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Abstract. Numerical modeling of D-mappings has been studied and applied to
solving nonlinear stiff systems. These mappings have been locally linearized
for convergence analysis, and some applications have been made to chemical
kinetics.
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INTRODUCTION

A numerical method was developed by Dey (1977)
for solving nonlinear systems, some applica-
tions of which were later made to stiff sys-
tems (Dey, 1982). Convergence analysis was
done using nonlinear D-mappings (Dey, 1981).

It is extremely difficult to represent this
analysis computationally. Local linearization
for such an analysis, which rendered computa-
tional modeling of D-mappings feasible, was
suggested by Lomax (1983). In this article
we discuss linearized modeling of D-mappings
and some applications of the method.

D-MATRICES AND D-MAPPINGS

If a sequence of square matrices of the same
order satisfy the following condition,

Vk-iK K l
(1)

each Ak is called a D-matrix. A D-matrix
is not necessarily a convergent matrix, and
conversely.

Theorem 1. A sufficient condition that Ak
is a D-matrix is that

\\\ !lqi o < i

V k > K and that q is the same V k.

Theorem 1 is easily proved. Let

.> _ ,.X> . k,T = n

(2)

k = 1, 2, .
Icth iteration).

k '

value of ufl at some

Let us consider a chained linear spaces
°k £ Dk-i C . . . C D C Rn. Rn = n-dimensional
real space. Let u , u* S Dk V k and

Dk * Dk-H- If

Gk(u
K-"rl,u'") - Gk(u*,u*)

- A^u - u*) -I- Bfe(u - u*) (3)

and V k > K, and if (I - Ak)~
lBk is a

D-matrix, Gk is called a D-mapping (Dey,
1981).

If we now consider a nonstationary iterative
scheme of the form

k+i k+i k,
u ,u ) (4)

and if Gk. Dk+1
 x Dk -" Dk+1 is a D-mapping,

then

lim u - u* (5)

where u* = Gk(u*,u*) V k (Dey, 1981).

LOCALLY LINEARIZED D-MAPPING

Let us linearize (4) on Dk
 x Dk, using

k+i k
first-order approximation of Gk(u ,u )

near (uk,uk). Then,

1 u ,u ) + G(u - u ) (6)

where Gk is the Fr£chet derivative of Gk
on Dk

 x Dk. Equation (6) may be expressed as

k+i (7)

where Afc = -(I - cp'̂ ,

bk = (I - Gk)~
1Ck(u

k,uk). We have assumed
that (I - Gk) is invertible. Now we may
prove a second theorem.



Theorem 2. If (1) |Aj - A*| < E, where E
is a matrix consisting of elements that are
positive and arbitrarily small and
(ii) |bj - b*j < t, e is a vector consisting
of elements that are positive and arbitrarily
small, then (5) is true (convergence) if A^
is a D-matrix (Dey, 1983a).

Theorem 3. If Gfc is a D-matrix, so is Ak
(Dey, 1983a).

This principle may now be applied
computationally.

PERTURBED FUNCTIONAL ITERATION

Let a nonlinear system be expressed as

Following Theorems 2 and 3 we may prove that
if G£ is a D-matrix, then (12) is true
(linearized sense). Recent results (Dey,
1983b) using local linearization indicates
that if

max|Gjm' 6/J (13)

where Gjm = aG.j/3̂  and 0 < 0 < 1, G in
(9) is a D-mapping. In order that (13) may
be correct, certain input parameters for the
system (e.g., mesh size and time-step) have
to be chosen in special ways. If this cannot
be found a convex-type operation may be
defined as follows:

u = G0(u)

u € D, G : D

(8)

A Gauss-Seidel-type iteration for the solu-
tion may be expressed as

k+i _, k+i k.u • G(u ,u )

G : D * D - t - D , u k £ D V k

(9)

A perturbed iterative scheme (Dey, 1977) may
be expressed as (in the element form)

k+i k+i . „ , k+i k.u « u. + G. (u ,u )

where

1/-+1 lf+1 lr \e -4-1 lr*» ' i r f^ r _ R.i 1 » IV. v n Kt * » IV. -I

UJ - [GJ(GJ } ' G J '

x [i - a Gk+l 'kr l

(10)

