Yield Model Development

ARGENTINA SOYBEAN YIELD MODEL

SUSAN L. CALLIS
CLARENCE SAKAMOTO

USDA/NOAA
CTAD MODELS BRANCH
ROOM 200, FEDERAL BLDG
608 CHERRY STREET
COLUMBIA, MO 65201

Lyndon B. Johnson Space Center
Houston Texas 77058
A model based on multiple regression was developed to estimate soybean yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the soybean-growing area. Predictor variables for the model were derived from monthly total precipitation and monthly average temperature. A "trend variable" was included for the years 1969 to 1978 since an increasing trend in yields due to technology was observed between these years.
ARGENTINA SOYBEAN YIELD MODEL

by

Susan L. Callis

and

Clarence Sakamoto

AISC Models Branch

January 16, 1984
INTRODUCTION

The purpose of this study was to select monthly weather variates that could be used to estimate yields of the Argentina soybean crop. The soybean-growing area in Argentina is indicated in Figure 1. Most of Argentina's soybeans are grown in a concentrated area in central Argentina where the climate is predominantly humid subtropical. The western edge of the soybean area in central Cordoba is semi-arid with warm to hot summers. There, drought and high temperatures can be a problem during the growing season. The growing season begins with planting in October and November and extends to harvest from April through June.

METHOD

Multiple regression analysis of yield with selected agroclimatic indices was used to derive a suitable model. The regression equation for the soybean model derived is:

\[\hat{Y} = \alpha + B_1T + B_2(RDFN1) + B_3(P-PET2) + E \]

where

\(\hat{Y} \) = Estimated yield

\(\alpha \) = Constant

\(B_j \) = Coefficients of the variables \(j = 1 - 3 \)

\(T \) = Trend

\(RDFN1 \) = Deviation from normal of the precipitation for January

\(P-PET2 \) = Precipitation minus PET (potential evapotranspiration) for February,

and

\(E \) = Unexplained error.

Trend between the years 1969 and 1978 was determined from a plot of yields as shown in Figure 2. Both the weather variables chosen reflect soil moisture availability for plant growth. A more complete definition of \(P-PET \) can be
Figure 1. DENSITY OF PLANTED AREA IN SOYBEANS 1977/78 CROP YEAR
(Source: "Agronomic Characterization of the Argentina Indicator Region")
Figure 2. Plots of Production and Yield Versus Year for Argentina Soybeans.
found in the Appendix. Large positive P-PET values suggest wet conditions.

In developing the models, various procedures of the Statistical Analysis System (SAS Institute, Inc., 1979) were used. The procedures used and the operations performed with each are summarized in the Appendix. The selected model had the highest R^2 and included variables that were significant at the 10 per cent level and agronomically meaningful.

DATA

Crop data for Argentina from 1964 to 1979 were obtained from the Foreign Agricultural Service (Alan Vandagrith, personal communication, 1982). A data set was created with the year of yield as year of planting. Since the growing season spans two years, the crop data were expressed in terms of "year + 1" (or harvested year), and the meteorological data corresponding to any yield included data for that year and "lagged data" for the previous year.

The meteorological data was created using the general Argentina meteorological station file. This file was composed of data from several different sources, including the Monthly Climatic Data for the World and the Servicio Meteorologico Nacional in Argentina (R.E. Jensen, C.M. Sakamoto, and S.E. Hummert; August, 1974). Stations inside the soybean-producing area were averaged by province and weighted according to the percentage that their province contributed to the total country production. Figure 3 shows the soybean-growing area in Argentina and associated stations; Table 1 lists the stations used and their weights.

The years between 1965 and 1976 (years of harvest) were used to model since these years contained the most complete meteorological data.

PROCEDURES

Weather variable selected from correlations and plots with yield. These variables along with TREND were then tried in regression equations. The same models were also tried in regression with the residuals of yield after the
Figure 3. Five major agricultural provinces in Argentina and Location of Meteorological Stations Used in the Argentina Soybean Model.
Table 1. Meteorological Stations Used for the Argentina Soybean Model.
effects of trend had been removed (PROC GLM) as the dependent variable. The result was that the models in which trend was included as a variable fared better and had a higher coefficient of determination (R^2) in every case. It was decided to keep TREND as a variable.

The limited number of data years severely limits the number of variables that can be included in a regression model by limiting the number of degrees of freedom. This influenced the choice of model considered "best" for soybeans. Three variables, one of which was TREND, were considered the optimum with 12 years of data. The other two variables which best predicted soybean yields are RDFN1 and P-PET2. The coefficients for both were positive, which indicates a good moisture supply is needed during flowering. Table 2 is a summary of the statistics of the model.

TEST RESULTS

A jackknife test was run on the model. In this test a year was eliminated from the crop data and the model was used to predict that year's yield. This process was done for each successive year from 1965 to 1976. The results show that the model predicted well as a whole. Test results are printed in Table 3 and plotted in Figure 4.
APPENDIX

Definition of Variables

PET, precipitation minus potential evapotranspiration, is an index used to measure the amount of moisture available for plant growth. Potential evapotranspiration is determined by the procedure developed by Thornthwaite (1948) which uses only temperature:

\[\text{PET} = \left(\frac{10T}{I} \right)^a \]

Where \(I \) = heat index, which is the sum of the 12 monthly indices \(i \),

\[i = \left(\frac{T}{T_i} \right)^{5.4} \]

\(T \) = monthly temperature in °C, and

\(a = \) an empirical exponent, \(6.75 \times 10^{-7} + 7.71 \times 10^{-5} + 1.79 \times 10^{-2} + 0.49. \)

The duration of daylight is used to adjust potential evapotranspiration as a portion of 12 hours.

