The choice of the metallic film for the contact to a semiconductor device is usually predicated by considerations of economics, know-how, or precedence. The typical case is that the desired metal is unstable when forming a couple with the semiconductor. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. The solution is attractive because it is apparently simple and universal.

The difficulty is that the notion of a diffusion barrier is derived from bulk considerations. The time required to penetrate a layer by diffusion decreases with the square of the layer thickness. In addition, the relevant diffusivity in thin films is typically determined not by bulk diffusion, but by diffusion along extended defects, which can be many orders of magnitude faster than bulk diffusion at the temperatures encountered in device processing and operation. The defects in a film are strongly dependent on the method of deposition used and on the conditions prevailing during deposition. For diffusion barrier applications, the fabrication procedure is therefore as important as the choice of the material. This crucial point is often overlooked.

By their structure, thin-film diffusion barriers can be classified in single-crystalline, polycrystalline, and amorphous. Single-crystalline layers are unpractical, leaving only polycrystalline and amorphous layers as valid options. By their composition, thin-film diffusion barriers can be sub-divided into elemental and compound materials. For electrical contacts, only metallic media apply. Of these, most elemental metal films must be ruled out, because soluble metals dissolve, insoluble polycrystalline metals contain fast diffusion paths, and amorphous metals are not stable at room temperature. Metallic compound and alloys, polycrystalline or amorphous in structure, thus constitute the favored range of materials for electrically conducting thin-film diffusion barriers.
Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. A number of very successful metallization systems are based on that concept. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. When a thin film reacts in that fashion on both sides, and when these reactions proceed more rapidly than the diffusion through the film, an effective separation is accomplished as long as the film is not fully consumed in the reactions. Sacrificial barriers have the advantage that the point of their failure is predictable. Several successful sacrificial barriers are described in the literature, and a few new ones are under study at Caltech. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. The material has very low diffusivity for many metals, in spite of being fine-grained polycrystalline. The good kinetic properties of TiN are largely independent of the sputtering mode used for its deposition, which suggest that it is the very high melting point of TiN (~2400°C) that is the ultimate reason for its success, and not the presence of undetected impurities. TiN is an interstitial alloy, of which there is a fairly large number; a few others of these have also been shown to work well as thin-film diffusion barriers.

Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host. The same holds for barriers that form by a localized segregation of purposely introduced impurities (e.g. by ion implantation). New possibilities of diffusion barrier synthesis have been demonstrated with this approach. Amorphous metallic films offer another interesting way to obtain low diffusivity films. All amorphous diffusion barriers tested so far have been obtained by sputter-deposition. Both sacrificial and passive barriers can be conceived with amorphous films. Results obtained to date are quite encouraging, but the inclusion of an amorphous compound layer in a metallization system does not by itself suffice to ensure stability, as examples show.
Problem and Solution

PROBLEM

![Diagram showing metal film on semiconductor substrate]

Metal film on semiconductor substrate is rarely stable - interdiffusion - compound formation

SOLUTION WITH DIFFUSION BARRIER

![Diagram showing diffusion barrier]

IDEAL BARRIER X

- Low diffusivity for A & B
- Stable against A & B
- Laterally uniform & homogeneous
- Adheres to A & B
- Resists mechanical, thermal stresses
- Low contact resistivity
- Compatible with device processing

Compromising is necessary
Difficulties

\[x^2 = pt \quad t = \frac{x^2}{D} \]

If \(t = 10 \) yrs for 1 mm (10^{-1} \text{ cm})

\[\text{for } 1000 \text{ Å (10}^{-5} \text{ cm) } t = 3 \text{ sec}! \]

\[D_{\text{film}} \gg D_{\text{bulk}} \text{ for } T < \frac{1}{kT} \]
Defects in Thin Films

FUNCTION OF
- DEPOSITION METHOD
- DEPOSITION PARAMETERS

DIFFUSIVITIES = f (METHOD, PARAMETERS)

TWO PERTINENT QUESTIONS FOR DIFFUSION BARRIERS:

1. WHAT MATERIAL?
2. PREPARED HOW?

ADDRESSING QUESTION 1 IS NOT SUFFICIENT.

