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A FORMULATION AND ANALYSIS OF COMBAT GAMES

M. Heymann~* M. D. Ardema~ and N. Rajant

Ames Research Center

SUMMARY

Most investigations of combat problems by differential game theory have focused
on analysis of deterministic~ two-person~ zero-sum~ perfect-information pursuit
evasion games. This framework is quite suitable for situations wherein the pursuer
evader roles are well defined by the nature of the problem and the evader has no
offensive capability with which to threaten the pursuer to affect the outcome. The
formulation is~ however~ an inadequate one to model combat between two (or more)
opponents both (or all) of whom have offensive capabilities and offensive objectives.
An obvious example of such a situation is air-to-air combat. The few attempts to
analyze this more general combat problem have used either the concept of role
determination or~ morerecently~ that of two-target differential games. Neither of
these approaches~ however~ has led to a complete and consistent conceptual definition
and corresponding mathematical theory of combat differential games. It is our pur
pose in this paper to formulate and illustrate such a theory.

We begin with a discussion of the qualitative features of combat games between
two aggressive opponents; this discussion indicates the rich variety of behavior pres
ent in such games and makes clear the inadequacy of the pursuit-evasion assumption~

with or without role determination~ for modeling combat. We then propose a mathe
matical formulation of a combat game between two opponents with offensive capabili
ties and offensive objectives in a deterministic setting. Resolution of the combat
essentially involves solving two differential games with state constraints. Depend
ing on the game dynamics and parameters~ the combat can terminate in one of four
ways: (l) the first player wins~ (2) the second player wins ~ (3) a draw (neither
wins)~ or (4) joint capture. In the first two cases~ the optimal strategies of the
two players are determined from suitable zero-sum games~ whereas in the latter two
the relevant game is nonzero-sum. Next~ to avoid certain technical difficulties~ the
concept of a o-combat game is introduced.

To illustrate the definition~ formulation~ and solution of combat games~ an
example~ called the turret game~ is analyzed in detail. This game may be thought of
as a highly simplified model of air combat ~ yet it is sufficiently complex to exhibit
a rich variety of combat behavior~ much of which is not found in pure pursuit-evasion
games.

*Senior NRC Associate on sabbatical leave from. Technion~ Israel Institute of
Technology~ Haifa~ Israel.

tResearch Associate~ Aeronautics and Astronautics Department~ Stanford Univer
sity~ Stanford~ California.



1. INTRODUCTION

By a game of combat we intuitively refer to an encounter between two hostile
adversaries, or players, each of whom wishes to destroy or capture the other, while,
if possible, ensuring his own survival. A player who succeeds in capturing his
opponent is said to win the game. If a player is unable to win, he will attempt to
prevent his opponent from winning and, if he is unable to do so, he will try to make
his opponent's win as difficult or as costly as possible.

An application that immediately comes to mind and that was one of the main
incentives for investigating games of combat, is the aerial combat problem in which
there is a duel between two (or even more) maneuvering aircraft. Various situations
can be visualized; for example, a missile in pursuit of a plane, a fighter in pursuit
of a bomber, a duel between two fighter aircraft.

In the simplest manifestation of a combat game, one of the players has no offen
sive capabi.1ities so that he can never win in the above sense. Thus, the offensive
player becomes the pursuer, and the inoffensive opponent becomes the evader. The
resultant pursuit-evasion problem becomes what is sometimes called a game of survival
(see e.g., ref. 1). The evader attempts to prevent capture or, if this is not
possible, to maximize the pursuer's cost of attaining his goal; the pursuer endeavors
to capture at minimum cost. The special (but important) case in which the cost func
tional is the time to capture, has sometimes been referred to as a game of pursuit
evasion (ref. 1).

The early studies of combat problems focused almost entirely on the abovemen
tioned framework in which the two players have the clearly defined and opposing roles
of pursuer and evader, or minimizer and maximizer. There are immediate applications
of those studies in such problems as missile versus aircraft or fighter versus
bomber.

The generally accepted mathematical framework for formulating and solving
pursuit-evasion problems is the theory of differential games due to Isaacs (ref. 2).
Specifically, the game consists of a dynamical system whose state transition is
governed by a set of n ordinary differential equations

dx
dt

f(t,x,u,v) , (1)

= u(t) E U c: ~m and v = vet) E V C:.o/lP are
Xo is the initial state. There is asso-

where x = x(t) E ~n is the state, u
the two players' controls, and x(to)
ciated with the game a cost functional

J(u,v,x ,t )
o 0 i

t
= g[x(t) ,t] +

t o

h[t,x(t),u(t),v(t)]dt , (2 )

where t «00) is a free or fixed termination time. Typically, player u attempts to
minimize the cost J, whereas v tries to maximize it. Various additional assump
tions and constraints can be imposed on the problem to suit specific requirements.
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In games of survival and of pursuit-evasion the termination time is free and is
determined by a capture condition; that is, a state constraint.t:hat is imposed on the
problems as follows:

and

x(t) 4. fij' C /Yln v t ~ t < t
o

(3)

x (i:) E fij' • (4)

Here ,r is the target or capture set and t, defined through equations (3) and (4),
is the capture time. The game of pursuit-evasion is thus the special case of the
above framework in which g = 0 and h = 1 with the cost being the time to cap
ture (t - to)' It is then natural to refer to the minimizing player u as the
pursuer and to the maximizing player v as the evader.

Much research has been done on games of survival and games of pursuit-evasion
within the general framework of differential game theory (see, e.g., refs. 1, 3-5).
The early use of differential games in the modeling and analysis of aerial combat
problems is reviewed in reference 6. Widely investigated models, although highly
idealized, for pursuit~evasion analysis are the homicidal chauffeur game (refs. 2,
7,8), and its generalization, the game of two cars. The latter was used as a model
for aerial combat analysis in a variety of studies; see, for example, references 9-14
as well as the general survey article reference 15. More recently, various general
izationsof the game of two cars were used for analysis of aerial pursuit-evasion to
accommodate variable speed and other aircraft capabilities (refs. 16-19). Also,
special techniques were developed and examined to facilitate computation and to
alleviate some of the difficulties associated with high dimensionality.

I t was realized even in the early stages (ref. 6), however, that the pursuer
evader model is inadequate for situations such as fighter versus fighter combat, in
which there is no justification for an arbitrary a priori role assignment of pursuer
and evader. This difficulty led to much confusion in efforts to reconcile the dif
ferential game methodology with intuition, based on the perceived experiences in
actual combat situations. For example, it was stated in reference 6 that a multiple
criterion may be required to formulate these aerial combat encounters correctly and
that role reversals during a given encounter might (and should) occur. In other
studies, the idea was promoted that the central issue is that of role determination
(refs. 12, 20). Basically, ·the method that was proposed for resolution of the role
assignment problem was to examine two pursuit-evasion problems - one with player A
as pursuer and player B as evader and the other with the roles reversed. From the
outcomes of the two games an assignment of roles should then result.

