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INTRODUCTION



This report presents a summary of the research results and accom­

plishments for Contract NAS9-16528, Research in Remote Sensing of Agri­

cultural Crops and Soils, at Purdue University, West Lafayette, IN for


1982.



Research was conducted in three major areas: Scene radiation, soil


moisture, and image registration. Significant accomplishments during


the contract year include:



- Soil, crop, and weather variables affecting Landsat classification 
accuracy were identified and quantitatively described. 

- A model for early to mid-season prediction of corn development 
stages from spectral data was developed. 

- Direct measurements of the amount of light intercepted by corn and 
soybean canopies, along with leaf area index and spectral reflec­

tance measurements, were made. Spectral estimates of leaf area


index and canopy light interception are potential key inputs to


crop growth and yield models.



- Landsat spectral variables as inputs to crop stress and development 
stage models were evaluated. 

- In support of the scene radiation research objectives, spectral and 
agronomic data were acquired for corn, soybean, sunflower, and 
sorghum cultural practices experiments. 

- A tower- and sensor-mount was constructed to facilitate acquisition 
of canopy reflectance measurements at multiple sun and view angles.' 

- An angle transformation of greenness-brightness was developed for 
estimation of crop phytomass. 

- Research was conducted on noncorrelative methods for temporal 
registratiion of dissimilar scenes. 

Additional detailed information describing the various tasks,


experiments, and results are available from scientific papers and tech­


nical reports published during the past year (see Table I.1, pp. 4-6).
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Table I.1. Papers, Technical Reports, and Other Publications Prepared for


Contract NAS9-16528. Numbers in parentheses are AgRISTARS and LARS techni­

cal report numbers, respectively.



Papers in Scientific Journals



Published



1. Daughtry, C.S.T., V.C. Vanderbilt, and V.J. Pollara. 1982. Variability


of reflectance measurements with sensor altitude and canopy type.,


Agronomy Journal 74:744-751. (SR-PI-04191; LARS 111481).



2. 	 Hixson, M.M., M.E. Bauer, and D.K. Scholz. 1982. An assessment of


Landsat acquisition history on identification and area estimation of


corn and soybeans. Remote Sensing of Environment 12:123-128.



(SR-PO-00494; LARS 060480)



3. 	 Kollenkark, J.C., V.C. Vanderbilt, C.S.T. Daughtry, and M.E. Bauer.


1982. Influence of solar illumination angle on soybean canopy reflec­

tance. Applied Optics 21:1179-1184. (SR-P1-04039;,LARS 021681)



4. 	 Kollenkark, J.C., C.S.T. Daughtry, M.E. Bauer, and T.L. Housley. 1982.


Effects of cultural practices on agronomic and reflectance characteris­

tics of soybean canopies. Agronomy Journal 74:751-758. (SR-P1-04038;


LARS 021781)



5. 	 Vanderbilt, V.C., L. Grant, L.L. Biehl, and B.F. Robinson. Specular,


diffuse, and polarized light scattering by two wheat canopies. Applied


Optics (in press). (SR-Pi-04139; LARS 090981 revised)



6. 	 Walburg, G., M.E. Bauer, C.S.T. Daughtry, and T.L. Housley. 1982.


Effects of nitrogen nutrition on the growth and reflectance characteris­

tics of corn canopies. Agronomy Journal 74:677-683. (SR-P1-04044; LARS


030381)



Submitted



1. 	 Daughtry, C.S.T., and S.E. Hollinger. Costs of measuring leaf area


index of corn. AES Journal Paper 9655. (Submitted to Agronomy Journal.)



2. 	 Paw U, K.T., and C.S.T. Daughtry. A new method of the estimation of


diffusive resistance of leaves. AES Journal Paper 9828. (Submitted to


Agricultural Meteorology.)



3. 	 Seubert, C.E., C.S.T. Daughtry, D.A. Holt, and M.F. Baumgardner. Aggre­

gating of available soil water holding capacity for crop yield models.


AES Journal Paper 9287. (Submitted to Agronomy Journal.)



4. 	 Vanderbilt, V.C. Measuring plant canopy structure. (Submitted to Pho­

togrammetric Engineering and Remote Sensing.) (SR-P1-04141; LARS 060881


revised)
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(Table I.1. (continued)



Conference Papers and Abstracts



1. 	 Anuta, P.E., and F. Davallou. 1982. Resolution matching for registra­

tion of dissimilar images.' Proc. of IEEE Computer Soc. Conf. on Pattern


Recognition and Image Processing, Las Vegas, NE. (LARS 061682)



2. 	 Batista, G.T., M.M. Hixson, and M.E. Bauer. 1982. Corn and soybean


Landsat MSS performance as a function of scene characteristics. Proc.


8th Intl. Symp. on Machine Processing of Remotely Sensed Data, Purdue


University, West Lafayette, IN, July 7-9, 1982, pp. 178-188. (LARS


071182)



3. 	 Biehl, L.L., M.E. Bauer, B.F. Robinson, C.S.T. Daughtry, L.S. Silva,


and D.E. Pitts. 1982. A crops and soils data base for scene radiation


research. Proc. 8th Intl. Symp. on Machine Processing of Remotely


Sensed Data, Purdue University, West Lafayette, IN, July 7-9, 1982,


pp.169-177. (SR-P2-04263; LARS 070782)



4. 	 Biehl, L.L, and B.F. Robinson. 1982. Data acquisition and preprocessig


techniques for remote sensing field Research. Soc. of Photo-Optical


Instrumentation Engineers, SPIE, Vol. 356, Box 10, Bellingham, WA.


(LARS 082182)



5. 	 Daughtry, C.S.T., S.E. Hollinger, and J.C. Cochran. 1982. Estimating


silking and maturity dates of corn. Agronomy Abstracts 74:12.



6. 	 Daughtry, C.S.T., and S.E. Hollinger. 1983 . Costs of measuring leaf 
area index of corn. Agronomy Abstracts 75:11. 

7. 	 Gallo, K.P., C.C. Brooks, C.S.T. Daughtry, M.E. Bauer, and V.C. Vander­

bilt. 1982. Spectral estimates of intercepted solar radiation by corn


and soybean canopies. Proc. 8th Intl. Sym. on Machine Processing of


Remotely Sensed Data, Purdue University, West Lafayette, IN, July 7-9,


1982, pp. 190-198. (LARS 071682)



8. 	 Gallo, K.P., C.S.T. Daughtry, M.E. Bauer, and B.F. Robinson. 1982.


Measurement of photosynthetically active radiation intercepted by corn


canopies. Agronomy Abstracts 74:13.



9. 	 Gallo, K.P., C.S.T. Daughtry, and M.E. Bauer. 1983. Effect of LAI and


solar angle on interception of PAR in corn canopies. Agronomy Abstracts


75:12.



10. 	 Grant, L., V.C. Vanderbilt, and C.S.T. Daughtry. 1983. Measuremenbs of


specularly reflected radiation from individual leaves. Agronomy


Abstracts 75:12. (LARS 081583)
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Table I.1 (concluded)



11. 	 Hollinger, S.E., C.S.T. Daughtry, M.E. Bauer, and V.C. Vanderbirt.


1982. Remote sensing of canopy water content and phytomass. Agronomy-

Abstracts 74:15.



12. 	 Holt, D.A., S.E. Hollingen, C.S.T. Daughtry, and H.F. Reetz. 1982. A


theoretical and practical approach to large area production forecasting.
 

Biological Systems Simulation Group, Fourth Workshop on Crop Simulation,


Auburn University, Auburn, AL, Mar. 16-18, 1982.



13. 	 Robinson, B.F., and L.L. Biehl. 1982. Overview of remote sensing field


research: requirements and status. Soc. of Photo-Optical Instrumenta-.­

tion Engineers, SPIE, Vol. 356, Box 10, Bellingham, WA. (LABS"082082)



14. 	 Robinson, B.F., R.E. Buckley, and J.A. Burgess. 1982. Perfbrmance


evaluation and calibration of a modular multiband radiometer for-nemote


sensing field research. SPIE, Vol. 308, Box 10, Bellingham,. Wk..


(SR-P2-04318; LABS 061182)



Technical Reports



1. 	 Bauer, M.E., and Staff. 1982. Remote sensing of agricultural crops and­

soils. NAS9-15466 Annual Technical Summary for Dec. 1980-May 1982.


209p. (SR-P2-04266; LARS Contract Report 113081)



2. 	 Bauer, M.E., and Staff. 1983. Remote sensing of agricultural crops-and


soils. NAS9-16528 Annual Technical Summary for Dec. 1981-Nov. 1982.


(SR-P3-04399; LARS Contract Report 022183)



3. 	 Biehl, L.L. 1982. LARSPEC spectroradiometer-multiband radiometer data


formats. Laboratory for Applications of Remote Sensing (LARS), Purdue


University, West Lafayette, IN. (SR-P2-04277; LARS 050182)



Theses



1. 	 Pollara, V.J. 1982. An inquiry into the use of spectral data for-ass­

essing crop development stage. M.S. thesis. Dept. of Agronomy; Purdue-

University, West Lafayette, IN.



2. 	 Marshall, D.S. 1982. Epidiemology and multispectral sensing of leaf


rust of wheat. Ph.D. thesis. Dept. of Botany and Plant Pathology, Pur­

due University, West Lafayette, In.



3. 	 Ward, J.P. 1982. Effects of management practices on the reflectance-of'


corn and soybean canopies. M.S. thesis. Dept. of Agronomy, Pundue


University, West Lafayette, IN.
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1. CORN AND SOYBEAN LANDSAT MSS CLASSIFICATION PERFORMANCE AS A 

FUNCTION OF SCENE CHARACTERISTICS



G.T. Batista, M.M. Hixson, and M.E. Bauer 

Introduction



Previous research has demonstrated that satellite remote sensing has 

the potential to provide accurate, timely crop production information 
MacDonald and Hall, 1978) or when combined with conventional survey data to 

improve the accuracy and efficiency of area estimates (Hanuschak et al., 
1980). But, to fully develop and utilize Landsat data to inventory crop 
production, it is important to identify and understand the factors that 
affect Landsat crop classification accuracy. 

Classification accuracy of Landsat MSS data depends on a number of 
variables including scene characteristics; procedures for training, 
classification, and area estimation; and the general quality of the data. 
The variability in accuracy found using the same classification procedure 
and the similar distributions of Landsat data acquisition dates, at 
different locations is due primarily to scene variability. Understanding 
the way scene characteristics affect classifier performance is an important 
step in determining not only the accuracy that can be expected for a 
particular area, but also the amount of effort required for training, 
classification, and area estimation procedures to achieve an optimal 
accuracy and efficiency. 

The primary objective of this research was to investigate the accuracy 
of Landsat MSS data classifications of corn and soybeans as a function of 
scene characteristics in the U.S. Corn Belt. The scene characteristics 
involved several aspects of crop, soil, and weather variables. A second 
objective was to examine the interrelationships among the scene 
characteristics.



The study has an immediate potential application in the design of a 
crop inventory system using remote sensing. For example, areas with high 
expected classification accuracy could be sampled with lower frequency than 
areas where local characteristics are Imown to induce poorer classification 
results. 

Review of Previous Findings 

Many remote sensing researchers have found that a difference exists 
among the Landsat classification and area estimation accuracies in different 
sites. Bizzell et al. (1975), reporting on the results of CITARS project, 
found two site characteristics, field size and proportion of corn and 
soybeans, to be correlated with proportion estimation accuracy. They
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attributed the effect of field size to the decreasing percentage of mixed 
pixels as field size increases. Further, areas with predominantly larger 
fields tended to be more uniform and have fewer cover types, thus decreasing 
the amount of spectral variation. Field size effects have also been noted 
by Bauer et al. (1978), Hixson et al. (1980) and Pitts et al. (1980). 

The LACIE project, involving large-area production estimates, dealt 
with a wider source of errors. Pitts et al. (1978) identified sampling and 
classification errors as the two major components of area estimation errors,. 
Classification error, which is the subject of our study, was viewed by LACIE


as composed of analyst-labeling error sources and machine-classification 
error sources. The magnitude of the labeling error was affected by Landsat 
acquisition date, crop development stage, and a number of confusion crops, 
while classification error was associated with field size, training 
statistics, and classification algorithm selected. Both labeling and 
classification were affected by the general quality of the data, such as 
registration accuracy and atmospheric effects. In addition to these scene 
characteristics, soil and weather variability were noted as contributing 
factors to classification accuracy by Bizzell et al. (1975) and Bauer et 
al., (1979). 

In summary, the literature on remote sensing applications has 
extensively demonstrated the feasibility of using Landsat data and computer­
aided analysis for crop identification and area estimation. Although 
several studies have indicated that scene chdraeteris ties, including weather 
variations, affect classification performande, no work, to our knowledge, 
has been carried out with sufficient supporting data to define satisfactory 
functional relationships between specific scene characteristics and 
performance of a classification system for crop inventory. 

Approach



Description of Study Area and Landsat Data



Multitemporally registered Landsat-2 and -3 MSS data acquired over the 
U.S. Corn Belt during the summer of 1978 were analyzed. The data set 
consisted of 23 sample segments, each 5 x 6 n. miles in size. The locations 
(Figure 1-1) of the test sites were selected to represent a broad range of 
conditions in terms of climate, soil, topography, field sizes, cropping 
practices of corn and soybeans, and confusion classes (e.g. oats, sorghum, 
sunflowers, and trees). 

Aerial photography and a subsequent wall-to-wall inventory of crop 
types was digitized and registered to the Landsat data to provide a digital 
map of each site for evaluation of the classification results. Two data 
acquisition windows of the corn development stages, based on the


investigations by Hixson et al. (1982), were selected for analysis: (I)


preplant to 12 leaves, and (2) tassel to dent.



Color composites of Landsat imagery for all segments and all


acquisitions, along with full-frame Landsat color imagery were used to 
select cloud-free dates of Landsat data and for visual assessment of the 
contextual aspect of a segment in relation to the county where the segment 
was located. 
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Figure 1-1. Location of test sites in Corn Belt region (AgRISTARS segment number).
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Training and Classification 

A systematic sample of the data was used for training and testing the 
classifier. The pixel at every tenth line and column of the Landsat data 
was examined. If that pixel fell in a field, the cover type in the field 
was identified from the ground inventory. Only field center plxels were 
-selected. 

From the fields selected by this procedure were randomly assigned for 
either training the classifier or testing classification 'accuracy. From 
those fields selected for training, three sets of data were clustered: all 
fields of corn, all fields of soybeans, and all fields of other cover types. 
This procedure insures "pure" cluster classes (i.e., clusters containing 
pixels from only one cover type). After refinement of the statistics was 
complete, the entire segment was classified using a per point Gaussian 
maximum likelihood classifier from LARSYS (Phillips, 1973). 

Measures of Classification Performance 

Classification performance was evaluated for corn, soybeans and overall 
by three categories of performance measures: (1) wall-to-wall accuracy, 
obtained by comparing Landsat classifications of all pixels of a segment to 
the ground inventory identification; (2) test field accuracy, obtained by 
comparing test field classifications to the ground inventory; and (3) 
proportion estimate error, obtained by comparing the ground inventory 
proportions with the Landsat proportions. The latter measure used RMS error 
for corn and soybeans to represent an overall error. Corn and soybean 
proportion estimate errors were defined as the absolute relative difference 
between the Landsat proportion and cover type proportion of corn. 

Scene Characteristics 

Twenty-nine variables were defined to describe the scene 
characteristics. They were grouped into four categories: (1) soil 
variables, (2) cover type variables, (3) productivity variables, and (4) 
seasonal variables. 

Soil variables were defined and estimated from available publications. 

SLOPE - Average slope: 0-nearly level to moderately sloping (0-12%), 
1-strongly sloping to very steep (12-25%). 

DRAIN - Natural drainage: 1-poor to somewhat poor, 2-moderately well, 
3-well. 

PARM - Parent material: 0-not loess or not loess on till, 1-loess or loess



on till. 

ORDER - Taxonomic order: 0-not Mollisol, 1-Mollisols. 

VARI - Soil variability: 1-low, 2-medium, 3-high, 4-very high. 
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VAXOR - Interaction of VARI and ORDER.



DRXOR - Interaction of DRAIN and ORDER.



DRXVG - Interaction of DRAIN and original vegetation.



Cover type variables characterizing the proportions of cover types 
present were obtained from the ground inventory data.



CORN - Proportion of corn.



SOYB - Proportion of soybeans. 

PAST - Proportion of pasture, alfalfa, grass, hay and clover. 

TREE - Proportion of trees and orchards. 

ELSE - Proportion of 
fields. 

homesteads, water bodies, non-agriculture, and idle 

ALL - Proportion of all field crops together.


ALLAC - Coded field size for all field crops: 1-small, 2-medium, 3-large,


4-very large. 

MIX - Proportion of mixed pixels.



ALXMI - Interaction of ALL and MIX.



SWI - Shannon-Wiener diversity index, using 22 cover types:



SWI = eH and H = -Y P, log Pi



where Pi is the proportion (0.0 to 1.0) of cover type i. A scaling



was used to make this index vary from 0 (least diverse) to 1 (most


diverse).



Productivity variables related to crop yields were:



MAX - 1978 soybean "maximum yield" (range 40.0 to 73.1 u/ac). Maximum


yield as proposed by Holt et al. (1979) is the yield that would


have been obtained if weather was not limiting throughout the 

growing season. Maximum yield values were computed on a county 
basis. 

CYLDAVE - Long-term (approximately 20 years) average corn yield for the 
counties where the segments were located (range 56.1 to 100.4 
bu/ae). 

SYLDAVE - Long-term (approximately 20 years) average soybean yield for the 
counties where the segments were located (range 18.1 to 35.5

bu/ac).
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BELT - A qualitative variable that reflects the relative position of the 
segment in the Corn Belt. Two levels were defined: O=Corn Belt 
fringe area (9 observations) and 1=inside the Corn Belt (14 
observations). 

Seasonal variables used to characterize the 1978 growing season were: 

WF - 1978 "weather factor" for representing the environmental limita­
tions on soybean yield prevailing during the growing season (Holt et 
al., 1979). Low values of WF correspond to severe limitations on 
yield. 

CPER1 - Corn developnent stage at first Landsat acquisition. 

SPERI - Soybean development stage at first Landsat acquisition. 

CPER3 - Corn development stage at second Landsat acquisition.



SPER3 - Soybean development stage at second Landsat acquisition. 

CYLD - 1978 county average corn yield (USDA data). 

SYLD - 1978 county average soybean yield (USDA data). 

Statistical Analyses 

The Statistical Analysis System (SAS Institute, 1979) was extensively 
used in this study. Initially, plots of each independent variable versus 
the dependent variables were obtained to examine the form of the 
relationships and, secondly, simple correlations of all possible 
combinations of variables were run. Plots and correlations were also used 
to examine the interrelationships among the independent variables. 

A separate multifactor analysis was performed for each dependent 
variable. Several regression models using the STEPWISE procedure of SAS 
with the MAXR option were run. Initially only the cover type variables were 
allowed to enter the model. After the selection of a subset of the cover 
type variables based on the ability to explain the variability in the 
dependent variables, a subset of the soil variables was selected. Following 
the same procedure, productivity variables were entered, and finally a 
subset of the seasonal variables was selected after the cover type, soil, 
and productivity variables, previously selected, were already in the model. 

An additional analysis consisted of all possible regressions of subsets 
of 4 to 14 of the 29 independent variables. The output of this program 
lists subsets of independent variables for each subset size in order of 
amount of variation explained in the dependent variable. 
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DiscussionResults and 

Classification Results 

Results show that Landsat proportion estimates were strongly related to 
ground inventory proportions with R2 greater than 0.90. Figure 1-2 
indicates that the regression lines are close to the 1:1 line between 
Landsat proportions and cover type proportions with no major departures from 
the regression lines in any of the segments analyzed.



Wall-to-wall classification accuracy was linearly related to test field 
accuracy for corn, soybean, and overall classifications with correlation


coefficients around 0.70. Since the computation of wall-to-wall accuracies 
takes into account all pixels of a segment, including mixed pixels, as 
opposed to only pure pixels of the test field, it was expected that test 
field accuracies would be higher than wall-to-wall accuracies. In fact, the 
average test field accuracies were 14, 15 and 12% higher, respectively, for 
corn, soybean and overall.



Table 1-1 presents the overall test field performance for all segments 
together. Omission error was smaller for corn than for both soybean and 
"other" classes. More soybean and "other" were classified as corn than vice 
versa in most of the segments. This was associated with the predominance of 
corn in the study area rather than with analyst bias. 

Corn Soybeans


= 
 r .96 r= .96 

ok 60 slope .94 slope =.94 

500 •
:40 -


CL .0*"Oh30 0
O0 

(L. 10 " 
20 . 

0 
0 20 40 60 0 20 40 60 

Landsat Proportion (%) 

Figure 1-2. Relationship of Landsat estimates and ground inventory of corn 
and soybean proportions. 
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Table 1-1. Mean classification accuracy of 22 segments (segnent 883 was not 

included). 

Pot. Classified as



No. of


Class Pixels Corn Soybean Other



Corn 13727 85.9 6.6 7.4


Soybean 8534 12.0 81.8 6.2


Other 11872 11.2 5.8 83.0


Total 34133



Overall Accuracy = 83.9%



Single Factor Analysis



This analysis involved the study of the relationship between each


dependent variable and each independent variable. Plots of all possible


pairs of variables were examined, and only linear relationships appeared to


be present. Correlation coefficients were computed for all possible pairs


of variables (Table 1-2). Both productivity and cover type variables were
 

linearly related to more dependent variables than either soil or seasonal


variables.



Corn accuracy measures were related to more independent variables than


either overall or soybean accuracies. Proportion error for soybeans (ARSD)


did not have a significant relationship with any independent variable. Test


field accuracies for both overall and soybeans were related to more 
independent variables than wall-to-wall accuracies. 

The effect of field size on classification accuracy was investigated 
using the test fields previously selected for test field accuracy 
assessment. The advantage of using test field size in addition to average 
field size (ALLAC) as previously presented was that test fields were 
composed of only pure pixels, therefore the effects of mixed pixels and of 
small fields, which are otherwise confounded, could be separated. Another 
advantage was the considerable increase in the number of observations. 

Figure 1-3 presents the relationship between average classification 
accuracy and average test field size where each observation corresponds to 
the average of all individual test fields for each classification class, 
i.e., corn, soybean, and others for each segment. Although a wide range of 
average accuracies was observed for small field sizes, the average 
accuracies were usually higher and less variable for larger test fields. 
The effect of small fields was associated not only with an increase in the 
proportion of mixed pixels, but also with the intrinsically large spectral 
variability of small fields. 
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Table 1-2. Correlation of scene characteristics and several measures of 
classification performance (for clarity, only the coefficients that were 
significant at a = 0.15 are presented). All coefficients are based on 
23 observations, except for MAX which had 22 observations. 

Measures of Classification Performance 

Corn Soybeans Overall 

Scene


Characteristics CO CT ARCD SO ST ARSD OV OVT RMS



Soil


SLOPE -.52 - - - .33 - - -.41 
DRAIN - - - -. 34 
PARM - - -. 46 
ORDER .35 .49 -. .. 143 -

VARI -.39 - -..- 33 
VAXOR . - .- .37 - -
DRXVG .35 .60 - - .63 -
DRXOR - .51 - .35 - .59 -

Ground Truth 
CORN .84 .59 -.56 - .36 - - .34 -

SOYB .39 - -. 38 .57 .36 . - -

PAST -.53 - - - - - -

TREE -.71 -. 43 - - -. 33 -
ELSE - - --. 54 .­ -

ALL .74 .36 - - - -

ALLAC .73 .60 - - .32 -
MIX -. 54 -. 48 - - - -

SWI -. 72 -. 58 .60 - -. 33 - - -

ALNT .57 - -. 35 - - - - -

Productivity 
MAX - .47 -.53 - .37 - .35 .47 -.33 
CYLDAVE .63 .53 -.57 - .47 - - -
SYLDAVE .67 .63 -. 77 .36 .49 - - .40 -
BELT .57 .67 -.51 -- - .52 -

Seasonal 
WF - - - -. 41 - - -
CPERI .37 . .. .. 
CPER3 - - - .44 .40 - . . . 
SPERI .50 .43 - -. 

SPER3 - - - - - - -

CYLD .64 .65 -.69 - .44 - - .34 -

SYLD .75 .70 -.59 - .48 - - .54 ­
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Figure 1-3. Relationship between average classification accuracy of corn, 
soybeans, and else and average test field size expressed in number of 
pixels C66 observations corresponding to 22 segnents and 3 

classification classes). 

Multifactor Analysis 

To investigate the interrelationships between the independent variables 
and to understand the nature of the independent variables better, a 
multicollinearity analysis was performed. Table 1-3 shows the significant 
correlations between all possible pairs of independent variables. The 
correlation between variables of the same group was generally strong except 
for some of the seasonal variables. Although soil variables were not 
correlated with many productivity or seasonal variables, they were 
significantly correlated with cover type variables. Cover type variables 
were also strongly correlated with the productivity variables, with the 
exception of the maximum yield (MAX) variable. Productivity variables, as 
expected, were strongly related to both 1978 corn and soybean yields (CYLD 
and SYLD). Field size (ALLAC), proportion of all field crops (ALL), crop 
diversity index (SWI), proportion of trees, slope, and proportion of corn 
were significantly correlated with many other independent variables. In 
addition, proportion of mixed pixels (MIX), proportion of soybeans, long­
term average soybean yield (SYLDAVE), soil order and relative position of 
the segnent in the Corn Belt (BELT) were also significantly correlated with


several other independent variables. 
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Table 1-3. Simple correlation coefficients between pairs of scene 
caracteristics. For clarity, only the coefficients that were 
significant at a = 0.05 are presented (29 independent variables and 23 
obs ervations). 
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Table 1-4. Variables selected and coefficients of determination as a result 
of adding-a group of scene characteristics given that the selected 
variables of previous group(s) were already in the model. 

Prod Variables 
Soil Variables given Ground Seasonal Variables given 

Dependent 
Variables 

Ground Truth 
Variables Entered (R

2 
) 

giver.Ground T uth 
Variables (R 

4) 
Truth + Soil 

Variables (R2) 
Ground Truth . Soil + 
Prod. Variables (R 

Corn 

Wall (CO) CORN,ELSE,ALL (.77) DRAIN ( 78) SYLDAVE ( 81) SPERI 86) 

Test (CT) CORN,SOYB,PAST, DRAINPAM ( 68) SYLDAVE ( 79) SYW ( 85) 
ALLAC ( 61) 

Prop ( MC) CORN,SOYB,ELSE, PARM ( 92) SYWAVE ( 95) 
ALL ( 89) 

Soybeans 

Wall (SO) SOYB,ELSE,ALL ( 49) SLOPE (.51) BELT MAX ( 58) WP C 65) 

Test (ST) CORN,SOYB,PAST, DRAIN,DRXOR,DRXVG (-69) BELT ( 76) W6 C 84) 
SWI (.4) 

Prop. ARSD) PAST,ALLAC,SWI 110) SLOPE,ORDER,VA"I, MAX,CYLDAVE (.49) WF,SPER3,CYLD C 9) 
DRAIN,DRXVG ( 39) 

Overall 

Wall (OV) CORNSOYBELSE, ORDER,DRAIN,VAXOR, BELT,MAX ( 73) WF (.85) 
ALLAC ( 23) DRXOR ( 68) 

Test (OVT) SOYB,PAST,ELSE, SLOPE,ORDER,DRATN SYLDAVE (.71) CPER3,SPER3 ( 90) 
ALLAC ( 45) DRXOR ( 63) 

Prop (RMS) ELSE,ALL,ALLAC, SLOPEORDER,VARI, CYLDAVE ( 67) WSPER3 (.79) 
ALXMI (.16) DRXOR ( 63) 
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To investigate the amount of variability in the dependent variables 
that could be explained by a group of scene characteristics, several 
multilinear regression analyses were run. In building the regression 
models, cover type variables were the first variables to be acquired, 
followed by soil variables, then productivity variables, and finally the 
seasonal variables. Thus, models for each independent variable were run 
Initially using on-li the cover type variables. Then soil, productivity and 
seasonal variables were entered in order. The results of these analyses are 
presented in Table 1-4. 

