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ABSTRACT

This paper determines the information required about system recovery to
compute the reliability of a class of reconfigurable systems. Upper and lower
reliability bounds are derived for these systems. The class consists of those
systems satisfying five assumptions: the individual components fail
independently at a low constant rate, fault occurrence and system
reconfiguration are independent processes, the reliability model is semi-Markov,
the recovery functions which describe system reconfiguration have small means
and variances, and the system is well designed. The derivation proceeds by
considering paths through the reliability model from the initial, fault-free,
state to the absorbing, system-failure, states. Since the probability of system
failure is the sum of the probabilities of traversing these fatal paths, it
suffices to obtain bounds on traversing a path by a given time. The bounds
involve the component failure rates and the means and variances of the recovery
functions. They are easy to compute, and illustrative examples are included.
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1. INTRODUCTION

This paper determines the information needed about fault recovery to
compute the reliability of a class of reconfigurable systems.

Reconfigurable systems can identify a faulty component, remove it from the
working group, and replace it with a spare if available. Typically, building
the system is only justified if the reliability requirement is high--often high
enough that natural life testing is impossible, and system reliability must be
computed from a mathematical model that includes descriptions of component
failure and system recovery. Hence the modeling problem consists of a complex
system whose reliability requires careful computation. This combination
suggests delicate experiments with hard statistical analyses to get a
description of system fault recovery, followed by difficult calculations to get
an estimate of system reliability. Even more important, it may not be clear
what needs to be observed in the experiments and included in the calculations.

Given certain assumptions about component and system behavior, this paper
derives upper and lower bounds for the probability of system failure in terms of
system operating time, component fault rates, and the means and variances of
system fault recovery times. The assumptions used are common (see references
(1], (2], and [3]), and their plausibility is discussed below. However, their
plausibility and common use do not mean the assumptions are valid, and more
investigation is required before the derived bounds can be confidently applied
to a reconfigurable system.

The derivation of the bounds requires five assumptions: 1) components fail
independently at a low constant rate; 2) component failure and system recovery
are independent processes; 3) the system quickly recovers from all faults; 4)
fault recovery depends only on time elapsed since fault occurrence; 5) the
system is well designed. The first assumption is appropriate for high quality
components operating for a short period of time in a benign environment, but may
not be applicable otherwise. The second assumption is reasonable if failure is
an instantaneous event--a component's imminent failure does not affect its



current performance, The third assumption on quick recovery describes a
desirable property for reconfigurable systems since these systems fail if too
many faults accumulate in the working group of components. If recovery is quick
then the reconfiguration process has a small mean. If recovery is quick for all
faults then the reconfiguration process has a small deviation from the mean,
measured by the variance. Hence the third assumption has a mathematical
version: 3') any system fault recovery has a small mean and variance. The
fourth assumption, together with the first on constant rates, says the
reliability model is semi-Markov. The major objection against a semi-Markov
model is that fault recovery may depend on what the system is doing at the time
of fault occurrence. A later section considers time dependent recovery and
shows the same upper bound is still valid. Because the mathematics is more
complicated for the time dependent case no attempt is made to derive a lower
bound. The fifth assumption about the system being well designed means the
system only fails when overwhelmed by faulty components. Conceivably, a system
can fail to operate properly even if all the components are fault free.

The next section presents an arbitrary path from the initial state to a
failure state in a semi-Markov reliability model and derives upper and lower
bounds for traversing the path by a given time. The probability of system
failure is the probability of traversing all such fatal paths which means an
upper bound for system failure is the sum of the upper bounds for all the paths,
while a lower bound for system failure is the sum of the lower bounds for all
the paths, Simple addition of the probabilities suffices because traversing one
path is a disjoint event compared to traversing another path. The bounds
established in the next section are partly numerical and partly algebraic. The
numerical part consists of solving the simultaneous linear differential
equations associated with a constant rate Markov model where all the rates are
fairly close--an easy exercise for a computer numerical package. The algebraic
part consists of expressions involving component fault rates and the means and
variances of system recovery times., Section four derives purely algebraic
bounds and discusses their accuracy. The algebraic upper bound is particularly
easy to use, and it shows the influence of fault rates and recovery times on
system reliability. Each of these sections is followed by a section containing
an example. Section six shows that the same upper bound is still valid even if
system fault recovery is time dependent.



Besides determining the information required about system recovery, the
material below offers some other benefits, The upper and lower bounds are
derived rigorously from the assumptions placing the resulting calculations on
firm foundations. The bounds are proved for arbitrary recovery distributions
with finite means and variances which eliminates concern over the applicability
of a parameteric model. The fault injection experiments to study system
recovery need only record the time between fault injection and system recovery
with no information required about the intermediate steps. Since different
system architectures produce reliability models with different paths to failure,
the calculations based on paths to failure reflects the influence of
architecture on reliability. (For examples, see references (6] and [7].) The
bounds are easy to compute, and they use familiar mathematics and statistics:
differential equations, means, and variances. The algebraic upper bound used as
an approximation formula allows computation from a mere inspection of the
reliability model and reveals the influence of the various parameters on system
reliability. The major disadvantage of the approach below is that it may not be
able to handle transient and intermittent faults.

