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1.  Introduction

In this report the equations of motion are developed for a perfectly
flexible, inelastic tether with a satellite at its extremity. The tether
is attached to a space vehicle in orbit. The tether {3 allowed to possess
electrical conductivity. Also in this report a numerical solution algorithm

to provide the motion of the tether and satellitc system is presented.

This report has several purposes. 1) To provide a solutiun algorithm
for the motion; 2) To allow an analysis into the physical and dynamical
properties of “the motion for various electrical currents and other
parameters; 3) To provide a check on the Qevelopments and algorithms of
other researchers; 4) To allow a determination of the approximations, if
any, introduced in the developments of others; and, 5) To provide a set

of exact, analytical differential equations that describe the motion.

The purpose of having exact, analytical differential equations has
several benefits. The resulting differential equations can be solved by
various existing standard numerical integration computer programs. The
resulting differential equations allow the introduction of approximations
that can lead to analytical, approximate general solutions. The
differential equations allow more dynamical insight of the motion.
Modifications, extensions, generalizations of the dynamical system are much
easier to accomplish for the system of exact differential equations. And
many numerical integration errors are more conveniently monitored and
controlled, And finally, overall comprehension of the equations and

solution algorithms is somewhat more straightforward.

g
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2. Equations of Motion for the Tether-Satellite System

Consider an element or a segment of the tether with length 4 S and
mass per unit 1length along the tether, p. Consider a tether having a

negligible diameter relative to the length of the tether.

Throughout this report, the tether will be considered as inextensible

or inelastic.

Figure 1 shows a portion of the tether, separated into several,

adjacent, elements.

\ '
‘\:"AS"": j Tethev

Figure 1

The force of one element on an adjacent element will be denoted by the
vector r. Since the forces between two adjacent elements (at the junction
point) are equal znd opposite, R on one element (1) due to an adjacent
element (2), gives -R for the force on (2) due to (1). Let s denote the
distance along the tether, where s = 0 at the péint of attachment at the
space vehicle and s = L at the satellite, where L denotes the length of the
tether. Then R will be a function of s, R = R (s). The function R(s) will
increase or decrease continuously as a function of s from one element to

the next, as illustrated in Figure 2,
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Consider the forces acting on an element as shown in Figure 2.

Figure 2

The forces ﬁk and -Eé are the forces due to each adjacent element.

¥ —*

The forces K (51), k (32), are other external forces such as
gravitational forces, electrodynamical forces, etc., acting at various
locations 51,52,83, ..., oOn the element where s is the distance alorg the

tether.

I *

Define vectors PA' rB , and rcm’ from a reference origin 0 to
each end of the element and to the center of mass of the element, cm, as is
depicted in Figure 2. Note that the point cm is not necessarily situated

on the element.
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The first equations of motion for the element A S is the sum of the
forces acting on A S equal to the time rate of change of the linear angular
momentum of the center of mass of the element, cm, which, in this cas:, 1is

equivalent to the mass of the element times the acceleration of em, or

AS.p.r_ =R, =R, + £ Kk (1)

where dots denote differentiation with respect to time, and p 1is the mass

per unit length of the tether.

The restriction placed on the origin 0 is that it be an inertial

point.

The second equation of motion is the sum of the moments about cm

equal to the time rate of change of the angular momentum about c¢m, or
e (2)

-
The forces k (s8) in equation (1) are not discrete forces but are

distributed uniformly and continuously over the element, hence the

— —-
summation given in equation (1) over k (s) can be replaced by k(s), and the

total force is determined by:

[: k(s)ds
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where the limits indicate that the integration is taken from ;Ato ;ﬁ and
cm

similarly the moments due to k (s) about the point cm, Mi in equation (2),

are:

[RC Ty - Fop) x K(s)as

-
where rsis the vector to the point s on the tether.

Equation (1) becomes

*

L)

- = (B
AS.p. Ty =R -Fy+ [Ak(s)ds (3)

and equation (2) becomes

d - —* % - B = B —
EE{ A Hcm ] =t rq Pom ] xRB + IA MT ds + IA MB ds (4)

where A ﬁgm is the angular momentum of the element at s, with length A S,
about the center of mass of the element. The quantities ﬁ& and ﬁé are the

torsional moment and the bending moment, respectively, per unit length.

The vectors ﬁk, and -ﬁé can each be decomposed into two component
vectors at right angles to each other, one tangent to the element and one

perpendicular or normal to the element, as shown in Figure 3.

Figure 3

-
J
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}
I
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The vectors Tk and :?B' components of ﬁk. and -ﬁh along the element are
referred to as tensile stress. The vectors ak and :53 are the shear

stress, since they are normal to the element.

Dividing equation (3) by A S and using the component vectors of ﬁk
and RB gives
YT, -T, G, -3T
- A 'B ASB 1 (B=
p.rcm- 28 + A_S-A—-glAk(S)dS (5)

Letting A T = Tk - Té and A a'- 5; - 65, and taking the limit gives

m _ _ AT _ Q9T %
A5 >0 AS AS  3s 98
Also
lim 1 B — -
=0 S [ ) K(s)ds = K(s) .

