A UNIFIED DATA FLOW MODEL FOR
FAULT TOLERANT COMPUTERS

Final Report

T. R. Rao
V. V. Ramanamurthy
Abbas Youssefi

University of Southwestern Louisiana
Lafayette, Louisiana

and
E. M. Kavi

University of Texas at Arlington
Arlington, Texas

April 25, 1984

This report is supported by research grant NAG - 1 - 271

I. INTRODUCTION

We have used the Dataflow Simulation System (DFPSS) at USL
as the medium on which we have produced aafunotional simulation
of SIFT. DFSS is written in PL/I and is supported by MULTICS.
¥ithin the simulation, all the 4interprocessor communication,
fault simulation, system state data, and monitoring were
implemented in dataflow and supported directly by DFSS. The
actual processor level computation was carried out by the SIFT
code in PASCAL. The interface between DFSS in PL/I and the SIFT
code in PASCAL was supported under a mechanism in. DFSS oalied a
Node Realization Module (NRM).

There were several reasons for making these choices for
this initial simulation. The first reason was that these choices
allowed us to effectively use' the SIFT code that was available.
Also, DFSS supported the addition of appropriate monitoring and
fault simulation mechanisms. Another'reason involved the faoct
that this preliminary simulation should point out some of the
limitations of the current. dataflow simulator and provide useful
information in designing the new dataflow simulatbr in PASCAL.
The primary reason for using dataflow only at the highest levels
of SIFT was related to the way interprocessor communication took
place in the last version of SIFT. Virtually any procedural
process: ocan beV simulated in dataflow on DFSS. However, as a
system simulation medium, dataflow worked best in dealing with

parallel, asychronous, gommunicating processes.

] 1

This report is divided into three sections and each of
these sections descoribes different phases of the simulation of
SIFT on DFSS. Section 1II outlines briefly the changes that®
have been made to the SIFT code so that the program could be run
on the PASCAL compiler at USL. Seotion III gives the interface
mechanism between the SIFT code in PASCAL and the PL/I progran.
This is necessary to include SIFT oode a8 a node within the
dataflow graph. In seoction IV the simulation of a single
progessor on the DFSSlis described with the basic structure of
the node. This seétion also desoribes an approach to the
simulation of the complete system with n (n=5) processors. The
interprocess communication buffers are oonocurrent acoess files
with each of the processors having access to them as required by
the operating system. This is achieved by means of the a PL/I
interface program. The details are given 1in the specific

section.

Il. SIPT PASCAL CODE

Some funotions in SIFT oode were realized in the
assembly language of BDX 930. In order to obtain the same kind of
acouracy of numerical values computed by these funotions, they
were translated into PL/I. PL/I was used mainly to wutilize the
range of options available in obtaining the required accuraocy.

The language dependent routines BAND (bitwise ‘and’) and
BOR (bitwise ‘or’) were written- in PL/I. To use these PL/1
routines the statements oontaining the aotual functions were

modified.

For ezample: (framecount mod scheds(vp+1])
was changed to
mod(framecount, scheds[vp+1]);
(eofbit band dbx*8)
was changed to
band(eofbit,dbx*8);

Another change was made to the ocode. All the 1location
dependent variables were made independent of the system. The
‘at’ oconstruct used in the original ocode was not present in
either wversion of PASCAL compilers available at USL. So these
variables were made independent of the locations in memory. In
fact, because of the virtual memory system on MULTICS, no |
construct forcing static memory 1location 1is. available. This
problem is overcome simply by removing the ‘at’ {loocation} from
the variable declaration part.

For example: dbfile at dbloc : integer;
is changed to
dbfile : integer;

The system dependent routine ‘gprocessor’ is not necessary

because the processor id ocould be initialzed at the beginning of

the process. The new version of the SIFT code is in Appendix -

I..

III. INTERFACE PROGRAM

In order to realize the node realization module as
described in [1], we used a PL/I program which called the SIFT
code as a subroutine and there should be a correspondance between
the two. VWhile passing the parameters of type array or structure
(record), a pointer to an array or a struoture was passed. An
array or a structure of same type was declared in the PL/I
program with a pointer. This pointer was then eéuated to the
external pointer (PASCAL pointer).

'

An example to reflect the parameter passing mechanism is :

given :

PASCAL declaration : dffile : array(0:1023) of integer;
dfptrpas

PL/I declaration : dol dfi11e(0:1023) fixed bin(35) based(dfptr);
dfptr = dfptrpas;

¥ith the above statement, any reference to the PL/I array
element was reflected in the corresponding PASCAL array. All the
other simple variables were external.This program is in Appendix
- II.

This PL/I program also realized the interprocessor
communication through & procedure which was oélled whenever the
transaction pointer in the “"broadcast"” or "stobroadcast" routine
of the SIFT ocode was set. The interproogssor buffers were
oconcurrent access files and these could be accessed and ochecked

" after every subframe.

1V. SIMULATION QF SiEI ON DFSS

Each individual processor node within the dataflow graph of
complete system 4is given in figure 1. The dataflow program to
realize this basic node is given in Appendix - III. With each of
these nodes representing a processor, complete simulation with n
(5) processors was attempted. Each processor was supposed to
execute the current schedule : compute, broadcast, and vote
according to schedule and assume that the other processors are
also doing the same thing. The behavior of ‘a processor is not
immediatly ochanged if oommunication breaks down or computation
faults ococur. The qnly changes in the behavior of the processor,
caused by failures in interprocessor communication, are 1long
term. If fallures take place, eventually a reconfiguration will

ocour. -

The error buffer data and the data buffer values could be

-

examined through the PL/I interface program at the end. of every
subframe.

The detalls of the scheduling tables oould not be woiked
out as expected due to the fact that these were wirtten in
assembly language of BDX 930. In effect, the bottleneck in .

implementing the simulation was the scheduling tables.

ON DATA FLOW SIMULATOR

The major responsnbi]iiy of the research team at the
University of Texas at Arlington was the design of a data flow
language and a data flow simulator for this language written in
Pascal for VAX/780 system.

DFDLS (pronounced as daffodils) 'is such a data +flow
simuiator written in Pascal and at present 1s available on DEC 20
system. It will be available on VAX/780 soon. Simulation of
computer systems, both hardware and software, can be performed
using data flow concepts. For an introduction to data flow, the
reader is referred to ﬁAﬂ.

