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SECTION 1

INTRODUCTION

The purpose of the work reported here was to develop a computational strategy by

which spacecraft thermal designers could devise an optimal thermal control system to

minimize thermal distortion. Control would be maintained by the optical coating

pattern chosen for the external surfaces and the heaters chosen to supplement the

coatings. The coatings and heaters were to maintain the required temperature%

temperature difference% changes in temperatures and changes in temperature differ-

ences for specified equipment and elements of the structure. A strategy appropriate to

computer-aided design was anticipated.

Most spacecraft use optical coatings and heaters for temperature control. The optical

coatings are placed on the external surfaces to control the amount of sunlight absorbed

and the amount of infrared radiation emitted. If the temperature control obtained with

the coatings is adequat% the design imposes no weight or power penalties on the

mission. However_ for the increasingly sophisticated mission-related equipment_ such

as optical telescope% the temperatures must be controlled closer than is possible with

coatings alone. The uncertainty in the coating properties and the changes in the

coating properties over the mission life usually result in an unacceptable temperature

range. In addition_ the vehicles must usually operate in many different orientation%

with respect to the sun_ so that a coating pattern appropriate for one flight might be

totally inappropriate for another. Therefor% the coatings must be supplemented with

another temperature-control method. The method normally chosen is thermostatically

controlled heaters. These are accurat% light_ reliabl% and easily applied to any part of

the structure or equipment. However_ heaters draw power and therefore impose both

weight and power penalties on the mission,

The pioneering work in the optimal thermal design of spacecraft was done by Costello

and others in 1968 (Ref. 1). Temperatures were to be controlled by coatings alone, In

addition_ only the time-average temperatures were considered_ with the time period
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being the orbit period. Casagrande attempted to extend this work to include the

fluctuations in temperatures during the orbit (Ref. 2); however, he was successful only

for ideal cylindrical satellites with one internal node. Neither investigator considered

the uncertainties in the coating properties; therefore, neither method has found much

use in industry.

In the present work, we focused on the development of a practical tool for the designer:

an optimization program compatible with his present analytical tools and uselul in the

conceptual-design phase. We initially examined the general problem of spacecraft

temperature control, including all phases of the mission and all phases of the design

process. Indeed, the optimization criteria developed are generally applicable.

However, the primary need appears to be in the conceptual-design phase, when the

weight and power penalties have an important impact on mission planning. After the

weight and power budgets are established, optimization is less important; it usually

consists of maximizing the design margins within the budgets.

\re have succeeded in developing an optimization strategy including all of the elements

normally considered by the designer: various vehicle orientations, various equipment

power dissipations, coating-property uncertainties, uncertainties in the internal thermal

conductances, and coating-property changes.

The method uses the same thermal model data the designer develops for his analyses;

there is no extra work. He can use his intuition to speed the optimization process and

to simplify the resultant heater arrangement, but he can also use the process as is. We

have demonstrated how the optimization process can be computerized. The results will

be in the form of a specification of the coating pattern to be used on each external

surface, the heater capacities required for each node, the average power required for

each mission, and the maximum and minimum temperatures expected for each node.

However, the method is limited to quasi-steady-state temperatures. The designer must

select time periods over which steady-state temperatures are representative of the

mission temperatures. Because most sensitive equipment is located well inside the

vehicle, his selection is usually not difficult and the orbital period is adequate.
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SECTION 2

BACKGROUND

The complexity of the mathematics describing the optimization problem presented in

the following section, gives some indication of the complexity of the problem facing the

thermal designer. There are too many variables to permit a manual, systematic search

for the optimal design. Usually the designer will start with a simple model of the

vehicle with a uniform external coating pattern, and compute the resultant

temperatures. He may vary the coating pattern to offset some of the extreme

temperatures (if he can foresee the effects for all possible missions and vehicle

orientations) or he may select a uniform coating pattern that keeps the equilibrium

temperatures low, and then select heaters to maintain the desired node temperatures.

As the vehicle design becomes more delinite, he builds a more detailed thermal model

ol the vehicle, computes the temperatures for representative missions, and modifies the

design -- usually as little as possible -- in the search for a coating pattern that keeps

the heater power within the budget predicted with his original simple model. Most of

the design modifications are in the form of interior insulation, thermal straps, special

component mounting procedures, and, if necessary, heat pipes. Usually it is too

difficult to pick an external coating pattern because the thermally most severe missions

or vehicle orientations then become difficult to identify.

The Coating Selection Program developed by Costello under NASA contract in 1968 was

an early attempt to assist the designer (Ref. 1). Initially the program was used

extensively. Some oI the early optimizations indicated that some spacecraft for which

the designer selected a black coating would have performed better thermally with a

polished surface. However, for tight temperature control, the uncertainty in the

properties of the polished surface gave unacceptable uncertainties in the equipment

temperatures. The Coating Selection Program soon fell out of use and the designers
went back to their semi-intuitive methods.
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To avoid the shortcomings of the Coating Selection Program, we interviewed many

thermal designers and some systems engineers. Our own experience in thermal design

helped. From the interviews, we developed a list of elements that should be considered

in the thermal design process. From these, we synthesized a strategy that included all

of the elements.

The two-tier aspect of the design process was an important consideration in developing

the strategy. Early in the design process, the weight and power budgets are undefined.

The thermal models usually consist of at most several hundred nodes, and design

tradeoffs can have an important impact on the mission. Later in the design process, the

designers seek to increase the design margins within the fixed budgets. We have chosen

to develop the thermal-optimization procedure for the early stage of design because at

that point it has a greater impact on the mission.
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SECTION 3

DEFINITION OF THE OPTIMIZATIONPROBLEM

3.1 SIMPLE EXAMPLE

Before presenting the precise mathematical formulation of the optimization problem,

we will present a sample problem. The rigorous mathematical definition of the

optimization problem tends to become confusing because so many symbols are required.

The sample problem will help in understanding the more abstract equations presented in

the next section.

Consider the three-node problem shown schematically in Figure I. The vehicle is

divided into two external nodes, Node I and Node 2, and one internal node, Node 3. The

vehicle can be envisioned as two concentric cylinders that are infinitely long.

/__ NODE I

oo oo
Figure 1. Three-Node Problem
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To keep the problem simple, we will linearize the radiation terms. The heat-balance

equations for the nodes can then be written:

0 = KI3 • (T3-TI) + KI2 • (T2-TI) + al " SI + el " (El-HI • TI) + QI

0 = K23 • (T3-T2) + KI2 • (T1-T2) + a2 " 52 + e2 • (E2-H 2 • T2) + Q2 (1)

0 = KI3 • (T1-T 3) + K23 • (T2-T3) + Q3

Where

Kij = the conductance between Node i and Node j

Ti = the temperature of Node i

ai = the solar absorptance ol Node i

Si = the solar radiation on Node i

ei = the infrared emittance of Node i

Ei = the earth radiation onto Node i

Hi = the thermal conductance to space from Node i

Qi = the electrical energy input to Node i either as heater power.or as

equipment dissipation.

The ai and ei are determined by the patchwork ol coatings put on these nodes. For

example, if a solar absorptance of 0.6 is desired, 50% ol the surlace might be coated

with black paint and 50% with polished aluminum. The corresponding emittance might

be 0.55. In what follows, we strive to Iind the percentages, or fractions (fi) of each

surface that should be covered by each of the several coatings available for use on

spacecraft. These Iractions are the independent variables, or design variables, ol the

optimization problem. They will be chosen to minimize the weigh t associated with the

heater power.

3.2 GENERALIZED PROBLEM DEFINITION

3.2.10biective Function

We want to minimize the weight penalty (W) of the thermal control system, which is the

weighted sum of the heater energy required for the most severe environment (Q), and
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the weighted sum of the heater capacities (Cn's). The weighting factor for Q will be

the weight of the power system, including the solar cells and batteries_ as required to

meet the maximum energy demand. The weighting factor for the heater capacities will

be the weights of the heaters and heater controllers as well as the weight of the

harnessing required to carry the power to the heaters. The Cn's could depend on n, the

node numbeG because the length of the harness could depend on n. In equation form_

the function to be minimized is-

W = Emax ab-Q+bb-_(Cn)+ae.Q+be'_(Cn) _ (2)

where

Q = maxF_(Qnm)_ = maximum over all missions, m, ol the total power
demand, summed over all of the nodes, n

Qnm = orbital-average power demand for node n in mission m

C n = max (Qnm) = heater capacity for node (n) which is equal to the

maximum power demand over all missions (m)

ab = weight that must be added to the power system to provide an additional

unit of the power, based on power demand at the beginning of the
mission

ae = weight that must be added to the power system to provide an additional

unit of power_ based on the power demand at the end of the mission

bb = weight of the heaters and associated controls, which is usually propor-

tional to the heater capacity_ based on the power demand at the

beginning of the mission

be = weight of the heaters and associated controls, which is usually propor-

tional to the heater capacity_ based on the power demand at the end of
the mission.

The weight penalty must be evaluated based on conditions at the beginning and at the

end of the mission and the maximum penalty selected as the optimization criterion. At

the beginning of the mission the output of the power supply, such as solar cells_ is high

because there have been no failures and no deterioration of the cells or batteries. For
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example, at the beginning of the mission, the power system usually supplies 32 volts.

At the end of the mission the voltage can be as low as 22 volts. Therefore, a high

demand for power at the end of the mission is more serious than at the beginning.

However, the heaters and controUers must be sized to handle the maximum voltage.

Therefore, both phases of the mission must be included.

There is usually a fixed amount of power and weight associated with simply having a

heater, independent of the size of the heater. Some power is required to sense the

temperature (independent of the amount of power supplied). The weights of the sensor

and the controller are nearly independent of the size. However, if these fixed weight

penalties were added to W, they would not vary with coating patterns and heater

locations; therefore, they would not enter the optimization process. Consequently,

there is no need to carry these terms in the expression for W.

3.2.2 Design Variables

The design variables in the optimization process are fnc, the fractions of the area of

node (n) that are covered with coating (c). For each coating pattern, the heater

capacities and powers are determined by the heat-balance equations and the tempera-

ture restrictions, all of which are constraints placed on the optimization process. The

restriction on fnc is

0.0 _<.fnc <-1.0 (3)

The coating properties consist of the solar absorptance (a) and the infrared emittance

(e). These are subject to a range of uncertainty, (da) and (de), and to changes, (ca) and

(ce), from the beginning to the end of the mission. Two sets of nominal temperatures

must be computed for the beginning and the end of each mission. Both sets must be

tested against the design requirements. In addition, the uncertainties will result in

uncertainties in the node temperatures; therefore, each computed nominal temperature

must be re-computed to include its range of uncertainty. The upper and lower limits of

this range are the temperatures to be used in determining whether the node tempera-

tures will be held within the allowable limits.
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3.2.3 Constraints

The design constraints are

o The temperature of each node (n) during each mission (m) must be within

the prescribed lower and upper limits (Ln) and (Un)- The weighted-average

temperatures of each designer-defined group of nodes must be within the

prescribed limits (GLn) to (GUn).

• The temperature difference between each pair of nodes (n) and (j) must be

within the prescribed limits (Lnj) to (Unj)-

• The weighted-average temperature differences between each designer-

defined group of nodes must be within the prescribed limits (GLnj) to

(GUnj).

These conditions are written:

Ln <Tmn < Un (4-1)

GLn < _ (WTn• Tnm)/N < GUn (_-2)

Lnj < Tnm -Tjm < Unj (4-3)

GLnj <_ (WTn" Tnm)/N - _(WTj • Tjm)/3 <_ GUnj (4-4)

where WTn is the weighting factor for node n for computing the weighted average

temperature of a group of nodes• Each of the T's in the foregoing constraints must be

interpreted as the nominal temperatures for the beginning and the end of the missions,

plus or minus the uncertainties.