Cover type variables alone explained much of the variability of corn 
accuracy measures, especially of corn proportion error (ARCD) where only 
four cover type variables gave an R2 of .89 (Table 1-4). However, they did 
not explain much of the variability of soybean proportion error (ARSD), 
overall proportion error (RMS), and overall accuracy (OV). Corn, soybean, 
and other proportions and field size (ALLAC) were among the most frequently 
selected cover type variables. Proportion of all field crops (ALL) and 
proportion of pasture were also frequently selected. The cover type 
variables selected less frequently (SWI and ALrII) or never selected (MIX 
and TREE) were strongly correlated with other cover type variables. 

Soil variables added considerable information to the cover type 
variables already in the model, particularly for the overall accuracy 
measures and for soybean test field accuracy. Drainage, slope, order, and 
interactions between drainage and order (DRXOR) were the most frequently 
selected soil variables given that the previously selected cover type 
variables were already in the model. Drainage (DRAIN) and parent material 
(PARM) were important in explaining corn accuracies while slope, order, and 
interaction variables (DRXOR, DRXVG, VAXOR) contributed more to explaining 
soybean and overall accuracies. 

After cover type and soil variables were in the model, productivity 
variables were entered. Although only one or two productivity variables 
were selected, their contribution to explaining the variability in the 
dependent variables was large. Long-term average soybean yield (SYLDAVE) 
and maximum yield were the most frequently selected variables. 

Seasonal variables explained a significant portion of the variability 
of the dependent variables even after the selected variables of all three 
previous groups were already in the model. They were particularly effective 
in explaining the variability in the overall and soybean accuracies. The 
weather factor (WF) was the most frequently selected seasonal variable, 
followed by soybean developnent stage at the second acquisition date 
(SPER3).



Table 1-5 shows R 2 values obtained by the regression of each dependent 
variable on an increasing number of independent variables. In these 
analyses, all 29 independent variables were allowed to enter the model as 
candidate variables and the best combinations of four to 14 independent 
variables were selected based on R2 values. Only four variables were 
required to explain the variability of corn accuracies compared to six to 
nine variables for soybean and overall accuracies, except for overall test 
field accuracy for which only four independent variables explained 81% of 
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Table 1-5. Coefficients of determination of the regressions of the measures 
of classification on the best combinations of the scene variables. 
Total of 29 candidate variables and 4 to 14 variables entering the 
model (22 observations). 

Corn Soybeans Overall 

Ntmber 
of Var. CO CT ARCD SO ST ARSD OV OVT RMS 

4 .84 .82 .87 .70 .62 .32 .49 .81 .57 
5 .86 .84 .90 .75 .75 .56 .63 .88 .63 
6 .87 .86 .91 .77 .80 .70 .66 .91 .67 
7 .88 .86 .92 .81 .83 .78 .72 .92 .81 
8 .89 .87 .93 .84 .85 .81 .80 .94 .85 
9 .93 .88 .94 .90 .90 .87 .82 .95 .87 

10 .97 .89 .95 .92 .91 .88 .84 .97 .89 
11 .98 .93 .96 .94 .95 .94 .86 .97 .96 
12 .99 .94 1.00 .97 .96 .96 .89 .99 .96 
13 .99 .97 1.00 .97 .96 .98 .97 .99 .97 
14 1.00 .98 1.00 .99 .98 .99 .98 .99 .99 

its variability. Similarly, it was observed in the single factor analysis 
previously presented that corn accuracy measures and overall test field 
accuracy were more strongly related to individual independent variables than 
either soybean accuracies, overall proportion error (RMS) or overall wall­
to-wall accuracy.



Summary and Conclusions 

In summary, this study clearly indicated that several scene 
characteristics significantly affect classification accuracy. Further


investigations should be directed toward modeling classification performance 
as a function of scene characteristics. Future studies should also include 
areas with more confusion crops and greater soil variability. Training and 
classification procedures are the two most controllable sources of variation 
in classification accuracy after the variability due to scene 
characteristics has been accounted for. Therefore, after the construction 
and testing of the model, an investigation of how specific training and 
classification procedures modLfy the predicted accuracy based on scene 
characteristics should be performed. 
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2. ESTIMATING CROP DEVELOPMENT STAGES FROM MULTISPECTRAL DATA 

James C. Tilton and Steven E., Hollinger 

Introduction



If the calendar day a crop reaches a certain development stage is 
known, the stress a crop is experiencing can be assessed fairly accurately 
from weather information. Crop yields can then be predicted from this, 
knowledge of the level and type of stresses a crop experiences during its 
development. 

Accurate prediction of crop yields requires knowledge of the crop's 
development stage at critical times during the growing season. Development 
stage as defined here describes where the crop is in its life cycle. The 
Hanway scale(l) (Table 2-1) is commonly used to describe corn development 
and the Fehr-Caviness scheme(2) to describe soybean development. There are 
several other scales which are used to describe other crops.



Various meteorological models have been developed to estimate the 
calendar day a crop reaches a particular development stage. The most common 
methods involve the calculation of a thermal unit or a photothermal unit. 
The thermal unit or growing degree unit is calculated by summing the 

Table 2-I. Corn development stages as defined by Hanway (1).



Stage Number Stage Name



-1.00 Preplant


0.00 Planted


0.10 Emerged


0.25 1 leaf 
1.00 4 leaves


2.00 8 leaves


3.00 12 leaves


4.00 16 leaves


4.50 Tasseled


5.00 Silked 
6.00 Blister 
6.50 Milk


7.00 Dough


8.00 Begin dent 
9.00 Full dent 
10.00 Physiologic maturity


10.50 Harvest maturity


11.00 Harvested
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difference between the daily mean temperature and some threshold


temperature. The modified growing degree unit developed by Gilmore and 
Rogers (3) is the most commonly used method to estimate corn development 
stages in the United States. 

The thermal unit method of estimating crop development stages requires 
the planting date of a field and the temperature experienced by that field 
as inputs. The planting date for any given field in a large area is usually 
not known, so the average planting date for a state, crop reporting district 
(CRD), or county Is often used. Temperature data for a given area is 
available from only one or at best three stations per county. Therefore, 
the mean temperature for a CRD is often used to describe the temperature 
regime for the entire area. This practice of using one planting date and 
temperature value gives an estimate of the mean development stage within a 
large area, but fails to fully describe the range and variation of 
development stages within the area. If remotely sensed spectral data from


satellite can provide an estimate of the spatial variation of planting dates 
and/or development stages over large areas, it would be possible to make a 
more accurate estimate of the yield variation within a given region. 

Considerable effort has been devoted to developing methods of 
estimating development stage using remote sensing. A spectral-temporal 
profile model using spectral data to describe development stage throughout 
the season has been developed recently by Badhwar and Henderson(4). The 
model has shown promise in accurately estimating development stages of corn 
and soybeans. However, the model requires a minimum of five acquisitions 
spread throughout the growing season to depict development. This becomes a 
problem because development stage cannot be described until after the end of 
the growing season and the value of the information is greatly reduced as 
far as assessing yield potential during the growing season Is concerned. 
Because of this limitation, we have pursued the development of a model to 
give a spectral estimate of development stage early in the growing season. 
This model can also be used to estimate development stages late in the crop 
season. The model has its biggest advantage in early season development 
stage estimation in that observations are only required through mid-season 
rather than through the entire crop season. Another advantage of our model 
is that It does not require the computationally-intensive curve-fitting 
required by the Badhwar and Henderson model. 

Multispectral Crop Modeling 

The spectral response of a crop canopy, as measured by Landsat-type 
multispectral scanners (MSS), changes in a typical manner throughout the 
growing season, depending on the crop type. The greenness component of the 
Kauth and Thomas tasseled-cap transformation(5) exhibits these changes 
particularly well. The greenness and brightness components of the tasseled­
cap transformation are the two largest components obtained from a principle 
components analysis of four channel Landsat MSS data. The greenness 
component correlates with the amount of green vegetation present while the 
brightness component correlates with the overall brightness of the scene 
(often the brightness of the underlying soil). In this investigation we 
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considered the behavior of the greenness component of the tasseled-cap 
transformation for individual pixels or for field averages, which we will 
refer to as the green number for that particular pixel or field. 

A typical plot for corn of green number versus calendar date is shown 
in Figure 2-1. Prior to planting the green numiber stays essentially 
constant at a level we call the "soil green number." After planting the 
green number stays at the soil green number until sufficient vegetative 
matter appears above the soil, usually when two or three leaves emerge from 
the corn plant (Hanway stage 0.50 or 0.75). Then the green number increases 
with calendar date relatively quickly until the "maximum canopy green 
number" value is reached, usually at about tasseling or silking (Hanway 
stage 4.50 or 5.00). The green number then holds fairly constant or falls 
slightly as subsequent development stages occur through the beginning of 
denting (Hanway stage 8.00). It then falls rapidly as the corn matures 
until it approaches the soil green number again at harvest. Many other 
crops have similar green number curves with time, where the green number 
rises or falls rapidly over relatively short time intervals. 

The crop developnent stage estimation technique described here 
basically notes the calendar days when the green number rises and falls to 
values half-way between the soil green number and the maximum canopy green 
number. These calendar days are then correlated with particular crop 
development stages through the use of training data. Since the green number 
changes most rapidly with both time and crop development stage at these 
half-way rise and fall points, the development stage can be estimated most 
accurately at these points. Of particular interest is the crop development 
stage estimate for the calendar day when the green number first rises to 

Maximum Canopy Green Number 

20z1 

~16­

2 4 Nu-------, 
~12­z 

8-

O 4- Soil Green Number 

150 190 230 270 310 
Calendar Day 

Figure 2-I. Typical plot of Landsat green numbers versus calendar day for a 
midwestern corn field. 
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cross the value half-way between the soil green number and maximum canopy 
green number. All that is required to make this estimate are MSS 
observations through enough of the growing season to make an estimate of the 
maximum canopy green number, or roughly half of the growing season. At 
least one observation at or prior to planting is required for the soil green 
number estimate. In order for good estimates to be made, the MSS 
observations should be made at intervals of 36 days or less. 

Crop Development Stage Estimation Technique 

Agronomy Farm Data 

Spectral data acquired over experimental plots at the Purdue University


Agronomy Farm near West Lafhyette, Indiana were used in the early 
development work on our crop development stage estimation technique. The 
data were collected using a truck-mounted Exotech-100 radioineter which has 
the same wavelength bands as the Landsat MSS. The data were calibrated and 
corrected for sun-angle effects. Various agronomic measures, including crop 
development stage, were recorded simultaneously with each radicmetric 
observation. For a complete description of the data see Bauer, et al(6). 
The Kauth-Thomas greenness component of the Exotech-100 wavelength bands 
(B1, B2, B3 and B4) is given by the following transformation(7): 

Green number = -0.4894*Bl - 0.6126"B2 + 0.1729"B3 + 0.5854*B4. 

A key step in estimating crop developmnnt stages from the green number 
values is a process through which the soil green number and the maximum 
canopy green number are estimated from the data. This estimation process 
requires green number estimates at regular time intervals throughout the 
growing season. This regular interval was chosen to be nine days to make 
the Agronomy Farm data look more like Landsat MSS data. The shortest time 
interval over which repeat Landsat MSS data may be available is generally 
nine days. Since the MSS observations are generally available at irregular 
time intervals, interpolation must be used to obtain green number estimates 
for every nine days. The interpolator employed should be conservative (not 
prone to wide oscillations) since we do not expect green number variations 
due to crop development to have wide oscillations. Such an interpolator is 
the quasi-Hermite spline interpolator contained in the IMSL mathematical and 
statistical subroutine software package (8). This interpolator is designed 
to approximate a curve drawn manually through the data points. 

As noted above, Landsat MSS data are generally available no more 
frequently than every nine days. Data from controlled experiments may be 
available more frequently. Data at intervals less than about nine days may 
contain misleading short-term fluctuations due to such things as changes in 
illumination level and soil moisture level (e.g. it rained between 
observations). Where such short-term fluctuations occur, even the 
conservative quasi-Hermite spline interpolator produces green number 
estimates with unrealistic oscillations. (Data at widely spaced intervals 
also contain fluctuations due to short-term events, but these fluctuations 
are about a long-term trend and are not interpreted as high frequency 
osillations by an interpolator.) 
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Because of the problems with short-term fluctuations in the data, the 
calculated green number values are smoothed (or filtered) to dampen out the 
high frequency variations suggested by the short-term fluctuations in the 
data. This smoothing also serves to make the Agromony Farm data look more 
like Landsat MSS data, since Landsat MS data generally cannot contain 
fluctuations of shorter term than nine days. This smoothing is accomplished 
by a time-domain convolution of the data with a sinc**2 function 
((sin(pi*x)/pi*x)**2). Since such a convolution makes sense only for


stationary data and since the green number values for the entire growing 
season cannot be considered stationary, the convolution is only performed 
over an eighteen day window. The data can be considered to be approximately 
stationary over a time span of about eighteen days or less. A sin**2 
function with zeros nine days before and nine days after its peak has been 
found to perform well. The function is in effect set to zero by the 
eighteen day window for times earlier than nine days before the central peak 
and for times later than nine days after the central peak. Convolving with 
such a function does rot affect green number values calculated from 
observations which are nine days or more apart. 

The soil green number and the maximum canopy green number are estimated 
from the smoothed and interpolated green number estimates. These estimates 
are first normalized so that the minimum green number value is zero and the 
maximum green number value is twenty. These minimum and maximum values are 
arbitrary, but they are roughly the minimum and maximum values typically 
found in the Agronomy Farm data. 

The soil green number is estimated as follows: the normalized green 
numbers are ordered from smallest to largest. Initially, the smallest green 
number is considered to be the soil green number estimate. The next largest 
green number is tested against the current soil green number estimate using 
a one-sided chi-square test with one degree of freedom. This test gives the 
probability that the tested green number is not an observation of the soil 
green number. We will refer to this as the probability that the tested 
green number is "above" the current soil green number estimate. If the 
tested green number has a probability of 50% or less of being above the soil 
green number estimate, the tested green number is considered to be an 
additional observation of the soil green number and averaged with the other 
soil green number observations to produce a new soil green number estimate. 
The above process is repeated for the next largest green number. If the 
tested green number has a probability of more than 50% of being above the 
current soil green number estimate, the current soil green number estimate 
is considered to be the final soil green number estimate. 

The maximum canopy green number is estimated in a similar way to the 
method 'or estimating the soil green value. Here, however, the normalized 
soil green numbers are ordered from maximum to minimum, and the next 
smallest green number is tested against the current maximum canopy green 
number estimate for being "below" the maximum canopy estimate. The 
threshold probability here is taken to be 90% rather than 50% since the 
maximum canopy green number observations tend to be more variable than the 
soil green number observations. We should note that if the green number 
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observations were not normalized, or if they were normalized differently, we 
would obtain different estimates for the soil green number and the maximum 
canopy green number because of the nature of the chi-square test, unless we 
would adjust our threshold probabilities appropriately. 

The soil green number and maximum canopy green number estimation 
process assumes that each green number observation is of equal importance.
This assumption Is satisfied if green number estimates are taken at equal 
time intervals. If the green number observations are left at irregular time 
intervals, the estimation process would require weighting each observation 
according to its relative importance. The relative importance or weight of 
each observation could be determined by the time interval between the 
observation and the previous and following observations. (If the 
observation is the first or last observation, we would have to make some 
reasonable assumption.) These relative weights should be used when these 
green number observations are averaged together to give estimates of the 
soil green number or maximum canopy green number. In addition, the relative 
weight of each observation being tested in the chi-square test would have to 
be incorporated into the test. It is much easier to interpolate green
number estimates at regular time intervals (as we have done) than to resort 
to such observation weighting. 

Now that we have estimates of the soil and maximum canopy green
numbers, we can make estimates of the time certain growth stages occur. A 
fairly typical graph of the processed green numbers is shown in Figure 2-2. 
This graph is for a plot of corn that was planted later than most other corn 
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Figure 2-2. A fairly typical plot of processed green numbers exhibiting 
early on-crop "green-up." In this case ten is the green number value 
half-way between the soil green number and maximum canopy green number. 
The calendar dates where the processed green numbers cross this half-way 
value are indicated. 
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on the Purdue Agronomy Farm. Such late plantings typically exhibit a non­
crop "green-up" such as shown here at about calendar date 160. The field 
was then tilled and planted on calendar date 163. For this corn plot, the 
calendar dates that the processed green values crossed the half-way rise and 
fall value between the soil green number and maximum canopy green number 
were day 196 and day 276. The Hanway stage at day 196 was about 1.75 C7 
leaves) and the Hanway growth stage at day 276 was about 9.00 (full dentl. 

Landsat MSS Data 

The crop development stage estimation technique was, also tested on 
three 9.3 by 11.1 km Landsat data segments, two from 1978 and one from 1979. 
Field observations of crop development stages were made for selected fields 
in the segments at several times during the growing season. The Landsat-2 
and -3 observations were calibrated to each other and corrected for sun 
angle. The Kauth-Thomas greenness component of the calibrated Landsat 
wavelength bands (B1, B2, B3 and B) is given by(5): 

Green number = -0.283*BI - 0.660*B2 + 0.577*B3 + 0.3884B4. 

It is reasonable to assume that the crop observed in each pixel of a 
particular field should have approximately the same development stage. For 
this reason, field averages are taken for each Landsat spectal band. Also,


estimating crop developnent stages for field averages rather than for each 
individual pixel is much more cost effective. Sample standard deviations 
are also calculated for each field for each Landsat channel as an indication 
of the variability of the crop within the field. The field green number 
standard deviation is calculated from the individual Landsat wavelength band 
standard deviations (SD1, SD2, SD3 and SD4) as follows: 

Green number standard deviation =


[(0.283*SDI) 2 + (0.660*SD2) 2 + (0.577"SD3) 2 + (0.3884*SD4)2].5 .



Occasionally two sets of Landsat MSS observations are available which 
are separated by only one day where adjacent orbital paths give overlapping 
coverage. These observations from adjacent orbital paths may sometimes give 
noticeably different green number values due to factors other than crop 
development stage such as atmospheric changes, changes in crop moisture 
level, a different sun angle, and different sensor look angle. Because of 
this, the Landsat MSS green numbers need to be filtered (smoothed) in the 
same manner that the Agronomy Farm green numbers were smoothed to dampen out 
misleading high frequency variations suggested by the short-term 
fluctuations. As noted in the Agronomy Farm data discussion, this filtering 
does not affect observations taken nine or more days apart. The green 
number standard deviations are filtered in the same day the green number 
field averages are. 

After smoothing, green number estimates are interpolated every nine 
days with the same quasi-Hermite spline interpolator used with the Agronomy 
Farm data. Interpolated standard deviation estimates are obtained by 
running the interpolator directly on the green number standard deviations 
calculated from the observations (after smoothing). This is a reasonable 
approach if we consider the green number standard deviation to be an 
inherent characteristic of a field which may increase or decrease throughout 
the season depending on several factors including crop development stage. 
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In the Landsat MSS data case, where the field averages and standard 
deviations of green numbers are estimated, the soil green number is 
estimated in a manner similar to that described above for the Agronomy Farm 
data. The only difference is that instead of a chi-square test, a test is. 
enployed that exploits the standard deviation information. This is a test 
designed to solve the problem of testing two samples- of normal populations 
with- unequal variances (dr standard deviations) against each other for 
having identical means. Besides the field mean and standard deviation 
estimates of the green number, this test also requires knowledge of the 
number of pixels used to estimate the mean and standard deviation of the 
green number in the field in question. In this case, appropriate one-sided 
probability thresholds are 75% for both the soil green number estimate and 
the maximum canopy number estimate. Two different thresholds are not 
required, because this test already takes into account the variability of 
the green number estimates through the standard deviation information. 
Since standard deviation information is exploited by the test for soil green 
number and maximum canopy green number, the test will give the same results 
whether or not the green number estimates are normalized as is done in the 
Agronomy Farm data case. 

As we shall see in the results section below, fields in particular 
geographic areas tend to have processed green number values that cross the 
half-way rise and fall value at characteristic development stages early and 
late in the growing season. We will call these estimates of development 
stages, respectively, early and late season estimates of the crop 
development stage. The characteristic development stage estimates vary 
somewhat from one geographic area to another and from one year to the next, 
so training data for a particular geographic area and/or year is needed to 
establish these characteristic development stages for the geographic area 
and/or year in question. 

Evaluation of Results



Agronomy Farm Data 

The method for estimating crop development stages was first tested on 
Purdue Agronomy Farm data. The method gives the calendar day when the 
normalized green number value rises and falls to cross the half-way value. 
To get crop development stage estimates, we would have to use training 
fields to correlate the half-way rise and fall calendar days with crop 
development stages. Since we did not have enough reference data to divide 
it into an adequate number of mutually exclusive test and training fields, 
we chose to use a test of the potential of this method rather than a direct 
test.



Our test for the potential of our method is as follows: First we use


our method to find the calendar day the normalized green number rises to


cross the half-way value and the calendar day it falls to cross the half-way 
value for each plot. - Then we estimate from the reference data the actual 
crop development stage the crop was at for the Indicated calendar days. (We 
generally have to estimate the crop development stage by interpolation 
because in most cases the indicated calendar day did not happen to fall onea 
day a ground observation was made.) Then we calculate the mean and standard 
deviation of the early season crop development stage estimates and the mean 
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and standard deviation of the late season development stage estimates. A 
small standard deviation for both cases would indicate that this method has 
good potential for making accurate estimates of crop development stage early
and late in the growing season, given adequate training data. We can 
compare the mean values of the estimated development. stages for data sets 
from different years and locations to get an indication of how sensitive the 
training is to changes in years and geographic location. 

We tested Purdue Agronomy Farm corn plot data from both 1979 and 1980 
in this way. The experiments included several planting dates, ' three plant
populations and two soil types (dark and light). With 36 test plots in 1979 
we found the observed average Hanway crop development stage was 2.04 for the 
early season estimate, with a standard deviation of 0.36. (For convenience 
we write this result 2.04+0.36.) The observed Hanway stage for the late


season estimate was 9.51+0.40. (Complete reference and spectral data sets 
were available for the late season estimate for 27 out of the 36 plots.) 
With 52 corn test plots in 1980 we found observed Hanway stages of 2.02+0.26 
and 8.99+0.08. (Complete data were available for the late season estlimate


for 40 o-ut of the 52 plots.) See Figure 2-3 for a histogram of these 
results. For both the 1979 and 1980 Agronomy Farm data, we find standard 
deviations of less than 0.50, which is close to the commonly accepted error 
bound for observing development stages in the field. This indicates that 
the method does have potential for making reasonably accurate estimates of 
crop development stages. The closeness of the mean values for the two years 
may indicate that the training may not be very critical for different years 
at the same location. 

Landsat MSS Data 

Thus far we have completed a limited test with Landsat MSS data on 
selected fields in only three segments. We tested 10 fields each in two


segments of 1978 data. For segment 127 (located in Montgomery Co., Indiana) 
we found the late season estimate of the Hanway stage to be 9.28+0.78. 
Ground observations were not taken early enough in the growing seas-on to 
make an early season test. For segment 862 (located in Calhoun Co., Iowa) 
we found Hanway stage early season estimate of 4.58+0.37 and late season 
estimate of 9.62+0.32. (Only 4 fields were used in t~e late seaon estimate 
due to insufficient data.) We tested 15 fields in one segment of 1979 data. 
In 1979 a different development stage scale was used for ground observations 
of development stage (see Table 2-2). For segment 892 (located in Shelby 
Co., Iowa) we found development stages of 3.44+0.19 (using 6 fields) and 
6.20+0.31 (using all 15 fields) for the early and late season estimates. 
These- development stages correspond roughly to the Hanway stages 3.00 and 
10.00, respectively. As with the Agronomy Farm results, the standard


deviations for these estimates are below 0.50 (except for one case), 
indicating that the method has good potential for making accurate crop
development stage estimates from Landsat MSS data. The fairly wide 
differences in early and late season estimates for the segments tested 
indicate separate training may be necessary for data sets from different 
geographic areas and different years. 

http:6.20+0.31
http:3.44+0.19
http:9.62+0.32
http:4.58+0.37
http:9.28+0.78
http:8.99+0.08
http:2.02+0.26
http:9.51+0.40
http:2.04+0.36
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Figure 2-3. Histograms of the interpolated observed Hanway stages at 
the early and -late season estimates (calendar days that the green


number rose and fell to cross the half-way value) for the 1979 
and 1980 Agronomy Farm data.
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Conclusions



The preliminary tests indicate that, given sufficient training data, 
our method should be able to make accurate estimates of the calendar date a 
crop reaches a particular early season crop development stage using Landsat 
MSS observaticns from the first half of a growing season with minimal 
qpmputation cost. An estimate of the calendar date a crop reaches a 
particular late season crop development stage can be made using Landsat MSS 
observations from the last half (or all) of a growing season. The method is 
insensitive to varying plant population. 

The method can be used to initialize a meteorological development stage 
model to provide estimates of the calendar day a particular field reaches 
any given development stage. The meteorological model could be run forward 
in time from the development stage provided by our method to the critical 
-development stages for yield estimation. The meteorological model could 
'even be run backwards to give estimates of planting dates (possibly for 
comparison with other methods).



The 	 examples cited and the experimental results given were for corn
 

only; however, this method should be applicable for other crops that 
exhibits a similar peaking of green numbers towards the middle of the 
growing season. 
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Table 2-2. Corn development stage coding used for 1979 Landsat reference 
data. 

Stage Number Stage ,Name 

1.0 Planting 
2.0 Emerged 
3.0 Six leaves 
4.0 Tassels emerged 
5.0 Blister 
6.0 physiologic maturity 
7.0 Harvest 
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3. CROP CONDITION ASSESSMENT



The overall objective of this research is to develop approaches for 
USing spectral data as a source of Information for crop yield models. Under 
this general objective three tasks are being pursued. The first two address 
issues related to the interception of solar radiation, particularly 
Photosynthetically active radiation (PAR), by corn and soybean canopies. 
The third section addresses problems associated with methods of directly 
measuring leaf area index of crops. These sections are progress reports 
which present analysis plans and preliminary results. A series of technical 
reports will be prepared as each major phase of data analysis is completed. 

A. Interception of Photosynthetically Active Radiation in Corn Canopies 

K.P. Gallo and C.S.T. Daughtry



Introduction



Recent research indicates that remotely sensed data may be used to 
estimate agronomic variables associated with yields of corn. The proportion 
of 'solar radiation intercepted (SRI) by the crop canopy is one important 
predictor of dry matter production and grain yield. SRI has been estimated 
as a function of canopy leaf area index (LAI) using the following equation: 

SRI = 1 - exp(-0.79 LAI). (1) 

This is an application of Bouger's Law using measured LAI and an extinction 
coefficient of 0.79 (Linvill et al., 1978). When LAI is 0, no energy is 
intercepted by the canopy. When LAI is 2.8, approximately 90% of the 
incoming solar radiation is intercepted by the canopy and is potentially 
useful to the crop. When daily values of SRI were accumulated from planting 
to maturity, the total SRI was associated with 65 percent of the variation 
in corn yields over two years (Daughtry et al., 1983). In the same 
experiment SR was also estimated using multispectral data and explained 62 
percent of the variance in corn yields. 

