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1.	 Introduction

In this report the equations of motion are developed for a perfectly

flexible, inelastic tether with a satellite at its extremity. The tether

is attached to a space vehicle in orbit. The Lecher is allowed to possess

electrical conductivity. Also in this report a numerical solution algorithm

to provide the motion of the tether and satellite system is presented.

This report has several purposes. 1) To provide a solution algorithm

for the motion; 2) To allow an analysis into the physical and dynamical

properties of -the motion for various electrical currents and other

parameters; 3) To provide a check on the developments and algorithms of

other researchers; u) To allow a determination of the approximations, if

any, introduced in the developments of others; and, 5) To provide a set

of exact, analytical differential equations that describe the motion.

The purpose of having exact, analytical differential equations has

several benefits.	 The resulting differential equations can be solved by

various existing standard numerical integration computer programs. 	 The

resulting differential equations allow the introduction of approximations

that can lead to analytical, approximate general 	 solutions.	 The

differential equations allow more dynamical insight of the motion.

Modifications, extensions, generalizations of the dynamical bystem are much

easier to accomplish for the system of exact differential equations. And

many numerical integration errors are more conveniently monitored and

controlled.	 And finally, overall comprehension of the equations and

solution algorithms is somewhat more straightforward.
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Consider an element or a segment of the tether with length A S and

mass per unit length along the tether, p. Consider a tether having a

negligible diameter relative to the length of the tether.

Throughout this report, the tether will be considered as inextensible

or inelastic.

Figure 1 shows a portion of the tether, separated into several,

adjacent, elements.

Figure 1

The force of one element on an adjacent element will be denoted by the

vector F. Since the forces between two adjacent elements (at the ,junction

point) are equal z:nd opposite, R on one element (1) due to an adjacent

element (2), gives -R for the force on (2) due to (1). Let s denote the

distance along the tether, where s - 0 at the point of attachment at the

space vehicle and s - L at the satellite, where L denotes the length of the

tether. Then R will be a function of s, R - R (s). The function R(s) will

increase or decrease continuously as a function of s from one element to

the next, as illustrated in Figure 2.
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Consider the forces acting on an element as shown in Figure 2.

x

^- Rz

R'A 	 q	 C
	 Yg

0
Figure 2

The forces RA and -RB are the forces due to each adjacent element.

The forces k (s
1
), k (s2 ), are other external forces such as

gravitational forces, electrodynamical forces, etc., acting at various

locations s i ts 20 s39 ..., on the element where s is the distance along the

tether.

Define vectors rA, r  , and rom, from a reference origin 0 to

each end of the element and to the center of mass of the element, cm, as is

depicted in Figure 2. Note that the point cm is not necessarily situated

on the element.

3
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The first equations of motion for the element A S is the sum of the

forces acting on A S equal to the time rate of change of the linear angular

momentum of the center of mass of the element, em, which, in this cast, is

equivalent to the mass of the element times the acceleration of em, or

n
AS p rem =R

A -RB + E k 
i=1

where dots denote differentiation with respect to time, and p is the mass

per unit length of the tether.

The restriction placed on the origin 0 is that it be an inertial

point.

The second equation of motion is the sum of the moments about cm

equal to the time rate of change of the angular momentum about em, or

N
Hem E M m

i=1

The forces k (s) in equation 0 ) are not discrete forces but are
distributed uniformly and continuously over the element, hence the

_e	 -
summation given in equation (1) over k (s) can be replaced by V(s), and the

total force is determined by:

(A k(s)ds

4
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where the limits indicate that the integration is taken from r Ato rB and

similarly the moments due to k (s) about the point cm, Mimin equation (2),

are:

yA{ rs - r0m) x k(s)ds

where rs is the vector to the point s on the tether.

Equation (1) becomes

A S . p • r cm = RA - R  + tAk(s)ds
	 (3)

and equation (2) becomes

dt	 Hcm ] _ [ rA - rim ] xRB + (A t	 ds + (A 	ds	 (4)

where A 'H CM is the angular momentum of the element at s, with length A S,

about the center of mass of the element. The quantities M T and MB are the

torsional moment and the bending moment, respectively, per unit length.

The vectors RA , and -RB can each be decomposed into two component

vectors at right angles to each other, one tangent to the element and one

perpendicular or normal to the element, as shown in Figure 3.
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The vectors TA and -Tg, components of R A, and -RB along the element are

referred to as tensile stress. 	 The vectors QA and -QB are the shear	 {
f

stress, since they are normal to the element.

t

Dividing equation ( 3) by d S and using the component vectors of RA

and R  gives

P r em s TAIL STB + QA  SQB AI
S A k(s)ds	 (5)

Letting p T TA - TB and d Q - QA - QB, and taking the limit gives

1im _ITT _Dg^ aT	 aQ
IBS	 As	 as - as

a

Also

s

AS -41 0	 p^S	 p k(s)ds - K(s)

where K(s) is a force per unit length at s. This result follows since as

A S---w0 , this implies that point A (or point B) approaches, in the limit,

point B (or point A).

