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The purpose of ‘thi; grant is to investigate the use and
implementation of Ada (a trade 'inark ‘of the US Dept. of Defen'se)'in,
distributed enviromments in which the hardware components are assumed to
be unpeliable. In pa%tibuiar,' we are §Onéernéd with fhe poséibilitj
that a distributed system may he progpammed entirely in Ada so that the
'indlvidual tasks of the system are unconcerned with which processors
they are executing on, and that failures may oceur in the underlying

hardware.

Over. the next decade, it is expected that many aerospace systeﬁs”
will wuse Ada as the primary implementation language. This is a logical
choice beczuse the language has been designed 'foﬁ. embeddéd' systems.
Also, Ada has receivedisudh.great'care'in its design and implementation
that it is unlikely that there will be any practical alternative in

selecting a ppogramming language for embedded software.

The reduced cost of eomputer hardware and the expeeted ~advantages-

of distr:l buted processing (for- example, increased reliability through

redundancy and greater _flexibility)_ indicate that many  aerospace =

computer systems will 2 diétributed. The use of Ada and distributed
systems seems like a good combination for advanced ‘aerospace embedded

systems.
‘buring‘éhé‘ﬁweivédﬁbﬂth”béridd COVéEéd'by'thié graht, 'ouf bﬁimafy
: activities have been designing our fault-tolerant Ada System and

'implementing an initial versmon.of it. Wé have eompleted mueh of the

design wovk although some details remain to be worked out. The design .




has been dinfluenced by our desire to use ‘this . system for
experimentation. Many features have been included %o facilitate
analysis and verify results, Consequently we have chosen to ignore

efficient exepubion and to stress simplicity and flexibility.

A first véfsion of the imﬁlémeﬁtafioﬁ haé also Been compieﬁéd and
iz being ¢tested, At present all the major features of the tasking and
EXQéptioh mechanisms of Adé have been imﬁleﬁénﬁed. The interface that
the testbed presents to the 'user is still extremely crude and is
préséntly the subject of revision. Oﬁr original infention was to
implement only an execution—time system for Ada and not to bother
building é tfahsiator; Wé felt that whaﬁevef pﬁognams were needed for
demonstration or experiment could be compiled by hand. We discovered
.how'wrong this was when.the ﬁand éomﬁilati&n of fﬁe first test ﬁrogram
toock a whole_ day. ansequen;ly, we_haye_begun,the_dgyelopnent.of a

translator for the subset of Ada that pertains to this research.

In Section 2 of this report, the Hardwaré"configuratibné we are
using and intend to use are described. An overview of the system design
is preseénted in Section 3. A brief ‘deseription of the translator

mentioned above and its present status is given in Seetion_uf

We have cﬁntinuéd our analysis of the Ada language  and found - new
and . potentially . serious difficulties with ' task . termination. These
.issues are,described,Speeificaliy'in Section 5. Two papers' have been
© prepared -that discuss the ;diffiGUIﬁieS'_wiih Ada. Ohe of them was

presented at the AIAA Conference On Computers And Aerospace held in

_‘Hartford. in October, ~1983. - A oopy of ‘that paper is included in this =




report as Appendix 2. The second paper is a still in draft form and
will be submitted %o a journal when complete., It is included in this
report as Appendix 5., The reader is cautioned thabt Appendix 5 will not
be - the f£inal version of that paper, and that inevitably there is some

overlap between that paper and the one in Appendix 2.

A consequence‘ of ouﬁ anaiysis of .Ada is ﬁ set of general
impressions ~about what features are negded ‘in lgnguageg for fault-
tolepant distributed processihg. We have documented these impressions
in a paper -that has been =submitted to the Fgupteenth-Annual Fault-
Tolerant Systems Conference. A copy of that paper is included in this
report as Appendix 3. We have not received the decision of the

conference program committee about that paper.

Our distributed Ada 1mplementatlon.will constltute an 1neomp]ete;
but useful, operatmonal semantic definltion of Ada tasking. The purpqse_
.of a semantzc definition is to answer questions of 1anguage meéniﬁg; An  .
operational deflnition does th;s by allowing programs to be execubed andl “

‘_their actions o be observed.

- Existing operational semantic definitions such as NYU!s Ada/ED are
 h% QO&'ﬁrmmwm@lma%u-TMramnmtmtawmﬁﬁ"
duesﬁién about tasking cannot be answered because a»set*of”tasks _camnot
be forced into the necessary state which leads to the "what if"
question. Note that thiz does -not happen ~with sequential  languages

because they 7 are  deterministic. Concurrent languages are non-

deterministic and this means that theré may be no guarantee that a -

particular state of inﬁerest is reaehéd on any given execution,



To avoid this problem we have designed a .Sequence control asystem
which will allow the progress of individual tasks to be adjusted so that
a program can be forced into any particular state. This is discussed in
depth in Section 6. The sequehce conbrol mechanism is a part of the
ﬁesﬁbed'and.a-péper aéscribihg-the testhed has been submitted to the
Fourteenth Annual Fault-Tolerant Systems Conference., A copy of that
paper is included in this report as Appendix 4. We have not received
the decision of +the conference program committee about that paper

~either.

- Our work on Ada has attraeted attention from outside the University
of Virginia. During the grant reporting period seminars have been gilven
deseribing the work ab:

(1} The Research Triangle Institute (twice),

(2) The University of North Carolina at Chapel Hill.
(3) North Carolina State University.

(4) IBM Federal Systems Division.

A presentation deseribing our work was given at a conference on the
general topie of fault tolerance organized by General Electric
Corporation. The conference was held in Charlottesville and attended

- mainly by GE personnel from variqus:lpeations;



2.+ HARDWARE .CONFIGURATIONS

One of the opiticiSms'frequénbly made of deﬁonéﬁrations is that
adynchronous hardWare s often simulated and, consequently, result
obtained canfiot be relied upon. Sinece we are attempting fo. démonstrate.
reliability of a system involving sevepal eomputérs, we will_be dsing a
hardware éonfiguraﬁibﬁ'wifh'sevéfai eombuters dn if. THowever,. for the.
purposes of software developmeht__we_ will be using a simulation of a
multidombuter cdnfiguration rdnnihg dn a DREC VAX f1/780; Both of tﬁese

configurations are described in this section.

2.1, Physical Multicomputers
"We have.purchésed two IBMiPeréonal Compuﬁers (Pcs)-to be wused in

conjunction with three other PCs owned by another research project. We

will alse be using the department's DEC VAK'11/TBO computer. The .Péé

will be connected to the VAX by low=-speed serial lines and these 11nes
Will allow software and data files developed on the  VAX to be

transferred to the PCs. Our original ;ntention'was to route all PC=to~

' PC communlcation through the VAI using these serial lines. This wouldv

have allowed the VAX to monitor all PC-to—PC communieation and to

:conbrol the PCs by sending messages to them Which it ormginated. Thisd
meehanism would have been used for debugglng, and for initiating and '

”monitoplng reconfiguration experlments. Careful review of this plan -

shcwed that it would be very diffleult to implemenb. The reason 15 that

rsince all messages would be manipulated by both Pcs and the VAX, it

would be neeessary to have bit-level aceess to message formats on both_'
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Figure 1 ~ Hardware Configuration. -

computers, -_All of our software iz dimplemented 'in. PFPascal and all
messages are - defined as Pascal records. Since VAX Pascal and IBM PC
Easce]_. implement records differently, this would make symbolic access to
the messages on both machines extremely difficult., This is such a

-substantial problem that we chose to abandon the approach.:

The PCs are also eonneeted by a high-speed Ethernet system that is

" not routed through the TAX, The neeessary Ethernet hardware for the two

PCs purehased under th:.s grant has been prov:x.ded by the University of -

Virginia's Department Of Applied Mathemat:ics and Computer Science. The

equipment was manufactured by TECMAR Inc.
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A major part of this grant period has been spent in implementing
the software necessary to allow the PCGs to communicate using the
Ethernet hardware. Although the equipment was manufactured by TECMAR
specifically for the IBM Personal Computer, it leaves a great deal to be
desired, - The hardware is poorly designed. For example, only a single
buffer is provided so that, in principle, each hardware wnit can only be
. used for transmission or reception, not both, at any given time., We
have circumvented this problem in software at the cost of some loss of
performance, The documentation provided by'TECMﬁR is extremely poor,
Not only is it incomplete bubt it contains pumeprous eprors in the
~detailed deseription of how the hardware works, . Consequently very
substantial delays were incurred by relying on the documentation and not

- understanding why the system would not work correctly.

The necessary software to support ow testbed has ‘now  been
completed and tested. It works to ow satisfaction, and, in our

. opinion, is far better than any software available form TECMAR Ine.

The proposed configuration is shown in Figure 1.

2.9, Logical Multicomputers

We feel that the IBM PC does not represent a suitable envirorment

- for developing the software necessary for this project. As =&

. consequence  of the Ada semantics, much of thegsoftwaﬁe is ~wvery complex -

and developing it requires powerful support facilities such as those

provided by -UNIX.
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We have been using UNIX to develop our | testbed s::ﬁwarre and we felt
it was dimportant that it be possible to test the software under UNIX.
- Consequently, we have put substantlal effort into constructing a
software analogy of the IBM PC/Ethernet configuration, This analegy
uses UNIX processes to simulate IBM PC  processors, UNIX pipes to
simulate the FEthernet communications facility, and UNIX terminals %o
simulate the monitors and keyboards of the PCs. Thus we are able to
‘execube the testbed on the VAX in an asynchronous enviroment that is
reasonably realistic. This mechanism is described in more detail below.
" In +the remainder of this report, any capability deseribed as punning on

the IBM PCs #ill also run on the UNIX process/pipe implementation,




3+ SOFTWARE SYSTEM DESIGN

The software System is in two parts. One parf, ealléd the
Sequencer, runs on one PGbandbthe other, called the interpreter, on the
ramainihg PCs (ohé.QOPy on eacﬁ).

The sequencer conbirols the enbire systems It communicates with the
experimenter via an Interactive terminal and processes a command
language. Commands are then 4implemented by sSending special purpose
messages to the remaining PCs, These commands allow programs to be
“‘Loaded, parts of the system to be deliberately failed, and 'so om The

sequencer alsc implements the sequence control system (See below).

The software running on the remaining ¥PCs actually executes the
distributed Ada program. Ve have chosen not tp genenate native Ingel
8088 code for the PCy but to generate sode for a synthetic machine which

will be.interprgted._ OQur reasong are:

(1) It would be difficult to retain complete eontro& of the program ERy

the PCs were exeeuting it direetly.

(2) Generating code for a2 synthetic machine will make - code generation

very much simpler.
(3) The ththétie mﬁchine:architecﬁure'can itself . be the subject of
experimentation. Thls will allow investigation of hardware design
'which can support distrlbution.
() The software can be moved -to different physical = computers very

easily.
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The PC software is organized as bthree major layers, The {fipst
layer provides communication facilities, Tt accepts and delivers
complete messages from the rest of the system and inﬁerfaces at the
character level with the serial line and the Ethernet., Since the
knowledge of the two communicaticns lines is hidden in this layer, it

will be relatively simple to use elther as desired.

Although we will have up to five IBEM. PCGs available for
experimentation, we f£ind it desirable to be able to model arbitrary
distributed systems. We have defined the concept of ‘an "abstract
processor® (AP) that is a generic processor suitable for use as a
_'genenai'nede in a distribubed system.v A set of abstract ppdcessbrs will

be the distributed sysﬁém that is presented to the-ﬁde progranm,

Bach PC will implemehﬁ_an arbitrary nunber of APs. This dis ‘the
. funection of the seeend -layer Qf the PG-softxape. Thus a d#stributed
system comprising a set of any number of processors could be run on any
_.number_ of EPCsj from one o five, In addition, sinece the system can be
run on the VAX, a single physical processor can appear to be any desired

disbbibuted configuration.

This use of the abstract preeessers will ailbw.expefimentation with

any deszred distrlbuted configuration. For demonstration purposes

“‘hOWEVEP; each PC ean be made to run exaetly “one AP and the logical‘ o

system will then be equivalent to the physical system.

Since an Ada program can consist of any number'ef tasks, and tasks

~.can be created dynamically, each AP in a distributed system must be able =

- to support any mnumber of Ada tasks, The usual approach to the
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implementation of multiple tasks on.a single processor is to multiplex
the real processor and give each task the impression ‘thaﬁ it has its |
~ own, rather slow, processor. Ada tasks will be implemented this way and
‘each AP will support an arbitvary number of - virtual processors (W..TPs)b |
with one for each Ada task. The provision of the VPs is the function of

the third layer of PC software,

- The virtual processors are designed to make Ada task execution
feir-ly easy. Thelr dinstruction sets are tailored to Adz tasking and
they have special. "h_ar_vdware" features such as built-in ‘entry queues.

The software therefore does not have to implement these queues,

. The virtual prooé‘és’sor(s nust suppoz’-t' the. .e“ntire ‘semanties of 'Ada
tasks and so t.he:.r implementation is quite eomplicated. As we discover
more about t.he language semantics so the complexity of the VPs
inoreases. The "hardwar-e reference manual" for the v;Lz-tual ppoeessors .

is included in th:.s r-eport as Appendix Te

M1 of the processors in. the system communicate via a set of
message S. Thus for example a rendezvous vis,v implemented as a series of
messages even when the VPs involved are exeeutingbn- the same AP.  Some
messages (those between APs on a single PC) do not get transuitted
through the Ethernet, - The "PC communications sbf‘twa.r-'e” reflecté Nor

- "miprors® these messages back to the appropriate AP,

In'o'ur'. c.:z-igihel- discussion of fault detection, . Wwe proposed a system

~of softwape heartbeats which world allov detection of failed equipment. .-

In our design, we have ineluded the heartbeat meehanism -at . the higher- :

_ levels of abstraction, but we will not include the heartbeats in.ouwr
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initial implementation. The reason is that they add nothing to the
experiments that we wish to perform. We are concerned with the events
oceurring following a fault and these are best observed if the fault is
deliberately injected. This will be done from bthe command language
supported by the sequencer software. Failure of an AP will be
communicated to the PC pesponsible for running that AP by é'messagé.
The AP will then cease being scheduled by the PC. The remainder of the
APs will be informed by a brbadea:é‘ﬁ ﬁiessage_.' Thus inStead G tﬁé
heartbeat mechanism, the experimenter will be able to cause any of the
APs. to fail at any-desir;ed point. The h'e.artbea.'t.: mecﬁani’sm ﬁill' be added

when the rest of the system is complete and running smoothly.
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4, Ada SUBSET TRANSLATOR

In order to allow us to debug our testbéd and to perform
expez_-iments we need v_to be able to execubte a var-igty_ of Ada programs,
 Preparing thesé pr*ograms for execﬁtién requirés g translator and a major
poption of the grar;t reporting _'pe_r.jI.od has been spent designing and
imﬁlementing ﬁh:.i.'s tx{aﬁslatbr. ..It is important to understand that the
target of _bhis translator is the virtual processors deseribed above and

not the IBM PC or the DEC VAX 11/780.

 Our goal inv.this”project' daeé not include céﬁlpiler vresear‘cﬁ. .an'd. ..sc.)
we souglit the most timely manner of producing the translatpr' we needed
rather than spending a lot of time 'deirélo-ping fast, e.f‘fiei.en.t,. or
otheryise notewoz'th}r compilation techniques. Consequently, our approach .
has been to niodif{y an é)ds{:ing translatob lfor'gva lé.nguage thét was .in
some waysb similax' to Ada. This tfan?ia’tpr:had priginally _bégn bt_Ii_lt
usin'g‘ the UNIX cémpilér- con‘si;r*ueﬁipn toéls - YACC and LEX. The
trarisi-ator :LS written in C. | o N
The transiator for our subset of Ada is essentially eo:nﬁlete and

generates .code for the testbed's virtual processors. The translator is

‘presently being tested,
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5. LANGUAGE TSSUES

As a part of designing the sof'tware for the VP sof.‘twar'e .layer- we
had to look elosely at the semantics of task termination. This had been
discussed on several occasions and thought-to be well understood. 'The
current diseuesn.ons centered around efficient methods of implementabion.
.The nost ef‘fi-eient, and we believe the usual, method of handling'
termination is <for a master task to count the number of ifs dependents
who are ready to terminate, and to terminate the group when the number
counted equals. i;he number of dependents. The count may decrease as well
as .inor-eaSe because a task may become Munready®™ if one of its entries is

called by another task.

On a wniprocessor this is not a problem and yields a valid
implementation. On a distributed system it may not, "I’he Ada Lahguage
Referenee Manual (LRM) states that a neoessary and sufficient condition

for- termination is:

"Each task that depends on the master is either already ter=-

minated or similarly waiting on an open terminate alternative of

a select statement", . :
In a dlstr':.buted system, deter'mination of a task's state .on a vremote _
machine has to be determined by message passing. The above condition .
uses the pr'esent tense and therefore a task may no‘o ohange its s‘oate
once asked about termnata.on until the master has made :Lts decision to
_ term:r.nate or not. This means that if termnation :I.a not possible, the
_..masber ‘must send a seoond message :.ndiea.ting that a task may resume .

exe oution.
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There are two things to note here. The first i3 that failure of
the processor running the master between the two required messages will
suspend the dependent task permanently. This is similar to many other
conditions we haye noted beféfé. The =econd thing to note is that
counting dependents is not a valid implementatiqn because i%t records
task stﬁtes as they wépe; Tepmination has to be based on a #snapshot™

of task states.

The reason that this is not a major problem on a uniprocessor is
~that a snapshot can trivially be obtained by a master since while it is

executing, all its dependents are suspended.

fhe Ada text shown in figure 2 ié.a set ofvtasks which Should never
terminate. Despite the TERMINATE alternates in the SELECT statements,
any implgmehtaﬁion which teﬁminatgs ﬁhese tasks is ﬁrong. Tagk X is
unable to termiﬁate_ Since 'tésks 4 and B ape in au‘igfinite looﬁ_gf
al ternating instigat;ona df rendezvous. Any termihation—check algofi#hﬁ 
wﬁieh‘ éoes, nét stop both A and B, -such as a dependent‘cqunﬁing ‘
alébriﬁhﬁ; éllaws the poééiﬁilit# fob'the combiﬁéﬁion of old and“new‘
information to__indigate that BOTH A& and B are waiting‘at:se;gct
éﬁatements with__qpéﬁ terminate alfernatives, which  is | QLeérly

impossible,

Also note that, with an algorithm which stops all dependents
periodically for polling, task X will actually be interfering with the
" progress of tasks A and B throughout their lives.

We feel that we understand the language issues involved with Ada

- -operating -on distributed systems at this point.: Papérs.deserib;ng-the"'
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proéedur-e DEMO is
task X:
task bedy X is
task 4 is entry Ej end A;
task B is entry E; end B;

task body A is begin
loop
B.E;
select
accept E;
oy
terminate;
end select;
- end loop;
end As

task body B is begln
' loop .
select
accept Ej
or
terminate;
end select;
A.E;
end loop;
end B -

begin null; end X;

begin null; end DEMO;

Figure 2 - Tasks Which Should Never Terminate

different aspects of thls are included 1n,this report in

Appendix 3, and &ppendix 5. ' :

- Appendix 2,
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8. SEQUENCER

The sequence of actions within the testbed w::.ll be contrelled from
the | seguencep. In most smulator-s, there is a single step mode whereby
effeets of individual instructions wn.i;hin a program can be studied in
detail. | The case of simulat:r.ng parallel programs, particular'ly when
distributed over many machines, is more complicated, Not only is it
necesgary to‘ sin.gl_e sﬁep individual tasks, huf. is it also necessary to
single step them in relation to each other, Further, our Iinterests in
Ithis research are such that we want to deal with the tasks through a
perspective which is more microscopic t_han thg Ada source J_aﬁg_uage
1evei. A typlcal experiment :j.s expected to arrange for an accepting
task to send a CHEQLCALLER message: _jt;st after the calling task's timed
- entry éall timea‘ out. - Both _tasks, must be held at points wyithin Ada

sbatements so as to force the required interaction,

' .Thie ééquenneb is- a part of the testbed séf‘twére and its purpos.e is
to contr'ol the par'allel act:.vities of the tasks w:.th:.n an Adg progr-am.
It deals W:J.th the pr'ogz*am at the interpreted 1ntermediate code le\rel.
It pr'ov::.des breakpoints and allows tasks to be s::.ngle stepped in terms .

.of‘ indlvidual messages as well ag the J,nter-pr'eted instructz.ons.

L scheme has been wopked out by which an actual distributed system
_eould establish _communicatién and start up without the sequencer,
‘However, in.order for -the. -éeq'l:(ehcéi’n to maintain .'-'éonﬁ'rol,' it 'hmvévtv
establ:.ah its conbrol. at start-up, thus it handles the assignment of APs

“to PCg and PC names to- ports.
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The seqi:'encer- is interactive and is able i:o display all pelevant
tables owned by the FCs and by the message switch. It also_permits a
-fast—forward inﬁérpretation ﬁdde to alicw the system to met up the
@mmdemmetm&wtm@HMgay%tmﬂofmewWHMMwm.
time, Since eode iz shared among tasks, bpeakpoints by code 1ocation -
orly are insuffie*ent A breakpoint is named by source~level task name
(task id), code location, and number of times the task must exeeute that
code location before "hitting" the bpeakpoint. This count is due to the
experimentev 8 desmre to perfopm experiments within loops or at
{brailing) end condltions. Impiicatiqns of the source level task id are

that'

" (1) There will be no more than one (1) exXecution of allocators of tasks

for any access variable,

'(2) There will be no two identical simple names for tasks within any

experimental  progranm.

. These are not serious restrictioans, -

. As part of ifs control. of the PCs, -the sequencer  must have

extensive communications with them. A1l of these messages are copied
. into a log file to allow for later detailed study. .Further, in ordepr to
direct individual task's (i.e. VP's) actions, the sequencer must also

-maintain coples of all the AP's VP maps.
Brief descriptions of the sequencer commands are:

(1) Load AP to PC map information into both the sSequencer and the

. individual ‘PCs.



(2)

(3

(%)

(5)
- (6)

&P

- (8

(9
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Load program to be run. ‘The compiler's output has been stored in a
file on the VAX and the appropriate file for this experiment is

copled into the individual PCs'! memories.

Inform all PCs of the demise of a particular AP. This causes the

.PG owning the subject AP to cease to schédﬁle iﬁ.

Allow. the named tasks to run until they encounter ﬂbreakpoints or .

terminate. The absence of task names indicates that all tasks

should be run (none should be artificially suspended),

Stop or artificially suspend the named tasks no matter what they
are doing. Absence of parameters means stop all taska.

Single step the named task through the interpretation of one
instruction,

Single step the named task through the handling of one message.

This has been separated from t{he command to. single step an

instruction to allow better control of the order of events within a

- ¥P.

Display the sequencer's tables. Due to table vs._ termlnal screenr

size, these may have to be 1ndiv1dually selected. The tables

needed by the _sequencer are_:task_;dv_to__VE_name, VE_name to

AE_numbéb; AE_nﬁmbér to'EE_nﬁmbef, PE_nﬁﬁber to port, and relevahtv

~ breakpoints, -

Remove breakpoint. Inverse operation of the set - breakpoinﬁ

command.
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Papt of the sequencer's monitopring interface provided for the
experimenter is aetualif prdfided by the individual PCé on their own
terminal screens., This is a set of displays selectable at the PCst?
keyboards. ' fhe 'diSplays .are a.summafy with Qné‘line'per Vf inciuding.
_minimal status infprmation and any simulated oubput gontrol signals,
full VP status for ome VP and utilizing the enﬁire'screén, full AP
status for one AP, and full status of -the PC itself. . These status

reports include contents of message buffers as well asvinternal tables.
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This is a desecpiption of the testbed's virtual processors. Napes
taken from the Pascal-like declarations below and appearing in the text

are delimited by the character BIW,

Certain sample instruction sequences are given toward the end of
this document as aids in the compiler's author's task, As a further
aid, two simple Ada programs are shown along with their translations to

instruction sequences and template Sequences.

The thread of control associated with an Ada task (including the
enviroment task) represents the execution of exactly ome barget

machine,
- The target machine has the following kinds of memories:
(1) 1A static memory for instrupticns and string constants,
(2) A static memory for templates.
.(3) A set of en£ry qﬁeués.
(4) A tageed expression stack.
(5) A set of_lists.pf addregsing_;nfprmation fo? depgndent tasks.

(6) A set of lists of addressing information’ for locally declared
tasks. |
(7T) A set of lists of addressing information for locally allocated

tasks.
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(8) A set of MYapms' which contain template indices, continuation
addresses, enbry indices, and delay intervals, as appropriate, fop
use by the !select! instruction in implementing the gmemantics of

the Ada select statement.
(9) A set of tagged memories for allocation of space for variables,

(10) A set of tagged memories for allocation of space for formal

subpragpamvparameters.-

(11) A set of tagged memories for allocation of space for formal entry

parameters,

(12) A oonnectbion o each of the effectors (oubput ports)  of the

abstract processor on which the virtual processor is running,

The contents of the target machine's two static memories are

downloaded from the compiler or copied in toto from a parent to a child

during execubion of a lereatetask! instruction (think of the process as
budding). The one -containing in;truetions. and string constants is
cailed thé. céﬁespace. The other 18 called the templﬁtespaee and

contains . lunittemplatels.. A lunittemplatel will be gererated by the
compiler for the enviromment task and for each subprogram, block, accept
. statement, taskg:angypackage_found,in.an.Ada-ppogram. These will later

be prefevred to as Munitsf. -All lunittemplatels contain certain items of

information in common. Taese are, in order of their appearance withina. =~

lunittemplate!:

(i) isﬁbingmax! éhar5¢ters ;containing the sonbcé ' name of  the

subprogram, block, task, package, or accept statement whose




(2)

(3)
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cecurrence caused the compiler to generate this Junittemplatel,
The name %s left justified with blank f£ill. The name of the
envivorment task ig MET, The name of an accept statement is
éombosed of thé word "acée‘i:t L foliéired .by the ehtz‘y néme up to 'bﬁe

left parenthesis of the enbry index.

