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ABSTRACT 

Turbulence structures in a wall-bounded shear layer dur~ng the 

bursting event detected by a conditional sampling techn~que are ~nvest~

gated us~ng data obtained from large-eddy simulation of turbulent 

channel flow. Streamlines are constructed from the ensemble-averaged 

veloc~ty f~eld to illustrate the flow patterns associated w~th the 

burst~ng event. They exhibit the splatting mot~ons during the sweep 

event and the existence of a pair of counterrotat~ng streamwise vor

t~ces during the ejection process. 
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I. INTRODUCTION 

Organized structures in turbulent flows have been a subject of much 

invest1gation in the past two decades. Despite a great deal of effort 

to 1dentify their characteristics, the lack of consensus on the deta1led 

descr1pt10n of the structures still prevails. Comprehensive reV1ews on 

the subject are recently given by Cantwel1 1 and Hussain. 2 

In this paper, detailed flow patterns associated with the bursting 

event 1n the near-wall region of turbulent boundary layers are 1nvestl

gated. The bursting phenomenon is composed of a sequence of quas1-

cycl1c events that occur in the wall region of turbulent flows. Dur1ng 

th1s event, approximately 70% of total turbulence production occurs 

(see Kim et al. 3 and Kline 4
); hence, this is regarded as one of the 

most important processes in wall-bounded turbulent shear flows. An 

understanding of this phenomenon is essential to a better ins1ght 1nto 

the dynamics of the turbulent transport process. Because of its 1mpor

tance, the burst1ng phenomenon has attracted a great deal of theoret1cal 

and exper1mental interest. Nevertheless, the exact descr1pt10n of th1s 

event, as well as its cause, is still in question. Kl1ne 4 and BrodkeyS 

prov1de excellent perspective views based on their pioneer1ng work 

accumulated in over a decade at Stanford and Ohio State un1vers1t1es, 

respectively. Recently, Smith6 proposed a synthesized model der1ved 

from his flow-visualizatjon work. Most of the previous work, however, 

fails to provide a clear picture of flow patterns associated with the 

bursting event because of the diff1culty involved in obtain1ng the 

necessary 1nformation experimentally. Hussain2 summed up the d1ff1culty 
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as follows: "Flow visualization presents excessive information but 

very little hard data, and anemometer data give some hard data but 

very limlted flow physics." Recently, with the advent of large and 

fast computers, computer simulations of turbulent flows have shown that 

these simulations can be used as alternatlve research tools (see Rogallo,7 

MOln and Kim,8 Klm,9 and MOin,lO for example). From these tlme-

dependent three-dimenslonal simulations, one can obtaln any deslred 

1nformat10n on the instantaneous three-dimensl0nal veloc1ty and pressure 

f1eld. 

The study reported here lS a continuation of the author's prevlous 

work,9 1n WhlCh the conditional sampling technique developed by 

Blackwelder and Kaplan 11 was applied to computer-generated data obtalned 

from a large-eddy slmulation of turbulent channel flow. 8 Varl0US 

ensemble-averaged quantltles, such as velocity, pressure, and vortlclty, 

were d1scussed 1n conjunction with the burst1ng phenomena detected by 

the condltional sampllng technlque. In the present work, more detalled 

flow patterns are descr1bed 1n terms with streamlines and contours con

structed from the three-dimensional ensemble-averaged veloclty fleld. 

In the aforementioned work of Moin and Kim,8 a fully developed 

turbulent channel flow was simulated numerically at a Reynolds number of 

13,800, based on the centerline velocity and the channel half-w1dth. 

