PUBLICATIONS OF THE JPL SOLAR THERMAL SYSTEMS PROJECT 1976 TO 1983

Compiled by
V. Gray
C. Marsh
P. Panda

January 1, 1984

Work Performed Under Contract No. AC04-76DR00789

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Technical Information Center
Office of Scientific and Technical Information
United States Department of Energy
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Price: Printed Copy A04
Microfiche A01

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: Energy Research Abstracts (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication NTIS-PR-360 available from NTIS at the above address.
The bibliographical listings in this publication are documentation products associated with the solar thermal power system project carried out by the Jet Propulsion Laboratory from 1976 to 1983. Documents listed are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports. Alphabetical listings by title were used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference: one, an author index; the other, a topical index.

Compiled by:
V. Gray
C. Marsh
P. Panda

January 1, 1984

Prepared for
U.S. Department of Energy
Through an Agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL Publication 84-1
ABSTRACT

The bibliographical listings in this publication are documentation products associated with the Solar Thermal Power Systems Project carried out by the Jet Propulsion Laboratory from 1976 to 1983.

Documents listed herein are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports (i.e., deliverable documents produced under contract to JPL). Alphabetical listings by title were used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference: one, an author index; the other, a topical index.
ACKNOWLEDGMENT

The Solar Thermal Power Systems Project Office and Leuann Burrus of the Solar Data Library provided valuable assistance in locating documents for this bibliography. Appreciation is also expressed to Leonard Jaffe who prepared the Topical Index and to Justine Weiher and Arlene Rush of the JPL Document Review Group who helped prepare the Contractor Report Section.

This report was compiled by the Jet Propulsion Laboratory, California Institute of Technology, for the U.S. Department of Energy Solar Thermal Division Technical Program Integrator at Sandia National Laboratories-Livermore through an agreement with the National Aeronautics and Space Administration (NASA Task RE-152, Amendment 342, Change 4; SNL(L)/DOE/NASA Interagency Agreement No. 92-9458).
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>II. CONFERENCE AND JOURNAL PAPERS</td>
<td>2-1</td>
</tr>
<tr>
<td>III. EXTERNAL DOCUMENTS</td>
<td>3-1</td>
</tr>
<tr>
<td>IV. INTERNAL DOCUMENTS</td>
<td>4-1</td>
</tr>
<tr>
<td>V. CONTRACTOR REPORTS</td>
<td>5-1</td>
</tr>
<tr>
<td>VI. AUTHOR INDEX</td>
<td>6-1</td>
</tr>
<tr>
<td>VII. TOPICAL INDEX</td>
<td>7-1</td>
</tr>
</tbody>
</table>
SECTION I
INTRODUCTION

In 1976 the Jet Propulsion Laboratory (JPL) was given responsibility for solar thermal parabolic dish technology development by the Energy Research and Development Administration (predecessor agency to the current U.S. Department of Energy). Initial comparative assessment studies conducted by the JPL Solar Thermal Power Systems (TPS) Project showed that, in addition to central receivers, distributed receivers, such as dishes having power conversion units at their focal points, had potential for cost-effective production of electricity.

This Bibliography of JPL-related efforts in solar thermal parabolic dish/dish-electric technology development is a comprehensive list of reports published by JPL or its contractors during the time period from 1976 through 1983. It was assembled to help facilitate an orderly transition of work on this technology from JPL to Sandia National Laboratories-Albuquerque (SNLA) during 1984. Compilation of the listings was made through reference to records kept by the TPS Project and the JPL library and through a survey of documents used as sources for TPS work. Material was also contributed by individuals who had been involved in the TPS Project during the eight-year period.

An objective in assembling the Bibliography was to include those publications deemed most central to the work of the project and those for which complete reference background is available. Not included are status reports which were prepared periodically for specific events and would be less useful from a technological perspective. The Bibliography, which covers the full range of the TPS effort from the standpoints of time, subject matter, and participants, is divided into six parts:

(1) Conference and Journal Papers
(2) External Reports
(3) Internal Reports
(4) Contractor Reports
(5) Author Index
(6) Topical Index

Papers in the first four areas are arranged alphabetically by title to aid in identification of subject material. The Topical Index provides more specific guidance for locating a particular area in which the TPS Project was involved. The majority of the publications are included in a library of JPL documents managed by the DOE Solar Thermal Division's Technical Program Integrator's Office at Sandia National Laboratories in Livermore, California. Copies of external publications listed can be obtained from the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, Virginia 22161.