Equation (5) becomes

P r a _ aT _ aQ + K(s)
	 (6)

em	 as as

6
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Equation (b) is the translational equation of motion (for the center of

mass) of the infinitessimal element ds, including torsional and bending

moments, for a non-flexible, inelastic tether.

In equation (4), dividing through by A s and using the component

vectors for RA and RB:

d (AHCM)_ ( rA - r+m) xT
	

+ ( rA - rcm) 
xQ rA - rcm xTdt As	 As	 A	 As	 A	 As	 B

r8 asrem 
xQB + 

AsfA (r(s) - 
rim) xK(s)ds

+ as 
fA MT + A X MBds	 (7)

Taking the limit of equation (7), as A s-&0 gives:

lim	 d [I Hem _ d 1H cm

A S-WO dt A S	 dt DS

r - r'
lim	

AAS-.*O	 AS 
em 

xTA = d xTA 0

lim r  ' rcm	 _ dr*
-AT: u	 AS

	
xT = ds xT = 0



AS^►0 DS	 7A 
MB ds MB

So equation ( 9) becomes

3

liffitpliginin

I	 I

0EA- ^_
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and letting QA and Q. go to Q as A s 0:

Alum 
rA 

aSrem xQA + rA ASram x(_QB)

**	 e

lim rA - ram	 rem - r 
AS-0-0	 AS	 xQA +	 AS	 xQB •

lim	 _ r 	 ram ram - rA xQis-00	 AS

lim	
rB - rA	

dr*
ATWO-' - AS 	 ds xQ

where the direction rA to r  is chosen as the direction of dr . Also,

AS ►0 ASfA	 ( r(s) * -rim ) R(s)ds - 0

since r ( s) * - rim . 0 and WAS - 1 in the limit. Also,

A lm 4S fA MT ds MT

and
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d Ham	 dr Xi + M + M	 { $dt 8s	 73T B

Equation (8) is the rotational equation of motion for the infinitesimal

element ds about its center of mass, including torsional and bending

moments, for a non-flexible, inelastic tether.

9



. A Perfectly Flexible Tether

The torsional moment MT, is the resistance of the element to twisting

about its axial direction. 	 In this report, inclu3io ?1 of the torsional

moment is not necessary for the tether. Hence M T - 0 in equation (8).

The bending moment is the resistance of the element to bending about

an axis perpendicular or normal to the physical element. The bending

moment is determined by the properties of the tether. For this report, it

will be assumed that the tether is perfectly flexible, or has no stiffness,

and that the bending moment is negligible. This is probably a good

assumption for many types of long, thin tethers. However, if the diameter

of the tether were appreciable, this assumption might need evaluation,

depending on the physical properties of the tether. Hence, in this report,

CIF - 0

in equation (8).

For a perfectly flexible tether, with no bending moment, the vector Q

in equations (b) and (8) will be set to zero. (See, for example, Shames,

Engineering Mechanics, Statics and DynamiC3, Prentice Hall, 2nd edition, p.

148, for the proof that Q - 8 for a perfectly flexible cable in equilibrium

(zero acceleration). Extension of the proof to the case at hand, the non-

equilibrium, non-zero acceleration case, has not been given. However, it

will be assumed here that for small to moderate accelerations of the

tether,	 setting Q - 0 will pro. de sufficient at:curacy.)

19	 =
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Equations (6) and ( 8) become

p rcm'	 'ffts)
	

(9)

d BHem ^ 
p	 (1(})

U 3

In equation ( 9), the vector T lies along the tangent to the tether at

the point s, as discussed above. Equation (10) can be integrated

immediately giving

8asm - constant - c(s)	 t11)

providing the result that the angular momentum of each (infinitesimal)

element of the tether remains constant in time. Notes that the constant in

equation ( 11) is only "constant" in time, but in general is a function of

s; the value of the "constant" C(s) depends on the initial conditions. 	 Of

course the reason that we have this result is that we set Q - Mg - M'V, - 00

which are all the moments about the center of mass of ds.

Equation ( 9) is the translational equation of motion for each

Infinitesimal element, ds, for a perfectly flexible, inelastic tether. In

equation ( 9), replace * by r( s,t) * .T by T(3.0-and 7(3) by K(s,t).	 And
cm

to denote that the total derivatives with respect to time are to be taken

with s held constant, the total derivatives are replaced by partial

derivatives. Equation ( 9) becomez

p 8
2r(sZ t) * 	aT(3 + K(s
	 {12},t)

3t 

where K(s,t) represents the external forces per unit distance along the tether.