This result follows since as

where K(s) is a force per unit length at s,
in the limit,

A S—»0 , this implies that point A (or point B) approaches,

point B (or point A).

Equation (5) becomes

K
T
p .o T K(s) (6)
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Equation (6) is the translational equation of motion (for the center of
mass) of the infinitessimal element ds, including torsional and bending

moments, for a non-flexible, inelasti¢ tether,

In equation (4), dividing through by A 8 and using the component

vectors for R, and R.:

A B
H -t * -t - ) -t -t
< (8H,) . Py = Fog) T Py = Pem «Q "o " Tem «T
dt  As As A As A As B
—t -
r, - r
B em = 1B =% ol -
T5— %% *1sla T(s) - Fen) *K(8)0s
1 ¢B 1 ¢B
5 [A Mpds + A—s-h Mgds (7

Taking the limit of equation (7), as A s-0 gives:

1nm_ d |2 fen| _ q Men
FS+0 dt [AS| ~dt s

- - M
um A" Tem . dr .,
350 48 AT ds ¥

* *

-r *

dr
350 15 XTg= - gz XTg =0



* ] #* L]

PA -r PA - Pcm

1im
35=0| 55  *% * —p5— x(-Qp)f -

# p. #* #*
r, - r -r
lim A cm cm B —
350" 25 *a * 35— | -
-t -t -t o}
Ln__ _B7Tem "em " "a &
35+0 28
* #*
rp -r —
lim . _B A . 4
5550 35— X as X9

-t -t -t
where the direction r, to r, is chosen as the direction of dr .

A B

lim 1 ¢B —y = -
150 K§’A (r(s) -r. ) xK(s)ds = 0

* »
since r(s) - Pop = 0 and dg/hs = 1 in the limit. Also,

1 B
550 35 [aMpas M
and

lim 1 B
5=0 35 IA Mg ds = Mp

So equation (9) becomes

{
1
a
F
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d 3§;m dF’ —_
Tt 35 " " ds XAt Mp My (8)

Equation (8) is the rotational equation of motion for the infinitessimal
element ds about its center of mass, including torsional and bending

moments, for a non-flexible, inelastic tether.




3. A Perfectly Flexible Tsther

The torsional moment MT' is the resistance of the element to twisting
about 1its axial direction. In this report, inclusion of the torsional

moment is not necessary for the tether. Hence My = 0 in equation (8).

The bending moment i{s the resistance of the element to bending about
an axis perpendicular or normal to the physical slement. The bending
moment is determined by the properties of the tether, For this report, it
will be assumed that the tether is perfectly flexible, or has no stiffness,
and that the bending moment is negligible. This 1s probably a good
assumption for many types of long, thin tethers. However, il the diameter
of the tether were appreciable, this assumption might need evaluation,

depending on the physical properties of ths tether. Hence, in this report,

Hé -0

in equation (8).

For a perfectly flexible tether, with no bending moment, the vector Q
in equations (6) and (8) will be set to zero. (See, for example, Shames,

Engineering Mechanics, Statics and Dynamics, Prentice Hall, 2nd edition, p.

148, for the proof that @ = 0 for a perfectly flexible cable in equilibrium
(zero acceleration). Extension of the proof to the case at hand, the non-
equilihrium, non-zero acceleration case, has ngt been given. However, it
will be assumed here that for small to monderate accelerations of the

A
tether, setting Q = 0 will proide sufficient ancuracy.)

19




Equations (6) and (8) become

.~ 3T
Plom ® "% * K(s) (9)
aH

In equation (9), the vector T lies along the tangent to the tether at
the point s, as discussed above. Equation (10) ocan be integrated
immediately giving

H

—355 = constant = o(s) . (11)

providing the result that the angular momentum of each (infinitesimal)
element of the tether remains constant in time. Note that the constant in
equation (11) {is only "constant" in time, but in general is a function of
s; the value of the "conatant" C(s) depends on the initial conditions. or
course the reason that we have this result is that we set Q = Mg = My = 0O,

which are all the moments about the center of mass of ds.

Equation (9) 1is the translational equation of motion for each

infinitesimal element, ds, for a perfectly flexible, i{nelastic tether. In

-t - # —
equation (9), replace Pop OY T(8,t) ,T by T(s,t)-and R(s) by XK(s,t). And
to denote that the total derivatives with reapect to time are to be taken
with s held constant, the total derivatives are replaced by partial

derivatives. Equation (9) becomes

2— * -
3 r(ﬂgt) - 3'1'(!.1'.) 37
NER 35 - * K(8,t) (12)

where E(s.:) represents the external forces per unit distance along the tether.