An update of this Bibliography, which will include TPS reports and papers published during 1984, is planned for issuance before the end of the calendar year.
SECTION II

CONFERENCE AND JOURNAL PAPERS

Advanced Development - Fuels, K. Ramohalli, Parabolic Dish Solar Thermal
Annual Program Review, Pasadena, California, January 1981.

Advanced Receiver Technology, A.A. Kudirka, Fourth DOE Advanced Solar Thermal

Advanced Solar Thermal Receiver Technology, A.A. Kudirka and L.P. Leibowitz,
American Institute of Aeronautics and Astronautics Aerospace Sciences
Meeting, Pasadena, California, January 1980.

Advanced Solar Thermal Technology for Process Applications, L. Leibowitz,
E. Hanseth, and T. Liu, American Institute of Chemical Engineers Winter

Advanced Solar Thermal Technology: Potential and Progress, L.P. Leibowitz and
E. Hanseth, 14th Intersociety Energy Conversion Engineering Conference,
Boston, Massachusetts, August 1979.

Aging Characteristics of Glass Mirrors for Solar Thermal Power Applications,
F. Bouquet, American Physical Society, Youngstown, Ohio, May 1980; "Journal
of Non-Crystalline Solids," Vol. 40, 1980; Fifth University Conference on

A Graphical Method for the Prediction of Annual Performance of Solar
Energy Society Solar World Congress, Perth, Western Australia, August 1983.

A Nomogram for Determining Efficiency and Useful Heat of a Parabolic Dish,

Application of a Reversible Chemical Reaction System to Solar Thermal Power
Plants, E. Hanseth, Y. Won, and L. Leibowitz, Second American Society of
Mechanical Engineers Solar Energy Conference, San Francisco, California,
August 1980.

A Simulation Exercise of a Cavity-Type Solar Receiver Using the JPL-HEAP
Program, F. Lansing, 14th Intersociety Energy Conversion Engineering
Conference, Boston, Massachusetts, August 1979.

Assessment of Ceramic Technology for Solar Thermal Energy Systems, M. Adams,

Barriers and Incentives to the Innovation of Small Solar Thermal Electric
Power Systems: A Commercialization Perspective for R&D Management,
Section Annual Meeting, Denver, Colorado, August 1978.

Dynamics and Control of Stirling Engines in a 15-kWe Solar Electric Generation Concept, R.L. Das and K.A. Bahrami, 14th Intersociety Energy Conversion Engineering Conference, Boston, Massachusetts, August 1979; American Chemical Society, 1979.

Efficiency Degradation Due to Tracking Errors for Point-Focusing Solar Collectors, R.O. Hughes, American Society of Mechanical Engineers Winter Annual Meeting, San Francisco, California, December 1978.

2-10

The Sun Tracking Control of Solar Collectors Using High-Performance Step Motors, R.O. Hughes, Energy Research and Development Administration (Now DOE) Conference on Concentrating Solar Collectors, Atlanta, Georgia, September 1977.

DOE/JPL-1060-9, JPL Publication 79-43.

Application of Field-Modulated Generator Systems to Dispersed Solar Thermal
Electric Generation, R. Ramakumar, K. Bahrami, August 15, 1979,
DOE/JPL-1060-25, JPL Publication 79-83.

Cost and Price Estimate of Brayton and Stirling Engines in Selected Production
Publication 80-42.

Cost/Performance of Solar Reflective Surfaces for Parabolic Dish
Concentrators, F. Bouquet, July 15, 1980, DOE/JPL-1060-40, JPL
Publication 81-2.

Criteria for Evaluation of Reflective Surfaces for Parabolic Dish
Concentrators, F. Bouquet, July 15, 1980, DOE/JPL-1060-39, JPL
Publication 80-81.

Decision Analysis for Evaluating and Ranking Small Solar Thermal Power System
Technologies, Vol. I - A Brief Introduction to Multi-Attribute Decision
Analysis, Vol. II - The Criteria and Methodology for Evaluation and Ranking,

Dish Concentrators for Solar Thermal Energy: Status and Technology
Publication 81-43.

Dish Stirling Solar Receiver Combustor Test Program, C.P. Bankston, L.H. Back,

Effects of Regional Insolation Differences Upon Advanced Solar Thermal
Electric Power Plant Performance and Energy Costs (The), A.F. Latta, et al,

Electrochemical Energy Storage Systems for Solar Thermal Applications,
S. Krauthamer, H. Frank, March 1, 1980, DOE/JPL-1060-30 Rev. 1, JPL
Publication 79-95.