Realizing that the pursuit-evasion framework is unsuitable for the analysis of
combat problems, Pachter and Getz (refs. 21, 22) introduced (following the approach
proposed by Blaquiere et al. (ref. 23) and Getz and Leitmann (ref. 24» the concept
of a two-target game. In this setting each player has a target-set and attempts to
drive the state into his own target set without being first driven to the target set
of his opponent. Pachter and Getz confined their attention exclusively to the prob
lem of capturability in a two-target environment, that is, to the "game of kind" (in
Isaacs' terminology). This analysis is based on Isaacs' (controversial) technique
of employing barrier and other "singular" surfaces (ref. 2) to partition the state
space into regions where one or the other player can win the game. Although this
approach appears to be plausible in very low dimensional problems, it becomes rapidly
infeasible as the dimensionality increases, especially in the two-target case where
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added complexity arises. Indeed, Pachter and Getz made some major simplifications in
their target-set geometries to overcome essential difficulties with dimensionality
and render the analysis tractable in their investigations of the two-target homicidal
chau~feur game (ref. 21) and the two-target game of two cars (ref. 22). A further
recent study that combines the role assignment point of view with the two-target idea
has been reported in reference 25.

Although the intuitive two-target idea is definitely a convincing conceptual
setup for the combat model, the game formulation problem and the problem of strategy
determination and analysis have not been addressed in the literature to date, appar
ently because of the problem's perceived complexity. Thus, such generally erroneous
ideas as role reversal and role assignment still prevail in the current literature
and the players' actual optimal (or, at least, winning) strategies in combat situa
tions remain obscure and unexplored. In the present paper we examine the combat
problem from a strategy-analysis point of view.

2. QUALITATIVE FEATURES OF COMBAT GAMES

In an ordinary pursui t-evasion problem, the termination of the game (1. e., cap
ture) is determined, as we have seen earlier, by the capture condition specified by
equations (3) and (4) (which can also be stated in terms of equality or inequality
constraints). The capturability issue conStitutes the "game of kind" (ref. 2), and
for a given initial state the problem is whether the pursuer can actually force cap
ture or termination. The question of strategy, that is, of how to accomplish capture
when possible or how to prevent it (or delay it) constitutes the game of degree
(ref. 2).

In the two-target combat model, with targets, say, ffu and ffv ' the termination
condition is

and

x(t) ~ ff: = ff U ffu v v t
o

$. t < t (5 )

x(t) E ff,. (6)

where ffu is the target associated with player u, and ffv is the target associated
with v. If x("E) E ffu but x(t) tI. ffv for all to::; t ~ t we say that player u
wins the game, whereas if x("E) E ffv and x(t) tI. ffu for to::; t ::; t we say that v
wins. If ffu n ffv f ~ and

xCi:) E ff n fY ,
u v

we say that the game ends in joint capture. Finally, if x(t) ~ ff for all
to ::; t < 00 we say that the game ends in a tie or draw.

(7)

In the pursuit-evasion game, .the pursuing player wishes to lead the game to ter
mination and, if he can, do so as quickly as possible. The evading player attempts
to prevent termination or to delay it if prevention is impossible. In contrast, in
the two-target problem the players' objectives are more complicated. In principle,
both want to terminate the game but in different parts of ~ Player u wants to
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terminate in fY/fYv (i. e., in fY excluding fYv)' and player v wants to terminate in
flJ1 fYu •

To see how these conflicting objectives affect the players' strategies and to
gain some insight into the actual situation, let us examine, qualitatively, a number
of possible cases. Suppose for a moment that the capability of each player to evade
his opponent's target is independent of, and decoupled from, his capability to pursue
his opponent. (Air combat between two aircraft with actively guided air-to-air
missiles is an example.) Each player would.then play two simultaneous and indepen
dent pursuit-evasion games: one is an offensive game in which he would try to cap
ture his opponent, the other a defensive game in which he would try to evade his
opponent's weapons. The pursuit-evasion game that terminates first would determine
the winner.

Suppose now that with each of the above mentioned pursuit games we associate a
cost functional

i = u,V ,

where ti is the termination time of game i. In game u, player u wishes to
minimize, and player v wishes to maximize J u ; in game v, player v is the mini
mizer and u the maximizer. Suppose that if the competition between the two games
is ignored, it turns out that t u is greater than tv as optimal termination times.
By this optimality criterion it would be concluded, quite possibly erroneously, that
player . v is the winner of the combat. Thus, even in this elementary example, we
are forced to add a constraint to each of the two games to account for the existence
of the other, that is, for i = u,V, x;'(t) ti fY/fYi for all to ~ t < Ei (where fYi
denotes the target set of the game i). This constraint introduces a coupling
between the two competing games that affects the players' strategies. A particularly
interesting and important cost criterion is obtained when gi = a and hi = 1,
i = u, v, that is, when both games assume a time-optimality c:dterion. Let Jf = t i ,
i = u,v be the optimal times obtained in the two pursuit games where, in each game,
the pursuer is the minimizer and the evader is the maximizer. Clearly, if t u < tv
then in game v the constraint x(t) ti fY/fYv for all to ~ t < tv is violated and
the constrained game v has no feasible solutions. Obviously u is the winning
player.

Now, in the more general case, the players cannot perform their evasive maneu
vers, that is, they cannot stay out of range of their opponents' weapon·envelopes
(capture sets), independently of their offensive maneuvers to capture the opponent.
Indeed, there is, typically, a trade-off between the two objectives of survival and
capture of the opponent, and the players have to play their strategies accordingly.

To illustrate the situations that might occur, let us consider two vehicles
maneuvering in a horizontal plane (fig. 1). The arrows describe the vehicles' instan
taneous heading, the cones the instantaneous envelopes of their weapons (fixed with
respect to their headings) and the vertices of the cones are their instantaneous
positions. We assume the typical situation that each player's maximum turn rate and
speed are mutually dependent, specifically that the faster they move the slower they
are able to turn, and conversely.
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Figure 1.- Maneuvering vehicles.