11
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4. The Inelast icity Constraint

The assumption that the tether is inelastic (no stretching) can oe

written as

_.r
3r	

- 1 or57

8s • as- • i	 (13)

Moreover, the vector 8r AS, in the limit as 4S goes to zero, along with

constraint (13), coincides with the unit vector . along the tangent of the

tether	 at the point a.	 Denoting this unit "rector by l

•

T - T. Z - T.	 (14)

Equation ( 12) then becomes

2I 
i 

Re, t) - -,s T(s,t)ar{dst}	 + Mt(s.t)	 (15)

The inelasticity contraint provides a differential equation for the

determination of 	 and T. Differentiating equation (13) twice with

respect to time gives

^M 	.N
ar	 a ar - Qas'

and

(16)



• ORIGINAL PAGE 19
OF POOR QUALITY

3 ar * a ar , ar * 	a2 ar e o	 (17)
at as at 3s as	 at2 as

Also since r (s,t) and its derivatives are assumed to be continuous then

a ar * = 3 ar * (18 )at as as at

and Equation (17) can be written as

a
ar*

8 + ar 	 a a2 r  
(19)

0
as at ast

[ar
as	 as at 

Substituting equation (15)	 into equation (19) gives:

a	 ar a ar 1	 ar a	 _	 a	 arT	 + K]	 0
as at as at

+
p	 as as	 as u^

or

a ar *	 a ar	 1 ar *	 a2 T ar +*	 i ar * , aK _ 0
as as	 as at	 - p as	 as 	

as	 p as	 as
(20)

13



5. The Equations of Motion for the Satellite and the Space Vehicle

In this section, differential equations will be developed for the

satellite and the Space Vehicle in order to determine the motion of the

entire satellite - tether - vehicle system as well as to provide

Information concerning the boundary conditions for the tension at each end

of the tether.

The forces acting on the satellite are the tension due to the tether

T(l,t); and other external forces, IV(L,t), where L denotes the value for

s at the end of the tether, and XP(L,t), denote forces acting on a point

mass as opposed to K(s,t) which is a force per length.

Hence,

82r(^ 1,t)	 -1	 T(L,t) 8R L, t) * + L -K"P (L,t)	 (21)
at 	 mSAT	

as	
mSAT

or

2-
a r(L,t) _ -1 T(L,t) + Kp (L,t)	 (22)

at2	mSAT

where, as discussed in section 4,

T(L,t) - T(L,t)t - T(L,t) as 	(23)
and where the negative sign on the first term on the right in equation (22)

14



direction, toward the tether.

For the other end of the tether , attached to the space vehicle, make

the following assumptions. Assume the tether is attached to the space

vehicle at some point 0 1 . The point 0' is in general not an inertial

point.	 Let 0' be the origin of our coordinate system with rectangular

Cartesian coordinate axes defined as follows. The z-axis is along the line

from the center of the earth to the point 0 1 , positive upwards. The x-axis

is in a direction such that the x - z plane contains the velocity vector of

the point 0 1 , with positive direction in the direction of the velocity

vector. And y-axis is defined by the right-hand rule.

This definition of the x-axis is convenient, since it is in the

direction of (but not necessarily coincident with - allowing for non-zero

eccentricities of the space vehicle's orbit) the velocity vector of the

point of attachment at the space vehicle. For zero-eccentricities and

assuming 0' at the center of the space vehicle, the velocity vector will,

of course, lie along the x-axis. And the y-axis (determined by right-hand

rule) will be normal to the orbital plane. For the actual situation,

assuming the space vehicle is rotating at a reasonably slow rate, and for a

non-zero eccentricity, and including perturbations, the x-axis should be

close to the plane containing the position and velocity of the space

vehicle. Let the unit vectors along the x,y,z axis be Y,J, and

respectively.

The coordinate axes will be rotating with angular velocity w	 The

point 0' will be located at s - 0 or at r(O,t) 	 The velocity and

15
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acceleration of the point of attachment will be denoted by

ar(0,t)*and a2r(02t)

at

respectively. Let rS.V. 
(t) be the vector from the center of the earth to

a reference point within the space vehicle.	 The acceleration of the

vehicle is

2—
a rs.v.(t}	

-	 T(O,t)
2t2	ms.v

acting at 0'	
A

+ m	
KS.v. 

(t)	 (24)
S. V.

where T(0,t) is the force on the vehicle due to the tether at s - 0 or at

0' and 
Ks.v. 

(t) are all other external forces such as gravity, drag,

thrusting, etc. acting on the space vehicle, and located at r 	 (t) .S.V.

The acceleration at the point of attachment, 0 1 , is

a2r(0,t) * - a2 rs.v.(t)* + a2 rrel(t)* (25.1)
at 	 at 	 at 
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+ S2s.v. x (S2s.v. xtr(0.t)* - r 	 (t) *) )	 (25.2)s.v

where a and 0 are the angular velocity and angular acceltration of the

space vehicle, respectively.



In some cases, for approximate solutions, some assumptions can be made to

decrease the time of computation. For example, assume that 
ms.V. 

is very

large compared to the tether. Let this be assumption A. And assume that

m 1	 T(O't) << m 1	 Ks.v. (t),
S.V.	 S.V.

Let this be a4sumption B.

And if one assumes two-body motion for the space vehicle's center of mass

(assumption C), then equation (24) becomes

2—	 *	 —
a rs.V.(t)	 -Gm earth rs.v. (t)	

(26)
2	 _

at	
Irs.V. (t) 

^3

The assumptions that the mass of the tether and that T(O,t) on the space

vehicle can be neglected for the motion of the space vehicle (assumptions

A+B) allow us to be able to determine ar̂ iori the acceleration of the

space vehicle ; ?nd, as will be seen later, allows us to determine T(O,t)

readily, for the tether.