Evaluation of Cellular Glasses for Solar Mirror Panel Applications, M. Giovan,

Evaluation of the Effects of a Freeze/Thaw Environment on Cellular Glass,

Focus on Solar Technology - A Review of Advanced Solar Thermal Power Systems,

Fracture Mechanics of Cellular Glass, J.G. Zwissler, M.A. Adams,
DOE/JPL-1060-42, JPL Publication 81-16.

SECTION IV
INTERNAL DOCUMENTS

A Modularized Computer Simulation Program for Solar Thermal Power Plants,

Advanced Solar Thermal Technology: Potential and Progress, L. Leibowitz,
E. Hanseth, April 15, 1979, 5102-121.

Advanced Technology Development - Semiannual Progress Report, June 1978,
5102-67.

Aging Characteristics of Mirrors for Solar Energy Application, F.L. Bouquet,
April 1, 1979, 5102-116.

Analytical Foundations/Computer Model for Dish-Brayton Power System,

An Overview of Power Plant Options for the First Small Power System
Experiment: Engineering Experiment Number 1, November 9, 1978, 5103-38.

A Survey of Solar Thermal Energy Systems Manufacturers, Summary Results,

Assessment of Ceramic Technology For Solar Thermal Energy Systems, March 15,
1982, 5105-104.

Assessment and Planning for the Commercialization of Small Solar Thermal

Average Daily and Annual Direct Normal Insolation Estimates for the United

Brief Review of Increasing Geometric Concentration Ratio Vs. Improving
Receiver Surface Characteristics, A. Wen, R. Caputo, January 24, 1978,
5102-63.

Ceramic Technology for Solar Thermal Receivers, A. Kudirka, R. Smoak,
September 1, 1982, 5105-120.

Chemical Energy Storage Systems Screening and Preliminary Selection,

Comparison of Advanced Thermal and Electrical Storage for Parabolic Dish Solar

Computer Model for Pricing of Thermal Power Systems Engines for Annual
Production of 25,000 through 400,000 Units, H.R. Fortgang, J. Glyman, March

*Copy not available

Heat and Electricity from the Sun Using Parabolic Dish Collector Systems, V.C. Truscello, August 9, 1979, 5105-2.

Methodology to Establish Goals for ERDA Solar Thermal Technology Development Programs, R.S. Caputo, June 21, 1977, 5102-40.

Parabolic Dish Program: The 1980 Multi-Year Plan - Preliminary, May 12, 1980, 5105-4 Rev. A.

Point Focusing Distributed Receiver R&D Test Facility, March 31, 1977, TR/TPS D/C 008, 7A000(SE).

*Copy not available

*Copy not available

Solar Ponds for Power Generation, J. Biddle, September 1, 1979, 5102-100.

Systems Requirements for Power Plant Small Community Solar Thermal Power Experiment 1, March 9, 1983, 5105-96 Rev. A.

Systems Requirements for Power Plant Small Community Solar Thermal Power Experiment 2, March 9, 1983, 5105-123.

Thermal Storage Applications Workshop, Volume I - Plenary Session Analysis, Volume II - Contributed Papers, February 15, 1978, 5102-78

*Copy not available

*JPL internal report only.

SECTION VI

AUTHOR INDEX

Authors listed alphabetically are followed by titles that are also alphabetized. Each title is followed by a letter in parentheses that refers to the section in which the complete bibliographical information is contained. (C/J = Conference and Journal Papers, Section II; E = External Documents, Section III; and I = Internal Documents, Section IV.)

Argoud, M., Test Bed Concentrator Mirrors, (C/J).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J).

Back, L.H., Dish Stirling Solar Receiver Combustor Test Program (E).

Dynamics and Control of Stirling Engines in a 15-kWe Solar Electric Generation Concept, (C/J).

Bloomfield, H.S., Solar/Fossil Hybrid Systems Program Plan for Retrofit and New Hybrid Configurations, (I).

Dish PRDA: Engineering Experiments Selection, (I).

Industrial Application Experiment Series, (C/J).

Parabolic Dish Market Assessment First Interim Report, (I).

Cost/Performance of Solar Reflective Surfaces for Parabolic Dish Concentrators, (E).

Criteria for Evaluation of Reflective Surfaces for Parabolic Dish Concentrators, (E).

