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FOREWORD

This study represents a portion of the work performed by Science
Applications, Inc. within Task 2: Cost Estimation Research of Contract
No. NASW-3035 for the Earth and Planetary Exploration Division (Code EL/4)
of OSSA/NASA Headquafters. The results are intended for use as a
decision-aiding tool to assist NASA in its déve]opment of long-range
mission plans for solar system exploration.

The author wishes to express his gratitude to those individuals
both within NASA and the industrial community who gracicusly provided the
information vital to his study.
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Acronyms and Abbreviations

Database Flight Programs

M64 = Mariner Mars 1964
SUR = Surveyor
LO = Lunar Orbiter
M69 = Mariner Mars 1969
M71 = Mariner Mars 1971
PJS = Pioneer Jupiter/Saturn (10/11)
M73 = Mariner Venus/Mercury 1973
VLC = Viking Lander Capsule
VKO = Viking Orbiter
VGR = Voyager
PV = Pioneer Venus
PVLP = Large Probe
PVSP = Small Probe
PVBO = Bus/Orbiter
PVS = Science Instruments

Cost Model Categories

STD = Structure and Devices

TCP = Thermal Control, Cabling and Pyrotechnics

PRP = Propulsion

AAC = Attitude and Articulation Control

TCM = Telecommunications

ANT = Antennas

CDH = Command and Data Handling

PWR = Radioisotope Thermoelectric Generator (RTG) Power
PWS = Solar/Battery Power

ADM = Aerodeceleration Module

RDR = Landing Radar/Altimeter

IML = Line-Scan Imaging

IMV = Vidicon Imaging R

PFI = Particle and Field Instruments

RSI = Remote Sensing Instruments

DSI = Direct Sensing/Sampling Instruments

SYS = System Support and Ground Equipment

L30 = Launch + 30 Days Operations and Ground Software
IDD = Imaging Data Development

SDD = Science Data Development

PGM = Program Management/Mission Analysis and Engineering
FO = Flight Operations

DA = Data Analysis

Cost Model Parameters

N = Number of Flight Qualified Units

DLH = Direct Labor Hours (1000 hours) ‘
NRL = Non-recurring Labor Hours (1000 hours)
RLH = Recurring Labor Hours (1000 hours)

URL = Unit Recurring Labor Hours (1000 hours)
M = Subsystem Mass (kilograms)

MD = Mission Duration (months)

ED = Encounter Duration (months)

PPL = Imaging Resolution (pixels per 1ine)
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Cost Estimation Model for Advanced
Planetary Programs - Fourth Edition

1. Introduction and Summary

1.1 Background and Study Objectives

In the decade of the 1980's, the United States' program for
unmanned exploration of the solar system faces increased competition
for the resources required for the achievement of its goals. One
important implication of this situation is that the long-range mission
planning process will involve a greater degree of selectivity than was
seen in the past. This in turn implies that the total cost of
individual missions must be forecast with a greater sense of confidence
than ever before.

Several techniques are uséd to develop cost estimates of future
missions at the pre-Phase A level of mission difinition. Engineering,
or "grassroots", estimation generates cost estimates at the lowest
level of the project's work breakdown structure defined at the time of
the estimate. Analogy estimation derives costs by comparing mission
hardware and scenario definitions with those of similar past projects
and suitably adjusting the known, historical costs for such factors as
differences in requirements and capabilities and for inflation. Model
estimation uses cost estimating relationships (functions relating cost
to requirements/capabilities), derived from historical data, to predict
future costs. In essence, model estimation quantifies the analogy
costing process.

For nearly a decade, Science Applications, Inc. (SAI) has been
involved in cost estimation and analysis of the U.S. planetary exploration
program. The work has encompassed historical cost data collection and
analysis, development and refinement of a cost estimation model based
on the historical data (References 1 and 2), and extensive use of the



model for predicting costs of future missions.

This report discusses the development of the current version
of the SAI Planetary Program Cost Model. The Model was updated to
incorporate cost data from the most recent U.S. planetary flight
projects and extensively revised in order to more accurately capture
the information in the historical cost database. The revision was made
with a two-fold objective: to increase the flexibility of the Model
in its ability to deal with the broad scope of scenarios under consid-
eration for future missions, and to at least maintain and possibly
improve upon the confidence in the Model's capabilities with an expected
accuracy of x20%.

1.2 Cost Model Overview

The SAI Planetary Program Cost Model can be characterized by
the following features.

e The Model is based on all relevant U.S. planetary
projects from Mariner Mars 1964 through Pioneer
Venus.

e Inputs to the Model are limited to information
generally available at the level of pre-Phase A
mission definition. Generally, these consist of
estimates of spacecraft subsystem masses, design
heritage, flight time and encounter duration.

e The primary output is manpower, expressed in direct
labor hours. Total cost is obtained by use of
‘appropriate conversion factors which include
inflation indices.

o The Model views a mission program as consisting of
two distinct phases: The Development Project, which
encompasses all activity through the mission's
Taunch + 30 days milestone and the Flight Project,
which includes all activity from L + 30 days through
the nominal end of mission.

e At its most detailed level, the Model deals with
cost categories which are derived as compromise
aggregations of the variety of work breakdown
structure definitions found in the cost database.



o The Development Project is further separated
into hardware-related cost categories and
functional support cost categories. The hardware
categories are directly related to the mission
spacecraft engineering and science subsystems.

e Hardware categories are further separated into
non-recurring costs (design and development)
and recurring costs (fabrication and subsystem-
level tests). Inheritance is assumed to affect
only the non-recurring cost.

¢ The Model is capable of dealing with a wide variety
of spacecraft designs, including inertial or spin
stabilized spacecraft, atmospheric entry probes
and highly automated soft landers.

1.3 Summary of Results

The model development effort resulted in an updated and revised
Cost Model which adequately meets the objectives set forth in Section
1.1. Only the Development Project portion of the model was revised;
cost estimates for the Flight Project are generated using algorithms
from the previous version of the Model (Ref. 2).

A total of 21 revised cost categories were defined, 16 related
to- flight hardware and five to functional support. Two separate
algorithms were derived for each hardware category: one which estimates
total direct labor and another which estimates recukring labor.
Non-recurring labor can be obtained by differencing the two estimates.
The hardware labor algorithms are, in general, power laws or exponential
functions of a single independent variable formed by the product of |
the number of flight units and the subsystem (category) mass.

Statistical analysis of the historical cost data resulted in a
conclusion that factors derived as simple ratios can be used to convert
category labor hour estimates to total cost.

An extensive error analysis of the Model measured against the
programs in the database indicated that the information in the database



had been captured with an average error of less than 10%. However,

a simulation of the Model's performance, with number of flight units
as the parameter, showed that predictions made with the Model would

be highly sensitive to the number of flight units. A straight-forward
adjustment procedure was devised that effectively eliminates this
sensitivity but results in an increased average error of just less
than 20% as measured against the database.



2. Cost Model Database

Historical cost data for thirteen unmanned lunar and planetary
flight programs currently comprise the SAI cost model database. Table 1
summarizes the present status of this database. For use in model
development, total program costs were segregated into two independent
parts. The first, termed the development project, includes all program
costs incurred through the launch + 30 days milestone. A1l program
costs after this milestone are termed the flight project. Note that
some programs in the database have multiple L + 30 milestones that are
widely separated in time (e.g., Pioneer Jupiter/Saturn with launches in
March, 1972 and April, 1973). This does not present a problem in
segregating the costs since it is a simple matter of continuing to track
hardware development of follow-on units after the first launch date.

The indications in Table 1 regarding use of the data in model revision
will be discussed in Section 3.