Suppose that player v initially is in a vulnerable position (see fig. 1) such
that by a slight turn of player u, v might enter u's weapon envelope, and further
suppose that v is more maneuverable in terms of turn rate and speed than u. If v
adopts a pure evasive maneuver and u pursues, two outcomes are possible: either v
gets captured quickly or he evades successfully. If he can avoid capture initially,
then presumably he can capture u in due time by virtue of his superior maneuvera
bility. In the other case, even though v cannot avoid initial capture by u if he
adopts pure (inoffensive) evasion, he may still be able to win the game by performing
the offensive maneuver of turning his own target at u, thereby capturing u before
u captures him. More generally, v may have to perform a composite (offensive
defensive) maneuver wherein he turns his target at u while moving away from u's
target just enough to avoid capture himself. Thus, player v might be able to win
the game by a composite strategy even though he would lose it by playing pure evasion.

It is also of interest to examine the optimal play of player u under the
assumption that v can win with an optimal composite strategy. In spite of his
eventual capture, u should adopt an offensive behavior since by turning his weapon
at v he forces v to slow down v's offensive move in order to survive u's
threat, thereby at least delaying u's capture. In this situation, roles of pursuer
and evader cannot usefully be assigned to the two players.

Thus, it is easy to understand that in general, analysis of pure pursuit-evasion
problems, with or without role-determination analyses, reveals little, if any, infor
mation about the possible outcomes and optimal strategies of a combat game. In fact,
it may be expected that misleading conclusions will be frequently drawn. It is clear
that a new and fundamentally different approach to the problem is required.
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3. FORMULATION OF A COMBAT GAME

Consider a system described by a set of n . ordinary differential equations,

dx
dt

= f(t,x,u,v) (8)

with initial time to and initial state x(tof = Xo . The controls of the two players
are measurable functions taking values in compact subsets DC mm and V C mP,
respectively.

- . n+lAssociated with the combat problem are two subsets fYu andfYv ln m , the
(extended) targets or (extended) capture sets of the players. We shall assume that

§"u and ffv are the closures of some open subsets in m n+1 and that there exists a
time T)'~ > to such that for all x E mn and all t ::T*, (t ,x) E iiu n 1fv .

Combat starts at t to and continues as long as

[t,x(t)] ~ int fY

where fY: =1]u U Iiv is the combat's (extended) terminal· set and where int (.) denotes
interior. We shall say that the combat terminates at time t where

t: = inf{t > t I [t,x(t)] E int ij} (9)
o

If t = T*, we say that the combat ends in a draw. If t < T*, we say that player u
(respectively, player v) wins the combat if there exists an s > a such that
[t,x(t)] E int iiu (respectively, [t,x(t)] E int iiv ) for all t > t satisfying
t - t $ s. If both players win the combat we speak of joint, or simultaneous,
capture. Thus, the combat can terminate in one of the following four ways:
(1) player u wins; (2) player v wins; (3) a draw; and (4) joint capture.

To obtain a consistent formulation of the combat problem, it is necessary first
to resolve its decidability question. That is, each initial event (to' xo ) must be
uniquely and unambiguously classifiable into one of the four termination cate-
gories (1)-(4) above, thus partitioning the event space mxf!lln into mutually exclu
sive regions ¢u' ¢v' ¢uVv' and ¢uAv' respectively.

To this end we define the players' termination preferences as follows. Player u
ranks his preferences in order of priority as 1, 3, 4, 2, and player v ranks his
preferences as 2, 3, 4, and 1.

Remark 1- This ranking is consistent with the intuitive notion that each player
wishes to capture his opponent while not being captured himself. It also resolves
the ambiguity that might occur in deciding between outcomes (3) and (4) when (1)
and (2) cannot be forced by either of the players. This last point becomes clear if
we observe that outcomes (3) and (4) can occur in one of two essentialcways: the
players may be "locked into joint capture" in the sense that a unilateral attempt by
one of the players to postpone termination w.ill enable his opponent to win; on the
other hand, if a player cannot force a win but has control over the time at which
joint capture will occur, he will select the latest such time and, .if possible, set
it at T* (i.e., a draw). 0
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It is readily noted that by definition, the regions ~u' ~v' ~uVv' and ~uAv are
invariant in the sense that there exist strategies for the players that maintain the
resultant trajectory in its initial region until combat termination. Moreover, any
sensible or, as we shall say, consistent strategies by the players will satisfy this
invariance. Indeed, a trajectory will leave its initial region only if at least one
of the players makes a fatal strategy error, in which case we say that the game
strategies are inconsistent.

Remark 2- It is important to emphasize that in properly formulated and correctly
played combat, the winning capabilities of the players depend only on the problem
data (including the initial state). No reversals of the winning capability (or
"role") occur unless a fundamental error has been made by a player who relinquishes
an advantage to his opponent. 0

We now associate with the combat problem a pair of differential games, one from
the point of view of player u, or the u-game, and one from the point of view of
player v, or the v-game.

The u-game Gu is defined as follows. Given is a cost functional

J
u

g[x(t),t]+u u u h [t, x ( t) , u (t) ,v ( t) ]dt ,
u

(0)

(1)

with player u defined as the minimizer and player v as the maximizer. The ter
minal time is specified by

t u = inf{t > tol [t,x(t)] E int i") ,

subject to the event constraint

[t,x(t)] ~ int ff
v

v t s t s to u
(12)

The v-game Gv is specified as follows. Given is a cost functional

J
v t

t o

hv[t,x(t),u(t),v(t)]dt , (13)

with player v the minimizer and player u the maximizer. The terminal time tv
is given by

t = inf{t > t I[t,x(t)] E int 5} ,v 0 v

subject to the event constraint

(4)

[t,x(t)] fi. int ff
u

v t s. t :S to v
. (15)

We examine now the role of the two differential games in the formulation of the
combat problem. First, note that if (to'xo) E ~u U ~v exactly one of the games has
feasible solutions (satisfying the terminal condition and event constraint) so that
only the game of the winning player (the one with feasible solutions) can be played ..
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The winning player will then choose his strategy to minimize his own cost func
tional (subject to the terminal and event constraints of the game); his opponent,
realizing that he has no alternatives (having no feasible solutions to his own game),
will play to maximize his opponent's c9st. Thus, there results a zero-sum game
with the winning player the minimizer and his opponent the maximizer.

In case (to'xo) E ¢uVv V ¢uAv' both games have feasible strategies, and the ter
minal times tuand tv coincide (to the least time in which each player can force
capture of his opponent or a draw; see also remark 1). In this case each player will
choose to minimize his own cost functional (while ignoring his opponent's). The
resultant game is a nonzero-sum game with event and terminal constraints.

In summary, each player will choose his strategy to minimize the cost func
tional of his own game unless for the given initial conditions his game has no feasi
ble solution (that is, he is forced to lose the combat) in which case he will choose
his strategy to maximize the cost of his opponent.