Evaluation of Solar Reflective Surfaces for Dish Concentrators, (C/J).

Evaluation of Solar Reflective Surfaces, (I).

Measurements of Coefficients of Thermal Expansion for High Temperature Polymers, (C/J).

Comparison of Advanced Engines for Parabolic Dish Solar Thermal Power Plants, (C/J).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J).

6-3
Caputo, R., An Initial Comparative Assessment of Orbital and Terrestrial Central Power Systems, (I-Presentation), (E).

Brief Review of Increasing Geometric Concentration Ratio Vs. Improving Receiver Surface Characteristics, (I).

Effects of Surface Optical Characteristics on Point-Focusing Solar Collectors, (C/J).

Methodology to Establish Goals for ERDA Solar Thermal Technology Development Programs, (I).

Thermal Storage Role Within a Solar Thermal-Electric Power Plant, (I).

Carley, W.J., Comparative Study of Solar Optics for Paraboloidal Concentrators, (C/J).

Progress in Point-Focusing Solar Concentrator Development at JPL, (C/J).

Collares-Perevia, M., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Das, R.L., Dynamics and Control of Stirling Engines in a 15-kWe Solar Electric Generation Concept, (C/J).

Edmiston, W., Measurements of Coefficients of Thermal Expansion for High Temperature Polymers, (C/J).

Solar Brayton Systems Transient Performance, (C/J).

Fellows, M., Site Participation in the Small Community Experiment, (C/J).

JPL Small Power Systems Applications Project, (C/J).

Small Power Systems Applications Project, (C/J).

Fortgang, H.R., Computer Model for Pricing of Thermal Power Systems Engines for Annual Production of 25,000 through 400,000 Units, (I).

Cost and Price Estimate of Brayton and Stirling Engines in Selected Production Volumes, (E).

Costing the Omnium-G System 7500, (C/J).

Manufacturing Cost Estimate of a Ceramic Receiver in Selected Production Volumes, (I).

Fujita, T., Comparison of Advanced Engines for Parabolic Dish Solar Thermal Power Plants, (C/J).

Comparison of Advanced Thermal and Electrical Storage for Parabolic Dish Solar Thermal Power Systems, (C/J), (I).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J).

Projected Techno-Economic Improvements for Advanced Solar Thermal Power Plants, (C/J).

Thermal Buffering of Receivers for Parabolic Dish Solar Thermal Power Plants, (C/J).

Comparison of Advanced Engines for Parabolic Dish Solar Thermal Power Plants, (C/J).

Glyman, J., Computer Model for Pricing of Thermal Power Systems Engines for Annual Production of 25,000 through 400,000 Units, (I).

Energy for California Water Systems Applications Study, (I)

Market Assessment Overview, (C/J).

Hagen, T., JPL's Parabolic Dish Test Site, (C/J).

Optical Performance of a Fresnel-Type Concentrator with Truncated Paraboloidal Facets, (C/J).

Optical Performance of Several Point-Focusing Solar Concentrators, (C/J).

Hoag, J., Cost Goals, (C/J).

Holbeck, H.J., Site Participation in the Small Community Experiment, (C/J).

Sites for Experimental Solar Thermal Systems, (C/J).

Huang, L., Comparative Study of Solar Optics for Paraboloidal Concentrators, (C/J).

Hughes, R.O., Effects of Pointing Errors on Receiver Performance for Parabolic Dish Solar Concentrators, (C/J).

Efficiency Degradation Due to Tracking Errors for Point-Focusing Solar Collectors, (C/J).

Optimal Control of Sun Tracking Solar Concentrators, (C/J).

Solar Tracking and Control Considerations, (C/J).

The Sun Tracking Control of Solar Collectors Using High-Performance Step Motors, (C/J).

Small Community Solar Thermal Power Experiment, (I).

The Small Community Solar Thermal Power Experiment, (C/J).

The Small Community Experiment (SCSE), (C/J).

Ceramic Technology for Solar Thermal Receivers, (C/J), (I).

Use of Ceramics in the Point-Focus Solar Receiver, (C/J).

Economic Feasibility of Small Solar Thermal Power Systems, (I)

Advanced Solar Thermal Technology - Potential and Progress, (C/J), (I).

High Temperature Solar Thermal Technology, (C/J).

Levin, R.R., The JPL Isolated Application Experiment Series, (C/J).

Ceramic Technology for Solar Thermal Receivers, (I).