2.1 Development Project Cost Data

Cost data for the programs in Table 1 up to and including Voyager
were used in developing the previous version of the SAI cost model
(Ref. 2 ). At the time, however, the Viking Lander, Viking Orbiter
and Voyager (then called Mariner Jupiter/Saturn) development projects
had not been completed and the cost data used in modeling were based on
estimates to complete. Thus, prior to the present model revision effort,
it was necessary to analyze and reduce the actual completion costs which
had been collected for these three programs into forms useful for
modeling.

During this process of data reduction, two issues concerning the
data and its use in modeling became apparent. First, some allocations
of raw cost data into the model's cost categories did not appear to be
consistent. Second, the assumption used in the previous model for
separating non-recurring and recurring costs no longer appeared to be
valid. Both of these issues made it necessary to reevaluate specific
elements of the entire database.
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During the process of examining cost allocations, a decision was
made to broaden and redefine the model cost categories. As with previous
model versions, these categories are separated into two related areas:
flight hardware categories and functional support categories. These
categories are defined to be compatible with the wide variety of work
breakdown structure definitions used by the system contractors who
develop the mission hardware. Each specific category definition was
arrived at through an iterative process involving both the cost data
allocation and statistical modeling efforts.

The flight hardware-related categories are defined as follows:
e Structure & Devices - Spacecraft main structure, support

trusses, adapter, scan platform, booms, solar panel
structure, miscellaneous mechanisms and other hardware,
ballast, bioshield, pressure vessel, landing gear,

HGA structure.

e Thermal Control, Cabling & Pyrotechnics - Passive and

active temperature control, cabling and wire harness,
pyrotechnic devices.

e Propulsion - Propulsion system inerts.

o Attitude & Articulation Control - Celestial and inertial
sensors, attitude control electronics, articulation

devices and actuators.

e Telecommunication - Transponder, receiver, transmitter,

telemetry, modulation/demodulation.

e Antenna - S/X antenna, omni's, Tow and medium gain
antennas, waveguides, feeds, rotary joint.

e Command & Data Handling - Command computer & seguencer,
flight data, data storage.

e Power - Solar cells & slide covers, battery, conditioning
and distribution (does not include RTG units).

o Aerodeceleration - Heat shield, aeroshell, parachute and
mortar.




Radar - Altitude marking/terminal descent radar

antenna(s) and electronics, radar altimeter.

e Imaging - Camera and electronics (vidicon or line scan).

Particle & Field - Magnetometers, high-energy radiation,

plasma, micrometeroid sensors.

Remote Sensing - Radiometers and spectrometers.

Direct Sensing & Sampling - Atmospheric and surface

instruments.

Similarly, the functional support categories are defined as

follows:

Program Management/MAE - Project management and control,

administration and support staff, division reps, preflight
trajectory and navigation analysis, mission engineering,
ephemeris development, planetary quarantine support.

System Support & Ground Equipment - Spacecraft design

teams, system configuration, system assembly and testing,
quality assurance, reliability, safety, electronic parts
acquisition and screening, mission and test computers,
ground data system, ground data handling, ground handling
equipment. ”

Launch + 30 Days Operation & Ground Software - ETR

operations, command team test and training, simulation,
sequence development, flight command and control software.

Image Data Development - Development of capabilities for

image processing lab, image data software, imaging science
team and support (pre-flight).

Science Data Development - Development of capabilities for

science teams and team support, science data processing
and analysis (pre-flight).



The fully reduced and allocated cost data are presented in Appendix
A for the seven major programs used in the present model development
effort. Although technically speaking, Viking was a single program, the
Lander capsule and Orbiter are treated separately since each system was
developed under a separate contract. Conversely, all Pioneer Venus
spacecraft were procured within the same system contract and therefore
the functional support costs are aggregate for the entire program. No
attempt was made to prorate these costs to the various spacecraft types.

Previous versions of the cost model were predicated on defining
the separation of non-recurring and recurring costs as the point in time
in the project schedule when the fully-assembled proof-test-model was
delivered to the spacecraft test facility for initial system testing.
This definition, though arbitrary, was felt to provide an adequate
average basis for model development.

Recently completed development projects, however, appear to
invalidate the use of this definition. Specifically, several of the
major flight components of the Viking Lander were almost totally
redesigned after initial system tests were started. Conversely, almost
all of the Voyager flight hardware was fully fabricated well before
assembly of the PTM spacecraft. Finally, the Pioneer Venus project did
not fabricate PTM spacecraft. This Tatest case is also indicative of
current and future project planning, i.e. to not fabricate, assemble and
test a proof-test-model spacecraft.

Since a new definition of the non-recurring/recurring cost
separation at the system level could not be found which would adequately
apply to the projects in the database, it became necessary to analyze
the data at the subsystem/major component level. As a result of this
assessment, it was decided to separate recurring from non-recurring
costs at the start of fabrication of flight qualified hardware. This
new definition was applied as closely as possible to the major component
level. Occasionally, there was not sufficient information to determine
this breakpoint in cost. For such cases, either a single milestone in
the schedule was applied to all subsystems or considerable direction was



taken from the Work Breakdown Structure (WBS). For example, using WBS
subaccount definitions, non-recurring could be equated with "engineering",
and recurring could be equated with "manufacturing".

Table 2 presents percentage ratios of recurring labor to non-
curring labor, normalized to one flight unit, for each of the hardware
cost categories for the Mariner '69 (M69) through Pioneer Venus (PV)
development projects. Cursory examination of this data, as exhibited by
the large standard deviations, leads immediately to the conclusion that
use of simple ratios for determining recurring cost from non-recurring
cost, as had been used in previous model versions, would no longer be
valid. A more complex functional form would be required.

2.2 Development Project Technical Data

Table 3 presents the project-related technical data used in formu-
lating the cost model. Except for the number of flight qualified units
(N) for each project and imaging resolution (PPL), all other data are
subsystem masses. No other information, such as power requirements, was
found to be necessary for developing the cost model algorithms.

Note that for those projects that use radioisotope thermoelectric
generators (RTGs) as the main power source, the mass of the RTG units is
not included. Also, for the Pioneer Venus probes, the masses of the
small omni antennas are included in the telecommunication subsystem
rather than considered separately in the Antenna category (ANT).

Special considerations were required for certain aspects of the
Pioneer Venus program. For example, many subsystem masses of what is
identified as the Bus/Orbiter are composites of averages of common
hardware components plus components of each vehicle which are unique.
This approach was required because of lack of resolution in the detailed
cost data between bus hardware and orbiter hardware. The PV probe and
orbiter science are treated together as a separate subproject because of
insufficient resolution in several of the instrument contracts to allow
adequate proration of costs to the appropriate PV mission.

10
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3. Model Development

Results of advanced (pre-Phase A) mission planning and analysis
studies typically involve detailed recommendations regarding science
rationale, trajectory analysis and mission sequéncing. Mission-related
hardware definitions, however, are usually not as well defined. Gross
payload requirements, in such terms as net mass delivered at the target
or net injected mass at Earth, can be fairly well predicted. However,
detailed mass definitions at the subsystem and component level are not
easily obtained. Hence, detailed mass estimates are typically
generated prior to Phase B studies by a combination of selecting
appropriate subsystems/components from previous successful designs
and/or current designs, and use of mass scaling relationships.

This approach can generate reasonable early mass estimates and
also yields information concerning design heritage. However, such an
approach cannot take into account what impact technological advances
and changes in general design philosophy might have on component masses.
Furthermore, little, if any, information is generated regarding such
details as part counts, number of spare components, reliability, power
profiles, command structure, communications link parameters, etc. That
is, spacecraft designs resultant from advanced studies contain none of
the detailed engineering parameters required in performing a so-called
bottom-up cost estimate.

