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ABSTRACT

This paper determinesthe informationrequiredabout systemrecoveryto

computethe reliabilityof a class of reconfigurablesystems. Upper and lower

reliabilityboundsare derivedfor these systems. The class consistsof those

systemssatisfyingfiveassumptions: the individualcomponentsfail

independentlyat a low constantrate, fault occurrenceand system

reconfigurationare independentprocesses,the reliabilitymodel is semi-Markov,

the recoveryfunctionswhich describesystem reconfigurationhave small means

and variances,and the system is well designed. The derivationproceedsby

consideringpaths throughthe reliabilitymodel from the initial,fault-free,

state to the absorbing,system-failure,states. Since the probabilityof system

failureis the sum of the probabilltiesof traversingthese fatal paths,it

sufficesto obtain boundson traversinga path by a given time. The bounds

involvethe componentfailurerates and the means and variancesof the recovery

functions. They are easy to compute,and illustrativeexamplesare included.





1. INTRODUCTION

This paperdeterminesthe informationneededabout fault recoveryto

computethe reliabilityof a class of reconfigurablesystems.

. Reconfigurablesystemscan identifya faultycomponent,removeit from the

working group, and replaceit with a spare if available. Typically,building

the system is only justifiedif the reliabilityrequirementis high--oftenhigh

enough that naturallife testingis impossible,and system reliabilitymust be

computedfrom a mathematicalmodel that includesdescriptionsof component

failureand system recovery. Hence the modelingproblemconsistsof a complex

systemwhose reliabilityrequirescarefulcomputation. This combination

suggestsdelicateexperimentswith hard statisticalanalysesto get a

descriptionof systemfault recovery,followedby difficultcalculationsto get

an estimateof system reliability. Even more important,it may not be clear

what needs to be observedin the experimentsand includedin the calculations.

Given certainassumptionsabout componentand systembehavior,this paper

derives upper and lower bounds for the probabilityof system failurein terms of

systemoperatingtime, componentfault rates,and the means and variancesof

system fault recoverytimes. The assumptionsused are common (see references

[I], [2], and [3]), and their plausibilityis discussedbelow. However,their

plausibilityand commonuse do not mean the assumptionsare valid,and more

investigationis requiredbeforethe derivedboundscan be confidentlyapplied

to a reconfigurablesystem.

The derivationof the bounds requiresfive assumptions: 1) componentsfail

independentlyat a low constantrate; 2) componentfailureand systemrecovery

are independentprocesses;3) the system quicklyrecoversfrom all faults;4)

fault recoverydependsonly on time elapsedsince fault occurrence;5) the

system is well designed. The first assumptionis appropriatefor high quality

componentsoperatingfor a short periodof time in a benign environment,but may

° not be applicableotherwise. The secondassumptionis reasonableif failureis

an instantaneousevent--acomponent'simminentfailuredoes not affect its
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currentperformance. The third assumptionon quick recoverydescribesa

desirablepropertyfor reconfigurablesystemssince these systemsfail if too

many faultsaccumulatein the workinggroup of components. If recoveryis quick

then the reconfigurationprocesshas a small mean. If recoveryis quick for all

faults then the reconfigurationprocesshas a small deviationfrom the mean,

measuredby the variance. Hence the third assumptionhas a mathematical

version: 3') any system fault recoveryhas a small mean and variance. The

fourthassumption,togetherwith the first on constantrates,says the

reliabilitymodel is semi-Markov. The major objectionagainsta semi-Markov

model is that fault recoverymay depend on what the system is doing at the time

of fault occurrence. A later sectionconsiderstime dependentrecoveryand

shows the same upper bound is still valid. Becausethe mathematicsis more

complicatedfor the time dependentcase no attemptis made to derive a lower

bound. The fifth assumptionabout the systembeing well designedmeans the

systemonly failswhen overwhelmedby faultycomponents. Conceivably,a system

can fail to operateproperlyeven if all the componentsare fault free.