Point Focusing Dishes, (C/J).

Presentation of Solar Thermal Power Systems Project - Energy Options for Industrial Users and Suppliers, (I).

Presentation to Solar Thermal Energy Division of the Solar Energy Industries Association (SEIA), (I).

Solar Thermal Power Systems Point-Focusing Distributed Receiver (PFDR) Technology: A Project Description, (C/J).

Subsystem Technology and Cost Targets, (I).

Projected Techno-Economic Improvements for Advanced Solar Thermal Power Plants, (C/J).

Thermal Buffering of Receivers for Parabolic Dish Solar Thermal Power Plants, (C/J).

JPL Small Power Systems Applications Project, (C/J).

Small Community Solar Thermal Power Experiment, (I).

Small Power Systems Applications Project, (C/J).

Solar Electric Power from Parabolic Dishes, (C/J).

The Small Community Solar Thermal Power Experiment, (C/J).

6-13

O'Gallagher, J., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Patzold, J.D., Omnium-G Concentrator Test Results, (C/J).

Salton Sea Project Phase 1, Final Report, (E).

Poon, P., Comparative Study of Solar Optics for Paraboloidal Concentrators, (C/J).

Optical Analysis of Cassegrainian Concentrator Systems, (C/J).

Optical Performance of a Fresnel-Type Concentrator with Truncated Paraboloidal Facets, (C/J).

Optical Performance of Several Point-Focusing Solar Concentrators, (C/J).

Rahe, A., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Revere, W.R., A Comparative Assessment of Solar Thermal Electric Power Plants in the 1-10 MWe Range, (E).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J), (I).

Projected Techno-Economic Improvements for Advanced Solar Thermal Power Plants, (C/J).

6-15
Solar Thermal Power Systems Point-Focusing Distributed Receiver (PFDR) Technology: A Project Description, (C/J).

Rose, W., Measurements of Coefficients of Thermal Expansion for High Temperature Polymers, (C/J).

Rosenberg, L.S., A Comparative Assessment of Solar Thermal Electric Power Plants in the 1-10 MWe Range, (E).

The Application of Simulation Modeling to the Cost and Performance Ranking of Solar Thermal Power Plants, (C/J).

Ross, D.L., Parabolic Dish Test Site, (C/J).

A Nomogram for Parabolic Dish Solar Concentrator Efficiency Determination, (C/J).

Simmons, H., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Use of Ceramics in the Point-Focus Solar Receiver, (C/J).

Starkey, D.J., Characterization of Point-Focusing Test Bed Concentrators at JPL, (C/J).

Initial Test Bed Concentrator Characterization, (C/J).

Steele, H.L., Comparison of Electrochemical and Thermal Storage for Hybrid Parabolic Dish Solar Power Plants, (C/J).

Stein, C.K., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Terasawa, K., Potential Benefits from a Successful Solar Thermal Program, (C/J).

Truscello, V.C., Comparison of Parabolic Dish Systems with Other Solar Technologies, (C/J).

Heat and Electricity from the Sun Using Parabolic Dish Collector Systems, (C/J).

JPL Small Power Systems Applications Project, (C/J).

Parabolic Concentrating Collector - A Tutorial, (E).

Parabolic Dish Collectors - A Solar Option, (C/J).
Parabolic Dish Technology, (C/J).
Power Converters for Parabolic Dishes, (C/J).
Small Power Systems Applications Project, (C/J).
Status of the Parabolic Dish Concentrator, (C/J).
The JPL Parabolic Dish Project, (C/J).
The Parabolic Concentrating Collector, (C/J).

Pipeline from Ocean to Desert to Provide Cooling for Solar Power Plant Complex, (C/J).

Comparative Study of Solar Optics for Paraboloidal Concentrators, (C/J).
Comparison of Electrochemical and Thermal Storage for Hybrid Parabolic Dish Solar Power Plants, (C/J).
Effects of Surface Optical Characteristics on Point-Focusing Solar Collectors, (C/J).
Thermal Performance Trade-Offs for Point-Focusing Solar Collectors, (C/J).

Wharton, L., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Parabolic Dish Technology, (C/J).

Power Converters for Parabolic Dishes, (C/J).

The JPL Parabolic Dish Program, (C/J).

Winston, R., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Solar Pond Power Plant Feasibility Study for Davis, California, (E).