The approach for achieving early "top-down" cost estimates, there-
fore, is to develop a cost model commensurate with the Tevel of mission
definition and related flight hardware details generally obtained from
advanced mission planning studies. On the other hand, as seen in
Section 2, the useful database of historical programs will provide only
a relatively small sample size for statistical analysis. Therefore,
the individual algorithms which constitute the model should be parsimon-
jous, requiring the smallest possible number of estimated parameters
for adequate representation. Parsimony will thus lead to uncomplicated
functional forms while preserving as many statistical degrees of
freedom as practical during the model fitting process. The techniques

13



employed for model fitting are ordinary least squares regression and
regression through the origin.

3.1 Labor/Cost Proxy Analysis

A1l previous versions of the SAI Cost Model have used direct labor
hours as the primary dependent variable for both estimation and
prediction, and the present version is no exception. The major
arguments underlying the use of labor hours include decoupling of fore-
casts from inflation and ease in costing low volume production.
Decoupling from inflation places all forecasts on a normalized,
comparable basis, comparable both to past programs in the database and
to other forecasts. Mass production techniques have not been utilized
for deep-space missions and thus the marginal cost of mission hardware
is not substantially decreased through additional production. The
mission development effort is labor intensive, and therefore, the cost
of mission hardware is a direct linear function of the manpower
involved in design, manufacturing and testing. This implies that it
may not be necessary to analyze how development cost breaks down among
labor, overhead, materials, other direct charges, etc. The relation-
ship between mission parameters and resources can be better understood
and evaluated for accuracy when that resource, i.e. manpower, is
modeled explicitly. Finally, forecasting manpower requirements in
addition to project cost provides management with additional informa-
tion to aid in the program planning process.

It is not sufficient, however to categorically state that
manpower, expressed in direct labor hours, should be a reasonable and -
practical proxy for cost. Figure 1 compares database averages of
category labor hours with category total cost, as percentages of total
development project hours and cost, for each cost category. On inspec-
tion and for most categories, the correlation between labor hours and
cost appears to be adequate.

This favorable comparison can be firmly established with a
statistical analysis. In a statistical sense, the percentage ratios

14
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(1)

equivalent means can be applied to the data. The assumptions and steps

shown in Figure 1 are simply sample means. Therefore, a t-test for
for doing so are as follows. Since the sample size is small, normality
must be assumed in the data because tests for normality would not be
powerful enough. (This assumption actually holds throughout the
modeling process for the same reason.) A fairly powerful test is
required in order to decrease the probabi]ify of incorrectly accepting
the hypothesis of equivalent means. Since there is no control over
sample size, the best available option is to test at a fairly high
significance level. For this purpose, 20% was selected.

The t-test is based on equivalent sample variances. Therefore,
an F-test(z) for equivalent variances was first performed. Results
from the F-test -indicate that for all 21 categories shown in Figure 1,
the variances of the labor hour ratios are equivalent to those of the
cost ratios at the 20% significance level, and therefore the t-test
can be applied.

(1) The t-test evaluates the statistic
t* = d /7 /s(d)
against the Student's t distribution with n-1 degrees of freedom, to test the hypothesis that two
normally distributed populations with the same unknown variance have the same mean. The test is
performed using n paired observations from the two samples. In the above equation

d = the mean of the differences between the two samples
n = the sample size
s{d) = the standard deviation of the differences between the paired

values
For a selected significance level, a, if
Jt*| < t(1-a/2; n-1)
then we may conclude that the two sample means are equivalent.

(2) F-test, as used in this context, evaluates the statistic

F* = si/s3

against the F distribution with n-1 and n-1 degrees of freedom, to test the hypothesis that two
normally distributed populations have the same variance. The test is performed using n paired
observations from the two samples. In the above equation

S, = is the standard deviation of the first sample

S, = is the standard deviation of the second sample
For a selected significance level, a, if

F(a/2;n-1;n-1) < F* < F(1-a/2;n~1;n-1)
then we may conclude that the two samples have the same variance.-

16



Results of the t-test show that in 16 of the 21 categories the
mean ratios of labor hours and total cost are equivalent at 20%
significance. This result is fairly acceptable since at 20%,
approximately 4 out of 21 categories are expected to be not equivalent
purely by chance. Relaxing the level of significance to 10% results
in 19 of 21 categories having equivalent means where 2 of 21 are not
expected by chance.

The implications of these results are that direct labor hours
should provide a good proxy to total cost as the primary dependent-
variable and that factors derived as simple ratios should be adequate

for converting from labor hours to total cost. This latter conclusion

eliminates any need to analyze the cost data in terms of breakdowns
among labor, overhead, material, etc. |

3.2 Functional Forms

*-Having argued that 1) the type and amount of independent variables
for cost prediction of advanced planetary missions is limited, 2) that
the cost category algorithms should be parsimonious, and 3) that cost
category direct labor hours should be the primary dependent variable,
the following general relationships are postulated. For the flight
hardware categories (subsystems), total direct Tabor hours (DLH) is a
function of the number of flight qualified units (N) and the subsystem

mass (M):
DLH = F (N,M) ,

with separate functions independently derived for each category. For
the functional support categories, total labor hours is postulated to
be a function of the total hardware Tabor hours (a1l categories):

DLH = G (zDLH hardware).

‘Table 4 presents examples of some of the functional forms that
were analyzed for possible relevance to the cost model. The single
parameter type functions attempt to capture the separation between
non-recurring and recurring costs by modeling each quantity separately.
The dual parameter functions essentially ignore this separation and

17



Table 4

EXAMPLES OF POSSIBLE FUNCTIONAL FORMS

Single Parameter Functions

1)

DLH = NRL + NxURL
where NRL = f(M)
URL = kxNRL , k constant
same as 1) except URL = g(M)

DLH = (NRL + URL) + (N-1) * URL
where (NRL + URL) = f(M)

functions f(M) and g(M) are of the general
forms a + bM, aMb or exp (a + bM)

Dual Parameter Functions

10)

DLH a+ bN + cM

b

DLH = aN° M©

DLH = a + b(NM)
DLH = a(nm)P
DLH = exp [a + b(NM)]
DLH = aMP + cnmd

DLH = (a + bN) M®

18



attempt to directly model category total cost. Function types 1 through
8 in Table 4 can be fitted using the standard techniques of ordinary
least squares regression. In some cases regression through the origin
was used. This technique constrains, on an a priori basis, the estimate
of "a" to be zero in function 6 and to be one in function 7 for example.
Function types 9 and 10 can only be fitted by using non-linear
regression and were only briefly examined.

3.3 Test Statistics

In order to identify which of the possible function forms best fit
the database, some statistical measures of goodness-of-fit are required.
For this purpose, two standard measures were used during the regression
analysis: the correlation coefficient of the fitted data and the
t-statistic of the parameter estimates. (The t-statistic in this
context is defined as the parameter estimate divided by the standard
error of the estimate. It should not be confused with the t-test
described in Section 3.1, although it is evaluated in a similar manner.)

These measures are fairly adequate for determining a best fit of
the data at the individual category level, but are not sufficient for
analyzing model performance at the project level. Therefore, two
additional measures were defined for use at both the category and
project levels: the mean percentage error (MPE) and mean absolute
percentage error (MAPE). Given a theoretical function of the form

yi = a+t+bxi, i=1,...,n
the fitted function is then

-~ -~

yi = at+tbxy,

and the residual errors due to the fitting process are

€ T Yi Y
The two measures are then simply defined as
1 ©y
MPE = —— _
n z y1-
and é
1 i
PE = —— —_—
MA g 17
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Mean percentage error can be viewed as an indication of bias in the
fitted function. Mean absolute percentage error can be viewed as an
indication of the gross error inherent to the fitted function and thus
the confidence with which it can be used in making forecasts.