Definition 1- A combat problem formulated with the aid of dual differential
games and with strategy selections as described in table 1 is called a combat game. 0

TABLE 1.- STRATEGY SELECTION RULES
IN COMBAT GAME

Region ¢u ¢v ¢uVv V ¢uAv

Strategy of u min J max J min Ju v u
Strategy of v max J min J min Ju v v

Remark 3- Within the dual differential games framework proposed in the present
paper, rules for strategy selections other than the one described above may be chosen.
For example, we might have decided to select the players' strategies to maximize the
opponents' costs instead of minimizing their own when (to'xo) E ¢uVvU ¢uAv'
Although this is logically consistent, we prefer the setup as proposed above since we
find it more in line with expected intuitive response. From a purely mathematical
standpoint it makes no essential difference what strategy selection rule is chosen so
long as it is consistent and decidable. 0

In games of combat in general, the terminal time is strongly influenced by the
competing nature of the two differential games Gu and Gv ' When (to'xo) E ¢uAv' the
terminal time is forced to be the least time in which the players can, respectively,
secure termination of their game, and the times for the two games coincide. Conse
quently, a case of special interest and simplicity in terms of strategy selection,
and one that is also of practical importance, is when ~ = gv = 0 and hu = hv = 1,
that is, the cost functionals of both games are the durations of the games. Thus,
in the time-optimal case, for (to'xo) E ¢uVv V ¢uAv essentially every feasible
strategy is optimal;
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4. a-COMBAT GAMES

With certain types of cost functionals, the combat game as formulated in
section 3 may not have optimal strategies because of lack of closure of the space of
admissible trajectories. Specifically, since the target sets ffu and 5v are closed,
so is their (nonempty) i~tersect~on ffu n ffv ' He!!ce, the set ffu*: = fiu/(fiu n fiv)'
the complement of fiu n fifv in fifu ' and the set fifv* (similarly defined) ,are not
closed. As a result, a convergent sequence of winning trajectories for one of the
players, say for player u, tha~ terminate in i u*' n~edn~t converge to a trajectory
that terminates at a point in fifu* but, rather, in fifu n fifv ' But, then, the limit .....
ing trajectory ends in joint capture and is not winning for u.

We now turn to reformulate the combat game to avoid the technical difficulties
referred to above. To this end we introduce the concept of a a-safety margin and a
a-combat problem.

Let <5 be a p,ositive number and let §uAv(O)-: = So (&-u n 9v ) denote the relative
open a-neighborhood of iuni'v!. thaE is, the set of all points ¢: = (t,x)E fif
~hose (Eu£li~ean) distance d(¢,fifun fifv ) f!om fiu n i'v is less_than a. Let
fifu(a): =~u/fifuAv(a) denote the points of fifu that are not in fifuAv(a). Similarly
define fifv(a).

The a-combat initiates at time t = to and, just as before, continues as long
as

[t,x(t)] ~ int ff ,

with termination time t defined by equation (9). The winning conditions of the
a-combat differ, however, from those of the "ordinary" combat as follows.

We still say that the a-combat ends in a draw if t = T*.
we designate the following outcomes. We say that u wins if

[t, x (t)] E i' (a) ,
u

that v wins if

(t',x(t)]Efi(a) ,
v

and that the combat ends in joint a-capture if

[t,x(t)) E i' A (a) .u v

However, if

(16)

(17)

(18)

The a-combat, just as ordinary combat, can end (1) by u winning, (2) by v
winning, (3) in a draw, or (4) in joint a-capture. The players' termination prefer
ences are unchanged as before, and again the event space can be partitioned into
regions according to the outcome of the a__ combat as ¢u (a), ¢v(a), ¢uVv( a), and
¢uAv(a), respectively.

The fundamental difference between the ordinary combat problem and the a-combat
problem is that in the latter case the winning terminal sets i'u(a) and fiv(a) are
closed and that iu(a) n i'v(a) = ¢ so that u winning and v winning cannot occur
simultaneously. Thus, in formulating the a-combat game we have to proceed differ
ently than before.
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First, we associate with the o-combat problem a pair of cost functionals:
Ju(o), the cost from the point of view of player u:

J (0):
u

= g [x(t) ,tl +
u

j[t hu[t,x(t),u(t),v(t)]dt
t

o

(19)

and Jv (6), the cost from the point of view of v:

J (0):
v

= g [x(t) ,t] +
v

h [t,x(t),u(t),~(t)ldt .
v

(20)

Each player will relate to one of the two cost functionals depending on the
expected outcome of the game as follows., If (to' xo) E <pu(o) so that player u can
force the game to terminate with condi tion (16) holding, both players will relate to
cost functional Ju(o), with u minimizing and v maximizing. Thus, a zero-sum
differential game results with cost functional Ju(o) and terminal constraints (9)
and (16) holding.

When (to'xo) E <p v (6), player v can force terminal condition (17), and in the
resultant zero-sum differential game player v minimizes and player u maximizes
the cost Jv (6) subject to conditions (9) and (17).

Finally, if (to'xo) E <PuVv(o) V <PuAv(o) a nonzero-sum game will be played with
each player minimizing his own cost functional with the terminal conditions (9)
and (18) holding.

Remark 4- An example of cost functionals for which the ordinary combat game
formulation as described in section 3 is valid and for which a a-game formulation is
not necessary is the following pair:

J (- ) d [ (t ,x (£ » ,5 ]
u u u v

J (-) d [(t ,x (t » ,5 ]v v v u

Here the cost is the negative of the (Euclidean) distance of the terminal event
from the opponent's target. Since the winning player is the minimizer, he maximizes
this distance, whence his optimal strategy will never lead to zero cost (unless, of
course, joint capture is the only possible outcome). 0

Remark 5- The terminal set 5uAv(a) is not closed so that the nonzero-sum game
for (to'xo) E <puVv(o) V <PuAv(o) may .sometimes not have optimal strategies. ~owever,

sinc~ it is impossible to secure closure of all three terminal sets §u(0),5v (0),
and)~uAv(o) sinultaneously, it appears preferable to obtain a complete resolution of
the winning games. 0

Remark 6- The parameter a can be chosen arbitrarily small to obtain an arbi
trarily close approximation of the ordinary combat situation but with optimal winning
strategies existing. 0

11



5 • THE TURRET GAME

Formulation of the Came

To illustrate the theory developed above we consider a combat game that repre
sents a simplified version of the air combat situation discussed qualitatively in
section 2. Player u moves in a plane with arbitrary velocity relative to a fixed
reference frame (X,Y) and can turn a ray weapon relative to a fixed direction at a
bounded angular rate a (see fig. 2). Player v moves such that he is always at a
distance R from u, and he can trav~rse this circle at an angular speed relative to
a fixed direction at a bounded rate S. Player v also has a ray weapon that he can
turn relative to the line of sight between the two players at a bounded rate ¢.