The major features of DFDLS are given below.

1. Tokens on data flow arcs can be structured data items.
Existing data flow computers and 1languages permit only
elementary data types like integer, real and characters.
DFDLS allows all the Pascal data types. At this time,
record data types are not processed, but will be included
soon.

2. Firing set semantics can be specified in DFDLS. In the
basic data flow, a node is enabled for execution only when
all input arcs contain tokens and no tokens are present on
the output arcs. This firing semantics are extended in
DFDLS by describing alternate firing sets. Each set defines
the mandatory input wvalues required for the node to
execute. ’

3. Nodes in DFDLS can be data flow subgraphs. In most of
the existing data flow systems only primitive functions
such as ADD two numbers are permitted. In our system, a
node can be a primitive function defined by the system, a
data flow subgraph or a Pascal procedure provided by the
user. These Pascal procedures are linked dynamically by the
runtime environment.

4. The input language 1s very simple, DFDLS interprets
simulation models expressed in our textual language. There
is a one-to-one correspondence between the data flow graphs

and the textual representation. Thus, data flow graphs can
be translated directly 1nto the i1nput language. This also
provides for graphical interface that can be designed at a
later date.

3. Block structures and Recursion: The present
implementation of DFDLS permits a restricted block
structure in that, all names must be unique. Recursion 1s
not allowed. However, we are in the process of extending
DFDLS to allow more general nesting of blocks and
recursion. Because of our data structures and modular
design of DFDLS, this addition is straight forward.
Separate descriptor tables and node tables will be created
for each block and display stack will be used to implement
recursion and static scopes.

A complete description of DFDLS and a detailed outline of the
design can be found in (31].

We made every attempt to complete the design and testing of
DFDLS on VAX/780 before the end of 1983. However, due to
unforeseen problems, we are only able to complete the design and
test DFDLS on DEC 20. We would like to describe briefly the
technical problems faced by the research team at UTA.

Due to the policies of the board of Regents of the state of
Texas, the acgquisition of VAX was delayed by several months. The
hardware had arrived at UTA in December 1983. We are awaiting the
installiation of a new air-conditioning equipment before bringing
up the VAX system.

The unversity and the department of Computer Science and
Engineering have seen significant increases in the enroliment.
The computing facilities are not adequate to handle the increase,

resulting in severe restrictions on the use of disk space, access

to terminals and in general, degraded response time.

The current wversion of DFDLS is being implemented on DEC
20/60 computer system, awaiting the acrival of VAX 780. Al though
most of the code for DFDLS is written in Pascal and thus
portable, the section that dynamically links user supplied Pascal
procedures with the runtime environment of DFDLS is very machine
dependent and must be rewritten for VAX.

During the execution of a data flow program, the function of
a data flow node can be rea[ized by invoking either system
provided Pascal procedures (Library +functions) or user provided
procedures. This facitlity enables us to add reliability
calculations to the simulator. There is no easy way of linking
programs dynamically on DEC 20480 system. Several alternatives
have been considered and discarded due to the complexity of
implementation.

A dynamic linker could be written with DFDLS to interface
with the standard DEC linker provided. This requires significant
amount of code in Macro-assember for DEC 2060. Since DFDLS will
be transported to VAX, this solution was discarded. Pascal
procedures could be added to the DFDLS and the entire system
could be recompiled and. linked for each run. This solution was
not entertained because of the inefficiency.

Our next choice was to have the NRM (node realization module)
to invoke the user supplied procedure as a separate task with the
data space mapped into the data space of DFDLS. It was hoped that

this option would allow access to parameters similar to call by

>

reference technique. However, two problems exist with this
method. Sharing of data space is not possible because the
sub-process (corresponding to the user supplied procedures) would
overlay the DFDLS space resulting in the destruction of crucial
data belonging to the simulator. The second problem arises from
the fact th#t in order to invoke sub-tasks, it is necessary to
make user procedures as independent programs. This would require
that the wuser write programs instead of procedures to 1ink with
the runtime environment of DFDLS.

Despite of the restrictions imposed by the last solution, we
have decided to pursue this approach in implementing DFDLS on DEC
2080. We will retax these restriction in VAX 780 implementation.
In the present solution to the 1linking problem, user supplied
Pascal proced?res are made into complete programs and DFDLS will
communicate with these programs{ through standard disk files. The
parameters are written into files and read <from files by both

user programs and DFDLS.

2. REPORT ON RELIABILITY MODELS FOR DATA FLOW

The research team at UTA has also attempted to develop
reliability models for data flow graphs, <so that the reliability
of computer systems modeled as data flow graphs.can be predicted.
To our Knowledge there exists no published reliability studies of
data flow systems. A survey of related models can be founa in
[33.

A recursive algorithmic method can be wused to determine the
reliability of a data flow graph. The reliability of the output
from a node depends on the reliabilities of the inputs to the

node and the reliability of the node itself.

1t 2 N
Y WEEEE
: NODE :
V
0
R(D)> = g{ f(R1, R2, ,..., RND, Rnode > (1)

FIG. 1 RELIABILITY OF A DATA FLOW NODE

-

Here £ is a combinatorial <function describing the input
configuration of the node, RI1, R2,, RN are the
reliabilities of the inputs and Rnode is the reliability of the
node. The node in the above calculation can be a subgraph, thus

providing for a recursive definition.

2.1 Our Approach:

We have developed a method that combines Markov processes
with the recursive algorithmic method described above. A path
from an input of a data flow graph to an output of the data flow
graph is defined as the alternating sequence of arcs and nodes,
alt, nt, a2, n2,, a0, where atl is the input arc and ao is the
output arc. The reliability of the path can be determined using
Markov methods. - e

A significant structural pﬁoperty of a data flow system is
its capability for parallel processing with split and merge of
Job streams at wvarious levels, This leads to multiple parallel
paths between an input to the data flow graph and an output from
the data flow graph. The parallel paths need not be independent.
The dependencies will be handled by the algorithmic method.

For example, let there be M parallel paths between a given
input and output of the system. Let R be the overall reliability
of the output with respect to the given inpusﬁ which is to be
determined. Also, suppose Rl, R2,, RM be the corresponding
reliabilities of the M parailel paths, obtained using Markov

methods. Then R is given by

R = Q ¢ Rl, R2, v...., RM) (2)

\
where g 11s the <function describing the 1nter~-relationships

Pl

between the parallel paths.