The absolubte address din codespace of the f£irst dinstruction
(sometimes called an entry point) of the task, subprogram, block,
package body's sequence of statements (expliecit or implicit), or

accept sbatement. A Ireturn! instruction is gernerated by the

- compiler for an accept sStatement without a "do" part.

The static nesting levei of the subprogram, {;gsk, bloek, acoep’c‘
statement, or package. The static nesting level of the envipoment
f.asl«: is defined to. be !minnestingdeﬁth!. .411 cc’:mpilatiogs within
the Ada program are declarations of units immediately within the
envirom.lent.task; thus, ﬁhe oubermost uﬁits bf .these‘ compilations
are defined to have static nesting level _!minn_e_st_ingdepth!+1 . The

order of these declarations is defined to be a topological sort of

‘the declarations based on the partial order given in the source by

the oceﬁrrenee of Mwith! clauses, Units nested at pgreater depths
than  compilations have greater static nesting levels. The static . .

nesting level of an acecept statement or a block is one gpeatgr than

- that of -the immediately. surrounding subprogram, task, block, accept

statement, or package.

(%) A 13ist of absolute addresses of instructions in codespace. FEach of

' these addres:ses' corresponds to an exception déclared explicitly or



25

implicitly. Any particular address is that of the first
instruction of the exception handler dee;aved by the subprogeam,
task, block, accept statement,. or package to handle the
coppresponding exception, . If thé.subprogram, task, block, accept
‘statement, or package declares no handler for an exception, .the '
corresponding addresé is !nUIlcodeaddféss!._.The.océgprenee'éf.the

word "othersh in a declaration.of exéeption handlers implies that
the addresses corresponding to all exceptions not explieitly 1isted

in that declaration sequence will be of the same 1nstruetion.

(5) A keyword of the Pascal type lunittype! specifying for which of a
_ subprogvam; task, block, accept statemenﬁ,'or package body this

lunittemplate! was genepated.

A }unittemplate! genérated for a task also contains the valﬁe of tﬁe
task's priority as explicitly given in the Ada source or as assigned by
ﬁhe compiler. !ﬁnittemplateis géherated for blocks contain no. 6ther
_informatimn. __A funittemplate! generated for a subprogvam or for an .
accept statement alsoe eontains a boolean map for the in (in out) and a
boolean map for the out (in out} formal parameters deolared expllcltly__
‘or implieltly {the return value of a function is an implicit parameten)
~in  that subpnosram?ﬁ spéeificat;onzor in_the speeificationjqf.the.entry

family (an entry declared.without an. index-is a family of one) ‘being

: aecepted; The bcmlean maps indicate (by true elements) hcw many -and < . -

which formal parameter tagged memory larbnodels (see' below) will be:

initialized with values from the;caiiér's'expreésion;staekignd“will:be_j-.a

pushed back onto that stack upon return, A lunittemplate! generated for

-a package .glso.-conﬁaiﬁs-a-valpé;nf the'Pascal'typéfbcélean-indicating”-f-
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the veracity of the statement "thie package is a library package." The
lunittemplate! for the enviroment task is always at template address

IETEemplatel..

The tat'get machine's codespace is occupied by I:Lnstruet:.onunitls as
defined by the Paseal type !inst*ucbicnunit! below. L very hig‘n 1eve.1. |
descr*:.ption of the semantics :I.n Ada terms of each instruction is also
gwen below. Fields in the type !instructionunit! other than the field' '
opeode_ represent operands of the appropriate instructions, The unused
portion of | the insﬁrﬁet_ion memory ie initialized ’se the !arresﬁ!
instruction which terminates exeeufion o.f ene or more Ada. virtusl
machines cand  1s not  to be_ generated by the compiler'. ~ An
!instz-uct:.onunitl represented by the opcode !dw! is not an ins’cruction.'
but a string constant of 10 eharacter-s fcund :.n the Ada sour'ce :m. calls
.to the predefined :Lnline maehn.ne code pr-ocedure named send _control (see
Appendix 1). Ihe ‘barget mael‘_;_ine'_s J.nstrucbipn-fetch -operates so as.to
always fetch the instruction having the.next greater address unless a
_ branch. has taken place using the !destaddr! (qxf _other)__o_pe_r'ax;d of an_
instruction. A return address from a subprogram, accepht- stlatement,-
‘block, -package body!s sequence of. statements_o?_entry ea.ll is peferred
to azs a continuation address and is exﬁlieitly' loaded before the call.
Other continuations may be autamatically substituted for these by the .
target machine's execution. ,These continuations may be retrieved '.gzjom .
' “the establishment " of "'de;aye or else parts within select “state‘z‘nents;' or: -

from exception handlez-_ addresses during exceﬁtion ppopa'ga.fion. An -
o 'in;-ist':r'u.eticin; éiddr.-_es_s,__l like a template index, is an’'integer value which is

not less than inulleodeaddressi -(!hulltemplateaddpess!)." -Insbruction
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addresses and template indices can therefore be loaded onto the target

machine!s expression stack via the !loadintconst! instruction.

‘Items on‘thé eipreséian.sﬁackvére‘vdescribed vby the Pagscal type
!arbnode!. . Itens rétain their _memdry ltagls while on the expression
'Staek; An item ¢én be placed 6h' the .éxrression étack by' a lref!
instruetibn followed by =zero or more !loadl insbruqtions, by a
.lloadeount! ar lloadlntconst! or !createtaék! 'instrﬁetién, or as a
result of another dinstruction which uses other values already on the
stack. Maﬁylinsﬁructions consﬁme values élready on the eﬁﬁreséion stack

and leave their results, If any, on the expression stack,

In (in out) acbual parameters (explicit or implieit) Ffor entry
: calls and subprogram calls must be placed on the expression stack prior
to the call and results (out on in out parameters or function return
values) must be popped off after control has returned normally.
Abnormal returns result in parameter spaee not being occupied on the

expression stack.

The target machine has a set of tagged memories (containing
larbnodels) ‘"each of which can be used for-storingivariables, a&dresses-
of variables, the addresses of parameters, the valres of task variable#,,
and the values of variables declared as access to task types..  Formal

_parameters of elther subprograms or entries do not reside in these
‘ memories, . but din thelr own 'simij.arl-y—-tagged}inemorieS'.' © Within a target
machine,.theséﬁ'tagged['mémoriesf-are fautdmatiqally; élIOQated to the
'.“correspdnding--taSR;'fénd.to Ehé}subprograﬁs;rblbéké,'aceept“stétements;‘

and sequénces-of'statementé of package bodies which it ecalls, direétly
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or indirecktly, iﬁ the 'foilowing proportions: A.task has.one tageed
. memory within which the compiler may assign sbace for”the task's loqal
vaviébles, loop indices, tempoﬁéries, and.tésk'vafiables. A subprogram
has. two tagged.memories; one fov the subprogram's local variables, loop
indices, temporaries, and task variables, and the other for the explicit
or implicit formal parameters, if any. An accept statement has two
tagged memories; one for the aeeept statement's loop indices, and
temporaries, and the qther for the formal paramgters,qf the entry family
accepted. A block has one tagged memory for its Local variables, loop
indices, temporaries, and task variables. A package has one tagged
memory for the loop indices and temporaries needed by the explicit or
"implicit sequence of statements of. the- package body. The variables
declared in a package are assigned spaee by the compller in the variable
tagged memory of the nearest task, subprogram, or block -textually -
surrounding the declaration of the package. The word "textually® here
- includes the imagined placement of compilations in the discussion of

static nesting levels above.

Ailccatidn of spﬁce within these 'fagged meﬁofies iS-IaSSﬁméd to
begin at the 1owest allcwable !offset! and proceed to greater !o faetls..
.The lowest and highest !offset!s for the vaviable, etc. tagged memories
. are !minuserdata! and _‘maxuserdatal, respectmvely. The lowest and_
nighest !offset!s for the formal subprogram and enbry parameter tagged

,_memories_are.!lowparmbﬂfset&_and_lmaxparametens!,_rgspgetivelY,__

When a,new task is ereated or ‘a new instance of a subprogram,
block, accept statement, or package(body's explicit or implielt sequence7'

of statements) is entered, all larbnode!s in that task's, subprogram's,
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eblock's, accept statement's, or package's varlable tagged memory have
the ltag! Inwll,  Thus, dnitialization of variables is the
responsibility of the compiler through instructions generated upon

encounterlng the eorrespondmng "begin®,

There are three ways for the-eompiler-to,address iarbnode!s in the
tagged memories. One 1s the use of the lindex! instruction which adds
an integer-value to an glready existing address. The second method is .
the use of the !load! instruction where the value loaded is a previously
Istoreld address. - The third method is the use of the Iref! instruction .
which creates an address from the instruction's operands. The lref!
instruction's !stetienestinglevell'eperand,specifies the static nesting
level of the task, subprogram, block, accept statement, or package one
‘of whose tagged memories contains the location being addressed.  The
iref! instruction's ltagl operand specifies which of tae tagged memories
of the indicated task, subprogram, block, accept statement, or ‘paem'ge'
contains the location being addressed. The only velid values for the
Iref! instruction's ltag! opéea{ed are lvaral which specifies ’the‘*t‘aggéd
memopy ‘for varlables, 1oop 1ndiees, temporaries, and task variables,
‘!eprm! whlch specifles the tagged memory for formal ‘entry parameters,.
‘and ISprm! which speeifles the tagged memory for formal subprogvam
"‘pefameters. The !ref! instvuction' Iofrset! operand supplles the
loffset! of the 1ocation being addressed within the 1ndicated tagged
Imemory. The !ref!, lload!, und !storel instructions, when ueed for
non—local references, implement the use off shared variables as descrlbed :
.with "ppagma shared“ in the LRM It is the eompiler's duby %o make and..

update local copiee of shared variables which are nnt the targets of
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that pragma.

The values of task variables and of access variables to task types
are identieal, These values have Itag;! !tska; -and are created only by

the lereatetask! instruction.

The target machine has a "s;ét of entrjr queves which can be
referenced by the !entryeanNORMAL!, !entrycallCONDITIDNAL!,
lentrycallTIMEDI, lloadcount! and !setarmaccept! instructions using
integer indices from !nullentpyindex! to !maxentries!, The assoeciation
of an entry name in the Adé sduvce with an' entry 'queué index Vin ;he

target machine is the.reéponsibility of the compiler,

Each task, subprogram, block, accept statement, and package has a
1list of déﬁendent tasks and a currently accessible dependent task on the.
list. The lgetdependent! instruction changes, to the next dependent on
the 'list,: the aoncepb of which dependent is currently accessible. The
iresetdependentlist! instruction ensures that the next execution of the
!getdeﬁendent!' instruetion  will make the first task on thevdépeﬁdént
list become the currently accessible dependent., There are two  similar
:liSts; one of allocated tasks and one of declared tasks. The concept of
currently accessible child task applies at any'fime to ohly one of thése
lists and is moved along that 1ist via ti;‘e'!getmhe&i:as'kl insbruction,

To whleh 1lst the concept of currently accessible child task applies at

any time depends on which of the Iresetdeclaredtasklist! or the

!resetalloeatedtasklist! instruction was most recently éxecuted.

A !select! instruction performs most of the actions required by the

- Ada  selective wait.. "In order*to*perfcrm-thisffeat,.thertarget'maehine-~ R
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must be informed of which alternatives of the select statement are open
or éppliéable. The !setavmaecept!, !séfardelay!, !setabmterminatel,
and Isetarmelse!, establish for the target machine the presence of open
aecebﬁ alternatiﬁés, delay. alternative, terminate alterhative, énd'aﬁ
elze part, respectively. The !select! instruction acts upon all of the
altérnativeé (and else parts) established since the execution of the
most recent !clea?arms! Instruction. The upper limit of open accept

arms 1s Imaxarms!.

The format of the code and template.  text file produced by the
compiler should be that which would be pboduced by procedures
Iwritelinstruction! and lwriteltemplate! . (see ~jekNASA/rts/sre/proc.i
at CSNET address uvacs). A1l !instructionunitls apﬁear before the first
lunibtempiate!, the last linstructionunit! has topcode! larrest!, and
the last lupititemplate! has kindofunit! ldeadtmplat!. Addresses are
implied by the rile that the first instruction %n the file is the
instruction at Inullcodeaddress!, and the first template in the template
fiieﬂis"the .templaté at 'Inulltémpléteaddbeési' and' that addresses

increase by 1.

The dependent clean-up code provided in the code sequence examples
- below must - occur beginning at Inullcodeaddress! in order for certain
parts of the run-time semantics of Ada to be modeled by the Ada virtual

machines: . -
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DISCLAIMER:

These constant and type declarations are for organizational
reference within the conbtext of the text of this manual and
are not necessarily the operative versions at any given time.

The operative versions are in the Paseal SOUree files
_ ~jekNASA/rts/sre/const.i '

and "~ jekNASA/rts/sre/type. i

const

lowbérmoffSeﬁ

stringlow

nullecodeaddress

'minnestingdepﬁh |

i -

nullte@plateaddress:

nullap
nullentryindex
minuserdata
loweffector
nullexception
taskingerror
ETtenplate

maxarms

type

. templatespace -

string

-nestinglevel-

codespace

apnumber

-exceptionname .-

effectorrange

priority

i woonon H N il

13 maxparameters

13 stringmax

-.1; o ..mainestiﬁgdepfh
03 codespacesize
H | nﬁmﬁergftémplates
03 - | ﬁaxnumbebéfaps
0;.. .maxentriés |
03 maxuserdata
0;. higheffectqr
O; maxexceptions
1;
-nulltemplateaddress;
53

at CSNET address uyacs #

53
80;

203

10003
30;
325

‘10;

. 203

k9; -

103

array[ stringlow,..stringnax]of char;

‘nullap, . maxnumberofapss

loweffector.,higheffeator;

integer;

minnestingdepth. . maxnestingdepth;

.nullcodeaddress,.codespacesize;

- nulltemplateaddress, . numberoftemplates;

‘nullexéeption, -maxexoeptions; =

)
)
)
)
)
)
)

32 .



memorytag

-
-

(nul (% null *)
Jintg (¥ integer - yalue %)
ybool, (* boolean value %)
yvara (¥ variable address ¥)
eprm (® formal entry  parameter address ¥)

,sprm (¥ formal subprogram parameter address #)

sbska (¥ task address (access value)

¥

.*)

33



opcodes

= (cleararms

yarrest _
y abortdependent
yaborttask

4 ALLOCATE

pdelay

» GOTOFROMB
s index

s ref
sreturn

', RETINBLOC

s awaitactivationdoneforall
s0all

ySelect .

y cheatetask

y O

s effectop

- yenableexceptions

y entrycallCONDITIONAL

y entrycal INORMAL
sentrycal lTIMED

s 8e tdependent

s Eetownedtask
yresetdependentlist .

s rese tdeclaredtasklist

yresetallocatedtasklist

smyactivationisdone
s checkdependent
y letdependentproceed

© yiamberminable

yletchildbegin
sremovedependent
sactivatechild

ysetarmaccept

s Setarmdelay

s 2etarmterminate -
y Setarmelse

y Jmp

s brfalse

ybrtrue -

yraisex
) repaise

~ sloadcount

y loadintconst

yload

sstore
yaddinatpe

"y subinstr
1 mul instr

g divinstr

- ymodinsty

§ eqinstr '
sneinstr

3%



p1tinstp

1 8binstr

y leinstp

y gedinstp
yandinsty
s Orinstr

s Xorinster
s Notinstr
);
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instpuctionunit

récord
case opcode @ opcodes of
dw. . . {S
);
effector :{ares
isastring
)I
ref :Estaticnestmnglevel
offset
bag
;
entrycal LCONDITIONAL,
entrycallTIMED y
setarmaccept :{tmplate
' conting
b
entrycal INORMAL :(templat
S ¥ _
getdependent y
getownedtaslk y
setarmdelay '
setarmel se- ;(altpath
'
checkdependent '
abortdependent ’

--eall _ ¥
letdependentproceed ,
letchildbegin ’
removedependent '
activatechild +(continuve

)
setarmterminate Cchxaddr
RH
Jmp g
brfal se ’
brirue :{destaddr
- GOTOFROMB ﬂ:%numlevelstoexit
' destaddress
I

_ALLOGATE  t(size
raisex v :
loadinkconst : (theconst

o D3

drrest y
reraise ’

“aborttask '
index e
‘return - s
RETINBLOG

awaitactivationdoneforall,

_ saleet

-

ELRTY

e =y Ee

an »e

. *

LI T H

alfay

effectoprange;
boolean;

nestinglevel;
integer;
memorytag:

- templatespace;

codespaces;

templatespaee;_

" cpdespace;

codespace;

codespace;

codespace;

- integer;

codespace;

integer; .

integer;

e
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-¢leararms
enableexceptions
Lloadecount
resetdependentlist ,
resetdeclaredbasklist,
resetallocatedbasklist,
myactivationisdone
Jlamterminable.
delay '
“load
store
addinstr -
subinstr
mulinste
divinstr
modinstr
eqinstr
neinstr
ltinstr
" ghinstr
leinstr
geinstr
andinstr
orinstr -
xorinsty '
notinstr :();
createtask :{templabe
L masterindex
isallocated
)3

- e

-

AN M N W A M M % M W e W W W e na

templatespace;
nestinglevel;
boolean;

an e ok

end;
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arbnode = record
case tag 3 memorytag of
nul ()3
intg :(i : integer;);
bool :{b : boolean;);
vara ,
epra ,
sprm :{a : variableaddress,), (* compiler cannot generate ¥)
tska :(t : vpname;); (* values of these types %)
end;
unittype = (task
yaccept
yblock
s Subprogram
spackagebody
H
unittemplate = record
g sourcename . 3 string;
firstinstruction ; codespace;
staticnestinglevel : ‘nestinglevel;
exceptionh_andlerlist : arraylexceptionname]of codespace;
. ~ (* nullcodeaddress means no handler #)
case kindofunit : undttype of
task )(staticprlor;ty : priority;
.77
block :{
, }:
aceept ’
subprogram :{inn,
: ' outt : packed array '
[lowparmoffset..maxparameterq]
.of boolean;
);
packagebody :({libraryunit : boolean;
) -

end;
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Agsuming that the symbol  currentinstruction represents the

. instruction to be interpreted in the form of a value of type

linstructionunit!, and that the symbol TOS stands for the farbnodel on

top of the expression ”“ack at any Partieular point in time, the meaning

of the instructions is as follows:

case ourrentinstruetion.opcode of

raisex
repalse

cleararms

setarmaccept

setarmdelay

setarmterminate

setarmelse

ISelect

Corresponds to the Ada statement "raise x;3"
where x is the name ¢Ff some exception and is
mapped by the compiler to the integer operand
Ttheconst?,

Corresponds to the Ada statement "raise;",.-

Initiate processing of an accept or =elective
wait.

Establishes an open accept alternative for
this selective walt.
Currentinstruction.continu is the address of
the statements following the rendezvous.
Currentinstruction, tmplate is the index of the
template for the accept statement. Pops from
T0S the index of the entry being accepted.

Establishes an open delay alternative for this
selective walt. Currentinstruction.altpath is
the address of the .code. for  the delay
alternative. Pops from 108 the delay
interval. '

Establishes an open terminate alternative - for
this. ‘ " selective wait.

Currentinstruction. chkaddr is the address of

the code for the qependent cheek

' EsLablishes an else part for this seleetive”

wait, Curventinstru@*ion.altpath iz the

address of the eode for the else part

'Performs 'Lé | seleetive wait ' using fﬁe |
alternatives estublished since the most recent

Icleararms! instruction and according to Ada's

. semantics: If there were no open alternatives,. B

raises exception. If there are entries on an
open alternative, chooses such an alternative
and calls the accept for that alternative. If
there are no entries on an open alternative:



Jjmp
brfalse

" brtrue

- ref

loadcount
lqadintconst
Yoad

store

" entrycal INORMAL -

4o

If there are only accept alfernatives, walts
for an entry call. IXf there is an else part,
branches to the else part. Ift there iz a
terminate alternative, branches to the code
for the dependent check (if not all dependents

. are already known to be terminable) or walts

for an entry call or task removal, If there

"is a delay alternative which has expired,

branches to that (some) the delay alternative.
If there is a delay alternative which has not
expired, waits for an entry call or expiration
of the delay.

Branch to currentinstruction, destaddr

Pops TOS. If false then branch +to
currentinstruction, destaddr
Pops  TOS, If true then branch  to
currentinstruction, destaddr
Creates an address from currentinstruction, tag
(kind of memory contuining the object

addressed),
currentinstruction.staticnestinglevel (of the

~object -addressed), - and

currentinstruction, of fset (within the object's
local enviromeent) and pushes it onto TOS.

Pops entry index fram TOS. Pushes e!count

~onto TOS._

Pushes an dinteger  value made from -
currentinstruetlon.theconst onto TOS.

Pops an address from TOS. Pushes the value

_found at that address onto 1083,

Pops a value from TOS. Pops an address from
I0S. Stores the value ab that address,

Uses the !inn! parameter map in the template
indexed by currentinstruction.templat to pop
the actual parameters. That template must be
for . SOME - ‘accept . statement which accepts the

' appropriate entry family; there is no

guarantee that that acceept statement will be

the point of rendezvous in the callee. Pops = -
' from TOS the in (in out) actusal parameters.

The bottommost aetual gets the lowest in (in
out) formal address. Pops from TOS the entry

~ dndex. Pops from TOS the vcalled task's-
- address, . Places an entry call on that queue.



venﬁrycallCONDITIONAL

" enbrycal LTIMED

- getdependent

ggtownedtask

pesetdependentlist

resetdeclaredtasklist

resetallocatedbasklist

abortdependent

aborttask

11

'Usés the Iinnl parameter'map'iﬁ the template

indexed by currentinstruction.tmplate to pop
the actual parameters. That template must be

- for SOME accept statement which accepts the

appropriate entry family; there 18 no
guarantee that that accept statement will be
the point of rendezvous in the callee. Pops
from TOS the in (in out) actual parameters.
The bottommost actual gets the lowest in (in
out) formal address. Pops from TOS the entry

‘index. Pops from TOS the called task's

address. Initiates a conditional entry call. .
If no rendezvous, brariches  to
currentinstruction. continu,

Pops from T0S tpe delay dinterval. Uses the
linn! parameter map in the template indexed by
currentinstruction. tmplate to pop the actual
parameters, That template must be for SOME
accept statement which accepts the appropriate
entry family; there is no guarantee that that
accept statement will be the - point of
rendezvous in the callee. Pops from TOS the
in (in out) actual parameters. . The bottommost
actual gets the lowest in (4n out) formal
address, Pops fras TOS the entry index. Pops
from TOS the called task's address. Initiates

" a %imed entry call., . If: no - rendezvous, .

branches to currentinstruction.continu,.

Makes the current dependent the next

- dependent. If no more dependents, branch to

currentinstruction, altpath.

Makes the current child the next child

(declared - or -allocated depending on' most

recent reset). If no more ehildren, branch to
eurrentinstruction.altpath.

. Makes the - current depéndent  the first

depende nt.

- Makes the current ehild. the first deelared
" ehild. :

‘Makes the enrrent child the first allocated

child

Aborts the current dependent and branches to

currentinsuruction.continue.

‘Pops task address from T0S. Aborts that task.



activatechild

b2

If the ecurrent child has been created but not

vet told to do its activation, tells it to do
its activation. Branches to
eurrentinstruetion.continue.

awaitaetivationdonefcrall Waits nntil all ehildren haVe announeed they

- letchildbegin -

myactivationisdone

eheckdepehdent

letdependentproceed

1amterminable
remoyedependenﬁ
‘ aelay

ALLOCATE

GOTOFROMB

RETINBLOC

return

are activated or encountered errors,

If the  current child has announced it -is*~v

activated, tells it to proceed with its begin
statement, , Branches to
currentinstruction, continue.

Annotnces to parent (not master) that this
child is activated. Awaits permission to

_proceed with begin statement.-

Lheeks whether the current dependent is ready
to terminate. If so, holds the dependent in

Yimbo | . and branches - to
-euprentinstruetlon.continue. o

. Takes the current dependent out of limbo due
to a lepeckdependent! instruction: Branches
to currentinstruction.continuve. '

3 Sets an 1nterna1 flag announcing the task may
tenmlnate.

Eradicates the current dependent. Branches to
currentinstruction. continue.

Péps delay"iﬁterval from TOS,. Delays at least

that long.

NOT . IMPLEMENTED YET ~ (used for  dynamic
'allocation of other than tasks)

NOT IMPLEMENTED YET (used for a goto within a

bloek ‘whose destination -is outside of that.:

bloek)

NOT IMPLEMENTED YET (used for a return.
statement which is textually within a block).

Propagates any pending/unhandled exceptions to
the calling unit and/or surrounding unit or .

. . nowhere 'ag appropriate: for Adats: semantics.V-Vﬁ”"“i

Ir returning from a task, becomes terminated
and awaits ‘removal by its  master. Ir

- refurning from = an accept, .either raises
“tasking error in the caller of  the entry or

coples the out (in out) formal entry




call

createtask

enableexcepbions

éf fector

- dndex

43

parameters back onto the TOS of the caller of
the entry leaving lowest formal addressed
bottammost. If  returning from an accept,
allows the caller of the entry to proceed. If
returning from a subprogram, pushes the out
(in out) formal parameters onto TOS leaving
lowest formal addressed bottommost. If not
returning from a  task, resumes at the
conbinuation address saved at the call or
selec-.t.