For convenience, we represent the problem in a relative reference frame with
origin at u's position and the. y-axis along. u's weapon (fig. 3). Letting
xl = S - (X, x2 = ~, U = &., vI = S, and v2 = -~ the kinematical equations of motion
are

(21)

(22)

with xl and X2 being computed modulo 2TI, and where we take to = 0 since the sys
tem is autonomous. In view of the circular symmetry of the problem, it is easily
seen that the playing space of interest is

(23)

V'
y

V

_-----+--~--........ X'

x

L..-------.... X

Figure 2.~ Turret game in fixed reference frame.
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y

~ -+- ~ X

Figure 3.- Turret game in relative reference frame.

the controls are specified within the bounds

o < u S. u

and

where ali is the positive quadrant of al2
•

Next, we choose T*, the maximum allowed time duration of the combat. The
extend~d targets are then given by

(24 )

(25)

and

if

if

t < T*}

t < T*} ,

where slR and s2R are the radii of the vulnerability regions or capture sets of the
two players (fig. 3). The extended joint capture region §u n ~v is given by

if t < T*} .

In the ensuing discussion we shall for the most part (except when dealing with draw
regions and associated strategies) assume that T* is sufficiently large so that we

13



can ignore the tdimension of the target.
(ordinary) target sets (see fig. 4)

T~us we shall make reference to the

fJ" {(xl 'X2 ) E plx l ::; E l }
u

fJ"v {(xl ,x2 ) E pI x2 ::; E 2 }

fJ"u n fJ"v = { (xl'x2 ) E plx l ::; E 1 ,x2 50 E 2 } .

1r1-r.~~771-------'-------------'

Figure 4.- Ordinary target sets.

Upon specifying the safety margin 0 > 0, we obtain the O-capture sets as
depicted in figure 5. The o-combat terminates at time t < T* if t is the first
time the state intercepts the set fJ"u(o) V fJ"v(o) V fJ"uAv(o) with an inward velocity.
Alternatively, combat terminates at T* in a draw. a-capture of v by u occurs
(if it occurs at all) if at termination with t < T*,

and (26)

Similarly, a-capture of u by v occurs if at termination with t < T*,

and (27)

Next we will analyze this game for different cost functionals and different
cases of the control set V.

14



11'1n"77777T--------'-----'-------,-,

11'

Figure 5.- a-capture sets.

Linear Control Constraint

Let V (fig. 6) be given by

(28)

where vl and V2 are preselected positive bounds. (This case may be viewed as a
convexification and approximation of the typical situation in which v's motion is
limited by a lateral acceleration constraint specified by v 1v2 ~ k 1 and by
bounds v 1 $ k2 and Vz $ k 3 • dashed lines on figure 6.)

The costfunctionals are chosen as

and

J (a)
u

J (8)
v

15
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v

I
I
I,
\
\
\
\

\
\ ,,, ... ... ,

..... -

L..----------....L.._~_,...._---_..,_-_,....___i~ V1

Figure 6.- Linear control constraint.

where Cl and C2 are positive constants. These cost functionals reflect the com
bined (weighted) objective of the winning player of minimizing the termination time
while securing maximum safety, that is, maximum final distance from the opponent's
target set, and conversely for the losing player.

Before beginning the detailed analysis of optimal strategies, we examine the
implications of the termination conditions (26) and (27). First, note that v can
always win from suitable initial conditions because, from equations (22) and (28), he
can always satisfy the third condition of equation (27). On the other hand, for u
to win he must be able to force the third condition of equation (26), xl(t) < 0; this
implies, using (21), (24), and (28), that

(31)

must hold. Thus, the relative magnitudes of u and vl are of key importance and we
begin by studying the game with (31) holding.

First, consider u's winning a-game. From table 1, in this game u wishes to
minimize and v to maximize Ju(a) in equation (28). In order to employ the stan
dard necessary conditions, the Hamiltonian is defined by

H (32)

We may set Ao = 1 (since Ao = 0
Al and A2 are constants (because
v~ are optimal controls, then

adds no new candidates for optimal control) and
H does not depend on Xl or x2 ). If u*, vy, and

16



u*,v*,v*
1 2

and

= arg( min max H),
O~u~u V 1 ,v2EV

(33)

The termination condition is

and the state constraint is

(34)

(35)

x2 (t) ~ 1:: 2 + 8 , V t E [O,t] • (36)

From equation (29), the transversality conditions give A2 as

Therefore, we may write equation (32) .as

(37)

(38)

where x2 = x2(t).

To determine the optimal controls from equations (33) and (34), the sign of 1,1

is needed. If 1,1 < 0, then from equations (33) and (38) v~ = 0, v~ = '12 ' and
u* = 0; therefore, H is the sum of two positive terms, violating condition (34).
Similarly, 1,1 = 0 leads to violation of (34) and thus

It follows that the optimal control for u is

u;'( = u

and the optimal controls for v are

(40)

arg[ max (AIV l + 2C l x2v2)] .
v l ,v2EV

(41 )

The optimal solution of this simple linear programming problem will always lie on the
constraint

v2 = - V2 v l + '12Vl

so that equation (41) becomes

(42)

v~ = arg[ max (1,1 - 2CIX2V2/Vl)vl] .
O~vl:::;Vl

17
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There are three possibilities:

v* = 0 ,2

v~ = vz

(44a)

(44b)

Next, consider v's winrting a-game with condition (31) holding.
wishes to maximize and v to minimize equation (30) subject to

and

Now, u

(44c)

(45)

V t E [O,t] (46)

Proceeding as before, we conclude that :\1= -2C 1x1 , u* = 'ii, :\2 > 0, and v's
possible optimal controls are as given by (44); however, in this case only the choice
(44b) satisfies (34).

We are now in a position to partition the game's playing space (eq. (23» into
the regions ~u(a) (u wins), ~v(a) (v wins), ~uAv(a) (joint a-capture), and
¢uVv(a) (draw). Player u's winning a-game will be feasible if and only if he is
able to satisfy equations (35) and (36) for all of player v's admissible controls.
At the boundary of ¢u(a), v will just be able to make (36) an equality with con
trols (44b). With this choice of controls, (35) and (36) give

Similarly, v's winning a-game will be feasible if and only if (45) and (47) are
satisfied. At the boundary of \Pv (a), v can just achieve (45) with (46) an equality
at t = t and his controls thus will be (44b) here. Integrating (21) and (22) with
this control choic~ and using (46), the specification of the region ~v(a) is obtained
as

(48)

Since under condition (31) there can never be a draw (u will always eventually
win with u* = u unless v does so first)~ the region of the playing space not
satisfying either (47) or (48) is a joint a-capture region, ¢uAv(a), where the opti
mal strategies are (40) and (44b). The curves defined by equalities in (47) and (48)
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divide the playing space into regions of different outcomes and, therefore, following
Isaacs (ref. 2), may be termed a-barriers.