Thin-Film Diffusion Barriers

STRUCTURE

SINGLE-CRYSTAL
- Minimal Defects
- Minimal Diffusivities

AMORPHOUS
- No Extended Defects
- Low Diffusivities

POLYCRYSTALLINE
- Extended Defects
- High Diffusivity Paths

PRACTICAL BARRIERS

ELEMENTAL, POLYCRYSTALLINE
- Miscible with A and B
- Immiscible with A and B

COMPOUNDS, POLYCRYSTALLINE
- Stuffed Barrier
- Sacrificial Barrier
- Passive Barrier

COMPOUNDS, AMORPHOUS

miscible with A and B: fail
immiscible with A and B: fail

miscible with A and B: hold
immiscible with A and B: hold

stuffed barrier: hold
sacrificial barrier: hold
passive barrier: hold
Stuffed Barrier

PURE BARRIER FAILS

IMPURE (STUFFED) BARRIER HOLDS

EXAMPLES
- Si/Ti-W/Au/ J.E. Baker et al., Thin Solid Films 69 (1980) 15
- Si/ChCr Oxides/Al/ H.M. Dalal et al., U.S. Patent 4,214,256 (July '89)
- Si/Al2O3/Al/ W.K. Chu et al., U.S. Patent 4,206,472 (June '83)
- Si/TaTa2O5/Al/
<table>
<thead>
<tr>
<th></th>
<th>Ac</th>
<th>Ti</th>
<th>Si</th>
</tr>
</thead>
</table>

Sacrificial Ti Barrier

(A) [Image of a cross-section showing a Ti barrier.]

(B) [Image of a cross-section showing an AC column.]
H. M. Dalal, M. Ghaghaichi, L. A. Kasprzak, and H. Wimpfheimer,
IBM

FIG. 1C

<table>
<thead>
<tr>
<th>Method</th>
<th>Thickness</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporation</td>
<td>~1μm</td>
<td>Al</td>
</tr>
<tr>
<td>Evaporation with 10^5 HzO</td>
<td>~1 kA</td>
<td>Cr + Cr oxides</td>
</tr>
<tr>
<td>Evaporation</td>
<td>~600Å</td>
<td>Ta</td>
</tr>
<tr>
<td>400Å Pt at 350°C</td>
<td>~790Å</td>
<td>PtSi</td>
</tr>
</tbody>
</table>

for high φn only

n or n' Si
FIG. 1

<table>
<thead>
<tr>
<th>evap $< 10^{-7}$</th>
<th>1.0 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>evap $= 10^{-7}$</td>
<td>0.5 μm</td>
</tr>
<tr>
<td>evap $= 10^{-7}$</td>
<td>1 μm</td>
</tr>
</tbody>
</table>

Al

$Al + Al_2O_3$ or $Ta + Ta_2O_5$

Ta, Zr, Hf, …

$n^+ Si$ or PtSi

$n^+ Si$

Stuffed Barrier
Sacrificial Barrier

Conditions on Reaction of X with A and B:
- Laterally uniform
- Reproducible and characterized
- Faster than diffusion through A, X, B

Examples:
- \(\text{Si}/\text{Ti/Al} \)
- \(\text{Si}/\text{Ta/TaAl}_2/\text{Al} \)
 J.K. Howard et al., U.S. Patent 4,201,999 (May 1980).
- \(\text{Si}/\text{Pd}_2\text{Si}/\text{Ti/Al} \)
- \(\text{Si}/\text{PtSi}/\text{Ti/Al} \)
- \(\text{Si}/\text{NiSi/Al} \)
- \(\text{Si}/\text{PtSi/Al} \)