Statistical Analysis System Procedures Used

PROC CORR Computes correlation and coefficients between variables, including Pearson product-moment and weighted product-moment correlation.

PROC PLOT Graphs one variable against another, producing a printer plot.

PROC STEPWISE Provides five methods for stepwise regression. Stepwise is useful when selecting variables to be included in a regression model from a collection of independent variables.

PROC STEPWISE FORWARD Begins by finding the one-variable model that produces the highest \(R^2 \). For each of the other independent variables, FORWARD calculates F-statistics reflecting the contribution to the model if the variable were to be included.
PROC STEPWISE BACKWARD

 Begins by calculating statistics for a model including all the independent variables. The variables are deleted from the model one by one until all the remaining variables produce F-statistics significant at the .10 level.

PROC STEPWISE MAXR

 (Maximum R² improvement) Unlike the three techniques above, this method does not settle on a single method. Instead it looks for the "best" two-variable model, the "best" three variable model, and so forth.

PROC PETM

 Uses latitude and mean monthly temperature to calculate Thornthwaite's potential evapotranspiration for each month.

PROC ZINDEX

 Uses monthly PET's, precipitation, SS (beginning moisture in surface layer), AWCS (available water capacity in surface layer), SU (beginning moisture in the underlying layer), and AWCU (available water capacity in the underlying layer) to calculate Palmer's soil moisture budget, drought index Z, ET, and ET₂.
<table>
<thead>
<tr>
<th>VARIABLES ENTERED</th>
<th>DF</th>
<th>SUM OF SQUARES</th>
<th>MEAN SQUARE</th>
<th>F</th>
<th>P (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>62.2056073244</td>
<td>31.1028036622</td>
<td>41.29</td>
<td>0.0001</td>
</tr>
<tr>
<td>REGRESSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>0.0225000000</td>
<td>0.0002045455</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERCEPT</td>
<td>1</td>
<td>11.23632397</td>
<td>11.23632397</td>
<td>27.59</td>
<td>0.0008</td>
</tr>
<tr>
<td>DEF1</td>
<td>1</td>
<td>0.01311131</td>
<td>0.01311131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROF1</td>
<td>1</td>
<td>0.00660343</td>
<td>0.00660343</td>
<td>6.31</td>
<td>0.0115</td>
</tr>
<tr>
<td>D PET2</td>
<td>1</td>
<td>0.004844897</td>
<td>0.004844897</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variables in the model are significant at the 0.1000 level.

Table 2. Statistics of Argentina Soybean Model.
<table>
<thead>
<tr>
<th>OBS</th>
<th>TOPLC</th>
<th>REGULAR</th>
<th>FUMULYR</th>
<th>YIELDP</th>
<th>YIELDR</th>
<th>OBSYIELD</th>
<th>RSQ</th>
<th>DFRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1966</td>
<td>1965</td>
<td>1965</td>
<td>1965</td>
<td></td>
<td>9.1148</td>
<td>10.6</td>
<td>0.957886</td>
</tr>
<tr>
<td>2</td>
<td>1965</td>
<td>1964</td>
<td>1964</td>
<td>1964</td>
<td></td>
<td>12.6146</td>
<td>11.4</td>
<td>0.94762</td>
</tr>
<tr>
<td>3</td>
<td>1964</td>
<td>1963</td>
<td>1963</td>
<td>1963</td>
<td></td>
<td>11.9352</td>
<td>11.8</td>
<td>0.946736</td>
</tr>
<tr>
<td>4</td>
<td>1963</td>
<td>1962</td>
<td>1962</td>
<td>1962</td>
<td></td>
<td>11.4977</td>
<td>11.0</td>
<td>0.943253</td>
</tr>
<tr>
<td>5</td>
<td>1962</td>
<td>1961</td>
<td>1961</td>
<td>1961</td>
<td></td>
<td>11.2908</td>
<td>11.6</td>
<td>0.937703</td>
</tr>
<tr>
<td>7</td>
<td>1970</td>
<td>1971</td>
<td>1971</td>
<td>1971</td>
<td></td>
<td>4.8443</td>
<td>16.2</td>
<td>0.83878</td>
</tr>
<tr>
<td>8</td>
<td>1971</td>
<td>1972</td>
<td>1972</td>
<td>1972</td>
<td></td>
<td>4.9477</td>
<td>16.5</td>
<td>0.837155</td>
</tr>
<tr>
<td>9</td>
<td>1972</td>
<td>1973</td>
<td>1973</td>
<td>1973</td>
<td></td>
<td>3.8502</td>
<td>14.6</td>
<td>0.961014</td>
</tr>
<tr>
<td>10</td>
<td>1973</td>
<td>1974</td>
<td>1974</td>
<td>1974</td>
<td></td>
<td>3.8502</td>
<td>17.3</td>
<td>0.937525</td>
</tr>
<tr>
<td>11</td>
<td>1974</td>
<td>1975</td>
<td>1975</td>
<td>1975</td>
<td></td>
<td>4.4947</td>
<td>13.6</td>
<td>0.946641</td>
</tr>
<tr>
<td>12</td>
<td>1975</td>
<td>1976</td>
<td>1976</td>
<td>1976</td>
<td></td>
<td>5.9407</td>
<td>16.0</td>
<td>0.928817</td>
</tr>
</tbody>
</table>

Table 3. Jackknife Test Results for Argentina Soybean Model.
Figure 4. Argentina Soybean Model.