There remains the problem of determining v's optimal controls in region ~u(a).

We accomplish this by direct computation of Ju(o) in equation (29) for the three
control possibilities (44) and comparison of the results. For (44a) and (44b) , we
have

and

J(a) (a)
u

(L~9)

(50)

The optimal(cQntrols for v between the choices (44a) and (44b) will be (44a) when
J~a)(a) > Jub)(a), giving

(51)

(where Y1: = v1/u), and they will be (44b) when this inequality is reversed.

Next consider the surface (line) separating these two regions, defined by
J~a)(a) = J~b)(a). Solving for x~,

ox2 (52)

The slope of this line is y 2/2, or, from (47), one-half the slope of the boundary
line of ~u(a). The intercept of (52) with u's target set is

C2Y1

x;IX~=E1 =2C
1
y 2u(1 - Y1) (53)

Now consider the singular case (44c). Substituting (40), (42), and the condition
(44c) into (38) and invoking (34) gives, upon solving for x2 ,

C2 y 1

x2 = -2-C-
1

y--'2U=--'-(1:----Y-
1
-:-)

This agrees with (53) and thus (52) is a singular surface (44c) with termination con
dition (53). The controls on this surface are found by setting dX2/dx1 = Y2/2
and using (21) and (22) and invoking (42):

dX
2

-v2

dX 1 = v
1

- U V 1 -u
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which gives

v*
2

(54)

It remains to test the optimality of these controls. A straightforward computation
of the costs using controls (44a) , (44b), and (54) shows that

for any initial state on the locus (52); therefore, the controls (54) are optimal fo.r
v in this case.

We can now completely specify the 0ttimal strategi~s (controls) for the two
players for case (31). In the region ~u1)(a) (see fig. 7(a)), v plays (44b) until
termination. In ¢~2)(a), v plays (44b) until the surface (52) is reached and then

plays (54). In ¢~3) (a), v plays (44a) until· (52) is reached and then plays (54),
and, in ¢54 )(a), v plays (44a) until termination. The region ¢u(a) is given by

¢u(a) = D¢~i)(a). In the regions ¢~l)(a) and ¢uAv(a), v plays (44b). Player u
i=l

plays u in all regions. Note that in figure 7(a) the partition of the playing
space is described for the case

This figure also shows example optimal trajectories in each region.

Next, we consider the case

(55)

In this case, v can always prevent the third condition of (26) from being satisfied
and thus u can never win (from initial states outside the target's interior).
Therefore, only v's winning game need be considered. Reasoning exactly as before,
the region ¢~l)(a) is defined by (48) and the optimal controls in this region are
(40) and (44b).

In the region of the playing space defined by (47), a simple calculation using
(21), (22), (42), and (55) shows that selection of controls (44a) results in a draw,
whereas selection by v of any other controls subject to (42) gives a trajectory
with slope Y2' resulting in capture of v by u; therefore, v's optimal controls
are (44a) in this region, denoted ¢&~~(a). In the region not satisfying either (47)
or (48), the controls (44a) again give a draw, whereas any other controls for v
result in joint a-capture. According to the hierarchy adopted in section 3, v
prefers a draw to joint a-capture and therefore v's optimal controls in thi~

region, denoted ¢~~~(a), are also (44a). The region ¢uVv(a) = ¢~~~(a) u ~~t~(a)
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7r~---r-------""'-----"""""""""''---''''''''''--'

® .......

62 + 0 I-----r

621---+-..-f---...----------t

L....-__..L-_.L..- -"-~ Xl
61 6 1 + 0 7r

Figure 7.- Regions and optimal trajectories in the playing space: turret game
with linear control constraint and quadratic cost.
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1Tt---........,r---------------::I--~.....,

<1>(1) (8)
uvv

•
<1>(2) (8)
uvv

1T .F----r---w-------------....-..

L....-----JL....----L------------...J..-x1
1T

(c) Y1 > 1.

Figure 7.- Concluded.
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is then given by the converse of (48) ~nd all traJ~ctories in this region are sta
tionary with t = T*. The regions ~~l)(cS) and ~uv~(cS) for (55) holding are shown in
figure 7(b), along with example optimal trajectories.

The last case to consider is

U,.. < v·1 • (56)

From (21), (22), (26), and (27), it is obvious that now v can capture u from any
position in the playing space P that is not in the interior of u's target, and

~ therefore ~v(cS) = P/int $"u(cS). The necessary conditions again give, (40) as u's
optimal control and show that v's optimal controls will lie on (42). In this case,
however, the necessary conditions do not establish the sign of 1,.2; further, the
optimal controls of v are frequently nonunique, and the optimal trajectories are
frequently on the boundaries of the playing space. This means that the necessary
conditions are of little use in determining v's optimal controls and we use direct
comparison of cost functionals instead.

The minimum time-to-capture from an arbitrary point (x~,x~) in the region (48)
is obtained from using controls (44b) in (21) and (22); the result is

At this time,

and thus from (30),

J~(o) = -Cl[x~ - (x~ - €2)/Y2]2 +C2(x~ - €2)/v2 .

At t', v has the option of forcing penetration immediately or of playing controls
(44a) and forcing penetration of his target at some later point x~ at an additional
time increment t". Again from (21) ,.

x'{ = (v 1 - u)t" + x~

and the cost is

But this
or x" =1
x'~ = TI.

function will have a minimum with respect to x~ E [x~,TI] at
TI. Thus, we need to compare the cost (57) for x~ = x' with
The result is that the minimum-time path will be optimal if

either x"1
that for

(57)

= x'1

(58)

and the path ending at (TI,s2) will be optimal when inequality (58) is reversed. Note
that because of the linearity of (21), (22), and (42) all paths using any sequence
of controls satisfying (42) and reaching (n,s2) without violating the constraints
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will take the same time, and thus the optimal controls and paths are not unique in
this case.

The line separating the two regions (obtained by replacing the inequality by
equality in (58)) has slope Y2 and is thus parallel to the minimum time paths. This
surface intercepts v's target at CZ/[C1u(Y1 - 1)] - ~.