The reliability measure of the entire system can be obtained
by calcu]atlﬁg the retiabilities of all outputs from the system
with respect to every input to the system. We are currently
working with this method and developing the algorithms required

to compute the i1nter-relationships between the parailel paths.

3." RERERENCES

C1l. Rao, T, R, and Myers L. Foreman, "A Unified Data Flow Model
for Fault Tolerant Computers”, Memorandum #3 01/737/1983.,

(21. Treleaven, P.C., Brownbrldée, D.R. and Hopklns; R.P. "Data
OPriven and Demand Driven Computer Architecture”, ACM Computing
Surveys, March 1982.

{31. Kavi, K.M. *Data Flow Models For Fault Tolerant Computers"',
Interim Progress Report for NASA Grant NAG-1-271, UTA Tech Rept.
CSE 83-3, Nov. 1983. ’

START-UP

SIFT - PROCESSOR

1

"CLOCK
Aa
3.2ms Inrercuer |
3.2me DLy ’
SIFT -NRM i
'SIFT-0S

Adowaw 34yLs Wiisas

CLOCK. SYNCHRONI ZATION

5U3JJng ACSIIIOYJUILN]

Figure-1 i

Appengix = 1

2vagram newsift(input, output,datafilell);
ezxport clock,dfptrpas %

- *procedure band(var a;b . integer) ; external,#)

t*procedure bor(var a,b - integer) ; externali#)

tenst
maxtime=71; (# max skew allowed 1n clack task *)
maxdata=1015, (# highest address 1n the datafile #)
maxtrans=1023, (# highest address i1n the trans. file #})
maxdb=127, (# highest address in a databuffer #)
dbsize=128; (% size of a databuffer #)
eofbit=32748, (# end of fi1le b1t for transaction 3*)
maxprocessors=7; (# highest processor number less 1 %)
maxstate=128, (# largest number of items in a statevector)
maxframe=7; {(# Maximum frames in a cycle. #)
maxsubframe=21, (# last subframe in a frame #}
maxreconfig=1771, {(# Number of elements 1n recanfig schedules)
maxbint=200, (% maximum for table which tasks broadcast #)
tpbase=894; (# minimum value of the transaction pointer #)
magic=74&%; (¥ 2#tpbase—-1023 #)
tpclock=1019; (# claock in datafile. #)
tasks=12; (# number of tasks 1n the system =#)
maxbufs=119; (# maximum number of bufters)

tentrysize= 133, (% 5 + maxstate; #) (% si1ze of a task entry)
ttsizex 1729 (stentrysize #* (tasks+1);%) (# size of the task table. #)

(# The following constants define scheduling masks #)

datamask=4097; (# Data portion of a schedule entry)
extendmask=8192, (# Extended task entry #)

contmask=4096, (# Continue prior execution only #)}
suspmas k=2048, (# Task may be suspended at clock tick =)

(# the following are constants to be used when refering to buffers.)

errerr=33;
gexecrecont=34;
gexecmemory=35;
expected=3¢4;
lock=37,
ndr=38,

irteset=39,

(# The q series is the 1553a input value. The a, b, and ¢ series
are the values rTe-broadcast as part of interactive consistency,
corresponding to the 1st, 2nd and 3rd input processors. ¥)

(# note -~ for phase 2 the q buffers have been eliminated. data is
now input into a;b or c buffers for p’‘s 1,2 and 3 respectively %)

astart=40,

aalpha=40, abeta=4l, acmdalt=42; acmdhead=43; adistance=44,
aglideslope=43, alocalizer=4&, ap=47; aphi=48; aphitrn=49,
apsi=30, aq=51, ar=52; aradius=53; arturn=54; atheta=55,
au=36; ax3=57; axcntr=58; ay3=59 aycntr=60;

alast=60;

balpha=61l, bbeta=62; bcmdalt=63, bcmdhead=64, bdistance=65.

bglideslope=&6, blocalizer=67; bp=68; bph1=469; bphitrn=70;
bpsi1=71., bq=72, br=73; bradius=74; brturn=735; btheta=7é4;
bu=77, bx3=78, bxcntr=79, by3=80; bycntr=81;

calpha=82, cbeta=83; ccmdalt=84: ccmdhead=85, cdistance=864,
cglideslope=87, clocalizer=88; cp=8B9, cphi=9C, cphitrn=91;

cpsi=92; cq=93, cr=94; cradius=93; crturn=26; ctheta=97;

cu=98; cx3=99; cxcntr=100; cy3=101; cyentr=102;

{# The o series are the 15533 output values =)

astart=103; (# must correspond to first of o series #)
qcmdail=103, qcmdele=104; qcmdrud=105, qcmdthr=106,

qdely=107, qdelz=108B; qpitmo=109; qlatmo=110; gqreconf=111,

olast=111; (# must correspond to last of o series #*)
osynch=112,

(# Internal values. #)

phin=113; psin=ii4; rn=115,
ax=116; qy=117; qz=118; timer=119;

(# 15533 values. *)

appnum = 16, (#timer—ostart+l; #)
onum = 103; (#¥ostart, #) (% beginning of saved region #*)
numl553a=21, (¥alast—astart+l, #) (¥ number of items to read #*)

onumi353a=9, (#olast-ostart+i,#) (#% number of items to write 3#)
bas1553a=9364, (*tpbase+astart;#) (% first input location *)
mas1593a=253; (*16#00FF3*, #) (# status bits #)
outi553a=%; (s#olast—ostart+i; %) (% number of 1tems to transmit #)
obasi553a=999, (#tpbase+ostart:*) (% first output locatiomn =)

580=0; (#* subaddress O0O3*)

2al1=32, (+ subaddress 1)
Tecl1553a=1024, (# Receive #*)

trals33a=0; (# Transmit 3#)
rt1=2048; (% remote terminal 1 #)

sbas1353a=1008, (#tpbase+osynch, %) (% synch word)

(¥ the following constants are to be used when refering to tasks =)

nullt=1, (#* the null task #)
{(# the following constants specify address of some preinited tables
t¥loc=16#3400; Address of transaction file)
r gfrlce=1683800; Address of global framecount #)
{+ sfele=16#3301; Address of subframe counts)
{r dbloc=16#3802i Address of dbad. =)
i+ stackloc=16#5000, “"Exec Stack" location - siftih)
{+ £t1loc=16#5500; Address of tt. #)
{2 numloc=16#6836; Address of numworking #)
¢ pidloc=16#46837; Address of pid. =)
i+ virtloc=146#6838; Address of virtno. %)
(¢ pvloc=16#6840, Address of post vote buffer %)
(+ bloc=16#68C0; Address of bt)
" 51lo0c=16#6D0Q0O; Address of scheds. #)
(- dfloc=16#7400; Address of datafile. 3#)

