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ABSTRACT

The following is a survey article designed to provide an intro­

duction to' the subject of turbulence modeling, and to explain the need

for such models.

The subject is developed along chronological lines since this

provides a logical development plan and also because it then moves

from relatively simple phenomenological models through more compli­

cated procedures and ultimately to the subject of large-eddy simulation.
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" •••a numerical procedure without a turbulence model

stands in the same relation to a complete calcula­

tion scheme as an ox does to a bull."

Peter Bradshaw

I. INTRODUCTION

For over a hundred years intelligent people have worked long hours

and written thousands of technical papers on the last unsolved problem

of classical physics, turbulent fluid flow. Indeed, there appears to be

an emerging belief that the problem may not have a solution in the usual

sense of the word. That is to say that turbulence seems to be simply

the manifestation of ensemble or time averages of bounded instabilities

resulting from multiple bifurcations in solutions of the Navier-Stokes

equations. This is not exactly a helpful phenomenological explanation,

but it may well be the best we will be able to give.

Because of the absence of a consistent and comprehensive theory of

turbulent flows, their prediction cannot be made from first principles,

but must be based on semiempirical models. Modeling the physics rather

than solving the full, unsteady, three-dimensional Navier-Stokes equa­

tions is imposed by the fact that even the largest of today's computers

are inadequate to predict any real flow.

In this chapter, rather than attempting to treat the multiple

potential applications of turbulent-flow predictions, we will consider

the background and development of our current predictive capability in

a more or less general setting. Several other works presenting more

specific information, or an alternative point of view, can be found in

references [1]-[5].
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Hinze [1] defines turbulence as follows: "Turbulent fluid motion

is an irregular condition of flow in which the various quantities show

a random variation with time and space coordinates, so that statistically

distinct average values can be observed." A few minutes of observing

smoke emerging from a tall stack will be sufficient to provide a feeling

for the above definition.

There is a consensus among researchers of turbulence that the

unsteady, three-dimensional Navier-Stokes equations solved on a fine

enough mesh can describe turbulent flow from first principles. Eventu­

ally, given computers which are sufficiently large, sufficiently fast,

a~d sufficiently cheap, we will be able to solve these equations

directly, and the problem of turbulence modeling will simply vanish.

Thus, the need for turbulence modeling is caused solely by our inability

to solve the equations that describe the physical problem on a fine

enough mesh to resolve all the relevant physical scales. The obvious

question which arises is, why must anyone continue to work on it if, in

t: '.me, the problem will go away? The answer is that the time scale for

tole development of the requisite computational power, on machines and

algorithms, is very large. Lomax [6] has pointed out that existing

computer memories will accommodate about a 64 3 mesh for compressible

turbulent-flow calculations, whereas a computer memory on the order of

512 3 mesh (roughly a three-order-of-magnitude increase) would be required

to compute a portion of an incompressible, homogeneous, turbulent flow.

Furthermore, for any industrially significant flow, meaningful calcula­

tions of turbulence from first principles would probably require at

least another two-order-of-magnitude increase of computer memory. Such
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a powerful computer would permit computation of eddies of a scale larger

than that associated with the Kolmogorov equilibrium scale, coupled with

a hypothesized universal model at smaller scales. Since the required

machine time varies typically with the square of the number of mesh

points, most likely 10 orders of magnitude increase in computer power

is needed before we are in a position to handle real turbulent-flow

problems from first principles on a routine basis. Without a break­

through in either computer design or turbulence theory it would appear

that the millennium is 50 to 100 years in the future. This bleak,

long-term outlook provides the motivation to seek turbulence models for

application to the Reynolds-averaged equations. These equations will be

discussed in detail in subsequent sections.

The techniques of turbulent-flow prediction currently in use or

under development follow traditional lines since much of the foundations

of current theory were developed long before the digital computer came

into significant use. To understand these traditional approaches, let

us return to Hinze's definition of turbulence. The relevant elements,

for our purposes. can be restated as: the flow is irregular. unsteady.

three dimensional. and statistically distinct averages exist. It is

this last property which makes the flow approachable at all.

In the following sections we will describe the equations of turbu­

lent flow and show how the need for modeling arises. discuss some of the

representative examples of today's turbulence models and some aspects

of the computational schemes required. touch on some special topics

(i.e •• separation. unsteady flows. and three-dimensional flows). and.

3



finally, briefly consider the topic of Large Eddy Simulation and its

promise for the future.

II. EQUATIONS OF TURBULENT FLOW

In this section, and in those that follow, we will discuss the

steady, incompressible Navier-Stokes equations. Consider, for example,

the continuity and x-momentum equations

These equations contain most of the complexities associated with the

(1)

(2)

turbulence itself, and the additional problems of compressibility, etc.

do not serve to illuminate the discussion in any significant way.