Zitek, W., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

SECTION VII

TOPICAL INDEX

Documents are listed alphabetically under topics and subtopics and are identified by the first words of the title, the publication category (C/J = Conference or Journal Paper, E = External Document, I = Internal Document, and C = Contractor Report), and by the page on which they appear in the Bibliography.

Applications

BDM, Workshop, (C) p 5-1.
Burns & McDonnell, Assessment, (C) p 5-1.
Energy for California, (I), p 4-2.
Industrial, (C/J), p 2-5.
Selection, (C/J), p 2-7.
Siting, (E), p 3-4.

Balance of Plant

A Standard, (E), p 3-1.

Chemical Applications

Performance and Costs, (I), p 4-3.

Collectors

Brief Review, (I), p 4-1.
Optimization, (E), p 3-3.
Parabolic Concentrating, (E), p 3-3.
Parabolic Dish Collectors, (C/J), p 2-6.
Review of Distributed, (I), p 4-4.
Thermal and Optical, (C/J), p 2-10.
Thermal Optical Surface, (C/J), p 2-10.
Line-Focusing

Preliminary, (C/J), p 2-7.

Point-Focusing

The Parabolic, (C/J), p 2-10

Commercialization (See also Markets)

Arthur D. Little, Study, (C), p 5-1.
Assessment and Planning, (I), p 4-1.
Barriers, (C/J), p 2-1.
Demonstration, (I), p 4-2.
Perspectives, (I), p 4-3.
Regulations, (I), p 4-4.
Utility, (C/J), p 2-12.

Concentrators

Acurex, Advanced, (C), p 5-1.
Acurex, Low-Cost, (C), p 5-1.
Boeing, A Conceptual, (C), p 5-1.
Dish Concentrators, (E), p 3-2.
General Electric, Low Cost, (C), p 5-3.
Omnium-G, (C/J), p 2-5.
Optimization, (E), p 3-3.
Pioneer, Manufacturing, (C), p 5-3.
Point Focusing, (C/J), p 2-7.
Progress, (C/J), p 2-7.
Secondary, (E), p 3-3.
The Effects of Soiling, (C/J), p 2-10.

Control

Effects of Tracking, (C/J), p 2-4.
Efficiency, (C/J), p 2-4.
Optimal, (C/J), p 2-6.
The Sun Tracking, (C/J), p 2-11.
Cost

Configuration, (C/J), p 2-2.
Configuration, (I), p 4-2.
Design, (I), p 4-2.
Methodology, (I), p 4-3.
Performance and Costs, (C/J), p 2-6
Performance and Costs, (I), p 4-3.
Regional, (I), p 4-4.
Review of the Projected, (I), p 4-4.
Subsystem, (I), p 4-5.
The Application, (C/J), p 2-10.

Of Output

Effects of Regional, (E), p 3-2.
Electric, (I), p 4-2.
Energy Price, (I), p 4-2
The Effects of Regional, (C/J), p 2-10.

Of Production

A Standard, (E), p 3-1.
Computer, (I), p 4-1.
Cost Analysis, (I), p 4-2.
Cost and Considerations, (I), p 4-2.
Costing, (C/J), p 2-2.
Manufacturing Cost Estimate of a Ceramic, (I), p 4-3.
Manufacturing Cost Estimate of an Organic, (I), p 4-3.
Pioneer, Cost Analysis, (C), p 5-3.
Pioneer, Manufacturing, (C), p 5-3.

Economics

Economic Cost, (I), p 4-2.
Economic Feasibility, (I), p 4-2.
Economic Value, (I), p 4-2.
Impact, (C/J), p 2-5.
Perspectives, (I), p 4-3.
Projected, (C/J), p 2-7.
Projection, (I), p 4-4.

Engines

An Overview, (I), p 4-1.
Computer, (I), p 4-1.
Turbine Sizing, (C/J), p 2-11.

Brayton

Garrett, Concept, (C), p 5-2.

Rankine, Steam

Foster-Miller, 15 kWe, (C), p 5-2.
Jay Carter, 15 kWe, (C), p 5-3.
Sundstrand, 15 kWe, (C), p 5-3.

Stirling

Dish Stirling, (E), p 3-2.
High Performance, (C/J), p 2-4.
Mechanical Technology, Design, (C), p 5-3.
United Stirling, Design, (C), p 5-3.

Environment

Effects of

Environmental, (C/J), p 2-4.
The Effect of Urban, (C/J), p 2-10.
Urban Air Pollution and Its Effect, (C/J), p 2-11.
Urban Air Pollution and Solar, (C/J), p 2-12.