{(+ pfloc=16#77F8; Address of pideof. =)

tploc=16#77F9; Address of trans pointer *}

"% 51510c=1&6#77F%; Address of stal553a %)
‘4 clkloc=1MFB; Address of real time clock #)
{7 cliloc=16#77FD; Address of emdi533a #)
12 3131o0c=16877FF; Address of adril15353a #)
Vvt 1loc=16#7800, Address of buffer info. #)
{» dest=16#8000; eofbit bor loc zero ¥#)
tupe
data = file of integer;
dfindex=0. maxdata, (# data file #)
dbindex=0. . maxdb; (# data buffer #)
tpindex=0. maxtrans; (# transaction file)
processor=0). Maxprocessoars; (# processor #)
buffer=0. maxbufs, (% gne for each buffer. #)
task=0 tasks; (# one for each task #)

bufint=arraylbufferl of integer,

procint=arraylprocessorl of integer,
procbool=arraylprocessorl of boolean; (% beware addr *)
bufrec=record dbx- integer, ad.procint end; (3*¥ beware addr #*)
dftype=arrayfdfindexl of integer;

tftype=arrayltpindex] of integer,

statevector=arraylO. maxstatel of integer,
schedcall=(tasktermination,clockinterrupt, systemstartup);
dfptrty = “dftype;

taskentry=record

status schedcall; (# cause of the last pause *}

bufs i1nteger, (# ptr to list of bufs broadcasted. *)
errors. integer, (# Number of task overrun errors #)}
stkptr integer; (# last stack pointer)

state statevector, (# gstack for task +#)

end,

var
datafi1le0l . data,
dfptrpas dfptrty;
datatile : dftype.
transfile . tftype,

transptr integer: (# transaction pointer *)

pideaf . 1integer, (# processor ID discrete (read))
(# end of file discrete (write) #)

scheds : arrayl0 .maxreconfigl of integer;

(% Precomputed schedules forreconfiguration %)

postvote bufint: (# post vote buffer ?

dbad : procint; (# index to start of data buffer for each proce
bt + arraylflbufferd of bufrec, (# where and who broadcastings)

tt - arrayltaskl of taskentry, (¥ Task Table)

bind © arrayl0. maxbinfl of i1nteger; (3 bufs where™ #)

clock : integer; (# real time clock (read/write)*)
cikl : integeri (# used to prevent optimization #}
adr1553a integer; (+ 1553a address register #)
emd1553a : integer, (¥ 1553a command register #)
stal553a integer, {(# 1553a status register #)

pi1d - 1i1nteger, {(# My processor number %)

numuworking - integer; (# Number of workaing processors ¥)
virtno . procint; (# Virtual processor numbers. #)
gframe . 1nteger. (# global frame count %)

sfcount : integer; (¥ sub frame count)

{-+ pddeec var %)

- votecnt, vtiime,wtime, delta: integeri

working- procbool; (# Working processors #)

p:v,errors. procaint; (# voting)

pl, p2:sp3ipds pSivi,v2,v3,v4, v5: integer; (# more voting #)

taskid task; (¥ Number of currently running task #)
taskbits: integeri (# Control bits associated with task #)
lastconfig: integer] (# The last configuration #)
pclock,cclock, beclock, aclock, (¥ globals for clock
tp,vp.scptr, (# schedule pointers
tpi,vpi,cptri, (# start of schedule
framecount. integeri (#¥ The current frame

skeyu. procaint;

teatime- integer, (# For timing the clktask #)

lines,pages., pagelimit, reason' 1nteger;
fatal: boolean,
hlttrue, errtr, vottr, rectr: boolean,

Tunid . integer,
minutes . integer.
tskst © integer;
tskfn * 1nteger,
hitth : boolean:;
errtrb . booleani;
vattrb . boolean,
rectrb : boolean,

sk arraylO0. 8011 of integer;
skptr integer,

stop: integer;
“* include ‘pddec con’;
nclude ‘pd4dec glo”,

irnciude ‘pddec. var’, #)

{+procedure gprocessoOT; #)

{# Set the current processor as a number between O and maxprocesors.

{+begin#)

{7 pid .= ((pideof div 4000B) band 16#0F)—1x)
(*>end, gprocessor #)

function band(a,b. integer): 1nteger,

csgin band := a + b i end;

tunction bor(a,b :integer) integer,

segin bor := & — b, end;

grocedure dbaddrs;

(# calculate the i1ndex of the start of each of the databuffers.
This is harder than 1t seems because it is a functian o+ the

processor number. #)

var
1:ad: integer,
begin
ad .= 0O;

fer 1 := 0 to pid-1 do

synchronization #)
as above.
pointers.
count #)

*)
.})

.y.)

begin

dbadl1] := ad,writeln(‘dbadlil=",dbadlil),
ad .= ad+dbsize,writeln(’ad =/, ad);
end;
for 1 ‘= pi1d+1l to maxprocessors do
begin
dbadlil := ad,writeln(’dbadlil =‘, dbadlil);
ad := ad+dbsize;writeln(’ad =/, ad);
end;
dbadlpid]l .= adi (% there isn’t really one, but . #)

and; (% dbaddrs)

arocedure work,
(#¥ At startup, identify which processors are nominally working
war
i 1nteger;
22gin
for 3 = 0 to maxprocessors do datafileldbadfil]l = -1,
writeln('dbadl13=", dbadlil);
(= wait(l), #)

datafilel8%61 .= pid,
transfi1lel7691 .= 32768
transptr = 8%4 (# initiate the broadcast. #*)
Fwart(l), #)
numworking - = 1,
for 1 := 0O to maxprocessors do
1f datafileldbadlill = 1 then
begin workaingfil := true; numworking := numworking + 1;
end
else workinglil = false;
workinglpidl = true; (# I‘'m working #)

end; (% worlk #)

orocedure synch,
const
value = 43690;
var
i,y integer;
segin (# At startup synchronize the processors #)
i o= 7,
while not workinglil do i = 1-1,
(# 1 points to the highest working processor #)
J .= dbadiil:
datafilel ;1 -= O,
it 1 = pid then
begin
(% wait(1); #)
datafilel8961 .= value;
transfi1l1el769] = 32768;
transptr .= 8%6;
while pideof<Q do,
end