Additional factors also influence corn yields and are included in an 
energy-crop growth (ECG) model (Coehlo and Dale, 1980). The ECG model 
includes the Incoming solar radiation (SR), the latent energy (LE) of water, 
the ratio of daily evapotranspiration to potential evapotranspiration (WF), 
and the relative growth rate of corn as a function of temperature (FT).



mature


ECG = Z (SRi/LE) (SRii)' (WFi) (FTi) (2)1

plant 
 

The ECG variable, summed daily from planting to maturity, accounted for 
more of the variance in corn grain yields than SRI alone (Daughtry et al., 

http:exp(-0.79
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1983). A portion of the variance in crop yields unexplained by Eq.'s 1 and 
2 may be attributed to the estimation, as opposed to the direct measurement, 
of SRI. ,Another source of variance may be due to the use of total incoming 
SR (0.3 to 3.0 pm) rather than the portion of SR actually used by plants 
during photosynthesLs. The wavelengths of photosynthetically active 
radiation (PAR) range from 0.4 to 0.7 pm of the electromagnetic spectrum. 

Direct measurements of PAR intercepted (IPAR) by the plant crop should 
explain more of the variance in crop yields than SRI,. I-PAR also should be 
useful information to the ECG (Eq,. 2) model or simiTar cro; growth and yield 
models. 1PAR should be predictable from remotely sensed spectral variables 
and should provide a valuable input to large area crop condition and yield 
models. 

The overall objective of this study is to develop approaches (models) 
for using spectral data as a source of information for crop yield models. 
The specific objectives are: 

1. 	 Develop and evaluate techniques for measuring IPAR in corn 
canO prres. 

2. 	 Determine the effects of planting date and ,planting density on 
IPAR, agronomic ,(e.g. LAI, percent soil cover, and dry matter 
Production), and spectral characteristics of corn canopies 
throughout the growing season, 

3. 	 Develop and evaluate models relating spectral reflectance to the 
biophysical characteristics of corn canopies, 

4. 	 Develop and evaluate methods for combining spectral and 
meteorological data in crop yield models. 

Those methods that best estimate yields at agricultural experiment stations 
will be extended to large areas using Landsat MSS and TM data. Finally the 
results of estimating yields with and without the input of spectral data 
will be compared. Multispectral data from satellites could form the basis 
for estimating crop yields over regions where ground observations may be 
difficult r impossible to obtain. 

Materials and Methods 

Experimental Design 

Corn (Zea mays L., 'Adler 30t) was planted in.N-S rows, with 76 cm 
spacing between rows, on two planting dates (14 May and 24 June 1982) at two 
planting densities (thinned to 50,000 and 100,000 plants/ha) in a randomized 
complete block design with two blocks,. Plot size was 15.2 by 15.2 m allowed 
sufficient borders for measurements of IPIR components at low solar 
elevation angles (AM measurements). Tillers were removed from all plants to 
assure as uniformly structured a canopy as possible. The soil type was a 
Chalmers silt loam (Typic Argaquoll), with a dark (10 YR 4/I) surface. 
Prior to planting 250, 53, and 100 kg/ha of N, -P, and K respectively, were 
applied to maintain high fertility. 
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IPAR Data Collection



The portion of incoming PAR that is intercepted by the canopy may be 
computed by measuring the four PAR components (Hipps et al., 1982) shown in 
Figure 3-1. The measured amount of IPAR is dependent on canopy geometry and 
the incoming PAR. Incoming PAR fluctuates throughout the day due to changes 
in solar azimuth and zenith angles as well as changes in atmospheric 
conditions including clouds, gases, and particulates. Thus IPAR is 
expressed as a proportion of incoming PAR to account for these variations. 

IPAR = [(PAR + RPARs) - (TPAR + RPARes)]/PAR (3) 

RPARs is the amount of incoming PAR reflected from the soil surface under 
the canopy. TPAR is the amount of PAR (direct and diffuse) transmitted 
through the canopy to a sensor located on the soil surface, and RPARcs is 
the amount of PAR reflected from the canopy and soil surface. 

Frequently IPAR (or SRI) is measured only within a specified time 
interval of solar noon (Adams and Arkin, 1977; Fakorede and Mock, 1977; 
Hatfield and Carlson, 1979; Hipps et al., 1982; and Loomis et al., 1968).


This time interval when solar elevation is at its maximum generally


minimizes the extinction coefficient. However, other work (Warren Wilson, 
1960; Anderson, 1966) suggests that at a solar elevation angle of 32.50 the 
extinction coefficient (Eq. 1) is least affected by foliage inclination. 
The four components of IPAR (Eq. 3) were measured at two time intervals 
during the day: in the morning between solar elevation angles of 30 to 350 
(AM measurements) and within + 0.5 hr of solar noon (SN). Additional 
measurements of IPAR were acquired in conjunction with radlometric 
measurements of spectral reflectance. In each case all measurements were 
acquired under clear sky (-910% cloud cover) conditions. 

A line quantum sensor (LICOR 191SB) and a data logger (Omnidata 
Polycorder Model 516) were used for all IPAR measurements. PAR and TPAR 
were measured at approximately weekly intervals for all times of 
observations. The reflected PAR components (i.e., RPARs and RPARos) were 
measured less frequently due to their relatively small contributions to


IPAR. Table 3-1 summarizes the frequency of measurements of the IPAR 
components for 1982. Incoming PAR was measured within 30 seconds of the 
IPAR components listed in Table 3-I. 

Agronomic Data Collection 

Agronomic data included plant height, stage of development, percent
soil cover, leaf area index, total fresh and dry biomass, and dry biomass of 
leaves, stems, ears, and grain. These data were acquired at weekly

intervals from a random sample of five plants per plot. Leaf area (one side 
of leaf) of two plants per plot was measured using a LI-COR model LI-3100 
area meter. Total leaf area for the five plants was computed using the 
total dry weight of leaves and the mean leaf area to leaf dry weight ratio. 
Leaf area index was computed by dividing total leaf area by the soil area 
represented by the five plants. Grain yields were measured after 
physiological maturity (as indicated by black layer formation) and corrected 
to 15.5 percent moisture. 
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Figure 3-1. Components of intercepted photosynthetically active radiation (IPAR).
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Table 3-1. Summary of number of data sets acquired for the corn IPAR 
experiment in 1982. 

Measurement Planting Date 

Type/Time 14 May 24 June Total. 

------- number of data sets----

TPARt



- 30 to 350 elevation 17 12 29 

- solar noon +/- 0.5 hr. 21 13 34



§- with RF measurements 24 14 38 

RPARs, RPARcs



- throughout the day 9 21 30 

t'Transmitted PAR. 

TPAR measured in conjunction with reflectance factor measured by Exotech 
100 and Barnes 12-1000 radiometers. 

Reflected PAR from soil (RPARs) and canopy (including soil) surface 
(RPARcs). 

Spectral Data Collection 

Spectral reflectances were measured using Exotech 100 (Landsat bands) 
and Barnes 12-1000 (TM bands) radiometers. The frequency of spectral data 
acquisition are described by L. Biehl in this repor.t. Three independent 
sets of on- and off-row measurements were acquired for each plot. 

Results and Discussion



These IPAR data span the entire growing season and will allow analysis 
of the variation in IPAR components with crop development. Figure 3-2 shows 
the percent of incoming PAR that ts transmitted through the canopy (TPAR) as 
a function of crop development stage (Hanway, 1963) for the AM and SN 
observation intervals. The low planting density of corn had a significantly 
greater TPAR compared to the high density for both observation intervals. 



40



ORIQNAL PAGE 04 
OF POOR QUALITY 

30-350 solar elv. angle 

100 

B0 0 
80 

60t 
c 50,000 pl/ha 
a 100,000 

60 a 

400 

dp 20. 

0 -n-0----0--­_­ a-­- El,2 

0 1 2 3 4 5 6 7 8 9 10 

solar noon +/­ .5 hr 
100 

80b 

800 

60 
606 

3 d 

40 

40 oI 

0 1 2 3 4 5 6 7 8 9 10 
DevelonPnt Stage 

Figure 3-2., Mean values of %TPAR measured as a function of solar elevation,
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More radiation reaches the soil during the SN observation interval compared 
to the AM interval.



Less than 10 percent of the incoming PAR is reflected by the canopy and 
soil (RPARs) (Figure 3-3). Prior to stage 2 soil reflectance (RPARs) is 
the major contributor to RPARcs. No significant differences were found in 
RPARcs between the two planting densities from stage 2 (8 leaves) to stage 6 
(milk stage) of development (Figure 3-3). 

SRI computed using measured LAI values (Eq. 1), was compared to IPAR as 
a function of crop development stage for the low and high planting densities 
(Figure 3-4). SRI predicts that more energy was intercepted by both plant 
densities throughout the season than was measured by IPAR. The general 
shape of the two curves is similar which suggests that a constant may 
account for the difference. 

There are two possible explanations for the observed differences 
between SRI and IPAR. First, SRI, as defined by Linvill et al. (1978) and 
Daughtry et al. (1983), does not include the reflected radiation components 
(e.g. RPARs and RPARos). Thus SRI fundamentally differs from IPAR. Second, 
the extinction coefficient in Eq. 1 is not a constant as solar elevation 
angles change unless the foliage is horizontal (Anderson, 1966; Norman, 
1980). A variable extinction coefficient dependent on plant density and 
solar angle should be considered.



In summary, data were collected in 1982 which will permit us to address 
many of the concerns discussed in this report. Models for predicting 
intercepted PAR using remotely sensed data will be developed and evaluated. 
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Figure 3-3. Means of % reflected PAR from bare soil (RPARs) and canopy 
including soil surface (RPARcs), as a function of planting density and 
crop development stage. Data are presented for the 14 May planting and 
projections are plotted for the seasonal values of reflected PAR. For 
all means presented, s-X is less than 0.18. 
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B. Interception of Photosynthetically Active Radiation In Soybean Canopies 

-C.C. Brooks, C.S.T. Daughtry, and M.E. Bauer 

Introducti on 

Photosynthetically active radiation (PAR) is defined as radiation in 
the 0.4 to 0.7 um wavelength region and is the source of energy for the 
photosynthetic machinery that converts carbon dioxide, and water into plant 
components. Plant leaves act as convertors of electromagnetic radiation 
into chemical energy through the process of photosynthesis. The final yield 
from a plant partly reflects the efficiency of this conversion. The overall 
efficiency of the conversion is affected by the amount of PAR intercepted by 
the leaves and the distribution of PAR within the canopy. Agronomists have 
postulated that crop yields may be limited by less than favorable 
interception of insolation. Planting pattern plays an important role in the 
interception of PAR. Soybeans (Glycine max (L.) Merrill) are highly 
influenced by neighboring plants either within the same row or In adjacent 
rows. In recent years there has been an increased interest in production of


soybeans in narrow rows because of lower labor, energy, and equipment 
requirements as well as greater seed yields per unit of land. The 
capability to plant soybeans in narrow row spacings has been greatly

enhanced by the introduction of effective chemical weed control and hence 
the wide spacing needed by mechanical cultivation for weed control may be 
eliminated. If webds and excessive lodging can be minimized, then seed 
yield can be increased.



Weber et al., (1966) noted that plants in wider row widths generally
accumulated their leaf area index (LAI) at a slower rate than plants in 
narrower row widths. At equivalent populations, LAI required to intercept 
95% of the solar radiation and days from emergence to 95% interception were 
greater in wide rows than narrow rows (Hicks et al., 1969; Shibles and 
Meber, 1966). Thus the growth and/or yield of a crop is directly related to


the amount of solar radiation intercepted (SRI) by the crop. This


theoretical relationship is expressed by the equation: 

EM = f
m 

E P SR dt 
e 

,where the increase in dry matter (DM) production over time period (t), 
beginning ,at emergence and ending at physiological maturity, can be related 
to the proportion (P) of the incident light (SR) intercepted by the crop and 
the efficiency (E) of the conversion of solar energy to dry matter (Stevens, 
1982).



The above equation can be used to predict dry matter production, if P 
is. known. Direct measurements of P can be obtained by placing a line 
quantum sensor (LOS) in the canopy or P can be derived from leaf area 
measurements. 
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The proportion of solar radiation intercepted (SRI) can be estimated by 
two different methods. Sakamoto and Shaw (1967) described a method of 
estimating SRI by using LAI measurements. Using Bouguer's Law, they 
quantified the expression: 

I = Io exp(-k LAI)



where I = the estimate of solar radiation intercepted 
1o = insolation (incoming solar radiation) 

k = commonly termed extinction coefficient 
LAI = leaf area index 

for soybeans. They observed values for k ranging from 0.25 (development 
stage 7, full pod) to 0.49 (development stage 3, six leaves). Whereas, 
Ogbuehi and Brandle (1982) reported values of 0.74 (July 25) to 1.16 (August 
27). Luxoore et al. (1971) found a maximum extinction coefficient occurred 
at the uppermost leaf layers and was greater than 1.4. They also observed 
that varying the position of the sensor within the canopy produced a minimal 
k value of 0.35. Norman (1980) reported extinction coefficients ranging
from 2.0 to 0.8 for low and high solar elevation angles, respectively.
Therefore, additional research Is needed to characterize the changes in 
extinction coefficients if this approach is to be used quantitatively. 

However, it would be impossible to make these measurements for use in 
large scale growth and yield models. Daughtry et al. (1983) described a 
method using spectral data to predict SRI which may be applicable in large 
area models. If the proportion of energy available for crop growth can be 
estimated reliably by using multispectral satellite data, then the 
capability to, estimate crop production for large regions would be greatly 
improved.



In practice, the amount of SRI is only one of several factors 
interacting to Influence soybean production. Other environmental factors 
modifying growth and yield are water and temperature, as well as management 
factors such as planting date, cultivar and fertility. 

The objectives of this research are to study the relationships between 
intercepted photosynthetically active radiation (IPAR), and agronomic and 
spectral characteristics of soybean canopies throughout the growing season 
as affected by different cultural practices. Specific objectives are to 

1. 	 Study the relationships of accumulated IPAR and LAI, percent campy


cover to total phytomass and total grain yield, 

2. 	 Predict IPAR, LAI, percent canopy cover, total phytomass and grain 
yield using multispectral reflectance data, and 

3. 	 Incorporate spectrally estimated variables into crop yield models. 
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Materials and Methods 

Experimental Design 

The 1982 soybean cultural practices experiment was conducted on a 
Chalmers silty clay loam (typto Argiaquoll) at the--Purdue Agronomy Farm. 
The experimental design was a randomized, complete block design which 
included two blocks, three planting dates (11 May, 25 May, and 14 June), 
three row widths (38, 76, and 114 cm). Plot size was 6.1 x 15.8 m and all 
rows were in a north-south orientation. Plots with row widths of 38 and 76 
an were thinned to obtain the desired population (250,000 plants/ha). Plots 
with a row width of 114 cm were mechanically planted to the desired 
population (approximately 250,000 plants/ha), 

Spectral Measurements



Radiance measurements, used to determine reflectance factor (RF), were 
acquired with a Landsat-band radiometer (Exotech 100) and a thematic mapper 
band radiometer (Barnes 12-1000) throughout the growing season (Table 3-2). 
Procedures outlined by Robinson and Biehl (1979) were used to approximate 
the bidirectional reflectance factor (BRF) under field conditions. The 
Exotech 100 is a four-band radiometer with a 15 degree field of view (FOV) 
and wavelength bands of 0.5-0.6, 0.6-0.7, 0.7-0.8, and 0.8-1.1 pm. The 
Barnes 12-1000 is an eight band radiometer with a 15 degree FOV and 
wavelength bands of 0.45-0.52, 0.52-0.60, 0.63-0.69, 0.76-0.90, 1.15-1.30,


1.55-1.75, 2.08-2.35, and 10.40-12.50 pm regions. Data were taken only


under near cloud-fre6 conditions when the solar elevation angle was at least


45 degrees above the horizon. 

The radiometers and motor-driven camera were attached to a boom mounted 
on a pickup truck for quick and efficient data collection in the field. The 
Instruments were elevated 7.6 m above the soil surface giving an effective 
FOV of 3.1 m2 on the soil surface for both radiometers. Instruments were 
leveled for a nadir view angle and measurements were taken over two 
locations in plots with 38 and 76 cm wide rows and four locations in plots 

Table 3-2. Summary of IPAR collection for soybeans. 

Planting Date 

Time of Acquisition 11 May 25 May 14 June 

----------- number of data sets---------

Solar noon (+ hr.) 18 11 	 11


Before noon 	 22 15 12


With R.F.* 	 15 10 8



* 	 IPAR was collected immediately after collection of reflectance factor 
data. 

http:10.40-12.50
http:2.08-2.35
http:1.55-1.75
http:1.15-1.30
http:0.76-0.90
http:0.63-0.69
http:0.52-0.60
http:0.45-0.52
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with, 114 cm wide rows. Observations were taken on-row and off-row to obtain 
a better estimate of the overall canopy response for the plot and to reduce 
any bias (Daughtry et al., 1982). Measurements from both radiometers were 
recorded concurrently by a electronic data logger. A vertical photograph 
was taken of each plot for later crop assessment and soil cover 
detrmination. I 

A line quantum measured shortly after radicmetric data was taken. A 
line quantum sensor (LI-COR, model LI-191s) and a data logger (Omnidata 
Polycorder 516) were used to measure the average photosynthetic photon flux 
density throughout the canopy. Two types of measurements were madie with the 
line quantum sensor (LQS). First, the sensor 'was held"level at 
approximately 1.5 m above the soil surface and incoming PAR was measured 
(reference measurement). Next the amount PAR transmitted through the canopy 
was measured by placing the sensor under the canopy on the soil surface in 
the same east-west cr'ientation in which the reference measurement was taken. 
Four measurements were taken In series as the LQS was moved through the 
canopy across four adjacent rows. 

Agronomic Measurements 

Agronomic data, which were collected weekly, included: plant height,
leaf area index, stage of development, total fresh and dry phytomass, dry 
stem (including petioles), pods, and green leaf blade weight. Percent soil 
cover ,was determined by placing a grid over a vertical photograph of each 
plot and counting the number of dots superimposed over the green vegetation. 
Area of all green leaves on one or two plants was measured with electronic 
area meter (LI-COR LI-3100). All plant parts were dried at 75C and weighed.
Total leaf area of 10 plants was calculated using the leaf area and dry leaf 
weight ratio of the subsample of green leaves times the total dry green leaf 
weight. Leaf area index (LAI) was calculated by dividing total leaf area by
the soil area represented. Visual assessment of the soil moisture and crop
condition were made during the spectral data collection. Final grain yield 
was determined by harvesting two, three, or five rows 6.1 m in length for 
row widths of 114, 76, and 38 cm, respectively. Crop condition assessment


included evaluation of lodging, hail, insect, and herbicide damage.



Expected Results



Reflectance factor data will be analyzed, in several individual bands


as well as through the use of transformations, to develop the relationships

between IPAR and other agronomic variables. Regression and correlation 
analyses will be used to delineate these relationships. Analysis of 
variance and mean separation tests will be used to account for the variation 
due to experimental parameters. 
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C. Costs of Measuring Leaf Area Index of Corn



C.S.T. Daughtry, S.E. Hollinger, G. Drape, and E.M. Luke



Introduction



Research on the efficiency' of solar radiation interception and 
utilization by crop canopies requires frequent measurements of leaf area. 
Because accurate measurements of leaf area for crop canopies are laborous 
and time-consuming, numerous direct and indirect methods of measuring leaf 
area for various crops have been developed (5, 7, 9, 10, 12, 14). The many 
methods reported in the literature have been summarized by reviewers (8, 9, 
11) into at least 14 principal methods which vary greatly in their 
precision, accuracy and difficulty of accomplishing. A researcher's choice 
of a method to measure leaf area depends largely on (i) morphological 
features of leaves to be measured, (ii) accuracy required, (iii) amount of 
material to be measured, and (iv) amount of time and equipment available. 

If proper precautions are observed, many of the methods reported in 
literature are sufficiently accurate for measuring leaf area of Individual 
leaves and plants. In order to estimate leaf area index (LAI) of crop 
canopies, the variability in leaf area, among plants within a plot also must 
be considered as an additional source of experimental error. This inherent 
variability within crop canopies produces different estimates of LAX for the 
same treatment when more than one sample is acquired per treatment. 

In this paper we examined the magnitude of within plot errors for 
components of corn plants selected from uniform plots and evaluated several 
methods for estimating LAI with known precision and probability of success. 
The approximate errors, the number of plants required, and the relative 
costs in time per sample for each method are also presented. 

Materials and Methods 

Two field experiments were conducted on a Chalmers silty clay loam 
(Typic Arqiaquoll) at the Purdue University Agronomy Farm, West Lafayette, 
Indiana. In 1980 a single-cross corn (Zea mays L. 'Beck 65X') was planted 
on 22 May in 76 cm wide rows and thinned to 50,000 plants/ha. From a 
randomly selected starting point in two different rows, 10 consecutive 
plants were sampled by cutting the plants at The soil line. Each of the 20 
plants was weighed immediately and separated into leaf blades (including 
exposed portions of leaves in the whorl), stalks (including leaf sheaths) 
and ears. The area of all leaves on each plant was measured using an 
optically scanning area meter (LI-COR model LI-3000 with conveyor belt). 
All plant parts were dried at 75 C and weighed. This sampling procedure was 
followed on four dates when seven, 10, and 16 leaves were fully emerged 
(collar visible at base of leaf) and at silking, corresponding to 
development stages 1.75, 2.50, 4.0, and 5.0, respectively (6). 
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A second experiment was conducted in 1982 on corn (Adler 30X) planted 
on 12 May in 76 cm wide rows and thinned to 50,000 and 100,000 plants/ha. 
During the milk stage of grain development 20 randomly selected plants were 
sampled from each population. As each leaf was removed from the stalk, its 
length, width, and area were measured. Leaf area was measured using an area 
meter (LI-COR Model LI-3100) and each leaf was dried at 75C and weighed. 

The precision of the area meter was evaluated by repeatedly measuring
the area of a calibration plate, a soybean leaflet, and a corn leaf. The 
coefficients of variation (CV) were 0.08, 0.17, and 0.34% for the plate, 
soybean leaflet, and corn leaf, respectively. Leaves tend to fold and 
wrinkle slightly as they move between the rollers of the area meter, causing 
slight differences in the total area measured. These random errors of


measurement associated with the leaf area meter are small compared to other


sources of variation discussed later.



The ratio of leaf area per unit leaf dry weight (specific leaf area, 
SLA) was calculated. Means, standard deviations, and coefficients of 
variation were calculated for each plant component. Total errors for each 
sampling scheme were calculated using the appropriate means and standard 
deviations. These total errors included error due to within plot variation 
and error associated with the measurement technique. 

The minimum number of replications of the basic sampling unit required
for a 90% probability (0 = 0.10) of obtaining a significant result at the 
alpha = 0.05 and 0.01 levels were estimated (1,3). Because the number of 
degrees of freedom in tj and t 2 depends on r, initially r was assumed to be 
infinity and then adjusted in subsequent calculations until the smallest 
number of replications that would satisfy the condition was determined (3). 
The average costs per plant in man-minutes for four methods of measuring 
leaf area of corn plants were estimated by interviewing agronomists who have 
extensive experience in growth analysis research. Total cost for each 
method was calculated by multiplying the minimum number of plants required 
to detect significant differences times the average cost per plant. 

Results and Discussion 

Variation Among Plants 

Means, standard deviations, and CV of several plant characteristics for 
the corn plants sampled are presented in Tables 3-3 and 3-4. CV normalizes 
standard deviations by the mean and is useful for comparing relative 
variations among stages of development and plant characteristics. The large
variations in stalk weights among the plants sampled undoubtedly contributed 
to the large CVs for total fresh and dry weights (Table 3-3). Care was 
taken to minimize extraneous errors in stalk dry weights due to non-uniform 
drying by cutting the stalks into segments 20 to 30 cm long, and by
splitting each segment before drying. The largest CVs in total fresh and 
dry weights occurred prior to silking (Table 3-3) and are similar in 
magnitude to other reported values for corn (4, 13). The CV of leaf area 
and leaf weight per plant decreased after silking when all leaves were fully 
expanded (Table 3-3). In most cases the UTs for leaf area were smaller than 
CVs for leaf weight (Tables 3-3 and 3-4). 



Table 3-3. Descriptive statistics for 20 corn plants sampled at four stages 
of development in 1980. 

Plant Stage of


Characteristic Development T Mean S CV 

% 

§ 
Total Fresh Weight 1.75 118 a 18.5 21.8 
(g/plant) 2.50 379 b 21.2 80.3 

4.00 880 c 13.2 116.2


5.00 995 d 11.2 111.4



Total Dry Weight 1.75 11.3 a 19.0 2.1


(g/plant) 2.50 37.2 b 23.9 8.9 

4.00 95.4 c 13.2 12.6


5.00 154.4 d 13.5 20.8



Stalk Dry Weight 1.75 5.2 a 25.3 1.3 
(g/plant) 2.50 20.3 b 29.7 6.0 

4.00 62.0 c 14.5 9.0 
5.00 99.6 c 14.1 14.0 

Leaf Dry Weight 1.75 6.1 a 16.3 1.5 
(g/plant) 2.50 16.9 b 18.8 3.2 

4.00 33.4 c 12.2 4.1 
5.00 39.7 c 9.9 3.9 

Leaf Area 1.75 13.8 d 14.4 2.0 
(m2/plant) x 100 2.50 36.1 b 16.0 5.8 

4.00 64.8 c 10.0 6.5 
5.00 66.0 c 6.8 4.5 

Specific Leaf Areas 1.75 2.27 a 4.8 0.11


(m2/g) x 100 2.50 2.16 a 5.7 0.12 

4.00 1.95ab 8.0 0.16 
5.00 1.67 b 6.3 0.11 

tStages of development are 7-, 10-, 16-leaves, and silking, respectively. 

§Means of each plant characteristic followed by the same letter are not 
significantly different at a = 0.05 level of Duncan's multiple range test. 

T Specific leaf area 
 = leaf area/leaf dry weight. 
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Table 3-4. Descriptive statistics for 20 corn plants sampled from two plant 
densities at milk-stage of development in 1982. 

Plant Plant


Characteristic Denstty Mean S 
 CV 

1000 plants/ha % 

Leaf Dry Weight 50 45.6 aT 7.4 16.2


(g/plant) 100 39.6 b 5.2 13.1



Leaf Area 50 67.9 a 7.4 10.8 
6n2/plant) x 100 100 69.2 c 5.5 7.9 

Specific Leaf Area 50 1.51 a 0.13 8.8


(m2/g) x 100 100 1.76 b 0.17 9.4



Leaf Length x Width 50 94.0 a 10.8 11.5


(m2/plant) 100 93.4 a 6.8 
 7.3 

tSpecific leaf area = leaf area/leaf dry weight. 

§Means of each plant characteristic followed by the same letter are not 
significantly different at a = 0.05. 

Mean CVs for specific leaf area (SLA), were much smaller than the mean 
CVs of leaf area, and leaf, stalk, and total dry weights (Tables 3-3 and

3-4). The small CVs observed for SLA are consistent with the expected 
variances for ratio estimators when the components of the ratio are 
positively correlated (2,3). These ratios have lower variation than direct 
measures of area and mass. Based on CV data in Table 3-3, it also appears
feasible to estimate leaf area index per plant on a fresh weight basis with 
approximately the same precision as with the dry weight method. This 
assumes that moisture losses are minimized and plants are processed rapidly. 
Estimating LAI on a fresh weight basis has an additional advantage - no fuel 
is required for drying large volumes of plant material with high moisture 
contents.
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Methods of Measuring LAI 

One questton facing a researcher is how best to allocate finite 
resources to measure the area of numerous plants and be reasonably confident 
of detecting significant differences among crop canopies. We selected four 
representative methods of measuring LAI to illustrate the advantages and 
disadvantages of single and multistage sampling schemes. In each of the 
schemes presented below, plant density (plants/unit area of soil) also must 
be determined to calculate LAI. We have assumed that the errors in 
determining plant density are identical for each method and thus may be 
amdtted for these comparisons.