11

|




4, The Inelasticity Constraint

The assumption that the tether is inelastic (no stretching) ocan oe

written as

-t L

L. (13)

-
Moreover, the vector Ar AS, in the limit as 4S goes to zero, aleong with

constraint (13), coincides with the unit vector.aloné the tangent of the

~

tether at the point s, Denoting this unit rector Dby L

-t
-~ e
T-T.I-T.—a? (14)

Equation (12) then becomes

2 - *
3 = * - - 3 af'csgt) - .
P -;-;é- r(s,t) s [}(S.t)————— 38 ] + K(s,t) (15)

Tre {nelasticity contraint provides a differential egquation for the

s
determination of %%as,nd T. Differentiating equation (13) twice with

respect to time gives

-t —t
%.%%—-o (16)

and

12
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alar 2 |ae| ar. 8 a‘:]
r| or r| .
- 3 0 an

ot! as 9s| 9s 3t2 asJ

.
Also since r (s,t) and its derivatives are assumed to be continuous,then

_4 ,_I] o
aiar alar (18) |

’&'as_l‘ﬁat '

and Equation (17) can be written as

9s} ot s 9s 5 t2

alarl* . ar 3| TE
TN 2 "

*

—_ — - —*
d|ar 3|or 1 9r d r_ 9 ar 71 .
%[EE} EM "7 cwmsbw|Te | tKmO

or

3 a_* A a.* : a_* 32 a_.*l : a__* o7
r r r -
3s|3s| - 3s|at 'Fas'ascTas| *o 35 "3 -0 (20)

13



5. The Equations of Motion for the Satellite and the Space Vehicle

In this section, differential equations will be developed for the
satellite and the Space Vehicle in order to determine the motion of the
entire satellite - tether - vehicle system as well as to provide
information concerning the boundary conditions for the tension at each end

of the tether.
The forces acting on the satellite are the tension due to the tether
T(l,t); and other external forces, RP(L.t). where L denotes the value for

8 at the end of the tether, and RP(L.t), denote forces acting on a point

mass as opposed to K(s,t) which is a force per length,

Hence,

¥r(L, L) -1

) aF(L.t)* 1
at2 MSAT

as mSAT

%

K" (L,t) (21)

T(L,t

or

L) A

. —— T(L,t) + (L, t) (22)
ot SAT

where, as discussed in section 4,

#*

T(L,t) = T(L,t) £= (L, t) 5 (23)

and where the negative sign on the first term on the right in equation (22)

14
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indicates that the force of tension on the satellite is in the negative s

direction, toward the tether.

For the other end of the tether , attached to the space vehicle, make
the following assumptions. Assume the tether is attached to the space
vehicle at some point 0'. The point 0' is 1in general not an inertial
point. Let 0' be the origin of our coordinate system with rectangular
Cartesian coordinate axes defined as follows. The z-axis is along the line
from the center of the earth to the point 0', positive upwards. The x-axis
is in a direction such that the x -~ z plane contains the velocity vector of
the point 0', with positive direction in the direction of the velocity

vector. And y-axis is defined by the right-hand rulg.

. This definition of the x-axis 1is convenient, since it is in the
direction of (but not necessarily coincident with - allowing for non-zero
eccentricities of the space vehicle's orbit) the velocity vector of the
point of attachment at the space vehicle. For zero-eccentricities and
assuming 0' at the center of the space vehicle, the velocity vector will,
of course, lie along the x-axis. And the y-axis (determined by right-hand
rule) will be normal to the orbital plane. For the actual situation,
assuming the space vehicle is rotating at a reasonably slow rate, and for a
non-zero eccentricity, and including perturbations, the x-axis should be
close to the plane containing the position and velocity of the space
vehicle. Let the unit vectors along the x,y,z axis be 1,3, and R,

respectively.

The coordinate axes will be rotating with angular velocity w . The

-— *
point 0' will be located at s = 0 or at r(0,t) . The velocity and

15
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acceleration of the point of attachment will be denoted by

* 20— *
ar(0,t) .4 2 r(0,t) ,
ot 3t2

-— #*
respectively. Let Ps.v (t) be the vector from the center of the earth to

a reference point within the space vehicle. The acceleration of the

vehicle s
2_
ar (t)
s.vé - ml T(0,t)
2t S.V

acting at 0!

1 %
m S.V.
S.V.

(t) (24)

where T(0,t) is the force on the vehicle due to the tether at s = 0 or at

0' and ?s v (t) are all other external forces such as gravity, drag,
-— *
thrusting, etc. acting on the space vehicle, and located at Po.v (t) .
The acceleration at the point of attachment, 0', is
2 — * 2 — *
e *
azr(O.t) . 9 r‘s,.v.(r‘) N 9 rrel(t) (25.1)
at? at2 at?
where
2 — *
- r . (t) .
rel - - LA *)
at2 ns.v. x(r(0,t) rs.v.(t)

16
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*Bgv.X (Es.v. x(F(O.t)* - Fs,v(t)*)) (25.2)

where f and 0 are the angular velocity and angular accelcration of the

space vehicle, respectively.