#*)

‘else while datafilel ji<>value doi
zndi (% gynch #)

praocedure fail;
(# All returned values are wrong, so report all processors involved.
This could be fai1led inline, but 1t would take too much room. The
minor additional time that 1t takes to call the subroutine 1is

probably worthwhile

cagin
arrorsipll
errorsip2]
errorsip3]
errorsCp4]
arrorslp3]
{#1f erritr then

*)

errorsipl1l+l,
errorsip2l1+1;
errorsip31+1;
errorsipd4l+1;
errorsipS51+1;
pause(43868)#)

(# Fail #)

arocedure err{(p integer),

(# Record an error for processor p. #)
bagin
errorsfpl := errorsipl+i,
(# if errtr then pause(43B69)#)
a2ndi (# err #)
function voted(default: integer)- integer,

that Vi V5 is
and P1 PS

(% This is the five way voter. It assumes
initialized with the 3 values to be voted,
has the corresponding processors. Detault is returned in the
case that there is no majority value. The procedure is basically
a simple IF tree (pruned where possible) to achieve the quickest
possible vote)
dbegin
1f vi = v2 then
if vi = v3 then
begin voted =
if vl
end
if
begin
end
it vl = v5 then
begin err(p3);
end
glse if v3 = v4 then
1f v3 = v5 then
begin err(pl),
end

vi;

<> v4 then err(pd), 1f v1 <> vS then err(p3);

ve =

vd then
err{p3);

else

if vl <» v3 then err(pS5), voted := vi;

else

err{pd}; voted := vi;

err(p2); voted = v3i

else

begin fail., vote5 := default,
end
else
begin fail; vote5 := defavult;
end
else i¢¥ vi = v3 then
if vi = v4 then

begin err(p2), if vi <» v5 then err(p3);

end
else it vi = v3 then
begin err(p2); ervipd); voted := vi;
end
else 1 v2 = v4 then
if v2 = v3 then

begin err(pl); err(p3); wvoted := vai

end
else
begin fai1l, wvoted .= default,
end
else
begin fail; voted .= default,
end
else 1f v4 = v3 then
1f v2 = v4 then

begin ervr(pi), 1f v2 <> v3 then err(p3);

end

else 1f vi = v5 then
begin err(p2); err(p3); voted
end

else 1¥ v3 = v5 then
begin err(pl); err(p2), wvoted
end

]

vi,

v3,

else
begin fail; voted := default,
end
else 1f v2 = v3 then
1f v2 = v3 then
begin err(pl); err(pd), wvoted := va,
end
else
begin fail, voted -= default;
end
else 1f v2 = v3 then
if v2 = v4 then
begin err(pl); err(pd); voteS := va,
end
else
begin fail; voted := default,
end
else
begin +ail, wvoted := default:;
end.,
and; (% voted #)

~unction votel3(default integer) integer;
{(# This is the 3 way voter. It assumes that

Vi

voted = vi;

voted = vz,

V3 contains

the 3 values to be voted, and that P1 .. P3 contains the
processars. #)

ba2gin

1¥ vl = v2 then
begin
if vi<>v3 then erv(p3);
vote3d = vi;
end

else if vi = v3 then
begin err(p2); voteld = vi,
end

else if v2 = v3 then
begin err(pl), voted = v,
end

else
begin err(pl); err(p2); err(p3);
vote3d := default,
end,

and, (% voted #)

ocrocedure vote(b bufferidefault integer);
var
is Jokiinteger,
hegin
vtime := clock,
(# vote buffer b This 1nvolves either five way or three way voting.)
{ 1# vottr then pause(16#ABC2), #)

J =0 v .= 0;
repeat
k := btLbl. adl11,
it ¥ »= 0 then
begin
J = J+11
pCLjl = 1,
vLj1 = datafilefk]
end,
i = i+1;

until (j=5) or (i>maxprocessors);
1if g < 3 then

postvotelb]l "= vI{11
else
begin
vi .= vI[11; v2 := vI21; v3 .= v[31,
pl = pLil; p2 = pL23; p3 := pL31;
if ;<5 then
postveotelbl := vote3(default)
else
begin
vd .= v[41i v5 := vI[3];
p4 := pl4l, p5 := pL35d;
postvotelbl .= voteS(default)
end;
end,
datatileltpbase+bl := postvotelbl;

and; (% vote #)

runction getvote(b buffer):integer;
(# this phase two module lets us remove the postvote declaration
from the applications tasi module #)

c2g1n
getvote ‘= postvotelbl,

znd, (# getvote #)

srocedure broadcast(b-buffer),
{(# Broadcast buffer b. This is provided for applications tasks, and
those executive tasks that don’t do it themselves. Note- this
routine does not wait fovr completion before or atter. I+ that
15 required (for timing reasons? call waitbroadcast.)

VET
dbx, tp integer,

begin
dbx .= btlbl. dbxi tp .= dbx+tpbase;
transfi1lef2#%tp-10231 := bor(eofbit,dbx#8);
transptr = tp, (# initiate the broadcast. #)
rewrite(datafileOl);
datatileOl™ = b;

put(datafirleOl};
end, (% broadcast #)

procedure stobroadcast(b,v. integer);
{(# Store v in buffer b and broadcast 1t)

VAT
dbx, tp- 1integer;
hegin
dbx = btlh] dbx; tp = dbx+tpbase; datafileltpl = vi
transfilei2#tp-1023]1 := bor(eotbit, dbxx*8);
transptr .= tp; (# initiate the broadcast. #)

end, (% stobroadcast #)

sTocedure waitbhroadcast;
b=2gin

(# Wait for a broadcast operation to complete. 3¢)
while pideof<O do;