In the first method the area of all leaves (AL) on n plants is measured 
directly using a digital electronic area meter (7) and LAI is calculated as 

LAI1 = AL/n. (1)



The second method employs the relationship between leaf area and leaf 
weight of a subsample of leaves to convert the weight of a large sample of 
leaves into leaf area (8,9,15). Leaf area (AL) and leaf weight (WL) are


measured on a subsample of leaves and total leaf weight, WTL, only is 
measured on n plants. This multistage sampling scheme uses a small number 
of plants to estimate specific leaf area which has a low CV and a larger 
number of plants to estimate total leaf dry weight which has a high CV 
(Tables 3-3 and 3-4). LAI is calculated as



LAI2 = (AL/WL)(WTL/n) (2) 

In the third method area of each leaf on n plants is estimated as the 
product of leaf length L), maximum leaf width (W), and a constant (bl).
LAI is calculated from the sun of these estimated leaf areas as follows 

n m 
LAI3 = E E (b LiWi)j/n (3)

j=1 1=1 1 

where m is the number of leaves on the jth plant and n is the number of 
plants sampled. The general form of the relationship of leaf length and 
width to leaf area is A = b0 + b1 LW where b0 and b, are coefficients 
determined by regression that requires checking if leaf shape changes. 
Frequently b0 is not significantly different from zero and the equation can 
be simplified (7). For example, leaf area of corn may be calculated as A = 

0.75 LW (5,10,15).



The fourth method is an adaptation of the rapid methods of estimating 
leaf area (5,10). A "leaf area factor" (LAF) is determined by measuring


length and width of all leaves for m plants of each treatment in one 
replication and dividing the total leaf area per plant by the area of the 
largest leaf per plant. Francis et al. (5) recommended using 10 plants to 
minimize errors in determining LAF for each genotype. In all other 
replications only the area of the largest leaf (ALmax) would be obtained for 
n plants and leaf area per plant would be estimated by LAF determined in the 
first replication. The-LAF should be determined for sampling date. LAI is 
calculated as 

n
LA14 E b1 (LAF)(ALmax)i/n (4)

i=1 
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Costs of Measuring LAI



The mean CV associated with directly measuring the area of all leaves 
cn each plant using a digital area meter was approximately 11% (Tables 3-3 
and 3-4) and was assumed to represent the inherent variability in leaf area 
per plant with only a minimal contribution due to the measurement technique. 
Each of the other methods indirectly estimated leaf area and thus 
contributed additional uncertainty to the measurement of leaf area. The 
mean CV's associated with measurement methods II, III and IV were 16, 13 and 
18%, respectively. These estimated mean CVs will vary from experiment to 
experiment but should maintain the same relative ranking. 

The minimum number of replications of the basic sampling unit (e.g., a 
plant) required for a = 0.05 and 0.01 are shown as functions of the CV and 
true difference of among treatments (Table 3-5). These data illustrate the 
value of a reduction in standard error per unit or CV. One cannot have a 
high probability of detecting a significant difference with any reasonable 
number of replications unless the CV/d ratio is 1.0 or less. Differences at 
least twice as large as the CV can be detected in most cases without 
excessive replication. For example, in order to detect a 10% difference in 
leaf area using a = 0.05 test of significance, at least 73 plants must be 
measured if the CV is 18% (i.e., method IV). If the CV can be reduced to 
11%,, only 27 samples are required. Alternatively if the researcher is 
willing to gamble by accepting a 50% probability (a = 0.50) of obtaining a 
significant result then 28 and 8 samples are required for CVs of 18 and 11%, 
respectively (1). Generally such a high probability of making a Type II 
error is bad from a researcher's view because one wants to make the right 
decisions as frequently as possible and avoid losses of time and money on 
experiments with little chance of success. 

In order to evaluate these four methods of measuring LAI the average 
costs in time (e.g. man-minutes) were estimated for each step (Table 3-6). 
Costs other than labor were not included in this analysis and it was assumed 
that the same skill level of labor was used throughout. Destructive 
sampling was assumed for methods I and II and nondestructive sampling for 
methods III and IV. Nondestructive measurements may be repeated on the same 
plants; however, repeated handling and measuring of the same plants may 
reduce their growth relative to undisturbed plants (13). 

Total costs shown in Table 3-7 were calculated by multiplying the mean 
time required to acquire the necessary measurements on one plant (Table 3-6) 
by the minimum number of plants required (Table 3-5). For example, in order 
to detect 20% differences using method I the leaf area of at least eight 
plants must be measured which would require 64 minutes. The total costs for 
detecting 20% differences in leaf area are approximately the same for 
methods I, II, and III (Table 3-7) even though the numbers of plants 
required doubles (Table 3-5). Method IV, which has the highest CV and 
requires the largest number plants (Table 3-5), demands the least amount of 
time (Table 3-6) to estimate leaf area. One major assumption included in


method IV is that fixed cost of determining LAF for 10 plants per treatment 
in one replication can be distributed over four replications. Thus the


total costs for method IV in Table 3-7 is 15 man-minutes plus the time


required to measure only the largest leaf on n plants (Table 3-5). If an
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Table 3-5. Minimum number of observations per sample required to detect 
time differences among treatments using a 0.05 and 0.01 tests of 
significance and 90% probability of success (B = 0.1). 

Test of Significance 

a = 0.05 a = 0.01 

True Difference, % 

Method CV 10 20 50 10 20 50 

% ---------­ number of samples---------

I 11 27 8 3 39 11 4 
II 16 54 15 4 80 22 5 
I11 13 39 11 3 55 15 4 
IV 18 73 17 4 99 27 6 

Table 3-6. Relative costs for measuring leaf area of corn plants with 12 to


14 leaves per plant.



Method Activity Time



man-minutes/plant



I Measure area of all leaves


a. Harvest abd transport 1


b. Remove leaves 3


c. Measure area 4



II Measure area and weight of subsample of leaves


a. Harvest and transport 1


b. Remove leaves 3


c. Measure area 4


d. Dry and weigh 1



Measure weight of large sample of leaves


a. Harvest and transport 1


b. Remove leaves 2


c. Dry and weigh 1



III Measure length and width of all leaves 6



IV Measure length and width of all leaves in one replication 6



Measure length and width of largest leaf in other


replications 1
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Table 3-7. Total costs (in time) for measuring leaf area of corn plants.



Test of Signiftcance 

a= 0.05 a 0.01 

True Difference, % 

Method CV 10 20 50 10 20 50 

% n----------numberof minutes---------­

11 216 64 24 312 88 32 
II§ 16 221 65 21 325 93 25 


1III 13 234 66 18 330 90 24 
IV 18 88 32 19 114 42 21 


§Cost1 = n(8 tin/plant)
Cost2 = (9 min/plant) + (n-1)(4 min/plant) 
Cost3 = n(6 min/plant) 
ICost4 = (0/r)(6 min/plant) + (n)(1 min/plant), where r is number of 

replications and n is number of plants on which only largest 
leaf is measured. 

experiment has less than three replications, the cost advantages of method 
IV will be diminished greatly. The additional costs of determining the 
coefficient (i.e., b, in Eq. 3 and 4) which relates measurements of length 
and width to area are not included in these analyses. If the frequently 
cited coefficient of 0.75 for corn is used rather than actually determined 
for each treatment, the estimated leaf area may be biased (7). This bias 
may be acceptable if leaf shape remains constant from treatment to treatment 
and only relative estimates of LAI are required. 

Summary 

Leaf area index is an important biophysical descriptor of crop 
canopies. Many methods of measuring LAI have been developed which vary 
greatly in their accuracy, precision, bias and ease of measurement. We 
examined relative errors, number of plants, and labor costs in time 
associated with four methods of measuring leaf area of corn plants. The 
natural variability of leaf area per plant in a uniform field of corn 
exceeds 10%. Additional variability is introduced by methods which estimate 
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leaf area based on area to weight ratios or measurements of leaf length and 
width. Direct measurement of leaf area (method I) had the lowest CV, 
required the fewest plants, but demanded approximately the same amount of 
time as the leaf area/weight ratio method (method 11) and the leaf length 
and width method (method III) to detect comparable differences. The fourth 
method which is based on a relationship between the area of the largest leaf 
and total leaf 'area per plant had the highest CV and required the most 
plants, but demanded the least time to detect 10 to 20% differences in LAI. 
When the true differences in LAI exceed 50%, all methods require 
approximately the same amount of time. The method of choice depends on the 
resources available, the differences to be detected, and what additional 
information such as leaf weight or stalk weight is also desired. Efficient 
and creative multistage sampling schemes can minimize experimental error and 
cost. 
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4. LANDSAT SPECTRAL INPUTS TO CROP MODELS 

The objective of this research was to develop methods of incorporating 
Landsat MSS data into crop yield models to improve the accuracy of yield 
estimates. Two variables were examined, spectrally estimated development 
stage, and a spectral estimate of stress at a field level. 

Due to budget reductions, it was impossible to evaluate the effects of 
the development stage and stress estimate on meteorological yield models. 
However, It was possible to evaluate the accuracy of the development stage 
estimates, and to a lesser extent the stress estimates. 

Two sections are included in this report, the application of a 
greenness index to assess crop stresses at the field level, and the 
evaluation of the spectral estimation of development stage of corn and 
soybean. 

A. Use of Greenness Index to Assess Crop Stress 

S.E. Hollinger 

Introducti on 

Information obtained using Landsat satellite data has the potential to 
assist in identifying stressed crops. During the southern corn leaf blight 
outbreak in 1971, MacDonald et al. (1972) applied pattern recognition 
methods to multispectral scanner data to identify diseased corn fields. 
Although the spectral sensor was flown on an aircraft rather than a 
satellite, the experiment demonstrated the usefulness of using spectral data 
to identify three levels of leaf blight severity. Thompson and Wehmanen 
(1979) developed a procedure using Landsat MSS data to assess the moisture 
stress experienced by wheat. The stress Index applied to the entire segment 
rather than to fields within the segment. The same authors (1980) later 
extended this procedure to corn and soybean segments. 

The objective of this investigation Is to expand the application of the 
Thompson-Wehmanen Green index Number (GIN) to a field basis, and obtain an 
estimate of stress on each field within a segment. 

Experimental Procedure 

Landsat data for 32 Corn Belt segments in 1978 and 30 segments in 1979 
were used to estimate the Green Index Number (GIN) for a sample of corn and 
soybean fields in the segments. Several spectral acquisitions were 
available throughout each growing season. In 1978, 693 observations were 
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made on 284 corn fields and 616 observations were made on 274 soybean 
fields. The corresponding figures for 1979 were 731 observations on 348 
corn and 983 observations on 449 soybean fields. 

A sample of the fields in the segments were observed periodically by 
USDA personnel as a part of the AgRISTARS program. In addition to observing 
development stages, notes were made concerning the condition of the crop. 
These condition reports along with the crop moisture index were used to 
check the accuracy of the stress estimates.



Thompson and Wehmanen (1980) calculated the stress index for corn and 
soybeans by determining the percent of pixels within a field or segment that 
exceed the bare soil greenness plus a greenness threshold (arbitrarily set 
equal to 20). Determination of a stress-no stress condition is a function 
of the stage of crop development. From planting to corn stage 3.5 (Hanway, 
1971) and soybean stage R2 (Fehr and Caviness, 1977) the percent of pixels 
that must have a greenness greater than the above criteria increases 
linearly from 0 to 30%. From corn stage 3 and soybean stage R2 to maturity, 
30% or more of the pixels must have greenness that exceeds the stress


criteria for an area to be non-stressed. 

In applying GIN to the field level, two major modifications were made 
to the procedure. These modfications were elimination of screening for 
mixed and nonagricultural pixels, and a different method of calculating the 
bare soil green line. Elimination of the screening procedure was possible 
because we worked only with pure pixels, and the pixels were known to be a 
part of the field of interest and therefore were assumed to be pixels of


corn or soybeans only. 

Thompson and Wehmanen (1979, 1980) used the ten percent of the


"agricultural" pixels with the smallest green numbers to designate the bare 
soil green line in the segment. For this application, the bare soil green 
line was determined by calculating the mean greenness of the field using an 
acquisition prior to June 1 (Method 1). If the first acquisition for the 
field was after June 1, then the bare soil green line was calculated as 
Thompson and Webmanen calculated it (Method 2). In this case, the mean of 
the ten percent of the pixels in the field with the lowest greenness was 
used as the bare soil green line. June 1 is an arbitrary date and was 
selected because "spectral emergence" had not occurred prior to this date in 
most segments. 

An estimate of the crop development stage is necessary since the stress 
index is a function of development stage. Two estimates of development 
stage were available for this purpose. One was the observed development 
stage from the AgRISTARS segment data. The other was an estimate of 
development stage calculated from spectral data using the Badhwar and 
Henderson (1981) temporal profile model. 
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Results and Discussion



To fully understand the accuracy of the method as applied to the field 
level, three aspects of the procedure must be examined. These aspects are 
the effects of calculation of the soil green line, the effects of using a 
development stage obtained from a spectral estimate, rather than the 
observed developnent stage, and finally the accuracy of stress asssessment 
using, the field observations and Crop Moisture Index (CMI) as standards. 

Sol Green Line Calculation 

AgRISTARS segment 133 in Whitely County, Indiana, was used as a test 
segment to evaluate the effects of calculating the soil green line by
Methods I and 2 described above. Segment 133 was selected because it is 
included in both the 1978 and 1979 data bases. 

Plots of bare soil greenness calculated using Methods 1 and 2 are shown 
in Figure 4-I. The data points are connected using a spline fit and as such 
have no significance. The significant fact is that using Method 2, the bare 
soil greenness varies throughout the season beginning at a low value early 
in the season and rising to a greenness ranging from four to eight when the 
crop begins to cover the soil. This variation may be associated with the 
size of the fields. With Method 2 only one to five pixels are used in 
estimating bare soil greenness and may not give an adequate estimate of bare 
soil greenness. 

It is interesting to note that early in the season, the mean greenness
of the field (Method 1) results in a bare soil greenness greater than the 
bare soil greenness obtained from using the 10 percent of pixels with the 
lowest green number in each field (Method 2). The larger early season bare 
soil greenness using Method 1 is due to using all the pixels in the field 
rather than the small number used in Method 2. 

The data plots also indicate a variation of bare soil greenness from 
year to year. This variation could be due to the fact that different fields 
were used within the same segment between the years, or because of different 
soil moisture conditions. It is not appropriate to make major conclusions 
relative to this variation but it does warrant further consideration with a


larger data set. 

The two methods of calculating bare soil greenness do not result in a 
significantly different stress index. Tables 4-1 and 4-2 show the 
contingency tables used to evaluate the difference between the two methods. 
The X2 statistic was tested using a two tail test with an a of 95% and 5% 
and 1 degree of freedom. 

The conclusion from this data is that both methods of calculating bare 
soil greenness are the same when calculating a stress-nostress index. If 
the stress Index were a multilevel stress index (i.e. no stress, moderate


stress, moderately severe stress, severe stress) the method of calculating


the bare soil greenness might become more important. 



- -

62



ORIGINAL PAGE 
OF pOOR QUALITY 

A. CORN 

- 1979 ETHOD 1,,h, 

CD EHO -899 

100 140 180 220 260 280 


DAY OF YEAR 


B. SOYBEANS 

1 1979 


12 M-1979METHOOD2 


8-4 


UU 4 1978 METHOD 2z 

fn 

-4 
 1979 METHOD 2 


-12 

100 140 180 220 260 280 


DAY OF YEAR 


Figure 4-1. Bare soil greenness calculated using Method 1 and Method 2 for 
segment 133 Whitely County, IndianaS 



63



Table 4-1. Contingency tables showing effect of two methods of calculating 
bare soil greenness on stress calculation for corn. 

1978 	 1979 

No Stress Stress Total No Stress Stress Total



lMethod 1 23 17 40 13 25 38


(21.5) (18.5) (17.0) (21.0) 

Method 2 20 20 40 21 17 38 
(21.5) (18.5) (17.0) (21 .0) 

Total 43 37 80 34 42 76 

X2 	 2 = 0.45 	 x = 3.40 

Table 4-2. Contingency tables showing effect of two methods of calculating 
bare soil greenness on stress calculation for soybeans. 

1978 	 1979



No Stress 	 Stress 	 Total No Stress Stress Total



Method I 13 9 22 12 36 48 
(11) (11) 	 (15.0) (33) 

Method 2 9 13 22 18 30 48 

(11) 	 (11) (15.0) (33)



44 96
Total 22 	 22 	 30 66 
 

×2 = 1.45 	 2 = 1.75 
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Development Stage Calculation 

The result of using spectrally derived development stages is compared 
to using the observed development stage In Table 4-3 for corn and in Table 
4-4 for soybeans. Using a two-tailed X2 test with 1 degree of freedom and 
an a of 95% and 5% reveals that only corn in 1979 gives the same stress 
result for both methods of estimating development stage. The corn results 
in 1978 and soybeans in both years result In a different stress index when 
spectral data is used to estimate the development stage. 

The results lead to the conclusion that the use of this spectral 
estimate of development stage in GIN is not accurate enough to estimate 
stress conditions. Therefore, a more accurate model to depict development 
stage from spectral data is needed. In the interim an observed development 
stage should be used with the GIN model. 

Comparison to Crop Moisture Index (CMI) 

Two comparisons to the crop moisture index were made using the 1978 
crop data. One considered a stress to be present when the CMI was less than 
0.0, the other when the CMI was less than -1.0. The first case is a very


slight stress condition, while the second would result in a deteriorating 
crop condition. In the second case, some droughty fields would begin to 
show signs of stress. 

A comparison of the predicted results td the observed CMI is presented 
in Table 4-5. In mreking the comparison between stress predicted at the 
field level to a stress indicated by the CMI, it was assumed that if the CMI 
for the crop reporting district indicated a stress on the day of the 
spectral acquisition, than all the fields in the segment were observed as 
stressed. 'The data in Table 4-5 include all acquisitions for the Indiana, 
Illinois, and Iowa segments. The stress index showed a much higher degree 
of accuracy (90% vs. 60%) when a stress was assumed to occur when the CMI 
was less than -1.0. When this assumption was made, only the Northwest crop 
reporting district in Indiana had an observed stress condition, and this 
occured in late August. On this date, stress was determined for two corn 
fields and one soybean field. 

The high percent of correct predictions is encouraging. However, it is 
difficult to make any conclusions based on this set of data because no 
prolonged moisture stresses occured in 1978. In addition, the CMI is based 
on a very large area, and the soil and moisture variations are removed from 
the index. Thus droughty fields may show a stress spectrally where the CMI 
would not indicate the stress. The reverse is also true, a field may not


show a stress where the CMI indicates a stress. This is the case in the 
Northwest CRD of Indiana. Both segments are located in prime agricultural 
areas, with deep, clayey, poorly-drained soils while the majority of the 
district is composed of old sandy lake shores. The large area of sandy 
soils in this district masks the smaller areas with good soil moisture 
characteristics. Therefore, it is not unreasonable for a small number of 
fields to show a stress spectrally while the majority of the fields do not. 
It is encouraging that the only day that the fields in this district show a 
stress is when the CMI indicates a stress (CMI -1.0).
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Table 4-3. Results of using spectrally derived development stage versus 
observed development stage to predict a stress-no stress condition using 
GIN for corn.



1978 1979 

Development 
Stage No Stress Stress Total No Stress Stress Total



Spectrally 665 28 693 513 218 731 
(640) (53) (516) (215)



Observed 615 78 693 519 212 731 
(640) (53) (516) (215)



Total 1280 106 1386 1032 430 1462



X2
X2 = 13.746 = 0.118



Table 4-4. Results of using spectrally derived development stage versus 
observed development stage to predict a stress-no stress condition using 

GIN for soybeans. 

1978 1979



Development 
Stage No Stress Stress Total No Stress Stress Total



Spectrally 513 103 616 820 163 
 983
 
(531) (85) (754) (230)



Observed 549 67 616 687 296 
 983
 
(531) (85) (754) (230)



Total 1062 170 1232 1507 459 1966



X2

x2 = 8.232 = 9.00
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Table 4-5. Results of comparing spectral stress index with CMI.



Crop



Corn Soybeans



Stress: CMI = 0



No. Predictions 471 419


No. Correct 290 262


Percent Correct 61 .6 60.1



Stress: CMI = -1.0
 


No. Predictions 471 419 
No. Correct 426 383 
Percent Correct 90.4 91.4 

Comparing the results of the stress calculations is an incomplete test 
of the procedure. By definition, a stress wotld occur anytime the greenness 
of less than 30 perceht of the pixels had a greenness less than 20 plus the 
bare soil greenness. By this definition the stress could occur because of 
excessively wet conditions, disease, nutrient stresses and poor stands in 
addition to a low moisture stress. Excessively wet conditions for short 
periods in Indiana, Illinois, and Iowa could result in drowning of crops in 
many fields with poorly drained conditions. If a major portion of any field 
were experiencing this problem, the spectral data would indicate a stress, 
while the CMI would show adequate soil moisture conditions and no stress. 
Likewise, the CMI gives no indication of disease or nutrient stresses. 
Unfortunately, the periodic observations in 1978 do not give adequate 
information to check for these other stresses.



Comparison of Spectral Stress With Periodic Observation 

In making the comparisons of spectral stress with the AgRISTARS 
periodic observations, a segent was found that had adequate notes 
describing field conditions. A judgement was then made as to whether the 
field should be classified as stressed or non-stressed for each day a 
spectral stress estimate was available. A field was classified as stressed 
if the observer described the field as poor or having a thin stand. 

The results for AgRISTARS. segment 133 in Whitely County, Indiana, are 
shown in Table 4-6 as a contingency table. The X2 test indicates that there 
is a difference between the observed stress and the predicted stress. The 
X2 statistic was tested with an a = 5% with 1 degree of freedom. 
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Table 4-6. Comparison between spectrally predicted and observed stress. 

Corn 

Stress No Stress Total



Predicted 25 13 38


(15.5) (22.5)



Act ual 6 32 38 
(15.5) (22.5)



Total 31 45 76 

X2 = 19.667 

Soybean 

Stress No Stress Total



predicted 46 12 58


(25.0) (33.0)



Actual 4 54 58 
(25.0) (33.0)



Total 50 66 116



X2 
 = 62.007



Firm conclusions cannot be drawn from these results because of the 
small sample size and because the fields did not exhibit moisture stress 
during 1979. Also, it is difficult to observe field problems due to the 
causes mentioned above from ground level. These observations at ground 
level are possible only by an extensive walking of the fields and this was 
not practical in taking the periodic observations. Therefore some stresses 
may actually be present but not noted. Additional tests need to be made 
using other years when moisture and other Environmental stresses were 
experienced.
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Summary 

The Thompson-Webmanen GIN procedure has been applied to Landsat 
spectral data at the field level. Although no firm conclusions can be drawn 
at this time due to thet limited ground truth data bases, the procedure does 
not seem to be overly sensitive to the method of calculating bare soil 
greenness. It is sensitive to errors in estimating development stages and 
therefore, observed development stages should be used to calculate the 
stress index if the data is available. 

Before any major conclusions can be made concerning the validity of 
applying the procedure to a field level, tests should be run using Landsat 
spectral data collected during a year when soil moisture was limiting. Such 
a year would be 1980. These tests are currently being run. 
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B. Evaluation of Landsat MSS Data for Estimating 

Corn and Soybean Development Stages 

S.E. Hollinger 

Introduction 

Before crop yields can be accurately estimated using meteorological 
models, an accurate estimate of development stage must be available. This 
is important because short term weather stresses can have a profound impact 
on yields if they occur at a critical stage of crop development (i.e. for 
corn at silking). Thus it is necessary to know the time of year these 
critical development stages occur so the weather impacts on yields can be 
accurately evaluated. 

A second reason for estimating development stage of crops is the 
identification of crops in a scene. In classifying crops, analysts need to 
know the development stage of the various crops in the scene. 

Meteorological models and remote sensing techniques can be used to 
estimate crop development stage. The application of meteorological models 
to this task is routinely used to estimate yields. These models, however, 
require ground based knowledge of the date of planting and weather data. In 
the United States, estimates of the planting date can be obtained at the 
crop reporting district (CRD) level. Estimates of the variation of the 
planting date within a CRD, and during the season the variation of 
development stages within the CRD can be estimated with these data. 
However, more accurate estimates of yields could be obtained if this 

area. Theinformation were available on a county or subcounty size 
information on this small an area is not available since in many cases a 
county may not have a planting date estimate. A second drawback is that the 
weather stations are not dense enough to accurately determine the mean or 
variation of weather within the CRD/county. Therefore, there are two 
sources of error in the meteorological estimates. In foreign countries 
these data are often not available at all. 

Estimation of development stages using remote sensing could help 
alleviate the problems associated with the meteorological estimates. Since 
remotely sensed spectral data provides a picture of the land surface, using 
remote sensing will give an estimate of the mean development stage for areas 
that are county size or smaller and an estimate of the variation within the 

areas. 

Badhwar and Henderson (1981) have developed a method of estimating 
development stages using spectral data and a "greenness" profile. The 
greenness profile is obtained by fitting a nonlinear curve through daily 
greenness values of a field throughout the season. The greenness referred 

to here is the green component of the Kauth-Thomas tasseled cap 
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transformation (Kauth and Thomas, 1976). The greenness profile shows a 
characteristic green up stage, a plateau of greenness and then a senesence 
stage where greenness returns to the greenness of the bare soil. The area 
remaining under the curve on any day of the season is linearly related to 
the stage of development. This method has been tested on plot size areas as 
well as on selected AgRISTARS segments. 

The objective of this paper is to use the method developed by Badhwar 
and Henderson and apply it to a greater number of segments in a semi­
operational mode. By semi-operational we mean applying the method to 
segments where little or no screening of the data has occurred for clouds or 
other noise in the scene.
 


Methods 

The Badhwar-Henderson (1981) model was used to determine the stage of 
development for each corn and soybean field from selected segments in 1978 
and 1979. Selection of the segments was based on the availability of ground 
truth and spectral data. All fields larger than two pixels were included in 
the study. 

A total of 284 corn and 274 soybean fields from 32 segments in 1978 
were used in this study. In the analysis, the states were divided into 
three regions: Corn Belt (Iowa, Illinois, Indiana, Missouri), South 
(Kentucky, Mississippi), and North (Michigan, Minnesota, South Dakota). In 
1979, 348 corn and 449 soybean fields from 30 segments were used. The 
segments were located in four Corn Belt states (Iowa, Illinois, Indiana, 
Nebraska), five Southern states (Alabama, Arkansas, Louisiana, Mississippi) 
and five Eastern states (Delaware, Georgia, Maryland, North Carolina, South 
Carolina). 

Ground observation data were collected periodically throughout the 
growing season by USDA personnel as a part of the AgRISTARS project.


Development stages were observed on or within one day from the date of each 
satellite pass. The development stage classification scheme for both years 
is presented in Table 4-7 for corn and Table 4-8 for soybeans. 

Evaluation of the accuracy of the predicted development stages was 
accomplished by regressing the predicted development stage against the 
actual development stage and examining the coefficient of determination 
r 2 ), and the slope and intercept of the regression. Tests of whether the 

slope equals 1.0 and the intercept equals 0.0 were made using a two-tailed 
test with a = 0.05. The error or difference between the predicted and 
observed development stages was examined to see if it had a mean equal to 
zero. Mean errors equal to zero indicate no bias in the predicted 
development stages. Additionally the standard error (SE) of the errors was 
evaluated to determine the precision of the estimates. Smaller SE's 
indicate more precision in the development stage estimates. 

The above analyses were conducted on the total segments within each 
year, by regions of the country and by state to determine the universality 
of the procedure. 



Table 4-7. Development stage schemes used to classify corn development in 
1978 and 1979. 

