line and of equal significance. The areas of tether
materials and of dynanUC Simulation technology w;ll remain of fUndannental importance across
different categories of tether applications for some time. The utilization of tetl ,:red aerodynamic models
and of tethered momentum transfer modes have no equivalent alternatives and have near to mid-ternn
applications.

Priority III; Tethered Spacecraft Constellations, Gravity Utilization Through Tethers

Constellations so far are the least understood concepts and involve great complexity in their
dynamic behavior. Therefore, no near-term applications and benefits have been established, More than
any other concept, constellations require several years of analysis and simulation in order to cctablish
their merits. Gravity utilization in the area of microgravity seems to be deficient in useful appplications
and cost benefits at this time. This category can ride on the coat tails of other gravity grstr lent stabilized
concepts in order to establish its usefulness.
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The few examples provided licre must suffice because the potential promises of tethers in space
seem almost endless, Tethers will give space missions a new perspective and will generate a whole new
area of technical developments within NASA covering a multitude of disciplines. Presently, we are in
the birth phase of tethers, the next ten years will begin their growth phase leading to a long terns
evolution of new possibilities in space (Fig. 24).

In addition to the mentioned future plasma propulsion systems, tethers will enable space stations
to maintain their altitude by deploying the logistic shuttle orbiter on a tether rather than letting them
depart directly. Gravity gradient stabilised Garth observation stations, artificial gravity planned planetary
missions using rotating tethered spacecraft, planetary atmospheric and surface probes using tethers and
interplanetary rotating solar sail vehicles are some of the endless future applications of tethers in space.
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APPnoVAL

TETHERS IN SPACE — BIRTH AND GROWTH OF A NEW
AVENUE TO SPACE UTILIZATION

By Georg von Tiesenlnausen

The information in this report has been reviewed for technical content. Preview of any informa-
tion concerning Department of Defense or nuclear energy activities or programs has been made by the
MSFC Security Classific.?tion Officer. This report, u1 its entirety, has been determined to be unclassified.
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Director, Advanced Systems Office
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