Pops from TOS index of the template for the
unit being called., (The index is not a fixed
operand in order that generiec . subprogram
parameters may be implemented.) Uses as

“continuation address (return address)

currentinstruction,continue If the unit i= a

‘subprogram  (determined from the template),

pops. from TOS the actual parameters into the
in (in out) formal parameters. The bottommost
actual gets the lowest formal addpess.

Pops f‘rom 108 the integer nunber of the
abstract processor on which the instruction
creates a task with the unit at nesting level

-cuprentinstruction.masterindex as master -and -

using the template indexed by
currentinstruction. template.
Currentinstruction.isallocated determines

whether - the new task becomes a ‘declared or an
allocated ehild. The task'’s address is left
on TOS. : ' . B L

On entry to a unit, exceptions are inhibited,
This allows subsequent exceptions to be
raised. Any exceptions which would otherwise

. have been raised prev:.ously in th:t.s um.t are .
‘raised here,

Pops from TOS an intg or bool arbnode. If the
abrnode . . .. i3 bool ~  or.  not
currentinstruction, isastring, ~ ‘uses the
arbnode's  wvalue, = otherwise considers the
arbnode's valug to be a constant string

--address.. - Writes  the. value .or the first 10 = .

characters of the string onto the AP's port
addresaed by currentinstruetion.area

- Pops an index from TOS, Pops an -address from -

T0S. Pushes onte TOS a new address formed :
from the first increased by the index.



addinstr

subinstr

mulinste

divinstﬁ

modinétr

‘Eqinstr'

neinsgtr

ltinstr
- gtinstr
ieinstr

geinstr

2

Pops an integer from TOS. Pops an dinteger
from T0S. Pushes their sum onto TOS. :

Pops an.integer minuend from TOS, Pops an
integer  subtrahend from TDS. Pushes the
difference onto T0S. . C .

Pops an integer from TOS. Pops an integer
from TOS, Pushes their pvoduct onto TOS.

Pops an integer divmsor from TDS Pops an

integer dividend from T0S, Pushes the integer
quotient onto T0S.

Pops an integer divisor from TOS. Pops an

integer dividend from TOS. Pushes the integer
remainder onto TOS. S

Pops a value frbﬁ'TOS. Pops a value from TOS,

If their tags are different, pushes a boolean
false onto 108, else if they are integer or

‘boolean, . pushes. the boolean result of

comparing them for equality onto T0S, else
ralses exception.

Pops a value from TOS. -Pops a value from TOS,
If their tags are different, pushes a boolean
true onto TOS, else if they dre integer or
boolean,  pushes the boclean - result of

- comparing them for inequality onto TOS, else

raises exception.

Pops an integer from TOS. Pops an integer”
frau T0S. Pushes onto TOS the boolean result
of comparing them for (the =second 1ess than-
the first),

'Pops an integer from T0S.  Pops an integer

fram TOS. Pushes onto TOS the boolean result
of comparing them for (the second greater than

,the first).

Pops=an_integer from TOS. Pops an integer
from T0S. Pushes onto TOS the boolean result

-of. comparing them for (the second less thau or
equal to the first).

_ ‘Pops an.integer fron TOS. Pops an integer
from - TOS. . Pushes onto TOS the boolean result

of comparing them for (the second greater than
or egual to the first).



andinstr
orinstr
xorinstr

notinsty

end of case

45

Pops a boolean from TOS. Pops a boolean from
T0S. Pushes onto TOS the boolean result of
comparing them for (both true).

Pops a boolean from T0S. Pops a boolean from
TOS. Pushez onto TOS the boolean result of
comparing them for (at least onme true).

Pops a boolean from TOS. Pops a boolean from
TOS. Pushes onto TO0S the boolean result of
comparing them for (exactly one true),

Pops a boolean from TOS. Pushes its logical
compl.ement onto TOS, :
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Sample uses of the instructions:

/ ‘ ————

| BY USING THESE CODE SEQUENCES, THE COMPILER MAKES THE VP LOOK LIKE AN Ada |
| MACHINE. NOTE THAT THE SEQUENCES ARE GIVEN IN A SYMBOLIC PSEUDO-ASSEMBLY |
| CODE FOKM WHICH THE COMPILER IS ¥NOT* TO SEND TO THE INTERPRETER. 1
| A legend follows on this page. !

et S S P U U A et P NN N PP R S O S S e e ey g e I v i (O St

g e ------_hu*-

| Ada source example |

e e o 1 e B e e -
Assembly language translation where Peptinent information
digits: is a label _ _ in template space i.e,
{} . surprounds an indication that symboldic templates

other code should be expanded
at that location
<o surrounds a reference to a label
' in code space of template spade.
this is an Maddress of" operator
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!
!
i

accept e1(i)(p); |
nxtstmt; !

-+

“ptom e e
cleararms

{eval e1(i)}
setarmaceept
gselect

(681> ,42>)

return
Jmp . <3>

{nxtstmt}

- 8l

g

bt

[®accept e1(i)"

<>

| 1+(nesting level of unit

| ‘containing this accept)
| (exceptiorhandlerlist

| contains all zeros)

~ |accePT

| (parameter maps depend on (p))

A e e A e 8 2 A 4 P B e B B e e e e

accept el1(1i)(p) do
atmti;

end elj '

nxtstmts

e e it i e ofe

1:

¢cleararms
{eval el(i)}
se tarmaceept
select -
{stmt1}
return

- (£a1>,42>)

jmp L3>

{nxtstmi}

ts_T:

| ACCEPT

L

Maccept el(i)nm

< _

| 1+(nesting level of unit .
| containing this accept)
| (exceptionhandlerlist

| depends on text in stmt1)

| (parameter maps depend on {(»)

ot i e e S St Wt s S S S S S g S —— — T —— i i o o o T T ——— —— ot T — T Y 1 o Do S At ot ot S T S By P
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I .

| select - ) -

| when b1 => accept e1(1)(p) do

| stmtl;

! end el; |

H : stmta'

| or

! when b2 => accept e2(i)(p) do

! - stmt3;

i end e2; L .

i stmth; i

! or |

f when b3 => delay x1; e

I stmts; i

| or |

] when b4 => delay x2; }

] stmt6; N

| or i

i when b5 => terminate; }

] else !

P - stmtT;. |

] end select; ' i

! nxtstnb; i

!

— - n —t
cleararms tal
{eval b1}
brfalse <1>
{eval -e1(i)}" o
setarmaccept ({ts1>,<13>)

-
{eval b2}
. brfalse <2
{eval e1(i)}
setarmaccept (<ta3>,<15>)
2: ts3

© {eval b3} - B o
brfaise <3>
feval x1}
setarmdelay . . <16>
{eval. Dbl}
brfalse <i>

- {eval x1} R

#"setarmdelay - <i7>
{eval b5}
. brfalse o -<5>
- ‘setarmterminate  <7T>
53

e o e

Y.t oy o

£ oy e o

setarmelse

<18>

————

(1]

48

[

i"accept ef(i)"

<12

I1#(nesting level of unit .

| containing this accept)

| (exceptiornhandlerlist

] depends on text in stmt1)
JACCEPT = .

| (parameter maps depend on (p))
1

1

IMaccept ef(i)®

<1 ,
{1+(nesting level of unit

| containing this accept) |

I (exceptionmhandlerlist

| depends on text in stmt2)

|ACCEPT

~ |{parameter maps depend on (p)).




9

select
7t resetdependentlist
8: getdependent <11»
checkdependent <8
9: resetdependentlist
10: getdependent = <6>

letdependentproceed <10>
11: iambterminable
Jmp <9>

12: {stmt1}

return

13: {stmt2}
jomp <19

14: {atmt3}

return

15: {stmt}}
o Jmp <19

16: {stmts5}
Jop <19>
17: {stmt6} _
S jmp {19>

18: {stmt7}
Jmp <19

19: {nxtstmt}

L T Ty U
i 4 o Tt A et b k- i e Sy ey T e L e . g it B . s o . 1S T P o e S g e P TS S B e S S s S A (o iy 1y e T Y (TS S S T S e s . ., e 0 i SO P T
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oot o e i

| delay x; |

| nxtstmb; |

%—n-np—uhu&+_
{eval x}
delay
{nxtstnt}

—--_—_—_—-—_-uu.—n—q——_----‘.‘mc—‘—'u—--—-—---h‘-—_—Hﬂ“hﬁmi—n—---_-—-—-‘_.‘ui—‘ﬁﬁq.-lu-..n---—'—-—-——n

1 tee(D)(p); |
| nxtstmt; |

{feval t}

feval e(i)}

{eval p}

entrycallNORMAI, <some template accepting t.e()>
{pop resulting parameters p' from TOS}

{nxtstmt}

- o s G G S s A Y ot B St O i i i A e o S A B R s . St S S o Y Bk e e e et
===='===============-—3==========n»m=m--—:_.n—um-—-——————-.--_--_-—_-—--.-.-.-.-_-—__----=

o e e e Bt o o e
| select
| t.e(1)}(p); )
I stmb1;
! else e
]
| end selech;
| nxtstmt;
B +________h____“_‘"
{eval t}
{eval e(d)}
{eval p}
" entryeallCONDITIONAL ((some template accepbing t.e()) L)
- {pop resulting parameters p* from TOS}
{stmt1}
jmp .. <2
1. {stmtE} e
2: {nxtstmt}

-—-————---n..ﬂ—————--—m'-———-——---ﬁm——--ﬂ-——————-———-————-————_—-n-—————————————

i
|
_ R
stmt2; !
!
=
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B — s
select
t.e(i)(p);
stmb1;
or
delay x; ]
. stmt2;
end select;
} nxtstmt;
P
{eval t}
{eval e(i)}
{eval p}
feval x} ' - ' N
entrycallTIMED {{some template accepbting t.e()>,{1)
{pop resulting parameters p' from TOS}

[
|
|
|
|
!
{

Fo —

{stmti}
Jaap : <2»
1: {stmt2}
2: {nxtstmi}
e o S Bt P g Bt L N S U Y 500 e i i A B 804 e o v o o g +

| nxtstmt;

At i _ |
{eval p} -~ if a subprogram -
loadintconst (template index)

eall <> :

fcode for the block goes here, if calling a blbekj

| {block, subprogram, or sequenca_oﬂ_statementsqoﬂ_a_packaga_bddy call}l; f
- . N

{pop resulting parameters p* from TOS} -= if a subprogram

e o . e e o e s B o e ) i T Ak e e e S S . D e



b2

o fod i ) e 9 v e e +
| (unit prologue) |
a{--——-h'is-—z---a—-—-———--j--{-'
1: =~ entry point
~~ The next 3 instructions are repeated for each taszk declared)

ref . {task variable}
loadinteconst {AP number}
createtask (template index,master's nestingnlevel false)
store

. ==~ The ntext 3 instructions are repeated for each task allocated}
ref {access variable}
loadinteonst {AP_number}
createtask (template_index,master's nestingﬁleVel true)
store .

{whatever else counts as activation}
- wm the following instruction oceours only in task bodies
myactivationisdone
~- here up to the enableexceptions instruction is optional.
= 1f the declarations declare/allorate no tasks
=« NOTE: a compiler is permitted to use more intelligence here

— omibting sections which don't apply if tasks are only
"= declared or only allocated or neither in the unit,
resetdeclaredtasklist

2: getownedtask <3>
activatechild <2>
: resebtallocatedtasklist
: gebownedtask <E>
activatechild = <>
- B: awaltactivationdoneforall
©  presetdeclaredtasklist
6: getownedtask <>
letchildbegin <6>
7+ resetallocatedbasklist
8: getownedbask . <9
. letchildbegin <8>
9: emableexceptions -
{set up initial values of variables}

. __..._____-......--..-n----.--—n—-—.—.—.—--mw.—u——--—_-...n—..-o----——»..»u-__..-....'____—-_..-—-—_...........__J_'-.
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- i -
| t i= new tasktype; |
| nxtstmt; |
+-

o

o dany ol

ref (t)

-Joadinteonst A{AP _numbepl ' ' .

createtask (template_index for._ tasktype,master's nesting_level,true)
store

resetallocatedbaskl ist

1: gebownedtask L2>
activatechild {12

2: awaitactivationdoneforall
resetallocatedtaskl ist

3: getownedbask <>
letchildbegin <3

e {nxtstmt}

D e e S S eng B LA St S P it S S S S A i ot it St S S W D SO S0 o bk e S - e At S TR G i T S ik e SSAS B o e e S S - B A S S 4t A e . G

e i 4 g s o - -

| {dependent clean-up code at !nullcodeaddress!} |
.}.— — -—-'--—--—+ . .
e all units (exeept accepts) jump here rather than retuvn
12 resetdependentlist
2: getdependent <E>
checkdependent : <2%
resetdependentlist o

3: getdependent <1>
letdependentproceed <3>
- 4 resetdependentlist _
- 'Bs: getdependent " - <>
remcvedependent <5>
6: return '

* T e T G G A, ooy e S S e B G (i e 8 T B S B S o S .




< Bt 0 o e et e e e 1 P B B

~= hand coded example program
task body ET is

procedure main is

task a is
end aj;

task b is
entry ej
end bj

task body b is
begin -~ b
loop
accept e do

end e;
end lLoopj
end b;

task body a is
" begin -~ a
. Yoop
b.ej
end loops
end aj

begin -~ main
null;
end main; .
begin -~ ET
main;
end ET; .

.1. e St v B PRt A fmvet Y TYRE S e s it drrs T M T SRS S Sy ey res v AN terrm

7sen@_control(2;"B")§

send_control(1,

Fo s e i e Bt o e T s i S TR i . T i ot P A4 I iy e St G e S S S it e St i S e

54



-/
~~ | HAND~CODED |
e T ———
-~ almost all bodies are going to jmp here
5: resetdependentlist
.62 . getdependent <8>
' checkdependent <6>
resetdependentlist
T: getdependent <5>
letdependentproceed - <T2>
8: resetdependentlist
9: getdependent <10>
removedependent <9>
10: return - ‘
0: enableexceptions
loadintconst <es17>
call <5>
11: myactivationisdone .
enableexceptions
12; cleararms
loadintconst 1
setarmaccept (<ta13>,{14>)
select
13: loadinteonst <23>
effector (2,true}
return
14: jop {12
Jjmp <5>

55

ts 0 E

ta17:

I"_E'I’"

1<0>

i1

|{lots of uzeros}

FTASK

[1

]

[

| "main®

1<17>

|2

{{lots of zeros}

|SUBPROGRAM - :
}{maps all false}

te15: [

f ﬂ'a_“.
[<15>
13 ,
[{lots of zeros}
[TASK -

I

)|

ts11: [

.{l.tbn“
<11
I3 :
1{lots of zeros}
| TASK ' :
1

1



15: myactivationisdene t=13:
enableexceptions :
16 '
ref (2,3,vara) =~ {task variable b}
load
loadinteonst 1
entrycallNORMAL <ts13>
loadintconst .L22>
effector (1,true)
jmp <16>
jmp <5>
17¢ ref (2,2,vara) == {task variable a}
loadinteconst 1 : - -
createtask (2,<ts11>,false)
store
ref (2,3,vara) ~~ {task variable b}
loadintconst 2 o ' .
createtask (2,<ts13>,false)
store '
© resetdeclaredtasklist
18: getownedtask - <1
activatechild <18>
19: awaitactivationdoneforall
resetdeclaredtasklist
'20:. getownedtask <21
letchildbegin <20>
21: enableexceptions
Jmp <5>
22: dy nA "
23: dw 2] "

e e e gy Ny ——

56

[

["accept el

I<13» -

14

| {lots of zeros}
{ACCEPT. S
%{maps all false}

et e o S T T e o S G
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~= . jmp

} - ———
| -~ hand coded example program P
} task body ET is E

]
i procedure main is |
. : et
| begin ~= main i
{ send_control(1,"S"); |
; end main; |
| begin -~ ET |
i main; }
| end ET; !
o s . . = e e e -
[ ————
~= | HAND=CODED |
Ll --l‘---iwﬂ-——---/
-= almost all bodies are going to jmp here
5: resetdependentlist - :
6: getdependent - L8>
checkdependent <6>
resetdependentlist :
7: getdependent <5>
letdependentproceed 7>
8: resetdependentlist _
9: getdependent £10>
removedependent <9>
10 return
0: enableexceptions _ _
- loadintconst <ts11>
call <E>

- 11: emableexceptions .

- loadintconst {12>
effector (1,true)
return

it is not required that a subprogram do

<B>

—- if it *cannot* have dependents,

W

T

fq_p:

[
f"ET"

<o

1 L

1{lots of zeros}
1 TASK :

Rk

t=11:

™ bt

I"main®

<11>

f2

1{lots of zeros}
|SUBPROGRAM
{{maps all false}
] .

e e e L e e e e e S e e L S T S L T



APPENDIX 2

FAULT TOLERANT DISTRIBUTED SYS.TEMS USING Ada

John C. Knight Jdohn I. A, Urquhart
Department of Applied Mathematics and Computer Science
Univevsity of Vipginia
Charlottesville

Virginia, 22901

Ab.ﬁ&!‘é_e_t

This paper discusses the use of Ada on distrlbuted systems in.which
failure of processors has o be tolerated. We asswie that communication
between tasks on separate processors will take place using the
facilities of the Ada language, primarily the rendezvous. We show that
there are numerous aspects of the language which make its use on a
distributed system very difficult. The 3issues are raised from the
desire to be able to recover, reconfigure, and provide continued service
. in the presence of hardware failure., Fop example, if a rendezvous takes
place between two tasks on different processors, failure of the
processor execubing the serving task will cause the calling task to be
permanently suspended because the rendezvous will never end. Extensive
modifications to ' the execution support required for Ada are proposed
which provide all the necessary facllities for programs written in Ada
to withstand arbitrary processor failure, Mechanisms are suggested to
~allow processor failure to be detected and for tasks which would be
permanently suspended' to be released, Provided the required program
structures are used, continued processing can be provided

- Ada is a,trademark of the U.S. Department of Defense. This  work.
wasg supported,by NASA grant number NAG=1=260. :
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Antroduction
Over the next decade, it is expected that many aerospace systems
will wuse Ada as the primary implementation language. - This is a logical
choice because the language has been designed for embedded systems.
Also, Ada has received such great care in its design and implementation

- that it is unlikely that there will be any practical alternative in

selecting a programming language for embedded software.

The r..duced cost of compuber hardware and the expect;ed advantagesv
| of distributed processing (for example, increased reliability through
redundancy and greater flexibility) indicate that many aerospace
computer systems will be distributed. The use of Ada and distributed
sy.s_tems Seems .like a good combination for advanced aerospace embedded .

systens,

Tr this paper we discuss the possibility that a distributed system
may be programmed entirely in Ada so that the indivulual tasks of the
system are unconcerned with wh::.ch processor they are executing on, 'We_
assume that commum.cation bebween tasks on separate processors will taice
plaoe using t‘ne facilities of the Ada language, | primarily i:h-e :
rendezvous. It would be possible to build a separate set of facn.lities |
for communlcation be tween processors and treat the software on each.

machine as .a separate program. This is pointless however since euch___
' facil:x.ties would neeessarily duplicatc the existing facilities of the |

r endezvous.

We also assume that processors in the system may fail at arbitrary

times and ‘that the system is required to continue providing service .
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follcwing such fallures, It is showyn that this causes considerable
difficulties for Ada programs. Solutions to these problems arve

suggested,

The kihd of architecture we expect to be in commonvuse for embe@ded
éystemﬁ'iﬁ'thé future in shown in figﬁre 1. It 15 based on the use of a
high-pérformanee data bus which links several processors, Each
pfoéessor ié'eQuipﬁed witﬁlits own memory. Déviées' Such as diépiays;'
sensors, and ackuators would be connected to the bus via dedigated

microprocessors. Thus these devices would be accessible from each

processor,
Memory Memory Sensor Actuator
o R T o Micro . | . Micro
Processor | - Processor | . processor - ' pracessor

CommunicatidhslNetwork”

"~ Figure 1 - Distributed Architecture :
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A great deal of research has been undertaken in recent years to

. produce computer architectures with high reliability such as the SIFT!

and FTMPZ pmachines. Why then should there be any concern for software

str'ucbur-es_ which are able &o .cope with herdwar'e failuvia? "There are

several reasons:

(1)

(2)

(3)

)

'('5)'

The architectures of highly-reliable systems are very complex. Such
machines are, in effect, highly~parallel multiprocessors and their
reliability is achieved by parallelism. These architectures are

the subject of current experimentation and are still unproven.

Even though designed for reliability, these mac__hines may sStill

fail.

Physical damage could cause a processor to fail no matter how

carefully +the processor was built. Fire, -structural failure,

“excess or unexpected vibration, and so on, could cause - ehough

damage that even a highly-parallel machine would be unable to

continue.

Electrical damage from unexpected lightning effects could cause a

processor to fail.

In a situation whep‘e a major powe'x' faiiure occurred, reserve power

might only be prov:Lded for some subset of‘ the pr-ocessors. The

switch fmm full power- to lim:n.ted reserve power- nght be orderly in )
wh:.ch case very sophisticated r'econf‘mgur-ation might be possible.

Hawever, it might be preferable to use a single, consistent C

- mechanism for _r_'ecov-ery to cope W_ith all cases.




(6) Unmanned spacecraft frequently make extensive use of computers but
redundancy (such as in quad redundancy). Reconfigurable
diatributed syatems..designed £o cope with processor féilure ig an
attractive alternative, If the design includes higher processing
pbwer thén is absolutgly needed, and tasks exist wﬁich are nob
essential to mission success, then some loss of hardware followed

by reconfiguration may allow the mission to continue successfully.

Thus, although great care may be taken with the construction of a
digital computer system, failure may still occur. At least with a
di.stributed system there is the pbssibility that ifvpart bf the system

is iost, what remains could continue to provide service.

Initially, we assume that communication between processors con a
distributed - system will be implemented using layers of software that‘
conform for the most part to the IS0 standard seven-layer Reference
Model3. The hardware topology that is used for a distributed system
need have very little impact on the programming of the system at the
application~layer level, In. principle, provided +the implementation
knows how tasks are distributed to processors and how communication is
o be. achieved, the various tasks can synchronize and communicate at
will with no knowledge of their location.

The ﬁind$7of haf&ware faiiure thaﬁ ﬁé are.céncefnéd with aré ﬁbf
addressed by the ISO protocol. The ISO protocol is concerned with

eommunicatiohs fajlures such as dropped bits caused by noise, loss of

messages or .parts . of messages, =ate.  Also, sltuations such. asa. .
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processor "slowing down" or incorrectly compubing results are not of
interest here (though they are important nevertheless). We assume that
such events are taken care of by hardware checking wit_}_:in the processor,
The oﬁly.c_lasas of faults riot dealt with elsewhere is the total loss of 2
processor or bﬁs with ne warning. These are t_h_e difficulbies we will

attempt to deal with.

In this section, some of the difficulfies with the use of Ada on a
distributed system are described. We examine only the simple rendezvous
and the timed entry call, Lack of spate precludes examination of the

entire language but this as been done elsewhere. Proposed solutions to

some of the problems raised here are given in a later section.

Simple Rendezyvoug

A simple rendezvous in Ada coﬁsists of a ealling ﬁaak c‘ | malcihg. an
entry eall, S.E, to a serv:.ng task Sy which contains an accept sta'cement._-
| for the ent:ry E. The syntax is shownh in figure 2. The semantics of the
_ language requir'e tha,t if. the eall :f.s made by C before the aceept is

r'eaehed by S, C is suspended until the aceept is reached Ir S reaches
the aceept before i:he call is made by- C S5 is suspended until the: eall-
..15 made. In either case, C remains suspended until the rendezvous

-itself is complete.

In order to look at‘. the issues arising from a r'endezvous in which”

the tasks imrolved are on diff'er-ent proeessors, it is necessary to
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Calling Task C Serving Task 8

. s ACCEET E DO
S. B3 .

Figure 2 ~ Syntax Of A Simple Rendezvous.

specify an implementation of the rendezvous at  +the messapge passing
level. :Only the sinmple case of a task € calling an entry E in a serving
task S will be considered. Further, it will be assumed that the call is
made before S has reached the corresponding accept; the case where the
.~ 8ervepr waits at its accept is similar.  One possible message sequence is
shown. in figure 3. The numbers inside brackets pepresent points of

interest in the message sequence.

Caller C - Messages Server S

~ PUT_ONTO_QUEUE==wmww==> S
[1] o [5]
ACEPT E IO
. {mme=~---CHECK_CALLER ==
L2l ' N - [6]
CHECK_CALLER_REPLY~=> -~
{31 ' ' 7]
END E;

- <~RENDEZ VOUS_COMPLETE

.Figure 3 ~ Rendezvous Message Seqguence:
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The calling task C asks to be put onto the quene for entry E. When
S peaches its acoept for E, it sees that € is on the qusue, At this
point 5 checks Ho see if O has been aborted. When the CHECK CALLER
message arrives at ¢, ¢C can be considered to be engaged in the
rendezvous, When the reply reaghes S, S will start to execube the
pendezvous cédé. ﬁhen"it is cémpleted' the RENDEZVOUS COMPL.ETED me_ssagé

wouid awaken C which would continue.

Using this implementation of a simple rendezvous, what happens if
‘elther processor fails? There are seven cases of interest and they are

discussed below. The numbers refer te Iigure 3.

CALLER EFFECT ON SERVER

FAILS AT

[1] = The message CHECK _CALLER will not be able to arrive. The
: .ef-fe-ct. on the Qendér shoul& be eﬁ;uivalenb to a. négative re.pl'y'
to the CHECK_CALLER message (e, 2 _:I_.f the caller_ had been
.a.bc;rted,. but. not .ye.t r-émovéd .fr.cjm-t;.he .qﬁeue).. That is the.