In addition to these design limits, the First Law of Thermodynamics must be satisfied.

We can write the heat balance equation for each node (n) in the form

= Qnm + Dnm + _ (ac " :[nc) • Snm "An + _ (ec • lnc) (5)

• An " (Enm-Bnm)
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Where

Bnm = blackbody radiation at temperature Tnm

Tnm = temperature of node n in mission m

Knj = conductance between nodes n and j

Rnj = radiant interchange factor between nodes n and j

Qnm = heater power for node n in mission m

Dnm = equipment electrical heat dissipation into node n in mission m

a c = solar absorptance of coating c

fnc = fraction of the external area of node n covered by coating c

Snm = solar flux on node n in mission m

A n = external surface area of node n

e c = infrared emittance of coating c

Enm = infrared environmental flux incident on node n in mission m.

The sums on the left-hand side of Eq. (5) are over the j nodes that are thermally

connected to node n. The sums on the right-hand side of this equation are over the c

coatings that might be applied to node n.

The heat-balance equation is also used to determine the uncertainties in the node

temperatures as a result of the uncertainties in the coating properties. If the coating-

property half-ranges_ da and de_ correspond to three standard deviations so that they

encompass 99.6 percent of the possibilities_ then the corresponding uncertainties in the

temperatures can be computed as the root-sum-of-squares (rss) of the uncertainties due

to each coating-property uncertainty. Therefore T in the foregoing constraint

inequalities must be interpreted as the temperature_ determined from the nominal

coating propertie% plus or minus the uncertainty in the temperature. The more

stringent of the plus or minus limits is to be used in satisfying the inequalities.

With a manageable increase in computational complexity (but possibly a burdensome

increase in input requirements) the optimization process can be enhanced to include
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failed missions. Reduced temperature-control requirements could be included if the

acceptable temperature limits (Ln, Un, Gn, GUn_ etc.) were made mission dependent.
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SECTION

COMPUTATIONAL METHODS

The practicality of the optimization strategy depends on the computational cost. There

are so many complex computations that a computer is clearly required. However, even

with the computer_ the computations could be too lengthy to be practical. Therefore,

we have examined the computational methods in use today and typical solution times so

that we can estimate the cost of running the optimization strategy on a computer.

Four types of computations are required:

• Solving the heat-balance equations

• Determining the effect of uncertainties on the temperatures

• Computing the derivatives of the objective function with respect to the

design variables

• Selecting the next set of design variables on the path toward the optimum

design.

Each type is considered in the following paragraphs.

If there are M mission% N node% P models based on different internal conductance% C

coatings, I_ heaters/temperature-sensitive nodes, and I iterations to find the minimum_

then the number of equations that must be solved is as shown in Table I. To help in

recognizing the dominant problem_ we have included in Table I the number of

computations required for a typical problem containing 20 mission% 150 nodes, 4

model% 5 coatings, 30 heater% 30 temperature-sensitive node% and 25 iterations. Note

that the number of computations doubles because all cases must be considered at the

beginning and at the end of the mission. It is evident that the uncertainties and the

derivatives o1 the uncertainties dominate the computational effort.
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TABLE I

THE NUMBER OF SIMULTANEOUS EQUATIONS TO BE SOLVED

Number of Number of Typical Number
Set of Equations Equations Times Solved o1 Times

Heat Balance N 2MPI _, 000

Uncertainties N 4MPCI 40,000

Derivatives of W 2C I 25

Derivatives of T N 2MPKI 120,000

Derivatives o1 dT N 2MPKCI 600,000
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4.1 SOLVING THE HEAT-BALANCE EQUATIONS

A review of the available computer programs reveals that the following methods for

solving simultaneous equations are in common use:

1, Gaussian elimination

2. Successive over=relaxation (SOP,)

3. Gauss-Seidel

4. Conjugate gradient

$. Choleski Iactorization

6. Matrix inversion.

All operate on the linearized equations and require iteration on the non-linear terms.

The Newton-Raphson technique is the most popular method for linearizing the

equations, although the resultant set of equations is no longer symmetric. Of the six

solution techniques, Gaussian elimination is the most popular. No commercially

available programs use matrix inversion, although matrix inversion was found to be the

most economical (ReI. I).

The data Costello generated in Reference I showed that matrix inversion requires

approximately one-sixth of the computation time required by SOR. Therefore, its

running times are comparable to the incomplete Choleski (IC) methods. In addition,

matrix inversion gives the derivatives that are required for the optimization. Thus, it is

the most promising of the solution methods.

The data-storage requirement of matrix inversion had previously been considered

prohibitive and the accuracy of the inversion is a constant worry. However, with

present-day computers, especially those with virtual memory, the storage requirements

are less important and inaccuracies can be circumvented by iteration.

If we anticipate the problem of determining the uncertainties in the temperatures, as a

result of the uncertainties in the coating properties, we can eliminate most of the

methods. To determine the uncertainties, we must calculate the derivative of each

temperature with respect to each coating property. The uncertainty in the temperature
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is equal to the root-sum-of-squares of the derivatives_ multiplied by the uncertainty in

the corresponding coating property. In effect_ we must determine each term in a

matrix_ square each term individually, and sum the rows.

The only methods that need be considered are those which yield the derivatives

directly. Consider a method that does not yield the derivatives directly, such as

Gaussian-elimination. Counting the solutions for the beginning and the end of the

mission, the heat-balance equation must be solved 2MPI times (4000 times) to

determine the temperatures. For each of the 2MPI times, the derivative of K

temperatures with respect to 2C coating properties (one solar absorptance and one

infrared emittance per coating) must be calculated so that the uncertainties can be

determined. Therefor% 2KC (300) derivatives must be computed. If the derivatives are

determined by Gaussian elimination, the derivatives of all temperatures with respect to

the 2C (I0) coating properties are determined simultaneously. Therefor% 4MPIC

(40,000) sets of N (150) equations must be solved in the course of a solution to the

optimization problem.

For the Gaussian-elimination method to be competitive with the matrix-inversion

method_ it must be 2C times faster than the matrix method. The results in Reference I

indicate that the two have comparable speeds; the matrix-inversion method is faster if

the inverse can be determined only once. Therefore, Gaussian elimination will require

approximately a factor of 2C longer running time.

Of the methods listed_ only the Choleski and matrix inversion methods can produce the

inverse matrix. The Choleski method is limited to symmetric matrices$ it is probably

faster than direct matrix inversion. Therefore, the choice of the two methods depends

on whether we want to restrict the problems to the most common case in which the

conductances are symmetric. This restriction would prevent the use of the method to

problems with fluid flow. This restriction would also prevent the use of a one-way

conductor_ as permitted by the most popular public domain thermal-analysis program,

SINDA. One-way conductors are artificial_ so that little would be lost by imposing this

restriction_ however_ this restriction may require the user to modify his thermal model

and would thereby violate one of the desirable characteristics of the optimization

program, not adding to the modeling burden of the user. The limitation to non-flow
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problems is sufficiently restrictive to conclude that the matrix-inversion procedure

should be used.

To solve the system of equations by matrix inversion, we recast equation (5) in the form

FGnj " (Tnm-Tjm)] = Vnm +E EGnj" (Tnm-Tjm)_q (6)

Where

Vnm = qnm +Dnm + _(ac'fnc)'Snm'An+_ (ec'fnc)'An'(Enm-Bnm)

-_ EKnj "(Tnm-Tjm)]-_ [Rnj "(Bnm-Bjm)] . (7)

Note that Vnm is the residual of Eq. (5). When Vnm is zero, Tnm is the solution. The

equation is solved iteratively by assuming Tnm , computing Vnm , and solving Eq. (6) for

the new Tnm (on the left-hand side). The solution is obtained by inverting the matrix of

coefficients (Gnj) which is equal to the conductance (Knj) plus the linearized radiation

coupling. According to the study done in Reference 1, the computation time is

minimized if the linearization is done symmetrically. Then

Gnj = Knj + Rnj • (Tnm'Tnm + Tjm'Tjm) • (Tnm + Tim) = Knj + RLnjm (8)

In addition, the same inverse can be used for all missions if the temperatures are chosen

to be the maximum expected for all missions. Therefore, the inverse needs to be

computed only once for a given optimization. Updating may be beneficial after several

sets of design variables are evaluated. An approximate inverse might also be useful.

The approximate Gnj for mission (m) is

Gnjm = Knj + RLnj + RLnjm - RLnj (9)

Where

RLnj = the second term on the right hand side of equatior, (8),vith the

temperatures equal to the maximum

RLnj m = the second term on the right hand side of equation (8)with the

temperatures equal to those of mission m.
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We can write

Gnjm = (Knj + RLnj) " EInj + (Knj + RLnj) -1 • (RLnjm - RLnj)-] (I0)

where

Inj = the identity matrix.

If the last term is small, we can form the approximate inverse of Gnj m

(Gnjm) -1 = Elnj - (Gnj)-I • (RLnj m - RLnj) 3 • (Gnj)-l. (11)

This equation gives a first-order correction to Gnj that is an approximation to Gnj m.

4.2 DETERMINING THE TEMPERATURE DERIVATIVES

The differential of Eq. (6) yields

Where

dVnm = dQnm + dDnm + _ (dac • fnc) • Snm • An

+ _ (dec " fnc) " An " (Enm-Bnm)

ZEKnj'OTnm-dT,m -ZERnJ"'OBnm-dB,m ,,3,
+_ (ac'dfnc)'Snm'An+ _(ec'dfnc)

• An- (Enm-Bnm)

+ _ (ec " fnc) " An " (dEnm - dBnm)

where the prefix (d) indicates a differential• The derivative dTnm/dQn m is obtained

from Eq. (13) by setting the other differentials to zero. The remaining derivatives are

obtained by use of the chain rule. For example:

dTnm/dac = dTnm/dQnm • dQnm/dac (14)

and

dQnm / da c is obtained from Eq. (13).
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Therefore, all of the sensitivities and all of the derivatives of the temperatures with

respect to the design variables can be computed with a minimum of work. Some savings

in effort might be achievable if the derivatives and sensitivities are evaluated only for

the thermally critical missions; however, there is no clear method for selecting the

thermally critical missions without first evaluating dTnm/dQnm.

The uncertainties in the temperatures are

Tnm= E_(dTnm/dac" 6a¢)2+ _ (dTnm/de c • _ec)2] 1/2 (15)

where the sums are over the c coatings, The derivatives of the temperature

uncertainties with respect to the design variables fnc are:

- _j nm nm (6a)2 + nm nm (6 (16)dfnc 6 T dac df da c de df denc C c nc c

4.3 DETERMINING THE DERIVATIVE OF THE WEIGHT (W)

The derivatives of W with respect to the fractional area coverages, fno determine the

direction of the step to the next coating pattern (the next design). These derivatives

are best obtained by the chain rule. The first step is to determine the sensitivities of

the heater powers to Inc. Suppose we have a set of Tnm and _ Tnm for one set of

heater powers. Suppose the set of Tnm and _ Tnm does not meet the thermal

requirements. Because we know dT/dQ, we have the approximation:

dTnm/dQnm " (Qnm' - Qnm) =Tnm' - Tnm (17)

where (') indicates the Q or T after the heater power is increased to meet the

temperature requirements. In this equation, Q and T are known and the temperature

requirements dictate T'. Therefore, we have a system of linear equations to determine

Q'. Note that Eq. (17) represents only K equations (one for each temperature-controlled

node), although these K equations must be solved for each of M missions. Gaussian

elimination will probably be the most suitable solution method, because there is no

a priori knowledge of the condition of the matrix, dT/dQ.
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Solving for Q' would be simple if it were not for the fact that Q' cannot physically be

negative. If we solve the system of equations for Q' and find that some values are

negative, we have no method for determining which should be set to zero to minimize

the weight penalty. This problem is similar to that of the classical regression problem:

if we are limited to 5 coefficients in a regression involving 10 independent variables,

which 5 should be chosen? There is no solution to the regression problem, so we can

expect to find no solution to the Q' problem. Therefore, if Q' is negative we would set

the most negative Q' to zero. After this is done, we must re-solve the system of

equations for the remaining Q'.