17



In some cases, for approximate solutions, some assumptions can be made to

decrease the time of computation. For example, assume that m is very

3.V,

large compared to the tether. Let this be assumption A. And assume that

T(0,t) << —
S.V. S.V.

Ks.v. (t),

Let this be assumption B.

And if one assumes two-body motion for the space vehicle's center of mass
(assumption C), then equation (24) becomes
20— * -

*
ar (t) -Gm r (t) .
S.V. - earth s.v. ‘ ; (26)

S.V.

F (t)*|3

The assumptions that the mass of the tether and that T(0o,t) on the space

vehicle can be neglected for the motion of the space vehicle (assumptions

A+B) allow us to be able to determine a priori the acceleration of the
space vehicle, =and, 2s will be seen later, allows us to determine T(O,t)

readily, for the tether.

The assumption that K(0,t) contains only two-body forces (assumption
C) allows us to obtain the solution for the motion of the space vehicle

analyticaly, for two-body motion. Hence,
* o *, 3°r *
P(O,t) ' Ne (O.t) ' — (O.t) ’
ot 8t2

as well as w(t), w(t), are known a priori, with these assumptions.

Another assumption can be made by placing the point of attachment O0',

18
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—¥
at the center of the space vehicle, at L (assumption D)., 1If the errors

made by the above assumptions are larger than desirable, then the

determination of %;F (O,t)* will not be known a priori and the motion of
the satellite - tether - space vehicle system must be solved for
simultaneously (see for example report #1 of this contract). The
developments, equations and algorithms given in this report do not contain
any of the assumptions just discussed, but are for the general situation,
whern the motion of the space vehicle and the tether are solved for
simultaneously and all external forces on the tether and space vehicle are

included.

— * "
Let r(s,t) be from O to the point s on the tether, then

- % _*
r(s,t) = r (s,t) -r (s=0,t) (27)

i
where r (s = 0,t) is to the point of attachment 0', since s=0 at that
point. Hence r(s,t) is the vector from the 0', at the vehicle to the point

s on the tether. And, for a non-inertial, rotating reference frame:

— * -
ar(s,t) _ ar(s,t)

3t 5e— * w X T(s,t) (28)

19
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And, for the acceleration in the frame;

Prs, )’ | %R0, 0" | a%F(s,v)
at? at2 at?

+ w x( w xr(s,t)) +uw x r(s,t)

s 20 xonls,t) (29)

at
The first term on the right can be given by equations (25.1) and
(25.2), the fourth term would be included for non-zero eccentricity orbits
of the space vehicle, the third term is the centbipetal acceleration, and

BZF(s.t)
352

acceleration of the element at s with respect to the point of attachment,

the 1last 1is the coriolis acceleration. The second term, is the

o'. Notice that the last term contains a velocity with respect to the

or(s,t)

point of attachment, G', 3t

, that is, the relative velocity, defined

in equation (28).

If an additional assumption of zero eccentricity is imposed
(assumption E) along with assumptions A,B, & C, and also with the point of

attachment placed at the c.m. of the space vehicle ( assumption D) then :

FYO,t)* = constant . R (30)

20




CEnpns oA
and
- %
ar(0,t) Gmear'th t
ot - * (31)
r(o,t)
* vclrcular 1 (32)
and
v"i
g c*rcular 3 (33)
r (0,t)
w=0 (34)
and eqt. 25.1 becomes simply
azFYO,t)* . 9 rs.v.(t)
at? at?
In general (with no assumptions) and with the reference frame defined

above, equation (22) becomes, using equation (29)

2
R = ST« e R ()
ot SAT SAT

-;xﬂmu-zaxﬁ%gi (35)

21
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with assumptions A,B,C,D,E, (neglecting tension on the space vehicle,
placing 0' at the center of mass of the space vehicle, and assuming

circular motion reduces) equation (35) to

2
—a-é—F(L.t) = =L T(L,e) - m’ KP(1,t)
at SAT SAT
- * :
Gm r(0,t)
+ —Larth = - wx (wx r(L,t))
(r(o,t)"13
-2 ux x%_t_)_ (36)

where r(L,t), argkft) , 32 r (L,t) are with respect to the rotating
at

coordinate system with origin at the center of mass of the space vehicle.

.

Note that in equation (36), the term with w does not appear since with the

assumptions made, w = O.

22




6. Equations of Motion in the Rotating Reference Frame

In the rotating coordinate system, equations (12) (or (15)) and

equation (20) must be modified.

In equation (12), the acceleration is replaced using equation (29).

