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ABSTRACT

A numerical method for computing three-dimensional, time-dependent

incompressible flows is presented. The method is based on a fractional-

step, or tlme-splitting, scheme in conjunction with the approximate-

factorization technique. It is shown that the use of velocity boundary

conditions for the intermediate velocity field can lead to inconsistent

numerical solutions. Appropriate boundary conditions for the interme-

diate velocity field are derived and tested. Numerical solutions for

flows inside a driven cavity and over a backward-faclng step are pre-

sented and compared with experimental data and other numerical results.



I. INTRODUCTION

In this paper we present a numerical method for solving three-

dimensional, tlme-dependent incompressible Navler-Stokes equations. The

major difficulty in obtaining a time-accurate solution for an incompres-

sible flow arises from the fact that the continuity equation does not

contain the time-derivative explicitly. The constraint of mass conser-

vation is achieved by an implicit coupling between the continuity equa-

tion and the pressure in the momentum equations. One can use an explicit

time-advancement scheme which obtains the pressure at the current time-

step such that the continuity equation at the next step is satisfied.

However, for fully implicit or semi-implicit schemes, the aforementioned

difficulty prevents the use of the conventional alternating-dlrection-

implicit (ADI) scheme to advance in time as is the case for compressible

flows. This difficulty can be avoided in two-dimensional cases by

reformulating the problem in terms of the vorticity and stream-function.

For three-dimensional problems, one can introduce an artificial compres-

sibility into the continuity equation to include the required time-

derivative for an ADI scheme. This is satisfactory, however, only for

the steady-state solutions [I]. For unsteady problems, since the effect

of the artificial compressibility has to be minimized, this approach

produces a highly stiff system for numerical solutions [2].

The objectiveof the presentwork is to develop a numericalmethod

for solving the incompressible Navier-Stokes equations satisfying the

conservationof mass exactly (withinmachine round-off). It will be

also requiredthat the numericalscheme preserve the global conservation
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of momentum, kinetic energy, and circulation in the absence of time-

differencing errors and viscosity. It can be shown that failure to

preserve these conservation properties can lead to numerical instabili-

ties [3]. In order to stabilize the calculations using methods that do

not preserve these properties, artificial viscosity is often introduced

either explicitly or implicitly by using dissipative finite-difference

schemes, especially for high-Reynolds-number flows.

The method developed herein is based on a fractional-step method

(e.g., [4,5]) in conjunction with the approximate-factorization tech-

nique [6,7]. The flow field is represented on a staggered grid [8].

The problem of concocting boundary conditions for the intermediate

(split) velocity field is addressed and it is shown that the use of

velocity boundary conditions can lead to inconsistent and erroneous

results. Appropriate boundary conditions for the intermediate-velocity

field are derived using a technique similar to that of LeVeque and

Oliger [9]. The Poisson equation for the pressure correction is solved

by a direct method based on trigonometric expansions. In this way the

continuity equation is satisfied to machine accuracy at every time-step.

The numerical procedures used in the present method are described

in Section 2. Section 3 provides a derivation of the boundary condi-

tions for the intermediate-velocity field, and numerical results for two

different flow geometries are presented in Section 4; a summary is given

in Section 5.



2. NUMERICAL METHOD

In this section we present a variant of the fractional-step method

used by Chorin [4] for time-advancement of the Navier-Stokes and continu-

ity equations for incompressible viscous flows:

_ui _ _ + I _ _ ui , (i)--+ U U. =- _x.
8t _ i 3 _xi Re _xj 3

_U.
i = 0 . (2)

_xi

Here, all variables are nondimensionalized by a characteristic velocity

and length scale, and Re is the Reynolds number.