The derivative of W with respect to fnc can now be determined. We have from Eq. (2)

W= max [-ab.Q+bb" _(Cn)+ae'Q+be" _(Cn) _
(18)

l_

so

aCn d Cn .

df
nc nc nc nc nc

The Q in this equation is evaluated for the mission that has the highest total heater

power. The Cn in this equation is summed over all of the heated nodes (Cn is the

maximum heater power for node n, considering all of the missions), dQ/dfnc is the

product of dT/dfnc and dQ/dT from Eq. (17). Similarly_ dCn/dfnc is determined from

dQ/dfnc , but for the particular mission that determines each particular heater capacity.

4.4 COMPUTING THE NEXT SET OF DESIGN VARIABLES

The foregoing equations give the objective function and its derivatives. These data

make hill-climbing techniques, such as the maximum-rate-of-descent method, suitable

for the optimization. CONMIN (Ref. 5) is a standard computer routine based on hill-

climbing techniques that is particularly suitable for the thermal optimization problem.

It is designed especially to handle constraints on the dependent and independent

variables.
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The selection of CONMIN followed an analysis of the needs of the thermal optimization

strategy and a review of CONMIN's capabilities. The requirements were met by
CONMIN as follows:

• CONMIN is able tO use analytical derivatives as well as finite differences.

• CONMIN is able to handle non-linear constraints and the particular form of

the objective function. CONMIN also has a feature that permits the user to

select the error band on satisfying the constraints, so that the time spent

satisfying the heat-balance constraint can be controlled.

• CONMIN has a re-start capability.

• CONMIN can handle upper and lower bounds on the independent variables.

• CONMIN has the capability of evaluating all constraints or only those that

are active. This capability will be especially uselul because the tradeoll

must be made to determine if considering all constraints at every step

sufficiently reduces the number of erroneous steps.

• CONMIN has the capability of starting with a nonfeasible solution. It uses a

penalty function to search for a Ieasible solution.

• CONMIN allows for many input constants that permit the user to control the

parameters of the optimization, such as step size.

Unlike many optimization problems, the present strategy does not have a problem of

scaling disparate independent variables, such as pressure and temperature, because all

of our independent variables are area ratios.

4.5 ESTIMATED COMPUTATION TIMES

The practicality of the optimization strategy depends on the cost of perlorming the

computations. Two sets ol computations are required: the temperatures and the

temperature derivatives.

At each step, the program must determine the temperatures for all ol the nodes for the

beginning and end of the mission Ior M missions. Therefore, the heat-balance equations

must be solved 2MI times. If there are P models, to incorporate uncertainties in the
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internal conductances, then the temperatures must be determined 2MPI times. How-

ever, the way that the powers for K heaters are to be determined requires re-solving

the heat-balance equations from l to K times per set of coatings evaluated. On the

average, we can expect K/2 re-analyses for the heater sizes. Therefore, the total

number of solutions to the heat-balance equation will be KMPI for each optimization

problem.

Computation of the temperature derivatives requires approximately the same amount

of work as solving the heat-balance equations, although the equations for the

derivatives are linear. The derivatives must be determined for each mission, for the

beginning and end of the mission, and for each model. Therefore, 2MPI computations

are required. Because we have used the matrix-inversion technique, the sensitivities

can be determined from the derivatives with little extra work.

By combining the estimates for the two sets of computations, we find that the problem

is similar to solving the heat-balance equation MPI • (K + 2) times. For the problem

size estimated at the beginning of Section 4, the heat-balance equation would be solved

20.4-25" (30+ 2)-- 64000 times. This time can be compared to the time now used to

simulate the transient responses of spacecraft. For example, it is not uncommon to use

5-minute time steps to analyze the temperature response of spacecraft over 48 hours,

in search of the quasi-steady-state solution. This computation requires solving the

heat-balance equations 576 times. If 100 variations are considered, as part of the

evaluation of the performance for 20 missions, the coating uncertainties, and the

internal-conductance uncertainties, the optimization time would be comparable to the

design evaluation time.

Run times for typical spacecraft for a 48-hour simulation are I hour on a VAXII/780.

For the 64000 solutions, approximately If0 hours would be required on the VAXII/780.

If a vector processor were used, this time could be reduced by a factor of 10 (Ref. 3).

Another factor-of-10 time reduction would be realized if a Cyber 175 were used. A

third factor-of-10 time reduction could be achieved with a Univac 1100/80 with dual

array processors. On this last machine, the CPU time would be 0.11 hours. As

indicated in Reference 3, a 190-node problem can be solved 100 times in 8 CPU seconds

on a CYBER 203. Therefore, 64000 solutions would require 1.42 hours without a vector
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processor and 0.5 hours with a vector processor. Thus, the run times for the

optimization will be long but not unreasonable, especially because the output from the

optimization will reduce the need for some of the studies normally done and because

the optimization will not be done more than once or twice for an entire project.
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SECTION 5

THE OVERALL OPTIMIZATION STRATEGY

With the mathematics and the computational steps now defined) we can turn our

attention to the work the designer must do. He must:

I. Develop thermal models of the vehicle.

I.I A baseline model with the nominal values of the conductances

1.2 Alternative models with off-nominal values

2, Specify the coatings and coating properties to be used.

2.1 The nominal values at the beginning and end of the mission

2.2 The uncertainties at the beginning and end of the mission

3. Specify the external-surfaces

3.1 External surface areas

3.2 Solar and infrared heat fluxes on each surface for each mission

3.3 The coatings that can be applied to each surface

4. Specify the temperature-controlled nodes

4.1 The allowable range in temperature differences

4.2 The allowable range in the average temperature of groups of nodes

4.3 The allowable range in differences in average temperatures of groups of
nodes

5. SpeciIy the weight penalties for the beginning and the end of of the mission.

5,1 Allow for decreasing voltage with time due to power-system degrada-

tion

5.2 Weight penalty per watt of peak heater power
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5.3 Weight penalty per watt of average heater power

6. Specify the optimization parameters for CONMIN

The maximum step size, the number o£ steps, etc.

The coating configuration will be optimized according to the theory described in the

previous sections and shown schematically in Figure 2 (see also Table II). However, the

designer uses the optimization procedure only as an aid. He must still exercise his

judgment-

• He must select appropriate time periods. In most cases, the time period

would be one orbit because all sensitive equipment would be well enclosed

by structure and insulation. Optimization for external equipment, such as

star trackers and special instruments, might be conducted in a second pass

using time averages that were close to the time constants o1 this externally

mounted equipment.

• He must select the final heater configuration. The program will assume the

heaters are applied to every node for which the temperature must be

controlled. If the heater layout or installation can be simplified, the user

must perform the simplification. If the heaters cannot be placed on the

temperature-controlled element (such as a mirror), he must adapt the

procedure results. For example, he can design a heated plate next to the

temperature-controlled element. He can then re-run one optimization

iteration with the heated-plate configuration to test his manual modifica-

tion. For control of temperature differences, he can imitate what will be

done in the hardware. For example, if the temperature difference is sensed,

heat could be applied to the colder node. Alternatively, the designer can

select the node to which heat would be applied, with the temperature of the

other node floating.

• He must optimize the less tangible aspects of the thermal design. For

exampl% he must consider the reliability of the design and the appropriate

design margins, the non-orbital aspects of the missions, design flexibility for

future changes in requirements or power dissipation% system manufactura-

bility_ system predictability, the costs and schedule requirements for the
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TABLE II

POSSIBLE FLOW SCHEMATIC FOR OPTIMIZATION PROCEDURE

l. Read input data

• Include all of the missions, alternative models, etc.

• Include initial values for the coating patterns

2. Read input data for the CONMIN computations

• Step size, error bands, etc.

3. Compute a feasible solution

• For initial set of design variables, compute the temperatures and heater

powers for the beginning and end of each mission. Determine the tempera-

ture uncertainties

• Compare the temperatures (with uncertainties) to the requirements

• If solution is not feasible, reduce the solar absorptances and try again

4. Compute the direction of the next set of design variables:

• Weight penalty

• Derivativesof objectivefunctionwith respectto designvariables

• Derivativesof activeconstraintswith respectto designvariables

• Directionof next step usingCONMIN

5. Compute the new temperaturesand heater powers

• For the new set of designvariables,compute the temperatures and heater

powers for the beginning and end of each mission and determine the

temperature uncertainties

• Compare the temperatures(withuncertainties)to the requirements

• Ifsolutionisnot feasible,reduce the solarabsorptancesand tryagain

• Ifsolutionisfeasible,go to Step 4
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thermal-control equipment and the system development, and the costs ol

testing the thermal-control system.

• Therefore, the optimization strategy, even when implemented on the

computer, is a design aid -- not a complete design solution. However,

because it is a systematic search among alternatives, it is an aid that can

eliminate many ol the intuitive decisions that must be made in the design

process.
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SECTION 6

DEMONSTRATION PROGRAM

A pilot computer program was developed to validate some of the techniques needed for

the subsequent optimization:
I

• Specifying the coatings and their tolerances

• Finding a feasible solution

• Computing the nominal temperatures and uncertainties in temperatures

• Computing the heater power to exactly meet the temperature requirements

for all nodes simultaneously

• Computing the derivatives of the temperatures with respect to the design
variables.

Because the purpose of the current work was only to define the optimization strategy,

the pilot program does not include all ol the steps. For exampl% it does not include an

algorithm for selecting the next set of design variables. The steps of the logic are

selected manually, rather than automatically. The program runs interactively. A menu

appears on the screen and the user selects the next step. The steps include: computing

the nominal cas% computing the effects of uncertainties, selecting the thermostat set

points, computing the heater-power required and computing the derivatives.

The pilot program, presented in Appendix A_ was written in Microsoft BASIC. It

probably will require modification for other forms ol BASIC_ because there is no

industry standard on this language.

The pilot program was successfully applied to the three-node sample problem presented

in Section 3. The details ol the application (see Appendix A) confirmed the practicality

of each step. Although the program tests only selected parts of the computational

procedure, it does include enough ol the steps that we are confident that the entire

process can be developed and implemented successfully.
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SECTION 7

PLAN FOR IMPLEMENTING THE OPTIMIZATION PROCEDURE

Development of a computer program to implement the entire optimization strategy

would involve a significant effort. The major steps are defined below.

I. Design the input and preprocessor to accept a SINDA thermal model (Ref. 4)

of the vehicle,

We cite SINDA for use in representing the thermal models because of its

extensive use in the aerospace industry. Other thermal modeling programs

could also be used; however, SINDA seems to have significant advantages.

It is widely used and accepted. It is frequently updated and improved; new

computational routines can be easily added. And it is applicable to almost

any thermal problem, including problems with fluid flow (most conveniently

in a version called SINFLO). On the other hand, if we developed a new

thermal-analysis subroutine, the user of the optimization process would need

to learn a new set of input procedures and formats. In addition, he would

need to have one model for the optimization process and another for the

detailed SINDA analyses he might conduct later.

2. Improve the SINDA computational efficiency for multiple-mission analyses.

SINDA does not have a matrix-inversion solution of the type described in

Section 4.1. Therefore, such a routine would need to be added. This can be

accomplished by writing a SINDA subroutine. The capability to accept new

routines is a standard feature of SINDA.