The regions and example trajectories are shown in figure 7(c) for the case (56)
and. the condition €l + 8 < CZ/[C1U(Yl - 1)] - ~ <~. The optimal paths in region
~~Z)(8) are nonunique (only the two extreme paths are shown) and all end at
(€l + 8, €2) in minimum time; the paths in ~~2)(0) are unique and minimum time; and
the paths in ~~3)(8) are nonunique and all end at (~, €2)' If
CZ/[C1U(Y1 - 1)] - ~ < €l + 0, all optimal trajectories end at (~, €z) and if
C2/[C 1u(Yl - 1)] > 2~ all trajectories are minimum time.

A special case of these results is time-optimality (C 1 = 0 and Cz = 1). In
this case, the r~gions in which the optimal trajectories are not time-optimal vanish
(specifically, ~~l)(o), ~52)(8), ~~3)(8), and ~~3)(8) in fig. 7). Also, in region
(48) u's control is not defined since it has no effect on the outcome of the game.
These results are summarized in figure 8; the optimal strategies in each region are
obvious.

x2
t----r-------------"7--~~

<Pu (0)

'--__-&.._--1. ---1.... x,

(a) Y1 < 1.

Figure 8.- Regions and optimal traj ectories in the playing space: turret game
with linear control constraint and time optimality.
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<I> (2) 18)
v

<(> (1) (8)
v

L-__l-.-l --l..+- x1

Figure 8.- Concluded.
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Circular 'Control Constraint

Now let V (fig. 9) be given by'

(59)

where v is a preselected positive bound, and choose both costs as time-to-capture

(60)

As before, inspection of (22) and (27) shows that v can always force termina
tion (i.e., x2 (t) < 0) and is therefore always capable of winning, whereas from (21),
(26), and (59) u can win only if

u > v . (61)

We begin by investigating the game with this condition holding and first consider
uls winning game, that is, u minimizes and v maximizes (60) subject to (21), (22),
(24), (35), (36), and (59). The Hamiltonian is

(62)

where the (ordinary) multiplier 1l satisfies

-V r---__

L-- -:-- ~_-----v,
V

Figure 9.- Circular control constraint.
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1.1 = 0

1.1 :<: 0

if V2 + V
2 <

~}1 2

if V2 + V
2 = ,,2

1 2

(63)

and A1 and A2 are constants. The optimal controls for v must satisfy

Since 1.1 = 0
implies that

Further, H

violates the condition H = 0, required for optimal controls, (63)
v's optimal corttrols satisfy

V2 + v 2 = v-21 2 •

o and conditions (64) imply that

(64)

(65)

so that

andAz ::; 0 , (66)

u* = U . (67)

If (36) is satisfied with strict inequality at
give A2 = 0, and from (64) and (65), for this

t = t, the transversality conditions
case,

v* = v, v* = 0 .
1 2

(68)

To determine the boundary of u's winning region, note that v desires to
choose controls (subject to (65)) to make this region as small as possible. Assuming
constant controls and using (65), (21) and (22) may be integrated to give

(69)

and

Evaluating (36) at t t and using (69) and (70) gives

(70)

(71 )

Therefore, u's winning region will be smallest when v 1 = y2ij, where y v/u;
putting this value in (71) gives the specification of region <Pu (8) as

x~ - €2 - 8 ~ (x~ - €1)/(1/y2 - 1)1/2

The optimal strategies in this region are (67) and (68).

(72)

Next, consider v's winning a-game for (61) holding; now u maximizes and v
minimizes (60) subject to (65) and (66). The Hamiltonian is (62) as before, but now
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~ s ° in (63). Proceeding as before, if (46) igs~tisfied with strict inequality
A1 = 0, then v's optimal controls are

v~ = 0, v~ = v (73)

and u's control is indeterminate. For (46) satisfied with equality at t = t, u's
optimal control is given by (67) and v's optimal controls are constants satisfying
(65). Integrating (21) and (22) with these controls gives

t = (x~

Solving the latter equation for v 1 ,

1 - n[y2 (1 + n2) - 1]1/2
U

1 + n2

(74)

(75 )

where

X
O - E

1
- a

1
n = 0x

2
- E

2
(76)

The region in which this control will be used is the region in which (75) will have
real solutions satisfying (65), that is,

(77)

n ~ l/y ,

Note that the controls corresponding to the lower and upper bounds in (77) are
v 1 = y2ij and v1 = 0, respectively.

We have now determined the regions and optimal controls for the Cgse (61). In
~u(a), defined by (72), the optimal controls are (67) and (68). In ~~l)(a), defined
by

(78)

the controls are (73) with u indeterminate. In 4>~2)(a), defined by (77), the opti
mal controls are given by (65), (67), and (75). The region that remains, that is,
that which satisfies

---=0---- s --=-----
X E X

O
- E - a '1 - 1 1 1

(79) \'

is a joint a-capture region (a draw is not possible in this case) with controls (67)
and

(80)

These regions and example optimal trajectories are shown in figure lOCal.
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1T...----.-------------.........----r"""1

<l>u (8)

€2+ 8 .....---r
€2 1----+-.....----4IF--------4I~-__1

L.---...&--...&---------------L.- xl
€l €l + 8 1T

(a) y < 1.

Figure 10.- Regions and optimal trajectories in the playing space: turret game
with circular control constraint and time-optimality.
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xg = j(x~ - €1 - <5) (2u T*- x~ + €1 + <5)'+ €2

xg = X~-€1-<5+€2

L-.__..I.-_.L.- ------L.. X1

(b) y = 1.

Figure 10 . ..., Continued.
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X2 t----r--r----'-----\-;....---------~
11"

4l (1) (cS)
v

L...-__--"-_--"- -'----------L.... x1

(c) Y > 1.

Figure 10. - Concluded.

The cases u = v and u < v may be easily inferred from the results for the
Cgse (61). As y + 1 from below, the slope of the boundary line between regions
~~2)(a) and ~uAv(a) becomes infinite, and region ~u(a) vanishes. Further, v cannot
capture in any finite time from points on this boundary and, therefore, there is a
draw region, the extent of which depends on the prespecified value of T*. As for
the linegr constraint case, this region is subdivided into two subregions. In the
first, ~~~~(a), the draw is forced in the sense that the only alternative to draw for
v is capture by u. . In the second, ~~~~(a), v has the unilateral choice between
draw and joint a-capture,· and according to our assumption he chooses draw.