Besides the references mentioned before, references [4] and [5] contain the

necessary probability theory, while [8] and [9] present other approaches to the
reliability of reconfigurable systems.






2. THE APPROXIMATION THEOREM

Upper and lower reliability bounds are obtained by considering the paths in
the reliability model that begin at the initial state and proceed to an
absorbing state representing system failure. A general path, rearranged for
notational convenience, is displayed in figure 1. Any transition on a path is
by means of a fault occurrence competing with other fault occurrences, or by
means of system recovery competing with fault occurrences, or by means of a
fault occurrence competing with system recovery and other fault occurrences. In
figure 1, the fault occurrence transitions are labeled by the component failure
rates, and the system recovery transitions are labeled by the generalized
densities of the recovery distributions. Figure 2 shows the first part of the
path, consisting of just fault occurrence transitions with the absorbing state E
replacing the non-absorbing state B;. As the absorbing state of a constant rate
Markov process, the probability of being in state E by a given time is easy to
compute.

In the first third of figure 1, the A's are the rates of component failures
that stay on the path, while the y's are those that lead off the path. In the
second third, the dF's are the generalized densities of recovery transitions
that stay on the path, while the ¢'s are the rates of component failures that
lead off the path. In the final third, the a's are the rates of component
failures that stay on the path, while the dG's and B's represent recovery
transitions and component failures that lead off the path.



Figure 1: A Path in a Semi-Markov Reliability Model
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Figure 2: The Constant Rate Markov Part of the Path



Let D(T) and E(T) be the probabilities of being in states D and E by time
T. Suppose the distribution Fy has mean uj and variance o2, and Gj has
mean nj and variance sz. Let

A = ulllz teeot ur},lz + n11/2 tooot n},/z
and assume A < T,
Theorem With the notation as above,
n
E(TY{ T a.n
j=1 39

> D(T)

m (62 +u2) n (a: +8.) (2 +1n2)
> E(T-a) { n [1 €5 g - ! ! ] 1 a;[n; - J 2J J J

i=1 My j=1 34

(t% +n§)
J

Proposition Suppose H is a distribution function, H(x) = 0 for x < 0, and H has
finite mean p and variance ¢2, Then, fore, a, 8 > 0,
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Proof of the Proposition

The derivation uses the standard results

1-x<e <1 forx>0
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The proof of (iv) is

w2
[ e e @B 0] & =
0

>a }; (1 - (at8)x] [1 - H(x)]dx

« 242
-af up_dx
u1/2 x2

24.2 24.2
> a [u - (a*ﬂ)(; "11_1_0 ;1}2].
u

Proof of the Theorem

Let q(t) be the density function of E(t). Since the path in figure 1 is
from a semi-Markov process.

T T-t T-t-X) ==X TeteX;=eee=X Tet-Xy=eoe=y
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Working with just the limits of integration

T o ® o o
MY <[ [ oo f [ oue
0 0 0 ¢ 0
and
1/2 172 172 1/2
T-A u u nj n
(D> [ o™ L
0 0 0 0 0

To complete the proof write the multiple integrals as iterated integrals, and
apply the inequalities in the proposition to the integrands.

-~
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3. EXAMPLE

One of the simplest reconfigurable systems consists of a working triad plus
a spare., The majority voting lets the triad detect a faulty member and maintain
process control while replacing it with the spare., Figure 3 displays the first
two failure states of the system. The mnemonics are I for the initial state, Q
for a faulty component in the triad, R for system recovery, and D for system
failure because of two faulty components in the triad. The transitions are
labeled with either component failure rates or generalized densities of recovery
functions., The vertical transitions refer to failure of the spare.

There is one path to state D, and one path to state D,. The constant rate

Markov part of these paths are given in figure 4 with E; and E, as the absorbing
states.
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Figure 3: The First Failure States of a Triad Plus a Spare

(a)

(b)

Figure 4: (a) The Constant Rate Part of the First Path
(b) The Constant Rate Part of the Second Path



Let Hj have mean uj and variance o2, The inequalities are
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For a numerical comparison suppose H; represents a fixed time recovery that
takes one second, and suppose H, is the uniform distribution from zero to one
second. In terms of hours the means and variances are

0
6.43 x 10-9

2.78 x 10-* 0,2
1.39 x 107%  o,2

"1

H2

If the component fault rate and operating time are

>
n

5 x 10-* per hour

—
u

1 hour
then the inequalities are

4.16 x 10-1% > p; (1) > 4.02 x 10-10
1.56 x 1013 > 0,(1) > 1.45 x 10-13,
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4. ALGEBRAIC BOUNDS

The upper and lower bounds derived in section two become completely
algebraic when algebraic bounds are provided for E(S), the probability of
traversing the path in figure 2 by time S. Jumping ahead to the next theorem
and using the notation in figure 2, these bounds are

K | K

AI...XkS Al.o-AkS S(Al + Yl +ooo+ Ak + Yk)
R — 2 E(S) 2 —pr——[1 - kPl ]
Letting
S (Al + Yl +oo'+ A + Y )
Error = Upper Bound - Lower Bound - k k

Upper Bound k+1

it can be seen that the algebraic bounds for E(S) are accurate when the product
of the operating time and the sum of the fault rates is small.