- = - 2—
or AT 3T ar °F
The result is, using T = T 3 and 55 = %o . x5 ¢ T 32 ,
ORI S N N T IS
a2 p 95 ' 9s P 582 ) '
2 - *
- X OB Gy (@ ar(s, ) (37)
at '

- % xF(s,t) -2 3 x %(s.t)

For equation (20), rederive equation (19) by taking partial
derivatives of equation (13) with respect to the rotating reference frame

centered on 0'. The result is

= o R [ 2
3 |ar| | ala| L aF 8|
3 [ac] ' as{at} * s ° 9s latzl 0 (37.1)

- — - 2—.
3 8 3 & L B3 _1dwm, lg T
3 3t 38 ot 33 3s ( p o8 T 3 K N (0,¢t)
-Ux(ﬁx?)-ExF-ZBx%]-o

23
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and taking the partial derivative of the terms within the brackets

provides:
- - — 2 e
3 (ory 3 3r, _ 150 2 lor K _3r 3 3r *
I I R TR D 'aszT’pas ‘9 "8 %s 2 00V
CF ey E S E_E. ,o dE.
as.ux(uxﬁ) s YX 35 " 3 ZNX-EN’ 0
The term %% TR %% upon rearrangement, vanishes. Using T =T %% and
since }%F (0,t) = 0, gives
2 gFy 2 (3 .13 & xk _23x PFar
oS ‘9t Bs ‘ot ) s ' o8 paes ' L2708
98 38
J1. %% EL,1 E K
P as 98 p ° 98 ' 0os
RS- R NPT SN N
5 - WX lwxgg) T A T T (38)

Either equation (20) or (28) can be used. However, if equation (20)

=

is used, 3%%— must be obtained using equation (28). Since relative

velocities and accelerations will be used here, equation (38) is more
convenient.

For the satellite, the equation corresponding to equation (27) is more

20—

complex since the quantity 3—% is difficult for the satellite and the

ot
adjoining element of the tether. The term f% _Q% becomes
at

24
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3 P,y M SRy PR
LN sl t 32 a?

Substituting this definition into equation (19), along with equations (35)

and (37), gives

- lim
9 ,or 3 (or, . 3r 1 -1
o8 (at) * s (a ® 3 =L (L-s Boar Ity e)

S B (LY -Tx @arze) -25x ERY 7 E

. %ﬁ% T(s,t) - -‘p-k‘(s,:) + @ x(@ xT(s,t))

ar(s t)

5 "0

+uxr(st) +2uwx

25
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rearranging terms gives

lim

1
;_1'(1'_—’-) C ‘—-—-T(L t)

(QE
ot BT

) 3 (I,
kD) * 38 (3t)

1 23 -1
* sy T(a,t) E&? % (L,t) R’(s.t)

- wx (wx[r(L,t) - r(s,t))) -2 @ x

( (aLt SR (THSHS - wx[F x(L,t) - ¥(s,t)] =

o

Taking the limit, where feasible, gives

- - = 1l
9 (or 9 (9ry , or
BE WA N il g LY
L1
L3 7(at)« ——R(Lt) --’K (s,t)]
‘e s maT

r 3 or(L,t) or

_ar ar(L, t) ar ot
-aa.mX(mx—"—"’) .3{»-5 3t ag\m

25

ar(L, L) .
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The last term vanishes, and the final result is,

- - - lim
2@ 2@ .E .- T(Lt)*—v;- T(s,t)
SAT
(Lt)

K*(L,t) - %—E(s.t)] - ‘ﬂa’g—"l (Lt) . »x(s x

SAT

_ar 3 ar(L,t)
(L,t) . 3w x s -——-—-at 0

or,
3 (or 3 or _ or  lim, 1 = ‘
as (at) * 38 ot * s ° saL‘E’s [5 SATT(L’t)
19T o .1 . 9°°
PR LA + =T *, K(Lt)-—K(st)
p 98 as p 332 MAT
ar(L,t) — ar(L t) _ ar(L,t) - _ 3 ar(L,t)
- —ls W s s .2wx—-as—--—~—at =0 (39)

98
For the space vehicle, the corresponding quantity is

Hm oy 1 28(s,t) 3770, 0)]
>

s 2 at

32°7(0,t) _
at

as at s 0
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Substituting this expression into equation 37.1 using equation (37) gives

9 o 3 o, or lim 1 f-1 3
W B T B s»os[TasT‘s'”

2= 2 *
'2Ex%%(5,t) - a r(ozvt) - ar (g't) - 0 (uo)
ot at

is the relative acceleration of 0' at 0' and

2_
The quantity Q_ES%%El

ot

hence is zero.

Use the following:

lim —
— 03 T = ar0,t)
30 g-[ wX wxri(s,t) ] =4xuwx 5T

since r(0,t)= 0, and similarly

lim . —
— bt = g ar(olt)
330 [wx r(s,t)])= w X
MR, r(s,t)y 3 lim 1z
s30 w at Y23X Ss0s ’
- 3 ar(0,t) 3 ar(0,t)
"2 0 X5 %3 SRS R

2%
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Equation (40 becomes)

3 or a or, , or 1, 193 = 1z
s (at) B-T) (at) " 35 * 330 y p oS T(s,t) + o K(s,t)

ar(o,t) 3 ar(o,t)

_ar _ar
3s ¢ WX X T 38 * 2 W X35 ar

- — _ L
- = o 20,8) _3r  3r (0,t) _
T s T T2 0 (41

where the last term vanishes.