- server would remove the caller from the queve and remain

walting at the accept.

ral- EThe'ﬁéséam CHECK_CALLER ar_f‘i#esi ‘then the callerts Iirbcessor S

fails and the reply is never sent, If the server cannot find
 out that there has been a failure, the server will be trapped

waiting for the message CHECK_CALLER_REFLY.



[3l

SERVER
FATILS AT

£4]

L5]

[6]

L7l

66

When the caller's processor falls during the rendezvous, the
situation 4is similar to the case where the caller is aborbed
during the rendezvous. In beth cases the server can eontinue.
At the end of the zvendezvous the RENDEZVOUS GOMPLE’I'E message
cannot az'x-'ive, as before, ir the server can detect that ther'e.

has been a failur'e, the server can eontinue.

EFFECT ON CALLER

The message PUT ONTO_QUEUE cannot arrive, The situation is

similar to the case where the server is abnormal_.

Here the ecaller is on an enhry queue when the servers

'pr’ocie'ssér fails, 'AS before if the faiiuf-e" cannot be detected -

the caller will be trapped.

The message CHECK CALLER has arrived at the caller who now
considers that. the rendezvous has started; the reply cannot .
arrive. Again without failure detection the caller will be

trapped, (Note - that even 1if thvg,gallervwe_r-er_usin_g a timed -

entry call, the timer would have been turned off bty the

message .CHE_CK_CALLER.V),

The server's proeessor fails during the rendezvous. (Timed and

o conditional entry calls give o protection as bhey time the |

delay' to the start of the rendezvous ) Aga.in the caller' is

trapped unless the failure can be deteeted
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The serviﬁg tésk ig not seriously affected when thé calling taék;s
proeessor fails, At worst, time i= lost doing work fop a task that is
not there to receive it The calling task is in a much worse situation
when the server!s processor fails. If the rendezvous has not already
stapted the callér will wait pn.the eﬁtry queue for e%er. In pvinciple,_.
timed entry calls (discusseq.bélow) cap.handle ﬁhis,situgtion,.if they
are implemented by having the célling task do the timing. If the éerving
_ task!s processor fails after the rendezvous has started, even a caller

who has made a timed or conditional entry call will be trapped for ever.

What the ecaller would like to have, and what even timed and
condi tional entry“calls'do not'give,.is a gusraptee thét'éfter a certain
time it will be possible to proceed. The rules of the language imply
that once a rendezvous has started the caller cannot withdraw until it
is completed, Clearly withdrawal is necessary _whgn the gerver's

‘processor fails,

Rendezvous By Tined Entry Call

- Timed entry calls are intended to solve scme of the problems:
raised above, In fact, they raise further problems about their meaning

~and their_implementaﬁion.‘_

The semanties of the timed entry eall appear to be quitg .

straightrorward°

A timed- entry cail 1ssues an entry call that is canceled if ‘A
rendezvous is not started wixhln a given delay5,

" In a @istributed system, However, messages will take time to got from a
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task on one processor to a task on another. Even if the underlying
message passing system can guarantee that a message will evenbually
arrive ebrrectly, this will be implemented at a lower level by a
'proﬁocal which may involve acknowledgenent of messages, - and  the
resending of messages that have been lost. A message can certainly be
:delayed for some arbitrary length of time. Even physicai separation of

the processors may impose a Significant delay.

One possible interpretation of the timed entry call would be to
count: the total time until the rendezvous is started. Message passing
time and time on the entry queue wonld be included. This dinterpretation
probably has to: be ruled out becauSe-the_language definition states that
a timed entry call with a delay of zérc is the same as a conditional
‘entry call. If the delay included both message passing bime and time on
the queue, a delay of zero would be impossible and a timed entry call

with a delay of zero would never succeed.

Another interpretation of the delay in a timed entry ecall is that |
it is gust the delay on the entry queve. This has a meaning‘when the
specified delay is zero but the important implementation question

becomes 'who is to do the timing®. The calling task eannot do the

o timing. It 13 impossible for it to measure waltmng time on the entry

queue aecurate;y_ since the messagg passing time can.vary. Thus-it is

1_aassantia1_that-the:serving“task.does the_timing._..

A timed entry call gives protection.agamnst having to wait too long

on the entry queme. However, what the task :Lssuing the call needs is =

some guarantee that it will not be trapped in an abtempt to communicate,
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and f.‘onoed' to miss a deadline. 1In principle, it does not matter to the

task whether the time is spent waiting on a queue or sending messages.

If the timed entry call is implemented by having the server do the
timing and the server's processor falls before a rendezvous is started
the caller will be trapped., Even if there is no failuwre the calling
task must wait for a message from the server, Ir {-,he-semr'er is doing
the timing, that message may need to be re-sent several times, éo the

calling task may have to wait an arbitrary time,

If the calling task were able to do the timing then an infinite
wait ceould be avolded when the server's processor failed. As we have.
noted however, th:LS method of timing is unrealistic when queue time is

‘being measwred. -

Fop a distributed system, we conclude that there are many problems

' 'W‘ifh the tlmed entr'y call. It does not provide the kind of proteetlon. |

that is desirable, the semantics are unclear, and it is very dif'ficult
to ioiplement; An anolysis of .the.message ‘traffic oeoés'sax?y .for-.the
timed entry call can be performed that :Ls similar- to that shown in v
'f:,gur_e- 2. The :Lssues which ar'ise When considerlng failm"e are similar'

bui; nore e;:r&;ensive than those arising in tho simple r_-endezvou_s.

When the possibility of processor failure is considered, many other
aspects  of ' Ada -present difficulties simllar to those cutlined above. |

For example, problems arise with conditiomal entry calls, accessing

" global  variables; task elaboration, and t'aé’k: térmiﬁaﬁioo; " The or.oblémo: o



0

are of a similar cause; namely the prospect that no reply will ever be
peceived to a message sent because of the failuré of the brocéésof

expected to generate the reply.

Other areas which cause difficulty are global variables and the
Yask master/dependent nelationship. If data which is global to more
than one task is ever used to share data, loss of the processor
containing . the data causes great difficulty, Finally, when the
processor execubing a master task is lost, the dependents of the master
should be aborted since loss of the pboeessor'executing the master is
equivalent to the master being aborted. This praises special

difficulties when the master is the main prbgpam.

Processor failure cannot be dealt with unless it can be detected.
Details of the féilurE must also be sﬁppliedvtéﬁthe software.which is to
- edpe with the fecohfigdrétioﬁ. How can Ada prdgraﬁs déteéﬁj hafdwére

failure and what dinformation is needed for reconfiguration? In this
section, we present an approach to hardware failure detection and the

pational for its éhoiee.

Failure detection could be performed by hardware facilities over
and above those  provided for normal system operation.  Alternatively,
failure could be detected by system software. The ‘hardware option is

. less desirable because it requires additions to existing or planned
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systems and the detection hardware itself could fail, We suggest

therefore the use of software failure detection.

Software fallure detection can be elther passive or active. A
pasgive system might rely on tasks assuming that failure had oceurred if
actions did not take place within a "peasonable® period of time i.e.
timing out., . Alternatively, a passive system could require that all
messages passed between tasks on separate processors be routinely'
acknowledged., Thus the sender would be sure that the receiver had the
message and presumably would act on it. This is a . particularly simple
case of timing out since failuvre has to be assumed if no acknowledgement

is received.
The disadvantages of passive detection are:
(1) Timing out assumes an agreed-upon upper limit for response time.

{2) A failed processor will not be detected until communication is

attempted and this may be long after the fallure has occurred. :

Upper bounds on response time may be hard to determine. Vepry

complex situations can arise .ffom- an incorrect 'cﬁoiéé.' The reason for a

laek of response from g task on another processor may not be fan.lure of
tha’c processor but mer-ely a temporary rise in its wor’kloa.d 'I'he
‘ onsequenees could be an assumption by oné pr'ocessor that another had
fa:.led followed by reconf‘igur-ation to cope wmth the loss. Clearly, if“
th:r.s assumption is wrong, _two processors could begin trying to provide

the ,s_gmg_ service.
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Being unaware that a ﬁh'bces'sor had failed will lead to a loss of
the service it was providing until the failure is noticed., In a_system
with nany pboeessers each pr-'oifiding relatively few services, .fhe amount:
of inber'-pr'oeessoz' communication might be qui'ce low, Thus, a failed
.proc:essor' nay go unnoticed for g0 long a t:.me that damage to the

equipment being controlled might result from its lack of service.

It is for these reasons that we reject passive software failure
detection arnd suggest the use of active software failure detection, In
an active system, some kind of - inter-processor activity is required -
"neriodicallyn aad if it ceases, failure is aséumed. The messages which

are passed ape usually referred to as heartbeats.

As soon as a heartbeat disappears, the remaining processors in the .

”system will be aware that a failure has oecurr-ed and they will know
which processor has failed. This information must be tranmmitted to.the

'softwar'e running on each remaining processor so that reconfiguration can

take place. The information is available to the run-time support = .

software in some internal format, but how should it be transmitted to

the Ada software?

One appr-oach is {:o use tae language'sexception mechanism, anc_i _f_oﬁ
- the run—time system to generate an except:ion on each processor. Andfher'.
appr-oaczh is to view the r'equired signal as be:.ng vez'y like an interrupt
'. and transm:.t the J.ni‘ormation to the Ada software in the way that
:I.nterrupts ar'e transmitted, namely by an entry call. _ We pz'efer' th:.s
.:1atter approach because it can take place in parallel with any aetivity a

‘that might already be going on. A task designed to cope with
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reconfiguration could be preseﬁt on each ppoeessoﬁ and suspended at an
accept statement for the antpy which will be ocalled when a failure
oceurs.  This allows each processor +t¢0 have a Wfoeal point® for
reconfiguration. If exceptions are dsed, the correct placement of .the
necessary  handler iz difficult to determine because it will be
 impossible to know what tasks will be engaged in what activities when

the exception is generated.

Thus we propose that a speciszl task be defined on each processor
which ._will contain entries i_‘or_- e.a.-ch hardware_eomponent whose fallure
z"eq‘uirés some processing. This task will be normally suspended on the
aceept statements fo_r_ the speclal entries. When a failure ccecurs, an
entry call will be generated and the task will then be activated. It
- will  contain code following each accept statement to handle

reconfiguration.

It is z‘mt‘ sufficient to _detect.‘ fa;i.lure. and inform the sof.twarev of |
the failure using the metﬁdds des_cr‘ibed:above. As d_i_s_qusséd above,:mafw
Ada ‘laﬁgﬁage élémént},' (parficulaz'ly thé. r.'ende.zvous). c.é.n ”lead | to
sitvations in which one task is permanently suspended if the processor

on ;fhich aﬁbther tasic is éxéc.utiz.xg“ féils. These tasks wh.ich. would be

permanehtly su_spénded must somehow be released.

The mechanism which we propose to cope with this situation is shown

in figure U, " Whenever any communication takes placebetweentasks on

- different processors, the run~-time ‘support systems on the processors
" invelved record . the details of the _éommu_nicati'o'n"' in message logs.

Whenever a failure is 'detectéd, each processor checks its message _].ég te
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see 1if any of 1ts tasks would be permanently suspended by the failure.
If any are found, they are sent "fake" messages., They are called fake

because they are constructed to appear to come from the failed processor

but 'eleér-ly do not. The h’:essage cohtent is usually equivalent td that

which would be preceived if the task on the failed processor had been

abopte_d. Thus for example, if a simple rendezvous is tald.ng plaee and

the processor executing the_ server fails, the exception TASKING_ERRCR is
‘paised in the caller. In this way, each pr-oéessor is able %to ensure
that none of its tasks is permanently suspended. However, it is the

- responsibility of the tasks themsélves to ensure that their subsequent

Ada PROGRAM

EXCEPTIONS  ,~—>| HEART }{| UPPER

- Figure 4 < Implementation

1

ENTRY CALLS PROTOCOL |
e _ A} | LAYERS
A
-m:s‘sm;EsLa MESSAGE| | SoFTWARE] - |
(-—-———.--—> LOG  {———> [SIGNALLING| ¢——
SYSTEM
IS0 -
HEART | LOWER
. BEATS | PROTOCOL .- .
b LAYERS
v 7 i



75

actions are appropriate.

Fault Tolepant Programming Example -

This is a very simple example designed to illustr-ate some cf‘ the
. ideas discussed above. In a t.ypical Ada application, the pz'ogram WOUld_
be much larger and would have to take into account all the language

features mentioned,

The example consists of a calling task CALLER which operates on one
processor (CPU 1) and a serving task SERVER which operates on another
Processor (CPU 2). The calling task does some real-time processing and
calls an entry' in the serving task in order o get some kind of service.
The program is written to cope wWith failure of either prosessor
Mlternates ave provided for the calling and the setving tasks and a

reconfiguration task is present on each ‘processor.

Normally only bhe calllng and servlng tasks are exeeuting and -
fault-intolerant version of this example would eonsist of just these two
tasks, If processor one fails then it is necessary to .start an
alternafe ealiing task én pr¢ees$or two, Bimilarly, ip processor two
fails it is nece,;ssa;-y to start an alternate serving task on. processor -

one,

-Thé."-éltébhaﬁes are _ 'pbéSéht' on the r’ediiii‘ed' '.'lﬁ.aehineé " when 'th.e
program starts execution, Each altet-nate is waiting on an entry named
"-ABNORMAL START =0 that they do fio px'ocessing while both pr'ocessors are

openational. When one processor fails, the :un-ti:_n_e systen_x gen_e_rates an.
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entry <¢all on the obﬁer processor to an  entyy .in its task
RECONFIGURE_CPU_1 (where 1 is the processor number). This task then
¢alls the ABNORMAL STARY entry for the alternate which is needed and
processing is able t¢ contlnue. Entrieg are defined in
RECONFIGURE_,GP’:’J i fop each component that might fail. In this example,
each machina is only interested in the failure of the other so only one

| entry is defined in each reconf iguration task.

If & pendezvoﬁs_is in progress when the failure oceurs, then the
serving task need not care that the ealling task has been lost, and the
rendezvous can complete. 7The calling task will care if the serving task
has been lost because this will indefinitely Suspend the éaller.-lihus
TASKING_ERROR is raised by the run~time system in the calling task.
This . frees the'calling task and allows itTtO'prepafe itself to'uséxtﬁe

alternate server,

Note that the server does nobt need to be aware that the caller has -
. beén replaced by an alternate if the caller's machine fails'becaUSE;the
rendezvous is asymmetric. The entries in the server can be called by

any ftask; in particularvboth the,ealler andftheialternatg caller.

If a rendezvous is not in.progress when the failure_ ocecurs then

.'pMQP‘SSing on the remaining pvocessor can continue. If 'i-,his' processor

is exeeuting the caller, then the caller will reeeive TASKING ERROR the
Jnext time it attempts to rendeZVOUS wlth the server and 1t will be<“
_reeonfigured at that time. The alternate server will have already been

started by bhen.



—— Code Resident On CPU 1.
task CALLER is
entry TICK;
== TICK is an entry that iz called
~-— perjodically somehow and keeps the
=~= program synchronized in real time
end CALLER;

task body CALLER is
type STATE is (NORMAL, ABNORMAL);
SYSTEM_STATE STATE := NORMAL;
begin: :
Loop
accept TICK;
begin
" case SYSTEM STATE is
when NORMAL =>
== normal pre-rendezvous
e processing
SERVER,E
— normal post—rendezvous
== processing
when ABNORMAL => : _
abnormal pre—rendezvous
-~ protessing
ALTERNATE_SERVER.E;
== abnornal post-rendezvous
~-= DProcessing
end case;
excepbion
~when TASKING_ERROR=>
" SYSTEM_STATE := ABNORMAL;
lcop
== failure has oceurred
-+~ since reconfiguration may
take time, "output" -
default values to keep
=~ physical devicas happy
- - QUTPUT_DEFAULTS; :
select _
=~ rendezvous with the
«= peconfiguration task
~=_to get data this task
~= needs to operate

-

‘RECONFIGURE_CPU_1.DATA(...);

exit*
Cop. '
delay DELTA,
end select;
end loop .
-when others =>

(4



~= handle other exceptions
end; :

end loop;
end CALLER;

task ALTERNATE SERVER is
entry ABNORMAL_START(a.s)}
entry E;

- end ALTERNATE SERVER'

task body ALTERNATE_SERVER is
begin
" accept ABNORMAL START(...),
loop
~= pre-pendezvous px'oeessing
accept E;
- post—rendezvous processing
end loop;
end ALTERNATE_SERVER;

task RECONFIGURE_CPU_1 is
: entry CPU_2_FAILj;
entry DATA{...):
end RECONFIGURE_CPU_1;

task body RECONFIGURE_CPU 7 dis-
begin
== run-time system calls the following
~= enkry autematically when a failure
‘== 0f CPU 2 iz detected
accept CPU_2_ FAIL do
== this eall will start the alternate
-~ Server on CPU 1 - the parameters
~= will contain the data task needs .
AL'TERNATE._SERVER. ABNORMAL_START(...);
end accept;
accept DATA(...) do
== prepare data for CALLER task
~- when operating in the ABNORMAL
~~ gystem state
end accepb;
end RECGNFIGURE;CPU 13

T Code Resident On CPU 2.

task ALTERNATE_QALLER is

78



entry ABNORMAL_START(...);
end ALTERNATE_CALLER;

task body ALTERNATE CALLER IS
begin
=~ initialization code =
accept ABNORMAL, START(...)}
loop
accept TICK;
- alternate processing
end loop;
end ALTERNATE CALLER;

task SERVER is
entry E;
end SERVER;

task body SERVER is
begin
loop . _
~= pre-rendezvous processing
accept Ej
== post-rendezvous processing
end loop; : :

' "end SERVER;

- task RECONFIGURE_CPU_2 is
‘ entry CPU_1_FAIL;
end RECONFIGURE. _CPU_2;

task body RECONFIGURE. CPU. 2 is
begin

== pin~{ime system calls the following
-= entry automatically when a failure

=-= of CPU 1 is detected
accept CPU_T_FAI do

«= this egll will start the alternate
~= ¢galler on CPU 2 « the parameteprs
=~ Will contain. the data task needs: .
AL TERNATE, cALLER.ABNonMAL_ﬁmmRT(,..)-

end aceept'
end RECONFIGURE_CPU_2;
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The execution of Ada programs on a distributed system is explicitly

allowed buts'Adaf'dﬁes' not make provision fopr pfocesSbﬁ failure ina
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distributed system. Ib can be argued that this dis not part of the
laﬁguageis responsibilibty .and. that Ada should hoﬁ addﬁess fhe iséué.
HGWeVEr, a distributed system that cannot cope with processor failure i=
no better than.a uniprocesaov system, Thus, we feal that the issue has
~to be dealt with s::m.ewhexve g_nd 1f it is nob bo be in the language, then

the associated support enviroment can become unnecessarily complex.

‘The extended execution support system described in-bhié papér ean
solve many of the problems. ‘Combined with a careful péogrvamming style,
' distrihuted programs written in Ada which are tolerant to ppocessor
failures can be written. Many language detalls make the problem more
difficult than it needs o be and attention to the issues of distpibuted

ppoee531ng in language design seems a desirable approach.
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ABSTRACT

.In this paper, we discuss the programming of - ‘di strihuted systems  that
execute applications in which it is essential that continued service be
provided after failure of some subset of the system's processors, Ve
assume that the applications operate in real-time. = The pro_gramm_ing of
. such- systems has usually been done on an ad hoe basis. Many ~different
‘languages have been used; most were low-level providing few facilities
for task communication, scheduling or reconfiguration, We suggest that
it is essential that the programmer have control over the actions which.
oceur following & failure, This. implies that there must ~ be facilities
- in the programming language to allow the programmer to specify his
needs. In this paper we discuss deficiencies in existing languages,
such as Ada*, and propose a set of requirements for languages to be used .
- for programmmg cr-ueial real-time applications on distributed systems. '

"'Ada is a 'trademark of the U. S, Departxn_ent of De_f,‘ense.
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1. INTRODUCTION

One of the advantages of distributed processing is that a hardware
failure need not remove all the compubing facilities, If one processor:
fails, it is possible (at least in principle) for the others to continue
to  provide . service. This fault-tolerant characteristic is very
degirable for applications requiring high reliability. The use of
distributed brocessing -is further encouraged by the decreasing cost of

computer hardyare.

In this paper, we discuss distributed systems that execuﬁe mlsial
applications. By thi.s we mean applieatiqns for which it is essential
that continued .sew:i.ce be provided after a fallure. In general,
responding to a fallure by stopping the system and replacing the faulty

component will not be acceptable.

A distrihuté'd' systeﬁ that is to be highly reliable will be 'built'
with a redundant bus strueture. )i ! dunuancy usually ineludes replioa.ting
the bus along different routes as we 1 as replication of the bus
hardwar'e itself ona pax-tieular route, Loss of‘ a complete b meed be

‘ of‘ little consequenc° if it is replicated an,d can be coped Hit‘ by | fhe

lw—-level eommunicatj.ona aoftware._ A complete b}.*eak in the bus system -

that iébl'a;ﬁes sbfne 'Sub'Se.t of the 'pz"ooessors (i.e.v the netwo:'k _b_eeo_mes
' partitioned) is mueh more serious though very unl;.kely given mult:l.ple _
routes and replication. | The issues that arise :I.n that case are.
_ different from those ar'ising from processor' failure and will not be

-.dealt with here, ?Ie consider only proeessor f‘ailur-es. o
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Ve assume th‘at‘ the applica.ﬁi'ons | o'pé"r"'at‘e in - real-time., Thus a
‘program may have to meet external deadlines, and success or failure of a

" program may depend on proceisor speeds and scheduling algorithums.

The programming of the kinds of systems we. describe has usually
been done on an ad hoc basis. Ma'ny different languages have been used;
.most were low-level providing few facilities for task eommunication,
scheduling or reconfiguration. This was one of the situations that the
Department of Defense sought to improve by the introduction of Ada [1].
Although Ada was carefully deslgned over several years with input from
" the entire compubing community, recent work [2] has shown that it has

serious deficiencies when used to program real-time distributed systems,

In a pr-o:jeet to extend tne 1anguage CLY to opex'a’ce on distvibuted )
systems, Liskov [3] introdueed ‘the linguistic concept of gx_x,ag_giana
That work addressed _dist_ributed systems wheren the nodes may be

geographically remote and provide non-real-time service., The primary

' goal of guar'dians is the preservation of a system’s databa.se across .

failur'es in airline reservation and similar distributed systems. We are'
concerned with systems that operate in real time where provision of

gervice 1s more important t:han preservation of data.
Tn this paper we diséﬁss deficiencies in ‘existing 'iéng'uége"s, . “such’
a8 Ada., and propose requirements for languages to be used for

'progr'amming crueial real-time applications on distm.buted systems.
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2. DISTRIBUTED SYSTEMS

The kind of architecture we expect to be in common use for real-
- time -c_ontrol systems in _t_he fubure in shown in figure 1. It is bavsevd on
the use of a high-performance data bus that_’ Llinks .severalb processors,
Each processor is equipped #itﬁ its own memory. v'Dev»iees" such as
displays, sensors, an& actuators are connected to the bus via dedicated
microprocessors. Thus thesé. devices would be accessible from each .
Processor. An exam_ple iz a digital av;i.oni.cs gystem for a military
airoraft. In these systems, separate computers may be used for flight.
contrcl, navigation, displays, weapons management, and S0 on. The
overall systen requires some coordination and so the various computers

copmunicate via a data bus. A typical system is described in [4].

Memory . Memory Sensor Actuator
R I L - Micro o - Miero .}
‘Processor - Processor processor | ~ processor

) .COmﬁz-u'nicatiéns l\fetwd_rk :

- Figure 174 Di’stribuﬁéd Apchitecture -

pra
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Much research has been undertaken in recent years to produce
computer architectures of great reliability. There are, however,
several reasons for employing software structures able to cope with -
partial hardware failure. Even though designed for reliability, any
processor may still fail. Also, lightning, fire or physical damage
could cause a processor to fail no matter how carefully thé'pvocessor'
was built. At least with a distributed system there is the possibility
that 4if part of the syétem was lost, what remained could continue to

provide service.

A processor will be assumed to fail by Astopping‘ and remalning
stopped. All data in the local memory of the processor w;ll be assumed
lost. Thua the case of a processor failing by continuing to pr-oeés.s
instruections in an incorrect manner and providing possibly incorrect
data to other processors will not be considered. We a_séume -that sﬁch_
events are taken care of by hardware checking within the processer. An
alternative method using the Byzantine Generals algorithm is suggested

by Schlichting and Schneider [5].
While this m'éy seem a severe r?estr-iction, ai: least three é.rguments
can be made in its favor:
(1) Faults of the assumed kind must be taken into consideration anyway
- since a ppdeessbr' .migh.t.f"ail in th:’..s'_”wréy'. o | '
- (2) Either by hardvare checking within -a - single -_proceésor -or by

checking between a dual pair of processors, it is possible for an

underlying system to simulate the assiumed processor faili}ﬁ';e mode,
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{3) If such a fallure mode is not assumed, error recovery becomes
extrenie_ljr’ difficult. It becomes possible for a processor to fail,
and for the resuliing errors to remain undetected until all data is

coppromised.

Given this assumption, error detection reduces to detecting that a

processor has stopped, Erpor recovery is simplified by the knowledge
that although data in the failed processor's memory is lost, data. on the

remaining processors is correct.