Remarks: "Studies testing both metallurgical and electrical stability."
TYPE 1:
$3.8 \times 10^7 \text{ppH}_2 \text{O}$
$1.0 \times 10^{-2} \text{ppH}_2 \text{O}$
$15 \text{mm} \text{ Ti-W}$
$1.5 \times 10^{-4} \text{ppH}_2 \text{O}$
$<111> \text{ Si}$

$23^\circ \text{C - 400^\circ} \text{C, 6^\circ} \text{C/min}$

TYPE 1

TYPE 3

TYPE 1

TYPE 3

TYPE 1

TYPE 3

23$^\circ$C

290$^\circ$C

300$^\circ$C

310$^\circ$C

100μm

20μm

20μm

100μm

Passive Barrier

EXAMPLES

STUFFED BARRIERS

INTERSTITIAL COMPOUNDS

Ti/TiN/Pt/	C.W. Nelson (1969)
<Si>/PdSi/TiN/Al/	M. Finetti et al. (to be published).
<GaAs>/Ge-Au-Pt/TiN/Ti-Pt-Au/	R.D. Remba et al. (unpublished).

IMPLANTED IMPURITY

|<Si>/Ni:N/ | T. Bannfell et al. (to be published). |

REMARKS: "STUDIES TESTING BOTH METALLURGICAL AND ELECTRICAL STABILITY"
TiN

INTERSTITIAL ALLOY

OTHER INTERSTITIAL ALLOYS

BCN

Ti V Cr
Zr Nb Mo
Hf Ta W
Al–Pd$_2$Si–n-Si Schottky Diode

\[\Phi_b = 0.74 \quad V \quad N = 1.05 \]

\[\Phi_b = 0.80 \quad V \quad N = 1.3 \]

\[\Phi_b = 0.74 \quad V \quad N = 1.05 \]
Al–NiSi–n–Si Schottky Diode

\[\phi_b = 0.66 \, \text{V} \quad N = 1.03 \]

and

\[\phi_b \approx 0.76 \, \text{V} \quad N = 1 - 1.3 \]
Ohmic Contacts to GaAs

![Diagram of Ohmic Contacts to GaAs](image)

- Ti/Pl/Au
- AuGePt
- Semi-insulating GaAs

Graph: Contact Resistance vs. Annealing Time

- 250°C in Air
- 300°C in N₂

- **NO TiN**
- **WITH TiN**
Implanted N Diffusion Barrier

no barrier

\[n^+ \text{Si} \rightarrow \text{Ni} \]

implanted N barrier

\[n^+ \text{Si} \rightarrow \text{Ni} \]

\[2 \times 10^{17} \text{cm}^{-3} \]

300°C, 90 min. Anneal

\[\text{Si} \rightarrow \text{Si}_x \text{Ni}_y \]

Sequential Annealing

@ 50°C increments

<table>
<thead>
<tr>
<th>Phase(s)</th>
<th>(P_e) (\text{cm}^{-2})</th>
<th>Phase(s)</th>
<th>(P_e) (\text{cm}^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Ni}_x \text{Si}_y) (\text{Ni}_x \text{Si}_y)</td>
<td>(1.0 \times 10^{-4})</td>
<td>(500°C) (30 \text{min})</td>
<td>(\text{Ni}_x)</td>
</tr>
<tr>
<td>(\text{Ni}_x \text{Si}_y)</td>
<td>(1.0 \times 10^{-4})</td>
<td>(350°C) (30 \text{min})</td>
<td>(\text{Ni}_x)</td>
</tr>
<tr>
<td>(\text{Ni}_x \text{Si}_y)</td>
<td>(1.1 \times 10^{-4})</td>
<td>(450°C) (30 \text{min})</td>
<td>(\text{Ni}_x)</td>
</tr>
<tr>
<td>(\text{Ni}_x \text{Si}_y)</td>
<td>(1.0 \times 10^{-5})</td>
<td>(650°C) (30 \text{min})</td>
<td>(\text{Ni}_x)</td>
</tr>
<tr>
<td>(\text{Ni}_x \text{Si}_y)</td>
<td>(1.1 \times 10^{-5})</td>
<td>(650°C) (30 \text{min})</td>
<td>(\text{Ni}_x \text{Si}_y)</td>
</tr>
</tbody>
</table>