The assumption that 7(0,t) contains only two-body forces (assumption

C) allows us to obtain the solution for the motion of tha space vehicle

analyticaly, for two-body motion. Hence,

2—
r(O,t)*. at (0,t)*' a2 (0, t)

at

as well as w(t), w(t), are known a priori, with these assumptions.

Another assumption can be made by placing the point of attachment 01,

is

_;	 .r..• .t ^^r r



T_

at the center of the space vehicle, at r 	 (assumption D). If the errorsS.V.

made by the above assumptions are larger than desirable, then the

2
determination of t (O,t) * will not he known a rp iori and the motion of

the satellite - tether - space vehicle system must be solved for

simultaneously (see for example report #1 of this contract). The

developments, equations and algorithms given in this report do not contain

any of the assumptions ,just discussed, but are for the general situation,

where the motion of the space vehicle and the tether are solved for

simultaneously and all external forces on the tether and space vehicle are

included.

Let r(s,t) * be from 0 to the point s on the tether, then

r(s,t) = r * (s,t) - r *(s-O,t)
	

(27)

where r (s - O,t) is to the point of attachment 0 1 , since s-0 at that

point. Hence r(s,t) is the vector from the 0 1 , at the vehicle to the point

s on the tether. And, for a non-inertial, rotating reference frame:

a7r(s,0 - ar(s,t) 
+ W x r(s,t)

at	 2t
	 (28)
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And, for the acceleration in the frame;

32r(s,t)	 a2r(0,t) * + a2r`(s,t)

at 	 at 	 at 

+ W x( (T x Rs ' 0) + W x r(s,t)

+ 2 w x ar(sIt)
at

The first term on the right can be given by equations (25.1) and

(25.2), the fourth term would be included for non-zero eccentricity orbits

of the space vehicle, the third term is the centripetal acceleration, and

the last is the Coriolis acceleration. The second term, i
2 aS2 

t) is the
s2

acceleration of the element at s with respect to theop int of attachment,

0 1 .	 Notice that the last term contains a velocity with respect to the

point of attachment, 01, arat t), that is, the relative velocity, defined

in equation (28).

If an additional assumption of zero eccentricity is imposed

(assumption E) along with assumptions A,B, & C, and also with the point of

attachment placed at the c.m. of the space vehicle ( assumption D) then :

(29)
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ar-(O' t)* _ rearthr(ot)*

v circular

and

v I—	 circularW = — *
	 3	 (33)

r (0. t)

W n 0	 (34)

and eqt. 25.1 becomes simply

2—
a 
2-F(o, t)	 I rs.v.(t)

2ate 	at

In general (with no assumptions) and with the reference frame defined

above, equation (22) becomes, using equation (29)

2
a	 I
2 

RL, t)	 M-1 f(L, t) + m
	 (L, t)

at	 SAT	 SAT

a,—F(0 ' t)
2	

w x w x r(L,t)

W x F(L,t)	 2w x
at	 (35)

21

•

and

(31)

(32)
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with assumptions A,B,C,D.E, (neglecting tension on the space vehicle,

placing 0' at the center of mass of the space vehicle, and assuming

circular motion reduces) equation (35) to

2
a r(L,t) - -- 1 TT(L,t) +	 Kp(l,t)
at 	 mSAT	 mSAT

earth 
r(0't)*

Cr(0,t) *]3

-2 w  ar(L,0
at

where r(L,t), 
ar(at 

t)

	

	 82 r (L,t) are with respect to the rotating
at

coordinate system with origin at the center of mass of the space vehicle.

Note that in equation (36), the term with w does not appear since with the

assumptions made, w - 0.

(36)

22
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b. Equations of Motion in the Rotating Reference Frame

In the rotating coordinate system, equations (12) (or (15)) and

equation (20) must be modified.

In equation (12), the acceleration is replaced using equation (29).

2—
The result is, using T - T 

as and 
s	 as + T 2

as

a2 r(s ,t) _ -1 aT	 ar _ 1 T 
r + 1 t^(s.t)

at 	 p s	 as	 P	 as 	 P

a2 r(O,t) * _ 
w x ('w xr(3,t))	 (37)

at 

- W xF(s,t) - 2 w x at(s,t)

For equation ( 20), rederive equation (19) by taking partial

derivatives of equation (13) with respect to the routing reference frame

centered on 0 1 . The result is

a	 ar	 a 	 ar	 a	 a`r' _ 0
	 (37.1)as at	 as at	 as as ^at2

Substituting equation (37) into this result gives

a ar a ar	 ar a	 1 a	 1	 a?F	 *

3s at Ys as + as as C - P Ts T + P K - 
at  

(Olt)

- w x (Z xr) - W xF - 2w x
at ] 0



ORIGINAL PAGE IR
OF POOR QUALITY

and taking the partial derivative of thv terms within the brackets

provides:

a ar	 a	 ar	 1 ar	 a2	 1 ar	 aK _r a 8_	 e
( at ) 	( at ) r o as	 ` as2 	 p as	 as	 as '	

(Ol t) *at2 

ar	
x x 

ar _ ar — ar► _ ar	 2 Z x a ar . 0
as	 {r' Ts- 	as . ^' x as as `	 Ts' at

The termos rr x 
ar 

upon rearrangement, vanishes. Using T - T 
3r 

and

since	 r (O l t) - 0. gives

B3 at 	 p a?2 as ' as pW' a22TF
as	 as

T air ar' + 1 ar aK

P 333 as a 
as • as

	

- T . W x ( w X a8 ) -	 24i x	 at Q
	

(38)

Either equation (20) or ( 38) can be used. However, if equation (20)

is used, at
must be obtained using equation (28). Since relative

velocities and accelerations will be used here, equation (38) is more

convenient.