Specific cutoff values of these statistical measures were not used
during the modeling process. For the most part, the "best fit"
functions were chosen on the combined basis of having the highest
correlation and t-statistics and Towest MPE and MAPE. However, certain
qualitative, or subjective measures were also applied, such as a desire
to avoid negative constants in linear (straight-line) fits.
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4, Model Analysis

The first model formulation analyzed was the single parameter type,
which separately models non-recurring and recurring labor hours, for the
obvious reason that this form had been successfully modeled in previous
versions. Briefly, however, it was now found that algorithms based on
non-recurring labor as a function of subsystem mass had poor correla-
tion and unacceptably large percentage errors. Furthermore, as might
be expected from the data in Table 2, recurring labor could not be
expressed as a constant fraction of non-recurring labor. Algorithms of
recurring labor as a function of subsystem mass did have moderate
correlation and marginally acceptable percentage errors.

Reexamination of the cost data allocations did not reveal any
obvious discrepancies to which the poor correlation could be attributed.
Therefore, it seemed apparent that a new model formulation would have to
be investigated. Consequently, a wide variety of theoretical functions
based on the dual parameter formulation were analyzed. Multiple linear
type functions, i.e. having two independent variables, exhibited
moderately good correlation, but, in general, the strongest correlation
was observed in algorithms that modeled category total labor as a
function of a single variable formed by the product of subsystem mass
and the number of flight units. Simply restated, total cost is a strong
function of total mass. This is merely a statement of observed
correlation in the data and is not necessarily evidence of a fundamental
relationship.

Figure 2 illustrates the preceding discussion with the structure and
devices hardware category as an example. Each graph shows the sample
data and the fitted function, in each case a power law. Considerable
scatter and thus poor correlation can be seen in Figure Za, non-recurring
labor versus unit mass. By comparison, a significant trend is observed
~in Figure 2b, total Tabor versus total mass. Similarly strong correla-
tions between total labor and total mass were. observed for most all other
hardware cost categories.
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A11 of the available information in the database was not used in
developing the cost model algorithms. The earliest projects,
specifically Mariner '64, Surveyor and Lunar Orbiter, were largely
excluded from the modeling effort because of the early technology
status inherent in these projects. Exceptions to exclusion were made
when a specific cost category data point correlated strongly with the
data from later projects. Conversely, if a data point from the later
projects was observed to be an obvious outlier from a significant
trend, that data was excluded from the regression. An example of this
is seen in Figure 2b in which Mariner '64 is included among the fitted
data but Pioneer Jupiter/Saturn is excluded. This selective use of
the data is not arbitrary. Data included from earlier programs may
indicate that the effort required to design, fabricate and test the
particular subsystem is somewhat independent of the technology in use.
Data excluded from recent programs indicates either extreme cost over-
runs for high outliers or extfeme]y high heritage for Tow outliers.

The decision to eliminate outliers led to the complete exclusion
of Mariner '73 from the modeiing process. This is not surprising
since this particular project used a considerable amount of residual
hardware from previous Mariner projects. Specifically, all hardware
category costs for Mariner '73 were observed to 1ie well below trends
indicated by the other projects in the database.

Even though non-recurring cost could not be successfully modeled,
this quantity in terms of labor hours was still needed in order to
apply inheritance algorithms (see Appendix C). These algorithms were
developed on the premise that design and hardware heritage affects '
only the nan-recurring portion of development costs. Developing new
inheritance algorithms which would operate on total category cost was
beyond the scope of the current model development effort. Thus, a
procedure was needed to extract the non-recurring portion from the
total labor estimate. - As was previously mentioned, the recurring
cost data exhibited moderately good correlation with subsystem mass.
Obviously, then, an estimate of non-recurring labor could be recovered
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by differencing the total labor and recurring labor estimates. During
the process of analyzing recurring costs, a slight improvement in
correlation was observed between total recurring cost and total mass
over that of single-unit recurring cost and unit mass. Algorithms of
total recurring labor as a function of total subsystem mass were there-
fore developed. An estimate of single-unit recurring cost can be

obtained by simply dividing by the number of flight units.

In the functional support categories, costs for system support
and ground equipment and for launch + 30 days operations and ground
software were found to correlate well with the sum of flight hardware
category costs. Costs for pre-launch development of capabilities for
imaging data processing and for non-imaging science data analysis were
observed to correlate with imaging system resolution and non-imaging
science payload mass, respectively. Finally, the cost of program
management correlated well with the sum of all other category costs,
both hardware and support functions.

Table 5 summarizes the complete set of algorithms developed
during the modeling process. The flight project algorithms from the
previous model version are also presented. Graphs of the data and
fitted functions together with associated statistics are presented in
Appendix B.
of the cost model.

Figure 3 is a flow diagram illustrating the key elements

Mission

Input Inheritance

Factors
Parameters act

Cost
Category
Labor

Algorithms

Cost
Category
Labor
Estimates

Reduced
Labor

Estimates

Labor 6ost

to
Total Cost

Program Program
Labor Total
Cost ) Cost

Labor Hours
" to
Labor Cost

Figufe 3. Cost Model Schematic
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Table 5

Summary of Cost Model Algorithms

Development Project - Flight Hardware

Structure & Devices
DLH
RLH

1.626 (N % M)0.90u6
1.399 (N * M)0-7uus

Thermal Control, Cabling & Pyrotechnics

DLH = exp (4.2702 + 0.00608 N * M)

RLH = 3.731 (N * M)0.6082
Propulsion

DLH = 56.1878 (N * M)0.%166

RLH = 1.0 (N * M)0.9011

Attitude & Articulation Control
DLH = 21.328 (N * M)0.7230
RLH 1.932 (N * M)

]

Telecommunications
DLH = 4.471 (N % M)1.1306
RLH = 1.626 (N * M)1.1885

Antennas
DLH = 6.093 (N
RLH = 3.339 (N

M)1.13u8
M)

*

*

Command & Data Handling .
DLH = exp (4.2605 + 0.02414 N % M)
RLH = exp (2.8679 + 0.02726 N * M)

RTG Power

DLH
RLH

65.300 (N = M)0.3554
7.88 (N * M)0.7150

Solar/Battery Power
DLH
RLH

exp (3.9633 + 0.00911 N » M)
exp (2.5183 + 0.01204 N * M)

Aerodeceleration Module
DLH = 3.481 (N » M)0.8u4l6
RLH = 4.662 (N * M)0.5

M in kilograms
DLH, RLH in 1000 hours 25
MD, ED in months



TabTe 5 {(continued)"
Summary of Cost Model Algorithms
Landing Radar/Altimeter

DLH = 11.409 (N % M)0.9579
RLH = 1.2227 (N * M)1.2367

Line-Scan Imaging
DLH = 10.069 (N * M)1.2570

RLH = 1.989 (N * M)1-%089
Vidicon Imaging

DLH = 4.463 (N = M)1.0369

RLH = 1.0 (N * M)1.1520

Particie & Field Instruments
DLH = 25.948 (N * M)0.7215

RLH = 0.790 (N * M)1-3976
Remote Sensing Instruments

DLH = 25.948 (N * M)0.5990

RLH = 0.790 (N * M)0.8393
Direct Sensing/Sampling Instruments

DLH = 6.173 (N * M)1.2737

RLH = 1.0 (N * M)l.u200

Development Project - Support Functions

System Support & Ground Equipment
DLH - 0.36172 (£ DLH hardware)0-9815
DLH = 0.5095 (zDLH hardware) |Viking Class Missions]

Launch + 30 Days Operations & Ground Software
' DLH = 0.09808 (z DLH hardware)
Imaging Data Development
DLH = 0.00124 (pPL)!.629
Science Data Development

DLH = 27.836 (non-imaging science mass)0-3389
Program Management/MA&E
DLH = 0.10097 (zDLH all categories)0.9670

Flight Project
Flight QOperations
DLH '<

£ DLH Hardware) 0.6
3100 > (10.7 MD + 27.0 ED)

Data Analysis

DLH = 0.425 (DLH Flight Operations)
26



4,1 Labor/Cost Conversion Factors

As was demonstrated in Section 3.1, simple conversion factors,
derived as average ratios, are all that are needed to convert category
direct labor hours into category total cost. Two independent factors
were derived for this purpose: the first converts labor hours to
labor cost while the second converts labor cost to total cost. These
conversion factors are presented in Table 6 for all cost categories.