Abbreviated Table of Results

131
Amorphous Barrier

rf SPUTTERED Fe-W

<table>
<thead>
<tr>
<th>2kÅ</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1kÅ</td>
<td>Fe,45W,55</td>
</tr>
<tr>
<td></td>
<td>Si</td>
</tr>
<tr>
<td></td>
<td>n⁺ & p⁺</td>
</tr>
</tbody>
</table>

\(\nu_c \times 10^{-6} \, \text{cm}^2 \text{V}^{-1}\text{s}^{-1} \)

<table>
<thead>
<tr>
<th></th>
<th>AS-DEPOSIT</th>
<th>500°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>n⁺ Si</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>p⁺ Si</td>
<td>2.8</td>
<td>1.1</td>
</tr>
</tbody>
</table>

\(n_{Si} \approx 7 \times 10^{17} \text{cm}^{-3} \), \(\nu_{BN} = 0.61 \text{eV} \)

rf SPUTTERED MULTILAYERS AND 500°C, 4 h ANNEALING

<table>
<thead>
<tr>
<th>0.34Å</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W-Si</td>
</tr>
<tr>
<td></td>
<td>n⁺GaAs</td>
</tr>
</tbody>
</table>

No Degradation of \(I(V) \) after 400°C, 16 h

Au

SIMILAR RESULT

<table>
<thead>
<tr>
<th>0.34Å</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W-Si</td>
</tr>
<tr>
<td></td>
<td>n⁺InP</td>
</tr>
</tbody>
</table>

GaAs MESFET

With Ti-W-Si Barrier: Stable at 300°C past 944 h (39 d)
Without Ti-W-Si Barrier: Fails at 300°C after 360 h (15 d)

Amorphous Barrier: Metallurgical Studies

<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
<th>T_c (1 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiNi-Nb/Au or Cu</td>
<td>Ni${57}$Nb${43}$</td>
<td>575°C</td>
</tr>
<tr>
<td>GaAsNi-Nb/Cu</td>
<td>Mo${60}$Si${40}$</td>
<td>550°C</td>
</tr>
<tr>
<td>MoSi/Au or Cu</td>
<td>W${85}$Si${15}$</td>
<td>700°C</td>
</tr>
</tbody>
</table>

Fails at $T \geq T_c$ for Si,
$T \leq T_c$ for GaAs, GAP

<table>
<thead>
<tr>
<th>100 Å</th>
<th>Au</th>
<th>$T_c \geq 600°C$ (1 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400Å</td>
<td>Ni${55}$Nb${45}$</td>
<td>Fails at $600°C$, 15 min.</td>
</tr>
<tr>
<td></td>
<td>Si,GaAs,GAP</td>
<td>$D \geq 600°C$, 15 min. ≥ 500 Å</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>400 Å</th>
<th>Ni${55}$Nb${45}$</th>
<th>Fails at $T \geq T_c$ for Si, GAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Si,GaAs,GAP</td>
<td>T_c for GaAs</td>
</tr>
</tbody>
</table>

B.L. Doyle et al., Thin Solid Films (in press).
Summary

Thin Films ≠ Bulk

Defects control kinetics
Defects = f(FAB. PROCESS)

Diffusion Barriers = f(FAB. PROCESS)

- Miscible elemental barriers: Fail
- Immiscible elemental barriers: Fail

Stuffed Barriers

- Ti/Mo/Au
- Si/Ti+W/Au
- Ta/Cr/Al
- Ta/Al/Al
- ...

Sacrificial Barriers

- Si/Ti/Al
- Pd2Si/Cr/Al
- ...