The large-scale flow field was obtained by lntegrat1ng the f1ltered, 

three-d1mens10nal Navier-Stokes equations. The small-scale f1eld motl0ns 

were slmulated through an eddy-viscos1ty model. The calculat10ns were 

carrled out w1th 516.096 grid pOlnts. The gr1d spacings ln the 
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streamwise and spanwise directions were Ax = 62 and ~z = 15 1n wall 

units. Nonuniform meshes were used in the normal direction, and the 

first mesh point away from the wall was + y = 1.78. The results were 

verified by comparing the statistical properties of the computed flow 

field with experimental results of turbulent channel flows. In add1t1on, 

the turbulence structures in the vicinity of the wall-of-the-channel 

flow were found to be the same as the structures in the wall region of 

turbulent boundary layers. These data base obtained from the channel 

slmulat10n were used in Kim9 and the present work to study the flow 

structure associated with the bursting event in the near-wall reg10n 

of turbulent boundary layers. 

II. CONDITIONAL SAMPLING 

To obtain an ensemble-averaged flow structure of the bursting 

event, the variable-interval time-averaging (VITA) technique developed 

by Blackwelder and Kaplan11 is chosen as the conditional sampling 

process. In the present study (as in Kim 9
), however, the cond1t10nal-

averaging process is slightly modified to obtain a spatial structure 

rather than the temporal structure as in Blackwelder and Kaplan; the 

structures can be approximately related to each other by uS1ng 

Taylor's hypothesis. It should be noted that most of the quant1tat1ve 

measurements 1n a laboratory experiment produce temporal structures, 

whereas most flow-V1sualizatlon experlments generally yield spatial 

structures. A summary of the conditional sampling techn1que employed 

1n the present work is given below, but the reader should refer to 

Blackwelder and Kaplan 11 and to Kim 9 for details. 
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and 

The var~able-interval space-averaging (VISA) ~s def~ned as 

L 

= L1 I X
+2

-u(x,y,z,to,L) u(';,y,z,to)d';, 

D(x) 

x-!: 
2 

~2 
U , 

for A var > ku 2 

rms 
and au/ax < 0 __ {l' 

0, otherwise 

< u (x, y ,Z ,t 0» y+ u(x + ';.,y,z,to), 
J 

where L is the w1dth of the spatial averaging. For all the data 

d1scussed 1n th1s paper, a threshold value, k = 1.2 and L = 86x, 

(1) 

(2) 

(3) 

(4) 

correspond1ng to 500 wall units (1.e., L+ = Lu /v 
T 

500), were used. 

The detect10n criteria were applied at y+ = 21. These procedures were 

appl1ed to the data base generated by Moin and K1m,8 and the results 

reported 1n th1s paper were obta1ned by ensemble-averag1ng over more 

than 3000 1ndependent events. 

III. TURBULENCE STRUCTURE 

To 1llustrate the flow patterns assoc1ated w1th the burst1ng 

event, streaml1nes are constructed from the ensemble-averaged veloc1ty 

f1eld in several d1fferent planes. F1gure 1 shows streaml1nes 1n the 

(x-y) plane at Z = 0, where x, y, z correspond to the streamw1se, 

normal-to-the-wall, and spanwise d1rect10ns. These streaml1nes are 

constructed in a frame of reference moving at a speed of 0.85 U , 
c 

5 



where U is the mean velocity at the centerline of the channel. Th1S 
c 

speed was chosen as an assumed convection speed of large-scale structures 

(the correct convection speed of the large-scale structure is not 

known, but the qualitative picture does not change with different con-

vection speeds). As a reference, the ensemble-averaged streamW1se ve1oc1ty 

at + + + 
y = 21, where the detection criteria were applied (x = 0, y = 21, 

+ z 0), is given at the upper half of the figure. Note that the stream-

wise extent of the figure is about 4000 wall units, and the vert1cal 

extent 1S from the wall to the centerline of the channel, Wh1Ch corresponds 

to 640 wall units. At this convected frame of reference, there eX1sts 

a saddle p01nt Just upstream of the detection point exh1bit1ng a Slm1lar 

flow pattern as in a turbulent mixing 1ayer. 12 

Streamlines in the (y-z) planes, which are perpendicular to the 

mean flow direct10n, are shown in Figs. 2 and 3. The hor1zontal extent 

of these figures 1S about 600 wall units. Streaml1nes in F1g. 2 are at 

the upstream of the detection p01nt, x+ z -124, and show that h1gh-speed 

flu1d moves toward the wall (sweep event), thus creat1ng an excess 1n 

the streamW1se velocity, as indicated in the upper part of F1g. 1. 