Stage of Development 

1978 1979 Description of Development 

0.0 1.0 Planting 
0.0 1.5 Planting complete not emerged 
0.0 2.0 Emerged 
0.5 - 2 leaves fully emerged 
1.0 - 4 leaves fully emerged 
1.5 3.0 6 leaves fully emerged 
2.0 - 8 leaves fully emerged 
2.5 - 10 leaves fully emerged 
3.0 3.5 12 leaves fully emerged 
3.5 - 14 leaves fully emerged 
4.0 16 leaves fully emerged 
5.0 4.0 Tassels emerged, silks visible, pollen beginning 

to shed


- 4.2 Silking and pollen shed 80% complete


6.0 5.0 Kernels at blister stage 
7.0 - Dough stage 
8.0 5.5 Beginning dent stage 
9.0 5.8 Full dent stage 

10.0 6.0 Physiologic maturity 
11.0 7.0 Harvest



Results



A total of 756 corn and 691 soybean development stage predictions were 
evaluated from the 1978 data. Using the 1979 data, 822 corn and 1125 
soybean development stage predictions were evaluated. These data represent 
less than one-half the spectral data available for use. The data not used


were screened out because ground observations were not available to evaluate


the predicted development stages, or because the curve fitting technique


could not converge on a solution. Failure to converge on a solution was due 
to greenness values in some areas failing to follow the normal "green up" 
and "green down" of the fields within the segments. 

The results of the analysis of the data for both corn and soybeans are 
presented in Table 4-9. In both 1978 and 1979 a significant positive bias 
was found in the corn development stage estimations. The data are the 
combinations of all fields from all the areas. Corn and soybean development 
stages were calculated using a linear relationship to the area remaining
under the greenness profile curve. 
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Table 4-8. Development stage schemes used to classify soybean development 
in 1978 and 1979.



Stage of Development 

1978 	 1979 Description of Development 

numerical/Fehr-Caviness 

0 VO 1.0 Pre-emergence, crop planted 
1.5 Planting complete but not emerged 

0.25 	 VE 2.0 50% of plants have cotyledons above soil 
surface 

0.50 VC 	 Unifoliolate leaves unrolled so that leaf 
edges not touching



0.75 	 VI Fully developed leaves at unifoliolate 
node 

1.00 V2 	 Fully developed trifoliolate leaf at node 
above the unifoliolate nodes 

V3 Three nodes on the main stem with fully 
developed leaves



2.00 	 V4 3.0 Four nodes on main stem with fully devel­
oped leaves 

4.00 Ri 3.4 Beginning bloom 
5.00 R2 	 Full bloom 
6.00 R3 3.6 Beginning pod 
7.00 	 R4 4.0 Full pod, pods about 2 cm long on top 

nodes of main stem 
4.2 Full pod on 80% of plant 

8.00 R5 4.5 Beginning seed 
9.00 R6 5.0 Full seed 

10.00 R7 	 Beginning maturity 
5.8 20% of plants with pods at mature color 

11.00 R8 6.0 Full maturity 
12.00 R9 7.0 Harvest and post harvest 

S= yo + y1 A 	 (I) 

where S is the calculated development stage, A is the area remaining under 
the greenness curve on the day of interest, and Y0 and y are constants. 
The constants used to calculate the development stages are given in Table 
4-10. The soybean development stages show a significant positive bias in 
their estimate in 1979 and a negative bias in 1978. 
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Table 4-9. Evaluation of estimated development stages for all regions 
combined in 1978 and 1979 for both corn and soybean. 

Regression Analysis 

Year N Bias RMSE r 2 0 1 

Corn 

1978 756 0.28* 1.11 0.815 1.04* 0.80** 
1979 822 0.13" 0.72 0.670 0.69* 0.81* 

Soybean 

1978 691 -1.19" 1.49 0.759 0.78* 1.08"* 
1979 1125 0.77* 0.68 0.672 -0.78* 1.00 

* Significantly different from zero at a = 0.05, two-tailed test. 
** Significantly different from 1.0 at a = 0.05, two-tailed test. 

Table 4-10. Coefficients used to relate the area remaining under the 
greenness profile curve to development stage. 

Corn Soybeans 

Year Yo1 Y Y1



1978 11.0 -10.0 9.0 -8.0


1979 6.5 -3.9 6.0 -2.9



When the same data are examined on a regional basis (Table 4-11), a 
bias in the corn development stage estimates is found in each of the regions 
except the southern region in 1978. The bias is positive in the corn belt 

both years and in the northern region In 1978. The eastern region shows a 
negative bias in 1979. Estimates of the soybean crop are negatively biased 
in 1978 in all regions and positively biased in 1979 in all regions. 
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Table 4-11. Analysis of estimated development stage on a regional level for 
corn and soybean in 1978 and 1979. 

Region Year N Bias RMSE y2 00 6l 

Corn



Corn belt 1978 627 0.18' 1.08 0.832 1.16* 0.79**


North 1978 89 0.99* 1.11 0.695 0.64 0.75**


South 1978 40 0.24 0.82 0.857 -1.04 1.10


Corn belt 1979 637 0.24* 0.51 0.804 0.58* 0.80**


East 1979 185 -0.26* 1.06 0.357 1.60* 0.70** 

Soybeans



Corn belt 1978 580 -1.30" 1.48 0.771 0.85* 1.08"*


North 1978 40 -0.46 1.60 0.556 0.39 1.02 
South 1978 71 -0.67* 1.27 0.774 o.62 1.01 
Corn belt 1979 618 0.61* 0.51 0.818 -1.11' 1.12"*


East 1979 201 1.41' 0.75 0.213 0.96* 0.47**


South 1979 306 0.66* 0.57 0.772 -0.99* 1.07** 

* Significantly different from zero with a 0.05, two-tailed test. 
** Significantly different from 1.0 with a = 0.05, two-tailed test. 

The bias in the estimates can be removed using the regression 
coefficients in Table 4-9 and equations 2 and 3. 

(2)
= 0 + 01YO 

Y1 = ilY (3)1 
 

New development stage estimates can be calculated by substituting y0 and yi 

into equation 1. The new coefficients for all areas combined are given in 
Table 4-12, and the result of the analysis of the revised development stage 
estimates in Table 4-13. There is no bias in the revised estimates. 
Regression analysis shows a one to one relationship between the predicted 
and observed development stages in both years for both crops. Even though 
all bias is removed from the combined data, it is obvious from the regional 
data that there will still be a bias in these data. Thus it is necessary to 
calculate coefficients for equation 1 for each region and state. Changing 
the coefficients for equation 1 did not affect the root mean square error. 
Thus the results are not any more precise; however, they are more accurate. 
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Table 4-12. Revised coefficients for calculating development stage. 

Corn Soybean 

Year 1 1 1 1 

1978 9.8 -8.0 10.5 -8.6


1979 6.0 -3.2 5.2 -2.9



Table 4-13. Analysis of developent stage estimates calculated from revised 
coefficients. 

Regression Analysis 

Year N Bias RMSE yo2 801 

Corn



1978 756 -0.03 1.11 0.814 0.04 1.00


1979 822 0.03 0.72 0.670 0.02 0.99



Soybean 

1978 691 0.04 1.49 0.758 -0.04 1.00 
1979 1125 -0.03 0.68 0.672 0.02 1.00 

Coefficients that result in an unbiased estimate at the state and 
regional level are presented in Table 4-14 for 1978 data and Table 4-15 for 
1979 data. A third variable, Ps(t 0 ), is also listed in Tables 4-14 and 
4-15. This variable represents the stage of development that must be 
attained before the crop becomes spectrally separable from the soil. It is 
encouraging that in both years, the development stage when the crop becomes 
differentiated from the soil background is descriptively the same even 
though the development stage scales used are significantly different. In 
most cases, this occurs when 4-8 leaves are fully emerged in corn and when 
2-4 nodes are present in soybeans. Exceptions to this are the 1978 Illinois 
and Michigan soybeans fields, the 1979 Mississippi soybean fields, and the 
1979 Georgia and South Carolina corn fields. Note also that the Nebraska 
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Table 4-14. Coefficients that provide an unbiased estimate of development 
stage on regional and state level in 1978. 

Corn Soybean



Region/ 
State TY Y P5Ct0) Y P5Ct0) 

Corn belt 9.9 -7.9 2.0 10.6 -8.6 2.0 
Iowa 10.1 -8.2 1.9 11.4 9.7 1.7 
Illinois 10.1 -7.6 2.5 11.1 6.1 5.0 
Indiana 10.0 -8.1 1.9 10.6 -9.0 1.6 
Missouri 8.9 7.4 1.5 9.8 9.7 0.1 

North 8.9 7.5 1.4 9.6 -8.2 1.4 
Michigan 9.2 8.8 0.4 12.1 -7.2 4.9 
Minnesota 7.5 5.6 1.9 9.5 -8.3 1.2 
South Dakota 9.6 8.0 1.6 8.6 -7.4 1.2 

South 11.1 -11.0 0.1 9.7 -8.1 1.6 
Kentucky 11.1 -11.0 0.1 14.1 -12.4 1.7 
Mississippi - - - 7.8 -5.4 2.4 

and North Carolina soybean coefficients in 1979 are erroneous. In the 
Nebraska case, the development stage is a constant 2.8. In North Carolina, 
the crop is estimated to be at full pod stage when the crop is separable 
from the soil then the development stage moves toward emergence rather than 
maturity. These errors are a result of greenness profiles in the states for 
these crops. In these cases, the greenness profile shows a green up only 
with no plateau or green down portion in the profile. In cases such as 
this, the Badhwar-Henderson method does not apply and procedures should be 
developed to screen these data out and flag the segments and fields. 

Discusston 

The results of estimating development stage with the Badhwar-Henderson 
technique in this study are not as good as the results obtained by Badhwar 
and Henderson (1981). To a certain extent this is to be expected because 
this study was designed to use the method with a minimum of human screening 
of the data. All available segments with an adequate number of Landsat MSS 
acquisitions without clouds were used. Also all acquisitions from the 
segments that were registered within two pixels were used. We also included 
some smaller fields that were not in the original Badhwar-Henderson study. 
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Table 4-15. Coefficients that provide an unbiased estimate of development 
stage on regional and state level in 1979. 

Corn Soybean 

Region/
State Y 1 1 1 

0 5 t0 T0 T1 PC
 

Corn belt 5.8 -3.1 2.7 5.6 -3.2 2.4 
Iowa 5.9 -3.3 2.6 5.5 -3.3 2.2 
Illinois 5.8 -2.8 3.0 5.9 -3.0 2.9


Indiana 5.6 -2.9 2.7 5.6 -3.1 2.5 
Nebraska 6.6 -4.5 2.1 2.8* 0.0* 2.8 

East 6.2 -2.2 4.0 3.8 -1.4 2.4


Delaware 6.2 -3.2 3.0 4.1 -1.6 2.5 
Georgia 6.9 -2.9 4.0 3.8 -1.7 2.1 
Maryland 5.6 -2.6 3.0 4.4 -2.1 2.3


North Carolina 5.6 -2.0 3.6 3.1* 1.1* 4.2 
South Carolina 7.9 -3.2 4.7 - - -

South - - - 5.4 -3.1 2.3 
Alabama - - - 5.3 -2.5 2.8 
Arkansas - - - 5.0 -2.6 2.4 
Louisiana - - - 5.2 -3.2 2.0 
Mississippi - - - 5.4 -1.3 4.1 
Texas - - - 5.5 -2.8 2.7 

Atypical greenness profile. 

The results of this study show the validity of the technique. The 
descriptive stage of development when the crop became spectrally separable 
from the soil are the same regardless of the numerical scale used to 
describe the development stage. The assumption by Badhwar and Henderson 
that the crop becomes spectrally visible when four leaves are fully emerged 
in corn is not always valid but varies by region and state. The variation 
of the stage where the crop becomes spectrally visible would be a function 
of the soil background greenness, and the amount of green vegetation that 
surrounds the fields, such as forest around small fields. The green 
vegetation surrounding the field would be a factor due to the atmospheric 
scattering of the radiation reflected from the scene. 

Although some of the coefficients are greater than the numerical value 
assigned to the harvested field, the coefficients could be adjusted by 
substracting a constant so that the maximum stage would be close to 
maturity. The same constant would need to be substracted off each 
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coefficient for a given area so that the stage, when spectral emergence 
would occur, would be the same. The important value is the stage where the 
crop becomes spectrally visible (Po(t0)). 

In the two years of data, the stage when the crops became spectrally 
visible in Iowa, Illinois, and Indiana was about the same. Therefore-, it 
appears that this val-ue may be relatively constant from year to year within 
a given area. If this is so it would mean that once the stage when the crop 
becomes spectrally visible is determined for an area, the method could be 
used with a considerable degree of accuracy. 

In conclusion, the Badhwar-Henderson method of estimating development 
stages of corn and soybeans appears to be applicable to a given region 
providing the stage when the crop becomes spectrally visible is known and 
assuning the crop has been accurately identified. A major problem that 
limits its use for real time crop inventory analysis is that it requires a 
full season's data before the developed stages can be determined. This 
deficiency of the method limits its usefulness in real time evaluation of 
crop yields. Therefore, a method needs to be developed to use this 
technique for early season deteotton of crop development stages. 
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5. FIELD RESEARCH--EXPERIMENT DESIGN, DATA ACQUISITION AND PREPROCESSING



L.L. Biehl 

Introduction 

This section describes the results of work conducted under Task 4, 
Field Research - Experiment Design, Data Acquisition, and Preprocessing. 
The overall objectives of this task are to (1) plan, acquire and preprocess 
the field research data required to support the crop identification, 
developmnent stage estimation, and condition assessment objectives of 
corn/soybean scene radiation research, (2) manage and distribute the field 
data required to support all scene radiation groups, i.e., corn/soybeans and 
small grains, and (3) train and coordinate researchers in the use of 
instruments and data acquisition procedures. The data are being used for 
analysis and modeling to obtain a quantitative understanding of the 
radiation characteristics of crops and their soil backgrounds and to assess 
the capability of current, planned and future satellite sensors to capture 
available, useful spectral information. 

Based on the previous, proven experience since 1974, there were two 
kinds of test sites for 1982 - controlled experimental plot sites and 
commercial field sites. The data from experiments in commercial field test 
sites provide a measure of the natural variation in the temporal-spectral 
characteristics of the cover type. The data from experiments in controlled 
plots enable more complete understanding and interpretation of the spectra. 
The test sites are summarized in Table 5-I. The emphasis of this report is 
on the corn and soybean experiments conducted by LARS. 

Experiment Objectives 

The experiments for 1982 at the Purdue University Agronomy Farm include 
some that have been continued from previous years to sample different 
seasonal weather patterns and new experiments to obtain measurements related 
to canopy geometry and view angle - sun angle. 

The following overall objectives were selected for the experiments:



- To determine relationship of crop canopy variables (development 
stage, LAI, biomass, soil background, etc.) to reflectance and 
radiant temperature of corn and soybeans. 

- To determine and model the relationship of leaf area index and 
solar radiation interception to spectral reflectance of corn and


soybean canopies. 

- To determine effects of varying agronomic practices (planting date, 
row spacing, plant population, cultlvar, soil type) cn spectral 
response of corn, soybeans, sorghum, and sunflowers. 
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Table 5-1. Summary of 1982 field research test sites and their respective 
Crops. 

Location Major-Crop(s)



Commercial Fields 

Cass County, N. Dakota Spring wheat, barley, sunflower, 
soybean 

Agriculture Experiment Station 

W. Lafayette, Indiana Corn, soybean, sorghum, sunflower, 
soil residue



Lawrence, Kansas Corn, soybean, wheat


Manhattan, Kansas Small grains


St. Paul, Minnesota Corn, soybean


Sandhills, Nebraska Corn, soybean


Corvallis, Oregon Small grains


Brookings, S. Dakota Small grains


College Station, Texas Rice, sorghum


CIMMYT, Mexico Wheat



- To support the development of corn and soybean yield models which 
use spectral response as a function of crop development stage as an 
input.



- To determine the dynamic nature of spectral reflectance of canopies 
at many sun and view angles as a function of crop development 
stage. 

- To determine effects of crop residue and tillage practices on early 
season crop reflectance. 

Experiment Descriptions and Data Acquisition 

Several experiments were developed at the Purdue Agronomy Farm to 
accomplish the objectives stated above. The experiments included treatments 
of cultural practices and sun-view angle/canopy geometry (Table 5-2). 
Spectral and agronomic measurements (Table 5-3) were collected on every day 
that solar illumination conditions were favorable, i.e. no clouds over or in 
the vicinity of the sun. 

The spectral measurements of the experiments were made by the Exotech 
100 (Landsat MSS bands) and Barnes 12-1000 multiband (Landsat TM bands) 
radiometer field systems. The system also includes a 35 mm camera, sighted 
to view the same area as the spectral sensors (Figure 5-1). 
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Table 5-2. Summary of the 1982 field research experiments at the Purdue 
Agronomy Farm. 

Experiments and Treatments 

Corn Cultural Practices 

3 Planting dates (May 14; June 8, 24)


4 Populaticns (25, 50, 75, 100 thousand plants/ha)

2 Soil types (Chalmers-darker, Fincastle-lighter)


2 Replications



Soybean Cultural Practices 

4 Planting dates (May 11, 15; June 14, 24)


3 Row widths (38, 76, 114 am)


2 Soil types (Chalmers-darker, Fincastle-lighter)


2 Replications



Sorghum Cultural Practices 

3 Planting dates (May 19; June 9, 24)


2 Hybrids (NK300-semi-dwarf, BR6-dwarf)


2 Replications



Sunflower Cultural Practices 

3 Planting dates (May 19; June 8, 24)

2 Populations (37.5, 75 thousand plants/ha)


2 Replications



Solar Radiation Interception 

Corn: 2 Planting dates (May 14, June 24)

2 Plant populations (50, 100 thousand plants/ba)


2 Replications



Soybeans: 4 Planting dates (May 14, 25; June 14, 24)


3 Row spacings (38, 70, 114 cm)


2 Replications



Corn Sun-View Angle 

View zenith angles (0, 7, 15, 22, 30, 45, 60, 70 degrees)

View azimuth angles (0, 45, 90, 135, 180, 225, 270, 315 degrees)


Solar zenith (20-70 degrees)


Solar azimuth (90-270 degrees)



Soil Residue 

3 Crops (corn, soybean, wheat)


3 Tillage systems (moldboard plow, chisel plow, no-till)


4 Crop rotations (continuous corn, continuous soybean, corn-soybean,



corn-soybean-wheat)


2 Replications
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Figure 5-1. Multispectral data acquisition system. The system includes two 
radiometers (MSS and TM) bands, camera, calibration panel, data logger, 
and aerial boom. The sensors are normally operated at height of 8 
meters and measurements are made of approximately 50 plots per hour. 
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To obtain data which can be readily compared, the instrument systems 
are operated following defined, established procedures. The instruments are 
operated from aerial towers at seven to ten meters above the target to 
minimize any row effect and shadowing of skylight. Care is taken to ensure 
that the field of view of the instrument includes only the desired subject. 
The routine data taking mode of the instrument is straight down for 
determination of bidirectional reflectance factor. Measurements of the 
painted barium sulfate reflectance reference panel are made at 15-20 minute 
intervals. Two to six measurements of each plot are typically made by 
moving the sensor so that a new scene within the plot fills the field of 
view. 

Spectral measurements, along with agronomic and meteorological data, 
were acquired on each day that weather conditions permitted (Table 5-4). 
During 1982 over 19000 spectra of corn, soybeans, sorghum, sunflowers, and 
soil were acquired on 30 days. Crop maturity stages from seedling to 
senescence are represented in these data. 

A specially designed tower and boom were fabricated for the sun-view 
experiment. The tower and boom were used for all sun-view angle data 
collected after August 1 (before August 1, a truck-mounted aerial boom was 
used). The apparatus includes a 10 meter tower, a 3 meter boom to mount the 
Barnes 12-1000 radiometer, and a platform for a reflectance reference panel. 
The radiometer can be positioned for a selected view azimuth and rotated to 
different viewing zenith angles, including the sky. A complete hemisphere 
af data (8 zenith and 8 azimuth angles) can be obtained within 6 minutes. 
This experiment is fully described in section 6. 

Laboratory Measurements 

The painted barium sulfate reflectance reference panels used by the 
several truck-mounted systems were prepared and calibrated by Purdue to 
support the acquisition of comparable data from site to site. During this 
past year, 22 panels were prepared and calibrated. The reference panels 
were calibrated with a bidirectional reflectance factor reflectometer (4). 
Reflectance measurements of the panels were obtained for illumination zenith 
angles from 10 to 55 degrees. The reference panels and their calibrations 
were distributed to several field research teams including University of 
Nebraska; Kansas State University; Oregon State University; South Dakota 
State University; University of Kansas; University of Minnesota; Rutgers 
University; North Dakota State University; NASA/JSC; NASA/ERL; and USDA-ARS


stations at Phoenix, Arizona; Busbland, Texas; and Lubbock, Texas. 

Data Preprocessing 

The spectral, agronomic, and meteorological data are calibrated and 
preprocessed into comparable formats for easy access and analysis by 
researchers. The spectrometer/radiameter data are preprocessed into LARSPEC 
format (2) and the aircraft scanner data are preprocessed into LARSYS 
format. 
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Table 5-4. Summary of 1982 data acquisition by field radiaeter systems at 
the Purdue Agronomy Farm. 

Experiment



Cultural Practices SRI



Measurement Soil Sun-View


Date Corn Soybeans Sorghum Sunflowers Corn Soybeans Residue Angle 

week of ------------- number of data sets acquired during week t------------

April 11 

May 9 

30 - - 1 -
June 6 H H - 3 2 1 -

13 M 1 - 2 4 4 - 15 
20 1 1 S 1 4 5 - 24 
27 - - - - -

July 4 S S - - 1 - 5 
11 1 2 1 1 3 2 - 11 
18 2 1 2 2 2 1 - 17 
25 H H I - 2 2 - 11 

Aug 1 - - - - - -
8 1 1 2 2 4 5 - 41 

15 1 M 1 1 2 2 - 18 
22 - H - - 1 1 - 7 
29 1 2 2 2 4 5 - 24 

Sept 5 - - - - - - -

12 
19 - - - - -
26 1 1 1 2 1 -

Oct 24 H H - 1 1 9 

H = half of treatments, M = more than half of treatments, S less than half 
of treatments. 

During this year preprocessing of the 1980 FSS (helicopter spectrometer) 
data was completed. Also, preprocessing of all the 1981 spectral data except 
for the FSS data were completed early in the year. Preprocessing of the 1982 
Exotech 100 and Barnes 12-1000 data collected at the Purdue Agronomy farm and 
the 1981 FSS data is nearly complete. The preprocessing accomplishments for 
1982 and the present status are summarized in Table 5-5. 
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Table 5-5. Summary status of field research data preprocessing 
accomplishments during 1982 (1980-82 crop years).



Instrument/Data Type Completed In Processing 

Aircraft Multispectral Scanner 3/7


(dates/flightlines)



Helicopter Mounted Field Spectroradiometer 
(dates/observations)



Field Averages 19/1,476 17/


Individual scans 19/30,432 17/ 

Helicopter Mounted Multiband Radiometer 7/


(dates/observatiens)



Truck Mounted Field Multiband Radiometer


(dates/observati ons )



Purdue/LABS Exotech 100 19/3,691 27/


Purdue/LARS Barnes 12-1000 systems 10/4,781 49/



Laboratory Spectroradimet er 
(dates/observations)



Purdue/LARS Exotech 20C 5/418 

Data Library and Distribution 

The development of the field research data library at Purdue/LARS was 
initiated in the fall of 1974 by NASA Johnson Space Center as a part of the 
Large Area Crop Inventory Experiment (3). The purpose of the data base is to
 

provide fully annotated and calibrated multitemporal sets of spectral, 
agronomic, and meteorological data for agricultural remote sensing research. 
Spectral, agronomic, and meteorological measurements were made primarily over 
wheat for three years. In 1978 and 1979 the data base was expanded to include 
data collected for corn and soybean experiments in Indiana, Iowa, and 
Nebraska, as well as from a major U.S. soils experiment. In 1980 the library 
was expanded again to include data collected for spring wheat, barley, 
sunflowers, and soybeans in North Dakota, and cotton, rice, and soybeans in 
Texas. 

Milestones achieved during the past year have been: inclusion of most 
1981 crop year data and distribution of data to researchers at 27 locations. 
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The data have been collected over several test sites , and crops as 
illustrated in Table 5-6. The test sites are of two types, controlled 
experimental plots and commercial rields. The instruments used to collect the 
spectral data are listed in Table 5-7. The spectroradlometer data are 
processed into comparable units, bidirectional reflectance factor, in order to 
make meaningful comparisons of the data acquired by the different sensors at 
different times and locations (4). The multispectral scanner data are 
approximately linearly related to scene radiance and the information is 
available for the researcher to calibrate the scanner data to In-band 
bidirectional reflectance factor if desired. 

The Field Research Data Library Catalog summarizes the data available. 
The catalog includes a separate volume for each crop year during which data 
were collected. In the past twelve months, seven aircraft scanner runs and 
more than 40,000 additional spectrometer/multiband radiometer observations 
have been made available to researchers. The data includes spectral
observations of corn, soybeans, and wheat. A summary of the spectral data in 
the library is given in Table 5-8. Listed in Table 5-9 are 27 institutions 
which have received or accessed field research data during the past year. A 
report summarizLng the scene radiation data base was published in July (4). 

Hardware Development



Hardware acquired or developed during the past year to improve our


capability to obtain accurate and timely spectral measurements includes:



-3/4-ton pickup to replace aging 1/2-ton pickup as platform for boom,



-tower and boom for sun-view angle experiments (described above),



-portable data loggers,



-special boom designed and built for researchers CIMMYT, Mexico,



-portable spectroradiometer for measuring leaf reflectance and


transmittance in the field



Software Development 

Major achievement during the past year are twofold. First, a copy of the 
LARSPEC software system was implemented on the NASA/JSC EODL computer system
and copies of the 29 LARSPEC data tapes were sent to NASA/JSC. This provides
the capability for increased access to the data by researchers at NASA/JSC and 

field research data base is being converted 

their remote sites and duplication of the data base in case data is lost at­
one of the sites due to a catastrophe. 

The second major achievement is well under way. A portion of LARSPEC 
to a disk-oriented data base as a 

test pilot using the commercial data base management system, ADABAS. The 
purpose of the pilot test is to determine if the disk-oriented data base 
software will provide increased efficiency in analysis and management of the 
field research data. 
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Table 5-6. Summary of field research best site locations and major crops. 

Test Sites



State County -

Indiana, Tippecanoe 

Iowa, Webster 

Kansas, Finney 
 

Nebraska, Mcpherson 

North Dakota, Cass 

North Dakota, Williams 
 

Oregon, Linn 

South Dakota, Broolings 

South Dakota, Hand 

Texas, Wharton 

U.S. & Brazil 

tC - commercial fields, 

Experiment 
Typet 

P 

C 

CP 
 

P 
 

C 
 

CP 
 

P 
 

P 
 

C 
 

C 

L 

P- controlled' 

Maj-df C56p - Crop Years 

Corn & Soybeans 1978-81 

Winter Wheat 1979-80 

Corn & Soybeans 1979-81 

Winter Wheat 1975-77 

Corn &.Soybeans 1979-81 

Spring Wheat 1980-81 
Barley 
Sunflowers 
Soybeans 

Spring Wheat 1975-77 

Small Grains 1982 

Small Grains 1981-82 

Spring Wheat 1976-79 
Winter Wheat 

Cotton 1980 
Rice 
Soybeans 

250 Soil Types 1978 

lot, L - laboratory 
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Table 5-7. Summary of major sensor systems used for field research, 
1975-82. 