The next sectionpresentsan arbitrarypath from the initialstate to a

failurestate in a semi-Markovreliabilitymodel and derivesupper and lower

boundsfor traversingthe path by a given time. The probabilityof system

failureis the probabilityof traversingall such fatal pathswhich means an

upper bound for system failureis the sum of the upper bounds for all the paths,

while a lower bound for system failureis the sum of the lower boundsfor all

the paths. Simpleadditionof the probabilitiessufficesbecausetraversingone

path is a disjointevent comparedto traversinganotherpath. The bounds

establishedin the next sectionare partlynumericaland partlyalgebraic. The

numericalpart consistsof solvingthe simultaneouslineardifferential

equationsassociatedwith a constantrate Markovmodel where all the rates are

fairlyclose--aneasy exercisefor a computernumericalpackage. The algebraic

part consistsof expressionsinvolvingcomponentfault rates and the means and

variancesof system recoverytimes. Sectionfour derivespurelyalgebraic

boundsand discussestheir accuracy. The algebraicupper bound is particularly

easy to use, and it shows the influenceof fault rates and recoverytimes on

systemreliability. Each of these sectionsis followedby a sectioncontaining

an example. Sectionsix shows that the same upper bound is still valid even if

system fault recoveryis time dependent.



Besidesdeterminingthe informationrequiredabout system recovery_the

materialbelow offerssome other benefits, The upper and lower boundsare

derivedrigorouslyfrom the assumptionsplacingthe resultingcalculationson

firm foundations. The bounds are provedfor arbitraryrecoverydistributions

with finitemeans and varianceswhich eliminatesconcernover the applicability

of a parametericmodel. The fault injectionexperimentsto study system

recoveryneed only recordthe time betweenfault injectionand system recovery

with no informationrequiredabout the intermediatesteps. Since different

system architecturesproducereliabilitymodelswith differentpaths to failure,

the calculationsbasedon paths to failurereflectsthe influenceof

architectureon reliability. (For examples,see references[6] and [7].) The

boundsare easy to compute,and they use familiarmathematicsand statistics:

differentialequations,means, and variances. The algebraicupper bound used as

an approximationformulaallowscomputationfrom a mere inspectionof the

reliabilitymodel and revealsthe influenceof the variousparameterson system

reliability. The major disadvantageof the approachbelow is that it may not be

able to handletransientand intermittentfaults.

Besidesthe referencesmentionedbefore,references[4] and [5] containthe

necessaryprobabilitytheory,while [8] and [9] presentother approachesto the

reliabilityof reconfigurablesystems.





2. THE APPROXIMATIONTHEOREM

Upper and lower reliabilityboundsare obtainedby consideringthe paths in

the reliabilitymodel that begin at the initialstate and proceedto an
a

absorbingstate representingsystem failure. A generalpath, rearrangedfor

• notationalconvenience,is displayedin figure 1. Any transitionon a path is

by means of a fault occurrencecompetingwith other fault occurrences,or by

means of system recoverycompetingwith fault occurrences,or by means of a

fault occurrencecompetingwith system recoveryand other fault occurrences. In

figure 1, the fault occurrencetransitionsare labeledby the componentfailure

rates,and the systemrecoverytransitionsare labeledby the generalized

densitiesof the recoverydistributions. Figure2 shows the first part of the

path, consistingof just fault occurrencetransitionswith the absorbingstate E

replacingthe non-absorbingstate BI. As the absorbingstate of a constantrate

Markov process,the probabilityof being in state E by a given time is easy to

compute.

In the first third of figure 1, the _'s are the rates of componentfailures

that stay on the path, while the y's are those that lead off the path. In the

secondthird, the dF's are the generalizeddensitiesof recoverytransitions

that stay on the path, while the _'s are the rates of componentfailuresthat

lead off the path. In the final third,the _'s are the rates of component

failuresthat stay on the path, while the dG's and B's representrecovery

transitionsand componentfailuresthat lead off the path.
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Figure 1: A Path tn a Semt-_rkov Reliability _del

Ftgure 2: The Constant Rate Rarkov Part of the Path -



Let D(T) and E(T) be the probabilities of being in states D and E by time

T. Suppose the distribution Fi has mean ui and variance oi2, and Gj has

mean nj and variance Tj2. Let

" } 1/2 }/2 I/2A = u /2 +...+ Um + n +...+nn

and assumeA < T.