To find the boundary of ~~~~(a), we integrate (21) and (22) using (65) and (67)
backward from (El' £2 + a) over an interval of time T*; the result is that ~~~~(a)
is defined by

(81)

To find the boundary between ~~~~(o) and ~~~~(o), we integrate just as before, but
start from terminal condition (E l + a, £2); the result is

(82)
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The region defined by (82) and the converse of (81) is qJ~~~(o)., The region defined
by the converse of (82) is qJv(o), which is subdivided into regions qJ~1)(8) and
qJ~2)(o) as before (see fig. 10(b».

Finally, for ~ < v (fig. to(c», ~v(o) is the entire playing space, again com
posed of regions ~~l)(o) and ~v2J(o).

6. DISCUSSION

Although the turret game is a very simple and idealized problem, analysis of
this game has revealed a rich variety of combat phenomena. First, note that the solu
tion to this game exhibits many features commonly found in differential games, such
as the existence of barriers and various types of "singular" surfaces. Two examples
of singular surfaces are given by (52) and (58) with the inequality replaced by
equality. We remark that the first of these is a singular surface of type (+, u, +),
or a "universal" surface, in Isaacs' terminology (ref. 2), and the second is a surface
of type (p, u, -).

The optimal strategies also exhibit features common in differential game solu
tions. In most regions of the state/parameter space, the optimal controls of both
players are unique and constant. There are regions, however, in which the controls
are (1) two-stage constant (~&2)(8) and qJ~3)(o) in fig. 7(a», (2) nonunique (qJ~2)(o)
and ~~3)(8) in fig. 7(c) and ~~1)(8) in fig. 10), or (3) state-dependent (qJ~2)(8) in
fig. 10). We note that in many cases the optimal strategies are obvious; for example,
from initial conditions in the region ~~l)(o) in figures 7 and 10, player v can
capture u, before being himself captured, by simply "standing" and turning his
turret at the maximum rate.

The turret game solution, however, shows that combat problems have many features
not previously encountered in games of survival and pursuit-evasion. Perhaps the
most interesting of these is the existence of a region (a surface in the limit as
8 ~ 0) in which both players are locked into mutual destruction at the earliest possi
ble time (qJuAv) in figs. 7(a) and 10(a», in the sense that any deviation from this
policy by one of the players will result in his unilateral capture by the other.
This situation has been found to occur also in nonoptima1 air combat simulations
(ref. 26). Another interesting new feature is a region in which one of the players
has the unilateral choice between a draw and mutual destruction at a time of his
choosing (~~~~(o) in figs. 7(b) and 10(b». These new phenomena are of obvious
importance to air-to-air engagements and other forms of combat.

The idea of 8-combat, introduced to solve technical probiems concerned with
closure properties of the target sets, also has important practical implications. In
the turret game, 0 is the closest the winning player is allowed to approach his
opponent's target at termination. Thus, the winning player can choose 8 to specify
the degree of risk of his own capture he is willing to accept.

It was remarked in section 3 that the event space in a combat game as defined
here must be uniquely and unambiguously classifiable into the four regions ~u(o),

~v(8), ¢uVv(8), and ~uAv(8), and further that these regions are invariant in the
sense that there exist strategies that keep the trajectory within the region in which
it starts until termination. The solution of t~e turret game clearly has these
features. Moreover, the subregions such as qJ~1)(o) in figure 7(a) and qJ~1)(8) in
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figures 7 and 10 are themselves invariant in this same sense. Therefore, the outcome
and the optimal strategies of the combat depend solely on the problem data (including
the initial state).

Because of past emphasis on pursuit-evasion problems, it is of interest to exam
ine the turret game from a pursuit-evasion standpoint. First consider the (time
optimal) pursuit-evasion game with u the pursuer and v the evader (u/v) subject
to (24) and (28). The necessary conditions give the optimal strategies as u* = u,
v~ = v1' and vf = 0* for V1:S u, and capture occurs if v1 < u. For vlu, the opti
mal controls are v 1 = 0, v~ = v2 ; and u* undefined, and capture always occurs.

Now suppose we (naively) attempt to construct the combat results from the
pursuit-evasion results by assuming that whichever pursuit-evasion game ends in the
least time will be the one played. Then, for v1 Co u, the vlu game will be played
everywhere. For V1 < u, the times of the two games must be compared. Integrating
(21) and (22) with the two sets of controls shows that the ulv game will be played
if

(83)

I;

and conversely for the vlu game. These results are shown in the playing space in
figure 11. Note that the slope of the boundary line (83) is greater than the slope
of the boundary lines (47) and (48).

Comparing figures 8 and 11, we see that, in regions (*) on figure 11 the two
analyses give the same solutions, but that in the other regions the solutions are
dramatically different. In ail these other regions ,the pursuit-evasion solution
indicates that v will win, v's optimal strategy is (0, v2 ), and u's strategy is
immaterial. In region (1), however, the combat game results show that if u plays
u then u will win, and, moreover; he will win in minimum time if v persists in
playing his pursuit-evasion-derived strategy. In (2), the combat results show that
the best v can achieve is a draw and that he must play (v 1 ' 0) to do this; if he
plays his pursuit-evasion strategy u will win. And in (3), v can in fact win but
he must recognize and avoid u's target to do so.

Thus, from v's standpoint, the pursuit-evasion results frequently tell him he
can win when he cannot; moreover, use of the pursuit-evasion strategies frequently
will cause v to be captured when capture is avoidable, or lead him to be captured
in minimum time when capture cannot be avoided. From u's standpoint, the pursuit
evasion results frequently tell him he will be captured and that his strategy selec
tion is, of no consequence, when in fact he has winning or draw strategies. Thus, the
serious fallacy of using pursuit-evasion metho~s to "solve" combat problems (1. e.,
differential games between opponents with offensive capabilities and offensive objec
tives) is clear.

As a final point in our discussion, we wish to reemphasize the role of threat in
optimal strategy selection in suitably formulated combat games. We have clearly seen
above that both players combi~e offensive and defensive behavior in their optimal
strategies. The winning player takes defensive measures to avoid being captured him
self during his offense. At the same time the losing player applies a threat to the
winner, that is, implements his offensive capability, in order to prevent his oppo
nent from using the most damaging strategies (in terms of the formulated game's
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cost). The result is that in a properly formulated combat game, just as in actual
combat, both players combine a suitable blend of offensive and defensive maneuvering.

X2 1'---...,..--------+7'------T,r------.

'----.........----------------.... x1

Figure 11.- Results for turret game based on minimum-time pursuit-evasion games.
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L....-._-..&- -'-- ---J.... X,

x2 1-----.------------7""""""1
(3)

(*)

L....-._--L....,.--__...,--__--'--------'.... x,

(c') 'Y 1 > 1.

Figure 11. - Concluded.
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