Platform and Sensor Years 

Spacecraft Multispectral Scanners 

Landsat-1 MSS 1975-77 
Landsat-2 MSS 1975-79 
Landsat-3 MSS 1978-80 
Landsat-4 MSS and TM 1982



Aircraft Multispectral Scanners



24-Channel Scanner (MSS) 1975-76 
11-Channel Modular Multispectral Scanner (MMS) 1975-79


8-Channel Thenatic Mapper Simulator (NS001) 1979-81 

Helicopter-Mounted Spectroradlmeter



NASA/JSC Field Spectrometer System (FSS) 1975-81 

Helicopter-Mounted Multiband Radicmeter System 

NASA/JSC Barnes 12-1000 MMR 1982 

Truck-Mounted Spectroradicmeter Field Systems 

NASA/ERL Exotech 20D 1975


NASA/JSC Field Signature Acquisition System (FSAS) 1975-77 
Purdue/LARS Exotech 20C 1975-80 

Truck-Mounted Multiband Radiometer Field Systems 

Purdue/LARS Exotech 100 Radiometer 1977-82 
Purdue/LARS Barnes 12-1000 MMR 1981-82 
University of Nebraska Barnes 12-1000 MMR 1981-82 
University of Nebraska Exotech 100 1981-82 
Oregon State University Barnes 12-1000 MMR 1982 
South Dakota State University Barnes 12-1000 MMR 1982 
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Table 5-8. Summary of spectral data in the field research data library by 
instrument and data type for 1975-82 crop years. 

Number of 
Obs ervatIons­

Instrument/Data Type Dates or Flightlines 

Landsat MSS 

Whole Frame COT 124 124 

Aircraft Multispeetral Scanner 79 448 

Helicopter-Mounted Field Spetroradianeter 

Field averages 108 9,267 
Individual scans 108 162,826



Truck-Mounted Field Spectroradlometer 

NASA/JSC FSAS 44 813


Purdue/LARS Exotech 20C 131 7,613


NASA/ERL Exotech 20D 45 644



Tuck-Mounted Field Multiband Radiometer 

Purdue/LARS Exotech 100 105 25,182


Purdue/LABS Barnes 12-1000 10 4,781



Laboratory Spectroradiameter 

Purdue/LARS Exotech 20C 42 1,622



Field Measurement Workshops and Training 

The AgRISTARS Supporting Research Project is supporting the development 
of field research programs at several universities in the Midwest and Great 
Plains stated. The purpose of the program is to obtain calibrated, 
meaningful measurements at several sites with different soils and climatic 
conditions to further the communities' understanding of the reflective and 
radiative properties of crops and soils. 'LARS has supported these 
activities during 1979-81 in the development of the Barnes 12-1000 eight­
band radiometer, truck-mounted booms, calibration platforms, and calibration 
panels (1). 
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Table 5-9. Recipients of field research data 

Organization 
 

USDA/ARS, Water Conservation Lab 
 
Phoenix, Arizona



Colorado State University 
Fort Collins, Colorado 

University of Hawaii 
Honolulu, Hawaii



Purdue University 
 
West Lafayette, Indiana



Kansas State University 
Manhattan, Kansas 

University of Kansas 
Lawrence, Kansas 

NASA Goddard Space Flight Center 
Greenbelt, Maryland 

Environmental Research Institute of Michigan 
Ann Arbor, Michigan 

University of Minnesota 
 
St. Paul, Minnesota 

University of Nebraska 
Lincoln, Nebraska 

State University of New York 
Binghamton, New York 

Goddard Institute for Space Studies 
 
New York, New York



State University of New York 
Syracuse, New York



SCIPAR, Inc. 
 
Williamsville, New York 

North Dakota State University 
 
Fargo, North Dakota 

during 1982. 

Means of Distribution



Mail



Mail



Mail 

Computer Terminal



Mail 

Mail 

Mail 

Mail 

Mail



Mail 

Mail 

Mail



Computer Terminal 

Mail



Mail
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Table 5-9, cont. 

Organization Means of Distribution 

Phillips Petroleum Company 
Bartesville, Oklahoma 

Mail 

Oregon State University 
Corvallis, Oregon 

Mail 

South Dakota State University 
Brookings, South Dakota 

Mail 

USDA/ARS 
Bushland, Texas 

Mail 

Texas A&M University 
College Station, Texas 

Mail 

Pan American University 
Edinburg, Texas 

Mail 

NASA Johnson Space 
Houston, Texas 

Center Computer Terminal 

Texas Agricultural Experiment 
Lubbock, Texas 

Station Mail 

USDA/ARS, Remote Sensing Research Unit 
Weslaco, Texas 

Mail 

Canada Centre for Remote 
Ottawa, Canada 

Sensing Mail 

CIMMYT (Centro International 
Maiz y Trigo) 

Mexico City, Mexico 

de Mejoramiento de 
Mail 

National Aerospace Laboratory 
Amsterdam, The Netherlands 

Mail 
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During this past year, personnel at LARS have held a field measurement 
workshop, visited several sites to review data acquisition procedures, and 
provided much support via the mail and phone for other university and USDA 
field research programs. On May 11 and 12, 1982, a workshop was held at 
Purdue/LARS for personnel from the University of Minnesota and the NASA


Earth Resources Laboratory. A mini-workshop was also held with personnel 
from NASA Goddard Space Flight Center. Visits were made to the field 
research programs at: 

University of Minnesota 
South Dakota State University 
CIMMYT, Mexico 
Oregon State University 
North Dakota State University (helicopter test site) 
NASA Johnson Space Center
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6. SUN-VIEW ANGLE STUDIES OF CORN AND SOYBEAN CANOPIES 

N SUPPORT OF VEGETATION CANOPY REFLECTANCE MODELING



K. J. Ranson, L. L. Biehl and M. E. Bauer



Introduction



The interaction of sunlight with a crop canopy is a complex system 
consisting of reflection, transmission and absorption. The reflected 
portion of the solar radiation incident on a canopy provides the basic 
source of information for remote sensing systems sensitive to visible and 
reflective infrared wavelengths. The amount of light reflected from a field 
into a given direction is a function of numerous variables. Agronomic
variables such as leaf area index (LAI), bicmass, canopy cover and cultural 
practices and biophysical variables that include foliage angle distribution,
leaf reflectance and transmittance and soil reflectance all determine, in 
part, the amount and distribution of sunlight reflected from a canopy. 
Physical scene variables such as sun position, wind, and atmospheric
characteristics affect the reflectance by altering the shadowing, leaf 
orientation and the distribution of light incident on the canopy,
respectively. The effect of temporal variables, particularly crop
development stage, are a function of the above agronomic and biophysical
variables. 

The estimation of agronomic variables with remote sensing data is 
important for providing accurate information about the type, amount and 
status of crops. This information can then be used as input for crop
assessment and yield estimation models (Bauer, 1975). Results of empirical
studies have demonstrated useful relationships between canopy reflectance 
and agronomic variables. Daughtry et al. (1980) found relatively high
correlations between spectral reflectance and such agronomic variables as 
biomass, LAI, percent canopy cover, and developnent stage of wheat. Learner 
et al. (1980) indicated that reflectance might be used to monitor 
development stage of wheat. Holben et al. (1980) found significant
correlations between spectral radiance and soybean LAI and biomass. A 
strong relationship between spectral radiance and grain yield of wheat was 
reported by Tucker et al. (1980). These studies utilized either truck­
mounted or hand-held nadir-viewing sensors. 

In the past, however, researchers have noted that identification of 
agronomic variables from remote sensing data is affected by a dependence of 
campy reflectance on the solar illumination and sensor viewing geometry.
Studies of angular reflectance of individual corn and soybean leaves 
conducted by Breece and Holmes (1971) showed increasing reflectance as the 
angle between the leaf normals and the sensor was Increased. Farrar and


Mapunda (1977) showed similar trends for African crop plants including 
maize, soybean and sugar beet. 
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This non-Lambertlan behavior has also been shown to exist In studies 
where the full crop canopy is considered. Egbert and Ulaby (1972) showed a 
dependence of reflectance from cotton due to solar zenith angle and effects 
due to changes in sun and view angles for grass canopies. Vanderbilt et al. 
(1980) identified an angular reflectance dependence due to sun and view 
angle as well as wavelength for different growth stages of wheat. Ranson e 
al. (1980) illustrated the angular dependence of soybean canopy reflectance 
for rowed and closed canopies. Staenz et al. (1980) found significant 
variations of reflectance from soil, small grains and broad leaved crops 
with changing view angles. Methy et al. (1981) studied soybeans and 
concluded that the measured anisotropy was due to view azimuth angle, solar 
zenith angle and development stage. Kimes (1983) reported that for 
homogeneous vegetation canopies reflectance was minimum when viewed near 
mdir and increased as view angle increased. A greater understanding of 
these off-nadir measurements may provide additional information for 
estimating agronomic variables as discussed by Jackson et al. (1979). 

Several physically based vegetation canopy reflectance models have been 
developed that predict the angular scattering properties of a canopy 
described by a set of biophysical and agronomic parameters. The models by 
Smith and Oliver (1972) and Suits (1972) are well known examples that 
consider the canopy as parallel layers with infinite horizontal extent. The 
model by Suits has recently been extended (Suits, 1981) to include canopies 
with well defined rows. Increased activity in this area has led to the 
development of other models such as the geometric optics type model of 
Jackson et al.(1979), the three-dimensional cubicle cell model of Kimes and 
Kirchner(1982) and the layered plane model of Cooper, et al.(1982). 
Recently, increased emphasis has been given to validating canopy models so 
they may be confidently applied to the problem of estimating agronomic 
variables from remote sensing data (Goel, 1982). Therefore, it is important 
that comprehensive field measurements be acquired for crop canopies in terms 
of their directional reflectance properties and agronomic and biophysical 
parameters. 

The need for increased understanding of the angular reflectance 
properties of canopies becomes more important as the launch of satellites 
with off-nadir pointing capabilities becomes more likely. One such 
satellite, -the Systeme d' Probatoire Observation de la Terre (SPOT) 
developed by a consortium of European countries, is scheduled for launch 
during the next few years. A more sophisticated satellite with increased 
spectral resolution, the Multiple Resource Sampler (MRS), has been proposed 
by NASA (Schnetzler and Thompson, 1979). 

Objectives 

The objectives of this study were designed to increase our 
understanding of the nature of angular reflectance distributions of two 
economically important crops: corn (Zea mays (L.)) and soybean (Glycine 
max(L.)) and to acquire comprehensive data sets that are suitable for 
validating most vegetation canopy reflectance models. 
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Specifically the objectives of this reporting period were: 

1. 	 Acquire bidirectional reflectance factor data for for corn and 
soybean canopies over a wide range of sun and view angles. 

2. 	 Compile comprehensive data sets of angular reflectance and canopy 
agronomic and biophysial parameters that are suitable for testing 
vegetation canopy reflectance models. 

Materials and Methods 

Soybeans, a crop of major economic importance which maintains a well 
defined row structure for about half of the growing season before becoming 
closed as the rows expand and overlap, were selected for the 1980 stnmer 
field study. The former case can be decribed by geometric optics types of 
canopy models while the latter case may be described adequately by layered 
infinite plane types of canopy models. A corn field was used for the 1982 
research. Corn was selected since it is an economically important crop and 
has some interesting characteristics amenable to an angular reflectance 
study. One of these characteristics is the highly specular reflectance 
component that is evident even by casual observation in the field. Another 
interesting feature that is directly related to development stage is the 
appearance of tassels. Nadir observation does not appear to detect this 
phenomenon very well and it is possible that an off-nadir view will enhance 
the detection of tasseling. 

The fields selected were as uniform as possible in terms of slope, soil 
type, drainage and planting pattern. Both fields had north-south oriented 
rows with a row width of 76 cm and planting pattern typical of commercial 
fields and were kept weed free. 

Spectral Measurements



Spectral radlometric data for the soybean sun-view angle experiment 
were acquired with an Exotech Model 100 radiometer (Table 6-1). Field stops 
were used to restrict the half power angular field of view (FOV) to ten 
degrees. The instrument was mounted on a pan head capable of movement in 
the horizontal (azimuth) and vertical (zenith) planes. A Hi-Ranger truck 
was used to provide an aerial platform for the instrument at a nominal 
altitude of ten meters above the soil surface (Figure 6-1). The truck was 
backed into the center of the field and the boom raised to the desired 
height and rotated to extend out an azimuth angle of 135 degrees from north. 
From this position the radiometer view zenith angle was set at zero 
degrees(nadir) and a measurement was made. The view zenith angle was then 
set at seven degrees and measurements were made at view azimuth angles of 
45, 90, 135, and 180 degrees. This procedure was repeated for view zenith


angles of 15, 22, 30, 45 and 60 degrees completing a half hemisphere of 
measurements. The truck boom was then rotated counter clockwise into an 
azimuthal position of 315 degrees. At this position measurements for the 
series of view zenith angles were obtained for view azimuths of 225, 270, 
315 and 360 degrees completing the measurement hemisphere. The truck boom 
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Table 6-1. Description of sensor codes, wavelength bands and corresponding 
satellite sensor channels. 

Sensor Code Wavelength Corresponds To


mssl .5 - .6pm Landsat MSS 1 
mss2 .6 - .7pm Landsat MSS 2 
mss3 .7- .8Pm Landsat MSS 3 
mss4 .8 - 1.1m Landsat MSS 4 
mmrl .45 ­ .52pm Thematic Mapper 1 
mmr2 .52 - .60pm Thematic Mapper 2 
mmr3 .63 - .69pm Thematic Mapper 3 
mmr4 .76 - .90pm Thematic Mapper 4 
mmr5 1.15 - 1.30pm None 
mmr6 1 .55 ­ 1.75pm Thematic Mapper 5 
mmr7 
mmr8t 

2.08 
10.4 

- 2.35pm 
- 12 .5pm 

Thematic Mapper 6 
Thematic Mapper 7 

'Not used for 1982 sun-view angle experiments. 

was then rotated again counter clockwise to position the Instrument over a 
plot of bare soil where a nadir observation was made. Additional nadir 
observations of the soybean field were acquired at truck boom azimuths of 
90, 160, 270 and 340 degrees. Prior to and after each measurement 
hemisphere measurements were acquired from a sunlit and shaded barium. 
sulfate painted panel to provide for calculation of bidirectional 
reflectance factors (Robinson and Biehl, 1979) and estimates of the percent 
skylight, respectively. Thirty-five mm color slides were taken at each


canopy and soil view position to document the field of view. 

The spectral data collection procedures for the 1982 corn experiment 
were modified from those described above. A tower system was under 
construction at the start of the field season and it was necessary to 
eliminate the access roadway for the Hi-Ranger in the center of the field.. 

To solve this problem roadways were placed on the east and west sides of the 
field. A half hemisphere of data was collected from each side with the 
radiameker looking into the center of the field. A Barnes Model 12-1000 
radiometer with seven spectral bands was used for this experiment. A 
different instrument mount was also used that improved setting the view 
zenith angles. To start a data hemisphere the truck was driven down the 
west roadway and the truck boom extended out at an azimuth of 135 degrees 
with a sensor elevation of ten meters. From this position measurements of a 
series of view zenith angles were taken at view azimuth angles of 0, 180, 
225, 270, and 315 degrees. The view zenith angles used were the same as 
those used in 1980 except for the addition of 70 degrees. Nadir 
measurements of a bare soil plot located adjacent to the truck were also 
made. The truck was then moved to the east side of the field and a series 
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An Exotech Model 100 radiometer (above)


mounted on the aerial platform of a Hi-

Ranger truck(top left) was used for the


1980 soybean sun-view angle experiments.



This ten meter tower 
 (lower left) was used during the 1982 corn sun-view


angle experiments, A Barnes Model 12-1000 radiometer shown here looking

nadir (A) and at 450 (B) was mounted on a 3 meter boom.



Figure 6-1. Instruneatation set-up for sun-view angle experiments. 
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of view zenith angle measurements were made far view azimuths of 45, 90, 
135, 180 and 360 degrees completing the measurement hemisphere. Additional 
nadir observations of the corn field were acquired at truck boom azimuths of 
270 and 315 degrees on the west side and at 45 and 90 degrees on the east 
side of the field. To document the FOV 35 mm color slides were obtained for 
each view position. Initially, a 15 degree FOV was used for this 
experiment, on one measurement day, however, ten degree field stops were 
used to provide a comparison with the data acquired from the tower as 
discussed below. 

The tower system was erected in the center of the corn field during the 
first week of August. The tower was constructed of six 1 .5 meter sections 
of construction scaffolding with platforms mounted on the fifth and top 
sections. A three meter boom was mounted on a pivot base in the center of 
the top platform (Figure 6-1,lower left). The lower platform accommodated 
an engineer and data logging equipment. The boom was inserted in a sleeve 
and could be rotated about the vertical axis by means of wheel attached to 
one end. The Barnes instrument equipped with ten degree field stops was 
attached to the other end of the boom (Figure 6-1, lower right). Rotating 
the boom about its pivot point provided selection of azimuth positions of 0, 
45, 90, 135, 180, 225, 270 and 315 degrees. View azimuth angles were 
measured perpendicular to the boom azimuth direction. For example with the 
boom pointing east (90 degrees) view azimuths of 0 and 180 degrees were 
obtained. The procedure consisted of setting the view zenith angle at 70 
degrees and making successive measurements as the zenith angle was changed 
to 60, 45, 30 and so n until the instrument view had passed through nadir. 
Then view angles were increased through 7, 15, 22 and so on until 70 degrees 
zenith was reached. The principle here is much like a scanner although 
slower. 

A complete circuit around the tower resulted in two replications of all 
eight azimuth angles and all eight zenith angles. Calibration measurements 
were made prior to and after each circuit with a barium sulfate painted 
panel resting cn a platform mounted on the south side of the tower. With 
this system, it was possible to acquire two complete hemispheres of data and 
calibration measurements in less than 15 minutes. Due to the increased 
number of obse-vations acquired with this sysytem color slides documenting 
the field of view were taken at each view position for complete hemispheres 
only a few times each day. Slides were acquired, however, whenever the 
instrument operator determined that a tower shadow might fall within the 
FOV. 

In order to document the effects of changing sun angle measurement 
hemispheres were obtained at 30 to 60 minute intervals throughout the day 
for both the soybean and corn experiments as long as cloud conditions would 
permit. Table 6-2 summarizes the spectral data collected during the summers 
of 1980 and 1982. 

Agronomic and Biophysical Measurements 

A standard set of agronomic and biophysical measurements describing the 
canopies were acquired within one day of the spectral measurements. These 
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a0 NORTH SOYBEAN 1980315°QI 
2700 100 Field of View
2700 
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900 view angles. 
'U I0.= 135° 
o 180 

MNORTH CORN 1982 
(June-July) 

Hi-Ranger 1 ° 
 cam 15 and 100 FOV



S lOim Elevation 
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Hi-Ranger 20 minutes between
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NORTH CORN 1982
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100 Field of View
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12 minutes to acquire



two full hemispheres.



TOWER



Figure 6-2. Spectral data oollection configurations for 1980 and 1982 sun­
view angle experiments. Arrows indicate view azimuths. 
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Table 6-2. Summary of sun-view angle data sets for soybeans (1980) and corn 
(1982) canopies. 

Solar Zenith 
Start End Angle Range Solar Azimuth Number Cloud 
Time Time (Degrees) Angle Range of Cover 

Date (GMT) (GMT) Max-Min-Max (Degrees) Data Sets CM 

July 18, 1980 17:59 21:35 19-50 183-265 5 10-20 
July 25, 1980 15:14 18:49 40-21-24 109-214 6 1-20


Aug 27, 1980 15:15 18:49 40-30-60 132-237 12 0


June 13, 1982 17:24 21:58 18-17-55 162-272 9 1-10 
June 14, 1982 15:58 18:01 27-17 118-190 6 10-20 
June 21, 1982 14:52 19:16 41-17-25 101-233 9 10-40 
June 23, 1982 16:55 18:45 21-17-21 142-218 5 5-30 
June 24, 1982 14:07 18:38 49-18-20 92-214 10 5-10 
July 6, 1982 15:10 18:21 38-18-19 105-201 3 3-60 
July 9,1982 15:26 16:14 36-28 109-123 2 10-17


July 12,1982 14:30 16:43 46-26 110-136 5 0-35


July 14,1982 14:59 15:21 41-37 103-108 2 15-25


July 15,1982 15:07 16:11 40-29 105-123 3 1-10


July 16,1982 16:58 17:07 22-21 144-149 1 15


July 23,1982 14:25 22:42 49-23-64 98-275 17 1-10


July 30,1982 14:01 15:27 54-42 96-109 4 0- 3 
July 31,1982 13:46 16:50 57-26 93-143 7 0-32


Aug 11,1982 14:14 18:27 51-25-26 103-197 12 0-20


Aug 12,1982 14:08 19:15 53-25-31 102-222 24 0-20


Aug 19,1982 14:58 19:17 48-31-37 118-219 16 5-20


Aug 28,1982 16:00 17:48 39-31 135-180 7 15-30 
Sept 4,1982 14:13 21:30 48-33-70 123-262 24 0- 1


Oct 25,1982 16:30 21:30 53-52-80 170-245 18 10-15



included LAI, total fresh biomass, development stage, percent canopy cover, 
canopy profile, leaf angle distribution, and leaf spectral reflectance and 
transmittance measurements.



Soybean leaf angle measurements were made using a modification of the 
protractor method described by Kyle and Davies (1974) and Nichiporovich 
(1961). In addition to leaf zenith and azimuth angles, the across row, along 

row and height locations and area were measured for each leaf sampled 
(except for the August 27 date when only leaf heights and leaf areas were 
obtained).



Soybean biomass and leaf area index were estimated from random samples 
tf one meter lengths of row. Each sample was placed in plastic bags and 
later weighed to determine fresh total biomass. The plants were separated 
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into green leaflets, yellow leaflets, stems plus petioles and pods, oven 
dried at 60 degrees Celsius and reweighed. The leaf area from a random 
subsample of green leaves from each sample was obtained with an optical 
planimeter and dry weights were obtained. The leaf area to weight ratio was 
obtained from the subsample data and used to calculate the leaf area index 
for each one meter of row samples. 

An orthogonal photographic technique described by Smith et al. (1977) 
was used to estimate the leaf angle distribution for corn. This involved 
obtaining two orthogonal photographs oF a corn plant against a reference 
background gridded into rectangles representing compartments of known height 
and width. Leaf segments that were located in a particular compartment were 
cut and labeled and placed in bags for later leaf area measurements. The 
photographs were digitized by determining the three dimensional cooridinates 
of the leaf midrib and the leaf angle distributions calculated by a computer 
program. Five to 15 plants were sampled for leaf angle distribution and 
leaf area index estimates. 

Leaf optical properties (reflectance and transmittance) were acquired
with a Beckman DK-2 spectrophotometer in a laboratory. Due to equipment 
problems, these measurements were acquired for only a few days periodically 
during both years. In order to maintain the plant in good condition the 
plants were removed from the field with a substantial root ball in well 
watered containers and transported to the laboratory in an enclosed vehicle. 

Meteorological data consisting of relative humidity, air temperature, 
barometric pressure, wind direction, wind speed and global solar irradiance 
were acquired each day at the Purdue Agronomy Farm. 

Discussion 

Spectral Data Analysis 

The spectral data collected during the summers of 1980 and 1982 provide 
a unique data set useful for documenting the angular reflectance properties 
of soybean and corn. The following section discusses the types of trends in 
the these data sets. 

When a radiometer views a scene the response and thus BRF is dependent 
on the scattering properties and proportions of sunlit and shaded scene 
components. For agricultural scenes such as soybean and corn fields the 
scene components are vegetation and bare soil. When the sensor looks 
straight down on a canopy with well defined row structure the effect of 
sunlit and shaded soil on the scene reflectance is maximized. As the view 
angle increases proportionately more vegetation is viewed since the sensor 
now sees the sides of the plant rows. Figures 6-3 and 6-4 illustrate bow 
the scene changes with view angles for rowed canopies of soybean and corn, 
respectively. The series of photographs were taken with a camera mounted 
next to the radiometer and Include the FOV of the radiometer. The 
photographs represent a view azimuth angle of 90 degrees with sensor 
direction perpendicular to the plant rows. The time of acquisttion was 
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within 30 minutes of solar noon so shadowing of the soil surface is minimal. 
As the canopies mature and adjacent rows overlap the sensor sees mainly the 
tops of the canopies and the amount of bare soil present decreases. A 
series of photographs for overlapping soybean and corn canopies are 
presented as Figures 6-5 and 6-6, respectively. 

One would expect the BRF from rowed canopies to change with view angle 
due to the presence of bare soil in the field of view. This can be seen in 
Figure 6-7a where the BRF's for each wavelength band are plotted against 
view zenith angle. For the soybean case the BRF in the two visible bands 
Gmssl, mss2) decrease with view angle until about 30 degrees after which it 
levels off. Note that in the corresponding photographs (Figure 6-3) the 
bare soil disappears at a view angle between 30 and 45 degrees. The near-IF 
BRFs (mss3, mss4) decrease only slightly initially and then increase. This 
is due in part to the relatively high reflectance of the soil in these


wavelength bands. For the case of the rowed corn canopy the data presented 
in Figure 6-7a show a general decrease in reflectance in all bands except 
mmr4 and ntr5. The canopy was not developed sufficiently to completely mask 
the soil even at the extreme view angles. 

Figure 6-7b presents data for soybean and corn canopies where the 
adjacent rows have overlapped. The BRFs for all wavelength bands tend to 
decrease slightly at first, but then increase as view angles are increased 
past 30 degrees. The initial decrease may be due to the canopy structure 
where erect leaves in the upper layers of the canopies result in the sensor 
seeing a significant amount shadowing within the canopy. Analysis of leaf 
angle data for these canopies tend to support this hypothesis. As the 
sensor view angle increases the projected area of leaves Into the direction 
increases and the reflectance increases. Another possible factor involved 
in the increased reflectance observed is the dependence of specularly 
reflected light on view direction (Vanderbilt,1983). 

Figure 6-8 illustrates how reflectance factors may vary over a complete 
hemisphere. Presented are contours of equal refelectance factors for rowed 
and closed soybean canopies acquired when the sun was near solar noon and 
late in the day. View zenith angles are represented as the rings on the 
polar graphs with nadir view in the center with 15 degree increments 
Increasing outward. View azimuth angles are represented as radial lines 
with 0 degrees at the top and increase clockwise. For comparison purposes 
the distribution of reflectance factors for the red (.6-.7m) band acquired 
near solar noon can be described as a hill elongated along the north-south 
row direction. The summit of the hill is located in the vicinity of the hot 
spot where the sensor views the canopy in line with the sun. Reflectance 
falls off most rapidly at view azimuths perpendicular to the row direction. 
The corresponding near-IR (.8-1.1m) band distribution Is more like a ridge, 
the top of which slopes downward parallel to the solar azimuth direction 
from the hot spot to a minimum where the sun and sensor view directions 
coincide. This local minimum occurs where the sensor would see the maximum 
amount of canopy shadowing. The polar plots for the closed canopy data 
acquired near solar noon show similar distributions for both wavelength 
bands with maximum reflectance occuring when the sensor looks in line, but 
away from the sun and minimums occuring when the sensor looks towards the 
sun direction. The angular distributions for data collected late in the day 
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Figure 6-4. Photographs of the corn fields taken at various view zenith angles. Date = June 21, 
1982, Time = 17:56 GMT, View Azimuth Angle = 900. 
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Figure 6-6. Photographs of the corn field taken at variuos view zenith angles. Date = July 31, 
1982, Time = 16:48 GNT, View Azimuth Angle = 90'. 
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Figure 6-lb. felaticnships of spectral bidirectional reflectance factors 
with view zenith angle for overlapping soybean and corn canopies. =as 
solar zenith angle, 0s = solar azimuth, ov = view azimuth angle.
Wavelength band codes are explained in Table 2. 
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Figure 6-8. Contours of equal reflectance factors for rowed and closed soybean canopies for red (.6-.7m)


and near-infrared wavelength bands. Bullseye circles represent view zenith angles with 0 at the
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are similar for both canopies but the magnitude of reflectance is greater 
for the closed canopy. In each case the distributions are concave with a 
steeply sloped sides in the direction away from from the sun. Minimums 
occur for sensor azimuth directions towards the sun azimuth with view zenith 
angles approaching nadir. 