Theorem With the notationas above,

> D(T)

I 2)

2) n (aj + Bj) (T§ + nj
m (o2*.i.1_ _j[nj> E(T-A) II [I -€i ui Pi " 2- i=1 j=l

- 'I/2 "
nj

Proposition SupposeH is a distributionfunction,H(x) = 0 for x < O, and H has

finitemean p and varianceo2. Then, for €, _, B _ O,

e-(a+B(i) f _ )X[l-H(x)]dx<___ u
0

(ii)f e"_xdH(x)_<I
0

1/2
Ia 02 + u2

(iii) _ e-cx dH(x) > 1 - € u
0 -- lJ

1/2

U e'((l+B)x[1-H(x)]dx > o. [la (_'f!3)(°'2+p2) 02 + 1_21(iv) f a - z " i/2-
0 u
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Proof of the Proposition

The derivation uses the standard results

1- x < e-X < 1 for x > 0 o

oo

f [I-H(x)]dx=.
0

= a2 + p2
i x[l - H(x)] dx =
0 2

= 02 + g2
1 - H(c) = f dR(x)_ for c > O.

c c2

The proof of (iii) is

1/2

e"cx dH(x) = _ e"_x dH(x) -_ e"cx dH(x)
0 0 1/2

>___ (1 - Ex) dH(x) - _ dH(x)

0 1/2

o2+p 2
> 1 -_
-- IJ
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The Proof of (iv) is

I/Z
-(a+B)x _ -(_+B.!' a e [1-H(x)] dx = . a e )x[1.H(x)]dx

0 0

• - _ a e'(a_)x[1-H(x)]dx
1/2

>__aJ"[I - (a+_)x][1 - H(x)]dx
0

dx
1/z x2

11

-- 2 1/2 "

Proof of the Theorem

Let q(t) be the densityfunctionof E(t). Since the path in figure 1 is

froma semi-Markovprocess.

T T-t T-t-xl-...-Xm_I _-t-xl-...-xm T-t-x!D(T) = f f ... _ ..._ "''"Yn-I
O0 0 0 0

q(t)

-CmXm
e"Elx! .,.e

"(a n'l'_n)Yn[al e-(at+Bt)Yl[1.Gt(Y!)] ...ane 1 - Gn (yn)]

dyn ... dy! dFm (xm ) ...dFl(x!) dt.
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Workingwith just the limitsof integration

o(sl7...77...7
0 0 0 0 0

and

u!/21 .1/2 I/2 1/2
D(T)zYT'A y ... yPm )I ... _n .

0 0 0 0 0

To completethe proof write the multiple integralsas iteratedintegrals,and

apply the inequalitiesin the propositionto the integrands.
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3. EXAMPLE

One of the simplestreconfigurablesystemsconsistsof a workingtriad plus

a spare. The majorityvotinglets the triad detecta faultymember and maintain
a

processcontrolwhile replacingit with the spare. Figure 3 displaysthe first

two failurestatesof the system. The mnemonicsare I for the initialstate,Q

for a faultycomponentin the triad,R for systemrecovery,and D for system

failurebecauseof two faultycomponentsin the triad. The transitionsare

labeledwith eithercomponentfailurerates or generalizeddensitiesof recovery

functions. The verticaltransitionsrefer to failureof the spare.

There is one path to state DI and one path to state D2. The constantrate

Markov part of these paths are given in figure4 with El and E2 as the absorbing

states.
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Figure 3: The First FallureStatesof a Triad Plus a Spare

Figure4: (a) The ConstantRate Part of the First Path

(b) The ConstantRate Part of the Second Path
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Let Hi havemean ,i and varianceai2. The inequalitiesare

E_(T){2_.i}

>__DI (T)

3,_(Ol 2 + pl 2) ol 2 + .12

>_ E! (T- .}/2){2X ("I " 2 .!i/2 )}

and

E2(T) {2_,2}

>_D2(T)

I/2.._/2)>--E2(T - "I

oi2 +.iz (o22+_22)1}x{2_[1-3x.z- l[.2-x(o22+.22)
I/2

"1 "2

For a numericalcomparisonsupposeHI representsa fixed time recoverythat

takes one second,and supposeH2 is the uniformdistributionfrom zero to one

second. In terms of hours the means and variancesare

ul = 2.78 x 10-4 Ol 2 = 0

"2 = 1.39 X 10"4 022 = 6.43 X I0 -9

If the componentfault rate and operatingtime are

= 5 x 10-W per hour

T = 1 hour

then the inequalitiesare

4.16 x 10-1° > Dl(1) >_4.02 x 10-1°

1.56 x 10-13 > D2(1) _>1.45 x 10-I3.
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4. ALGEBRAICBOUNDS

The upper and lower boundsderived in sectiontwo becomecompletely

algebraicwhen algebraicboundsare providedfor E(S), the probabilityof

traversingthe path in figure2 by time S. Jumpingahead to the next theorem

and using the notationin figure2, these boundsare o

_1--'_kSk _1"-'_kSk S(_'I+ YI +'"+ _k +Yk )]k! >__E(S)_> k.m [I - k+1

Letting

S (_I + Y! +...+ _k +Yk )
Error = Upper Bound - Lower Bound =

Upper Bound k+1

it can be seen that the algebraicboundsfor E(S) are accuratewhen the product

of the operatingtime and the sum of the fault rates is small.