Derivation of the labor cost to total cost factors was straight-
forward, involving simple ratios of the allocated cost data. However,
derivation of the labor hours to Tabor cost factors first required
elimination of the effects of inflation inherent in the raw cost data.
For this purpose, the NASA R & D Escalation Indices for Space Systems
Development (February 1979) were used to adjust the annual funding for
each category in each project to a fiscal year 1977 basis. Once this
was accomplished, simple ratios were again used to derive the
conversion factors. Projects completed prior to 1970 were not
included in this process because such projects, having median funding
nearly a decade or more from the basis, would introduce too much
variance in the ratios.

4.2 Error Analysis

The first step in analyzing model performance was to test the
model against the development projects in the database. In order to
obtain global, consistent measures of model performance, the error
analysis was confined to the seven major projects contributing to the
model development. Errors from cost categories excluded from the 4
regression analysis (such as PJS structure and devices) are included
in the global error analysis.

Table 7 summarizes the percentage residual errors at the hardware
level (i.e. exclusive of the support categories) of the seven projects.
Also shown for comparison are the hardware level residual errors
obtained from a model based on separate algorithms for non-recurring

27



Table 6
Labor/Cost Conversion Factors

Cost Category ~Labor Hours to Labor Cost Labor Cost to Total Cost
(FY77 dollars/manhour)

Development Project

Structure & Devices 10.45 3.303
Thermal Control, Cabling & Pyrotechnics 10.26 3.317
Propulsion 10.54 3.616
Attitude & Articulation Control 10.63 3.347
Telecommunications 9.99 3.352
Antennas 9.96 3.466
Command & Data Handling 9.68 3.163
RTG Power 9.51 3.177
Solar Battery Power 10.41 3.148
‘Aerodecleration Modu]e 10.73 3.296
Landing Radar/Altimeter 10.08 3.158
Line-Scan Imaging 10.57 3.604
Vidicoa Imaging | 9.52 - 3.586
Partic1e.& Field Instruments : 10.62 3.395
Remote Sensing Instruments 10.65 3.286
Direct Sensing/Sampling Instruments 9.55 3.454
System Support & Ground Equipment ‘ 10.55 3.076
Launch + 30 Days Ops & Ground S/W v 10.71 3.214
Image Data Devé]opment 11.46 3.130
Science Data Development 12.76 3.987
Program Management/MA & E 11.57 2.685
Flight Project
Flight Operations 10.44 3.247
Data Analysis 10.44 3.425
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Table 7

Comparison of Hardware - Level Residual Percentage Errors
Total DLH Separate NRL/URL

Hardware Project Model Model
M69 ' 1.8 26.4
M71 -3.1 -4.1
PJs 17.1 26.2
VLC -1.2 19.8
VKO -5.4 9.3
VGR 3.0 8.4
PY -8.6 -19.4
MPE 6 9.5
MAPE 5 16.2

and recurring labor. The global errors, MPE and MAPE, support expecta-
tions based on the individual algorithm correlations: a model
formulated on estimation of total category DLH would exhibit less bias
and higher confidence than a model based on separate NRL and URL
algorithms.

The next step in the error analysis was to determine the global
errors at the development project level in terms of both percentage
Tabor hours and total cost. Estimates of support function labor, for
the most part, are based on the summation of hardware category labor.
Thus errors in hardware labor estimates would be expected to propagate-
through the support functions. Also, the factors to convert from
labor hours to total cost are simple averages and the variances
implicit in such averages would also be expected to propagate through
the conversion to cost. These considerations imply that the global
errors at the project cost level might be worse than those observed
at the hardware labor hours Tevel.

Table 8 presents a summary of the global errors at the project
level. The first grouping, termed "Fitted", are those errors which
are obtained when the actual hardware level labor is used to estimate
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the function labor. The group Tabeled "Estimated" is the errors
observed when the estimated hardware labor is used. The conclusion
from these results is that use of estimated hardware labor in the
function algorithms and averaged conversion factors has only marginal
effect on the hardware level global errors. The model as formulated
captures the database with a marginally conservative bias of approxi-
mately 1% overestimation and a gross error less than 10%.

Appendix D contains the details of the error analysis from which
the results in Table 8 were obtained.

4.3 Simulation Analysis

The error analysis discussed in Section 4.2 provides an assessment
of how well the model has captured the data from which it was developed.
However, it provides little information regarding how well the model
will perform in practical applications.

Because of the large number of input variables, a parametric
analysis of the model would be cumbersome to perform and difficult to
evaluate. Monte Carlo simulation can provide a feasible method for
assessing the overall performance of the model. By artificially
viewing subsystem masses as stochastic variables, the simulation
reduces to selecting probability distributions which adequately express
these variables, and randomly sampling from these distributions. A
simplifying assumption is made that individual subsystem masses are
independent of other subsystem masses. The sampled masses from each
trial of the simulation can be input to the model in a deterministic
fashion ahd the model output can then be averaged over the number of
trials. Given a fixed number of trial runs, the number of flight
units becomes the only control parameter.

Se]eéting probability distributions is the only matter of specula-
tion. Both uniform and triangular probability density functions were
used to assess what affect, if any, such different assumptions might
have on the outcome. Figure 4 below represents a typical triangular
probability density function.
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1 + 1 >
Mnin mode Mmax M

Figure 4. Subsystem Mass Probability Density Function

The Tower and upper bounds, Mypin and Mpay, for each hardware cost
category were chosen as the smallest and largest subsystem masses
observed in the historical database from Table 3. Three different
modes were analyzed for the triangular pdf's: 25%, 50% and 75% of the
difference between Myin and Mpax. The number of flight units was
systematically varied from one to five and 1000 trials were run for
each case. Only the hardware total labor was analyzed since the
support categories are direct functions of this quantity and their
inqlusion would not provide additional information.

For purpose of comparison, a simulation of the previous version
of the SAI Cost Model was also made. Table 9 summarizes the results
of the two model simulations with number of flight units as the
parameter. That the total simulated mass is the same for each
respective pdf attests to the fact that to maintain consistency the
same pseudo-random number stream was used in each case.

The first point to notice in the data is that the results from
using different probability distributions are consistent. Therefore,
any conclusions which may be drawn from the analysis are not
dependent upon the assumptions used to randomly select subsystem
masses.

The major result indicated by the data in Table 9 is the non-
linear increase in total labor as a function of the number of flight
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units. Figure 5 is a plot of the data for the 50% triangular pdf. The
increase in labor for the previous model is linear, which is consistent
with intuitive expectations, ignoring such factors as economy of scale.
Since the hardware cost category algorithms of the new model are a mix
of power laws and exponentials, the increase in labor as a function of
flight units was not expected to be exactly linear. However, the
highly positive slope of the function in Figure 5 was not expected.