3. Compute the derivatives of the temperatures with respect to coating

properties and coating areas.
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A tradeoff between numerical and analytical differentiation must be made_

but we anticipate that the analytical differentiation will be faster. There-

fore_ SINDA must be modified to compute the derivatives. Some versions of

SINDA have subroutines for computing sensitivities_ these may be suitable.

A tradeoff is required to determine if the derivatives need to be evaluated

for all constraints or only for the active constraints.

4. Modify SINDA to compute the required heater powers.

A computational subroutine must be added to SINDA for computing the

required heater powers. Some study is needed to determine which heaters

should be activated and when all are not needed to meet the constraints.

The heater power was computed in the pilot program by re-inverting the

rows of the matrix (Eq. 8) corresponding to the nodes with heaters. A

similar process can be followed with SINDA_ as described in Section 5;

however, the non-linear radiation terms may make this linear technique

unsuitable. For example, an approximate inverse may be too inaccurate.

An iteration scheme may be required.

The computed heater power required to bring the node back into the

specified range can also be used to compute the gradients needed in

CONMIN. The matrix of derivatives of the temperatures with respect to

heater powers can be inverted to give the derivatives of the heater power

with respect to temperature. Therefor% the temperature derivatives

obtained in Step 3 can be multiplied by the heater power derivatives to yield

the heater power derivatives required in the next step.

5. Modify SINDA to compute the objective function and derivatives of the

objective function.

The objective function is computed from Eq. (2). Derivatives are obtained

from Steps 3 and 4.
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6. Modify CONMIN to call SINDA for all of the needed information.

CONMIN, as currently written, would call for the temperatures and the

derivatives separately. Because many of the computations associated with

the derivatives are the same as or similar to those associated with the

temperature computations, CONMIN should probably call SINDA once for all

of the data: the temperatures (constraints), fraction of the area of each

external node that is covered by each coating (the design variables), the

weight penalty (objective function), and the derivatives of the weight

penalty with respect to the design variables. SINDA will be called twice for

each mission and for each set of internal conductances so that these values

can be computed for the beginning and the end of the mission for all possible

internal conductances.

The user-selected option in CONMIN to compute all or only the active

constraints should be utilized. (See the discussion under Step 3.) Note that

CONMIN permits constraining each design variable independently. Our

problem also constrains the sum of the fractions of each external area to be

1.0. It will probably be efficient to analytically eliminate one of the

independent variables with this constraint. For example, the optimization

program could be designed to assume that the remainder of the surface is

coated with a diffuse white surface.

7. Combine SINDA and CONMIN into a single program.

The currently separate programs, SINDA and CONMIN, must be combined

into a single program. It is not clear at present whether SINDA should be a

subroutine to CONMIN; CONMIN, to SINDA; or both to a new main program.

We have assumed that a new main program would be used. Much will depend

on the complexity of the various preprocessors. In any case, the resultant

combination should probably look like SINDA because the program will be

used by SINDA users. Extra input data will be required for the CONMIN

computations.
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SECTION 8

PLAN FOR APPLICATION OF PROCEDURE TO SPACE TELESCOPE

The pilot program gives us considerable confidence that the optimization strategy can

be implemented in the form o£ a computer program. Although many of the

computational steps need development) we show in this section how the computational

process may be used to optimize the thermal control system of the Space Telescope

(ST).

The Space Telescope was chosen for the demonstration because it embodies most of the

constraints found in a scientific satellite) and its design maturity provides a body of

data for input to the optimization. The overall plan is to optimize the Space Telescope

using Perkin Elmer's Space Telescope Systems Thermal Model and a modified set o$

temperature constraints.

The Space Telescope is a stellar observatory comprised of three major subassemblies:

the Support Systems Module (SSM)) the Optical Telescope Assembly (OTA) and the

Scientific Instruments (SI) (see Figure3). There are two major thermal design
constraints:

I. maintain all subassemblies within temperature limits that will assure that

damage does not occur due to high or low temperatures) and

2. maintain the change in temperatures between components) within a sub-

assembly) within limits that assure optical alignment during any twenty-four

hour period.

Maximum/minimum temperature limits must be maintained over all phases of the ST
l

mission (launch, deployment, scientific operation, etc.) while optical alignment must

only be maintained during the scientific operations which occur when the ST is in the

orbit shown in Figure 4. During scientific operations the solar line of sight can fall

within the 135 degree envelope shown in Figure #. As the vehicle moves relative to the
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Figure 3. Schematic of Space Telescope
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sun, the change in solar viewing angle will cause the Space Telescope to heat or cool by

as much as 20oF. Since the major driver in any design is the scientific portion of the

mission, the temperature level design should only be optimized for the operational

phase of the mission. The resulting design should then be compared to the launch and

deployment requirements so that the specific design changes required to meet the

nonoperational constraints can be developed.

The SSM provides the overall enclosure, power, power control, guidance and position

stability. Its thermal control requirements and nodal breakdown are presented in

Figures 3 and 6. Because it does not provide a structure for any of the optical

components, the allowed temperature ranges and levels for the SSM are significantly

greater than those for either the OTA or the Sis. The OTA provides both the structure

to hold the optical components (i.e., primary mirror, etc.) and the Sis. Because of the

optical requirements the allowed temperature variations are small. These requirements

also tend to limit the choice of materials to those which have a low thermal coefficient

of expansion (Graphite Epoxy) and sometimes require the use of resistance heaters to

maintain alignment. These all tend to minimize a component's allowed operational

temperature range. The SI provides the structure that holds the experiment and its

required optics and electronics. While not as massive as the OTA its structural and

resulting thermal requirements are similar to the OTA'S. Both the thermal require-

ments and a nodal breakdown for the the OTA and a typical SI are given in Figures 7

through 12.

A significant aspect of the optimization problem is the uncertainty in the specified

coating properties. This is included by utilizing the thermal properties and the

uncertainties presented in Table III.

The optimization strategy is to minimize the spacecraft's weight (Eq. 2). For cold bias

systems that are maintained by resistance heaters, this requires knowledge of the

relationship of weight to power (see Table IV). Three relationships derived from ST

data are used to determine the weighting factors ab, ae, bb, and be:

• AVERAGE POWER - This is the penalty for the average power required to

maintain the spacecraft. The size of the solar array, battery, power

distribution and control etc., weights are accounted for in this term.
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Figure 5. Space Telescope Support Systems Module (SSM) Thermal Node Definition
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St Module

Optical Bench 3011 74 111 X +1 None MLI2 lS0/sg (2)

Radiator 3012 18 44 None Black Paint Black Paint None

Interior 3013 16 44 None Black Paint MLI2 None

+V1 Ends 3014 6 II None BlackPaint MLI2 None

"B" Interface 3015 _ _ None None None None

NOTE: (1) One of eight axial and radial modules.

(2) The optical bench power dissipation will range from 58 to 150Watts.

Figure I0. Space Telescope, Optical Telescope Assembly - Scientific Instruments Thermal Node Description



V3 TRUss
VERT

C FITTING INTERFACE

TYP (4 3094 _ DIAfIOND TRUSS

DIAGONAL,
3093 TRUSS I/F

IILIB

3092

FLEXURES

V3 BARRIER3102

V] 3096

/_ TIIERHAL BARRIER

(NO THERMAL CONTROL)

v2vI

OO PERIPHERAL FLEXURE CAPS
| BFAH NOTE: WHEN SPECIFIED AS "X" TEbIPERATURE_-_ 4000
_.a 3095 LEVEL IS NOT A DESIGN PARAMETER

DECK

PLATE
3093

Thermal Surface Temperature
Node Capacitance Area Requirements Surface Finish Power

Component Number BTU/OF FT 2 OF Inner Outer Dissipation

Forward Hub 3091 g l0 X +.50 MAX ORB MAX ORB None

Aft Hub 3092 15 II X _+.50 MAX ORB MAX ORB None

Deck Plate and

Diagonal Beams 3093 9 128 X +1.5 None MLI2 None

"C" Fitting I/F 3094 9 2 X _+1.5 None MLI2 None

Peripheral Beams 3095 30 /_2 X +1.5 None MLI2 None

Flexures 3096 1.6 g X _+1.5 None MLI2 None

Flexures 3097 1.6 8 X -+1.5 None MLI2 None

Flexures 3098 1.6 8 X +_1.5 None MLI2 None

Flexures 3099 1.6 8 X zI.5. None MLI2 None

Flexure Caps t_000 1.5 6 X -+1.5 None MLI2 None

Figure 1I. Space Telescope, Optical Telescope Assembly - Forward Focal Plane Thermal Node Description



3101

v3 SID.E7RUSS
VERT

C FITTING
INTERFACE

TYP (4 PLCS) DIAflONDTRUSS
3105

DIAGONAL DIAMOND TRUSS I/F

3106

UUB

FLEXURES

V 3 BARRIER3102

V3 TItERMAL BARRIER

/_ (NO TIIERMAL CONTROL)

OO

-V3 TRUSS! V2
_--L V l 3103
ho

PERIPHERAL FLEXURE SSM EQUIP SHELF

BFAM CAPS 3104

DECK NOTE: WHEN SPECIFIED AS "X" TEMPERATURE
PLATE IS NOT A DESIGN pARAMETER

Thermal Surface Temperature
Node Capacitance Area Requirements Surface Finish Power

Component Number BTU/°F FT2 OF Inner Outer Dissipation

+V3 Truss 3101 14 43 X ±1.5 None MLI2 None

V3 Barrier 3102 16 99 X +1.5 None MLI2 None

-V3 Truss 3103 I'-+ 43 X ±1.5 None MLI2 None

SSM Equipment
Shelf 3104 19 [1 None MLI2 MLI2 None

Diamond Truss 3105 8 95 X +.I.5 None MLI2 None

Diamond Truss
Interface 3106 1 None X ±1.5 None None None

Figure 12. Space Telescope, Optical Telescope Assembly - Aft Focal Plane Thermal Node Description



TABLE III

PROPERTIES OF AVAILABLE THERMAL COATINGS

Alpha Epsilon
No. Description Mean Variation Mean Variation

1 FOSR 0.1 +0.05 0.85 +0.05

2 Aluminum 0.2 +0.05 0.10 +0.01

3 Max Orb 0.95 +0.05 0.1 +0.01

4 Black Paint 0.95 +0.02 0.95 +0.02

5 Gold 0.25 +0.03 0.03 +0.01
m

6 Multi-Layer +0.0
Insulation (high a) 0.95 +0.05 0.01 -0.005

7 Multi-Layer +0.000
Insulation (low a) 0.1 +0.01 0.01 -0.005

8 Optical Surface 0.10 +0.02 0.02 +0.01

9 Glass 0.1 +0.05 0.9 +0.05
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TABLE IV

POWER PENALTIES

Parameter Penalties

Peak Power O.15 Ibm/watt

Average Power 0.7 Ibm/watt

Life Cycle(l) 0.36 watts end of mission

watts start of mission

(l) Based on a 32 to 24 supply voltage variation (start to end) and
resistance heaters
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• PEAK POWER - This is the penalty for the peak power required to maintain

the spacecraft. The number of heaters and their duty cycle has a significant

bearing on the weight of a thermal control system and this is accounted for
in this term.

• LIFE CYCLE - As the solar arrays age their output and the corresponding

supply voltage decreases. This results in a change in both the average and

the peak power availability with time. The weight penalty for power vs
spacecraft life is accounted for in this term.

The factors given above are combined as shown below to determine the power weighting
factors-

ab = average power

ae = average power/life cycle

bb = peak power

be = peak power/life cycle

After the model and weighting factors are defined, the model is put in the form to be

optimized as given in Table V.