The fractional step, or time-split method, is in general a method

of approximation of the evolution equations based on decomposition of

the operators they contain. In application of this method to the Navier-

Stokes equations, one can interpret the role of pressure in the momentum

equations as a projection operator which projects an arbitrary vector

field into a divergence-free vector field. A two-step time-advancement

scheme for Eqs. (i) and (2) can be written as follows:

(3Hn +__ + + un) , (3)
6x_ (ui i

nq-i

&i = _G(¢n+1) , (4) -
u i

At

with

-un+l
D( i ) = 0 , (5)

where Hi = -(6/6xj)uiu j is the convective terms, € is a scalar to be

determined, 6/6x. represents discrete finite difference operators,
l

and G and D represent discrete gradient and divergence
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operators, respectively. We used the second-order-explicit Adams-

Bashforth scheme for the convective terms and the second-order-implicit

Crank-Nicolson for the viscous terms. Implicit treatment of the viscous

terms eliminates the numerical viscous stability restriction. Equa-

! tion (3) is a second-order-accurate approximation of Eq. (I) with _p/_x.1

• excluded. By substituting Eq. (4) into (3), one can easily show that

the overall accuracy of the splitting method is still second order. Note

that _ is different from the original pressure: in fact,

p = i + (At/2Re)V2_. All the spatial derivatives are approximated with

second-order central differences on a staggered grid [8]. Figure 1

illustrates the staggered grid. With the staggered mesh, the momentum

equations are evaluated at the velocity nodes, and the continuity equa-

tion is enforced for each cell. One important advantage of using the

staggered mesh for incompressible flows is that ad hoc pressure boundary

conditions are not required. Furthermore, it can be shown [i0] that

with this approximation of spatial derivatives and in the absence of

time-differencing errors and viscosity, global conservations of momen-

tum, kinetic energy, and circulation are preserved.

Equation (3) can be rewritten as

^ n At (3H_ - Hn-l"(i - A l - A2 - A3)(u i - ui) =_- i )

n

+ 2(A 1 + A2 + A3)u i , (6)

where A l = (At/2Re)(6Z/6x_), A2 = (At/2Re)(6Z/6x_), A3 = (At/2Re)(62/6x§).

The left-hand side of Eq. (6) is then approximated as follows:



^ n At..n n-i

(I - Al)(l - Az) (I - A 3)(ui - ui) = -_-t3ni - H.m )

n

+ 2(A I + Az + A3)u i . (7)

Equation (7) is an O(At 3) approximation to Eq. (6). However, it requires

inversions of tridiagonal matrices rather than inversion of a large

sparse matrix, as in the case of Eq. (6). This results in a significant

reduction in computing cost and memory.

Equations (4) and (5) can be solved as coupled system equations

n+1 _n+1 n+lfor u. and with boundary conditions for u. Note that since
1 l

in+1 is defined at the center of each cell, there is a sufficient num-

n+l _n+lber of equationsfor u. and without the need for boundary con-1

dition for in+l. Equations (4) and (5) can be combined to eliminate

n+1 . For the cells notu. and thus obtain a set of equationsfor @n+l
1

adjacent to the boundaries, these equations take the form of the discrete

Poisson equation,

+ -- + (i,j,k) = _ Da
6xI 6x_

Q(i,j,k) , (8)

for i = 2,3,...,N1 - i, j = 2,3,...,N2 - I, k = 2,3,...,N3 - i. For

the cells adjacent to the boundaries,incorporationof the velocity

boundary conditions yields a modified set of equations. For example, for

the cells adjacent to the lower boundary (j = i), we obtain

(65_21+ 6_x32)_n+1(i,l,k) + 1 _n+l(i,2,k) - _n+1(i,l k)

n+l(i, I ,k)- uz(i i ,k)
• = I_D_ 1 u2 _ '

At At x2(3) _ x2(1)