7. Numerical Solution Algorithm

A, Relations and Definitions

Define the following quantities:

F(s.ti) = Position of element at s at time ti relative to space vehicle
(o)

aF(s.ti)

—5r " Velocity of element at s at time t1 relative to space vehicle
(0")

»

ar(s,t,
-——sg—il = Unit vector having a direction of the tangent at s at ti
2°F(s,t)) 9r(s,t,) -

> , 3 - First and second derivatives of 38

as as
3 ar(s,t,) 3 BFYs,ti) =
3 35 (*55-———55———) = rate of change of the unit vector == or with
respect to time or rate of change of the velocity vector %% with

respect to s - all in the rotating coordinate system.
?Ks.ti) = all external forces on s exceot for tension, per unit length.

- * - *
K(O.ti) and k(l,ti) = external forces on the space vehicle and

satellite, respectively

) i e (46)

30
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AA(s.ti) - (47)
P as
_ 1= _ _ _ orls,t) T
B(s.ti)- 5 K(s,ti) -wx (wx r(s.ti)) -2 uwxX 5T - wXx r(s.ti)(hs)
ar(s,t,,) ar(s,t,)
3 i 3 i
C(s.ti)= 35 ( 3 ) . IS (—'—3{—-) (49)
aF(sst ) SF(s.t )
=9 i 3 7 TrriT
ot 9s ‘ot as (50)
D(lt)=a§;;k(lt)-2mx%% -Gx(BxF)-BxF(s,ti) (51)
eE(s.ti) aF(s.ti)
r‘(s’ti)' "y as : s
ar(s,t,)) _ =
- _-58—1— . wX (wzx %g) (52)
BF(Sot ) —
i —_—
R P (53)
: aF<s,ti) aF(a.ti)
G(S,ti) = 3 38 . 38 (5“)
_y st 2%(s,t))
H(s,ti) "= =3 as3 (55)

31
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ar(L,t)  _ _ ar(L,ty))
EE(L.ti)- iy e wx (wx 35
i - 9 ar(L,t)
"—-3—3—-.20))(%——5}'—— (55.1)
FF(s,t. )= =2 . 2 | ar (55.2)
i p 9s 352
Te ther
Stece
\rdnc'c
/
Sé‘)G’M'c p ?n»\"‘ of a“’hc‘nwm‘*
|‘+ ‘)'f.%"’ o SPH‘Q
vdncle, o’

Fugm 4

32
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At time step t,, assume the following are known from the previous
integration <ctep, or given as initial conditions and let L be the length

of the tether:

ar(s.,t,)
—_ J'i
r(sj,ti). —i—

for 0 s sJ SLij =1,2,...,n

The quantity sJ indicates the center of the jth element, as shown in

figure 4. The integer j indicates the segment, beginning with s, adjacent

to the space vehicle, with n elements. The vector r(s,,t ) is the

Jl
from
position vector to sjhphe point of attachment, 0'. The vector at(sJ t ) is

the velocity of the middle of segment 8y with respect to the point of

attachment, 0°'.

The point of attachment, 0' as discussed above, is placed at the

beginning of segment s, at FYs=0.t1) = 0.

The center of mass of the satellite is placed at the end of segment

sn,sf (s = L.ti). In all of the following, the difference sj+1 - sJ can
vary with j, allowing for variable integration step size in s, along the

tether.

Develop a subroutine to calculate (K(s,t) for any value of s and t.

Develop a subroutine that can calculate the following quantities, for any

value s, at time t,, when given Eksj.ti), FTSJ ) és(sj,t ) and
?

sj;j =1,2,...n,for s between sj+1 and 53‘

33
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FOPJ '1’2. te ey n-=1:

r(s, .,t.) - r(s,,t.)

- - .= J+1* "1 J* i
r(s.ti) r(sjti) ”(SJ+1),t1) JWEEEY
_ _ ar(s,,; t;) i ar(s;,ty)
ar Ir ot ot .
—(S,t ) = —..(s-ot ) + (S'S )
at i T R | SJ+1 - sJ J
K(s,t,) = K(s,t,) + . (s-3,)
2K T('(s.ti) - T('(sJ.ti)
3 (8:8y) = S-S

J
- r(s,t.) - r(s, ,t.)
ar PiS) by j,*C1
3§(s'ti) s -8y

ar(s,t,) or (s,t,)
BZF(S.tI) 38 1 - as‘j i
352 S-SJ
ris,t,)  3F(s,t,)
2r(s,t,) 2l
as2 s-sJ

3 9 — ar or

For J = n (sn<s$1):

34
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(59)
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K(slti) - E(Snti) +