The ST will be optimized for two missions, each with the solar vector at opposite ends

of the allowable envelope shown in Figure 4. During this process the coating on the

SSM will be optimized to meet the temperature requirements listed in Figures 5 through

I0. If the absolute level is not specified the upper and lower bounds for these

components will be set at 70OF plus or minus the prescribed temperature tolerance.

For example, the limits for node five in Figure 7 are:

L5 = 70 -0.6 = 69.4°F

U5 = 70 +0.6 = 70.6°F

When the analysis for the average temperature of 70oF is complete, other average

component temperatures will be tried to assess the impact of temperature level on the

optimal design. During this process we will not vary the coatings on nodes other than

the exterior surface since these are generally set by requirements other than thermal.
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TABLE V

OPTIMIZATION MODEL

o Model size 84 Nodes

• Nodes for coating optimization 7 SSM Nodes (Figure 5)
(fnc varied)

• Nodes with temperature 29 a OTA and SI Nodes
requirement, constraints

• Nodes with weighted - average, none
temperature constraints

• Nodes with temperature 2
difference constraints

difference between the metering truss
(Mid) and metering truss (Fwd)

• Nodes with a weighted average none
temperature dilference
constraints

a The twenty-nine nodes requiring temperature level control are shown in
Figures 7 through 12. The optical benches of the 3 axial SI modules and 4
radial modules (not shown) also require thermal control.
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However, the program will determine the optimal placement o£ heaters, and their

location will not be fixed by their locations in the ST design.

REMARKS ON ST THERMAL DESIGN PROBLEM

During its design, the ST spacecraft was partitioned into three major subsystems. Each

subsystemts contractor tried to optimize that subsystem within that subsystemts

constraints. For example, the SSM designer had a wide latitude in temperature

excursion during an observational period and over the entire life of the mission. This

led to a passive SSM shell design. On the other hand, faced with a varying environment,

both the OTA designer and the SI designer were led to active systems to maintain both

level and change over any period. Additionally, because of the problems of maintaining

the figure of a mirror at temperatures other than the temperature at which it was

figured, a significant portion of the OTA is maintained at a single temperature of 70oF.

Optimization could change parts of this. Since the entire ST would be optimized as an

entity, it is possible that maintaining the SSM at a fixed temperature (plus control

tolerance) may be a lower weight solution than the current design. Additionally it

would be of interest to modify the OTA criteria from one that requires a 70oF structure

to one that only maintains the mirrors at that temperature and finds the optimum

temperature for the remaining structure. This may result in a telescope with a 70oi:

Primary Mirror and a different temperature Focal Plane Assembly.

The accepted thermal control procedure is to find the maximum temperature of a

component and then maintain it using heaters and a single set point thermistor

controller. This assures that all temperature and gradient constraints are met for all

phases of the mission. However a more power-efficient method of control may be to

maintain the temperature difference between components by using the temperature of

one component as the set point temperature of the other. This type of control is

possible with presently available micro-computers and may result in a significant power

(thus weight) savings for the optimized spacecraft.
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SECTION 9

CONCLUSION

The purpose of the work reported here was to develop a strategy by which thermal

designers for spacecraft could devise an optimal thermal control system to maintain the

required temperatures_ temperature differences_ changes in temperatures and changes

in temperature differences for specified equipment and elements of the spacecraft's

structure. Thermal control would be maintained by the optical coating pattern chosen

for the external surfaces and the heaters chosen to supplement the coatings. A

strategy appropriate to computer-aided design was anticipated.

We focused on the development of a practical tool for the designer: an optimization

program compatible with his present analytical tools and useful in the conceptual-

design phase. We initially examined the general problem of spacecraft temperature

control 9 including all phases o£ the mission and all phases o£ the design process. To aide

in conceptualizing the problem_ we set up a simple three node spacecraft to optimize.

This provided us with insight into the problem without the confusion of a complex

model. From this exercise we learned that two major problems needed to be overcome:

(1) how to optimize both power and weight_ and (2) how to include coating uncertainties.

These were solved by expressing both power and weight as cost functions to be

minimized and including both variable properties and uncertainties in the properties o£

the coating.

We then reviewed the methods available for computation. The optimization requires a

considerable amount of computer time to solve a complex problem. However_ with

estimated run times of 0.5 to l0 hours_ the solution times are not considered a

significant driver in the problem. This is especially true considering the potential for

savings in the development of a space system when optimization is used.

The next task was to develop the overall optimization strategy. The strategy developed

does not eliminate the need for a thermal designer_ but is a design tool that eliminates
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many of the intuitive decisions that must be made. While the work to this point

demonstrated the feasibility of the proposed optimization procedure, a pilot program

was developed to validate some ol the techniques needed Ior the optimization. The

pilot program was successfully applied to the three-node sample problem presented in

Section 3. The details ol the application (see Appendix ) conlirmed the practicality ol

each step. Although the program tests only selected parts ol the computational

procedur% it does include enough of the steps so that we are confident that the entire

algorithm can be developed. We performed one additional test on the optimization

process by conceptually applying it to the Space Telescope. The work remaining is

detailed in Section 7.

In developing the optimization strategy, we have included all of the elements normally

considered by the designer: vehicle orientations, equipment power dissipations,

coating-property uncertainties_ uncertainties in the internal thermal conductances_ and

coating-property changes. The method uses the same thermal model data the designer

develops for his analyses_ there is no extra work. He can use his intuition to speed the

optimization process and to simpliIy the resultant heater arrangement, but he can also

use the process as a "black box." We have demonstrated how the optimization process

can be cast in computer form_ the results will be in the form of a specilication of the

coating pattern to be used on each external surfac% the heater capacities required Ior

each node, the average power required for each mission_ and the maximum and

minimum temperatures expected Ior each node. The method is limited_ however_ to

quasi-steady-state temperatures_ therelor% the designer must select time periods over

which steady-state temperatures are representative oI the mission temperatures.

Because most sensitive equipment is located well inside the vehicl% his selection is

usually not difficult: the orbital period is adequate.

Three ol the four steps to having an operational optimization program have been

accomplished:

• The governing equations have been developed

• The theory has been developed for solving the equations

• The methods have been demonstrated.
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The last but largest step - developing the production program, including making the

final tradeoffs and determining how to integrate the theory with existing analysis and

optimization programs - still must be accomplished.
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SECTION 10

NOMENCLATURE

A surface area

B black body radiation factors

C heater capacity

D electronic power

E earth flux

G weight average temperature

Gnj Knj + RLnj.

K thermal conductance

Knj conductance between nodes n and j

L lower temperature limit

M mission

N total number of nodes

P model version

Q the heater energy required for the most severe environment; maximum

total power demand

Qnm orbital average power demand for node (n) in mission (m)

R radiation interchange factor

RLnj m linearized radiation term (Eq. g) evaluated for temperatures in mission
m

RLnj Linearized radiation term (Eq. 8) evaluated for maxir0um temperatures

S solar flux
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NOMENCLATURE (Continued)

Tim temperature of node j in mission m

Tnm temperature of node n in mission m

U upper temperature

Vnm residual in heat balance equation

W weight

a solar absorptance

ab weight per unit of power,beginning of life

ae weight per unit of power, end of life

bb weight per unit of power (capacity) beginning of life

be weight per unit of power (capacity) end of life

c coating

ca changes in absorptance, beginning to end of mission

ce changes in emissivity, beginning to end of mission

c n heater capacity of node (n)

da range of uncertainty in solar absorptance, beginning to end of mission

de range of uncertainty in emissivity, beginning to end of mission

6a c uncertainty in solar absorptance

6e c uncertainty in emittance

6Tnm uncertainty in temperature

e emissivity; infrared emittance

fnc fractions of the area of node (n) that are covered with coating (c)

j node j

m mission number

n node n
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APPENDIX A

PILOT PROGRAM

In developing the optimization strategy presented in Sections 3 and 4, we were careful

to test the practicality of each step. The testing was done with a pilot program that

used selected parts of the technique. In particular, we selected those parts that

demonstrated computing the nominal case, computing the effects of uncertainties,

selecting the thermostat set points, computing the heater-power required, and

computing the derivatives.

The pilot program was tested with the three-node satellite used as an example in

Section 3 (see Fig. A-I). Two of the nodes are external, one facing toward the earth

and the other facing away from the earth. The third node is internal. Each node is

connected to the other two. To minimize computation time, all of the radiation terms

were linearized.

NODE 2
NODE 3

Figure A-I. Three-Node Problem
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The input data for the three-node vehicle are listed in Table A-I. In response to

prompts from the program, the user specifies the number of nodes, number of missions,

and the coating properties. The coating properties were assumed to be known to within

plus or minus 0.03. The user also specifies the areas of the external nodes and the

starting values of the fnc'S, the fractions of exterhal node areas covered by each of the

coatings. The input calls for an initial guess at the temperature, in anticipation of an

iterative solution technique. Because a matrix-inversion technique is used, this initial

temperature does not enter the solution for the pilot program. The internode

conductances are assumed to be symmetric. The missions are described by the

electrical heat input to each node from the electronic equipment, the solar flux

impinging on each node, and the infrared flux emitted by the earth that impinges on

each node. Only two missions were included in the sample case. All of the values used

in the sample case were the default values_ therefore, there are no entries in response

to the prompt asking if there is a change to be made. The computed conductance

matrix is listed at the bottom of the input.

The output data for the three-node vehicle are listed in Table A-2. As a check, the

residual of the conductance matrix after inversion and the inverted matrix are listed.

The residual is seen to be the identity matrix, so the error in the inversion process was

insignificant. The pilot program calculates the nominal temperatures with no heater

input immediately. The temperatures are listed after the inverted matrix. For

example_ the temperature of the internal node, Node 3, is 64.7oF for Mission I. The

chart of temperature data includes the area ratios for the various coatings and the

effective solar absorptance and an infrared emittance (0.337 and 0.421, respectively,

for Node I). Because there are no heaters for this nominal case, there is no weight

penalty, as indicated in the output below the temperature chart.

In response to a list of options displayed on the CRT screen, but not shown in the output

data, we chose to compute next the effects of the coating uncertainties (called

tolerances in the output data). The temperatures with the uncertainties included are

tabulated under the heading, "IF COATING TOLERANCES ARE INCLUDED." The MIN

temperature, for example, is the nominal temperature less the three-sigma temperature

uncertainty. For Node 3, the temperatures will be between 38.3OF and 91.lOF in

Mission I and between 38.6oi: and 87.9OF in Mission 2_ if no heaters are used and this

coating pattern is chosen.
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TABLE A-I

INPUT DATA FOR THE DEMONSTRATION CASE

NUMBER OF NODES 3 CHANGE TO?
YOU CAN HAVE UP TO 51.1404 MISSIONS

NUMBER OF MISSIONS: 2 CHANGE TO?

THE FOLLOWING COATINGS ARE AVAILABLE:
NO. DESCRIPTION ALPHA EPSILON
1 FOSR .1 .85
2 ALUMINUM .2 .1
3 MAXORB .95 .I
4 BLACK PAINT .95 .95

NODE PROPERTIES:
FOR NODE NO. 1 :

EXTERNAL AREA, A: 300 CHANGE TO?
INITIAL TEMPERATURE, T IN DEG F: 70 CH_,_ TO?
AREA FRACTION WITH AL= .1 ,EP= .B5 : .36 CHANGE TO?
AREA FRACTION WITH AL= .2 ,EP= .I : .41 CHANGE TO?
AREA FRACTION WITH AL= .95 ,EP= .1 : .17 CHANGE TO?
AREA FRACTION WITH AL= .95 ,EP= .95 : .Oh CHANGE TO?