Effects on

Experiments

Isolated Loads

The JPL Isolated, (C/J), p 2-10.
Dish PRDA, (I), P 4-2.

Small Community

Site Participation, (C/J), p 2-8.
Sites for, (C/J), p 2-8.
Siting, (C/J), p 2-8.
Siting, (E), p 3-4.
Small Community Solar, (I), p 4-4.
Systems Requirements Experiment 1, (I), p 4-5.
Systems Requirements Experiment 2, (I), p 4-5.
Systems Requirements for Experimental, (I), p 4-5.
The Small Community Experiment, (C/J), p 2-11.

Fuel Production

Generators

Application, (E), p 3-2.

Insolation

Average, (I), p 4-1.
Perspectives, (I), p 4-3.
Manufacturing

Arthur D. Little, Study, (C), p 5-1.
A Survey, (E), p 3-1.
A Survey, (I), p 4-1.

Materials

Aging, (C/J), p 2-1.
Aging, (I), p 4-1.
Assessment, (C/J), p 2-1.
Assessment of Ceramic, (I), p 4-1.
Ceramic, (I), p 4-1.
Cost/Performance, (E), p 3-2.
Criteria, (E), p 3-2.
Evaluation of Solar, (I), p 4-2.
Fracture Mechanics, (E), p 3-2.
Glass, (I), p 4-2.
Measurements, (C/J), p 2-5.
Mixtures, (C/J), p 2-5.
Performance, (E), p 3-3.
Reflectance, (C/J), p 2-7.
Status, (E), p 3-4.
The Effects of Soiling, (C/J), p 2-10.
Thickness, (C/J), p 2-11.
Use of Ceramics, (C/J), p 2-11.
UV Transmission, (C/J), p 2-12.

Markets (See also Commercialization)

Irrigation, (E), p 3-3.
Market, (C/J), p 2-5.
Parabolic Dish Market, (I), p 4-3.
Small Community Solar, (I), p 4-4.
Utility, (C/J), p 2-12.
Optics

Effects of Surface, (C/J), p 2-4.
Optical Analysis, (C/J), p 2-6.
Optical Performance of a Fresnel, (C/J), p 2-6.
Optical Performance of Several, (C/J), p 2-6.
Thermal and Optical, (C/J), p 2-10.
Thermal Optical, (C/J), p 2-10.

Performance

A Graphical, (C/J), p 2-1.
A Modularized Computer, (I), p 4-1.
A Nomogram, (C/J), p 2-1.
A Simulation, (C/J), p 2-1.
Analytical Foundations, (I), p 4-1.
Brief Review, (I), p 4-1.
Configuration, (C/J), p 2-2.
Configuration, (I), p 4-2.
Design, Cost, (I), p 4-2.
Effects, (E), p 3-2.
General, (C/J), p 2-4.
HEAP, (E), p 3-3.
Performance, (I), p 4-3.
Presentation to Workshop, (I), p 4-4.
The Application, (C/J), p 2-10.
The Effects of Regional, (C/J), p 2-10.
The SYSGEN, (E), p 3-4.
Thermal and Optical, (C/J), p 2-10.
Thermal Performance, (C/J), p 2-11.

Piping

Low-Cost, (C/J), p 2-5.

Plant Design

Configuration, (C/J), p 2-2.
Configuration, (I), p 4-2.
Review of Arkansas, (I), p 4-4.
Review of Brevard, (I), p 4-4.
Review of City, (I), p 4-4.
Review of Mississippi, (I), p 4-4.
Review of New Mexico, (I), p 4-4.

Ponds

A Review, (E), p 3-1.
Conference, (I), p 4-2.
Regional, (E), p 3-3.
Salton Sea, (E), p 3-3.
Solution, (I), p 4-5.

Power Processing

Process Heat

Design, Cost, (I), p 4-2.
Ford, Parabolic, (C), p 5-1.
Industrial, (I), p 4-3.
Parabolic Dish Technology for Industrial, (C/J), p 2-6.