Examples of spectral reflectance factor distributions for rowed and


overlapping corn canopies are presented in Figures 6-9 and 6-10, 
respectively. The distribution for the rowed canopy in the red band 
(.63-.69pm) in the early afternoon aprroximates the hill shaped pattern 
found for s6ybean. The distribution for the near-IR band (.76-.90m) is 
also similar, whereas that for the middle-IR band (2.08-2.35pm) is similar 
to the red band. The data hemispheres collected in the morning show 
definite maximums at the hot spot for the red and middle-IR bands with 
regions of local minimums occuring when the sensor looks toward the sun 
azimuth. For the overlapping canopy reflectance increases for view 
directions parallel with the solar azimuth with minimums located for view 
zenith angles approaching nadir. The large 'increase in reflectance observed 
from morning to early afternoon is probably due to an increased specular 
component oceuring at the larger solar zenith angle. 

Canopy Modeling Data Modules 

The second objective of this reporting period was to compile data modules 
for selected measurement dates that include the angular reflectance factors 
and biophysical and agronomic parameters required for validating most 
vegetation canopy reflectance models. To date, two data sets have been 
assembled for this purpose. The first set was acquired during August 1980, 
and was representative of a closed soybean canopy. This data set has been 
used as input for several canopy models (eg. Cooper et al.,1982) and was 
found to be acceptable for the needs of most models. A second data module, 
acquired for a rowed soybean canopy on July 17, 1980 has been compiled and 
released on a limited basis. The data acquired for the corn canopy in 1982 
is currently being reduced and a number of complete data modules for rowed 
and overlapping canopies will be made available in the near future. 
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7. SPECTRAL ESTIMATION OF CORN CANOPY PHYTOMASS AND WATER CONTENT



S.E. Hollinger and V.C. Vanderbilt



A goal of remote sensing is to estimate the amount of phytomass in the


canopy as an intermediate step to estimating the condition of the crop and


ultimately its yield. Canopy phytomass is composed of water and solid plant


material and it is the solid plant material, dry phytomass, or dry matter,


that is important in estimating yields. The combined dry phytomass plus the


water it holds is also responsible for the appearance of the canopy as seen


by the optical sensor.



Total water content in a canopy increases as the canopy grows, then


decreases as the canopy senesces. Superimposed upon these general trends


are diurnal fluctuations (Wilson et al., 1953; Millar and Denmead, 1976).


All plant parts exhibit diurnal fluctuations in water content with leaves


and stems varying the most. Maximum water contents were observed at night


and minimums in midafternoon when evaporative demands were greatest. Millar


and Denmead found that leaf relative water content (RWC) responded to radia­

tion intensity with the highest RWCs occurring under low irradiances and the
 

lowest RWCs under high irradiances.



The energy reflected by a plant canopy is related to the fresh and dry


phytomass and water content of the canopy (Daughtry et al., 1980; Carlson et


al., 1971; Thomas et al., 1966; Tucker, 1979, 1980; Tucker et al., 1979;


Holben et al., 1980). In wheat canopies, Daughtry et al. (1980) found that


canopy fresh phytomass, dry phytomass, and water content were correlated
 

with (1) reflectance factor in the visible wavelengths and (2) the green­

ness (Kanth, et al., 1979). Fresh and dry phytomass and water content were


negetatively correlated with reflectance in the visible wavelengths and were


positively correlated with the greenness.



Reflectance in wavelengths greater than 1.1 pm have shown the highest


correlation with RWC of canopies. Carlson et al. (1971) found the reflec­

tance in the 1.0-2.5 m wavelength band was positively correlated to RWC for


corn and soybeans. Thomas et al. (1966) found a nonlinear relationship be­

tween RWC and reflectance of cotton at wavelengths greater than 0.54 Um.


When RWC was greater than 80%, there was no change in the reflectance of


individual leaves dried from a fully turgid state to a wilted state. In a


simulation study, Tucker (1980) reported that the wavelength band from 1.5


to 1.63 pm showed the greatest spectral radiance changes with leaf dehydra­

tion. However, he concluded that the best band to detect water content from


space was 1.55 to 1.75 Pm because of the atmospheric water absorption bands


that attenuate and scatter radiation in this region of the spectrum.



In a blue grama (Bouteloua gracilis) canopy, Tucker (1979) found combi­

nations of near infrared (IR) (0.75-0.80 pm) and red (0.63-0.69 pm) wave­

length bands to be sensitive to the amount of photosynthetically active


vegetation present. Other IR bands (0.75-0.90 pm and 0.80-0.90 pm) used in
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conjunction with the red band exhibited the same response as the 0.75 to 
0.80 lim band. All combinations of IR band and red band reflectance were
 

found to be linearly correlated with the leaf water content except for the 
In+red and the (IR+red)/(R-red) combination. The coefficient of determina­
tion (r2 ) ranged from 0.68 to 0.85 for the various combinations. The two 
combinations noted as exceptions-above-tad r2-s6f 0. -

Holben et al. (1980) measured the radiance of a soybean canopy in the


Red (0.65-0.70 pm) and IR (0.775-0.825 pm) wavelength bands and found that


both the ratio, IR/Red, and the normalized difference, CIR-Red)/IR+Red);


were the functions of area and mass of green leaves. The IR/Red ratio


showed a linear relationship and the normalized difference, an exponential


relationship.



The objective of this study was to estimate canopy phytomass and total


water content using multispectral data.



Methods



The crop data used in this study were collected from experimental plots


on the Purdue Agronomy Farm 10 km northwest of Lafayette, Indiana, in 1979,


1980, and 1981. Included in the experiment design were three plant popula­

tions (25000, 50000, and 75000 plants per hectare), three planting dates in


1979 (2 May, 16 May, and 30 May), seven planting dates in 1980 (7May, 16


May, 22 May, 29 May, 11 June, 18 June, and 2 Luly), and four planting dates


in 1981 (8 May, 29 May, 11 June, and 29 June). Only one population (50,000


plants/ha) was planted on 16 May, 29 May, 18 June, and 2 July 1980. Each


treatment was replicated twice on two soils, a dark Chalmers soil (fine


silty mixed mesic typic Haplaquolls) and a lighter Fineastle soil (fine


silty mixed, mesic aeric Ochraqualfs). Color differences between the two


soils are greatest when they are dry. The populations were established by


overseeding in 76 cm rows and thinning to the desired population after emer­

gence.



Spectral reflectance data were collected throughout the growing season


on clear days using an Exotech 100 spectral radiometer with a 15 degree


field of view. These data were used to calculate the reflectance factor


(Nicodemus, et al., 1977; Robinson and Biehl, 1979) which approximates the


bidirectional reflectance factor (BRF). The radiometer was mounted on the


boom of a pickup truck and elevated to a height of 5.2 pm in 1979 and 7.6 pm


in 1980 and 1981. The Exotech 100 has the following wavelength bands:


0.5-0.6, 0.6-0.7, 0.7-0.8, and 0.8-1.1 im.



In 1979 and 1980, each day that spectral data was obtained, five plants


were sampled the same day or the day immediately following the date of spec­

tral sampling. In 1981 each plot was sampled once a week. The total fresh


phytomass, leaf area index, total dry phytomass, percent ground cover, mean


stage of development (Hanway, 1963), and total water content were measured


for each plot.
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Total water content (Wh) is the mass of water in the canopy (g/M2) and


is calculated by:



Wh = Wf - Wd (I) 
22 ) and Wd is dry phytomass (g/m after the 

where Wf is fresh phytomass (g/m
 

plants have been dried at 60 C until their weight is constant.



The agronomic data (total fresh phytomass, total dry phytomass, and


total water content) were plotted as functions of development 'stage. Each


treatment mean was plotted so the effects of the treatments could be


observed. These plots were then used to decide what treatments should be


used in the study. The treatments selected were those that sho~ed the most


significant difference in the agronomic variables.
 


Various combinations and transformations of the spectral bands commonly


used in remote sensing work were linearly correlated with the three agro­

nomic variables, Table 7-1. In addition, an angular transformation of


greenness and brightness was developed and tested. The angular transforma­

tion was the arotangent of the ratio of greenness to brightness and was


related by an exponential function to the agronomic variable, i.e., fresh


phytomass, dry phytomass, and water content. The angular transformation is



= a + b Exp(c(tan-l(G/B))) (2)
AV 

where AV is the predicted agronomic variable of interest, G and B are green­

ness and brightness transformations (from Table 7-1), respectively, and a,


b, and c are coefficients determined by the nonlinear regression jprogram


(NLIN) of SAS (Helwig and Council, 1979).



The angular transformation model was developed by studying the rela­

tionship of the various agronomic variables to the greenness and brightness.


Figure 7-1 is a plot of eleven fresh phytomass classes (0-10). Class 0


represents all measurements with fresh phytomass less than 5% of the maximum


fresh phytomass in the data set. Class 1 represents all observations from


5% to 15% of maximum phytomass. Classes 2 through 10 represent similar


class divisions. A plot of the angular transformation vs. the log of the


fresh phytomass measurements (Figure 7-2) indicates that this transformation


is related to fresh phytomass by an exponential function. The nonlinearity


in the relationship at low angles represents (1) the noise in the measure­

ments of small phytomass, and (2) the error introduced by sampling the


canopy phytomass outside the field of view of the radiometer. When evaluat­

ing crop condition to estimate eventual final yields, accurate estimates of


phytomass are less critical in young (low phytomass) than older corn cano­

pies (larger phytomass). Therefore, the scatter of the data at low phyto­

mass and angle should not significantly limit the utility of the model.


Similar results were obtained with plots of dry phytomass and water content.
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Table 7-1. Transformations of Landsat band used to relate spectral data to


fresh and dry canopy phytomass and water content.



Name of Transformation Equation



IR3/Red R3R2t



IR4/Red R4/R2


Normalized Difference (R4-R2)/(R4+R2)


Transformed Vegetative Index ((R4-R/(R4+R2) + 0.5))0.5


Brightness 0.374R1 +0.461R2 +0.544R3 +0.594R4


Greenness -0.447RI -0.619R2 +0.145R3 +0.629R4


Yellowness -0.809R1 +0.571R2 +0.134R3 -0.050R4


Nonsuch 0.038R1 +0.289R2 -0.816R3 +0.499R4



t R1,...R4 = reflectance factor for wavelength bands 0.5-0.6, 0.6-0.7,
 

0.7-0.8, and 0.8-1.1 pm, respectively.
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Results 

The agronomic data (total fresh phytomass, total dry phytomass, and


total water content) were examined to determine the effects of treatments.


The treatments that showed the greatest differences in the agronomic varia­

bles were evaluated with the spectral data to determine how well the spec­

tral data explained the observed agronomic differences.



Agronomic Data. Canopy phytomass and water content (Figure 7-3) were


distinctly different in the two years (1979 and 1980) used to develop these


models. The weather in 1979 was wetter than normal with normal tempera­

tures. Rainfall in June, July, and August was -3.5, +84, and +50 mm diffe­

rent from normal, respectively. Mean daily temperatures were 0.2, 1.4, and


1.3 C below normal for June, July, and August, respectively. During the


1980 growing season, the rainfall was above normal for June and July (+63


and +64 mm, respectively) and slightly below normal in August (-2.5 mm).


However, the mean daily temperature was 1.7 and 1.8 C above normal in July


and August. The high temperatures in 1980 resulted in 47 mm more water


being evaporated during June, July, and August than in 1979. Under normal


conditions in West Central Indiana, more water will be lost by the corn crop
 

through evapotranspiration than it receives in the form of rain during the


growing season. The additional water use in 1980 resulted in a greater


stress during the late vegetative stage and therefore reduced vegetative


phytomass.



Differences in canopy phytomasses and water content were observed in


population treatments in 1979 and 1980 (Figure 7-3). After blister stage


(maturity = 6) in 1980, corn plants from 25,000 plant/ha had a greater phy­

tomass than plants from 50,000 and 75,000 plants/ha. This may be attributed


to the less favorable weather conditions in 1980 and was probably the result


of these more dense populations running out of subsoil moisture earlier than


the 25,000 plant/ha population. This increase in phytomass was due to a


larger grain yield in the least dense population than in the more dense


populations in 1980. Since the phytomass in the 25,000 plant/ha population


became greater than the phytomass in the 50,000 and 75,000 plant/ha popula­

tions after the canopy was fully established, it was not evident in the


spectral data.
 


Soil types had no statistically observed effect on canopy phytomass or


water content. Planting date treatments had an effect when the data were


examined as a function of the day of year. This is because the more mature


plots had greater amounts of phytomass and water content than less mature


plots on the same day. These differences become discernible for plots with


planting dates greater than two weeks apart. When the same data were stu­

died as a function of development stage, the effect of planting date was not


discernible.
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Spectral Data. The linear coefficient of determination (r2) for fresh


and dry phytomass and water content as a function of the spectral transfor­

mations are presented in Table 7-2. The highest linear correlation to the


three canopy variables was obtained with IR4/Red ratio which explained 76%


of the fresh phytomass variability, 49% of the dry phytomass variability,


and 79% of the water content variability. Similar results were obtained for


the IR3/Red band ratio. Plots of the greenness, normalized difference, and


transformed vegetative index transformations revealed a strong curvilinear


relationship with fresh and dry phytomass and water content. Therefore, the


smaller linear coefficient of determination with these later transformations


should be expected.



Table 7-3 shows a comparison of the root mean square error (RMSE) of


the nonlinear model using the angular transformation and the linear IR-Red


ratio model. In all three populations and for all three variables, the


angular transformation of the greenness/brightness ratio shows a higher


degree of precision. The angular transformation, involving the greenness


and brightness of the four bands rather than just two bands, provides more


precise information about the condition of the crop.



Coefficients for the general model (Eq. 2) for each of the three popu­

lation treatments were determined using nonlinear regression techniques


(Table 7-4). The table includes the model coefficient with their corres­

ponding 95% confidence intervals. The only coefficient with values signifi­

cantly different from each other was a in Eq. 2. The difference was due to


population. Therefore, to estimate canopy phytomass and water content accu­

rately, plant density must be known or estimated.



To test the performance of the model throughout the crop season, the


models for the three separate populations were used to predict values for


each population. The residuals of the three models were summed for all the


development stages to determine how the models performed as a group. Of


particular interest was how well the models performed at different develop­

ment stages. Plots of the predicted fresh phytomass, dry phytomass and


water content in 1979 and 1980 are shown in Figure 7-4.



The predicted phytomass and water content fall within the 95% confi­

dence interval when the canopy is between the 12-14 leaf stage of develop­

ment and blister stage (e.g. maturity stages 3 to 6) Before the 12-14 leaf


stage, the models overpredict phytomass and water content and after blister


stage they underpredict. Failure of the models to predict phytomass and


water content during reproductive stages of development was a result of leaf


senescence which reduces greenness and as a result of dry matter being accu­

mulated mainly in the ear. Since the area of the ear is small compared to


the green leaves and contributes very little to the reflectance of the


canopy, detection of ear phytomass increases is not possible with passive


remote sensing techniques. Results of a test of the models on an indepen­

dent set of data, 1981, are presented in Figure 7-5. Note that for fresh


phytomass, the results are the same as for the 1979, 1980 data. Results for


dry phytomass and water content in 1981 are similar to the 1979, 1980


results. The steep decrease in predicted phytomass in 1981 following dent


stage is a result of reduced canopy reflectence due to senescence.
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Table 7-2. Linear coefficients of determination between spectral band com­

binations and canopy fresh and dry phytomass and water content.



Coefficient of Determination (r
2 y 

Phytomass 

Spectral Water 
Combination Fresh Dry Content 

IR3/Red 0.74 0.46 0.77 
IR4/Red 0.76 0.49 0.79 
Normalized Difference 0.61 0.43 0.63 
Transformed Vegetative Index 0.59 0.41 0.60 
Brightness 0.10 0.05 0.10 
Greenness 0.63 0.42 0.65 
Yellowness 0.17 0.11 0.18 
Nonsuch 0.08 0.15 0.07 
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Table 7-3. Comparison of root mean square errors (RMSE) of angular trans­

formation model to RMSE of linear infrared/red ratio model.



Population (plants/ha)


25000 50000 75000



Spectral Model


Variable G/Bt IR/R§ G/B IR/R 
 G/B IR/R



Fresh phytomass 1162 1304 377 395 820 946



Dry phytomass 1138 1247 
 315 343 920 981



Water content 1581 1749 418 
 447 1264 1391



t Av = a + b Exp(c(tarl(G/B))) 
§ Av = a + b (R4/R2) 
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Table 7-4. Coefficients and 95% confidence interval of coefficients for the


general model (Eq. 2).



Geferal Model Coefficients



Agronomic Variable/ 
Population a b C 

Fresh Phytomass 
25000 -916.6 + 904.1 515.,9 + 545.7 4.3 + 1.7 
50000 -138.0 + 264.2 60.0 + 42.0 8.1 + 1.2 
75000 58.7 + 378.5 7.0 + 8.3 12.2 + 2.1 

Dry Phytomass 
25000 -194.8 + 350.5 109.9 ± 9.6 3.9 + 3.2 
50000 -35.4 + 78.3 12.6± 9.7 7.6 + 2.1 
75000 -19.8 + 109.6 3.0 + 6.0 10.3 + 3.4 

Water Content 
25000 -721.1 + 612.9 406.6+ 362.7 4.4 + 1.4 
50000 -103.7 + 211.2 48.0-± 32.2 8.3± 1.2 
75000 80.1 + 288.2 4.7-± 5.4 12.6 ± 2.0 
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Figure 7-4. Results of predicting 1979 and 1980 fresh phytomass (a), dry


phytomass (b), and water content (c) using the equations developed with


the 1979 and 1980 data for each of the three plant populations.
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Microwave backscattering is sensitive to the mass of ears and stems of


a corn canopy (Eger et al., 1982). This has led to the speculation that a


combination of microwave and multispectral data could be used throughout the


season to determine canopy phytomass and to estimate eventual yield. A par'­

ticular time of interest would be the period after blister stage of corn
 

development.



The estimates of phytomass using this method could be made even more


accurate if independent estimates of crop population density and development


stage were known. These estimates may be possible from other spectral


models. Potentially, the angular transformation models could improve the


accuracy of surface soil moisture estimates from microwave remote sensing.


Such estimates are subject to large errors because sensors cannot differen­

tiate between water in the soil surface and water in the canopy.



The estimate of phytomass is most accurate when the vegetation phyto­

mass is at a maximum. Since the final yield of corn is related to the


amount of vegetative plant material, these estimates could be combined with


meteorological crop models or some harvest index model to more accurately


estimate final yields over a large area.



It is important to remember that the spectral signature of any canopy


is an integration of the reflectance properties of the soil and of the


canopy structure and geometry. As such, the model will be most sensitive to


changes in canopy characteristics from planting until the canopy is fully


developed. Once the canopy is fully developed, additional phytomass


increases will not be easily detected with the models since the increase in


phytomass does not greatly affect the canopy's spectral signature.



Summary



A transformation of greenness and brightness was related to fresh and


dry phytomass and water content. The transformation included the angle of


rotation to the greenness level from the soil brightness line and a


logrithmic transformation of the phytomass and water content data. Improve­

ments in the relationship between the spectral data and the canopy variables


were obtained using this technique. The model performed best during the
 

period from the 12-14 leaf fully emerged stage of development to blister


stage. This is fortunate because it provides an estimate of phytomass and


water content at a stage of growth when the corn crop is most susceptible to


weather extremes.



Thus, a better estimate of the soil surface water content might be


obtained by subtracting the canopy water content (provided by the angular


transformation) from the total surface water content (obtained from micro­

wave measurements).
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8. CORRELATIVE AND NONCORRELATIVE APPROACHES TO IMAGE REGISTRATION 

P.E. Anuta 

Introduction



Image registration research during the period covered in this report 
addressed several topics relevant to improving registration performance on 
time-sequential scenes of the earth's surface. Several approaches to 
preprocessing and correlation were evaluated as alternatives and one was 
tested on Landsat data. Results were not promising and attention was turned 
to noncorrelative methods for scene-matching with the intent of developing a 
method which performs well for scenes which are very dissimilar. These 
investigations are reported in the following sections. 

Alternative Image Correlation Methods 

The most-often used approach to image correlation for registration is 
to use a gradient preprocessing operation followed by product correlation to 
determine translational misregistration between two images. Numerous 
approaches to the preprocessing and correlation process have appeared in the 
literature, each claiming performance advantage over others. Among those 
studied are phase correlators (Chan, 1978) which measure the phase shift 
between, two images to estimate misregistration and others which use yarious 
preprocessing approaches. Knapp (1976) presents a very good review and 
comparison of registration processors and carries out a solution for the 
optimum processor. The optimum turns out to be a phase-shift detection 
approach with a frequency weighting which is the inverse of the cross­
spectral density of the signals or images being registered. The only 
assumption made for the development is that the signal and noise are 
Gaussian. The problem with this method is that the spectral density must be 
known or predicted and performance degrades as the estimate accuracy 
degrades. A method showing promise for alleviating the prediction problem 
was presented by (Chan, 1980) which models the misregistration as a digital 
filter and solves for the unknown shift by estimating the parameters of the 
filter which would produce an observed shift. This method demonstrated good 
performance in the literature and was chosen for Implementation and testing. 

A product of the development of the optimum correlators is an 
expression for the variance of the misregistration estimate. A form of this 
expression is given in Knapp as: 

d f f jiP(f)j2 (211f) 2 GxlX(f) GX x2(f[l -n(f)I2]
VAR[D] - =- f ) 2' T ( 2 1R 1 G x (f) I (f)df] 

P B2 

PAGEJ INTENTIGWAUJ BLANK PRECEDING PAGE BLANK NOT FILMED­
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where: ip(f) is the preprocessing weighting filter 

G , x2x2 xXx2 is the spectral density for 

the signals or images indicated in the subscript



a(f) is the coherence of the two signals or images: 

0xx (f) 

xf
=a(f) G
GXl1Xl1(f) Gx2 x2(fM
 


T is the integration time or distance of the



correlation process.



Another result is that for the case where the signal-and-noise spectra 
have the same functional form, several candidate methods have the same 
variance, are optimum, and achieve the Cramer-Rao lower bound. Evidence has 
been presented by Svedlow (1976) that Landsat images of the earth scene (the 
signal) and the temporal change (the noise) between scene times have the 
same form of spectral density. In this ease, the variance can be evaluated 
in terms of only a signal-to-noise ratio defined as the ratio of the signal 
variance to the noise variance.
 


A further relationship can be derived between the correlation 
coefficient between the two scenes to be registered and the signal-to-noise 
ratio. In one dimension, the development is: 

Let: Xi = the signal (image at Time 1 which is a


zero mean random signal



X2 = X + n to be the signal (image) at Time 2 

Assume the noise n is independent of the signal and that it has zero mean, 
Then the correlation coefficient between X, and X2 is: 
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E[X1 2] + E[Xln] 

naxI ax12+cy 2 

Since X and n are independent E[X n] 0 and: 

2 

P ~x 1


12 = a 2+Gn 2 

2% 1 x1 

The signal-to-noise ratio is defined as: 

2 

SNR =2-­

n 

Thus: 	 F-SNR 
P12 /- SNR+i 

or: 2 =SNR 

P12 - SNR+1 

or: 	 2



SNR = 	 P12 

1- P12 

2 
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A signal-to-noise ratio of one corresponds to a correlation between the two 
images of .707 and this is generally considered to be a threshold between 
"well" correlated and poorly correlated scenes. 

One of the preprocessing methods discussed in Knapp is called the Roth 
filter and has the same performance as the optimum filter. It has a 
frequency weighting filter defined by: 

1 

= c(f (f)
~ 

The registration estimate standard deviation is plotted in Figure 8-1 
for the case of no preprocessing and for the Roth filter as a function of 
correlations coefficient between the two signals (scenes) being registered. 
Current requirements for images registration accuracy are in the .2 to .3 
pixel range. With no preprocessing, this error is exceeded when scene 
correlation goes below .6; but with preprocessing, the error is exceeded 
below a correlation of .19. The advantage of preprocessing is clear. 

Some insight into the variation in scene-to-scene correlation with time 
between acquisitions was obtained by computing the correlation between 
registered Landsat MSS data over one season. Correlation coefficients 
between all pairs of times are plotted in Figure 8-2 as a function of days 
of separation or acquisition for a span of time of March through October 
1981. A wide variation in values is observed and this is expected since 
during some parts of the .season, the scene changes very little and over 
others the change is dramatic. Nonetheless a steadily decreasing trend is 
observed and a visually sketched trend line is included in the figure. A 
rapid drop in correlation in the first 36 days is evident with a slower 
taper-off after that. The point of this development of scene correlation 
and registration estimate error properties is to demonstrate the 
relationship between scene correlation and error and show that error 
tolerances will be exceeded for scenes differing by relatively short 
intervals in time using conventional techniques. 

Before investigating methods which may give improved performance, a 
numerical evaluation of several data sets was carried out to evaluate what 
performance was actually being obtained. The data base available for the 
evaluation is listed in Table 8-i and contains segments from Central United 
States and Argentina. Block correlation without preprocessing was carried 
out on pairs of these images. The location of the peak of the correlation 
function relative to the zero shift position is listed in Table 8-2 for six 
of these data sets. The values of shift are plotted as a function of 
correlation coefficient in Figure 8-3. The results generally tend to group 
around the Roth filter curve; however, what is not shown on the curve are 
the numerous cases which were drastidally in error. In the sample here, 17% 
of the correlations were considered faiLures. This is a problem not 
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Figure 8-1. Comparison of correlator performance with no preprocessing and with preprocessing.
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Table 8-1. Data Base for Registration Algorithm Research



Run I.D. 
 

81077000 
 

81077001 
 

81202000 
 

81078000 
 

81187Q00 
 

81078001 
 

81183000 
 

81183001 
 

81092000 
 

91204000 
 

81107000 
 

81107001 
 

81064000 
 

Segment Acquisitions 


203 4 


204 4 


--- 2 


209 4 


--- 3 


1177 2 


9501 2 


9502 2 


9525 4 


9526 2 


9527 2 


9528 3 


9529 4 


Run I.D. 
 

81190000 
 

81064001 
 

81064002 
 

81078002 
 

81065000 
 

81092001 
 

81236000 
 

81183002 
 

81092002 
 

81236001 
 

81092003 
 

81079001 
 

81079002 
 

Segment 
 

9529 
 

9530 
 

9531 
 

9534 
 

9535 
 

9537 
 

9537 
 

9541 
 

9543 
 

9543 
 

9545 
 

893 
 

893 
 

Acquisitions 


3 


3 


4 


2 


2 


4 


2 


2 


4 


2 


3 


4 


2 


n 


U0 

; r 

a : 

r W 

r 

00 



Table 8-2. Evaluation of JSC registration processor output. 

RUN: 81064000 

CHANNEL 2 

DAY 64I 

CHANNEL 3 

DAY 99 

CHANNEL 4 

DAY 153 

CHANNEL 

DAY 99 

3O 

PL'AX 

0.26 

SHRO 
AC 

0.07 0.20 

AL 

-0.13 

PAR. 
EST. 
COR. 

PMAX SER 
AC AL 

PAR. 
EST, 
COR, 

PORBLOCK 
MAX 

- -1 

CaRKEnOR. 
Ac AL 

PAR, 
EST. 
COR, 

;U 
"o 

CHANNEL 

DAY 153 

4 0.17 0.03 0.03 -0.05 0.24 0.06 -0.10 0.09 >-
C: 

CHANNEL .1 
DAY 172 0.21 0.05 011i 0.13 0.21 0.05 -0.03 0.03 0,40 0.19 0.13 0,14 



Table 8-2. (Continued) 

RUN: 81092000 

CHANNEL 1 

DAY 200 

Px SNRPMA INI 

0.15 0.02 

CHANNEL 2 

DAY 92 

ALCKBLOCK COR, 

AL 

0.22 -0.46 

PAR.EST.,ES 
CON. 