FOR NODE NO. 2 :
EXTERNAL AREA, A: 300 CHANGE TO?
INITIAL TEMPERATURE, T IN DEG F: 70 CHANGE TO?
AREA FRACTION WITH AL= .1 ,EP= .85 : .36 CHANGE TO?
AREA FRACTION WITH AL= .2 ,EP= .1 : .32 CHANGE TO?
AREA FRACTION WITH AL= .95 ,EP= .1 : .17 CHANGE TO?
AREA FRACTION WITH AL= .95 ,EP= .95 : .15 CHANGE TO?

FOR NODE NO. 3 :
EXTERNAL AREA, A: 0 CHANGE TO?
INITIAL TEMPERATURE, T IN DEG F: 70 CHANGE TO?

CONDUCTION MATRIX:
C( 1 , 2 ) = 125 CHANGE TO?
C( 1 , 3 ) = 125 CHANGE TO?
C( 2 , 3 ) = 125 CHANGE TO?

MISSION CHARACTERISTICS:
MISSION NODE ELEC INPUT SOLAR FLUX EARTH FLUX

BTU/HR BTU/HR-SF BTU/HR-SF
1 I 0 266.667 7.33333 CHANGE (Y/N)?
1 2 0 16.6667 41 CHANGE (Y/N)?
1 3 0 0 0 CHANGE (Y/N)?

MISSION NODE ELEC INPUT SOLAR FLUX EARTH FLUX
BTU/HR BTU/HR-SF BTU/HR-SF

2 1 0 133.333 23.3333 CHANGE (Y/N)?
2 2 0 133.333 23.3333 CHANGE (Y/N)?
2 3 0 0 0 CHANGE (Y/N)?

COMBINED CONDUCTANCE MATRIX:
-281.58 125.00 125.00
125.00 -287.31 125.00
125.00 i25.00 -250.00
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TABLE A-2

OUTPUT DATA FOR THE DEMONSTRATION CASE

THE RESIDUAL IN THE MATRIX THAT WAS INVERTED:
1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
0.000000 0.000000 1.000000

INVERSE MATRIX:
-0.015950 -0.013303 -0.014627
-0.013303 -0.015543 -0.014423
-0.014627 -0.014423 -0.018525

MISSION: 1

NODE TEMPERATURE HEATER PWR HEATER CAP ALPH EP AREA RATIO BY COATING NO.
MIN (F) MAX BTU/HR BTU/HR 1 2 3 4

1 92.4 92.4 0 0 .337 .421 0.360 0.410 0.170 0.060
2 36.9 3&.9 0 0 .404 .498 0.360 0.320 0.170 0.1503 64.7 64.7 0 0

MISSION: 2

NODE TEMPERATURE HEATER PWR HEATER CAP ALPH EP AREA RATIO BY COATING NO.
MIN (F) MAX BTU/HR STU/HR 1 2 3 4

1 63.0 63.0 0 0 .337 .421 0.360 0.410 0.170 0.060
2 b3.6 63.6 0 0 .404 .498 0.360 0.320 0.170 0.150
3 63.3 &3.3 0 0

PREVIOUS WEIGHT FUNCTION WAS 0 BTU/HR EQUIV AVERAGE HEATER POWER
THE NEW WEIGHT FUNCTION IS 0

IF COATING TOLERANCES ARE INCLUDED
MISSION: 1

NODE TEMPERATURE HEATER PWR HEATER CAP ALPH EP AREA RATIO BY COATING NO.
MIN (F) MAX 8TU/HR BTU/HR 1 2 3 4

1 &4.4 120.5 0 0 .337 .421 0.360 0.410 0.170 0.060
2 12.2 61.7 0 0 .404 .498 0.360 0.320 0.170 0.1503 38.3 91.1 0 0

MISSION: 2

NODE TEMPERATURE HEATER PWR HEATER CAP ALPH EP AREA RATIO BY COATING NO.
MIN (F) MAX 8TU/HR 8TU/HR 1 2 3 4

1 38.1 87.9 0 0 .337 .421 0.360 0.410 0.170 0.060
2 39.2 88.0 0 0 .404 .498 0.360 0.320 0.170 0.150
3 38.6 87.9 0 0

PREVIOUS WEIGHT FUNCTION WAS 0 BTU/HR EQUIV AVERAGE HEATER POWER
THE NEW WEIGHT FUNCTION IS 0

ENTER THE THERMOSTAT SET POINTS:

NODE SET POINT (F) (SP=-999 => NO THERMOSTAT OR HEATER)
1 -999 CHANGE TO?
2 -999 CHANGE TO?
3 -999 CHANGE TO? 70
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In running the demonstration case, we next wanted to determine the heater power

required to hold the internal temperature (Node 3) to 70OF. The thermostat set points

were entered and the program calculated the required heater power (including the

effects of the uncertainties) and the resultant nominal temperatures. Notice that the

heater power for Mission 1 is 1710.42 Btu/hr. If this power were dissipated and the

coating properties were their nominal values, Node 3 would be at 96.4oF for Mission 1.

Of course, the thermostatic control would take effect, so this much power would not be

dissipated. From the previous data, we saw that with no heat input, Node 3 would be at

64.7°F with the nominal coating properties. Therefore_ if the coating properties were

the nominal values, a slight amount of heat would be required to maintain 70OF.

However_ we also saw that_ with no heater power and the upper limit of the coating

uncertainties, Node 3 could be as high as 91.IF. If this were unacceptable, a new set of

coatings would be selected.

If we return to the system performance with the heaters on_ but we add the coating

uncertainties (tolerances), the last set of temperature output shows that 69.5OF can be

maintained at Node 3 for Mission I and 69.4oF_ for Mission 2. These results are not

exactly 70OF because the pilot program does not include the method presented in

Section 4 by which the sensitivity of the temperature uncertainty to the coating

properties can be computed.

Finally_ in running the pilot program_ we selected the option of having the derivatives

calculated_ as shown in the last set of output data. These are the derivatives of the

temperatures with respect to the fnc'S_ the fractions of nodes I and 2 that are covered

by each coating. These derivatives could be combined with the derivatives of the heater

powers with respect to temperature (dq/dt) and the derivatives of the weight penalty

with respect to the heater powers (dw/dq) to estimate the next best set of fnc'S.

However this logic was not included in the pilot program.

Again_ the purpose of the pilot program was not to demonstrate the complete logic but

to test the ideas. It kept the development of the optimization strategy firmly

implanted in reality. The success of the pilot program is indicative of the success we

can expect in the total implementation of the method.

The complete listing of the pilot program, in Microsoft BASIC, is presented in

Table A-3.

A-6



TABLE A-3

THERMAL OPTIMIZATION PILOT PROGRAM

00010 'PROGRAM EXAMPLE/OPT ON PERKINEL AND MINDISK2

00020 ' JUNE 2, 1983 8:52 PM
00030 'THIS PROGRAM TAKES A SMALL SATELLITE THERMAL MODEL AND OPTIMIZES THE

00040 'ALPHA_ EPSILON AND HEATER CAPACITY FOR THE NODES SELECTED.
00050 'TO INVERT A 10-NODE MATRIX REQUIRES 27 SECONDS
00060 DEFINT I-N

00070 L$ffi"OFF''

00080 INPUT "DO YOU WANT TO USE AN EXISTING DATA FILE (Y/N)";SI$
00090 IF sIS "Y" THEN SI$="N":GOTO I30ELSE INPUT "WHAT IS THE FILE NAME";SI$
00100 OPEN "I"_ 19SI$
00110 INPUT#1 ,N,M,NC
00120 NS=N:MS=M

00130 INPUT "WILL YOU WANT TO SAVE THE INPUT DATA ON DISK (Y/N)";S$

00140 IF S$ "Y" THEN S$="N":GOTO 150ELSE INPUT "UNDER WHAT FILE NAME";S$
00150 C$="N":INPUT "DO YOU WANT TO TURN THE LINE PRINTER ON (Y/N)";C$:PRINT
00160 IF C$ "Y" THEN 190

00170 INPUT "WHAT TITLE DO YOU WANT";C$
00180 PRINT CHR$ (14) ;TAB (40-LEN(C$)/2) ;05 :L$="ON" :PRINT: PRINT
00190 IF SI$="N ''THEN N=3:M=2:NC=4 'DEFAULT VALUES
00200 NI=45 :N2=55 :CH$ ="CHANGE TO"

00210 PRINT "NUMBER OF.NODES";TAB(NI);N;TAB(N2);CH$;:INPUT N
00220 IF N= NS THEN 240

00230 PRINT"CAN'T HAVE NEW CASE WITH FEWER NODES THAN STORED FILE:"NS:GOTO 210

00240 DIM C (N,N) ,A(N) ,AL(NC) ,EP(NC) ,NC$(NC),H(N) ,CI(N,N) ,Sp (N) ,HC(N)
00250 DIM CT(N,N) ,CN(N,N) ,AR(N,NC)
00255 1=2975

00260 PRINT TAB(10);"YOU CAN HAVE UP TO";(I-4*N*N-8*N)/(4*N*N+7*N);"MISSIONS"
00270 PRINT "NUMBER OF MISSIONS:";TAB(NI);M;TAB(N2);CH$;:INPUT M
00280 IF M= MS THEN 300

00290 PRINT"CAN'T HAVE NEW CASE WITH FEWER MISS'S THAN STORED FILE:"MS:GOTO 2

00300 DIM T(N,M) ,Q(N,M) ,S(N,M) ,E(N,M) ,QH(N,M) ,NH(N,M) ,TU(N,M) ,DE (N,M,N,NC)
00305 'THE ARRAYS TAKE 8*N+(4*M+4)*N*N+7*N*M STORAGE LOCATIONS
00310 IF SI$="N" THEN 400
00320 'READ THE DATA FROM THE DISK

00330 FOR I=I TO NC:INPUT#1,NC$(1),AL(1),EP(1):NEXT
00340 FOR I=I TO NS-I:FOR J=l+l TO NS:INPUT#1_C(I,J):NEXT:NEXT
00350 FOR I=I TO NS:INPUT#I_A(1),T(I,1):IF A(1)=0 THEN 370

00360 FOR J=l TO NC:INPUT#I,AR(I,J)'NEXT
00370 NEXT

00380 FOR I=I TO MS:FOR J=l TO NS:INPUT#I_Q(J_I)gS(J_I)_E(Jgl):NEXT:NEXT
00390 FOR 1=1 TO NS:INPUT#IgSP(1).NEXT:CLOSE:GOTO 550
00400 IF N 3 OR M 2 THEN 550
00410 FOR J=l TO NC:READ NC$(J),AL(J),EP(J):NEXT

00420 DATA FOSR,0.1,0.85_ALUM,0.2,0.1yMAXORB,0.95,0.I,BLACK PAINT,0.95,0.95
00430 C(1,2)ffi125:C(I_3)ffi125:C(2,3)=125 'DEFAULT VALUES

00440 T(1,1)=70:T(2,1)ffi70:T(3,1)=70
00450 AR(1, I)=.36:AR(1,2)=.41 :AR(1,3)=. 17 :AR(1,4)=.06
00451 AR(2,1)=.36:AR(2,2)f.32:AR(2,3)=. 17 :AR(2,4)=. 15
00460 A(1)-300:A(2)ffi300

00470 S (I, 1)=80000/300:S (2,1)=5000/300:E(1 t 1)=2200/300:E(2,1)=12300/300
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00480 S(1,2)=40000/300:S(2,2)=40000/300:E'(1,2)=7000/300:E(2,2)=7000/300
00490 FOR I-I TO N:SP(I)=-999+460:HC(I)=0:FORJ=l TO M:QH(I,J)=0:NEXT:NEXT
00500 'I. ENTER THE PROPERTIES OF THE EXTERNAL SURFACES
00510 PRINT:PRINT "THE FOLLOWING COATINGS ARE AVAILABLE:"