For the satellite, the equation corresponding to equation (37) is more

2—

complex since the quantity a r is difficult for the satellite and the
ate

adjoining element of the tether. The term 	 2 becomes
at

24
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^ ^ r(L,t)	
tim	

d"r(L.t} _ 82r(a.t}

3t2	-  	 t	 $t2	3t2	
} {L-s}

Substituting this definition into equation (19), along with equations (35)

and (37), gives

lim

SAI

	

Rp (Lot) - w x (^r xr(2,t)) - 2 at x 8r
(Lt 

t) -	 xr(L,t)

* P
	

T(s,t) - f(s,t) + c; x(w xr(s,t)}

+ w x r(s,t) + 2 w x 8tr
t)
 - 0

25
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rearranging terms gives

li'

{) 
^ 

{t ) # ^
	 1(	

)	 mSAT( L, t )

* p ' T(s i t) * —	 K (Lit) - D T(s,t)
SAT

x Oa x[r(L.t) - r(s.t)]) - 2 ; x

C r	
t)
	 3 (s,t)at] - r XC x(L.t) - r(s,t)] - 0

Taking the limit, where feasible, gives

a ar	 aar	 arTx- (Tt-) . ^{at}.
s^L (r- '$)[ 

'SAT(L,t)

* p^ T (s,t)	
m	

K (L,t) - P T (s,t)]
SAT

ar
W x (W " ar{as t}} 3 aw x^ at t) as	 x ast) 0

25

i
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The last term vanishes, and the final result is,

a ar	 a ar 	 ar	 lim	 1	 -1	 1 a
as ( at ) 	 Ts ( at ) + as	 i ( L—s)

 C mSAT T 
( L,t) + P Ta T(s,t)

--I— *	 1 —	 ar (L, t)	 ar
+ m
	

K (L,t) - p K(s,t)]	 -	 as	
(L,t)	 w x(w xas (L,t)

SAT

ar (L, t) . a W x s 3r (L,t) 
= 0

or,

	

a Lr	 a ar + ar	 l im 1	 -1

	

as ( at )	 Ts- at as	 s-)L(r s C 
m,	TT(L, t)

	

+ 1 BT	 ar +1 T 3?r + 1 K * (L,t) -^ K(s,t)

	

p as	 as P	 as2 "". AT	 p

ar(L,t)—	 ar(L,t)	 ar(L,t)	 —	 a ar(L,t) _	
(39)

	

as	
w x as
	 -	 as	

2 w x as	 at	 °

For the space vehicle, the corresponding quantity is:

aa2r(0,t) =	
lim	 1 1 

azr'(s,t)
	

32r(o,t)

	

as at	 7; o s	
a t 2	 a t 2

27
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Substituting this expression into equation 37.1 using equation ( 37) gives

a	 ar	 a Br 	 ar	 lim ,	 , aTs- • at •	 at +	 s o s C p as 3`(s,t)

+ P 
K(s,t^ - W x(W xrr(s,t) -	 xr(s,t)

- 2 w x ar (a,t) -	 Olt) _ a2r * (O,t)	 0	 (40)at	
at	 at2

The quantity a2r(02,t) is the relative acceleration of 0' at 0' and
at

hence is zero.

Use the following:

lim 1 	 _
X Wx r(s,t) )	 W x W x 

ar(O,t)
S^0 s	 at

since r(0,t)- 0, and similarly

lim	
a7(0, t)

s+O [W x r(s,t)]- W x as

lim
[2W xar(s,t)I - 2 W x a	 lim ? r(s,t}S46 s	 at	 at S 4 0 s

2 W x a ar(0,t)	 a ar(o,t)
2at	 as	 W X as
	 at

29
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Is r

a ar	 a ar	 ar	
lim	 ,	 1 a	 1

as at ' Ts (at ) 	 as ' si0 ( s) p 
as T(s,t) + - K(s,t)

P

-
ar

.^X^,X ar(o,t) _ ar	a ar(o,t)
as	 as	 as 

_^ 
w X as at

-ar.+^Xar(o,t) _ar , a—r(0,t).o
a's	 as	 as	 at 

where the last term vanishes.

S

(a1)



k	 .	 •

7. Numerical Solution Algorithm

A. Relations and Definitions

Define the following quantities:

r(s,t i ) - Position of element at s at time t i relative to space vehicle

(01)

arts.ti)

at	
- Velocity of element at s at time t i relative to space vehicle

(0')

ar(s,t.
Unit vector having a direction of the tangent at s at ti

a2r(s,t i ) a3r(s,t1)

as2	
as3	

- First and second derivatives of as

a 
ar(s,ti)	

a ar(s,ti)
	

ar
at	 as	 ( as	 at )	

rate of change of the unit vector as or with

respect to time or rate of change of the velocity vector 
at
 with

respect to s - all in the rotating coordinate system.