--Q(i,l,k) (9)
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for i = 2,3,...,N I - I, k = 2,3,...,N 3 - I. A solution to Eq. (8) and

the corresponding boundary equations can be easily obtained using trans-

form methods [II]. Let

@n+l (i,j,k) = _ _ _(£,j,m)cos _[_ (i - i)] cos 7_n (k -
£=_ m=0

= (10)

for i = 1,2,...,N I, j = 1,2,...,N 2, k = 1,2,...,N 3. Here we have

assumed that uniform mesh spacings are used in the streamwise and span-

wise directions (xI and x3). If nonuniformly spaced mesh points are

used in these directions, multigrid methods appear to be the best

alternative to the transform method used here. Substituting Eq. (I0)

and the corresponding expansion for Q into (8) and (9) and using the

orthogonality property of cosines, we obtain

62_- k_ - km$ = Q(£,j,m) , (II)

! =

where k£ 211 - cos(z£/N1)]/Ax 2 and k'm = 211 - cos(_m/N3)]/Ax 2 are

the modified wave numbers. For each set of wave numbers, the above tri-

diagonal system of equations can be easily inverted, and in+1 is

n+l

obtained from Eq. (i0). The final velocity field u. is then obtainedl

from

n+l = _. _ AtG(_n+ I) (12)
"- ui i

3. BOUNDARY CONDITIONS

Boundary conditions for the intermediate velocity fields in time-

splitting methods are generally a source of ambiguity. At each complete

time-step, only the boundary conditions for the velocity field are given
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and those of the intermediate velocity field are unknown. We will show

in this section that except when the boundary conditions for the inter-

mediate velocity field are chosen to be consistent with the governing

equations, the solution may suffer from appreciable numerical errors.

In the presentwork, we derive the appropriate boundary conditions for

the intermediate velocity field using a method suggested by LeVeque

and Oliger [9].

To construct the proper boundary conditions for _., we regard u.1 1

as an approximation to ui(X,tn+ I) where the continuous function

u_(x,t) satisfies

*+ u.
-_- = Hi Re _x. _x. l

3 3 (13)

u_(X,tn) = u.(x,- i - tn) "

Hence

u°l= u*(X'tn+ At)

2 *
_u_ i _ ui

= u*(X,tn) + At -_- + _ At2 -- + ... (14)
8t2

= u*(X,tn) + At + Ree u + _ At 2 H_ + Ree Veu + ....

Since u_(x,t n) = ui(x_,tn),

1 V2 +I + 1
ui = ui(X'tn) + At i +Ree ui _ At2 i Ree V2u + "'"

- °

At +ui(X,tn) + At_-_- + _xi I

= ui(X,tn+l) + At _p + O(At 2) .
- _xi

I0



By keeping the first two terms, we have boundary conditions accurate to

n+1 _¢n
O(_t 2). Since p = _ +O(At/Re), we can in fact use u1" = ui + At --_x.

I

with the same accuracy, thus avoiding the computation of pressure

explicitly.

These boundary conditions are tested in computing the following

two-dimensional unsteady flow which is a solution to the Navier-Stokes

and continuity equations [12,13]:

-2t
u1(xl,x2,t) =-cos xI sin x2 e

-2t _ (16)u2(x l,x 2,t) = sin xI cos x2 e

-_t
I (cos 2x I + cos 2x2)ep(xl,x2,t ) = _ _

The maximum difference between the exact and numerical solutions from

four different runs are listed in Table I. The superiority of the results

using boundary conditions (15) over the results using the velocity bound-

n+l

ary condition, ui ui , is clearly evident. In fact, the error for

the latter case increases when the mesh is refined. This indicates that

the fractional-step method with the latter boundary condition is an

inconsistent scheme. To determine the overall accuracy of the scheme

using the boundary condition (15), three calculations are performed

with three different mesh sizes but keeping the Courant number constant.

. The variation of the maximum error with mesh refinement is plotted in

Fig. 2; it shows that the scheme is indeed second-order accurate.

4. NUMERICAL EXAMPLES

In this section we present numerical results obtained from applica-

tions of the aforementioned numerical method to two laminar flow problems.
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Both problems have been Used widely as standard test cases for evaluating

the stability and accuracy of numerical methods for incompressible flow

problems.