00520 PRINT " NO. ";TAB(5);"DESCRIPTION";TAB(20);"ALPHA";TAB(30);"EPSILON"
00530 FOR I=l TO NC:PRINT TAB(2);I;TAB(7);NC$(I);TAB(20);AL(I);TAB(30);EP(I):NE
00540 PRINT
00550 PRINT:PRINT "NODE PROPERTIES:"
00560 FOR I=1 TO N

00570 PRINT "FOR NODE NO.";I;":"
00580 PRINT TAB(5);"EXTERNALAREA, A:";TAB(NI);A(I);TAB(N2);CH$;:INPUTA(I)
00590 PRINT TAB(5);"INITIAL TEMPERATURE, T DEG F:";TAB(NI)_T(I_I);TAB(N2);CH
00600 INPUT T(I,I):IF A(1)=0 THEN 630ELSE FOR J-1 TO NC
00610 PRINT TAB(5);"AREA FRACTION WITH AL=";AL(J);",EP=";EP(J);":";TAB(NI);
00620 PRINT AR(I,J);TAB(N2);CH$;:INPUTAR(I,J):NEXT
00630 NEXT

00640 FOR I=I TO N:FOR J=l TO NC:IF A(1)*AR(I_J) 0 THEN 680ELSE NEXT J:NEXT I
00650 PRINT "FOR THERE TO BE A SOLUTION_ AT LEAST ONE";
00660 PRINT " NODE MUST HAVE AN EXTERNAL AREA.":GOTO 560
00670 '2. ENTER THE CONDUCTION MATRIX
00680 PRINT:PRINT "CONDUCTION MATRIX:"
00690 FOR I=I TO N-I:FOR J=l+l TO N
00700 PRINT TAB(20);"C(";I;",";J;")= ";TAB(NI);C(I,J);TAB(N2);CH$;:INPUTC(I,J
00710 C(J,I)=C(I,J)
00720 NEXT:NEXT
00730 '3. ENTER THE INTERNAL HEATING RATES AND ENVIRONMENTAL FLUXES
00740 PRINT:PRINT "MISSION CHARACTERISTICS:":FORI=I TO M
00750 PRINT "MISSION";TAB(10);"NODE";TAB(20);"ELECINPUT";TAB(35);"SOLARFLUX";
00760 PRINT TAB(50);"EARTH FLUX"
00770 PRINT TAB(20);"BTU/HR";TAB(35);"BTU/HR-SF";TAB(50);"BTU/HR-SF"
00780 FOR JffilTO N

00790 PRINT I;TAB(IO);J;TAB(20);Q(J,I);TAB(35);S(J,I);TAB(50);E(J,I);TAB(60);
00800 C$="N":INPUT "CHANGE (Y/N)";C$:IFC$="N''THEN 820
00810 PRINT TAB(20);:INPUT Q(J,I),S(J_I),E(J,I)
00820 NEXT:NEXT
00830 '4. SET UP THE CONDUCTANCE MATRIX

00840 FOR I=I TO N:C(I_I)=0:FOR J=l TO N:IF J=l THEN 860
00850 C(I,I)=C(I,I)-C(I,J)
00860 NEXT J

00870 H(1)=.001713*((T(I,1)+459.67)/i00)3
00880 H(I)=.25 'TEMPORARY FOR CHECKOUT
00890 NEXT I

00900 '5. FOR THE GIVEN AL_EP, FINISH THE CONDUCTANCE MATRIX
00910 FOR I=1 TO N:FOR J=l TO NC:C(I,I)=C(I,I)-H(1)*A(1)*AR(I,J)*EP(J):NEXT:NEX
00920 FOR I=I TO N:FOR J=l TO N:CT(I_J)=C(I,J):NEXT:NEXT
00930 PRINT:PRINT "COMBINED CONDUCTANCE MATRIX:"

00940 FOR I=I TO N:FOR J-I TO N:PRINT USING "#######.##";C(I,J);:NEXT:PRINT:NEX
00950 '6. INVERT THE CONDUCTANCE MATRIX
00960 FOR I_I TO N-I:FOR J=l+l TO N:CI(I_J)=0:CI(Jpl)=0:NEXT:CI(Ipl)=I:NEXT
00970 CI(N,N)=I
00980 '6.1. FIND THE LARGEST DIAGONAL

00990 CX=0:FOR I=i TO N:IF CT(I,I) CX THEN CX=CT(I,I):K(1)=I
01000 NEXT
01010 '6.2. PERFORMTHE INVERSIONUSING THE LARGESTDIAGONALFIRST
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01020 'DEFERSEARCHFOR LARGESTDIAGONALTO A LATERVERSIONOF THISPROGRAM
01030 FORK=ITO N-I:FORI=K+ITO N
01040 R=CT(I,K)/CT(K,K):FORJ=1 TO N:CT(I_J)=CT(I,J)-R*CT(K,J)
01050 CI(I,J)=Cl(I,J)-R*CI(K,J)
01060 NEXT:NEXT:NEXT

01070 FOR K=N TO 2 STEP-1:FORI=K-ITO i STEP-I:R=CT(I,K)/CT(K_K)
01080 FOR J=N TO 1 STEP -I:CT(I,J)=CT(I,J)-R*CT(K,J)
01090 CI(I,J)=CI(I,J)-R*CI(K,J):NEXT:NEXT:NEXT
01100 FOR K=I TO N:D=CT(K,K)

01110 FOR I=l TO N:CT(K,I)=CT(K,I)/D:CI(K,I)=CI(K,I)/D:NEXT:NEXT
01120 PRINT:PRINT"THERESIDUALIN THE MATRIXTHATWAS INVERTED:"
01130 FOR I=i TO N:FOR J=l TO N:PRINT USING "###.######";CT(I,J);:NEXT:PRINT:NE
01140 PRINT:PRINT "INVERSE MATRIX:"

01150 FOR I=1 TO N:FOR J--i TO N:PRINT USING "###.######";CI(I,J);:NEXT:PRINT:NE
01160 PRINT

01170 '7.COMPUTETHE TEMPERATURESFOR THE VARIOUSRIGHT-HANDSIDES
01180 '7.1. COMPUTETHE RIIS
01190 'ON THE FIRST PASS, ALL HEATERS ARE OFF
01200 FOR I=l TO N:FOR K=I TO M:NH(I,K)=I:NEXT:NEXT
01210 FOR K--1 TO M:FOR J=l TO N:EP=0:AL=O:IF A(J)=0 THEN 1230

01220 FOR I=l TO NC:EP=EP+AR(J,I)*EP(1):AL=AL+AR(J,I)*AL(1):NEXT
01230 R(J)=-QH (J,K)-Q (J,K )-EP*A(J)*E (J,K)-AL*A(J)*S (J,K) :NEXT
01240 '7.2. COMPUTE THE TEMPERATURES

01250 FOR I=I TO N:T(I_K)=0:TU(I_K)=0:FOR J=l TO N:T(I_K)=T(I_K)+CI(I_J)*R(J)
01260 NEXT:NEXT:NEXT:IF C$="2" THEN C$="Y':GOTO 2170 'TO RECOMPUTE THE HTRS
01270 WO=W

01280 W=0:FOR K=I TO M:R=0:FOR I=I TO N:R=R+QH(I_K):NEXT:IF-R W THEN W=R
01290 NEXT:FOR I=I TO N:W--W+.I*RC(1):NEXT

01300 FOR K=I TO M:PRINT "MISSION: ";K
01310 PRINT "NODE";TAB(6);"TEMPERATURE";TAB(19);"HEATER PWR";

01320 PRINT TAB(31);'_HEATER CAP";TAB(43);"ALPH";TAB(49);"EP";TAB(54);
01330 PRINT "AREA RATIO BY COATING NO."

01340 PRINT TAB(6);"MIN (F) MAX";TAB(21);"BTU/HR";TAB(33);"BTU/HR";TAB(54);
01350 PRINT "I" ;TAB (60);"2" ;TAB (66) ;"Y' ;TAB (72);"4"
01360 FOR I=i TO N:PRINT I;TAB(6);

01370 PRINT USING "###.# ";T(I,K)-TU(I,K)-460;T(I,K)+TU(I,K)-460;
01380 PRINT TAB(19) ;QH(I,K) ;TAB(31) ;HC(I) ;
01390 IF A(1) =0 THEN PRINT:GOTO 1440

01400 EP=0:AL=0:FOR J=l TO NC:EP=EP+AR(17J)*Ep(J):AL=AL+AR(I_J)*AL(J):NEXT

01410 PRINT TAB(43);:PRINT USING ".###";AL; :PRINT TAB(48);
01420 PRINT USING ".###";EP;:PRINT TAB(54);

01430 FOR J=l TO NC:PRINT USING "#.### ";AR(I,J);:NEXT:PRINT
01440 NEXT:PRINT:NEXT K

01450 PRINT "PREVIOUS WEIGHT FUNCTION WAS";TAB(30);WO;
01460 PRINT TAB(40);"BTU/HR EQUIV AVERAGE HEATER POWER

01470 PRINT "THE NEW WEIGHT FUNCTION IS";TAB(30);W:PRINT
01480 '8. SELECT NEW SURFACE PROPERTIES OR NEW HEATER CAPACITIES
01490 IF L$="ON ''THEN PRINT CHR$(15)
01500 PRINT "ENTER THE OPTION NUMBER TO BE EXERCISED:"