3. .APPROACHES TQ FAULT TOLERANCE

If a distributed system is to provide continued service after one
 or more pboeessor failures, then facilities must be provided over and
above those needed for normal service., We will refer to these as
continuation facilities, If there is a single continuation facility for
the entire system then the system is centralized, If the processor
brovidihg 'ﬁhé.contikuétion faéiliby fails; the system stops and tﬁis.i§
unacceptable, To prevent this, eontinuafion facilities must exist on

" a1l the processors,

-However; difficulties can still arise ify, following the loss of a -
processor, a single continuation facility is chosen to perform fault
.tolerance for ihe entire system, . For example, —since . the processor

performing the fault tolerance may fail at any point, all other

continuation facilities must be kept advised of the. current state of the. . -
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rvecovery so that they can take over if necessary. This is unacceptable

© and, in whab follows, it will be assumed that esach processor will have a

continuation facility which indepsndently assesses damage and effects

whatever loecal charges are necessary for recovery in that processor.

On each processor remaining after a failure, the continuation

facility nust take the following actions:

Detect Failure
Some mechardism must detect processor failure and communicate its |

oectirrence to the other parts of the coxitinuation faeility.

Assess Damage
Information must be provided so that a =ensible choicer of a
response can be. made, Ceptaiply 1t must be known what processes
were executing on the failed processor and what processes and
~ Processors remain., Fupther, in many applications the response will -
depend on other variables and these would alsc have to be known.
The height of a aireraft, for example, might determine what actions

should be taken when part of the avionmics system is lost.

ProcesSeé exaéﬁﬁing .on pro.éessbf:-s which sixx*irive | t.he. fail:u,r..’-e. may. ”
still be affected by the fail_.ur._e. For example, their execution may
debénd .,on proéeésés oz:' eontextsthat .' .we,.re .' ldsﬁt. .w.:i'.th. the | féiled-
Processor. If.‘ __anythin_g is to be dpng_about:__ _suc_!; _ppoce_sgés, they
xﬁuét be lc.riown.z;ind t’i;;re mus’c. be some .wéyl 6f | éoxﬁmuhiéating_- wa_th |

fThem.




89

Choose a Response
After a failure is reported bto the software on a ?artieular
processor, the loecal continuation facility will indepéndently
declide on a response and put into ei'fect amr changes requ:l.r'ed onv
that processor. The ehoice of " a x-esponsa depends on a
reconfiguration strategy and on information availabla. The
information | used might include both system information sﬁch as
which processors are left and external information such as fuel

" level for example.

It is important that +the information which the reconfiguration
strategy - uses be consisbtent across processors, since if it is not, |
the continuation facilities on different processors could decide on

different responses and thus work at crogs-purposes.

Effect the Response

| Once a fésponse has been decided on, it must be possible to carry
it oub. The contimation facilities showld be able to abort
pz'ocesses,' be abie _t:o. communicaté wlth processes so that the
processes ocan take appropriate action 'pn their own, ‘and be able to
.st.ap-t- néw processes. In many cases the new processes will have to
_be prov:xded wit:h data. and a consistent set of such data. would have-

to be available to the continuation fa.cilities. -

Vamous diffz.culties are raised by the need for these aotions.
Firstly, two of the’ aet:l.ons depend stpongly on conaistent data and

 without making q‘uite unrealis.tic assunptions abcut;‘ the ,underly;{.ng

message péssirig system, it -eannot be a_ss'med_thét_.dgta is consistent == ..
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when a processor fails, - A'two.phase.protoeol t6].can-bé uSed  in this
situation, In this protocol, a process execubting on processor A =sends
coples of its data to processors B and C. B and C then eaeh.aend A an
acknowledgement but do not store the data in their- consistent databases.
When A has reeceived aclmowledgements from B and C it sends them commit
messages., After receiving a commit message, B and C store the data in
their consisbent databases. It can be shown that with some additional |
proeessing [7] tha.s allows pz'ocessor-s in a distributed system to either
all have copies of the new da’ca. or all kncw that old copies have to be

used following a failure,

A second problem with the view of continuation taken above is the
- treatment of unrecoverable dbjeets [8]. If an unrecoverable objéct lias
been modified, backward error recovery is not possible fbilowing a
failure. The problem is no different on a distributed system than oh &
uniprocessor system. Dhe apparent difference is that all the processors
in a distpibuted sy_atem need to be informed of changes to unrecoverable
" objects and this has to be done in the presence of failures.  This 'is’
acbtually a manifestation of +the data consistency problem discussed

above.

Given that tolerance to hardware faults is required, two completely

dj.‘f.’f‘erénﬁ approaches cén be considered, In the first approach, the ;vl.oss‘

‘of a progessor is --dealt_ _y:__:I_.th_ - totally -by. the eﬁteeut_:_l.oh—'time; .sup'bprt
N _softwafé. Any processes which were lost are k-_e_s,_ﬁ‘a_r'-.ted on remaining
_pr'oeésvsor.s,» and all data is presewed?:by’enswing‘ that multiple - copies -

always exist in the memories of the various mach:.nes. We refer to this

.__appmach as .manﬁ.nanﬂnt ainoe, in principle, the pr-ogrammer is unawareA SRR
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of i1tz existence. Transparent continuation has several advantages:

(1) The pnogrammer need not be concerned with these. aspeets of fault

tolerance,

(2) The programmer need not kmow about the distribution, Thys the

" distribution can be done by the system.

(3) The same progpam can be executed on different systems with

different distributions.

However, since the continﬁatioﬁ of mervice is transparent to the
programmer, the programmer cannot speeify degraded or 'safe! [9] service
to be used following processor failure. The system cannot SpecifY 1t.
either, and ac transparent continvation must always provide identical

) sefvice, If jdentical service is impossible, the system stops.

In erucial systems this is not acceptable. Situations will oceur
where identical service cannot be provided (due to physical damage, say)
~and yet degraded service is essential if some catastrophe is to be
avoided. For example, a nuclear power plant may be unable to provide

power but nonetheless must be able to shut down safely,

There are also many technical difficulties in implementing
-.transparent continued serv1ce. 7 Since failures can ocour at drbitnary
times, the support software must always be ready to reeonfigure. )
nDupllcate code must exist on all maehines and up—to—date copies of data
must always be available on all maehznes.- The overhead involved in .

ensuring that all detd is eonsistent on all maehlnes all the time will

.. be substantial,_ Even if . transparent. continuation . could . be offered.
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without massive duplication of compubting resources, it would be rejeetéd
for many applications because of its inability to offer alternate

service

In the second appvoach'tb deaiing with thé loss df 2 processoy only
tminimal facilities are pvavid,d by the executionrsupport software, The
fact that equipmenb has been lost is made known to the program and it is
expgcted to deal'_with the situation, We pefer to this approach as

programmer~controlled or non-transparent.
Programmer~controlled contintation has several disadvantages:

(1) The programmer must be concerned with all _aspécts of fault

tolerance.

(2) The programmer must either specify the distribution or be prepared

to deal with any distribution provided by the system.

(3) The program depends on the hardware system; at least +the fault

. tolerant parts do.

The disadvantages are out-weighed by the faet that the service

prOV1ded following failure need not be identical to the service pvovidei'

 before failtre. Alternate, degraded service or 'sa ' serviee can be

_ :offered if cmrcumstances =0 dictate. " In&what follogs only the non~

transparent approach w1ll be eonsiderpd. we aSBUme that the actions to

be taken by eadh processor follcwing a failure are speeified'withln the:

software_executing Qn_each processor,
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As in other fault-tolerant situations, fault tolerance in a
distribubed system requires facilities to allow failure to be dstected,
damage assessed, a response chosen and recovery effected, In addition

however, -consistent data is required across all processors so that the

facilities may be distributed, and work towards the same end.

4.1, Source of Facilities

The neceasary continuation facilities can be pr‘ovided in different

wayss:

(1) By wusing mechanisms in the programming léanguage specifically

designed for that purpose, .

(2) By using mechdniams :Ln the pz-ogr'amming J.anguage whieh were designed |
- ‘for- another pur-pose. ir this were done, it; would be a coincidence
if the mechani.sms ﬁorked satisfacboril_y sinece thej were not

designed to support fault tolerance,

(3) By using mechanisms ‘outside . the pr'ogr-'ammirig language such -as -
modifications to the execution-time enviromment or software written

in some other language, perhaps an assembly language.

The usual anproach 'LS the th:.rd wher-e nothing speo.if‘ic J.S pr'ov:.ded L

" in the prog:'amming Janguage. Such an appr'oach is reasonable when only

o tr'ansparent fault tolerance :I.s offered since in that case all faeilities__.. o

w:i.ll be pr-ovided by the underlying eystem. However, ig is not suitable

for non-transparent fault-tolerance. If  nothing. is . provided - in the
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language, each system will d.evelop its own methods. Programs will be
non-portable and difficult to ﬁf;l.te and mainba,in,.' Fop example, i zeepe
data is required for a new reeonf‘igur-ation st:z'ategy, and the papt of‘ the
system that distributes data has been written in a way that is highly
dependent on the particular da.ta collected, then thab part of the eysbem.
will probably have to be rewritten.

‘The need to provide non-transparent fault tolerance leads to a
general pr-ogr-amming 1anguage requirement:
A programming language which is to be used to program distpibub-

ed systems must provide mechanisms to allow programs to be writ-
ten which can cope with processor failure,

4.2, Fault Detection

The first facility ’chat is r-equ:l.red is deteef;ion of the loss of‘ a |
Processor. ’I.’h:.s ean be done in seVer-al ways and may require hardware
VSupperbt or execution-time system support. However, it is _elear that; the

applications' software will have to be ihfermed of the fa,ilur?e s0 tha’a

the necessary achions to tolerate the failure can be initiated Another

requirement is therefor-e.

A programming language which is to be used to program distribute
ed systems must provide an interface to the underlying system to
allow failure of processors to be signaled ina timely and unam=-
biguous way. _

If the pr-og;pammer is to speeify algorithms which will be used for-' '

"recon.f‘iguration, it is eesent'! al that the pr'ogr-ammer also speeify:"'
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distribubion. If not the programmer must be prepared to deal with any
configuration chosen by the system. In a crucial system, this is not
acceptable. For example, the system may choose to place both primary

and alternate software for some service on the same machine.

- The question of what to_distribute_then avises. It_is_ clear that
disﬁfibution. mdst be relatively. coarsewgrained (tasks ar packages in 
Ada, for example) or the job of specifying reconfiguration. will bacome
too difficult., & fundamental question is whether or not there should he
units defined in the language specifieally for  distribution. &
dlstribubtion unit, for example, could be restricted to use only loeal
variables. Thus a third programming language requirement is:

A programming lapguage that is to be used to program distributed

systems must speclfy what units can be distributed, how the dis~

tribution is to be done, and must include a syniax for express-
ing distribution.

Various problems arise i1f this requirement 4is not net. Fop
- éxample, @an implementation may distribute  five similar processes by
providing a gingle copy of the code (to save space)} and arranging for it
to . be  transported in blocks " as needed. - THe. specification of
distribution may have been suitably stated but the implementation of the
“distribution  has not - been adequately defined. Failure of the machine
holding the.code will cause failure of the other processes which  have

been exéeutins in machines which did not fall.,

-2



96
- 4.4, Qblect Devendence

Tn block structured languages, a program unit can assume the
exlstence of an instance of all objects in the surrdunding Lexical
blacks, When a system is distributed it is possible to haye a given

progpr am unit on one processor and one of its surrounding lexical blocks

“on another processor. If the latter processor fails, we must decide

‘what to do with the surviving inner program unit.

It most languages it is possible to dreate objects that swrvive
their surrounding contexts. Uspyally this happens when objects are
 ereated by some form ~of dynamic “storage allocation. In Ada, for
example, such objects exist wuntil the context which conbains the

. definition of the access type is left.

A first possibllmty is to treat surv;vmng inner program units by

applying rules of surv:val which already exist in the 1anguage.

Alternatively new_rules could be made for swvival when 3 context is

lost by processor failure, or the probiem cowld be passed on to the

programmer, who would have_ to speclfy survival conditlons for each -

distributed unit.

'The'first'possibility seems'simplest5 since it involves juSt using

the 1anguage ‘as usual. Unfortunately if, as is typieal, everything

"depends ona ’main' proeeas, fallUPe of the processor executing the |

) 'maln' process wlll result in everything stopping. In Ada, for example,

'all the tasks defined in a main program depend ‘on the main program.

Thus, in fact, sueh systems are,ggnizalizgi as a result of the 1exieal”_

strueture Qf the language.
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A further compllcation is th_at' a program text describes a compile-
time structure. Usyally, no distinction is made between objects which
exist at execution-time and objects which exist only at compile time.
In a distributed system such a distinction is of the utmost imporiance.
Unfortunately which objects are compile-~time. and which execution-time
depends .on +the - implementation. Under most implementations a program
unit which uses a type definition from a swrounding context bears a
completely different relationship  to that context than a progrim unit
which uses a variable defined in the context. If, for example, a unit
uses a type 'definition in g surrounding scope, the'ﬁni't .woi:lc.l depend on.'
the sur*founding scope at compile~time but not at execubion-time. In
effect the _ﬁype definition could be given a unique name and be copied
into the unit, The unit could then swrvive the loss of the swrrounding
context. 'Similarly 2 program uﬁiﬁ"may '{’Sy the rules of the ianguage) |
' depend. on another unit wh:x.ch will not exist at exeeution—time. An Ada
llbr-ary pael-:age eontain:.ng only type definitions may be the master of an

Adg task for example.
This leads to the following programming language requirement:

A programming language which is to be used to program distribut-
ed systems must distinguish between compile-time and execution-
time objects, and def:nne survival rules for' distributed progpam

Communication between ppocesses on different processox's is risky.
FOp example, messages might be lost‘. so ’chat they must be re-sent and

communication time bec_omes long, or o_ne_.ef"_.the. . cq_mmunicaﬁ.n_g__ processes
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might be on a processor that fails. In a crucial system, unless an
ax'bitrarily long wait is acceptable at each communication, a process
will need some way of withdrawing from every communicdation. Thus,
“another programming language reguirement is:

It Should be possible to ensure that a pr-ocess-can meet a2 dead=
line no maiter what happens to processes with which it is come
municating. Fajlure of a processor should never cause a process

executing on-a swviving processor to be trapped while communi-
cating.

While a time-.out mechanism could deal with both sloy response and
_laek of response because th_e nespo___ndep isona :f‘_ailed processor, a
Seﬁtér Sehaﬁe is to deal with 'ﬁhe iaﬁ:ter éase difféfently. "When a
procegsor fails, _l_mowledge of the fallure becomes avai-]_._abl_e to_eaeh
maehine._ A process waiting.v for a response from a process on the fai;ed
p_rqce_s.é_or_ can ..be- dealt _with.» in several ways by . the co.ntinuati_on

facilities:
(1) The 'Waiﬁiﬁg task could be abérted.'

(2) The walting task could be given information about the current state
and allowed to decide on its own course of action,
(3) The communication from the wsiting process could be switched to the

rep._lacément for the process which was lost.

~The choice of what to do is part of the reconf:i,gﬁr.a‘tion-‘ str'ate_gy-. o

- Subsequent. - attempts to communicate -with = the process  which . ‘has

disappeared eoﬁld be tr'eat:éd in a similar way. Essentially the choiées

. arer
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(1) Replace the lost process by - an ddentical substitute and

transparently re-route calls,
(2) Replace the lost process by a substitube and inform callers.
(3) Do not replace the lost process and inform callers,

As before, the cholce depends on the reconfiguration strategy. Note
that the above reciuires that .the continuaﬁiori faciiitiés know. which
procesgses are communic;atin_g, that is some form of .gommunication_s log i=s
necessary on each pﬁocessbr. ' This leads to the following programming

lan_guage requirement:
A programming language which is to be used to program distribute
ed systems must provide facilities to deal with the loss of a -
communicating process. In particular, Imowledge of which

processes were communicating with the lost process and an abili-
ty to redirect communication may be needed,

4.6, Consistent Data

It is clear that some .go.nsis_t_:ent. data will a}.ﬂa_y}s be required by
tﬁe conﬁiﬁmtion .faeilities on each processor. At a minimum, when a
processor fails, all Qontinuation faecilities must come to ‘the same: .
conclusicn'about which protesses have been lost. In general, consistent
data will also be required.to restart: processes or to start ' replacement
processes,
| _' o Rathep .fha'.'n hé.‘}é:_fé.c.iiifies fox- providiﬁé c.on.s.x;i.ste.nt: .daft.a avai-lé.bié
to eagh applic;ations_f p;_'qu'a_:ﬁme_r_, we b_elr_i_eve __.f;hat_ such a .;‘acility ‘should
be ﬁﬁ&ridéd by the pr'ogramming languégé; | Qﬁe .poésibl'e séheme | would

provide a _pr-oe_e'ss-_to-pr-_oees_sqr map for use by co_n_til_;uat_iq_z;__faeilitiés, _
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and allow a programmer to specify data that was to be distributed to a
consistent database in all processors. The 1anguage requirement is:
A programming language that is fo.be used to program digtributed

systems must provide a mechanism to allow consistent data to be
distributed across processors.

2. QCONCLUSIONS -

Almost all languages allowing processes to execute in parallel have
| taken the view that processes sharing a uniprocesser or executing on»
‘separate Processors are 1ogiea11y equivalent. The program is taken to
exprese,the same algorithm in either case and the programme: need_npt be
eqneerned ~with the actual ;ieb;eeeetation under which Ehe. program

executes.,

- This is>a»eonyenient'viEW so'laﬁgieé it bis‘Aaesumed. either that
processors will not fail or that a satisfactory response to failure is
‘for the program to stop. IanOntiﬁued'Serfice’after‘feiiure ie"deSifed;'
then the unl-proeessor and the multi—processor models are fundamentally

different.

It is possible to shield -the programmer from this  difference by

presentingrthe illusion of’prbcessors;whieh do not fail, This is what we

- have described as transparent fault tolerance. As has been pointed out, . -

the problem with transparent fault tolerance is that if the pbogrammer

. views his program as executing oh a very reliable -uniprocessor -he can -
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have no concept -of . degraded or ‘safe service, The sysﬁem is either

providing full service or no service.

The ability to prcvidé alternate service is so iﬁﬁortanﬁ that a
non-transparent approach must be taken where the programmer has to deal
with recﬁnfiguration. E#isting high;level languages provide little op
no aid for thig; everything must be pnovided by the execution-time
system, usually in a way that is strongly &ependent oﬁ a pariticular

implementation;

We have suggested a set of requirements for programming languages
which épe to be used tb prbgram.ebuéiél applicafibns that éxecﬁte ﬁn
distributed systems. These requirements derive from the need to be able
to ;ontiﬁus .tﬁ provide service éfﬁep. some subset of the available
proeessors has been removed by unantieipated events, If services cannot
be céntinued'aftér.a processor féilure, then, ig terﬁs of feiiabilitj,.a:

distribubted system ig no bgtter than a unlprocessor.

A final comment, in some related work [2], we have examined Ada  in
the 1light of these requirements., In its present form it satisfies very

- few. of - them..
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ABSTRACT

When a strategy i1s proposed- for ' etabling distributed software to

tolerate hardware faults, its adequacy should be demonstrated
experimentally in a sclentifically believable way. Simply building and
exacuting a progran employing that strategy is not a scientifically
believable demonstration. The difficulty 1lies . in. the = inherent
concurrency of distributed programs. It i1s unlikely that a situvation
that reveals a deficiency of the strategy will occur during a functional
test, = What 1s needed is an experimental testbed which can model ary
- petwork topology and any software strategy designed  to oprovide fault-
tolerance, Also, it must allow any achievable software state to be
precisely established, allow arbitrary parts of the distributed system
to be failed, and allow the soffware to continue from that situation, ir
it can, Detailed requirements oft such -a testbed are given, and an
implementation is described. '
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1. Introduction

We have been éiamin_ing ways. of providing toleranée t;o. hardware
faults in distributed programs written i_n_Ada.* [11. We have suggested
a strategy that we cléim enablés an application program to detéet,
survive and recover fram fallure dt‘_ one or more of the machines of the
system2 Giyen this ppopoéal; we neeﬁed a testbed with which fto validate
or £ind difficulties in thg. claims of the proposed strategy. A typical .
question which has been asked aboubt the strategy iz: "What will happen
in an Ada program if:twq tasks Wish._to rendezvous and the machine
e#eeuting the accepting task falls after the caller has sent g
.rgndezvous request message buﬁ,hgfgzg the accepbing task has examined
its. entry. queue? = Will the proposed strategy actually handle this
situation? " Another question invalves task creation. The semantlcs ~ of
task creation seem to reguire that the task execubing the unit declaring
~ the new task wait for the new tasl;! s - creation to complete. If the
machine on: which the new task is _to execute fails during the task
. creation, it is necessary to demonstrate that the stnategy is able tqv

extricate the declaring task.
In thé remainder of this pélj)er, the pr-'oblem is general:lzed frcm the
verificat.ton of‘ our Ada str-ategy, and the problem is. analyzed fop the"

r'equirements of a solutn.on. _ The testbed wh:.eh :Ls our solut:.on is then

de‘s‘erib‘ed.‘ N

*1da 1s a trademark of the US DoD (AJPO).
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2. .The Problem

" When a strategy is probosed for enabling distribdted software to

tolerate hardware failuves, the adequaey of that strategy should be

demonstrated expemmentally in a seientifically believable way.,
Although there are exceptions, in pz*actiee thie iz ranely done.

Instead, :i.nf‘or'mal logical arguments are often given in an attempt to

show that all cases have been considered or experiments are car'med out -

in which fadlures are deliberately :Lntx-odueedu These fallures are

usually either random, or determined by the exfernal functions that the

system is to ppovide. 'The intent is to .answer questions about fallures

as they relate to the required exbernal system beha\rior-. For example,

| will the fault-t:olepance strategy be able to cope with loss of

px-oeessor-( ::.) just after- stimulus( J) is received,

Although fault bolepance strategiss are well thoi:glit 'bub, like any

software design, they meay contain weak points. S:.mply building and
executing an instance of a program employing the proposed strategy is

not a scienbifically believable demonstration, The diffieulty lies in

the Irherent coneurrez}icyb of diStr-ibﬁted prbgv_eiﬁs. It is unlikeiy that &

situation that r'eveals a def:.ciency of the str'ategy' will oecur dur-ing an

operational test What is needed :Ls a testbed that allows sueh unlikely

situations to be precisely established, and then allows obser'vation ofb':_
-the software as :.t attempts to cont;inue from that situation. A

compr-ehensive set of such tests cdngtitutes a __sci_en_t;ifn.c demonstrv_at;iqn.“;

This problem extends beyond fault tolerance into the general area

. of semantic definitions of programming languages. Where a d.i_stributed"
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system is to be built using a high-level language, it is often difficult
“to determine what a correct 'prbgz"am iz supposed to do even in the
absence of faults. Even when semantic definitions of languages exist,
and implementations ave Ffaithful o the definitions, the definitions
tend to become vague with respect to the creation, deletion, and
ésy‘ec’ially'. communications of processes. Where the definitibna are less
vague, they are often phrased in terms of dintricate yet instantaneous
operations. Fob ‘example, the conditional entry call in Ada involﬁés a
<mmwmmmm4w@dwmmmmmm&mﬂwiﬁammyw
begin “”i‘:._he ‘r':end‘e"zvdus "iﬁxmédiatel&“.' For a syé’cem iﬁlpleme.nt‘edvon a
single processor, the”éxeeutio'n-—'t:l..me support for a lan'gu'a.ge may a,.chviéve
effects tnat appear to be instanténeoué by disab.liﬁgﬂ irllte.r'r'upts during |
m_os_t ofy or _a:!._l _of, _the operation. This ‘ pr_esr_ents :_i.nt‘.er'feru.a.n_c«._.a Lrom
other proéeSSéé. On Ia distribuﬁéd system, total suspension of péral'lel.

activity is either not possible or not permissible,

AdaED [3], New York University's validated implementation of Ada,
bas been suggested as an operatiomal semantic definition  of Ada,:
However, sinece that system provides no user control  over - task
dispatching, - it is not possible to answer Mwhat 1f..." questions about

Ada tasking semantiocs by executing programs using AdaED, Wor'se' still,

‘the execution of a particular tasking program on that system tells us -

nothing about it= execution on distributed hardware. Again, what is
needed is & testbed with which bo  set up the unusual circunstance
corresponding to the "what if..." ciuest:i.on, and allow the program or

" operational semantic 'de‘fi'ni‘cidﬁ:""ﬁ'o ‘continwe from that point, if it can.
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3. Ihe Bequirements of the Solution

A distributed system is eoncurrent because‘parts of ‘é distributed
system execute on separate computers communicating in real time. One
cannob teet.“ ﬁhe parts separately and draw reasohable conclusions, so an&
experiments with 1t must be done in a eoneurrent envimment A useful
experimental testbed must be able to model any network topology and
implement any software strategy designed to px'ov:._de faul t-tolerance,
M=o, it mudt b rossible to dalibepately fail .gnginngﬁx parts of a.
distributed syshem under test when its soa’:‘tware_is in any achievable .

state.

Fop sequentizl programs, methods have been avsilzble for a long
time for setting up a  desired program state and machine state
. combination, and stepping the program through its 'haddling' of .the'.
situation. These methods have been implemented in pregz'ams ver-iously
called "simulatops” op Minterpreterst, In & siiﬁulatéi-, the desired
state 1s achieved by exeeut:.ng or single-atepping the progr'am being
tested to a breakpoint, or by for-cing a paz'ticular value z.nto the
simulated program eountex-. Similarly, the desired maoh:me state is
'achn.eved by :Lnstruci;ing the 'simulator- to x‘oree desired values into'

simulated register's or memor-y locat:.ons. Once the experiment is set vp, .

results are usually obtairsed by single-stepping the subjeet program from'

that point while displaying the simulated maeh:.n_e state at _e_ach_step,_ |
A testbed which is analogous to a sequential program simulator, but
which can simulate distributed (parallel) programs and can test fault- -

tolerance sti-ategies, “ig required to meet = the stated problem,
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Specifically, the testbed must meet the following criteria:

(1

(2)

(3)

€]

It must be able to model an arbitrary physical architecture, That

is any number of processors in any network topology. This is not

to imply that its capabilities be infinite, but that there should
not be small and arbitrary hard 1imits, nor should only one or two .

configurations of processors be supportable,

The testbed should provide at least the illusion (to the program

exeouting on the processors) of parallel execubion. It must be

able to present a distributed ‘software syStemﬁ with all of fhe

problems the system will actually encounter on separate machines.