To investigate this further, simulations were also made of models
based on formulations 2 and 3 in Table 4. Results of these simulations
are shown as the hashed region in Figure 5. These results exhibit
consistency with the results from the previous model simulation:
increase in total labor is a linear function of the number of flight
units.

4.4 Error Analysis Revisited

From the previous discussion, it appears that the model formula-
tion, as presented in Table 5, is highly sensitive to the number of
flight units. A procedure is needed to reduce this sensitivity while
maintaining the high correlation of the category algorithms with the
database. Two considerations indicate that such a procedure may be
feasible. Of the ten hardware systems in Table 3, five consisted of
two flight qualified units. Furthermore, at N=2, results of the new
model simulation are very near to the other model simulation results.
This suggests a procedure which may be termed anchoring and adjustment,
that is, to anchor an initial cost estimate at two flight units and
adjust this estimate up or down by the appropriate amount of recurring
cost. Expressed mathematically, the procedure is

DLHy = DLH(2,M) + (N-2) + RLH(2,M)/2
where DLH(2,M) and RLH(2,M) are the algorithms of Table 5 evaluated
for N=2. The correct sign for the adjustment term is automatically
accounted for in the (N-2) factor. For N=1, the recurring cost of one
unit is subtracted from the estimate and for N2 3 the appropriate cost
is added. For N=2, the initial estimate is unaltered.
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Simulations of the new model based on this procedure were performed
and are plotted as the upper bound of the hashed region in Figure 5..

The error analysis of the model database performed in Section 4.2
was reassessed using the adjustment procedure described above.
Table 10 summarizes the results of this analysis. The estimated errors
from Table 8 are repeated for comparison with the errors arising from
the adjustment procedure. The adjusted errors show that, due to the
adjustment procedure, the model still has relatively Tow bias, but the
gross error has increased. Development projects in the database with
other than two flight units contribute to this increase in mean absolute
percentage error. Despite the factor of two increases, the gross errors
of both labor hours and total cost are still within the acceptance 1imit
of 20%.

4.5 Benchmark Tests

The last step in analyzing model performance was to run benchmark
tests of the model against project costs from other sources. Two
sources for such tests are available: actual costs of past projects not
included in the model database, and independent project estimates of
current and future programs.

Fok the first case, one project is readily available from the SAI
cost database, specifically, Mariner Venus/Mercury 1973. This particu-
lar project readily lends itself to the benchmark tests since no data
from it was used during model development, yet it was accomplished
during the same time period as those projects in the model database.
Two projects were selected for the second case: the Galileo Probe to
Jupiter and the Venus Orbital Imaging Radar (VOIR) spacecraft. The
estimated total development cost for the Galileo Probe was obtained
from the POP 80-2 fiscal year cost estimates in Reference 3, adjusted
to FY'82 constant dollars. The benchmark cost of the VOIR development
project was obtained from a JPL cost review (Reference 4 ). The cost
of the syﬁEhetic aperture radar system is not included in either the
benchmark cost or the model cost estimates.
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Table 11 summarizes the results of the benchmark tests. A1l costs
are given in fiscal year dollars appropriate to the particular benchmark
cost. Subsystem-level heritage was taken into account in generating all
model estimates. Estimates from the cost model are shown first without
using the flight unit adjustment procedure. The model estimate for
Mariner '73 is well within acceptable error limits. However, the
initial estimates for Galileo Probe and VOIR are significantly below
the benchmark costs. Applying the adjustment procedure has no affect on
the Mariner '73 estimate since two units are costed, but the estimates
for Galileo Probe and VOIR are now both within acceptable limits.

Based on the previous analyses, it appears that the revised model
performs well for applications involving either two flight units or one
flight unit with the adjustment procedure. Firm conclusions cannot be
made for applications involving three or more flight units since
appropriate benchmark projects are not available to test such cases.

Considering the results of the benchmark tests, although 1imited
in number and scope, together with the results of the database error
analysis, the uncertainty of cost predictions obtained from this model
can be stated as follows. Flight hardware mass estimates associated
with future missions have uncertainties which can vary greatly depending
on the design concept and degree of heritage. Thus, for mission
concepts that generally fall within the scope of missions in the model's
database, the estimated uncertainty in cost predictions is approximately
t20%. For mission concepts which are outside the scope of the database
missions yet can be costed with this model (e.g. penetrators or rovers),
the uncertainty of cost predictions cannot be estimated and must be
treated on an individual basis.
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5. Sample Applications

Two sample applications of the cost model are presented to
illustrate its applicability to a variety of project implementation
concepts and mission scenarios.

The first example is a comet rendezvous mission using a low-thrust
trajectory with the stage concept for solar electric propulsion. The
mission is the Halley Flyby/Tempel 2 Rendezvous as defined in
Reference 5 .

The following two pages present completed input data worksheets
for this mission. The first worksheet defines the project scenario
and provides necessary guidelines for generating the cost estimate.
The guidelines indicate that only the Mission Module spacecraft and
its associated mission operations are to be costed. The second worksheet
presents subsystem mass estimates for the Mission Module flight hardware
together with estimates of the inheritance classifications for each
subsystem. '

Figure 6 presents the computer-generated output of the cost model,
showing the raw, detailed cost estimates for the Halley/Tempel 2 Mission
Module hardware development and for the mission flight operations and
data analysis. Within the Development Project subheading, the first
group of columns display individual category labor hour and cost
estimates without accounting for inheritance. The last three columns
show labor and cost estimates after factoring in the effects of
inheritance. The estimated cost of hardware design and fabrication
is approximately $134 Million, after an estimated 30% savings due to
inheritance. The cost reduncing effects of heritage in the flight
hardware propagate into the functional support categories and the
flight project categories so that the total development is estimated
to cost $214 Million and the total program is estimated at $292 Million,
without contingency. Table 12 summarizes the cost estimate in a format
which is typical of actual reporting practices. "“Science Development"
includes the instrument hardware and imaging and science data development
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SAI PLANETARY PROGRAM COST MODEL

Input Data Worksheet Page 1
Project Scenario Definition

MISSION*:  Halley FLyby/Tempel 2 Rendezvouws

HARDWARE CONFIGURATION:

SPACECRAFT ELEMENT* NO. OF UNITS* DESIGN HERITAGE

Mission Module I NASA Standard,
Galileo, Voyagen
Viking

LAUNCH VEHICLE:  Shuttle/IUS

FLIGHT MODE*:  Sofan Efectrnic Propulsion

MISSION PROFILE:

LAUNCH NO. LAUNCH DATE* FLIGHT TIME* ENCOUNTER TIME*
1 July, 1985 48 MOnths 25 months

BASE FISCAL YEAR*: FY 1982
COST SPREAD OPTION PROJECT START DATE:

SPECIAL COST GUIDELINES:
Costs of SEP Stage, SEP Operations, and Halley Probe not included.
Module powern via Stage.
Apply 20% APA/Reserve

*Necessary Information
42



SAT PLANETARY PROGRAM COST MODEL

Input Data Worksheet Page 2
Flight Hardware Definitions

SPACECRAFT ELEMENT:  HF/TZR Mission Module

INHERITANCE CLASS PERCENT BY MASS

BLOCK EXACT MINOR MAJOR NEW

BUY REPEAT MQD MOD DESIGN
ENGINEERING:
Structure & Devices: 199.3 kg 0.0 0.0 33.0 33.0 34.Q
Thermal, Cabling & Pyro: _65.0 kg 0.0 0.0 33.0 33.0 34,0
Propulsion Inerts: -0- kg
Att & Articulation Control: _59.5 kg 33.6 49.4 6.0 0.0 11.0
Telecommunications: - _40.7 kg 20.9 50.6 28,5 0.0 0.0
Antennas: 6.2 kg 0.0 0.0 100.0 0.0 0.0
Command & Data Handling: — 45.4 kg 0.0 100.0 0.0 0.0 0.0
Power*: Solar v/ RTG 18.6 kg 0.0 0.0 0.0 0.0 100.0
Aerodeceleration: -0~ kg
Landing Radar/Altimeter: 15,0 kg 0.0 0.0 0.0 0.0 100.0
SCIENCE
Imaging Mass: 32,0 kg 0.0 33.2 0.0 0.0 66. 8
Imaging Resolution: 800 PPL  vidicon ___ €D v Fax
Particle & Field: _82.7 kg 0.0 9.5 23.1 27.2 40.2
Remote Sensing:. _11.0 kg 0.0 0.0 40.9 0.0 59.1
Direct Sensing: , -0- kg

*For RTG Power Systems, do not include mass of RTG units
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categories. "Spacecraft" includes the engineering subsystem categories
and the system support category. With contingency, this program is
estimated to cost $355 Million.