2nd; (% waitbroadcast #)

zracedure vschedule;
(# Vote those 1tems scheduled for this moment. #)
vaT
k:integeri
aegin
¥ = gchedslvpl;
while %¥20 do
begin
1f (band(k:.extendmask))= O then begin vote(k,—-1), vp = vp+l end
else if (framecount mod schedsCvp+11+1) = schedslCvp+2] then
begin
vote(band(k, datamask),-1J;
vp = vp+3
end;
k = schedslvpl
end; (# while %)
i¥ k >= 0 then vp = vp+i;
end, (# vschedule 3#)

procedure copschedule,
(# Copy buffers scheduled for this moment. *)

var
€, x:integer,
hagin
¢ = schedslcptrl;
while ¢ >»>= 0 do
begain
1¥ (framecount mod schedsfeptr+2]) = schedslcptr+31 then
postvotelband(schedsleptr+1l, datamask)] .= postvotelcl;
cptr = cptr+4;
¢ := schedslcptrl
end;
i$ ¢ >= 0 then cptr = cptr+i,

2nd, (# copschedule #)

procedure tschedule;
{(# Find the next task to schedule #)

varp
tk, more: integer,
Hegin
move .= 0; t% = schedsltpl;
while more = O do
1 t% = 0 then more = 1
else 1¥ tk = —1 then more = 1
else 1+ band(tk,extendmask? = O then more .= 1
glse it (framecount mod schedsftp+1]+1}) = schedsitp+21]
then more = 3
else begin tp := tp+3; tk := schedsltpl end,
if t% <= O then begin taskid := nullt, taskbits := O end
else
begin

taskid := band(tk.datamask}’i

taskbits = tk-taskid,

(# i¢¥ the vepeat loop gets executed more than once, more should be 3.

Tepeat
tp = tp+more
until schedsCtpl = O,
end;
if tk »= O then %tp .= tp+1
and, (# tschedule)

crocedure buildtask{taskname: integer);
{# Ini1tialize a task table entry #)

gegin
i+ reimit(ttitasknamel. stkptr, tEltasknamel. stateli #)
ttltasknamel status = tasktermination

2nd, (% buildtask)

tunction scheduleri{retl, ret2,0ldpc - integer,
cause schedcall, state integer).integer;

AEar
1 integer:;
begin (# See large comment i1n file SCHED. BDX #)
tskfn = cloack;
ttltaskidl. stkptr := state;
1f causeltasktermination then
begin
1f (taskid<inullt) then
1f taskid<>0 then
it band(suspmask, taskbits) = O then
begin
(# pause (1685500 bor taskid);: #)
ttftaskidl. errors ‘= ttltaskidl. errars+i,
buildtask(taskid)
end
else ttltaskidl. status := clockinterrupt,
1f sfcount »= maxsubframe then
begin
1¥ framecount »= maxframe then framecount := 0O
else framecount ‘= framecount+l,
g¥frame = gframe+l,;
sfcount = 0O; vp = vpi; cptr = cptri; tp = tpi
end
else s¥fcount = sfcount+i;
vschedule,
(# copschedule; %)
tschedule, (# changes taskid and taskbits #)
end
eglse
begin taskid := nullt; taskbits = O,
end;
tskst = clock;

scheduler = ttlLtaskidl stkptr;

#)

and, (4 gscheduler #)

"t function nulltask integer;: #}

(# This is the task that wastes time It never terminates In #)
72 the final system the nulltask will be the diagnostic task. #)
‘- begin#)
«=+ while true do _loop forever_ #*)
i# end, *)
runction errtask- integer,
(* Compute and broadcast a word with bits 7 through O
indicating whether processors 8 through 1 have
failed (1) or are ok (0). #)
zonst
threshold = 3,
var
err, 1: integer,
begin
ertr = 0, 1 .= MAaxprocessors,
Trepeat
arT .= errid,;
if (not workingLil) or (errorsfil>threshold) then err .= err+i;
errorslil = 0O;
i .= 1-1
until i<O,
stobroadcast(errerr, eTT};
errtask .= 0,
znd, (% errtask #}
function gexectask integer;
(¥ Compare values from the errtasks Those that are reported
by two or more processors (other than 1tself) for more than
one frame, are considered bad. The rest are considered gecod.
The report consists of a word, bits 7 through O of which
represent processors 8 through 1. (1 failed, O working. }¥*)
var

procs - procbooli err.,i, §,count, reconf: integer;

begin
1 .= 0;
Tepeat
count = 0; j = 0O;
Trepeat
if workingf Jl then
begin
err .= btlerrerrl adljl;

1f i<>§ then
if workinglil then
if odd(datafilelerr]) then count := count+l;
datafileferr]l] := datafilelerr] div 2
end;

] .= g+l
until jrmaxprocessors;
if workingLil then

if count>1 then procsfi1l := false
else procslil -= true
else procsfi1]l = false,
i = 1+1,
until i>maxprocessors;
recont = 0O;
i .= maxprocessors;
repeat
reconf ‘= reconf#2;
1f not procslil then reconf "= reconf+i;
i = i-1
until i<0;
stobroadcast(gexecrecont, band(reconf, postvotelgexecmemoryl)},
waitbroadcast;
stobroadcast(gerxecmemory., recant};
gexectask = 0O

2pd; (% gexectask #)

nrocedure clrbufs;
(# Set the buffer table so that no assumptions are made about what
processor is computing the value. +#)
vanm
is y.integer,
begin
1 = 0;
repeat
J .= 0i
repeat btli1] adlyl .= —-1; j = j+1 until jj>maxprocessors,
1 "= 1+1
until 1>maxbufs,
and, (% clrbufs)

avecedure newvcec(s: integer);

{# S points to the vote and copy schedules Copy them 1into
the real schedules.)
a2g1n
s 1= 35+3; vpi = s,
while schedsl{sl >= 0 do s := s+1,
cotri = s+i

gnd:, (# newvec =#)

procedure recbufs(s.p.1nteger),
(# s points to the task schedule corresponding to real processor p.
Figure out what buffers are computed.)

var

b t,1 integer;

22g1n
s 1= s5+3;
while schedslsiI<{>-1 do
i¥ schedsls]l] = 0 then s ‘= g+1
else
begin
t = band(schedslsl), datamask}i
1 = ttftl.bufs; b = binelLild,
t = dbadlpl;
while B8>0 do
begin
with btlbl do adlpl = t+dbx;
1 = i+1, b = binfl[11];
end;
1f (band(schedslsl,extendmask)?)<>0 then s
else § = s+1i,
end,