Fis,t,)er(s_,t,) + Al i
i ’ - L8~8 )
n* sn 5n-1 n
éF(s,ti) ] 5F(sn"1)
ot ot
ar(s_ t.)
n, {° _
3t ar(sn-1.ti)
+ s s . (s-8)
n n-1 n

K(sn.ti) - K(sn-t.ti)
*n~Sh-1 n

K(s,t;) - ?lsnti)

3-8
n

%g(s.ti) -

Fﬂs.ti) - F(sn.ti)

3-3
n

ar
as(s’ti) =

ar(s.t,i) i ar(anti)
98 98

S-8
n

aris,t,) ar(s,t,)

3_
°r (s.tl) i 352 ng2

382 8 - Sn

ar(s,t.) ar(s.t,)
i n'i
ar(s,t;) . st et

at -
8 -8,

35
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Qoo
ar(o,t,)
calculate —-——-Eal- from eqts (25.1) and (25.2) and calculate
at

-—tt
ar

.

F0,6)"  w (t) and B (t).

If circular motion is defined, then

r = ak (73)
F a0 . (7“.1)
w=0 (T4.2)

and w is given by Eqt. (33)
Then,

with (60), calculate (46)

with (56,(57),(64),(58) or (67) caleculate (48),
with (63) or (71) calculate (49),

with (58) or (66), (57) or (65), calculate (51),
with (59) or (67), (60), (57) or (64), (71) or (63),
or calculate (52)

with (60) or (68),(65) or (72) calculate (53)
with (60) or (68), calculate (54) :

with (62) or (70) calculate (55)

with (61) calculate (47)

(end of subroutine)
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B. Differential Equations

The differential equations are as follows. From Equation (37):

v(s,t) - 327 (0, ¢)
'__3€L- = A(s,t) u(s,t) + AA(s,t) T(s,t) =~ Lol

From equation (35): ot

L"_F(alc't) - V(1,t)

av(l,t) -1
ot m

SAT 9s at
where, from eq%s. (24), (25.1) and (25.2),

2. % =%
azF’(O.t) . 9 Tgy, 9 Trel

+

at? at? a2

1 _To,t) «+ ——k" ()
8.V, ms.v. 8.v.

- -t -t
) -
* 0, , x(r (0,¢) rs.v.(t))

+ 7 x (T

S.v. 3.v,

x (F(0,t) - F

s v.(t))

37
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T(L,e) L Alt) 2 8, g,y

+ §(=.t1)

(75)

(76)

T

(78)

(79)

(80)
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If Assumption A,B,C,D, and E of Section 5 are made for two-body
motion, w~ have

it
32}7*(0.” . ‘G mo r (O.t)
at2

it
7 (0,0)3
And for circular motion with racdius a

2=t -Gm
gr (0,t) Op -- with w » 0 and w given by equation (33), with

3:2 a2

—*
32-%%LEL given by equations (31) or (32). Also, with the above

-t
assumptions, A,B,C,D and E, the solucion for r (0,t) is known analytically

from the two-body problem.

If these assumptions are not made, but oomplete generality is

retajned, eqt. (80) and eqts for Q vee,R, F; v, Tust be integrated

)
simultaneously with eqts. (75) & (76), to provide 37 LQL%l
ot

From equation (38)

-g%(a.t) - U(s,t) (81)

For the end of the tether, adjacent to the satellite, assuming the
satellite is a point mass at the end of the satellite, from equation (39),

letting TL - T(s-L.t).Us-U(s.t):

38
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C(L,t) + EE(L ar Ho o
(L,t) + (.t)*-a;. ;—_;r(FS-)

- 2=
- = .Te.%g-»lus.g%or%
SAT p S3s
! J-o (83.1)
MgaT

Discretizing equation 83.1 for the numerical integratin, and solving for TL

gives:
L & .2y g - Lp F O
Mgay L 98 ° 98" 7 sds psas'ﬁ
x Ll
Cve R 2 (L) » L& Rs,u)

For the eni of the tether, adjacent to the space vehicle at the point

of attachment, 0', from equation (41)

e lim
. 9r(0) 1
c(o,t) + EE(O,t) 55 4337 5
— .

_1 2 ar(s) 1 r(s) 1=

- T(s) . === - = T(s)=—z== + = K(s,t)

P s 98 p 382 [} ]

- 24

.o 3°r (0,t)
38 2 0 (84.1)
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Discretizing equation (84.1) for the numerical integration,
solving for U(s) = -3-%(551 gives:

- N ,
- - er(0) r (0,8) _ 1, 3r(s) 1
o) - BB, ¢ SR EEGE - () B Re

1,1 1 ar(s) aT(s) ar(s)
°3('§) s s T(8) '?(T) T 98 o8

Using eqts. (46) thru (55.1)

3?(38) --p, AA(Q)SA(Q) T(s) + A(:) K(S) - (s) C(g) - (s) BE(SO)

P
- o r(o,t)
. (8) (0) . 2

s 1)} az2

In equation (80), define a function

* 1 "
$(2,%,K ) = . K. v. (t)
. -t . -t
¢ gy, X (P (030 =rg o (2))
-t P
+ Qs.v. X Qs.v. x (r (0,t) - ra.v.(‘))

Then

40
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(84.2)
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32F*(0 t) - S 1 —
—_“fEL‘— = 5(2, 2,K) + 5 T(0,t) (84.4)

at S.V.