Table 12. Cost Summary for Halley Flyby/Tempel 2 Rendezvous

FY1982 $M
Program Management/MA&E 13.9
Science Development 66.9
Data Analysis 25.3
Spacecraft 119.9

Launch + 30 Days Operations 13.2
Mission Operations ‘ 56.5
Subtotal 295.8
APA/Reserve (@ 20%) 59.2
Total A 355.0

The second samplie application deals with a multi-mission project
to deliver atmospheric entry probes to the outer planets Saturn,
Uranus and Neptune. The project implementation scenario 1is based on
an assumption that all six spacecraft (three probes and three probe
carriers) are developed under a single hardware system contract. The
probe design is assumed to rely heavily on the current Galileo Probe
with suitable modifications for use at the other giant outer planets.
The carrier design is assumed to benefit from the contractor's
experience in designing low-cost spinning spécecraft. Other guidelines
include a presumption that the project is charged for RTG units, 15%
contingency is to be applied, and only the development cost, i.e.
costs to launch + 30 days, is to be estimated.

Figure 7 presents the cost model output for the Outer Planet
Probes Development Project. Hardware cost categories are shown separately
for the two different spacecraft. Functional categories, however,
are shown as totals for the overall development effort and not prorated
to each spacecraft. The total development is estimated at approximately
$277 Million without contingency. Table 12 summarizes the development
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SAT PLANETARY PROGRAM COST MODEL

Input Data Worksheet Page 1
Project Scenario Definition

MISSION*: Outer Planet Probe Project

HARDWARE CONFIGURATION:

SPACECRAFT ELEMENT* NO. OF UNITS* DESIGN HERITAGE
Probe 3 Galileo Probe
Probe Carviien ‘ 3 Contracton's -

, design base

LAUNCH VEHICLE:  Shuttfe/IUS .
FLIGHT MODE*:  Jupiter Swingby

MISSION PROFILE:

LAUNCHVNO. LAUNCH DATE* FLIGHT TIME* ENCOUNTER TIME*
1 Aprit, 1992  (Satwin)
4 Jan, 1994 (Unanus & Neptune tandem Launch) .

BASE FISCAL YEAR*: FY 1982
COST SPREAD OPTION PROJECT START DATE:

SPECIAL COST GUIDELINES:
System contract fon s4x spacecraft
Costs to Launch + 30 days only
3 RTG's @ $10M/unit
15% APA/Resenve

*Necessary Information
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SAT PLANETARY PROGRAM COST MODEL

Input Data Worksheet Page 2
Flight Hardware Definitions

SPACECRAFT ELEMENT:  Probe

INHERITANCE CLASS PERCENT BY MASS

BLOCK EXACT MINOR  MAJOR  NEW

BUY REPEAT MOD MOD DESIGN
ENGINEERING:
Structure & Devices: _58.4 kg = 0.0 100.0 0.0 0.0 0.0
Thermal, Cabling & Pyro:  _23.9 kg 0.0 . 100.0 0.0 = 0.0 0.0
Propulsion Inerts: -0- kg _
Att & Articulation Control: _-0- kg
Telecommunications: - _12.9 kg 0.0 65.0  35.0 0.0 0.0
Antennas: | _ -0- kg |
Command & Data Handling:  _15.6 kg 0.0 65.0 35.0 0.0 0.0
Power*: Solar Y RTG ___13.4 kg 0.0 100.0 0.0 0.0 0.0
Aerodeceleration: 91.9 kg 0.0 - 65.0 35.0 0.0 0.0
Landing Radar/Altimeter: “0- kg
SCIENCE
Imaging Mass: -0- kg L
Imaging Resolution: -0-  PPL  Vidicon . ¢p _ Fax
Particle & Field: | -0- kg
Remote Sensing: _ 6.9 kg 0.0 100.0 0.0 0.0 0.0
Direct Sensing: - 21.4 kg 0.0 62.8  37.2 0.0 0.0

*For RTG Power Systems, do not include mass of RTG units
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SAT PLANETARY PROGRAM COST MODEL

Input Data Worksheet Page 2
Flight Hardware Definitions

SPACECRAFT ELEMENT:

Probe Carnuien

INHERITANCE CLASS PERCENT BY MASS

BLOCK  EXACT  MINOR  MAJOR  NEW
BUY REPEAT MOD MOD DESIGN

ENGINEERING:
Structure & Devices: 183.6 kg §.2 1.0 0.0 90.3 0.0
Thermal, Cabling & Pyro:  _52.6 kg 0.0 0.0 0.0 100.0 0.0
Propulsion Inerts: _16.2 kg  87.0 1.8 0.0 11.2 0.0
Att & Articulation Control: _271.1 kg  34.1 65.9 0.0 0.0 0.0
Telecommunications: _31.0 kg 22.2 77.8 0.0 0.0 0.0
Antennas: _ 9.1 kg 11.0_ 17.6 71.4 0.0 0.0
Command & Data Handling:  _50.3 kg  24.6 75.4 0.0 0.0 0.0
Power*: Solar RTG / 35.5 kg  64.§ 0.0 0.0 35.2 . 0.0
Aerodeceleration: -0- kg -
Landing Radar/Altimeter: -0- kg __
SCIENCE
Imaging Mass: -0- kg -
Imaging Resolution: _=0- PPL Vidicon _____ CCD ___ Fax ___
Particle & Field: -0- kg
Remote Sensing: -0- kg .____;
Direct Sensing: -0- kg . -

*For RTG Power Systems, do not include mass of RTG units
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cost estimate for this project. "Science Development" refers only

to the probe science since the carrier spacecraft has no science hard-
ware. "Probe System" and "Carrier System" each include a portion of
the System Support category prorated on the basis of total hardware
cost. With contingency, the total development cost is estimated at
$353 Million.

Table 13. Cost Summary for Quter Planet Probe Development Project

7 FY1982 $M

Program Management/MA&E 18.4
Science Development _ 39.6
Probe System 56.4
Carrier System 144.0
RTG's 30.0
Launch + 30 Days Operations 18.4

Subtotal 306.8
APA/Reserve (@ 15%) 46.0
Total 352.9
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6. Conclusions and Further Development

This report has discussed the effort involved in updating and
revising the SAI Planetary Program Cost Model. The Model was updated
to include data from the most recent U.S. planetary missions. It was
functionally revised to increase its flexibility in application to the
broader scope of mission/program scenarios under consideration in
NASA's long-range plans. The Model can be directly applied to cost
such diverse systems as -inertial or spin stabilized spacecraft,
atmospheric entry probes and highly autonomous soft landers, and
therefore can more readily extrapolate to systems such as surface
penetrators and rovers.