Theorem With the notationin figure2,

_1--'_ksk _l-'-_ksk S(_I + YI +"-+ _k + Yk)
k! >__E(S)_> k; [1 - k+l ]

Proof

The upper bound is the easier.

S S-xl-.. e.(_ +yl)xl -(_k+yk)Xk
E(S) = f ...f "'Xk-I_I I ...),ke dXk.., dxI

0 0

S S-x!-...-Xk_1
<--X1""_k f "'"_ dXk"'dxl

0 0

Sk_I••"_k
k!
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For the lower bound,begin with k = 1.

xl e-(Xl+y1_S-,}= (I-
EI(S) _ + v_

_I (ZI . YI )2 S

>_ (l-1 , (_ +y_)s- 2 )
" ;kl + ¥1

_l S S(_l + Yl)

= T [I" 2 ]

Assume the lower bound is true for k = n.

S -(Xl+YI)xl S'xl S'xl""""'Xn+l

En+lCS):fO _.1.e _0 ...,1'

-(In+1 + Yn+l)Xn+1
12 e'(12+Y2)X2...Xn+le

dXn+I ... dx2 dxI

S 12 -.. In+l(S-xl)n (S'xI)(12+Y2+ "'" +In+IYn+l)1 dxI>__i II n! [1 - n!
0

S _2 "" _n+l (S - x1)n
" f _l(_l+Yl)xl n.' dxl

• 0

sn+l
Iz 12 -'-In+l

•(n+l)!

li 12 .--In+1 (12 + Y2 + "--+}'n+l+Yn+l ) Sn+2
" (n+2)!

. li L2 "--In+1 (ll + YI) sn+2
n! (n+l) (n+2)

• sn+l S(II + yl + "'" + I + y )

11 "'"ln+l n+l n+1- (n+l)! [I - n+2 "

The theoremis proved.
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5. ALGEBRAICEXAMPLE

This sectionillustratesusing the algebraicupper bound as an

approximationformula. Considerthe first two failurestatesfor a triad plus a
4

spare depicted in figure 3. The algebraicupper bounds are

Dz(T) - 6 _2 T Pz

D2(T) - 9 _3 T2u2

where _ is the componentfault rate,T is the operatingtime, and ui is the

mean of the ith systemrecovery. The first failureis linearin operatingtime,

linearin averagerecoverytime, and quadraticin componentfault rate. The

ratio

D2(T) 3 },T u2
m

2 Pz

says that if P2 is approximatelyequal to uz then D2 is smallerthan Dz by a

factor of about _T. For commonvalues of _ and T, D2 is severalorders of

magnitudesmallerthan Dz.

The techniqueabove can be appliedto a completereliabilitymodel to

identifythe dominant failuremodes and the importantparameters.
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6. TIME DEPENDENTRECOVERY

This sectionshows that the upper bound establishedfor semi-Markovmodels

in sectiontwo is still an upper bound when system fau_t recoveryis time

• dependent. The algebraicupper bound derivedin sectionfour also remains

valid. All the assumptionsremainthe same except that fault recoveryis time

and path dependent.

Considerstate j on a path. Let F (t1,...,tj.1) be the probabilitythat

the holdingtime in state i is less than or equal to ti for 1_ i _ j - 1.

Let H [tl,...,tj.1](tj) be the distributionfunctionfor fault recoveryin

state j given the holdingtime in state i is ti for I _ i _ j - I. The item
of interestis the conditionalmean

T

[/ tj d H [tl,...,tj.1](tj)] d F (t!,...,tj.I)0
_j = T

d F(t l,...,tj.1)

which is the averagerecoverytime for state j given the systemreachesstate j

on the path being consideredby time T. Note that recoverytime in state j can

depend not only on the time of entry into state j, which is tl+...+ tj.1, but

also on the intermediatestatesand the holdingtime in each of the intermediate

states.