K(s,t i )	 all external forces on s except for tension, per unit length.

i(O,t i ) and k(l,t i ) =	 external forces on the	 space	 vehicle	 and
i

satellite, respectively

f

1
4

ar(s ► t•)
°a(s,ti) _ - a	 as i	

(46)

30
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a2r(s,t )
AA(s,t i ) _ 1 i

p	 as 

B(s,ti)= t	 —
P 

K'( s,t i ) - w
_	 _

x (w x r(s,t i ))	 - 2 w
ar(s,t i )	 '

x	
at	 - w x r(s,ti)(48)

C(s,t i )=
ar(s,t,	 )i

as {
ar(s,t.)

)	 a {	 i ) (49)at at

a	 ar(s,t i ) a	 ar(s,ti)=
at	 as at	 as (50)

D(l,t i ) k {l,ti)m - 2 w x at	 -	 w x(w x r)	 - w x r ( s , t i )	 (51)
SAT

ak(s,t.) ar(s,t.)

p	 as as

aR s,t i )	 _

- as	 w x
(W x ay) (52)

ar(s,t i )	 —

as	 2 w x as at

ar(s,t )	 ar(s,t.)
G(s,ti)	 1	 i	 i

p	 as	 as

ar(s,t )	 33r(s,t )
H(s,t	

_ 1
i)

P	 as i
	

i

ad

,

(4T)

(53)

(54)

(55)

31
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ar(L,t i )	 —	 _	 ar(L,ti))
EE(L,t i )= -	 as	 w x (m x	 as

ar (L, ti)

	

as 
	

2 w x	 ar aLt, t)

	
(55.1)

2-
FF(s,t )_ -2
	 ar	 a r	

(55.2)
i	 p • as	

as2

1-c k^lr
S'',_ z

	

^	 s	 ^^a cP
!	 art G, c(c

d

Sa4c H le	
farp 

KJ	 a^f co{	 ti a+an

sT ^t^ t r -}o ^^ ^' ^^°

fiVUrt -T

32
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At time step t i , assume the following are known from the previous

integration step, or given as initial conditions and let L be the length 	 !

of the tether:

8r(s,ti)
r(sj,t	

j
i ). 

for 0 S s  5 L;j = 1,2,...,n

The quantity s  indicates the center of the j th element, as shown in

figure u. The integer j indicates the segment, beginning with s, adjacent

to the space vehicle, with n elements.	 The vector r(sj ,t I ) is the

P ro'A
position vector to s

jft
the point of attachment, 0 1 . The vector at(sjo t i ) is

the velocity of the middle of segment s  with respect to the point of

attachment, 01.

The point of attachment, 0 1 as discussed above, is placed at the

beginning of segment sj , at r(sa0,t i )	 0.

The center of mass of the satellite is placed at the end of segment

sn t?J r'(s - L,t i). In all of the following, the difference sj+1 - s  can

vary with j, allowing for variable integration step size in s, along the

tether.

Develop a subroutine to calculate (K(s,t) for any value of^A

Develop a subroutine that can calculate the following quantitie

.ue	 s, at time t i , when given K(sj ,t i ).	 r(sj t i ),^ s
.

j -1,2 .... n,for s between sj+1 and sj.

33
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(62)

For ,j - 1,2, ..., n-1:

r(s,t i ) = r(s^j t i ) = r(s^j +1),ti) +	 s	 -	 (s - s^j)(56)

	

,) +1	
s 

1

ar(sj+1, t i ) - ar(s3,ti)

ac(s,t i )	 L(,it t i ) +	
at 

sj .1 - si 
at	 (S- s

K(s^j t i ) +	 ^s	 -	 i	 (S-s
.)	

s*1 	 J

aK	
K(s,ti) - K(sJ,ti)

as 
(s,ti) =
	 s-s

ar	
r(s,ti) - r(sj,.ti)

as (s,t i )	 s - s^

2—	
arts, t i )	 ar (s, ti)

a r(s,ti)	
as	 as

as 	 =	 s-si

(57)

(58)

(59)

(60)

(61)

a2r (s,t i )	 a2r(s,.ti)

a3r(s,t i ) _	 as 	 as 

as 
	 s-s1

aP
t- r(s,t i I _ [ s,ti) - at(s,j ,t i ) ] (s-sJ)

For ,j - n (sn<ssl):

34
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,
r(s,ti)-r(3not	

r(s n t i ) - 
r(s n-1 t ii ) +	

s -
	 s-s )	 (64)

n sn-1	
n

ar(s,t i )	 ar(sn,ti)

at	 at

ar(sn,ti)

at	
- ar(sn-1,ti)

+	 s 1 - sn-1	 (s-sn)	 (65)

K(sn ,t i ) - 'K(sn-1,ti)
(s. t i )	 K(snt i ) +	

s -S	
(3-3 n)(66)

n n-1

aK	 K(s,ti) - K(snti)
Ts-(s'ti)'	 s-s	 (67)

n

r(s,t ) - r(s ,t )

Ts-(s't1)

	

	

i 

s-s	

n i

	 (68)
n

19 .