Theorem With the notation in figure 2,
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Proof
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For the lower bound, begin with k = 1,
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The theorem is proved.
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5. ALGEBRAIC EXAMPLE

This section illustrates using the algebraic upper bound as an
approximation formula. Consider the first two failure states for a triad plus a
spare depicted in figure 3. The algebraic upper bounds are

Dy (T) ~ 622 Ty,

0,(T) ~ 923 1%,
where A is the component fault rate, T is the operating time, and pj is the
mean of the ith system recovery. The first failure is linear in operating time,

linear in average recovery time, and quadratic in component fault rate. The
ratio

DIIT; - 2u1

says that if u, is approximately equal to u; then D, is smaller than D, by a
factor of about AT. Foir common values of A and T, D, is several orders of
magnitude smaller than D,.

The technique above can be applied to a complete reliability model to
identify the dominant failure modes and the important parameters.



6. TIME DEPENDENT RECOVERY

This section shows that the upper bound established for semi-Markov models
in section two is still an upper bound when system fault recovery is time
dependent, The algebraic upper bound derived in section four also remains
valid. A1l the assumptions remain the same except that fault recovery is time
and path dependent.

Consider state j on a path., Let F (tl,...,tj-l) be the probability that
the holding time in state i is less than or equal to tj for 1 <1< Jj~- 1.
Let H [ty,...,tj-1](tj) be the distribution function for fault recovery in
state j given the holding time in state i is tj for 1 < 1 < j - 1. The item
of interest is the conditional mean

T o
{) [{) tj d H [tl sooo,tj_l](tj)] d F (tl ,..ostj_l)
Uj = T
[ AR (bt )

which is the average recovery time for state j given the system reaches state j
on the path being considered by time T. Note that recovery time in state j can
depend not only on the time of entry into state j,» which is t;+... + tj.1, but
also on the intermediate states and the holding time in each of the intermediate
states.

The demonstration that the same upper bound remains valid proceeds
inductively by removing expressions containing recovery distributions from the
integral giving the probability of traversing a path by time T. The expression
containing a recovery distribution is replaced by a factor of 1 if the
transition is a recovery competing with component failures. It is replaced by a
factor of aj uj if the transition is a component failure with rate aj
competing with other component failures and with a recovery that has conditional
mean uj- The general case in the inductive step where the transition on the
path at state j is a recovery is described by the iterated integral

19



T

é d F (tl,o..,tj_l)
J:T-tl‘....-tj"l - ejtj
0 e d H [tl’...,tj-l](tj)
T‘tl"..o-t-
J
! d G (t,)

where F and H are as described above and G is a composition of constant failure
rate transitions competing with other constant failure rate transitions. As a
distribution representing the sum of sojourn times associated with component
failures, G is time independent. At this point in the induction, the
transitions involving a recovery that have occurred after state j have been

replaced by their upper bounds. Clearly the last expression is less than or
equal to

T T'tl'oon't'
f d F (tl,coc,t- 1) I 3-1
0 =10

d G(t.).

(t;)

Consider the general case in the inductive step where the transition at state j
that is on the path is a component failure with rate aj. It competes with a
recovery, dH, and other component failures, rate B j. The iterated integral is

T

é d F (tl’...,tj"l)

IT-tl-.oo-tj_l -(aj"ﬂj )tj
0 (!J-e [1 - H[tl ’...’tj-lj(tj )] dtj
T-tl--oo-t :

! T d 6 (tyy,)
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The theorem at the end of this section shows that the last iterated integral is
less than or equal to

T T'll)l“oo.(l) a1

(f) dF (ml’“"mj-l){) d G (t

j+1)

T . o -(aj+6j)tj
é dF (tl,...tj_l) é aje 1 - H[tl,...,tj_ll(tj)] dt,

X 1
‘é d F (w1,¢-o’Wj-1)

The expression in the braces is less than or equal to aj uje

Hence the reliability model with the time dependent recovery has the same
upper bound as the semi-Markov reliability model.

Theorem With the notation as above

T
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T
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Proof
Let

“(a.+8.)t.
Vv (xl,...’xJ'-l) =f a.e J J J

; [1 = H Dxpaeeaxg ) 2ES)] d g

J

o

and nOte that \Y (xl’...,xj-l) -<_ 1.

Consider the difference

T
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The theorem is proved.
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