4.1 Flow in a Driven Cavity

Figure 3 shows the geometry and the boundary conditions for the

flow in a driven cavity together with the appropriate nomenclature.

Flow is driven by the upper wall, and several standing vortices exist

inside the cavity whose characteristics are functions of Reynolds numbers.

Figures 4 and 5 show the computed results of streamlines, contours of

constant vorticity, and velocity vectors for several Reynolds numbers.

The purpose of the velocity-vector figures is to show the corner eddies,

which are too weak to be displayed clearly by the streamlines. They are

drawn parallel to the flow direction at each mesh point. At Re = I,

this flow is almost symmetric with respect to the centerline, and two

corner eddies are visible. As Reynolds number increases, the center of

the main vortex moves toward the downstream corner before it returns

toward the center at higher Reynolds number. In the Reynolds number

range, 1000-2000, the third corner eddy is formed at the upper left

corner. At Re = 5000, a tertiary corner eddy is visible. In Fig. 6,

the velocity at the middle of the cavity for Re = 400 is shown in
i

comparison with other computed results. Two numerical results with

different grid sizes are shown from the present computations. Both :.

results, 21 x 21 and 31 × 31, are in good agreement with those of

Burggraf [14] and Goda [15]. Although not shown here, Goda reported a

rather poor agreement when he used a 21 x 21 mesh for this Reynolds
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number. In Table II, the magnitudes of the stream-function and vorticity

at the center of the primary vortex from the present calculations are

compared with those of the other investigators [16-18] at Re = I000.

In Table III, for different Reynolds numbers, the same quantities from

the vorticity stream-function calculations of Ghia et al. [16] and

i Schreiber and Keller [18] are compared.

In their experimental study, Koseff et al. [19] observed Taylor-

Gortler type vortices, which are formed as a result of the streamline

curvature owing to the primary vortex. This is the first observation of

such vortices in a cavity flow. Their numerical simulation, however,

failed to reproduce this three-dimensional structure. To initialize the

calculation in the present study, small random disturbances in the span-

wise direction (x3) were added to the solution of two-dimensional cases.

Using periodic boundary conditions in the spanwise direction, the com-

putations were carried out for various Reynolds numbers. In Fig. 7, the

velocity vectors in the plane perpendicular to the primary vortex show

the existence of the counterrotating vortices at Re = i000. Although

Goda [15] calculated the flow in a three-dimensional cavity, no such

three-dimensional structure was reported.

4.2 Flow over a Backward-Facing Step

The flow over a backward-facing step in a channel provides an

": excellent test case for the accuracy of numerical method because of the

dependence of the reattachment length xr on the Reynolds number.

Excessive numerical smoothing in favor of stability will result in fail-

ure to predict the correct reattachment length.
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The geometry and boundary conditions for this flow are shown in

Fig. 8. At the inflow boundary, located at the step, a parabolic profile

was prescribed. Both Neumann and Dirichlet outflow boundary conditions

were used, and the two results are identical. In Fig. 9, numerical

results for different Reynolds numbers are shown in comparison with the

experimental and computational results of Armaly et al. [20]. The i

dependence of the reattachment length on Reynolds number is in good

agreement with the experimental data up to about Re = 500. At Re = 600,

the computed results start to deviate from the experimental values. A

mesh-refinement study, as well as variation of the location of downstream

boundary at this Reynolds number, showed that the difference between the

experimental and computational results is not a result of numerical

errors. It is most likely, as Armaly et al. [20] have pointed out, that

the difference is due to the three-dimensionality of the experimental

flow at this Reynolds number. In comparison with the numerical results

of Armaly et al. [20] (using TEACH code), however, the present results

show a much higher reattachment length.