Passive Barriers

- Tin
 - Implanted impurities
 - Amorphous

There is hope
DISCUSSION

CAMPBELL: Titanium nitride is a passive barrier. Is that the compound titanium nitride?

NICOLET: Yes. It is a compound. It is TiN.

CAMPBELL: Stoichiometric.

NICOLET: In our case it is very close to stoichiometric. It is easy by reactive sputtering. It is easy to produce reactively in stoichiometric form. It is just as easy to produce it reactively in nonstoichiometric form, it is just as easy to produce as in dirt form. As a matter of fact, an interesting idea is why would you not intentionally have a little dirt in Ti-nitride. It might actually make it even better. That is one thing we wanted to try. It looks like heresy. But it is also heresy to apply oxygen to nickel if you talk to the silicon community. I think that there is lots of room to try new ideas in this business. Yes, it is just simple Ti-nitride, however, Ti-nitride isn't simple.

SOMBERG: You mentioned in the beginning that the pure-metal systems like Ti-palladium-silver doesn't work. Could it be that they really are not pure-metal systems, that they are "dirty" systems, that there are other things going on?

NICOLET: Well, that is possible. The Motorola system of electroplated nickel copper, for example, surely has a lot of phosphorus in it and you can make nickel amorphous if you have enough phosphorus in it. It doesn't have to be but it could be. We have looked at this and it is possible. What I was trying to say is if you make things pure the way you write it down, when you say it's nickel, you mean it's nickel not nickel plus a lot of other things. Many things fail. And it is important to make that distinction. Otherwise you will get lost. It becomes black magic and people will not tell you what they do. This is just a sign that it is not understood.

AMICK: Would you comment, please, on the adhesion properties when you implant either oxygen or nitrogen into the nickel and then form this interfacial layer, which is apparently either a nitride or an oxide. What happens to the adhesion properties of that system?

NICOLET: We haven't looked at that much. I will tell you my reluctance to get into this type of question. It is something that I would like very much to consider in our measurements, but I can't conceive of our Caltech graduate students making adhesion measurements.

COMMENT: It is not that expensive.

NICOLET: It's not expensive, but if you can't write down the Schroedinger equations, that is a complaint. If I have someone in industry or elsewhere who would like to collaborate, it would be delightful, but we don't cover that part well, and I don't know how to do it. I know that
I will not get anywhere with this proposition with anybody in my group. I think the way to do that is by collaboration. I think it would be very nice to investigate. The same question for Ti-nitride. Ti-nitride has to be fixed in one fashion or another to have proper adhesion. And that should also be fixed. But I think these things can be resolved.

WONG: Did you, or did anyone else, have any diffusion failure of amorphous alloy?

NICOLET: Yes. Data on diffusion in amorphous alloys are plentiful in bulk. Data on amorphous materials is 20 years old now. A thick compendium. What you really want are the data on diffusion in thin films, that are amorphous. Maybe that is different. There are a number of measurements that were done and they are much more limited. Typically, what people do, they make an amorphous layer and they implant heavy material, like gold. With backscattering you can see how the diffusion takes place. And you see dramatic differences if you compare the same layer amorphized or crystallized. If you have a crystallized layer and implant an amorphous layer and you do the annealing at the same low temperatures the diffusivity is vastly different. That's only half the story, and as we found out with our aluminum layer, you might have very low diffusivity inside but if you have sufficiently thick layers with large diffusivity on the top you might just lose your layer in a hurry. You may not crystallize. It might just be dissolved.

WONG: In this sense, in that example that you showed in the viewgraph, can we do something to saturate the aluminum with whatever -- the iron tungsten, for example -- so that we don't have diffusion during that period?

NICOLET: That would be another idea. Yes, that would be good to try that. Let me just first explain. While we were making these measurements, how frustrating we found it when we failed. But I thought, no, we haven't failed, because it opened our eyes to a lot of problems that are very relevant because you have to recognize this: you have bulk diffusivity in all directions.