For example,vbné of the problems is the ipability of the fault-

tolerance strategy to avolid interference by temporarily suspending

execution of all bub cne process.

Arbitrary logleal architectures must be representable. - The
assignment of processes to processors must not be constrained by
the design of the testbed. Any such constraint would Limit the
usefulness of the testbed 4in thab it would prohibit many faudt-

tolerance strategies from being exercised on it.

The ‘testbed _shguld be able to control inter—pnogessqp_

communication. It must allow the experimenﬁer to introduce

failures in the communicatibns part of the modeled system, . and to . -

enforce the implications of the simulated processor topology. This

 dnvolves maintaining‘the‘vigibi;ity and accessibility of ‘messages..

| anywhere in the Sysﬁem.,ﬁio:aecbmp;ny'this control, the level of



(5)

(6)

(7)

(8
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multiple messages is combined,

In order.to set up the precise sifuations desired for experiments,
the testbed must provide explicit control ovep process execution.
The experimenter must be able to stop. & process on a specific
instruction (i.e. a breakpoint), and_to single-step insbruetion
ee:eeui;ion for particular processes, | Since en experimentvmay ent;ail.
arranging for many brocesses to be in many different states,
control over suspension and release of one process should not be
dependent upon oontrolb over auspension‘ard releese of any other

process,

‘Since a major point of the testbed is to see if softwave strategies

can tclerate processor famlures, the experimenter must be provided
with the ability to fail and to restart processors at any desired
point. “he dbility to restart is lmportant because many strategies

call fbr automatic replacement of defective hardware.

The testbed must maintain simulated time. - Since distributed-

systems often deal with the concept of time, the testbed's actions

" must not violate the abstracted machines! simulated cloecks.. Fop

1nstanoe, the faet that any or all virtual processes Mexecubing" an

a particular abstracted maohlne might be held at breakpoints should

_have no effect on the relative progress of simulzied time in the

‘yarious other abstracted machines.

The testbed must provide means of monitoring whether the fault—

tolerant strategy under test worked or not. Slnee sueh results may

_-menifest,themse;ves in subtle_ueyg,_tne.entirety_of_the states of
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the simulated processes and processors must be able to be displayed
for examination. Fop the same reason, the displays should be
selecbable =0 as not to hide in a mass of irrelevant details those

results consideved important for a particular experiment.

These requirements have several implications. The testbed _must_
_maintain or r_'epresent a virtual state for each. process in the
distributed system being simulated. It must also maintain some minimal:
Staté inf_érmation for each processor of the similated systen, if only
that px*oeess‘or"s idea of Veurrent" time and which processes are
considered to be execubing on that prpcessof.  This helps both in-
organizzing information for display, and in establishing loel of control
over _pvocess. execution and over inter-processor _commﬁnieation’ and -
processor failure. As a consequence of requirements five and seven, the
-teét-bed'must be aﬁle to affect the simulated System'é.'proaess-'.é',eh'edul'i-ng
algopithm without violating that algorithm's requirements. Fach process
can be .broﬁght' to the desired state by executing to a breakpoint set for-
that process, and single-stepping for fine adjustment from there. = The
sequential s_imul-a‘toz"‘_ method of placing "s;r; -apbitrary value into the
pr'oegass'é i_ns".:t:rue‘tipn.poi'nter to br-:f.ng it to a desired state could cause
invalid results from experiments, since that might prohibit the fault-
tolerance strategy from gat.hering, along the way, whatever information
it neaded for a proper reeovery. In short, the tesbbed should not allosr
the experimenter to 3et up tr'uly impossible :ﬂombinations of process and
system states, bt it should' éillow every other combination to be r-eached

and held as & point f_or the introduction of a failur-_e.
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L, Zhe Implementation

The motivation behind this distributed system testbed lies in the
"desire to validate a proposed sbtrategy for having distributed Ada
programs swvive machine failures [2]. The fault-tolerance strategy is
' expfessed in Ada, and the testbed we are constructing has an interpreter

of an intermediate code at the individuyal message level.
3.1. Qveprview

The organization of the testbed is illustrated in . The part Oof
the testbed which supports the execntion of individual Ada processes in
a sYBtém undé'r: fest is the set of xintu_a.l.nmésmn&. The tern cdme_s
from the operating system concept that every process in a system dis to
have the -'illusién that it is.e:';e.cufi.n'g'on its own processor with an
instruction set erhanced by special Minstructions® usvally kinown as

. supervisor calls.

The testbed provides a user-specifiable number of  processors
referred to as abstract processors. Fach is capable_of multiproce}ssing
“the execution of from zero ‘t‘o.aljl, processes (i.e. vix‘tual‘proee,ssors,) in
the system to be simulated. An abstrac,t pr-ocessor'.employs_ & user-
. supplied process sdﬁeduliug algorithm which defaults to 'a  round-robin

scheme., A syste_in being tested is intended to view an abstract processor

as an actual machine with some execubion-time support code providing the

mul tiprogramming illusion. Thus a complete sSystem under test will
Cconsist of a set ‘of abstract processors connected by -an abstract

communi ca tions 'fae'i'lity.
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The * correspondence between physical Drocessars and 'abstract
processors is similar to that between abstrach processors and virtual
processors. FEach physieal processor is capable'of'éxeédting' from zero
to all possible abstréet ppocessors, with the distribution controlled by
an experimenteb—ﬁﬁppiiéd'map;' A physical prbdesédr‘ mﬁlfiﬁrocessés' a’

group of abstract processors, using a fair scheduling algorithm which,

VP ... VP|- VP ... VP|. VP ... VP - |VP ... VP
. AP ees AP . AP “es - AP
Physieal Physical
~ Controller Processor o _ _ qucessor

)/,k -

Physical Link Abstract Link

Ve - Virtuél Processor
AP -  Abstract Processor

o "Fault-Tolerant Distributed System Testbedm:

Figure 1.
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again, can be altered by the experimenter. One ~yphysical processor is
called the controller and executes the command interpreter which serves
as a user interface for the'exberimenter.' A1y other physical processors
provide an underlying portability sbtructure for the testbed as will be
described below. Note that physical processors are not neeéesarily,real

processors,
4.2, Abstract Processors

The dinstriction set that an absiract pboeessor"prevides its
processes is easily modifiable, end both a Mepystal® frequensy and
instruction and message "execution® times for autcmatically updating the
abstract processor's clock ‘are aeEessible %o the experimenter. The

abstract proeassor also prov1des a place for user code which may. modify
| message trafflc, ip that showld be part of a fault-tolerance strategy to
be tested. Thus, the abstract processor part of the testbed eepresents
|  what would 'tybically be found in beﬁh the processing hardware and ﬁhe |
execution—time support code and "system level" eode of the distributed

system to be simulated.

_The abstract Processors of the testbed eommunicate via méssages.

,Tﬁe experimehtef also communicates with the abstract processors and

other areas of the testbed via these messagea. A message is represented o

as a Pascal variant record, making it easy for the experimenter to add
- any new messages required.for communication among a partieular fault-

toleranee strategy's processes. - As mentioned, the experimenter is able
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message traffic, 4if reguired, The experimenter can also dynamically
influence thé delivery of messages from any wsource (such as the Ada
program or its support). The default network topology for abstract

processors is modeled after Etherneb,

The méssagev handling facilities also aid the abstract processors in
enforeing time. An ébstraet; processor ranbves messages from the set of
messages destined for it (or its proces_s_es) in a variation of first-in-
:f‘_irsf..—out ordep. For aﬁy part_i.eular retrieval, no message which is
time-stamped i'n, the future . (‘aeqprding to that abstr:'aeb‘ processopr's
_ci_oek) - will be rétpieved. An abstract prrqee,ssor'_s clock is essentially
_'it;s_ vie#- of wall 'qloek time. We will say more on this later. This
allowé abstract processors. to be truly execubed in parallel. One
abstr'_act processor can have advanced .its clock well beyond that of
another, but any message sent from the first to the second is guaranteed
to "arrive" after the time - of its time-stamp in the view of the

receiver,

In our problem, there i & one-to-ome correspondence between Ada

tasks and virtual processors. A virtual processor  implements a

‘synthetic instruction set which can be used as & target by an Ada

transiator. Thus each Ada task i1s Mexecuted® by the fetch-execute cycle

" < of a virtual processor.

A= mentioned, many virtual processors may be supported by any one .
abstract _procerssor‘. Thus an abstract processor ‘provides the same

_mu_l.tipr’_ognamm._ing __;i_.]_,lu.s.___i_on_-_ tha-t_:_i,s -__nor'_ma.’t_..‘_!.y. _.__prgv'iqe'(;, by -a languagets . -



115

execution-time support or an operating system. The form of the virtual
processor desired for a particular system to be tested is expected to
vary widely. Hence, the instruction seb is easily modifjable. Its

present form iz designed only to'support Ada.

& virtual processor's state is.represenfed as.e'Paséal record which
is accessible bto the experimenter. As well as the data structures
neeessary te.eupport its insﬁrﬁction set; the vipﬁuel pbocessoffe staﬁe
cantalns the accounting and schedullng informatien used,by the abstract

' processor in supporting the multlprogrammzng illusion. For our problem,
the virtual pr'ccessor's state :I.ncludes infor-mation which is updated
 during interppetation of certamn 1netructions and messages, and employed.
by the seheduling algorlthm. It alsc contains the task's stack of loeal
.variables (referencing envzronnents) and its 1ist of dependent tasks,

and S0 Q.

The style of the instrucbion set we have implemented in the virtual
processors . . elucidates the requirement . eoneefning the level of
' instructions simulated,  The instruction seb would in  normal

clreumstances be called an intermediate code, Each instruction is at a
fefy high lévéi, eorrespdﬁding' in:'ﬁany cases to iéng eeqﬁeﬁcee .ef'
: instructions on actual computers. This allowe us to eombine and forget
detalls considered uninteresbing to owr particular progect. | On the-
other hand, we are interested in determinlng whether our propcsed
' fault—tolerance strategy can recover from the 1oss of proeessors during'
an exchange of messages by taeks residing on separate proceseors. Thus,
: rather than grouping the issuance of a message,: the handling of the

responee, ~and issuanee of any reply into a single supervisor call
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instruction, we provide seversl supervisor eall instructions which are
always used together and in the same order. This allows the

| experimenter to hold a virtual processor at any interesting point within

the message exchange while he deliberately fails an abstract processor.
4.5. Experimept Control

During an experiment, the experimenter can -set and "‘reinove |
breakpoints for individual viptual precessors (i.e. Ada task’s)',»can
divect that an abstract processor's crystal frequency be increased op
decreased, can di‘_rec‘e that an abstract processor cease to exist
('in'troduction'cf a machi'ne feilure)-, -op be reetored' .(-simulete 'stéﬁdb}f'
spares), can single-step or execute any one or a group of virtual
prowssm-s, and can alter de:La:;,r intervals in message transm:.ssions {for
dj,fferent pr_ocessor configurations). 'I'his is a small nuber of
capabilities, but it turns out to be all that is really needed. The
‘experimenter coutd easily be allowed to alter siniﬁlated memery loeaticne |
asg in a sequential simulator, but hardware redundancy technologies seen
't'o' have that kind of hardware fault under " eontrol, making it

uninteresting to software strategies for _toleratin_g hardware faults.
4.6. Simulated Time

The sbeed '..of'each. abetre:ct },i-déessdp' z.s .adjuet.a.bl:’e. and Va clcckm
Whlch tells that abstract proceesor's view of wall clock ’cime is
| ma:.nt:ained. Each :Lnstruci:ion and each message of the system under test
has associated with it the number of‘ macha.ne cycles needed for its
| processing-. As instructions are executed and meesages are handled, the‘

e.ppropri_a_-te -abstract processor's clock is incremented by the product of
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its speed and the appropriabte machine oycle count, An abstract
processor which has nothing to do, such as is the case when all of its
virbual processors are held at breakpoints, conbinues to be =scheduled
“and its cloek is adjusted by a minimal amount. This prevents conflicts
bebtveen the artificizl suspension of time by breakpoints and the
~previcusly-mentlioned refusal of an abstract processor to 'acéépt a

message time-stamped in what it considers to be the future,

The algorithm scheduling virtual processors can no more violate
accurate simulation of time than it could violate wall clock time if
used in an  achbual distr-ibuted implementation, A bad  scheduling
algopithm in i_;he system - under _.tes_t;_ would be equally bad in actual
operation, so the testbed should not be responsible for WYegrrecting® it.
The scheduling of abstract processors within the testbed, however, could-
violate time. For example, suppose there are three abstract processors
each executing a virtual ‘processor and that the virtual processors wish
to communicate with each other. Further, let the communications be
initiated by the virtual processors on . abstract pz‘odess'brs 1 and 2 and
be directed tﬁward the virtual processor on abstraect processor 3. .4
simple pound-robin scheduling scheme would always bias the load of

pending messages for abstract processor 3. Whenever abstract processor

3 was scheduled, it would have a baclklog of pending messages, the

handling of which might use up all of its allotted time, causing it
' mever to make progress in -executing 1ts “virtual - processors, Oup

implementation of the testbed avoids this problem of message biases

© vidlating similated - time by providing a particular (default) abstract

processor schedul ing algorithm. A rgndom cholce without replacement is
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made from évailable abstract ﬁroceSSQrs, raeplacing all of them intb the )
scheduling pool only when it becomes empty. As will be seen, oup
implementation is also capable of providing actual parallel execution of

the abstractk bpocessors,

4,7. Physieal Realization

The testbed's lowest communication layers are modular so thab,_ a
simple substitutioh and ré—cdmpilation allows the testbe& to execute
either on a single minicomputer running uNIx* or on an acbual
distribubed system consisting of a seb of TBM Pepsonal Compubers 1inked
togethép via Efhernet. When executing onrthe minigomputer,_ a set of
UHIX. proceéses ére erééted which correspond to fhe IBM Personal
Computers and their assoclated software. The processes communicate
usihg “pipés" and ﬁhese coﬁrespond to the Ethernet, .That part of the
testbed egecuting as a UNIX process or on its own Pe:sonal Computer is a
physical  processor. The experimenter!s  interface, called the

controller, is a physical processor and communicates with the rest of -

the phyéiéal processors, and hence the abstract processors andrviftual
. Progessors, via the same pathways as they use to communicate  with each

other. In ali areas of the testbed, preference is given to dealing with
- the controller's messages, so. the experimenter's commands  take effect
immediately. |

:Thé Sepabéfion.éf ﬁﬁféiééi.prdcessdf'aﬁdﬂabéﬁfaé#'pfoééssdfi level$.

allows the +testbed to be executed on a single processor without a

¥INIX is a_trademafk of Bell Laboratories.
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m&ltitasking operating .system if that is the limit of .one'e ehviroment.
However, the testhaz can be configured with a single abstract processor
implemehted" on each physical pr"oeessox', .and, when executing on the IBM
Pepsonal Computers, the testbed then implements a true distributed

system. |
4.8. Displays

Each of the physical proeessor's has a monitov asseeiated with :i.t
If a p‘nysical processor is a UNIX process, it has dits own terminal a.t
rwhieh the experimenter may select dis_p;ays of simulatzd activities, If
a .ph:rsicel pr'oeeesor' ia a pz-egrazﬁ on a Personai Computer, the Persanal
Comput‘.er's keyboar'd and moni.tox- _serve. in the sane eapae::.ty. ‘The
expeprimenter can choose among any of several displa,ys to be continuously

. _updatee_ on the monitors, The displays inelude

(1}" 'values.outp'ut from» the Ada pr'ogr"am being tested;

(2) the state of any namee task, includieg its entry queues,

- .(_3)_' the remainder of‘i.he >abs§racted'machi.ne'..e. state irifohﬁétio.p,'_

(4) the contents of any queue or buffer of messages din that physical

‘processor's part of the simulated system.

The contr'oller monitor-s message tr'af*‘ic between the testbed's parts, s
:I.t :I.s capable at any time of displaying all relevant br-eakpoim;s, and ,

the mappings fram:

(1) Ada source task names to virtual processor numbers,
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(2) virtual processor numbers to abstract processors,
(3) abstract processors to physioai pboceésops,
4,8. Inplementation Status

As of this writ:i’_,ng-, the structures i:nplementi_ng the phys;_i_.cal.
processors, abstract processors, and virtual processors as described
above, and the implementation of message traffic are all in place, _A
"Priendly" user interface for  the controller is being developed,
Commands for. altering nebtwork topology are not being included at the
present time, because such concerns are not pertinent to our current
problem of dnvestigating the use of Ada on distribubted systems. The
default abstract processor scheduling algorithm will not be changed for

our problem, and we do not need priorities for Ada tasks, so the default

round-robin virtual processor scheduling is also sufficient,

 The fault-tolerance =strategy to be tesbed calls. for code %o
manilﬁulate and alter the .seqﬁenees -oi‘. '.m.es'sages .beﬁreen firtuﬁi
processors at the abstract proce ssor level, éo we will be L_l_sing that
féat.ure.. That céde_ is  being .-built‘ incrénéntél.ia.r as the virtusl |
~ Processor message handlep coding progresses. A p‘r"eliminar_y, version gf
thé ';t'estbed that has thfée ‘xvahysj'.cél' proeessofs ‘but‘ witﬁ von]'.y a;mi'nimal
implemgntgtian;pf the virtpa_.l:_pnoge_s_sors, has b_e_aen executed as .three
5proce_ss¢s on a LEC vax* 11/780 ruming UNIX. In those ¢trials, the
‘ ability to fail _a_bsgtragi_: Processors, :‘tq-: pr'g_ns_ipqxﬁt _j_messagea-:ito their

proper destinations, and to monitor various pai-ts of the =state data

MY 15 a trademark of Digital Equipmest Corporatiom
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struetﬁves was demonstrated, We are in the process of moving the:
testbed to a set of IBM Pepsopal Compubers and extending the

implementation of the virtual processors.
5. Gonelusion

_ A tesbbed fop evaluating fauvlt-tolerant distributed systems has
beeh deseﬁ:l.bed. Tt allows a system to be methbdicélly‘ Ees’ted, and
allows observations to be made of its response to hardware falluves with

7 the soffware in aty internal configuration.

The testbed allows "qu:!.'te. gereral distributed systems to be tested.
It is presently being used to evaluate an implementation of Ada in a

 distributed enviroment.
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& INTRODUGTION

Digital computers are being used increasingly in dedicated control
applications that require high reliability. These systems are usually
embedded and frequently distributed. Several processors may be used
that eommunicate Cusing a high-speed. bus even though they are
geographically close. An example is a digital aviopies system for a
military alreraft in which separate computers may be used for flight
control, navigation, displays, weapons management, and so on. The
overall system requires some cooprdination and so the various computers
communicate via a data bus. A typical system is  described by

MeTigue [1].

One of the advantages of dlstrlbuted processing is that a hardware
failure need not remove all the computing faelllties. If one processor
fails, it is possible (at least in prineiple) for the others to continue
to.ppovide'servieet This is a desirable eharaeteristie for applications
~requiring high reliabiiity, The  use of distributed - Processing 1s

further encouraged by the decreasing cost of computer hardware.

 lda EE] wéS'designed.fef“the'proéreﬁmihgnof embeeded*SyS£ems (sﬁéﬁ
as those mentioned above) and has many eharacterlstlcs desmgned to
promote the development of rellable software. In thls paper we .exam;ne
the prohlem of programmzng dlstrlbuted systems in Ada. In particular,
ewe are concermed with' the issues that arlse wheve some form of'
acceptable processing must be provided using the hardware facilities_

'remalning after a.fallure.
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In section II we presgnt some motivation for considering
distributed sysbems where hardware failure must be t&leréted, and define
in detail the failures we will consider., In section III we look at the
gereral problem of providing service after péoéeésor‘faiiure, énd‘we |
ppeSent the general facilities needed to support fault tolehance in
section IV.. The considerable difficulties that arise when such s&stems
are programmed in Ada are discussed in section V. We show in sections
VI and VII that these difficulties .eaﬁ be overcome by capreful
programming and by making extensive additions to the exacutionrtime
support system that would nofmally be ﬁeededlﬁo support Ada. Tﬁese
additions make no changes to the 1angqage itself gnd their use iq Ada is
diécussed in sectioﬁ VIII. An example of an application program using
such mechanlsms is glven,in appendix 1, and a detailed examination of

task communication difficulties is presented in appendix 2.

AL HARDWARE TOFPQLOGY AND FATILURES

Thélu‘.nd‘of architecture we expect' to be in common use for embedded
' systems in the future in shown 1n figure 1. It is basad on the use of a |
hlgh-performance data bus that links savepal processors. Each processor.
_is equipped with its own memory. Devices such as displays, sensors,_and_
actuators would be conneeted to the bus via dedieated mlcroprocessors.

rThus thesa-de?icqs would be accessible from each processor.
A great deal of research has been undertaken in recent years to
-.‘produceEeqmputer’ardhi£QCEﬁrés-of-ngAE*réliaBiliﬁf'SUQh"aS'theISIET'f3}' '

and FTMP [4] machines. However, even though designed for feliability;
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Memory ‘ Memory Sensor Actuator
Micro - " Miero
Processor Processor processor processor

Communi.cations Network

Figure 1 - Distributed Apchitecture

these machines may still fail. Lightning, fire or other physical damage
could cause a processor to fail no_matter how carefully the processor
was built. There is, therefore, good reason for employing software

structures able to cope with partial hardware failure.

It is clear that continued service after failure implies a system
distributed over two -or more proeessors. Dlstrlbutlon, however, does'
not necessarily imply continued service after failure. Several
phecessops-- éhEring-'e cbmpﬁtation ’ﬁhat ”stbps"whenefer aﬁy.'single'
progessor faile7will be viewed as a single processing unlt . This

dlstinctlon between dlstrlbuted systems that allow contlnued service

after failure and those that do not is important. we wall call a

dlstributed system that does not allcw eontlnued service after a

processor fails a,_gntngl;ze_ dlstrlbuted system.‘_From the perspective
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of fault tolerance, such a system is no better than a uniprocessor.

We aescme that communication between.proceesora on =a distributed
~ system will be implemented using software that conforms for the most
part to the lower layers of the IS0 standard seven-layer Reference
Model [51.  The kinds of hardware failure that we are concerned with are
‘nct addressed by the IS0 protocel,» The ISO protocol is concerned thh
compmunications failure such as rdrcpped,bite~caused~by noise, loss of
messages or parts of meesages,_etc. The only class of faulits not deelt
with elsewhere is' the total loss of a processor or a data bus with no

warning.

A processor Wili be assumed to fail hy stopping and..remaining
stopped.__All data in the loeal memory of the processor wil; be essumed
losgt. Thus the case ef a processor' failing by Aeonﬁihuing to proeess
1netruct10ns in an 1ncorrect manner and provzdlng possmbly 1ncorrect
data to other processors will not be considered we assume that such.
events are taken, care of by hardware checklng withln the processor or

the methods of Schlichtlng and Schneider [6l.

While this may seem a severe restriction; at lesst three arguments

can be made in its favor:

(1) Faults of the assumed kind must be taken into consideration anyway

since a processor might fail in this way. .

(2) Elther by hardware checklng w1th1n a single processor or by

checking between a dual palr of processors, it is possmble for an

underlying system to simulate the aeeumed prccessor failure mode,
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(3) If such a failure mode is not assumed, error recovery becomes
extremely difficult. ‘Tt becomes possibls for a proéeséor to fail,
and for resulting errors to remain undetected until all data is

compromised..

Given this assumption, error detection reduces to detecting that a
Processor has sbtoppeds Error recovery is simplified by the knowledge
that although the data in the failed processor!'s memory is lost, data on’

the remaining processors is correct,

A distributed system that is to be highly reliasble will be built
with a redundant bus structure. Redundancy usually includes replicating
the bus along different routes as well as replication of +the bus
‘hardware ditself on a particular route. Loss of a complete bus need be
of little consequence if it is preplicated and can be coped with by the
low-level communications  sgoftware. A complete break in the bus system
that isolates some subset of the processors (i.e. the network becomes
partitioned)_ is 'much more serious though very unlikely given multiple’
routes and replication. The 4issues that arise —in. that case are
different - from those arising from prodessor failure. They are beyond

the scope of this paper and will not be dealt with here.

LI JﬂﬂﬂﬂﬂﬂﬁﬁﬁilﬂlﬁﬂﬂﬂlJE&@EAHQE

There are two completely different approaches  that can be taken
when attempting to-provide. tolerance to hardware faults. In the first-
approach, the loss of a  processor is dealt with totally by the

‘execution-time support . software.. - Any ~services  that :-were  lost are
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assumed by remaining processors, and gll data is pressrvgd by ensuring
that multiple copies always eﬁiéf in fhe ”memories 6f the various
machines, We describe this approach as transpapent since, in pninciple,
the' prdgrémmer ié ﬁh&wéve.of its existeneé. Thié is the approach.béing

pursued by Honeywell [T7].
Transparent continuation has several advantages:
(1) The programmer need not be concerned with reconfiguration,

(2) The programmer need not. kmow about the distpibution.  Thus the

distribution can be done by the system.

{(3) The same.progpam can be run on different systems with different

distributions.

However, as the continuation of service is transparent to the
pﬁdgrammer; the programmer cannot épecify degraded 6r_§a£g tS]'$Erﬁicé
to be used following processor failure. Since the system eannot specify
it either, -trahsparent eohtinuation"musf always pnovide identical.
service. If ddentical service JIs dimpossible becguse insuffieignt

processing resources remain, the system stops.