C

ar(s,t i )	 ar'(snti)
a ar(s,ti)	

at	
-	

at
as	 at	 s - sn

35

ar(soto i )	 ar(snti)

a`r	 as	 - as

as2	 s-sn

	

a2r(s,t i )	 a2r(s,ti)

air (s,ti)	
as 	 -	 as 

as 	 s	
s 
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t )
calculate a2r(o,---,t from eqts (25.1) and (25.2) and calculate

at 

a-art—( O . t 1 ),	 (72)

r(O,t i )	 W (t i } and w (ti).

If circular motion is defined, then

F - ak	 (73)

r - 0	 (74.1)

w - 0	 (74.2)

and w is given by Eqt. (33)

Then,

-	 with (60), calculate (46)
-	 with (56,(57),(64),(58) or (67) calculate (48),
-	 with (63) or (71) calculate (49),
-	 with (58) or (66), (57) or (65), calculate (51),
-	 with (59) or (67), (60), (57) or (64), (71) or (63),

or calculate (52)
with (60) or (68),(65) or (72) calculate (53)

-	 with (60) or (68), calculate (54)
-	 with (62) or (70) calculate (55)
-	 with (61) calculate (47)

(end of subroutine)
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B. Differential Equations

The differential equations are as follows. From Equation (37):

arts, t)
vts,t) t75)at

av(at t) .
A(s,t) u(s,t)	 + AA(s,t) T(s,t)	 -

3 r
r (O,t)	

+ 9 ( 3 ,t i ) (76)
at

From equation (35):

t ) . v(l,t) (T7)at

av(l,t) -1	
T(L,t)	

ar(L,t)	 - 32r 	 (0, t) + 'U(L,t) (78)at ®SAT	 as	 at 

where,	 from egts.	 (24),	 (25.1) and (25.2),

*
a2r (O, t)

2 *	 2
a rs.v.	 a rrel+

(79)
at  at 
	

3t2

1	
v o,t) +1m	 m	 s.v.(t)S.V.	 S.V.

+ Ds.v. x (r *(O,t) - ^.v.(t))

+ n	 x (;l	 x ( r (0, t) - r *	 (t) }	 (80)S. V.	 S. V.	 3. V.
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If Assumption A,B,C,D, and B of Section 5 are made for two-body
motion, w, havi

32re(O.t)	
-G m0 r (0.t)

3t2
	

1r* (0,t)13

And for circular motion with radius a

2-e 	'G m
a r (O,t} -	 G 9 _, with W - 0 and ur given by equation (33), with

at2 	a2

at
given by equations (31) or (32).	 Also, with the above

assumptions, A,B,C,D and E, the solution for r * (O,t) is known analytically

from the two-body problem.

If these assumptions are not made, but oomplete generality is

retained, eqt. (80) and egts for 0 vec,0, rs.v. must be integrated

simultaneously with egts. (75) A (76), to provide 
a2r*(O.t)

ate

From equation (38)

-B(s.t) - U(s.t)	 ( 81 )

^(s,t) - C ( s^t ) + H( 3^t ) T(s,t) + FF(stt) U(s,t) + F(s^t)	 ($2)

For the end of the tether, adj acent to the satellite, assuming the

satellite is a point mass at the end of the satellite, from equation (39),

letting TL - T(3-L,t), Us-U(s,t):

33



	

- 
1 

2T(s}	 ar(3) _ 1 T(a)azr(3) + i K(3,t)p ds	 as	 P	
as2	 P

2 a2r"(o,t) . 
O

a3	
at 

39

OF
-_

0 i	 -- c

OF POOR QUA' V

lim
C(L,t) + EE ( L,t) + a.	 s-►L (.

	 )^3	
(

'jSAT	
+p Us	 + $

asSAT 	 33

+	 1	 K* (l,t) - p 7(3,	

-

	

0 '0	 (83. 1)
mSAT

Discretizing equation 83.1 for the numerical integratin, and solving for TL

gives;

m_1 

TL s	 ' - ^^J r arks - 1 T 3Zr a1

SAT	 P s as	 P 3 as  ' da

t 't T L s	
K (L , t) ' P as	 7 (s , t )

SAT

- (L-s) C (L,t) - (L-3)EE(L,t)
	

(83.2)

For the enI of the tether, adjacent to the space vehicle at the point

of attachment, 0 1 , from equation (41)

C(O,t) + EE(O,t) + ar(o)	
lim 1

^T3-- 
f-;;-0

 s

,+`. b.



(84.2)

1	 .	 1

ORIGINAL Pr:E [9
OF POOR QUAL elf

Discretizing equation ( 84.1) for the numerical integration, and

solving for U(s) W
Ss
e) gives:

- C(O,t) - EE(O,t) + DTs }	 r 2.tt^ _ { is 	;3— . p{s,t)
at
t

1 ( i } ar(s) %, {s)
T(s)	

t { -t )	 3r(s)	 )

	

IT( s) 	 8r{s
P s' -1a ' as2 	 s p	 3s^i	 as

Using egts. (46) thru (55.1)

8T(s) _ p AAts	 s) T(s) + Âa^ {s) {s) O sT - {s) TS-r

c0)	 1	 a-'r—{ 02t}

a3' trw	 at 

In equation (80). define a function

Then

S(Q,r,K *) - m t	 Ks.v. (t)
3. V.