2nd; (¥ recbufs #)

tdnction xrecf(reconf: anteger): integer;
var
i, s:nw. 1nteger,

Eagin (¥ See big comment in file RECF BDX)

beclock:=clock;
(* disable, #)

nw .= ~=1; i = 0; s = recontf,
Tepeat
if odd(s) then workinglil = false
else
begin
worXingli1l -= ¢rue;
ny .= nwti;
virtnolnwl = 1
end;
s = g div 2,
i = 1+1;

until i>maxprocessorsi
it lastconfig<>reconf then
begin
(# if tvectr then pause(l1&6#ABC4); %)
lastconfig .= Tecon#f;
datafi1leltpbaset+qreconf] .= recont,
s .= Q;
(#1f nw>> then nw = 3;
while schedsls1<>nw do s
clrbufs: 1 := Q,
tp1: =0,
Tepeat
recbufs(s, virtnolil),
1f# virtnoLil = pid then tpi1 .= s5+3;
s .= s+schedsls+21;
i o= i+d
until 1>nw;
L~ 1f tpi=0 then pause(16#ABCS): #)
newvc (s},

s+schedsls+21;

phase

1)

numworking = nw+l;

sfcount = maxsubframe+l;
framecount .= maxframe+l
end;

clock =bclock.

irect =0

end;

function recftask. integer,

{# The reconfiguration task calls xrecf to do the real work. *)
segin

recftasi .= xrecf(postvotelgexecrecontl)
znd; (# recftask #)

function clktask: integemr;
const
maxskew = 40,
commdelay = 24;
dest = 32768, (# Destination O *)

var
1 UM, Sum, term, x integer,
delta,epsilon: integer;
unseen: arrayfl0 maxprocessorsl] of boolean;
wkset 1nteger;

begin
{tdisable; #)
for i = maxprocessors downto O do datafilefdbadli1ll -= O; (% dp =)
bcloek := clock; (# begin time +#)
wkset = 0,
transfilelmagicl := dest; (# once 1s enaough #)
unseenlpidl .= false;
for 1 = maxprocessors downto O do
begin
skewl13 = O,
while (band (clock,32))<> O do
while (band (clkl,323¥)= O do i (% whoa mule =}
teatime =clock;
if 1 = pid then
Tepeat (# the Broadcast #)
if pideof>0 then
begin
datafileltpbasel: =clock;
transptr: =tpbase,
end;
until clock~-teatime > maxtime
else
begin
unseenlil .= true;
x:=dbadl11;
pclock := datafilelx1;

repeat
cclock := datafilelx];
aclock:=clock;
1f cclock <> pclock then

begin
skewlil:= cclock + commdelay - aclock;
unseenl1]. =false;
repeat
until clock - teatime > maxtime;
2nd;
until clock—teatime > maxtime

end;
end,
(# Calculate the clock correction #)

{-+ gnable, #)

i

SuUm Oi; num .= 0Q;
for i .= 0 to maxprocessors do
begin
wkset = 2#wkset;
sklskptr+il = skewlil;
1f workingfil then
begin
wikset = wkset+i;
term := skewlil,
1¥ term » maxskew then
begin
term = maxskeuw:;
Teason = reason+l,
end,
it term £ —maxskew then
begin
term = —maxskeuw,
reason .= reason+li,
end;
1f unseenlil then
begin
term = 0O,
tatal .= truei
reason .= bor{(reason, 1024);
end,
sUMm
num
end
end;
delta = (sum div num),

sum+term;
num+1;

(# lets wait for the 1.6 msec interrupt #)

repeat
cclock = band(clock, 1023),
vntil (cclock > 512 + maxskew) OR (cclock < 271,

cclock = delta+clock,
clock := cclock; (# Adjust the clock value.
pclockx := clock;

epsilon .= peclock—cclock,
if (epsilon > 2) or (epsilon < -2) then

Teason .= bor(reason, 2048),

skflskptr+prdl = 4368B0+p1d,
sklskptr+maxprocessors] = wkset;
sklskptr+8] = gframe,

sklskptr+9] = postvotelgexecrecontl;
skLCskptr+101 = postvotelgexecmemoryl;
sklskptr+11] = beclock:

sklskptr+1i2]1 = delta;

skfskptr+131 = rTunid;

sklskptr+14]1 .= pages;

skfskptr+131 -= reason;

skptr = skptr+ié;

lines := lines+i,

if fatal then stop:=stop+l;
i? hlttrue then
(#if stop=3 then pause(16H#355); «¢)
¥ lines > 48 then
begin
lines = 1;
pages = pages+l,
1f hlttrue then
begin
(2 if reason > 16#FF then pause(146#333), #)
(% if pages > pagelimit then pause(16#444); #)
end,
skptr = 0O
end; (# 1f lines > 48 %)

clktask .= Q;
(# enable dp %)
end; (% clktask)

{= The following routines have to do with system i1nitialization. #)

T — - - - e e e e e e e e e e e et e e e e e e e e e *)

procedure 1nitiaslize;

{(# 1nitialize the processor numbers and pointers and errors #)
Var

i, joreconf. 1nteger;

begin
skptr = O; lines = 1{; pages := 1;
reason = Qi fatal = false; stop: =0;
if (minutes > 1354) or (minutes < 1) then
minutes := 1354;
pagelimit := 24%¥minutes+((b#tminutes) div 31);
sk[BO0] = pagelimrt, sk[8011 := runid;
votecnt .= 0O;
erttr .= errtrb; vottr .= vottrbi rectr := rectrb;

hlttrue.=hltth,
(+ gprocessor ;%) dbaddrs:, work, synch;

‘. taskbits := Qi lastconfig := 0; reconf = 0, gframe .= -1;
Ttaskid .= 0; sfcount := -1; framecount .= 0, claock = 0O;
for 1 := 0 to maxbufs do postvotelid := O,
for i = O to tasks do

begin buildtask(i), ttLil errors := O
endi
for i .= maxprocessors downto O do
begin
errorslil = 0,
reconf = vreconf*2;
if not workingli1l then recont = reconf+i
end.

¢ appinit;)

(> dcinit, #)
pastvotelgexecmemoryl = recon#f,
1 .= xrecf(recon¥l;
end;

begin

read(pid);
writeln(pid)},
reyritel(datafileOi);
detafileOl” := pid,
put(datafileOl);
writeln(pad),
doaddrs;

wark,

synch.

initialize;

end.