(Ua)

G (u.u) = (1-a )u + a G (u,u) (14)

Assuming GJJ(U.U) ^ 1, it has been found
that G is a D-mapping (locally linearized)
for the following:

1. C.J = (-l)p(l - j if Gjm 0,
m t j and p = 0 if G < 1, p = 1 if

°

if Gjm ?* 0, mi< j and p = 0 if G < 1
p = 1 if Gi > 1.

where S is such that

[1 - G.
I > 6 > J 1 + JJ '

!G

(15a)

(15b)
jml

-k+i,k _ . k+i k+i k k.
Gj =GJ(UI . . . uĵ .uj . . . Uj)

(lib)

3. = 1 if (13) is satisfied.

.,k+l,k k

(He)

rk+i,k

(l.ld)

The j. term is a perturbation parameter
which accelerates the rate of convergence of
(9) and stabilizes the numerical algorithm.

It has been proved (Dey, 1981) that if G is
a D-mapping on D^j x D^, a necessary and
sufficient condition for convergence is

The algorithm of perturbed functional itera-
tion including a linearized convergence
analysis may be briefly expressed as follows.
At each iteration level, compute G.m,
m = 1, 2, . . .,J. If (13) is satisfied, set

1; otherwise, compute a, using (15).
?* 1, replace G. by G., as given by

(14)." Compute a. using (lla)-(lld) and
compute u, at the new iteration level by
(10). If (12) is satisfied at some iteration
level, convergence is found; if
method fails.

.JJ = 1, the

In general, for a J*J system the method
requires (i) J" + J functionals to be com-
puted for convergence analysis, (ii) partial
linearization along the diagonal, and
(ni) no Jacobians.

It has been proved analytically (Dey, 1977)
that in the vicinity of the root, Che method
should display a superlinear rate of
convergence.

lira 1 00 0 V j (12)



A DEGENERATE IMPLICIT CODE

Let a nonlinear model be represented by

du/dt = f(u), u = (UTUZ . . . u,)
T

(16)

u(0) = u0 (initial condition). Approximating
(16) by a two-point backward-difference
scheme, we get:

u"+l = u" + fitf.(un+1), it = time-step

(17)

This nonlinear system may now be solved by
the above method which forms a degenerate
implicit code (since the one-step, matrix-
inversion principle is not used for solution).
If a convex-type operation of the form (14)
is used, (16) becomes

du/dt = (I - a)du/dt + af(u) (18)

where a = diag(a1(a2, . . . oj) and I = the
identity matrix. If (16) is a stiff system,
(condition number of f'(u) » 1), it
generally requires it to be very small if a
functional iteration of the form (9) is
applied for solution. In (18), a scales the
elements in the Jacobian matrix f'(u), and
using (15) for a..'s mean (for a given fit),
D-mapping is found so that perturbed func-
tional iteration converges.

APPLICATIONS

Application 1.

(Bui, 1979) -10,004 ul + 10,000
Uj, - u2 - u*; Ul(0) = u2(0) = 1. An

approximate solution is
u2(t) = ;iO,004 exp(-3t)/[10,008

- 4 exp(-3t)]}1/3

Uj(t) = (10,000/10,004)u2. As t •*•«>, ut (t) ->• 0,
u2(t) •* 0. Linearizing this system near
u1(0),u2(0), the condition number is 10

11.

Uiing linearized convergence analysis for the
degenerate implicit code we got fit s 10~5,
a sufficient condition for convergence if
3j = 1. Introducing (18) and computing a^'s
in a subroutine using (15) we used fit = 10"3

to 108; correct results were found. No pro-
gram interruption was cased. Details may be
found in Dey (1983b).

Application 2. Irradiation of Neutral Water

The model developed by Chatterjee and Magee
and the analysis of its numerical solution
are given in Chatterjee and others (1983).
The equations and the rate constants are
given in Table 1. For our present analysis
we linearized the system and computed cu's.
Stiffness was measured by Strate (1983) at
c = 0, 0.1, 1, and 10. Condition numbers are,
respectively, 1019, 1012, 1012, ^"(approxi-
mately). This may be seen to be true in
Fig. 1. This pattern of solution was ana-

lyzed by Chatterjee and Magee and was found
to be valid. Here, difference equations weie
formed by approximating the derivatives by
using the two-point trapezoidal rule.
D-mappings were introduced, and time-accurate
solutions were computed with 4t = 10~8, 10~6.