* 3. V. x 
(r* (0,`c) - rs.v.(t))

+ tt	 x 2	 x ( r * ( O ,t)- r*	 (t))
:#S.v.	 .Y.	 a.v.
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—*
a
2 
r ( 2' t) = S(n, n,K* ) + m
	

T(o,t)	 (84.4)
at	 a.v.

Substituting equation 84.4 into 84.2 gives

aT s) _ _ R AA ( G S- A(s) T(s) + A 7 K(s)
C(0)EE(0)"

3ttV_ cUf

ar(o)	 1 *	 i	 a-
` 
s as	 7 S(n,n,k ) + m	 s —G ',—s7 as Tto)	 ;84.5)

s. v.

C Boundary Conditions at s = L

Near the satellite s - 1, we need to impose certain constraints. 	 Let

the satellite be a point mass, mSAT, placed at the end of the tether, at

point s = L. Let sL denote this point (s L = L).

Make the following assumptions. 	 A. Assume that close to	 the

satellite, the quantity

U(s,t i ) _ 3T (s,t i )	 c(t)	 (85)

where c is a constant, with respect to s (but can be a variable in time).

B. Assume that close to the satellite the quantity a ( as ) is a
as

constant, also with respect to s only.
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With these constraints, a boundary condition can be derived for the

tension of the tether at sL. The constraints imposed by A and B, are

approximate. The constraints are obtained by examination of one

equilibrium solution near the satellite. Hence when sss L but s-SL small,

the error due to constraints A and B should be small when the acceleration

of the tether and satellite is small and close to an equilibrium solution.

If the acceleration of 
'SAT becomes significant, than smaller step-

sizes in s near the satellite should be chosen for the following.

Let	 U	 U(s,t i ). T  = T(sn :t i ),Un = U(sn,ti),TL = T(sL,ti),

	

Tn-1 = T(sn-t,ti),Un-1	
U(sn-t ,t i ) and so on, for brevity. The quantities

Tn,Un,TL,U,Tn-1'Un-1 are depicted in figure 5.

S
Applying equation (8tt) to segments sn ands n-1 gives

Un-1 - s
n - sn-1 

= Constant = c 1 (86)
n	 n-1

The quantity TL is the tension at the point of attachment of the point

mass mSAT to the tether- at TL.
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For the segment s  :

U L 
n constant = C1	(87)n s 

L	 n

Setting (86) and (87) equal gives

TL - T
n 

a 
Tn - Tn-1	

(88)
s  - 3  3  - 3n-1

And solving for TL in (88) gives

sL - sn
TL = Tn ; gn - 3n-1 (Tn - Tn-1)	 (89)

Similarly, from Assumption B:

3r(,L,t)	
ar(sn ,t)	 S- - sn I3r(sn ,t)	 ar(sr

-1
 •t)

as	 =	 as	 + s - s	 as	 as	 (90)
n	 n-t

Since the slope, Ts , is assumed constant near s 	 other equations

analogous to equation (89) are

s 	 sn-2
Tn	 Tn-2 + -3

 n-1 - sn-2 
(Tn-1 - Tn-2)

or

3  - sn-1
Tn= Tn-1 + -s n-1

- sn-2 
(Tn-t - Tn-2)

The numerical solution procedure is as follows:

43
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The numerical integration begins at s = 1, with T 1 approximated, and

U1 given in the following section of this report. The integration of

equations (81) and (82) procedes to Sn . Then TL is obtained from equation

(83.2), and from (89).

The value T1 is adjusted iteratively so that the %wo values of T 

coincide to the desired accuracy.

Equation (90) can be ised in tw, ways. 	 First, the position vector

along the cable can be initially set so '.hat equation (90) is satisfied.

Then r(L,t) is allowed to be determined from e quations (77) and (78).

Or Equation (90) can be improve,i continually as a , constraint on the

equations (77), (78).
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D. Boundary Condition at s=0

At s=0, near the point of attachment to the space vehicle, it will be

assumed that T(s,t) is a constant, or that U(s,t) s-O = 0. This is the case

for an equilibrium solution, and we assume that we are close to an

equilibrium solution. Let this boundary condition be denoted as boundary

condition II.

E. Algorithm for the Solution

The boundary conditions can be satisfied by various boundary value

solution methods. We will discuss a standard method often referred to as a

boundary value solution method using successive solutions of initial value

problems.	 Sometimes the method is informally referred to as the "shooting

method of solution." The first step is to a pproximate the tension at the

point of attachment, T(O,t). Then with the boundary condition II,

U(O,t) - 0, equations (81) and (82) can be integrated from s-0 to s=s 1 .

fi(O,t) is known and U(O,t)=0 is the initial condition for the integration.

The equations (81), (82) and (83) can be integrated for U(s
i
 t i ) and

T(si , t i ), for all s at a fixed time ti.
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