Appendix = I1

siftpl :

dcl
dect
dcl
de i
del
decl
del
dcl
dcl
de L.
det
dc L
del
dcl
del
del
dcl
det
dcl
del
dclt
dct
dct
dct
dcl
dect
del
del
dcl
dcl
decl
dec i
del
dcl
gcl
det
decl
dcl
de i
dctl
del
det
del
del
det
del
del
del
del
decl
dcl
decl
dcl
del
detl
dci
dcl

proc-

sysin
sysprint
newsift
dfile(0:1015)
dfptr
dfptrpas

clk

transfile(0:1015)

transptrpas
transptr
pideof

scheds_pl (0:1791)

schedsptrpas
schedsptr

postvote_pl(0:119)

postptr
postptrpas
dbad_pl(0:7)
dbadptr
dbadptrpas

binf_pl(0:200)

binfptr
binfptrpas
clock
adr1553,
¢cmd1553a
stals553a
pid
numworking
virtno(Q:7)
virtnoptrpas
virtnoptr
gframe
sfcount
votecnt
vtime

wtime

delta
working(0:7)
workingptr
workptrpas
p.pl
pptrpas
pptr
v_pl(0:?)
vpas

vptr
errors(0:7)
errorpas
errorptr

P1

p3

file;

file/

.entry options (variable):
fixed bin (35) based (déptr):’
ptr.

ptr external static,

fixed bin external static/
fixed bin(3S) based (transptr)’
ptr external static,

ptrs

fixed bin(35) external statics
fixed bin(35) external static~/
ptr external static’

ptr-

fixed bin(35) based(postptr),;

ptr.

ptr external static.
fixed bin(§5) based(dbaaptr).,

ptrs

ptr external static,
fixed bin(35) based(binfptr).’

ptr..

ptr external static.

fixed
fixed
fixed
fixed
fixed
fixed
fixed

bin(35)
bin(3%)
bin(35)
bin(35)
bin(35)
bin(35)
bin(35)

external
external
external
external
external
external
external

ptr external statics

ptre

ptr external static-

fixed
fixed
fixed
fixed
fixed
fixed
ptrs

bin(35)
bin(35)
bin(35)
bin(35)
bin(35)
bin(35)

external
external
external
external
external

based (workingptr)

ptr external static’

fixed bin (35) based
ptr external static’

ptr.

static’
static+
static-
static»
static-
static/

statics

static/

static/
static/

static?

statics

(pptr),;

fixed bin(25) based(vptr)’
ptr external static-

ptr

fixed bin(35) based (errorptr).

ptr exteecnal static’

pte »
fixed
fixed
fixed
fixed
fixed
fixed
fixed

bin(35)
bin(35
bin(35)
bin(35)
binf35)
bin(35)
bin(35)

external
external
external
external
external
external
external

static.,
static.

Static;‘

static’
static.
static,
static’

[
I 4

“delt

ve fixed external static/
del v3 fixed bin(35) external static?
decl w4 fixed bin(35) external static:
dcl v5 fixed bin(35) external static’
del taskid_pl(0:12) fixed bin(35) bised (taskidptr)’
decl taskidpas ptr external static’
decl taskidptr ptr’
dcl skew_pl(0:7) fixed bin(35) based(skewotr);
dcl skewptr ptr’
dcl skewptrpas ptr external static?
dcl sk_pl fixed bin(35) based(skptr),
decl skptr ptr/
dcl skptrpas ptr external static’
dcl taskbits fixed bin(39%) external static’
dcl lastconfig fixed bin(35) external static’
dcl pclock fixed bin(35) external static’
del cclock fixed bin(35) external static:
del belock fixed bin(35) external static’
decl aclock fixed bin(35) external static:
del tp fixed bin(35) external stataic’
dcl vp fixed bin(3S) external static’
del cptrt fixed bin(35) external static’
dcl tpi fixed bin(35) external static:
decl vpi fixed bin(35) external static’
decl cptri fixed bin(35) external static’
decl framecount fixed bin(35) external static’,
dcl teatime fixed bin(35) external static’
decl lines fixed bin(35) external static’
dcl pages B fixed bin(35) external static’
dcl pagelimit fixed bin(35) external static/
dcl reason fixed bin(35) external static’
del fatal bit external static/
del hittrue bit external static’
dcl errtr, bit external static’
dcl vottr bit external static’
decl rectr 5 bit external static’
dcl runid fixed bin(35) external static?
decl minutes fixed bin(35) external static’
dcl tskst fixed b1n(35) external static’
del tskfn fixed bin(3S) external static’
del higtd fixed bin(35) external static,
dcl errtrb fixed bin(3S) external static,
dcl vottrb fixed bin(35) external static?’
decl rectrb fixed bin(2S) external static’
dcl stop fixed bin(35) external static’

bin(355)

[

bor : proc (arb) returns (fixed bin(35));

del a fixea bin(35);

del b fixed bin(35); !
del ¢ bit (16) 1nit("0000000003032230"b) 7
dcl templ bit (16) ;

dcl temp?l bit (16) -

del i fixed bin;,

temp? substr(unspec(a),21)

Ne N

temp? substr(unspec(b),21)

do i = 1 to 16/ ! : .
if Substf‘(temp1,i,1) s "1"b ’ substr(tempz’i'1) = "1"b
then substr{c,i,1) = "1"b:

end’

return (fixed (c)),

end /* bor */;

band : proc(arsb) returns (fixed £in(35)):

dcl a fixed bin(35);

del b fixed bin(3S5)? :

del ¢ / bit (16) inic("0000000030300000"0),
del temp1 bit (16),

del temp? bit (16);

del + fi'xed bins

'tempT = Subst}(unspec(a)pZT)
temp2 = substrlunspec(bl,27)

“e W

do 1 =1 to 16, s
if substrl(templ,irs1) = "1."b & substr(temp2,i,1)
then substr(c,ir,1) = "17h;

end;

'!1"b

return (fixed (c¢)).,

end /* band */;

dfptr = dfptrpas’
transptr = transptrpas’
schedsptr = schedsptrpas’
postptr = postptrpas,
dbadptr = dbadptrpas:
binfptr binfptrpas,
workingptr = workptrpas,
pptr = pptrpas.

vptr = vpas:-
errorptr =
taskidptr =
skewptr = skewptrpas’
skptr = skptrpas,

/* call newsift/,»/

errorpas:
taskidpas-

put skip tist ("clock
put skip List("dfile =",

end’

=",clock);

dfptr => dfile(0),dfotr

=> dfile128))

4oen,

1x

I1;