Armaly et al. [20] reported the existence of a secondary separation

bubble on the no-step wall at Re = I000. The length of the secondary

bubble at Re = I000 was 10.4 step-helghts and the length decreased for

higher Reynolds numbers. Figure i0 shows the computed streamlines at

Re = 600, indicating the secondary separation bubble on the no-step wall;

the bubble length is 7.8 step-heights. At Re = 800, the length increased

to 11.5 step-heights.

14



SUMMARY

A numerical method was presented for solving three-dimensional,

time-dependent incompressible flows; the method is based on the fractional-

step method used in conjunction with the approximate-factorization scheme.

The three-dimensional Poisson equations was solved directly by a trans-

form method, and the velocity field satisfied the continuity equation up

to machine accuracy. The method is second-order accurate in both space

and time. Proper boundary conditions for the intermediate (split) veloc-

ity field were derived and tested against a known solution, and laminar

flows in a driven cavity and over a backward-facing step were calculated

at several Reynolds numbers. The numerical results are in good agree-

ment with experimental data and other numerical solutions.
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TABLE I

Maximum Error after 30 Steps: Emax/Uma x

Boundary conditions

Grid ui = ui+z ui = ui+z+At _n_x.
1

20 x 20 8.172 x I0-_ 1.085 x I0-_

40 x 40 1.127 x 10-3 7.678 x I0-s

TABLE II

Stream-Function and Vorticity at Center of Primary Vortex at Re = 1,000

Ghia et al. [16] Present Benjamin and Denny [17] Schreiber and Keller [18]

(129 x 129) (97 x 97) (i01 x i01) (141 x 141)

_c -0.118 -0.116 -0.118 -0.116

-2.050 -2.026 -2.044 -2.026
c
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TA_BLE III .

Stream-Function and Vorticlty at Center of Primary VortiCes

for Different Reynolds Numbers

Present Ghia et al. [16] Schreiber and Keller [18]
Re

_c (_c) _c (_c) _c (_c)

I -0.099 (-3.316) .... 0.I00 (-3.232)

65 x 65 121 x 121

I00 -0.103 (-3.177) -0.103 (-3. 166) -0.103 (-3.182)

65 x 65 129 X 129 121 x 121

400 -0.112 (-2.260) -0.114 (-2..295) -0.113 (-2.281)

65 x 65 257 X 257 141 x 141

1,000 -0.116 ('2.026) -0.118 (-2.050) -0.116 (-2.026)

97 x 97 129 x 129 141 x 141

3,200 -0.115 (-1.901) -0.120 (,I,989) ---

97 X 97 129 X 129

4,000 -0.114 (-1.879) .... 0.112 (-1.805)

97 x 97 161 x 161

5,000 -0.112 (-1.812) -0.119 (_1.860) ---

97 x 97 257 x 257
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Figure Captions

FIG. i. The staggered mesh in two dimensions.

FIG. 2. Maximum error as a function of mesh refinement.

FIG. 3. Geometry of the driven cavity flow.

FIG. 4. Streamlines and contours of constant vorticity. (a) Re = I;

(b) Re = 400; (c) Re = 2,000.

FIG. 5. Velocity vectors. (a) Re = I; (b) Re = I00; (c) Re = 400;

(d) Re = 1,000; (e) Re = 2,000; (f) Re = 5,000.

FIG. 6. Profile of streamwise velocity at the mldplane of the cavity

(xI = 0.5L) for Re = 400.

FIG. 7. Velocity vectors in an (x2 - x3) plane through the geometric

center of the cubic cavity.

FIG. 8. Flow over a backward-faclng step (1:2 expansion ratio).

FIG. 9. Reattachment length as a function of Reynolds number.

FIG. I0. Streamlines at Re = 600.
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STREAMLINE VORTICITY(b)

Fig. 4 (a-.b)
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STREAMLINE VORTIClTY
(C)

Fig. 4 (c)



Fig. 5 (a-d)

26



• . ; !
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