D f h d . + ~ 124, F' 3 1 h d ownstream 0 t e etect10n p01nt, x ~ 19. revea stat un er-

neath the sweep event a pa1r of counterrotat1ng streamwise vort1ces 15 

formed such that between them the low-speed fluid from the wall reg10n 

is pumped away from the wall (ejection event), creating a defect in 

the streamwise velocity. The corresponding ve1oc1ty vectors are 

plotted in Figs. 4 and 5. Here, the velocity vectors are drawn parallel 

to the vectors formed by the spanwise and normal component of the 
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veloc1ty. The purpose of these vector plots is to check the assumption 

one has to make in order to construct the streamlines in the (y-z) 

planes - that is, au/ax Z O. By comparing Figs. 2 and 3 with F1gs. 4 

and 5, we notice no discernible difference in the flow patterns; 

th1s va11dates the approx1mation used in construct1ng F1gs. 4 and 5. 

Contours of streamw1se vorticity of the ensemble-averaged veloc1ty 

f1eld 1n (y-z) planes are shown 1n Figs. 6 through 8. The sense of 

rotat10n of the vorticity 1S such that pos1t1ve vorticity (solid 11nes) 

1nd1cates clockw1se rotat1on, and negat1ve vorticity (dashed l1nes) 

1nd1cates counterclockw1se rotat10n. In F1g. 6, upstream of the 

detect10n point x+ Z -124, we notice that the sweep1ng mot10n of the 

h1gh-speed flu1d, dep1cted as a pa1r of counterrotat1ng vort1ces 1n 

the f1gure, induces vorticity of Oppos1te sign near the wall oW1ng to 

the no-s11p boundary condition. This viscosity-induced vorticity 

appears to be the source of the counterrotating streamW1se vortices 

that appear downstream of the detect10n point, as shown 1n F1gS. 7 

and 8. As the streamW1se vort1ces are mov1ng away from the wall 

because of the self-1nduced motion as well as because of the 1mposed 

pressure grad1ent (see K1m 9 for deta1ls), they not only destroy the 

or1g1nal vort1ces above, but also induce the Oppos1te s1gn streamW1se 

vort1c1ty underneath them. Note also that the cores of the stream

W1se vort1ces approach each other as they move away from the wall. 

In F1g. 7, the d1stance between the centers of the counterrotat1ng 

vortices 1S about 120 wall units and the centers are located about 

25 wall un1ts away from the wall; they are 75 wall un1ts apart at 

about 45 wall un1ts away from the wall 1n Fig. 8. (The scaling of 
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the large-scale structure was not captured properly in the simulation 

of M01n and Kim8 because of the numerical resolution problem; therefore, 

any quantitative information must be taken with some care.) 

Contours of streamwise and normal velocities in the (x-y) plane 

are shown in Figs. 9 and 10. In these figures, solid lines represent 

posit1ve values and dashed lines represent negative values. For the 

streamw1se velocity, the mean value is subtracted from the ensemb1e-

averaged velocity; hence, the positive and negative values are re1at1ve 

to the local mean value. These figures show that the high-speed f1u1d 

moving toward the wall is riding on top of the low-speed f1u1d in the 

wall region. Figures 11 and 12 show the contours of the streamW1se 

velocity 1n the (x-z) plane at + y = 12 and (y-z) plane at 

+ 
x = 186. These figures show that the low-speed fluid 1S completely 

surrounded by the high-speed fluid except at the downstream end, 

and it appears that the high-speed fluid causes the low-speed flu1d to 

be squirted out. These figures are consistent w1th the descr1pt1on of 

Praturi and Brodkey 13 that the low-speed f1u1d 1S trapped between f1ngers 

of the h1gh-speed f1u1d. 