In many crucial systems this is not  acceptable. - Situations will -

occeur where didentical service cannot. be provided (due to physieal

. -damage, say)_and_yet_degréded_service_is-neaéssary;if some - catastrophe . . -

is ,to'_be avoided. A nuclear power plant may be unable to provide powenr

--but nonethe1esa_must'be'able;tO“shutﬂﬂawn safély.*
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There are also.'many difficulties in imﬁlementing transparent
continued servmce. Since failures can cceur at arbitrary times, the
| support software muet alwaye be ready to reconfigure.  Duplicate code
must exist on all machines and up-to—date coples of data must always be
available on all mach;nes. The overhead 1nvolved 1n thls process . is
considerable. Further, the overhead may not be_obv1ous to the programmer
ﬁﬁen the program 1s.being“wri££eh, A simple'assigement stetement, fop
example, may take considerable time to execute 1n order to ensure that
the updated value of the variable has been distrlbuted to all the
_memories. However, even 1f these difficulties could be overcome and
transparent continuatlon eould be offered without massive duplication of
eomputing resources, it would still be.unsuitable for many applications

because of its inabilibty to of fer alternate service.

In the.seeondfapproeoh to'dealing'with‘tﬁefloesIof e'broeessor-only'
miﬂimei feoilities are provided by the exeeutidn-sﬁpport soffware. The
fact thaﬁ equipment has been lost is made known to the program-' and it 1s
expected to deal with the 31tuat10n. We will refer to this approach as

programmer—oontrolled or,ggnﬁhnanggahegza'

. Programmer-controlled continuation has several disadvantages:
(1) The programmer must be concerned with reconfiguration.

{2) The programmer must either specify the distribution or be prepared
to deal with any dlsurlbution provzded by the systema '

(3) _The program depends on the system° at least the reconfiguration
_ The disadvanbages are out—welghed by the faet fhat the service ,

provided followlng failure need not ‘be xdentmoal to the servioe provided |
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before failure. The programmer can have complete control over the
sérviees provided.by the sofﬁwére and the actions taken hy the soffware
Tollowing failure. Alternate, degraded, or merely "safe! service éan be
offered as = circumstances dictate. Also, the vapious,ineffiéienéies
associated with the handling of fﬁiluré and:the necessary preparations

for it are quite clear to the programmer.

In the remainder of this paper we will consider only the ron=
transparent approach. We assume that the actions to be taken by each
processor following a failure ave specified within the software

executing on that processor.

If a distributed system is to provide continued service after one
" or ‘more processor faiiuées, then Pacilities must be provided over and
above those needed for normal service. We will refer to these as
continuation facilities. If there is a single continuation facility for _-
the entire syétem then the system is centralized. If the précessor
providing .éhé coﬁtinﬁéfioﬁ‘faeiliﬁy féils;'tﬂe'éYSfem éiéps aﬁa:tﬁis is
 ﬁnac§éptab1e; To pﬁevent this, coﬁﬁinuatiqn faéilities must ‘exisﬁ on

all the processops.

R However;,difficulties}can'still.arise~if;;following’theAIQSSJ of a

processor, a continuation faeility on one progessor is chosen to perform

fault tolerance for the entire system: For example, since the processor - -

performing the fault tolerance may fail at any point, 211 other

' continuation facilities mist be Kept advised of the current state of the
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reécovery &o that they can take over if necessavy, This is unacceptable

because of the resulting overhead. In what follows, we assume that each

processor will have a continuation facility that independently assesses

damage and effects whatever local changes are necessary fopr recovery in

that

that

(1)

(2)

Processor.

Continued service after one or more processor failures requires

the following actions be performed:

Detect Failure

Processor failure must be detected and cpmmunicated to the snftware_
on.each of the remaining processors. |

Assess Damaze

It must be known what proaésses were running on the failed
proéeséob, and whaﬁ processes and bbﬁcéssbrg remain, Fﬁrthér;

processes execubing on processors that snﬁvive the failure mnay

Still be affected by the failure. For example, their execubion may

(3

depend on processes or contexts that were lost with the failed
processor, .If "anything is to be done'abqut'Such prbceSSes, they
must be known and there must be some - way of communicating with

them,

Select 4 Response .
Information must be provided so that = VsenSible choice of a

response . can e made, = The response that is chosen will be .. =

determined by which_pvccessors and processes remain, but in many

“applications = the response will also *be'1detérmiﬁééffby“ otheﬁ'

* variables and these would also have to be known. The height of an
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alrcraf't, for example, might determine what actions should be taken

when part of the avionics system is lost,

After_a failure is .reported to the sof'tware on a. particular
processor, the local reconfiguration software will independently
decide  on a response and pubt into effect the changes ﬁequired on
that processor., The <choice of a response depends on the
reconfiguration strategy provided by the programmer and on the
information provided, It is important that the information which
- the reconfiguration strategy uses be consistent across processors,
since if it is not; reconfiguration processes on different
Processors gould decide on dif'ferent respenses and  thus work. at

eross-purposes,

(4) Effect The Response
Onece a response has been decided on, it must be possible %o earry
it oﬁf. The.reeoﬁfiguraﬁion seftware should be able to create and
remove processes, sbtart and stop processes, and bhe .able to
communmcate Hlth processes s0 that. they can.take appropnzate action
on their owh. In many cases the ney. processes will. have to be ‘
ppovided,with‘data,-aﬁdrg consistent set of such data would have to.

be available_tq the reconfiguration sof'tware.

'variaus“diffiéﬁlties afé:raiSed.ﬁy’ these fa@ﬁiremen£s§- Fifstly,
they depend strongly on data that is ecnsmstent across all machines.
.Without maklng QUlte unpealistic assumptmons about the underlying -
message passmng system, it eannot be assumed that data is consistent

when a processor fails if no precautions are taken. ' waever, a two
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phase protocol [9,10] ean be used in this sitwation to ensure that
consistent data (bub perhaps not the most recent values) is available on

all machines.

A second problem with the view of continvation taken above I1s the
‘treatment of unrecoverable objects [11]. If an.unrecoverable-object has
been modified, backyard error recovery is not possible following a
failure. The problem is no different on a distributed system than on a
uniprocessor system. An apparent differepce is that all the processors
in a distributed system need to be informed of changes to unrecoverable
objects and this has to e done in the presence of failures, However,
distpibution of status information about unrecoverable objects is just

an example of the data consistency problem discussed above,

¥ DISIRIBUTION AND CONTINUATION IN Ada

We now consider the use of Ada for programming distributed systems
in which processor failure has to be tolerated. What is needed is a
distributed system that provides the continuation facilibties discussed

in section IV, -
Pi st pibution

The choice of objects to be distyributed is an important question in
‘the design of . a distributed system. iAda has a tasking mechanism and;.
according to the ida Reference Manual [2], it is intended that tasks be

distributed in an Ada program:

Paralle; taska (pgra1le1 logical processors) may be._implemented
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on multicompubers, multiprocessoprs, or with interleaved execu-

tion on a single physical processor.
Mlso, it is clear from the requirements for the language [12] and from
the Ada Reference Manual [2] that the tasking facilities are inbended to
be used for all task communication and asynchronization even when
. different physical processors are executing the tasks involved,  While
it would be possible to devise a separate mechanism for inter-task
activities between ' compubers using some form of input and outpus, this
would be substantially less useful than existing Facilities and probably

program-specific,

No facilities are defined in Ada to control the distribution of
tasks., It is essential that software that is to be used following the
failure of a particular processor not be resident in the memory of that
processor (otherwise the system would be a centralized).  To achieve
'this_separation, it is essentiazl that the programmer be able to control

. the placement of both the primary and alternate software. Surprisingly,
- there is no explicit mechanism f£or control of distribution 'in Ada -

although there are representation clausés to control the bit=level

layout of records, to.allow the placement of. .objeets at. particular . -

. addresses within a memory, and to associate interrupt handlers with

specific machine addresses.

It is not sufficient_toﬁbeégble to control the allocation of tasks

to  processors, The semantics of task _distribution must take into

account the possibility of failures. For example, if there are multiple

tasks. of a particulav task. type and they are exeguting on different

- Processors, a separate copy of the code must be required for each
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processor, Otherwise, an implementation could provide a single copy of
the code that was shared by all processors; for example by Jfetehing =a
copy when a new task body is elaborated, This would be satisfactory if
there were ro failures. .waefer,.failuve of the processor containing
the original copy of the code would then suspend all subsequent

elaborations.

For any particular programmihg language, the required continuation
facilities 'diseusséd in section IV cquld be provided in three different
ways:

(1) By using mechanisms ‘in the programming language specifically
degigned for that purpose.

(2) By using mechanisms in the programming language that were designed
for another purpose. If this were done, it would be a coincidence
iff the  mechanisms worked satisfactorily since - they were not
designed to surgort fault tolerance.

(3) By uéing mechanisms outside the programming language Such as
modifications to the execution-time enviroment or software written
in some other language, perhaps an assembly language. :
Unfortunately, Ada makes no explicit provision for continuation,

Many features ~of the language raise substantial difficulties in damage

assessment, and in selecting and effecting a response,
FPailupre Dgngetggn

An execution-support sysbem for.Adé”iévnot”reqﬁiréd to provide any
facilities for detectlon of processor failure. No specific interfaee is
'prov1ded by the language to allow software to be 1nformed of processor

famlure.
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If failure could be detected, it might be possible to dinform the
softyare by raising an exception op generating an'interrupt} the latter
using an entry call as its dinterface. In either ease, apppoprlate
."plaéement of the corresponding exception handler or accept statement
becomes a problem since it must be assured that they will be executed
when required.  Also, the nécessaﬁy exception‘and éntry names are not

predefined and so their use is neither standardiﬁed nor required,
Damage Assessment

Cléarly, the damage sustained éé a peéult of‘ a . processor failure
_ includes 1loss qf the services that were provided by the software thatAA
was executingbon the procéééor that failed., It éiso inclﬁdes 1633 of
the data contalned in bhe memory of the failed processor. In addition,

in an Ada program the fallure of a proressor can cause damage to the

software that remains. Broadly speaking, two forms of damage_can.oecur.A,_

A task can be suspended waiting for a message that will never arrive,

and a task can lose part of its contexbt. These will be discussed in - .

turn,
Task Commmication

- The problems that arise in task communication are best illustrated

by an example. Consider an Ada Program that contains two tasks A and B

where A is_executing~onzgne,ppoeessqr-anng,gn__athher,_--SuppdSE“.thatf“_fi-“'“

task A& has made a call %o an entry in task B, and that B has started the

canespondiqg_rendezvouai-_If*Bﬁs.-ppoquSQP'anW"fails;‘.taék A owill

remain. suspended forever because the rendezvous will never end.  Since

~ the failure takes plate after the start of the rendezvous, a ‘timed op
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conditional entry call will not avoid the difficulﬁy.v

Similar ppoblems arise  throughout = Ada, both 1in explieit
communication such as. the rendezvous and in implicit communications such
‘as task activation. & detailed examination of these situations is given

in appendix 2 and in [13].
Loss Of Context

In block structured languages, a program unit can assume the
existehce of an insbance of all 'oﬁjéétS'in‘the SUPfounding'lexieai
biocks, Whén a system is distributed, it is possible»tq have a given
pr-ogr'am" unit on one processor and.one of its surrounding 1e:écic'a'1 bl.ocks
on another processor. If the latter processor fails, it must be decided

what to do with the surviving inner program unlt.

. B tgsk in Ada relies on several contexts:

(1) The context of the body. This is the lexical units enclosing the
body of the task.

(2) The creator. This is the program unit whidh créates the task.

(3) The masters [21, page 9~41.

411 of these contexts may be different. Each of them may be lest
' -dus: to proeessor failure. Ada - défines¢ no semantics for these
 situations.
Thus, the damage following proecessor failure will include lost
serviees, 1ost data, the permanent suspensxon of tasks on. remainlng_

processors for a varlety of reasons, and the loss of cuntexts of some

. tasks., . This damage could .be.:quite _extgnsiye.,_,gs i@_;s:presently_ -
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defined, Ada provides no way of_determining the extent of this damage.
Indeed, any attempt to assess the danage could cause the task'enQUiring
abcut #he damage to be suapended'itself. Suppose fep example >that 'the
attripate .Qallahle‘was used by a task ﬁo'determine whepher‘another task
was callable, the lnteppretation of the value_;ggg belng that the second
task was still present and provmdlng gervice. If the taaks were on
separate machines, the implementatlon of the attribute would Pequlre an
exchange of messages. Slnce no reply could ever be received after a

failure, the enguiring task would effectively be suspended.
The purpoSe of effechbing a response is o replace services that

‘were lost. The source of the new services will have to be software that

resides on machines that remain after the failure,

Adavhas fabilities“for sﬁarfihgvtaSQe and fev.creating.theﬁ.  It is
a relatively simple matter to cause software to begin execut*on to
” replace lost serv;ces. Note hcwever that the replacement software is
part of the same program as the software that was lost, and so cannot
use names thatAwould be ambiguous to a compller. ' Thus ror example a
replacement task cannot be given the _same name as the task it is

,intended to replace.i Although tasks can be created and started the'

scope rules of the 1anguage llmit the 1exica1 placement of the altepnate _'

software since 1L must be wmthan the scope ef the software effectlng the

.response. Regall also that Ada does not provide the npecessary

distribution control.



140

‘Even if peplacement services could be started and distribution
could be controlled; it is still necessary for the replacement software
to communicate with the software remaining after the failure. This
means that communicaticn paths used beforg the failure have to be
' redirected.  Comminication will be primarily by rendezvous. The
rendezvous in Ada is asymmetric and so a calling task needs to know the
" jame of any.task éoﬁtaining an entry it.wishés to call, Buﬁ' a 'caile&
task need not know the names of tasks that will call it. If a calling
task has to be replaeed beeause of a failupe, the replacement ocan call
the same entry that was called by the lost task., The entry is still
‘available in the same task that was béing: called before the failure.
Thus redlreetion is trivial if a calllng task is lost, Howevep, it a
called task has to be replaced because of a fallure,  the feplaeement
cannot be given the same name as the task that was lost. ‘This would
:duplicate the deflnltlon of a task name in the same scope. Thﬁs,. in
this ease, redireetion is very involved _The replacement called task E
will have to have a dlfferent name and more imporﬁanﬁly, all the
_ calling tasks (that may not have been replaced) Wlll have to begln usmng_

a dlfferent name in their entry calls-

E Tﬁis difficulty'iS'nbt -Quite ' s6 serious for fésks"cbéated by -
allocators, Since assignment is allowed for aceess variables,
communlcation ‘can be redlreeted by assigning & 'value representlng an
'alternate task to an access variable used 1;0 make entry calls, Two
'ﬂ3ﬁfobiéﬁs.then arise. First, the.entlre program ‘has o be written using.
access varlables to access tasks, and second alternate tasks haye to be

of the same type as 'bhe pr:l.mary task wh:Lch may not be convenient.
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Selecﬁing and implementing a response relies on the availability of
data that is consistent across machines, Ada makes nc provision for

ensuring that data can be reliably distributed across machines,

Finally, in effecting a response, it will be necessary to take care
of those tasks damaged by the failure, The only way that this can be
done in Ada is to abort them. Further, since some computing facilities
have heen lost, the response that is chosen might also involve modifying
services that were not affected by the failure by aborting some tasks
- and starting others. Because . of the scope riles of the language,
aborting several basks will be difficult to arrange if the program makes
use of nesting and a single piece of softwdre is to contain all the

necessary abort statements,

YI FAILURE SEMANTICS FOR Ada

The remaining sections of this paper show how Ada can be used in a
- Fault-tolerant distributed system. A first step in the construction of .
such a system is to fill in the gaps in the semantics of Ada mentioned.
in the previous section. In particular, the meaning of distribution and
the effect of damage to the remaining software caused by a processor
- failure must be specified, . While it is not difficﬁlt~to"ohod3é‘a
‘reasonable meaning for distribution, the.problem of what to do with
- damaged  tasks is much more difficult. It must be emphasized that the
semantics suggested in this section were chosen so as to follow the

existing language as much as possible.
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Distpibution

The primary aim of distribution sementics is to aveid the
possibility of a centralized distributed system. It will be assumed that
only tasks‘will be distributed, The diStribution of a task T to a
processob P will be taken to mean that the task activation record for T

and all of the code for T will be resident on P.
Danaged Tasks

In section IV it was pointed out that the failure of a processor
may affect tasks prumning on the remaining_procassors, and that many
language feabures can cause these problems,  The difficulties do not
arise because tasks were lost when the processor failed. Any tgsk could
be remoﬁed from an Ada  program at essentially any point 3d§hgg£
processor failure by execution of an abort statement, Rather, the
difficulties arise because the semantics of'ﬁhe language fail %o deal
with this aituatibh;" Ada semantics are precisely defined for tasks
being aborted and for the subseguent effects on other “tasks, énd the
execution-time system is required to .cope with the situation, We

- suggest therefore that that daméga'folldwing.pbodeéscrﬂ failhpé Acéﬁ‘ ﬁé

handled as if the task that were Lost had been aborted, This would

allow the 1anguaée~dep9ndent part of the damage following .ﬁréeessqr"':

failure to be treated using existing language fagilities.

This cholce of semantics leads to a final problem that needs'to be

addressed; the _;tatus:.of_.the main .program .follcwing'_réilureiv By B

definition all non-library tasks in an Ada program are nested inside the

'mu_mwwm@dmdQWdWMih’Hfﬁhﬁbﬂ&ﬁ&ﬁmﬁﬁtdmv
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tﬁeated'as if gbort statements had been execubted on the lost tasks, then
a seriﬁus problem arises with the main program. When a task is aborted,
all its dependents are aborted also, For any bask lost through failure
this is reasonable., It means that all the dependents that were not lost
with the task have to be aborted by the system. Howsver, if the main
program is lost, this implies that all the tasks that depend on the main
pﬁogpam (that is almost all of them) will - have to be aborted. This
ef’fectively removes the entire program. Clearly this is unsatisfactory.
' We suggest therefore that the main program has to be treated as a
special case. For the main program, and only for the main program, the
'eiecuﬁion-Support sjstem will have fo'breate an exact replacement if the
‘main program is lost through processor failure. To ease the overhead
that.thiS'involvés; we suggest that the main program be iimiﬁed to a

single null statement.

NII A SUPPORT SYSTEM STRUCTURE EOR Ada

Although Ada does not support the facilities required for
© continuation éxpl‘ici‘tiy, the semantics deseribed in section VI can be
achieved if the execubion-time support structure is suwitably modified.
In thiSISection7we diSéuss fﬁe-neeéssary'ﬁddifiCations.- In sectioﬁ fIII

we show how they are used with Ada.
Failure Deteotion

Failure detection could be performed by hardware facilities over
and above those provided for normal system operation. Alternativély,__

failure could be detected by.Sygtem software. The ”hardWare option is'
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less desirable because_ it requires additions to existing or planned
systems, and the detection hardware itself could fail. We suggest

theréfore the usefof software failure detection,

Software failure detection can be either passive or active. A
passive 5yétem might rely on tasks assuming that failure had ocourreg if
actions did not take place within a reasonable® period of time i.&.
timing ouk, Alternatively, a passive system could require that all

'messages passed between tasks on separate processors be poutinely
‘ acknﬁwledgéd. This 1is a particularly simple case of timingjdut since

failure has to be assumed if no acknowledgement is received.

The disadvantages of.passive detection are:

_‘(1) Timing out assumes an agreed-upon upper limit for respénsg time.

(2) A failed processor will not be detected until communication is
- attempted and this may be long after the failure has occurred.

Upper bounds on response time may be hard to determine, Very
complex situations can arise from an incorrectrchoice, The reason for a
Lgck of response!frqua task on another processor.may_not_ba:failure-_pfA
that processor - but merely & temporarf rise in its workload. The

-cdnseqﬁences of‘timing_ﬁut_coﬂld-be“aﬁ'aSSumptiOn by one processor - that

another had failed, followed by reconfiguration to cope with thé loss.

- Clearly, if this asswmption is wrong, two processors. could begin - trying = -

to provide the sage service.
"Being'ﬁnéwafé thét-a processor héd.failed ﬁill iead to a -leS of
- the service it was proyiding_uﬁtil_the féilgre is noticed. TIn a system

with many processors each providing rﬁiatively few services, the amount
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of inter-~processor communication might be quite low. A falled processor.
may then g0 unnoticed for so long that damage %o the system being

conbrelled might result.

It is for these reasons that we reject passive software failure
de_teetion and_ suggest the use. of éctive software fallure detections In
an active sgystem, some kind of inter-processor activity is required
per-iodicalljr and 1if it ceases, fallure is assimed, The messages that
are passed are usually referred to as hearibeats, Multiple failures may
occyr- at essentizlly the -same time but transmission 'timés may vary. "
Since it is important th.at machines surviving failurje have a consistent
view of the system state before they begin beconriguriatiOn, the
heartbeats must be organized so that each pemaining processor gets the
 same information about the Ffailure. There are 'manf( ways to achieve
this. For example, all machines may be required to genezvate the:.r _
heartbeats at appr-o*amately the same time so that each machine will |

receive all the heartbeats of the other mach:mes in a given inter-val.

- Any not rece:.ved in this interval can be assumed to have failed.

A f‘;_nal question of! mplementatlon is whether-. the generat:.on and -

.mom.tomng of heartbeats should be the responsibility of the programmer
or the Ada execution-time supp_qr.t system; ‘We favor the execution-time "

support system for reasons discussed below.

. The mechanism that we propose. to cope with this, together with the

heartbeat mechanism, is shown in figure 2.
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" Ada PROGRAM
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Figure 2 - Tmplementation Model

_Whenaver any comm&nication takes place between tasks on vdifferent
pfocessors, the.exeeutiﬁﬁhtime'Support system.on the processor starting
the communication reccfda the details in a .message Jlog. Whenever a
féilu&e.is detected; eéch bﬁocessof cheeks.its meésage log t§ Sée if any
- of its tasks would hbe damaged”by_the:failupe ﬁpermanently.suspended for

example), If any are found, they are sent fake messages. They are

-called "fake" because they are constructed to appear to come from the -

_failed processor bub -clearly; dpﬂpop,  Tpe~m¢ssage content is usually
equivalent to that Which ould be received if the lost task had boeen
_ aborted, Invthisvway, eagh proégssob-is able tp'ensuré that none-of its
-_tagks_igfpg¢manently damagedisagd the action following failure for -each.

remaining  task is that which 4is associated with an abort. It often

- .bakes the form of raising an exceptiom,
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Clearly it is possible for unsuspechking tasks to atbempt to
réndézvous' With. tasks on the failed processor afﬁer failure'has been
detected, signaled, and other communications terminated. This situation
Gat 'be-deait with éasily if thé-éxécution-time sﬁpport systeﬁ.returns a
fake message immediately indicating &hat the serving task has been

'ahorted'and that rendezvous is not poésible.

- Because of the fact that a fairly extensive set of facilities is
required in the execution-time system for fake messages, we suggest that
the heartbeats be " handled here also. There i1s a clear need for
cooperation between the heartbeat monitoring system and the fake message
system, Operating both at the same level is probably the only practical
approach. This has the‘addiﬁiénal advantage that the programmer is not
burdened with the need to include the heartbeat system in his program.
Finally, the heartbeat system is =o central to the reliability of the
entire system that it should operate at the lowest practical level of
the software system. Thus it relies for its operation on the correct

operation of the minimum amount of other software.
- Selecting and Effecting The Response

Since consistent data across machines is essential tb allow =a
ﬁreépbnée ﬁo be'chdsén-ﬁndLiﬁplémentéd,-the exeoution-time éupport SYSteﬁ.
for Adé  must provide ‘a2 mechanism for ensuring that data ecan be
.:disﬁbibﬁtéd”"reliébiy. As mentmoned 1n sectlon IV, a two phase protocolls.
can be used and we propose that an 1mplementation of ix be included in
'“the execution—time system along With the message log and heartbeat'

mechanism.
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YILI FAULT TOLERANCE IN Ada

In this section we shaowy ﬁow a fault-bolerant Ada system can be
built wusing +the swpport mechanisms Just described, As was shown in
section V, Ada does not provide any specifielfaeilities to support this
- type of fault tolepance. Existing features of the language that were
not designed for the purpose have to be used %o inberface with the

modified sipport system.
Fallure Detection

When failure of a processor is detechbed by the heartbeat mechanism,
© this information must be transmibtted to the software running on each
remaining processor so that preconfiguration c¢an take place, The
infopmation is available to the execubion-time support software in some
internal format, but it has to be transmitied to the Ada software using

an existing feature of the language.

As noted in.secticn‘v, if the language is not to be changed one .
apppoach. is to make use ¢of the language!s excepbion mechanism, and have
the execution-time systém_.genena$9' a ‘preﬂefined_;exception on . each

processor remaining after a failure, If this is done, it is not clear
- where the handler for the exception should be placed.. The handler will
be receiving extremely important information (namely that a fallure has
: .rocurred) gn@,,:in order to deal with the 'situation, it must be
guaranteed that the handler will be executed, Unless handlers for the
exception are placed in every bask that might be running, execution of .
the handler cannot be_guaranﬁeed. An alternativé is to define a spéciél

.~ ‘task to contain the handler and to raise the —exception in this  task
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omly. Clearly, the spesial task should not be execubing until the
exception is raised, Unfortunately, there is no way bo activate a task

with an exception in Ada,

Bnothepr appr'each to signaling failuwre is %o view the reguired
signal as being very like an interrupt, and transmit the information to
the Ada software by a call to a predefined entry. Again there is »the
prvoblem’ of where the entry should be defined te ensupe_exeeﬁtion.