Program and Project

Annual Technical Report - Point Focusing Distributed, (E), p 3-1
Display Posters, (I), p 4-2.
JPL Small, (C/J), p 2-5.
Parabolic Dish Project, (E), p 3-3.
Parabolic Dish Program, (I), p 4-3.
Parabolic Dish Solar Thermal Power Annual Program Review Proceedings,
Parabolic Dish Solar Thermal Power Annual Program Review Proceedings,
PDTS, (E), p 3-3.
Presentation of Solar, (I), p 4-4.
Presentation to Solar, (I), p 4-4.
Receivers

Advanced Receiver, (C/J), p 2-1.
A Simulation, (C/J), p 2-1.
Boeing, Air Brayton, (C), p 5-1.
Dish Stirling, (E), p 3-2.
Evaluation, (I), p 4-2.
Fairchild, Dish, (C), p 5-1.
Garrett, Air Brayton, (C), p 5-2.
General Electric, Easy, (C), p 5-2.
General Electric, Heat, (C), p 5-3.
HEAP, (E), p 3-3.
Manufacturing Cost Estimate of a Ceramic, (I), p 4-3.
Manufacturing Cost Estimate of an Organic, (I), p 4-3.
Pioneer, Cost Analysis, (C), p 5-3.
Sanders, High Temperature, (C), p 5-3.
Sanders, Phase I, (C), p 5-3.
Solar Receiver, (I), p 4-4.
Solar Thermal Power Point-Focusing Distributed Receiver (PFDR)

Research and Development

Storage

Application, (C/J), p 2-1.
Chemical Energy, (I), p 4-1.
Comparison of Advanced, (I), p 4-1.
Comparison of Electrochemical, (C/J), p 2-2.
Effects of Thermal, (C/J), p 2-4.
Electrochemical, (E), p 3-2.
Experimental, (C/J), p 2-4.
Garrett, Buffer, (C), p 5-2.
General Electric, Storage, (C), p 5-2.
High Temperature Heat, (C/J), p 2-5.
High Temperature Latent, (C/J), p 2-5.
Thermal, (E), p 3-4.
Thermal Buffering, (C/J), p 2-10.
Thermal Storage, (C/J), p 2-11.
Thermal Storage Applications, (I), p 4-5.
Thermal Storage Role, (I), p 4-5.

Systems

Brayton

A Preliminary, (E), p 3-1.
Analytical Foundations, (I), p 4-1.
Dish Brayton, (C/J), p 2-3.
Systems Requirements for the Brayton, (I), p 4-5.

Comparison

A Comparative, (E), p 3-1.
Comparison of Parabolic, (C/J), p 2-2.
Decision, (E), p 3-2.
Design, Cost, (I), p 4-2.
Initial, (E), p 3-1.
Initial, (I-Presentation), p 4-3.
Regional, (I), p 4-4.

General

Focus, (E), p 3-2.
Heat, (I), p 4-3.
Power from, (C/J), p 2-7.

Rankine, Organic

NASA ESD, (I), p 4-3.

Rankine, Steam

A Preliminary, (E), p 3-1.

Stirling

Dish Stirling, (C/J), p 2-3.
Thermal and Optical, (C/J), p 2-10.

Technology

Advanced Solar Thermal Development, (I), p 4-1.
Advanced Solar Thermal Technology, (I), p 4-1.
Advanced Subsystems Development, Second, (E), p 3-1.
Advanced Subsystems Development, Third, (E), p 3-1.
Focus, (E), p 3-2.
High Temperature Solar, (C/J), p 2-5.
Parabolic Dish Technology, (C/J), p 2-6.
Parabolic Dish Technology for Industrial, (C/J), p 2-6.
Perspectives, (I), p 4-3.
Projected, (C/J), p 2-7.
Subsystem, (I), p 4-5.

Testing

Documentation, (I), p 4-2.
Initial, (C/J), p 2-5.
JPL's Parabolic, (C/J), p 2-5.
Materials, (I), p 4-3.
Parabolic Dish Test, (C/J), p 2-6.
Point Focusing, (I), p 4-3.
Procedure, (I), p 4-4.
Test Plan, (I), p 4-5.
The JPL Flux, (C/J), p 2-10.
Thickness, (C/J), p 2-11.
User's, (I), p 4-5.

Transport of Energy

Application, (C/J), p 2-1.
Experimental, (C/J), p 2-4.
General Electric, Easy, (C), p 5-2.
General Electric, Heat, (C), p 5-3.
Pipeline, (C/J), p 2-6.
Thermodynamics, (C/J), p 2-11.

Utility Interface

528 FS-1
NATIONAL AERONAUTICS AND SPACE ADM
ATTN LIBRARY
LANGLEY RESEARCH CENTER
HAMPTON, VA 23665