A detailed error analysis of the Model against the historical
database indicated that, on average, it had captured the information
in the database with an error of less than 10%. In its basic form,
the Model was found to be highly sensitive to the number of hardware
flight units and an adjustment procedure was developed to reduce this
sensitivity. This procedure, however, raises the average error of tne
Model against the database to just less than 20%. Based on this result,
application of 20% contingency is recommended for cost forecasts of
project definitions which generally fall within the scope of those in
the Model's database. For project‘definitions that are significantly
different from those in the database, it must be left to the user to
assess the Model's validity in generating a cost estimate and to apply
an appropriate contingnecy to the estimate.

In addition to continuing coliection and analysis of cost data
from on-going projects, three major development efforts have been
identified to complete the Model and further enhance its capabilities.

The -first task is to comp]ete.the model revision effort by developing
new algorithms for estimating costs of mission operations and data
analysis. Although historical costs will be used as guidelines, these
new algorithms must take into account the expected effects of planned
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cost reducing procedures such as the multi-mission end-to-end information
system and reduced cruise phase activity.

The second effort would involve updating the inheritance algorithm
with a more systematic determination of the numerical weighting‘factors
used in the algorithm. Thé factors currently in use represent best
estimates of appropriate values. The update will be accomplished by
analyzing cost data from past projects which are known to have benefitted
from hardware design heritage.

The final task, related to capabilities enhancement, would be to
-develop a new, analytical model to transform a point cost estimate into
annual funding levels. Such a model should account separately for the
different phases of a project, e.g. hardware development versus flight
operations. It must also be capable of dealing with the wide variety
of project implementation scenarios, which can range from relatively
simple Pioneer-class projects to highly complex Viking-class projects.
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Appendix A

Detailed Cost Database

Due to the proprietary nature of the data, this appendix is not in-
cluded in copies of this report intended for distribution external to the
National Aeronautics and Space Administration.
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Appendix B

Detailed Description of
Cost Model Algorithms

The individual algorithms which comprise the SAI Planetary Program
Cost Model are presented in this appendix in both graphical and functional
forms. The function plots also exhibit the data from which the functions
were fitted. Statistics associated with the curve fitting process are also
shown.

For the hardware-related cost categories, the total labor (DLH)
function is presented with the respective recurring labor (RLH) function
on the facing page. Labor to cost conversion factors are shown for the
total labor functions only.

The test statistics associated with the fitted functions include
the correlation coefficient, the t statistics of the estimated coeffi-
cients, and the mean percentage error and mean absolute percentage error
as defined in Section 3.3 of the report.

The axes of the function plots are not labeled because of the
proprietary nature of the sample data. Note, however, that the scaling
of each recurring labor plot is the same as its respective total labor
plot.
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Index to Algorithms

Cost Category Page
Structure & Devices . . . . . . . . . ... e e e e e B4

Thermal Control, Cabling & Pyrotechnics . . . . . . . . . .. . B6

Propulsion . . . . . . . . . v o o o . e ... .. . B8

Attitude & Articulation Control . . . . . . . . . . . . . . .. B10
Telecommunications . . . . . . . . . . .. ... ... . . . Bl2
Antennas . . . . . L L L L L L e e e e e e e e e B14
Command & Data Handling . . . . . . . . . . .. .. ... . . . Bl6
Solar/Battery Power . . . . . . . . . . . . . oo L0 Bi8
RTG Power . . . . . & . . o v ot i e e e e e e e e e e e e B20
Aerodeceleration Module . . . . . . . . . . .« . oL B22
Landing Radar/Altimeter . . . . . . . « . « « « « « o o .. . B24
Line-Scan Imaging . . . . . . . . . P T . B26
Vidicon Imaging . . . . . . . . . . . . . oo oL B28
Particle & Field Instruments . . . . . . « « o o o o o o . . . B30
Remote Sensing Instruments . . . . . . . . . . . . . .. . . . B32
Direct Sensing & Sampiing Instruments . . . . . . . . . . .. . B34
System Support & Ground Equipment . . . . . . . . . . .. . . . B36
Launch + 30 Days Operations & Ground Software . . . . . . . . . B37
Image Data Development . . . . . . . . « « ¢ « v v v . ... B38
Science Data Development . . . . . . . . . . . . .. ... B39
Program Management/MA&E . . . . . . . . . . .. e e e e e B40
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Appendix C

Inheritance Model

The following pages define the inheritance classes and associated
cost reduction algorithm used with the SAI Planetary Program Cost Model.
Although the definitions refer to "cost", in practice the inheritance
algorithm is applied individually to the subsystem labor hour estimates
prior to conversion from hours to cost.

The underlying assumption upon which this inheritance model is founded
is that heritage in design philosophy and/or physical hardware affects
only the non-recurring portion of cost. Thus, at the highest extreme of
heritage, a project which uses unaltered residual hardware from a pre-
vious project still incurs a transfer cost exactly equal to the recurring
cost of the hardware item. At intermediate Tevels of heritage, a fixed
percentage of the non-recurring cost is incurred depending on the in-
heritance class.

The inheritance class definitions were determined by mutual consent
of cognizant personnel at NASA, JPL, and SAI. The inheritance class
weighting factors were not derived by analytical techniques but were also
developed by consensus agreement.



SAI PLANETARY PROGRAM COST MODEL
_INHERITANCE CLASS DEFINITIONS

® Class One: Off-the-Shelf/Block Buy.

The subsystem is taken off of the shelf in workihg condition
or ordered while the normal production line is operating as
an additional unit.

® Inheritance = 100% of non-recurring cost (NRC)

recurring cost (RC)

fl

e Cost

o Class Two: Exact Repeat of Subsystem.

The exact repeat of previous subsystem but to be used in
slightly different spacecraft or after line has closed down.
Only design work is needed.

e Inheritance = 80% of NRC
® Cost = 20% of NRC + 100% of RC

© Class Three: Minor Modifications of Subsystem.

A previous design is required but it requires minor modifi-
cations. Thus, the spacecraft will still incur all the
design cost and most of the test and development cost in
ensuring compatibility of the old design and the new

minor mods with the new use of the subsystem.

25% NRC
75% of NRC + 100% of RC

@ Inheritance
® Cost

8 Class Four: Major Modifications of Subsystem.

A previous design is required but major modifications have to

be made to the design. This gets very close to a new subsystem
since even new subsystems rely on previous design and experience.
Some savings in development is possible.

& Inheritance = 5% NRC
e Cost = 95% of NRC + 100% RC



] C]aSs'Five:"New Subgystem.

The subsystem is basically new désign.

© Inheritance = 0% NRC
® Cost = 100% NRC + 100% RC

Cost Reduction Algorithm

by Inheritance Classes

Let X, = Percent of Subsystem Off-the-Shelf
X, = Percent of Subsystem Exact Repeat
X3 = Percent of Subsystem Minor Mod
X, = Percent of Subsystem Major Mod
Xs = Percent of Subsystem New Design

Thus X; + X, + X3 + Xy, + X5 = 100% of Subsystem Mass

NRC = Non-recurring cost estimate (without inheritance)
RC = Recurring cost estimate

TC = Total cost estimate (including inheritance effects)
Z = Percent cost reduction |

If Z = 1.0X; + 0.8X, + 0.25X5 + 0.05X, + 0.0Xs

Then TC = (100% - Z) NRC + RC
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Appendix D

Detailed Error Analysis

Due to the proprietary nature of the data, this appendix is not in-
cluded in copies of this report intended for distribution external to the
National Aeronautics and Space Administration.