Substituting equation 84.4 into 84.2 gives

EI;SS) - = pAA (SG)(S-) A(S) T(s) + A(:) K(S)
c(0) EE(2)

ar(0) 1 N 1 1 ar(0) .
+ 8 —-é‘s—m-y s(a,Q2,k )+ ms - S GlsY ~ 3s T(0) (84.5)

C Boundary Conditions at s = L

Near the satellite s ~ 1, we need to impose certain constraints. Let
the satellite be a point mass, mSAT' placed at the end of the tether, at

point s = L., Let 8, denote this point (sL = L),

Make the following assumptions. A. Assume that close to the

satellite, the quantity

U(s,t,) = g-g- (s,t) = c(t) | (85)

where ¢ is a constant, with respect to s (but can be a variable in time).

B. Assume that close to the satellite the quantity 33..( %) is a
S

constant, also with respect to s only.

41
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With these constraints, a boundary condition can be derived for the
tension of the tether at 81+ The constraints imposed by A and B, are
approximate. The constraints are obtained by examination of one
equilibrium solution near the satellite. Hence when S#8, but s—SL small,
the error due to constraints A and B should be small when the acceleration

of the tether and sautellite is small and close to an equilibrium solution.

If the acceleration of Mgat becomes significant, than smaller step-

sizes in s near the satellite should be chosen for the following.

Let U= U(s,ti). T, = T(sn,ti),Un = U(sn,ti)'TL = T(SL’ti)‘
Ty = T(sn-1'ti),un-1 = U(s_;»t;) and so on, for brevity. The quantities

Tn’Un'TL’U'Tn-1’Un-1 are depicted in figure 5.
s

Applying equation (@K) to segments s ands _, gives
T ~-T
U . =201 | constant = c (86)

n=1 s, - Sn-1 !

The quantity TL is the tension at the point of attachment of the point

mass mSAT to the tether at TL'

42
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For the segment sn :
T, - T
U, L 1 . constant = C (87)
s, - 1
L
Setting (86) and (87) equal gives
T, - Ta . Th = Th-e (88)
s, -3 S -8
L n n n-1
And solving for TL in (88) gives
s, -~ 8
L n
TL = Tn + S——_——s—— (Tn - Tn_1) (89)
n n-1
Similarly, from Assumption B:
2 ar(s_,t) s ' s. [ar(s ,t) ar(s t)
ar(K,t) _ n’ . n n’ _ n-1’ (90)
9s as S, = 8,4 9s 9s
oT A
Since the slope, s is assumed constant near s = kK , other equations
analogous to equation (89) are :
s -8
n n-2
T =T _ + (T . -T. _5) (91)
n n-2 Sp-1 " Sp-» n-1 n-2
or
s -8 -1
n n
Tn- Tn-1 A (Tn_1 - Tn-z) (92)
n-1 n-2

The numerical solution procedure is as follows:

43
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The numerical integration begins at s = 1, with T1 approximated, and
U1 given in the following section of this report. The integration of
equations (81) and (82) procedes to Sn' Then T, is obtained from equation

(83.2), and from (89).

The value T, is adjusted iteratively so that the °“wo values of Tn

coincide to the desired accuracy.

Equation (90) can be used in two ways. First, the position vector
along the cable can be initially set so “hat equation (90) is satisfied.

Then r(L,t) is allowed to be determined from ecuations (77) and (78).

Or Equation (90) can be improve. continually as a- constraint on the

solution for r(L,t) obtained from equations (77), (78).

44




Boundary Condition at s=0
This is the case

D.
At s=0, near the point of attachment to the space vehicle, it will be
and we assume that we are c¢lose to an

Let this boundary condition be denoted as boundary

assumed that T(s,t) is a constant, or that U(s,t) _j = 0.

for an equilibrium solution,

equilibrium solution.
condition II.
tension at the

E. Algorithm for the Solution
The boundary conditions can be satisfied by various boundary value
We will discuss a standard method often referred to as a
Then with the boundary condition II,
1

solution methods.

bourdary value solution method using successive solutions of initial value
Sometimes the method is informally referred to as the "shooting

problens.
method of solution." The first step is to approximate the

of attachment,
The equations (81), (82) and (83) can be integrated for U(sj ti) and

point T(0,t).
U(0,t) = 0, equations (81) and (82) can be integrated from s=0 to s=s

T(0,t) is known and U(0,t)=0 is the initial condition for the integration.
T(sj' ti). for all s at a fixed time t;.

45
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