The demonstrationthat the same upper bound remainsvalid proceeds

inductivelyby removingexpressionscontainingrecoverydistributionsfrom the

integralgivingthe probabilityof traversinga path by time T. The expression

containinga recoverydistributionis replacedby a factorof 1 if the

transitionis a recoverycompetingwith componentfailures. It is replacedby a

• factorof aj _j if the transitionis a componentfailurewith rate_j

competingwith other componentfailuresand with a recoverythat has conditional

mean pj. The generalcase in the inductivestep where the transitionon the

path at state j is a recoveryis describedby the iteratedintegral
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T

fO d F (tl,...,tj_1)

T-t1"'"-tj-1 - cjtj
_0 e d H [t1,...,tj_l](tj)

T-tI-...-t.

fO J d G (tj+1)

where F and H are as describedabove and G is a compositionof constantfailure

rate transitionscompetingwith other constantfailureratetransitions. As a

distributionrepresentingthe sum of sojourntimes associatedwith component

failures,G is time independent. At this point in the induction,the

transitionsinvolvinga recoverythat have occurredafter state j have been

replacedby their upper bounds. Clearlythe last expressionis less than or

equal to

T T-tI-••.-tj_1

/odF(t1,...,tj_I)T° dG(tj).

Considerthe generalcase in the inductivestepwhere the transitionat state j

that is on the path is a componentfailurewith rateaj. It competeswith a

recovery,dH, and other componentfailures,rateBj. The iteratedintegralis

T

f d F (tl,...,tj_l)0

T-t1-"'-tj-I -(aj+Bj)tj[I H[t1,...,tj_l](tj)] dr._0 aje - j

T-tI-...-tj

fO d G (tj+I)
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The theoremat the end of this sectionshows that the last iteratedintegralis

less than or equal to

T T-(_I- °

• br dF(_I,.'.,_j-i)f "'_j-1dG (tj+1)b
I

T

/ d F (t1,...tj_l)_o_je'(_J+Bj)tj[1 - H[t1,...,tj.l](tj)] dtj0
x T

_0 d F (w1,...,wj_I)

The expressionin the braces is less than or equal to _j uj.

Hence the reliabilitymodel with the time dependentrecoveryhas the same

upper bound as the semi-Markovreliabilitymodel.

TheoremWith the notationas above

T

d F (_l,...,mj_1)
T

S d F (tl,...,tj_l)0

T-tI-. .-tj )tj[f " -i_je-(_j+Bj I - H[t!,...tj_l](tj)] d tj0

T-tI-...t.

i J d G (tj+l)0

T

<_S d F (_I,...,_j.i)0

T-wi-.."-mj-1
i d G(tj+I). 0

T

d F (tl,...,tj_I)• 0

I _ .e-(_j+Bj)tj
0 J [I - H[tl,...tj_l](tj)] d tj

21



Proof

Let
@@

(xl'''"Xj'l) = _0 aJe'(aJ+Bj)tj[1" H [x_,...xj.1](tj)]d tj

and note that v (xl,...,xj.I) < 1.

Considerthe difference

T

f d F (_i,---,_j_i)
0

T-_i'"•"'_j-I
d G (tj+I)

0

T

f d F (t_,...,tj_1)
0

G@

_0 cje (cj+Bj)tjII . H[t1,...tj.l](tj)]d tj

T

- [ d F (_I,..-,_j_i)
0

T

_0 d F (tl,..-,tj.I)

T_t1....-tj.1 -(cj+Bj)tj[1 . H[t1,...tjl](tj)] d tj
_je "

0

T-tI-...tj
[ d G (tj+I)
0
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T T

>__f d F (-_,...,"j.l) SOd F {t1,...,tj.I)0

_O aJe(_J_j)tj [I - H[tx,...,tj.l](tj)]dtj

i-"1-''''_j-Id G (tj+I)

® -(_j_j)tj[I - H[t_,...,tj.l](tj)]dtj
" fOaje

-I

T-t1-. •.-tj.1
d G (tj+l)_so

T

>____ (_1,...,_j.l)d F (_1,..-,_j.l)
0

T

S v (tlt,...,tj_I)d F (tl,...,tj_I)
0

li.,) -,, .lj.l. "F't)""" "'t_ m_.

d G (tj+I) " fO d G (tj+I

=0.

The theoremis proved.
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