01510 PRINT " i. ALTER THE HEATER CAPACITIES (COMPUTES REQ'D HEATER POWERS)
01520 PRINT" 2. ALTERTHE SURFACEPROPERTIES(RESETSHEATERSTO ZERO)
01530 PRINT " 3. ALTER THERMOSTAT SET POINTS (COMPUTES REQ'D HEATER POWERS)
01540 PRINT " 4. COMPUTE THE DERIVATIVES
01550 PRINT " 5. TOGGLE LINE PRINTER
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01560 PRINT" 6. STORETHE INPUTDATAON DISK
01570 PRINT " 7. LISTTHE TEMPERATUREDATAAGAIN
01580 PRINT " 8. INCLUDETHE TOLERANCES
01590 PRINT " 9. END
01600 INPUT"WHICH";C$:IFC$="2''THEN 1970
01610 IF C$="7''THEN 1300
01620 IF C$="9''THENEND
01630 IF L$="ON''THENPRINTCHR$(14)
01640 IF C$ "6" THEN 1770
01650 PRINT "THEDATAWILLBE STOREDIN FILENAME ";S$;:INPUT" OK (Y/N)";C$
01660 IF C$="Y"THEN1680ELSEINPUT"DO YOU WANTTO RETURNTO THE MENU (Y/N)";C$
01670 IF C$="N"THENINPUT"WHATSHOULDTHE FILENAMEBE";S$ELSE 1490
01680 IF S$="N''THENPRINT"CAN'TUSE N FOR A FILENAME":GOTO1490
01690 OPEN "O",17S$
01700 PRINT#I,N_M,NC
01710 FOR I=l TO NC:PRINT#I,NC$(1),AL(I),EP(I):NEXT
01720 FOR I=lTO N-I:FORJ=I+lTO N:PRINT#1,C(I,J):NEXT:NEXT
01730 FOR I=l TO N:PRINT#1,A(1),T(I,I):IFA(1)=0THEN 1750
01740 FOR J=l TO NC:PRINT#IjAR(I_J):NEXT
01750 NEXT:FORI=l TO M:FORJffilTO N:PRINT#I_Q(J,I),S(J,I)gE(J,I):NEXT:NEXT
01760 FOR I=l TO N:PRINT#I,SP(1):NEXT:CLOSE:GOTO1490
01770 IF L$="OFF''AND C$="5''THENL$="ON":PRINTCHR$(14):GOTO1490
01780 IF L$="ON''AND C$="5"THENL$="OFF":PRINTCHR$(15):GOTO1490
01790 IF C$="Y'THEN 2090
01800 IF C$="8''THEN 2575
01810 IF C$="4''THEN 2760
01820 IF C$ "I" THENPRINT"OPTIONNOT YET AVAILABLE":GOTO1490
01830 '8.1.SELECTTHE HEATERCAPACITIES
01840 PRINT:PRINT"ENTERTHE HEATERCAPACITIES:"
01850 IH=0
01860 PRINT"NODE";TAB(10);"SETPOINT (F)";TAB(25);"BTU/HRCAPACITY"
01870 C$="N":FORI=l TO N:PRINTI;TAB(IO);SP(1);TAB(25);HC(I);TAB(35);CH$;
01880 R=HC(1):INPUTHC(I):IFHC(I)= R THENHC(I)=0:IH=IH+I:IH(IH)=I:GOTO1910
01890 FOR K=I TO M:NH(I,K)=2:IFQH(I,K)HC(1)THENQH(I,K)=HC(I)
o1900 NEXT
01910 NEXT
01920 FOR K=I TO M:FORJ=l TO N:IFA(J)=0THEN EP=0:AL=0:GOTO1940
01930 EP=0:AL=0:FORI=l TO NC:EP=EP+AR(J,I)*EP(I):AL=AL+AR(J,I)*AL(I):NEXT
01940 FOR J=l TO N:R(J)=-QH(J,K)-Q(J,K)-EP*A(J)*E(J,K)-AL*A(J)*S(J,K):NEXT
01950 FOR I-l TO N:T(I,K)=0:FORd=l TO N:T(I,K)ET(I,K)+CI(I_J)*R(J):NEXT:NEXT
01960 NEXT:GOTO 2220
01970 '8.2.SELECTTHE NEW SURFACEPROPERTIES
01980 PRINT"NODE"_TAB(6);"ALPHA";TAB(13);"EPSILON";TAB(25);"AREAFRACTIONFOR"
01990 PRINT" COATINGS":PRINTTAB(25);
02000 FOR J=l TO NC:PRINTUSING".### ";AL(J);:NEXT:PRINT"(ALPHA)":PRINTTAB
02010 FOR J=l TO NC:PRINTUSING".### ";EP(J);:NEXT:PRINT"(EPSILON)"
02020 FOR I=l TO N:IFA(I)=0THEN2070
02030 PRINTI;TAB(6);AL;TAB(13);EP;TAB(25);:FORJ=l TO NC
02040 PRINTUSING"#.### ";AR(I,J);:NEXT:PRINT" CHANGE(Y/N)";
02050 X$="N":INPUTX$:IFX$ "Y" THEN 2080
02060 PRINTTAB(25);:INPUTAR(I,I),AR(I,2),AR(I,3),AR(I,4)
02070 HC(I)=0:FORK=I TOM:QH(I_K)=0:NEXT
02080 NEXT:GOTO840'BECAUSETHE DIAGONAL(VIAEP) IS CHANGED
02090 '8.3.COMPUTETHE REQUIREDHEATERCAPACITIES
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02100 'BECAUSE THE TEMP UNCERTAINTIES ARE NOT LINEAR BUT RSS, THE HEATER WILL

02110 'NOT MAKE THE TEMPS EXACTLY MEET THE THERMOSTAT SET POINT,AT LEAST AS
02120 'WE NOW SOLVE THE PROBLEM. WE TREAT THE UNCERTAINTY AS A LINEAR EFFECT.
02130 PRINT "ENTER THE THERMOSTAT SET POINTS:":IH=0:FOR I=I TO N:HC(1)=0:NEXT
02140 PRINT "NODE";TAB(IO);"SET POINT (F) (SP=-999 = NO THERMOSTAT OR HEATER)

02150 FOR 1=I TO N:SP(1)=SP(1)-460:PRINT I;TAB(IO);SP(1);TAB(25);CH$;:INPUTSP(I
02155 SP(1)=SP(1)+460:NEXT
02160 PRINT

02170 FOR IffilTO N:IF SP(I) -999 THEN FOR KffilTO M:NH(I,K)=0:NEXT
02180 NEXT

02190 FOR I=I TO N:HC(1)=0:NEXT

02200 'TO INCORPORATE THE EFFECTS OF EACH HEATER ON ALL OF THE TEMPERATURES,
02210 'WE MUST SOLVE A MATRIX EQUATION FOR EACH NEW HEATER POWER (BY MISSION)
02220 FOR K=I TO M

02230 IH=0:FOR I=I TO N:IF NH(IyK) 0 THEN 2250
02240 IH=IH+I:IH(IH)=I
02250 NEXT

02260 IF IH=0 THEN 2440

02270 IF IH=I THEN I=IH(1):CN(I,I)=I/CI(I,I):GOTO2370

02280 FOR J=1 TO IH:JH=IH(J):FOR L=I TO IH:LH=IH(L):CT(J,L)ftCI(JHpLH)
02290 CN (J,L)ft0:NEXT: CN(J, J)ftl:NEXT

02300 FOR KKftl TO IH-I:FOR II=KK+I TO IH:R=CT(II,KK)/CT(KK,KK):FOR JJ=l TO IH
02310 CT(II, JJ)=CT(II ,jj)-R*CT(KK 9jj) :CN(II,JJ)=CN(II ,jj)_R.CN(KK, jj) :NEXT:NEX T

02320 NEXT:FOR KK=IH TO 2 STEP -1:FOR II=KK-I TO 1 STEP -I:R=CT(II,KK)/CT(KK,KK
02330 FOR JJffilHTO i STEP -I:CT(II,JJ)=CT(II,JJ)-R*CT(KK_JJ)
02340 CN(II _JJ)=CN(II, JJ)-R*CN(KK, JJ) :NEXT:NEXT:NEXT
02350 FOR KK=I TO IH:D=CT(KK,KK):FOR II=l TO IH

02360 CT(KK, II)=CT(KK, II)/D: CN(KK, II)=CN(KK, II)/D :NEXT: NEXT
02370 FOR II=I TO IH:I=IH(II):R(II)=0:FOR J=l TO IH:JH=IH(J)
02380 R(II)=R(II)-CN(II, J)*(SP (JH)-T(JH,K)+TU (JH,K)) :NEXT
02390 IF QH(I,K)+R(II)ffi 0 THEN 2410
02400 QH(I,K)f0:R(II)ffi0:NE(I,K)ffil:GOTO2230
02410 NEXT:FOR lift] TO IH:I=IH(II)-QH(I,K)ffiQH(I,K)+R(II)
02420 IF QH(I,K)HC(1)THENHC(1)ffiQH(I,K)
02430 NEXT
02440 NEXT K

02450 GOTO 1210'BECAUSE T'S NEED TO BE RECALCULATED BEFORE ANY OTHER CHANGES
02460 'WE NEED TO EXAMINE HOW TO INCORPORATE TOLERANCES

02470 'PROBABLY WE SHOULD USE THE RMS ERROR AND GIVE THE TEMP OR HTR RANGE

02480 'THE USER COULD SPECIFY THE NUMBER OF SIGMAS TO CONSIDER_ WITH THE
02490 'INPUT BEING ENTERED AS 3 SIGMA. THE SET POINTS ENTERED BY THE USER
02500 'SHOULD BE TREATED AS THE AVG - N'SIGMA WHEN COMPUTING THE HEATER
02510 'POWER. IN PRACTICE, WE MAY NOT ALWAYS BE ABLE TO PUT THE HEATER ON
02520 'THE CRITICAL NODE. WE HAVE NOT ALLOWED FOR THAT IN THE OPTIMIZATION.

02530 'WE SHOULD PROBABLY ADD FIXED-TEMP NODES TO THE PROBLEM STATEMENT,
02540 'ALTHOUGH IT IS DIFFICULT TO CONCEIVE OF THE PHYSICAL SITUATION.
02550 '8. INCLUDE THE TOLERANCES

02560 'FOR NOW_ WE ASSUME THAT THE COATING PROPERTIES ARE KNOWN TO WITHIN

02570 '0.03, REGARDLESS OF THE COATING. THE TOLERANCES ARE DESIGNATED AU,EU

02575 PRINT:C$="IF COATING TOLERANCES ARE INCLUDED":PRINT TAB(40-LEN(C$)/2);C$
02580 FOR JffilTO NC:AU(J)ffi.O3:EU(J)ffi.03:NEXT

02590 FOR K=I TO M:FOR JffilTO N:TU(J_K)=0:NEXT:FOR JC=I TO NC:L=0:FOR J=l TO N
02600 IF A(J)=0 OR AR(J,JC)ffi0THEN R(J)=0:GOTO 2630

02610 R(J)fAR(J, JC)*A(J)*(E(J, K)-H(J)*T(J ,K) )*EU(JC)
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02620 L=I
02530 NEXT J
02640 IF L=0 TILER2740
02650 'SOLVE FOR ALL OF.THE TEMPERATUREUNCERTAINTIESFIRST, AS IF NONLINEAR
02660 FOR J=l TO N:CT(J,I)=0:FOR I=I TO N:CT(J,I)=CT(J,I)+CI(J,I)*R(I):NEXT:NEX
02670 FOR J=l TO N:TU(J,K)_TU(J,K)+CT(J,I)*CT(J,I)'NEXT
02680 'NOW INCLUDE THE EFFECTS OF ALPHA
02690 FOR J=l TO N:IF A(J)'_0 OR AR(J,JC)©0 THEN R(J)=0:GOTO 2710
02700 R(J)=AR(J, JC)*A(J)*S (J, g)*AU (JC)
02710 NEXT
02720 FOR J=l TO N:CT(J,I)=0:FOR I=l TO N:CT(J,I)=CT(J,I)+CI(J,I)*R(I):NEXT:NEX
02730 FOR J--iTO N:TU(J,K)=TU(J,K)+CT(J,I)*CT(J,I):NEXT
02740 NEXT JC:FOR J=l TO N:TU(J,K)-SQR(TU(J,K)):NEXT:NEXT K:GOTO1300
02750 'COMPUTETHE DERVIATIVES WITH RESPECTTO THE AREA RATIOS
02760 FOR K-I TO M 'DE(J,K,I,L)= D(T(J,K))/D(AR(I,L))
02770 FOR I=l TO N:IF A(1)=O THEN 2900
02780 FOR L--I TO NC
02790 R(I)©A(I)*(AL(L)*S (I ,K)+EP (L)*(E(I,K)-H(I)*T(I,K)))
02800 FOR J=l TO N:DE(JgK,I_L)=CI(J,I)*R(I):NEXT
02810 NEXT L
02820 C$="MISSION"+STR$(K)
02830 PRINT:PRINT TAB(40-LEN(C$)/2);C$
02840 PRINT "DERVIATIVESOF ALL NODE TEMPERATURESWI.THRESPECT TO THE AREA RATI
02850 PRINT "ON NODE";I;"FOR COATING:";TAB(27);"I";TAB(37);"2";TAB(47);"Y';
02860 PRINT TAB(57);"4"
02870 PRINT TAB(IO);"A_FECTEDNODE";TAB(32);"DE R I V A T I V E S"
02880 FOR J=l TO N:PRINTTAB(15);J;:FORL=I TO NC:PRINT TAB(47+L*IO);DE(J,K,I,L)
02890 NEXT:PRINT:NEXT
02900 NEXT I:PRINT:NEXT K
02910 GOTO 1490
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