PO 

CHANNEL 1 

DAY 200 

N BLOCK CUR,SNR 
Ac AL 

PAR.Es.EST. 
CoR, 

pPMAX 

CHANNEL 3 

DAY 201 

SR BLOCK CaR,SNR O, 

Ac AL 

PAR.EsT,ET 

COR, 

CHANNEL 3 
DAY 201 0.15 0,02 -0.17 0.25 0,93 6.40 -0.09 -0.01 

00o 
0 

CHANNEL 4 

DAY 236n 
030 0,10 -0,02 0,11 0.30 0.10 0.17 -0.10 0.29 0.09 0.24 0.07 C 



Table 8-2. (Continued) 

RuN: 81064002 

CHANNEL 2 

DAY 64 

CHANNEL 3 

DAY 172 

CHANNEL 1 

DAY 190 

SNR BLOCK CR, 
AC AL 

PAR, 
EST., 
COR. MAXAC 

BLOCK CoR' 
AL 

PAM, 
EST, 
COR, 

p 
MAX 

SNR BLOCK COR, 

AC AL 

PAR, 
EST. 
COR, 

CHANNEL 3 

DAY 172 

0,17 0.03 0.11 0.24 
00 

CHANNEL I 
DAY 190 0.22 0,05 -0.19 -0,23 0.22 0.05 0,04 0.09 l 

CHANNEL 4 
DA 2 
DAY 226 

0.16 0,03 0,15 0.02 0.11 -0,34 0.29 0,09 0.03 0.15 
' 



Table 8-2. (Continued) 

RuN: 81079001 

CHANNEL I CHANNEL 2 CHANNEL 3 

DAY 79 DAY 115 DAY 151 

PAR. PAR, PAR. 
MAX SNR BLOCK Coa.Ac AL EE.COR. BLOCK COR,

7SR L
AC 

EO 
COR 

PX SNR BO 
ALAc 

CR 
AL 

EST.
E 
COR. 

CHANNEL 2 0.64 0.69 0.07 -0.07 - __ - -­ __________ 

DAY 115 

CHANNEL 3 

DAY 151 0.60 0.56 0.03 -0.02 0.74 1.21 -0.03 0.05 0 0 

0 
0 

CHANNEL 4 M 
DAY 187 0.26 0,07 0.33 -0.04 0.29 0,09 0.0 -0.11 0.33 0.12 32.0 0,67 a 



Table 8-2. (Continued) 

RUN: 81092001 

CHANNEL 2 

DAY 92 

CHANNEL 3 

DAY 191 

CHANNEL 1 

DAY 200 

MA A NC 
SN BLOCK COR, 

___R_ 
Bpc 

L 

PAR, 
EST, 
EST, 

COR3 

PMAX SNR 
BLOCK COR, 
BLCKBOC 

AC &L 

PAR, 
EBTLpCSN 

EST. MA 

COR, 

SNR BLC 

Ac 

CaR, 
O. 

AL 

PAR. 
ET 

EST..-

COR, -

CHANNEL 3 
DAY 200 0.17 0.03 - 0,252 0,0 0 

CHANNEL 1AY00 0.19 0,04 0,09 -0,20 0,25 0.07 0.08 0,79 10) 

CHANNEL 4 

DAY 218DAY218_ 0,16 0.03 0.15 0.05 
_ _ _ __ _ _ 

0.07 
_ _ __ 

0.00 -4.93 -3.84- - ­ 4 _ _ _ 
0.21 

_ __ _ 
0.05 -0.14 

_ _ __ 
-0.13 

_ _ _ 



Table 8-2. (Concluded.) 

RuN: 81092002 

CHANNEL 2 CHANNEL 1 CHANNEL 3 
DAY 92 DAY 200 DAY 201 

___ _ ____00 

MAX~SN A RCKBLC 
BA,. 

Co A ST BLOCK Con,NRCR 
PAR, 
EsT,ETET.0, BLOCK COR 

PAR. 
EST. Q 

L AcMLA CCON.Ac Co.L oRac MAX SNR ac L4L .CoR. 

CHANNEL 1 
DANE20DAY 200 0.40 O,19 0,07 -0.04 -

CHANNEL 3 
DA 2 
DAY 201 

0.40 0.19 0.00 -0,03 0.93 6.40 0.06 -0,08 

CHANNEL 4 
DAN218 

DAY 218 

0.11 0.01 6.64 -1.05 0.15 0.02 5.96 -1.29 0,15 0.02 6.03 -1.23 
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revealed in the linear theory and is the cause of faulty image registration 
results. A good distribution of accurate points is required for good
uniform image registration and failures in correlation can cause poor
results even though the theory may have predicted good overall results. 

The correlator due to Chan, called the parameter estimation method 
cited above, was'investigated as a potentially more robust algorithm since, 
in effect, it predicts the weighting function rather than assumes it, as 
most other methods do. The theoretical development of the algorithm is 
outlined in the Appendix. A one-dimensional version was Implemented and 
tested on the segnent data. Results are not encouraging, as the algorithm
failed on all scene pairs having correlations below .5. This could have 
been due to its being one-dimensional and shifts existing in the orthogonal
direction could be causing a drop in correlation below what would allow the 
algorithm to operate. Further investigation of this and other novel schenes 
was not pursued in this study to enable efforts to be focused on unique, new 
approaches to scene matching which would take into account scene spatial and 
temporal structure. These efforts are discussed next. 

Image Analysis Methods for Registration 

A majority of the image registration methods available today use clas­
sical correlation as the basis for determining misregistration between image 
pairs. In these methods, no consideration is made of scene structure and 
temporal variation characteristics other than to assume probability density
and spatial correlation functions. In the approach investigated here, tem­
porally invariant known features are attempted to be located in an image. 
Locating these features In an image pair will provide matching control 
points which can then be used to register the images. 

The type of imagery of greatest interest in this study is agricultural 
land which is predominantly composed of rectangular fields distributed 
throughout a rectangular grid of roads. In some parts of the world, fields 
are nonrectangular and the road pattern random, but for major production 
areas, the rectangularity is a valid assumption. Also, isregistration is 
generally small enough or can be made small by locating one unique feature, 
such as a bend in a river or a small urban area, so that matching roads can 
be paired unambiguously. Thus the approach tested here is location of roads 
and road intersections in Landsat imagery of nominally mile-square grid
agricultural terrain. 

The operation basic to detection of roads, edges, or any linear feature 
is edge detection. There are two basic approaches to edge detection: One 
clusters image pixels into homogeneous groups (Kettig, 1976) and defines 
edges at the boundaries of these groups (conjunctive approach). The second 
uses differential or template edge operators (Abdou, 1979) to detect step
jumps in image gray level as an indication of an edge. 

A third method, called disjunctive, starts with an entire image and 
subdivides given blocks if they are found to be dissimilar (Robertson,
1973), but the method has not been widely discussed in the literature. The 
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differential/template method is by far the most widely used as it is simple, 
low-cost, local, and produces very good results. 

The reason for the clustering approach is that it produces closed boun­
daries which are required for classification of the set of points within the 
boundary as is desired in Kettig's work. Here we only seek a good edge 
detection to allow fitting of road models to the possibly noisy discontinu­
ous edges. 

Edge-detection methods were investigated by LARS in previous Supporting 
Research (Anuta, 1982). Of the several differential and template operators, 
the Sobel 3 by 3 operator appeared to perform generally the best. This is 
verified by Abdou and other authors. Nonetheless the Hueckel edge operator 
is of interest because it gLves an edge detection decision and the orienta­
tion of the edge in a window (Hueckel, 1973). It uses a set of eight basis 
functions which it fits to an image disk and bases its decision on the 
results of the mask products with the image disk. Figure 8-4 shows the 
basis functions and image disk. Figure 8-5 shows the output parameters of 
the algorithm. It provides edge height (t), width (r), orientation (a), and 
left and right base levels (b-,b+). For our purposes here, we need only a 
and the position of the edge in the disk. This algorithm was applied to 
test imagery from Webster County, Iowa. The algorithm was first applied to 
the original Imagery with very poor results. In a second test, it was 
applied to edge detected imagery produced by the Sobel operator. Generation 
of the Sobel edge image is discussed next. 

The Sobel operator consists of a vertical and horizontal 3 by 3 mask 
defined as: 

H, = [10 H2 0 00 

10 -11 2 1 

The operator value for the pixel at the center of the mask is obtained by 
multiplying each mask value by the underlying pixel value and summing the 

products to get H1 and H2 . Then the output value is: 

2G iV2 +H2G= F1+H 

The edge is defined for the center pixel if G is above a threshold. 

Define edge if G > T 

A gray-scale image of the test site is shown in Figure 8-6 for MSS Band 5 
(.6-.7m) and the Sobel edge image for the area is shown in Figure 8-7. 
The threshold T is set based on the a priori probability of an edge for a 
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FITS A SET OF BASIS FUNCTIONS TO AN IMAGE DISK



% H2 4.H1 


HH3 
 H5 H7 

0 IMAGE DISK OF 69 PIXELS USED:



211 10 918 7 6 

13 14 15 16 17 18 19 20 21 

302928127126125 4 23 22 


31 32 33134135136137 38 39


48647 46 434443 2 4140



95051 52 5354 556 57


646362 61 60 9 58



65 66 67 68 69



Figure 8-4. Basis function and image disk of Hueckel line- and


edge-finding algorithm.
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OUTPUT IS-SUCCESS/FAIL DECISION AND THE EQUATION OF THE



LINE/EDGE FOR SUCCESSFUL FITS PLUS EDGE PARAMETERS:



a itL%• 
v=or - -. _. 

C, V\it (&. weighted 
average of r- mnd X*) 

* OUTPUT EQUATION IS: 

X COS a + YSIN a = R 

Figure 8-5. Output parameters of Hueckel line/edge-finding algorithm.
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articular image. For the images of the type considered here, generally 15% 
of the pixels are edge pixels; thus T was set so that 15% of the gradient
pixels are classed as edges based on the histogram of the entire G image. 
The question of edge classifioation is discussed in more detail in a follow­
ing section. 

A second step in preparation for road detection was to visually define 
road intersection in the image and compute the parameters of a line along 
each road. A straight line Is defined by two parameters and when the param­
eters are R and 0 for the equation is of the form: 

X cosO + Ysins = R 

The R,0 representation is commonly called the Hough transfcrm of the line 
(Duda, 1972). The Hough transform for major roads in Segnent 893 in the 
coordinates of the digital image is given in Table 8-3. A plot of the coor­
dinates in R,0 space is presented in Figure 8-8. 

A second method for road detection was also investigated. In this 
case, a straight line is fit to the edge points inside a window enclosing 
the expected position of a road. A least-squares fit criterion is used. 
The classical least-squares equations have a singularity at a slope angle of 
90* so a method called the eigenvector fit is used which does not have this 
problem. This method can be described by the following matrix equations: 

Given N data points Xi, Yi I = 1 ... N 

Compute the scatter matrix: 

S = ( X - Mt) ( X - M) 

x I x2 xn 

Xt ... M =mean vector of X 

YI YnY2 
 

Compute the elgenvalues of S from: 

S- XI 0 

Find A1, X2 Select the largest X (AL). 
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Fige 8



Iowa test site. 
Figure 8-6. Gray-scale image of Webster County 
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Table 8-3. Hough transform for major roads in coordinates of the
 

digital image for Webster County, Iowa site (Run 80002400, Band


5, September 3, 1980). 

Point 1 Point 2 

Line COl. Line Col. P 9 

34 65 174 95 56.4 12.1 
48 126 160 150 113.1 12.1 
86 192 178 210 171.9 11.1 
109 252 190 273 216.6 14.5 
73 15 185 40 0 12.6 
28 93 137 116 85.2 11.9 
34 65 22 120 47.1 -77.7 
61 70 48 126 75.2 -76.9 
117 82 86 192 134.8 -74.3 
145 88 109 252 160.5 -77.6 
173 95 138 260 190.3 -77.7 
198 101 165 264 214.1 -78.5 



~90\" 
 -00 


F- Ideal Hough Transform of Major Linears \ 07 
n InSegment 893 from Lars Image Cos U 
60- No. 80002400, Bands, Sept. 3,1980 \ 

H4 0 -e 
20N-S Roads Lines 

+ + + + + 
0 I 

x-20 
50 I00 150 200 225 

LL 
0 
z -4 0 -
0 
F-60 - E-W Roads 

(J /+ + + + 

~-9O 

RADIAL INTERCEPT LENGTH (R) 
IdI 

Figure 8-8. Plot of coordinates for major roads. Webster County, Iowa test site (see Table 8-1).
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Compute the eigenvector for XL: L 

[s LI] X = 0 

Least-squares line passes -thnough M and has di-reetion of 3.- This met-hod 
avoids singularities in classical le-ast-squares fit. 

The Hueckel and eigenvector methods were applied to the edge image for 
the Webster County, Iowa site. The eigenveotor method requires that a win­
dow be defined for each road so that only edge pixels which are for the par­
ticular road are fitted. Figure 8-9 contains the window logic implemented 
for this test. A width of +10 pixels was defined for the road window and 
this corresponds to a registration uncertainty of +10 pixels or 57m for 
Landsat MSS data. 

The Hueckel algorithm was applied to the edge image in Figure 8-7 and 
the results were again unsatisfactory. Figure 8-10 contains results for 
eight tests using 69 pixel disks positioned over clear road edges. The 
eigenvector method was Uso applied to each disk. The 100s represent edges 
and the Os represent no-edge. The expected angles are nominally 12.10 and 

° -77.6 for the N-S and E-W roads and the results are scattered widely around 
these numbers. The elgenvecteor fit tended to perform better than the 
Hueckel but the scatter of Hough coordinates was large. Figure 8-11 con­
tains a plot of the Hough. coordinates for results over a particular road 
showing the scatter. It was concluded that the pixel disk being tested was 
too small and the roLd edges too noisy to permit good clustering of road 
coordinates and further work should be conducted on the small disk or window 
approach. 

The large-window approach was tested next using the eigenvector fit. 
Rectangular windows were positioned over the 12 significant roads in Segment 
893 and the position coordinates for each were obtained from eigenvector
fits of the edge image. Table 8-4 contains the coordinate of the mean and 
the angle of the eigenvector and the Hough coordinates for the 12 test 
roads. This method is intended to find control points; thus the road esti­
mates were used to solve for intersection of all pairs of N-S and E-W roads. 
This was done for the true and estimated roads and these results are in 
Table 8-5. The error between estimated and ideal intersections was computed 
and listed in Table 8-6. This table is an evaluation of the end product 
that we are attempting to obtain from this process. Clearly, the accuracy 
of the position of the points will decrease with distance from the mean 
point and we believe this is evident in the large errors for E-W and N-S 
Road 6 and to a certain extent the No. 1 roads. The error means are sub­
pixel but the standard deviations reflect the large errors for certain of 
the roads.



Work is continuing on this approach to finding control points with the 
goal of finding a method which is more stable for widely time-separate 
registration image pairs. The conclusion at this time is that the method 
looks promising but further "cleaning" operations are needed to remove 
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R3
R4, E)4 
 

FOR A GIVEN LINE, COLUMN:



COL. 1 = (R1 + LINE - SIN(S1))/ COS(81 ) 

COL, 2 = (R2 + LINE . SIN(S2))/ COS(e) 

COL. 3 = (R3 + LINE SIN(e3))/ COS(e 3) 

COL 4 = (R4 + LINE I SIN(S4))/ cos(e4 ) 

IF (COL .GT, COLl *AND, COL ,LT, COL2 AND, COL gLT, COL3 *AND. 

COL ,GT, COL) THEN PIXEL IS IN RECTANGLE. 

Figure 8-9. Window logic implemented for Webster County, Iowa test site


by Hueckel and eigenvector methods.
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RUN 80002451 SEG. 893 BAND 5



DISK RADIUS 4.7



LINE 5 COL. 10 E-W ROAD LINE 105 COL. 85 N-S ROAD



HUECKEL ANGLE -51.4 R = .09 HUECKEL 6= 12.3 R = -.04


= 
 

E-IGENVECTOR ANGLE -50.1 R = .3 EIGEN e= 14.0 R -.07



0 0 0 0100 100 100 0 0 0

0 0 0 0 0 100 0 	 100 0 100 100 0 0 0

o 0 0 0 0 1oo 1oo 0 100 	 0 100 0 100 1oo 0 0 

o 0 0 0100 0 0 100 0 	 0 0100 0100 100 0 0 
0 0 0 100 100 0 100 0 0 	 0 0 100 0 100 100 0 0 

100 0 100 100 	 0 100 0 0 0 	 0 0 100 0 100 100 0 0 
100 100 100 0 	 0 0 0 0 0 	 0 0 IO0O0 100 100 0 0 

0 0 100 0 100 0 0
100 0 0 0 	 0 0 0 	
100 0 0 0 0 	 0 100 0 100 0



LINE 95 COL. 140 N-S ROAD LINE 110 COL, 85 N-S ROAD


HUECKEL 6= 10,8 R = -.6 HUECKEL 8= 7.20 R = .06


EIGEN 6= 15.5 R= .2 EIGEN e= 8.7° R = .3



100 0 0 0 0 	 100 o 100 100 0 
0 too O 100 0 0 0 0 100 100 100 100 0 0



0 0 100 0 100 0 0 0 0 0 0 0 100 0 100 0 0 0


0 0 100 0 100 0 0 0 0 0 0 0 100 0 100 0 0 0


0 0 100 100 0 100 0 100 0 0 0 0 100 0 100 0 0 0


0 0 0 100 0 100 0 0 0 0 0 0 100 0 100 0 0 0


0 0 0 100 0 0 0 0 0 0 0 0 100 100 100 100 0 0



0 0 100 100 0 0 0 	 0 0 100 100 100 100 0
0 100 100 100 100 	 0 100 100 100 100



LINE 160 COL. 95 N-S ROAD 	 LINE 140 COL. 90 N-S ROAD



HUECKEL 6= 18,9 R = .46 	 HUECKEL 8= 15.8 R = 4.4


EIGEN e = 16.3 R=-.63 	 EIGEN e= 12.7 R = 1.3



0 100 0 0 100 0 100 100 100 100


0 0 100 100 0 0 0 0 0 0 100 0 100 0



0 0 0 100 100 100 0 0 0 0 0 0 0 100 0 100 0 0


0 0 0 0 100 100 0 0 0 0 0 0 100 100 0 110100 0

0 0 0 0 100 100 0 0 0 0 0 0 o 0 0 100 100 0


0 0 0 0 100 1001001 00 0 0 0 0 0 100 100 0 100 0


0 0 0 0 100 100 0 0 0 0 0 0 0 0 100 0 100 0



o 	 0 0 010 100 100 0 0 0 0 100 0 100


O 0 0 100 100 0 0 0 100 0



COL. 115 E-W ROAD
LINE 145 COL. 90 N-S ROAD LINE 165 

= -.4
HUECKEL FAILED 
 HUECKEL e= -86.4 R 


= 
 EIGEN e = 13.7 	R 1.23 	 EIGEN e= -83.9 R = -.2 

0 0 100 100 0 	 0 0 0 0 0 
0 0 0 0 100 0 100 	 100 0 0 0 0 0 0 

0 0 0 0 0 	100 0 100 0 100 100 100 100 100 100 100 100 100


0 a 0 0 0 	100 0 00 0 100 100 100 100 100 100 100 0 0


0 0 0 0 0 100 0 100 100 0 0 0 0 100 100 100 0 100

0 0 0 0 0 100 100 0 100 100 100 100 100 100 100 0 0 0

0 0 0 0 0 0 100 0 100 100 0 0 0 0 0 0 0 0


0 0 0 0 0 100 0 	 0 0 0 0 0 0 0


0 0 0 0 100 	 0 0 0 0 0



0
0


0 
0


0



Figure 8-10. Results of eight tests using 69 pixel disks positioned



over clear road edges. Hueckel algorithm was applied to the edge



image and the elgenvector method was applied to each disk.
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Figure 8-11. Scatter over a particular road shown by Bough coordinates.





Table 8-4. Rectangular window line-finding algorithm results for segment 893.



Hough Coordinates 

WINDOW NPIX NEDGE LINE MEAN COL. MEAN ANGLE R 0 

1 3694 656 92.00 78.00 77.50 0.0 -12.6 

2 4030 666 83.00 104.00 77.68 56.4 -12.1 

3 3909 679 90.00 136.00 77.70 85.2 -11.9 

4 3662 794 72.00 189.00 77.78 113.1 -12.1 

5 3472 602 72.00 235.00 78.16 171.9 -11,1 

6 3936 546 108.00 23.00 77.50 216.6 -14.5 

7 4283 1123 22.00 121.00 -10.66 47.1 77.7 

8 4640 1149 47.00 1.3-.-00 -11.92 75.2 76.9 

9 4887 619 109.00 123.00 -12.02 134.8 74.3 

10 4997 571 137.00 114.00 -11.92 160.5 77.6 

11 5124 1118 166.00 122.00 -13.02 190.3 77.7 

12 5220 537 192.00 120.00 -11.69 214.1 78.5 



Table 8-5. Control-point solutions from ideal and estimated road locations.



IDEAL INTERSECTIONS 

N-S Road 1 2 3 4 5 6 

E-W Road Line Col. Line Col. Line Col. Line Col. Line Col. Line Col. 

1 46.0 10.3 34.0 65.0 27.9 93.0 22.0 120.4 9.6 177.1 - .5 223.6 

2 73.4 16.4 60.8 70.7 54.3 98.5 47.9 125.9 34.9 182.0 23.7 229.9 

3 131.7 29.4 116.8 82.7 109.1 110.1 101.4 137.4 86.0 192.1 71.9 242.3 

4 156.6 35.0 144.8 88.7 138.8 116.3 132.6 144.1 120.6 198.8 108.9 251.9 

5 185.7 41.5 174.1 95.0 168.1 122.5 162.0 150.4 150.2 204.6 138.2 259.5 

6 209.0 46.7 198.1 100.2 192.5 127.6 186.8 155.7 175.8 209.7 164.3 266.2 

ESTIMATED INTERSECTIONS 

N-S Road 1 2 3 4 5 6 00 

E-W Road Line Col. Line Col. Line Col. Line Col. Line Col. Line Col. 0 

1 42.8 10.4 32.6 64.8 27.5 91.9 22.0 121.2 11.6 176.0 3.3 220.6 
0 z,
M 

2 71.7 16.8 60.3 71.0 54.6 97.8 48.5 127.0 37.0 181.5 27.6 225.7 

3 128.9 29.5 117.4 83.6 111.7 110.3 105.5 139.4 93.9 193.7 84.6 237.6 _ 

4 153.1 34.9 141.6 89.0 136.0 115.6 129.9 144.7 118.4 199.0 109.2 242.8 

5 184.4 41.8 172.0 95.7 165.9 122.1 159.2 151.1 146.7 205.0 136.6 248.6 

6 207.1 46.9 195.9 101.0 190.5 127.5 184.4­ 156.6 173.2 210.7 164.2 254.3 



Table 8-6. Errors in road intersection coordinates for segment 893 (estimated 
 - ideal).



N-S Road



2 3 4 6 

E-W Road AL AC AL AC AL AC AL AC AL AC AL AC



1 -3.2 .] -].4 -.2 - .4 
 -1. 0 .8 2.0 
 -1.1 3.8 -3.0



2 -1.7 .4 -. 5 .3 .3 -
.7
 .6 1.1 2.1 -. 5 3.9 -4.2



3 -2.8 .1 .6 .9 
 2.6 .2 4.1 2.0 7.9 1.6 
 12.7 -4.7



4 -3.5 -.1 -3.2 .3 -2.8 - .7 -2.7 .6 -2.2 .2 .3 -9.1 CO 

5 -1.3 .3 -2.1 .7 -2.2 - .4 -2.8 .7 -3.5 .4 -1.6 -10.9 oo 

6 -1.9 .2 -2.2 .8 -2.0 - .1 -2.4 .9 -2.6 1.0 - .1 -11.9 0 2 
Sto R



Line Column 

Mean -.23 .97 N 

Std. Dev. 3.37 3.77
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along-road artifacts, such as homesteads and bright fields, which may be


shifting the R and from the true value.
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Appendix



PARAMETER ESTIMATION CORRELATION METHOD, 

METHOD IS BASED ON ASSUMPTION THAT CONTINUOUS IMAGE CAN BE



REPRESENTED USING THE SINC FUNCTION (I.E., BAND LIMITED TO 1/21).



EVALUATION IS IN 1-DIMENSION. THE REFERENCE IS:



*0 

R(x) = 1_.S(ID) SINC(X-ID)i=-o 

THE MISREGISTERED SENSED IMAGE CAN THEN BE REPRESENTED AS: 

co 

S(X) = S(X + (L+F),D) = S(ID) SINC(X+L+F-ID)i=-00



WHERE: D I'S THE SAMPLE SPACING



L IIS THE INTEGER SHIFT



F IS THE FRACTIONAL SHIFT



FOR CONVENIENCE, LET D=I AND DEFINE K-I=N AND EVALUATE S AT



INTEGER LOCATIONS: c



S(K) = 2 R(K-N) SINC(N+L+F)


K-N=-IO



SINCE K IS FINITE, THE INDEX CAN BE IN TERMS OF N ONLY.
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DEFINE: tN = SINC(N+L+F) 

THEN THE RELATION BETWEEN S AND R BECOMES A CONVOLUTION OF S 

WITH A FILTER C: 

S(K) =Z tR(K-N) 

THE VN ARE SAMPLES OF THE FUNCTION SINC(X+L+F) WITH THE 

MAXIMUM AT X+L+F = 0. 

IT CAN BE SHOWN THAT THE DESIRED SHIFT IS: 

A= L+F = -J + 1 

WHERE: J IS THE INDEX OF THE MAXIMUM VALUE OF N
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A SIGNAL PLUS NOISE MODEL ISASSUMED:


(x)= R(X) + e(x) 

w(x) = s(x) +w(x) 

THE N IS TRUNCATED TO -P TO P AND BECOMES AN FIR FILTER,



THE PROBLEM BECOMES ONE OF ESTIMATING 2p+ PARAMETERS ASSUMING



N+l DATA POINTS AVAILABLE. A LEAST SQUARES SOLUTION WAS IMPLEMENTED:



A 
t= (zTz)-I zTw 

WHERE:



W= . ap+l Z2p+I


a aI P 

Wp+N Z2p+N ,,, ZN
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THIS SOLUTION CAN BE SHOWN TO BE EQUIVALENT TO THE ROTH PROCESSOR[ 2) 

WHICH COMPUTES THE CORRELATION FUNCTION AS: 

H(X)= c0 GZW EJW XDW
f GZZ(W) 

WHERE: 	 GZW(W) IS THE CROSS SPECTRAL DENSITY BETWEEN
 


THE NOISE ADDED REFERENCE AND RECEIVED SIGNALS,



eZZ(w) IS THE SPECTRAL DENSITY OF THE NOISY



REFERENCE,



* 	 THE ROTH PROCESSOR IS A SUB-OPTIMUM FILTER WHICH GIVES LESS WEIGHT



TO FREQUENCIES WHERE THE NOISE IS LARGE,



* 	 THE PERFORMANCE OF THE PARAMETER ESTIMATION CORRELATOR WAS EVALUATED



ANALYTICALLY AND EXPERIMENTALLY. THE VARIANCE EXPRESSION IS:

0o 

2n f l ( 2 G (w ) G (w) -IGz( 2 DW 
VAR0 zz w W 

VARII] L[f 'vPw~ls (w)lnw]- -~ 

WHERE: 	 4J(w) = 1 FOR NO PREPROCESSING 

qJ(w) G (w) FOR THE ROTH PROCESSOR
GZZ~ 
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