CONCLUSION

Numerical solutions of stiff systems are
generally obtained by using multistep
implicit codes (Miranker, 1981) which require
inversion of matrices obtained by computing
Jacobians. This has been avoided in the
technique explained here. However, the code
is dependent on the Jacobians for its conver-
gence analysis Such a linearized analysis
seems to be quite effective, and, in con-
trast with its nonlinear counterpart, the
complete analysis can be done computation-
ally. More applications are under
consideration.
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Table 1 Differential Equations for Transient Species and
Radiation Products in Irradiated Neutral Water

^51 = -2^ (H)2 - k2(e"Aq)(H) - k s (H)(OH) + k7(H30+) (e"Aq) - k9 (H) (H202)

+ k l 2 ( O H ) ( H 2 ) - k 1 3 (H0 2 ) (H) - k 1 ? (H)(0 2 ) + 0.55 I

+-
- k7 (H,0) (e

A q 2 2 - i , e A q- k i o ( e ~ A > ( H 2 ° 2 ) - k i , < e ~ A ) ( 0 2 ) + 2.65 I

(OH) = -k,,(e~Aq)(OH) - k5(H)(OH) - 2k6(OH)2 + k,(H)(H202) + k10 (e"Aq) (H202)

- k^COHXHjOj ) - k 1 2 (OH)(H 2 ) - k l 5 (H0 2 ) (OH) + 2 .70 I

•^ (H^O) = -k7(H30)(e~A q) - k 8 (H 3 0 + ) (OH') -k l s (H 3 0)(0 2 ' ) + k 1 9(H 20) + k 2 0 (H0 2 ) + 2 65 I

(H20) = k 5 (H)(OH) + k 8(H 30)(OH") + k 9 ( H ) ( H 2 0 , ) + k^COH) (H202) + k 1 2 ( O H ) ( H 2 )

+ k l s (H0 2 ) (OH) + k1 8(H30)(02") - k 1 9 (H 2 0) - 4.10

-£ (H2) = k a (H) 2 + k 2 ( e " A ) ( H ) + k 3 ( e " A ) 2 - k l 2 ( O H ) ( H 2 ) + 0.45

k 6 (OH) 2 - k , (H) (H 2 0 2 ) - k10(e"Aq)H202) - k^ (OH) (H 20 2 ) + k 1 3 ( H 0 2 ) ( H )

+ k 1 6 (H0 2 ) 2 + 0.70 I

i- (OH") = k2(e"A q)(H) -f 2k3(e~A q)2 + k,,(e"Aq) (OH) - k 8 (H 3 0) (OH~)
"

•^ (H02) = k 1 1 (OH)(H 2 0 2 ) - k l 3 ( H 0 2 ) ( H ) - k 1 5 (H0 2 ) (OH) - 2k 1 6 (H0 2 ) 2 + k 1 7 ( H ) ( 0 2 )

+ k 1 8 (H 3 0) (0 2 ~) - k 2 0 (H0 2 )

Aq
) (0 2 ) + k l 5 ( H 0 2 ) ( O H ) + k

1 6 (H0 2 ) 2 - k 1 7 ( H ) ( 0 2 )

£(00 =kl,(e-Aq)(02) -k l s

where

ki » 1010

ks = 2.4xl0
10

k, = 103

k13 = 10-
v = in 1 0

,(H30)(02") + k20(HO

k2 = 2.5xl0
10

k6 = 4xl0
9

k10 = 1.2*1010

k^ = 1.9xl010

\, = T^in1 °

•2)

k3 = 6xl0
9

k, = 2.3xl010

kM = 5xl07

kls - 10-
\, = i ";«in~6

k, • 3xlOi0

k, = 3xlOl0

k12 = 6xl07

kJ6 = 2xl06

\, . = i n6



10"4 10-
TIME, sec

Fig. 1 Concentrations of species (Ex 2) vs. time for I = 6.667 * 10 7 in the
logarithmic scale up to t = 30 sec. (Here steady state is reached for
all the species.)
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