Recently, Sm1th,6 in an attempt to 111ustrate the eX1stence of 

horseshoe vort1ces 1n the near-wall region of turbulent boundary layers, 

demonstrated that there exists a strong s1mi1arity between the 1am1nar 

flow over a hem1spher1ca1 protuberance and a turbulent flow dur1ng 

the burst1ng events. He proposed a model, in which the horseshoe vor-

tices are formed 1n the low-speed streak regions by a process s1m11ar to 

that in laminar flow where the horseshoe vortices are formed when 
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vortex sheets are peeled off from the hemispherical surface. There lS 

no evidence in the present results to contradict the proposed model. 

In fact, one can easily visualize the low-speed region, although lt 

lS clgar-shaped rather than hemispherical, plays a slmilar role to that 

of the hem1spherical protuberance in the laminar flow. Th1S is, however, 

1n contrast to the description above in that the low-speed flu1d 1S 

considered now to be the cause of the streamw1se vortlces rather than a 

consequence of them as viewed by the present author. ObV1ously, more 

work needs to be done before definite conclus10ns are drawn on th1S 

cause-and-effect relatl0nsh1p. 

IV. SUMMARY 

Detailed flow patterns assoclated w1th the burstlng event 1n tur

bulent flows are constructed from the ensemble-averaged veloc1ty field 

obta1ned by applYlng a conditl0nal sampling technique to the data base 

generated by the large-eddy simulat10n of turbulent channel flow by 

M01n and K1m. 8 Th1S 1S the f1rst tlme such deta1led flow patterns 

occurr1ng durlng the bursting event have been obtalned. In partlcular, 

dur1ng the eJectlon event, the streamlines and veloclty vectors down

stream of the detection p01nt exhlblt clearly a palr of counterrotatlng 

streamwise vort1ces underneath the sweeplng mot1on. Contours of 

streamWlse vorticity in several streamwise locations suggest that the 

V1scous-induced vorticity during the sweep event may be the source of 

the streamw1se vortices. ThlS is in contrast to the model suggested 

by Smlth,6 WhlCh conJectures that the streamwise vortlces are formed 

by the low-speed reglon. Contours of the ensemble-averaged veloclty 
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show that the low-speed fluid in the wall region is surrounded by the 

h1gh-speed fluid, which is consistent with the description of Praturi 

and Brodkey.13 
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FIGURE CAPTIONS 

FIG. 1 Streamlines in the (x-y) plane at z = O. The upper figure 

is the conditionally averaged streamwise velocity at y+ = 21. Note 

that each increment in x corresponds to ~x+: 62. 

FIG. 2 Streamlines in the (y-z) plane upstream of the detection pOlnt, 

x+ - -124. Note that each increment in z corresponds to ~z+: 15. 

FIG. 3 Streamllnes in the (y-z) plane downstream of the detectl0n 

X+ = 124. pOlnt, 

FIG 4 V 1 . i h ( ) 1 x+ ~ -124. . e OClty vectors n t e y-z pane at -

FIG. 5 Veloclty vectors in the (y-z) plane at x+ = 124. 

FIG. 6 Contours of streamwise vorticity in the (y-z) plane at 

x+ = -124. 

FIG. 7 Contours of streamwise vorticity in the (y-z) plane at 

+ x O. 

FIG. 8 Contours of streamwise vorticity in the (y-z) plane at 

FIG. 9 Contours of fluctuating streamwlse velocity ln the (x-y) plane 

at z = O. 

FIG. 10 Contours of normal velocity in the (x-y) plane at z = O. 
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FIG. 11 Contours of fluctuating streamwise velocity in the (x-z) plane 

+ ::: 12. at y 

FIG. 12 Contours of fluctuating streamwise velocity in the (y-z) plane 

+ ::: 124 at x 
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