However, in this case, the solution of defining a speecial task and

defining the entry within it works very well, If the task is glven a

very high priority, it will be suspended on the enbtry wntil the eall

that signals failure, whereupon it will immediately begin execution.

We propose therefore that a special task (RECONFIGURATION_I) be
def:l.ne.c.i on eech proeeesor (I being the pr'eizessof mn'nber) that ﬁill
conbain a spec:.al entry with a single par'ameter. The .a_.ggp_t statement
aseoe:.ated with the enbry wzll be in an inf‘lm.'ce loop. This task will
nermeﬂt.iy be suspended on the zccept statement for special entry and

when a failure is detected by the heartbeat meehan:.sm, a call to the

entry w:.ll be generated ‘I'he par'emeter paesed w:Lll des;Lgnate wh:.ch_

element oft the system’s hardware has falled. The task will then be

aetivated and Wlll cont'.az.n code with:.n the ,aggggt statement to handle

reconfiguration. A general form of the body of.‘ th:.s task is shown in

.figure 3. Since thz.s task is :Ln an infinite loop, it returns to the.

accept statement once a par'tieular' failure has been dealt with. Thus

_ _subseQuen_t_ failures will be dealt with in  the. same way . and, in.

principle, any number of sequential failures ',ean ke dealt  with.

Fupther, if p_hysieai. damage removes ‘more t_h'an‘_' one processor at the same .

12 i 1 ——————— S @apq st + rw—ap— - =
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task body RECONFIGURATION I is
begin

-~ initializafion code
Loop
accept FAILURE(WHICH : in failure types) do
==~ code to handle hardware failures. -
end accept; '
end loop;

end RECONFIGURATION_I;

Figure 3.

time, the remaining processors will notice the loss of heartbeats iIn
some - order, and calls to the entry in the reconfiguration task will be .
generated sequentially. Thus multiple failures océurring together will

be dealt with as if they had occurred in some segtience.
Damage Assessment

Giyen the support system described in section VII, démagé will be
limited to lost tasks and lost data. No remaiﬁing*tasks'ﬁill be
suspended. Each task that could have been suspended will have received
fake messages giving it the impression that ﬁﬁe. task .iﬁ: waé
commupicating with had beeﬁ aborted. It is ﬁhe programmer's
responsibility “to enSure.thﬁt thé“subséduent'aétionS'Bjsﬁheéé taSké.;féix
appropriate. In addition, all tasks losing contexts will have been _

aborted oo o e S
.. The tasks and data that were lost need to be determined.. Provided -

there is control ‘of distribution (see below), this is quite simple. The

. information about which tasks- are .on which processors could be
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maintained and referenced in three ways:

(1) It could be stored in a table within the program itself.

(2) It could be stored within a table maintained by the execution-
support system. This table will be needed in any case because it
is peguired to implement inter-task communication. Provision cpuld
be made for the program to interrogate it.

(3) The information eould be stored implicitly within the pregpam, If .
all %asketo-processor assignments are known at conipile timeé and do
not change, the code used for reconfiguratiocn following failure can
be written with the distribution information as an assumption.

There is no clear advantage to any of these methods. The choice in any

particular ecase 1s implementation dependent. In the example given in

appendix 1 we use the third method,

Algorithms fopr the selection of ‘a :suitable response, and the’
algorithms used in that response, depend for their correct operation on
- having appropriate data available, ¥ach piece of data being manipulated
by a program for a typical wembedded application can be regarded as
: eithen expendable or esseptial. Paptial - ‘computations and  sensor
readings are expendable whereas navigation Ainformation or weapone'

- status are essential.

Expendable data need not be preserved across machine fallures. A
partlal eomputatlon, for .example, .13 only of value to the expression
generating 1t._ Replacement software that w111 be vueed following a
fallure can Smely reeompute any expendable values. A sensor value fer
example, is usually_ only USqul_*fQ?_:a__Sbo?t time and a sultable
” reﬁlaéemeﬁt: value .ean be .obtained by. feadingvthe sensor again, We

- suggest that any data items that the programmer considers expendable be-
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glven no special attention, and that the replacement software be written

with the assumption that these data items are not available.

‘Esgential data does need to be maintained across machine failures,
In an Ada program this could be implemented in two ways. First, data
items that the progremmer considered to be essential could be marked as
such (perhaps by a pragma), and the system would then be required fo
ensure that copies of these data items were maintained on all machines:
Each time +the data item was modified, all the copies would be updated.
In the event of failure, onme of the backap copies wcould be used
immediately. This 1s sinple for the programmer but potentially
inefficient. Copsider for example a large array tha;t was designated as
essential If it were being ﬁpdet'ed bin a loop, es each element was
changed, it would be necessary %o updeta. all the e'opies 6;3‘» th'et element; |
The enbire over-head a.ssee:.a.ted wa.th mainta:.m.ng cons:.stent cop::.es would.
be incurred f‘or eaeh element ehange. n praet::.ce in order to allow
reconflgurat:.on, it would probably be adequate to wait until the all the
elements of bhe array had been modified and then upda te 'a11 copies of

the array at once.

A second approach is to provide the programmer with  the tools to
~ generate consistent . copies across machines, In this way, not only the

data itens to be pregerved but alsoc .'bhe times  during execution when

copies will be made will be undep. Lhe pr‘ogr-ammer"s control. - We si'zgge'.et‘f‘

that this could be done by providing a spee:.al task (DATLCONSISTENCX_I)

" on each ‘processor that will contain an entry with a single p'aramérﬁéf-;**: AR

The parameter would be a record with a mmber of'va:r-iant 'parts-,"'one part

for each essential data item. Calling the entry and passing the latest
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value of a data item in the r'e_cor-d together with the_ appropriate
discrviminant 'cause's the néeessa.try' copies td be rﬁade and distributed
while the ealling task Wai.ts. Completlon of the rendez vous a.ndlcates _
thaﬁ this proéess has beexi satisfactorily completed. A general form of.

the body of this task is shown in figure 4.

Another interface that could be used Lo provide access te the data
consistency Suppor-t-faeilities is a generic p.ackage'. A gener-ié pa'ékage
could be defined containing a task or procedure that can be called to
distribute values of essential ifariables. The generig ﬁarémeterv” for the
Package would be the type of the essential vafiable and a new dinstance
of the package would vbe instantiated f'or-.each ésSéntial:'datav, item m fh‘e-
pr'dgr-am. The number of packages can be kept low by gr'ouping sets of

essential data :.i:ems :i.nto reecrds.

- Although there are no specific facilities for control of task
distributian, limited. econtrol can be achieyed using either an
implementa;tion-_-d_e_pendent pragma or an -implementation-dependent ‘address

clausa. The pragma could have a machine notation as a parameter and be

task body DATA_CONSISTENCY I is

begin '
loop ' _ .

accept DISTRIBUTE_VAL UES(DATA_VALUE : in DATA TYPE) do
- :melementatlon of ’cwo phase protoeol

end accept; - SRR

end loop;

end DATA CONSISTENCY I;

Figwre d.




154

required to appear in the specification of the task or task type to
which 1t applies, as is done with the predefined pragma priority. This
pragma would require the compiler to generate instructions and lcader
‘directives for the designated task bo enswe that it is placed in the
required machine. This is the notation used in the example glven in
appendix- Te Aiterna'tiveiy, for tasks created by allccatcrs; the ppégua
could be required to appear in a declarative part and it would apply
only tc the blcck or body enclosing the declaratlve part (similar to the
pr'edef:.ned pragne. ,ggj;imz_e_) Its effeci; would be to cause all tasks
‘ created by elloeatcrs :f.n the body op bloclf to be distributed to the
mach:l,ne des:Lgnated by' the pragma. _ S:Lm:larly, for a particular_
implementation, the :.dentifier parameter in the address clause could be
interpreted as a task name, and the expression parameter as a machine

designation.

As was pointed out in section V, the creation and deletion of tasks
that might be required as - part of effecting a responee is easily
achieved in Ada using allocators and the abort statement.. Thus the
particular accept statement within the reconfiguration task that is
exeouted for a given failure can oreate and delete whatever . tasks  are
needed to prcv1de alternate service. & simpler apprcach to providing
replacement software is tc arrange for the required replacement. taek tc
be present and executn.ng befcre the faa.lure, but suspended on an entry.
| Such ‘a task would not consume any process:.ng resources albhough 11: wculd.' .
use memory, but it could be started by the reconfiguratlcn sof‘tware very

. quickly and easmly by calling the entry upon wh:.ch the replacement task' |

is suspended. A general form f‘or a repla_cemem'; taskvvi_“svvshown in.f_‘igure_
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5. This is the mechanism used in the example in appendix 1.

Redirection of communication to alternate software that has been
stapted - following a failure has to be programmed ahead of time into
tasks that call entries in tasks that might fail., It will be necessary
for the reconfiguration task on each proceﬁsor to make status
information about the system available to all tasks on that 'processor.
‘Fach task must then interrogate this information 'béfbre making & call to
an entry on a remote machine in case the entry has changed because of

failure,

In summary, an Ada program that uses the support system described.»

in section VII +to allow it to tolerate the losg of one or nmore

processors would have the _i_‘ollowing} form:

(1) A main program consisting of a single null statement,

task ALTERNATE SERVICE is
pragma distr:.bute(PROCESSUR_I),
end ALTERNATE SERVICE; -

task body ALTERNATE_SERVICE is
begin
-~ Code necessary to initialize this alternaiz service,’
accept ABNORMAL_START;
== This task will be suspended on this entry until it is
-~ called by RECONFIGURATION_I following failure. The -
«- code following the accept statement provides the
-~ aliernate service,
end ALTERNATE. _SERVICE;

| Figwre 5.




(2)

(3)

e

(5)

(6)
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Lk static structure in which there is little or no nesting of the

-application and alternate tasks themselves. They may define izes_t:edv

tasks for their own uUse. This is necessary to ensure that these

- tasks are visible to the preconfiguration and data consistency

tasks,

A set of tasks providing the wvarious application services; vthe
dlstrlbutlon _of the tasks beding controlled by an implementation—

defined pragma or address clause. Each task would contain handlers

for exceptions (such as tasking error) that might be generated by

the support system if failure occurred while that task was engaged

in communication with a task on a remofe machine.

4 get of tasks designed to provide any alternate service that the

programmer chooses; each alternate task suSpendéd on an gecgept

statement that wall be called to stapt it executlng.

A task on each processor designed to cope with reconfiguration on

_ tﬁé$f processor; this task containing-one enbry for each hardware :

eomponent that might fail. These entries would. be. called

autunatically ‘be .the support system following faliure detection. - -

A task on eaeh processov dehlgned to distribute coples of essential}u

data for tasks on that processor. Rendezvous w1th thls task allows

-any other task to dmstribute. essential data at any tlme the

programmer ohooses.
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IX CONCLUSION

Although the probability of failure per unift time for a modern
fault-tolerant processor is low, it is not zero. The loss of processors
in a distributed system.is certain to occur and must be antigipated., In
order to benefmt from the flexibility of distribubed processing, crucigl

systems must be able to deal with processor failures.

Ada was designed for the'programming of embedded s}steﬁs, many of
which are crucial and distributed. We have examined Ada's suitability
for programming distributed systems in which proéessor failure has to be
bolerated and foundv it to be inadequate. The difficulties have been
discussed andvproposals to 'avbid them have been suggested. These
‘proposals involve extensxve modmfmcatmon to the exeeutmon-tlme system
used by Ada and careful organization of the Ada program itself but no

' language changes..

Although the discussion presented here is in terms of distributed
systems,. simila§~ ppoblems can- arise in'shared—mémory muitiproeessér
systems where processor failure has to be antieipated. If the system is
organized < so that‘1difféhent Drocessors exeeute different " tasks,
processor failure at an arbitrany point could produce exaetly 'the same

~damage as was discussed in section V.

we eonsider the nonrtransparent approach to be the only one that is
feasmble and thls requires language facilities for its support. The
_gagt'that Ada_makgg_‘np:.explicit,_provision; for  this . type of fault
..téiefance is ﬁﬁfortunate._ The aolﬁtion presentgd'in this paper uses

_existing features of the language and is far from ideal. Modifications
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to Ada would be preferable.

An implenentation of the tasking and exception handling features of
Ada incorporating the ideas described in this paper is being undertaken.

It is presently being tested.
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Appendix 1 of APFENDIX 5

A Pragramming Example

This is a very simple example designed to illustrate some of the
ideas discussed in this paper. In a typieal Ada rapplica.tion, the
program would be much larger and would have to take into account all the

language features mentioned,

' The 'exémble consists of a calling task GAﬂ‘LER that operates on one’ :
pr'océséor. v(proeessor one} and la serving ﬁaSk SERVER that operates on
another pr-oééséor (~pJ:'qces.‘5|cn.i two), The calling taék does some real-'-tinﬁé
processing and calls an entry in ﬁhe serving task in order to get some
" ¥ind of service. The pfdgi'am is W’lr'-ifi.:én..t'o cépé r;r'ith" i;ailur.e of either
pr*oqessof. Alter_'na_tes are pr'ovidgd for the c_a_lling and the sgrving

tasks and a reconfiguration task is present on each phoéeésor-.

Normally only the calling and serving tasks are executing. and a
_\_ﬁaul:b.—ig_tplg_;g_n& version of this.example' would consist of just the's_e"_two_ '
| tasks, If processor one fails - then it is necessary to start. an
alternate ecalling task on proeessor two. Sim.ilarly, ir prdeessor two
fails it is necessary to skart an al"ternai_:e"se.m'riﬁg ‘task on - processor

ore.

The alternates are present on the required machines when the
. program starts. execution.: Fach. alternate is waiting on an entry named
ABNORMAL_,_STAR'.I so that they do no processing whil,e both Vpr"oeessor*s are

‘ -Qpe‘rationa»l'. - When one processor ‘f.aifls,gvthvewrun-;ti’mey system generates.an
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entry call on the other processor to an entry in its task RECONF;GURE;I
thepe T is ﬁhe .proceésqr numbef}. This task'.theﬁ calls the
ABNORMAL START entry for the alternate that is needed and pvocessing is
able to continnﬁ Entries are defined in RECONFIGURE_I for each
conponent that might_fail. - In this :exgmp;e, each machine ‘is only
.interéste& in the failure}qfxfhe ctheﬁ s0 only one entry is defiﬁed in

each reconfiguration task.

If g rendezvous is in progress when the failuﬁe oceurs, then the
serving task need not care that the calling task has been lost, and the
rendezvous can complete. The éalling task will caré if the serving task
has been lost because this will indefinitely sﬁspend the caller. Thﬁs '
TASKING_ERROR igs raised by the runrtime system in the callzng task.
This frees the eall;ng task and allows 1t to prepare itself to use the

alternate server,

Note that the server does not need to be aware that the caller has
been replaced by an alternate if the caller's machine fails because the
rendezvous is asymmefbric. The entries in the server can - be ecalled by

any task; in particular both the caller and the alternate caller.

Ir a,rendezvous is notlin progreSa when the fallure oceurs then
.'.pr008331ng on the remainlng processor can continue. it this processor
is executlng the caller, then the ealler Wlll receive TASKING ERROR the¢ 
next time 1t attempts to rendezvous with the server and lt will be
_reconflgured at that time. The alternate sepvgp_wml;,gave already . been

started by then.
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In this example, a single array called DATA is reggrded as
essential and the progranmer has decided that it needs to be made
consistent across both machines ~only rarely. The  entry
DISTRIBUTE VALUES  is called in tasks DATA CONSISTENGY 1 and

DATA CONSISTENCY 2 periodically to achieve this.

Distribution is controlled in this example by the pragma DISTRIBUTE
‘that takes a processor number as its parameter. It must appear in the
specification of the task to which it applies. It 1s mueh like the

predefined pragna PRIORITY,

—- Text Fop The Example Will Be Added Later —-—
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Appendix 2 of AFFENDIX 5

Damage In Task Communication

In this smection, the simple rendozvous will be examined in detail
as an example, Othépr langﬁége elements involving task communication are
considered only briefly since, for the most part, the difficulties that
spise from pr'o'(:essor. failure ave si".'miiaz'*-tb those that arise ‘n the
simple rendezvous., The phrase "the processor executing task X rfails”

will be abbreviated to "hask X fails" whenever no confusion arises.

A simple rendezvous in Ada consists of a calling bask C. making an
entry call, S.B, to a serving task S, that ¢pabains an scgeph statement
for the entry B, The syntax is shown informéily in figure 6, | The
semantics of the language reguipe that if the call is made by C before
' the zecept stabement is reached by §, C is suspended unbil the accept
statement is reached. If S reaches the accept statement befope the call
is made by C, S is suspended until the call is .'mad-e. Iﬁ either' éa‘se; ’ C

remains suspended until the rendezvous itself is complete.

Calling Task C . . R - Serving _'J_Zask S
" o ACCEPT E DO
: | , END_};'..';

- Figure 6 - The Syntax Of A Sipple Rendezvous. .
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In order to look at the effects of processor failure on the
rendezvous, it is necessary to specilfy an implementation at the message
* passing level. Only the simple case of & task C calling an entry E in a
serving task S will be considered, Fupther, we assume that the call is
made before S has reached the corresponding gccept statement; the case
where the serving task waits at its acceot statement i= similar. One.

possible message sequence is shown in figure 7.

The calling task C asks to be puﬁ onto the queUe for entry:E. ﬁhen
S reaehes its_g_ggn§ statemenu for E, it sees that C is on the queue. Q
can be con31dered to be engaged in the rendeZVGus after the
RENDEZVDUS_START message arrives at . When the rendezvous is completed

~ tha REHDEzveusﬂpoxgggigp_m@agege uowid ewtken § which would onbinve.

.....

UEing this:implemén ation of a simple entry call, what happens if
either the servmng or the calling task falls? A detailed examination of

all possible cases has appeared elsewhere [13] and will not be repeated

Calling Task C Serving Task S
S.E; ‘
PUT_ONTO_ QUET Fen mommemns o>
<-——¥ ----- REQUEST QUEUED
Tige =~ . = . ' . ACCEPT E DO -

'<---a-——RENDEzv0US START

T e e el

e “ . END Ej
<----RENDEZVOUS CX)MH..ETE ’

Figure 7 - The Méssages Used To Implement The Rendezvous
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here. chéver, it is clear that there are several situations in which
processor failure could eause one of the tasks to bé trapped. Fop
example, if btask S fails at any poinbt after the RENDEZVOUS START message
is sent but before the RENDEZVOUS COMELETE message is sent, the latter
will never be sent. Task C has no way of distinguishing this situation
from é'long.servicé time by task S, and so wiil wait forever. Althoﬁgh
the processor execubing ¢ is still working, task C is permanently

suspended by the loss of a diffefent processor.

It might appear that the timed = entry call &solves some of the
problems raised zbove but it does not. The semanties of the timed entry
~call appear to be qulte straight~forward [2]:

A timed entry ecall issues an entry call that is canceled 1f a _'
‘rendezvous 1s not started within a given delay.

However, in a distributed system, messages will take time to get from a.

task on one processor to a task on another. Even if the underlying

message passing system can guarantee that a message will eventually

arrive correctly, this will be implemented at a lower level by a

~ protocol that may well involve acknowledgement of messages, and the.

resending of messages that have been lost. A message can certainly be

deiayed for some arbitrary length of time. Even physical separaﬁion of

‘the processors may impose a significant delsy.

'oné1pqssib1e”intéppfetation;offtﬁéftiﬁéd entry call would  be  to

count the total time until the rendezvous is started. Message paSSLng

interpretation. has to be ruled out by the statement in the language

- ?time and bime Walting on the entry queue' would be 1ncluded ThiSf...
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definition that a timed entry call with a delay of zero is the same as a
conditional entry éal&:
If a rendezvous can be started within the specified duration (or
immediately, as for a conditional entry call, for a negative or-
Zéro delay), it is performed and the opbtional sequence of state-
ments after the call is then executed,
If the deléy included both message passing Pime and time on the queue, a
delay of zero would be impossible and a timed enbry call with a delay of.

zepp would never succeed.

Another interpretation of the delay is that it is just the time
spent waiting on the entry queue, We zssume that this is the delay
intended by-the language definition since thié has a meéning when the

specified delay is gero.

A timed entry call gives protection against having to wait too long

- on the entry queuve, Thus, it could be used to provide protection against

Pprocessor failure before the rendezvous starts but not afterwards. -An .
analysis of _ﬁhe message tfaffie-necessary-fbr the timed~énfryiéall can
be performed that is similar to that shown in figure>7. The issues that
arise when considering failure are similar but more extensive”than-thOSe'

that arise with the simple rendezvous. What the task issuing the call

needs is .some guarantee that it will not be trapped in an attempt to

communicate, and forced to miss a deadline, It does not matter to the
‘task, whether the time 4is spent waiting on a quele, or attempting to
send a message, or any other activity.

The conditional entry call is no more helpful than the timed entry

- call.. Aga;n,__the_semantics of the condiﬁional_ehtry_call;appear-to be. .
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quite straight-forward [2]:

A cenditional entry call issues.an entry call that is then can-

celed 1f a rendezvous is not immediately possible,
By a similar aﬁgument to that used with timed enbry calls, we conclude
_from the rules of the language that "immediately" must mean zero waiting
time on tﬁe entry queve, As message passing time can  vary,
"immediately" may turn out %o be an arbitrary delay. Apart from the
semantic difficulties arising in a distributed system, the possibility
of the caller being_ trapped~indefinite1y'fbllowing processor failure

occurs with conditional entry calls as with the other rendezvous.

e ﬁow consider'ﬁhe ereation of nested tasks Again, a .detailed_
‘examlnatlon of the dszaeulties armsmng with task creation has appeared
leewhere [13]. _ Here, we» give an example to_ show the potential

problems. Taak ereation by a;locators will not be considered; the .

diffieultiesvthat ariee are similar.

A tasktis ereated in two steps. First, it:is'elaborated at ﬁﬁich
point entry calls can be made to it., Second, it is activated, that is,
the declarative part of its body is elaborated and it :beg'i.r.ls'.i execution.
Elaboration of* a task occurs as @ part of the elaboration of the body of‘

‘the declarative part of the parent unlt. Achivation of a task oecurs‘

after the elaboration of the declarative part of the parent un,t.fmAA

.Conceptually, this cecurs axter the,nggin but before the flrst statement

of the parent's body. The parent cannot be activated until all nestedsii_A o

‘basks have been activated
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To see the difficulties that task creation can raise, consider a

set of three tasks P, A, and B, with A and B nested inside P. 4 and B

have no other tasks nested within them and each task is to sxecute on a
different processor; P op processop one, A on processor two, and B on
protessor three, The elaboration of the body of P includes the
elaboration of A and B, and so messages will be sent ffom'broeessob'oné
to the other processors requesting the elaboration of_ A and B. Onge
this is done, ﬁasks'ﬁ and B ean accept éntfy'caiiaa' When téSk.P feaohes
its bezin, all of the objeets that it declares have been elaborated, and
i and.B aré.then activated. This requirés an "ootiﬁate A" message being
sent from processor one to processor two and an Macbivate B" message
being sent from processor one to processor three. The aoﬁivation_of'P.
requires thot the acbivation of A and B be complete, and so P eannot
oroeeed until .it has réoeived'responsos to'thésé aeti#ation messoges
indlcating that 4 and B haye been aotivated. Clearly there are numerous

diffloulties that can arise if any one of the three processors falls.

For example, P will be suspended forever if elther processor two or

thbee fails at any time before both A and'B haye'completed.activaﬁion.
In that case, P could not prooeed because one of its dependents would

never be activated. Szmllarly, A;would be trapped if it called an entry

in B and processor three failed after B was_elaboraxed but before it was

activated, Both A and B would be trapped if processor one failéd'after

.the:elaboration mesoages,ﬁero.sent_to-A.gnd_B, bqt.befqre thoiao;ivation_:__

messages were sent,

'Taék”téfﬁinatidﬂnbﬁoduoesfdiffiéuitiés'aiso;::ﬁ task waiting at a’

select statement with an open terminate arm can be terminated if its
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master is completed and all other degendents df' the mnaster ape either
terminated or waiting at select statements with open terminate arms. In
order to check this condition it is neeesisar'y: to euspend' all the
dependents as they are checked, If this is not done, it is possible for
two dependents each to be wa:.t:z.ng at a m statement m.th an open
terminate when checked, but never to Lboth be waiting a’c .se_]_ec_t
| Statements simultaneously. If the dependents ave execubing on a
d:.f‘fer'er\t pr'oceesor- i‘rdm the master', 11; is necessary for the master to

send meesages to its dependents suspend:.ng them for the duratlon of‘ the .
termination check. If the master task's ’pr'ocesso'r fails before a
message to resume is sent (aeemn:a.ng that term:.nat:.on is not possible), a

suspended dependent will remain suspended forever.

Even aceessing a noﬁ-'-looal or a shared varisble could e'ause _ the
refereneing task to be 'suspended. Aecess to a variable stored on a
remote machine requirves that a reduest'message'ﬁe sent and that a feply'
be received. Failure _of‘ the remote machine between .__‘I:he two messages
would cause suspeneion of the -requesting t‘a-skv. 'Alth.ough | the'. 'ian'guege.
allows an implementation to use a copy of a shared var-:u..able, updating it
only at synchrom.zation po:.nts, and the defml'c:.on of‘ a synchroniza.t:r.on"'
point can vary depe.nding on whether or not the variable is declered as

.ﬁhan&d there are’ still implv'ied ‘update vae's'sages"”'at' sg:rnchr?enizati'on'

pon.n’cs. ' Aeeess to a shared vam.able on another processor requ:x.res tha.t o

“ a d:.alogue take plaee, and f.‘a:.lure of the processor on wh:.ch the shared
‘ var':.able res:.des could trap the task a'ctemptlng to r'eferenee the

' variabl B
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