Suppose that the various flow parameters have time histories like

that shown in figure 1. The velocity u can be decomposed into two

parts as

u(t) = ti + u' (t) (3)

where u is a steady carrier and u'(t) is a high-frequency oscillatory

component with a zero mean. From this decomposition of the velocity we

can define several time averages as

U- _- _1 Lt
+

T
u(t)dt

T t

and

- 1 i t
+

T
1 i t

+
T

u' = - [u(t) - ti]dt = - u' (t)dt = 0
T t T t

4
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Similarly,

1 i t
+

T
T u(t)v(t)dt ~ uv + u'v'

t
(6)

and

1 i t
+T

- ­T t u(t)u(t)dt = u2 + u'2 (7)

If we substitute these composite variables into the equations of

motion, expand, and time-average, we obtain equations like the following

- au + - au + - auu- v- w-=ax ay dZ
(8)

Note that we recover the original equation, in terms of time-averaged

velocities, the barred quantities, but with the three additional terms,

the so-called Reynolds stresses included in the rightmost parentheses.

These additional unknowns result from time-averaging the nonlinear con-

vective terms and have the appearance of stresses.

When we substitute this velocity decomposition in all three momen-

tum equations, the stress tensor for these Reynolds-averaged equations

becomes

(-r _ u'2) (-r - u'v') Crxz
- u 'WI)

xx xy

t ij = (t - v'u l ) (t - v'2) (tyz
- v'w') (9)

yx yy

(t
zx

- u 'WI) (t - wlv') (t - W'2)
zy ZZ

The nine newt xx ' t xy ' etc. are the usual viscous stresses.

unknowns, the Reynolds stresses, have been introduced by the decomposi-

where the

tion and time-averaging of the velocities. Because of the skew symmetry
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of the matrix only six of the nine new unknowns are independent. If we

attempt to increase the number of equations, for example, by taking

successive' moments of the momentum equation, the number of unknowns

continues to proliferate and this shortfall between equations and

unknowns has been termed the "turbulence closure problem."

The complete Navier-Stokes equations in Reynolds-averaged, mass-

averaged form, including the Reynolds stress and turbulent heat-transfer

terms, are presented in orthogonal tensor form and cylindrical coordi-

nates by Rubesin and Rose [7].

I II . SIMILARITY LAWS

Before we turn our attention to the modeling of the Reynolds

stresses. it is useful to consider some experimental results. One of

the most important classes of flows, and hence one for which a great

deal of experimental data exist. is the wall-bounded shear flow. If we

restrict our attention to a two-dimensional steady flow. and without

complications such as wall mass transfer or separation. Virtually all

the reliable experimental data can be correlated by the Law of the Wall

and the Law of the Wake. These similarity laws can be written in com-

bined form, following Coles [8], as

+ u I ++II
u =~ = K £n y K 2 sin

2 (f t) + C
T

where

K = 0.41

C = 5.0

(10)

+y
YUT

=--
V
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u~=hw/p

o = boundary-layer thickness

IT = wake strength

This expression provides a good fit to the experimental velocity data over

a wide range of pressure gradients in terms of the three parameters, u
L

'

IT, and o. Figure 2 shows how well this correlation works: for a strong

adverse pressure gradient, figure 2a; a zero pressure gradient, figure 2b;

and a strong favorable pressure gradient, figure 2c. The data are taken

from the 1968 Stanford Conference Proceedings [7]. The Law of the Wall,

the linear portion of the correlation on the semilog plot, represents

only about the inner 20% of the boundary layer in an adverse pressure

gradient and about the inner 50% of the boundary layer in a favorable

pressure gradient. The important point to note is that, despite the

apparent chaos in the instantaneous values of the flow parameters, the

time averages can be correlated by a judicious choice of variables;

further, these averages are reproducible in different wind tunnels and

with different instrumentation as long as the appropriate dimensionless

parameters are held fixed. In addition, these correlations of experi­

mental data provide insight into those parameters that govern the flow

field. Such insight is critical to the construction of rational models

of the turbulent mixing process. It should always be borne in mind that

no improvement in turbulence modeling can take place without .continued

careful experimental studies being carried out, and without exhaustive

analysis of the data resulting from these studies.
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IV. TURBULENCE MODELING

Turbulence modeling concerns itself with the generation and testing

of closure relations describing the Reynolds stresses. Since its incep­

tion, the goal of turbulence modeling has been the "universal model."

We may define this as an equation, or system of equations, capable of

accurately describing the Reynolds stresses of any turbulent flow with­

out any previous experimental information. Such a model does not as yet

exist and, in fact, may never exist. At present we can confidently pre­

dict only a relatively small class of turbulent flows or, more properly,

a few small classes of flows. These predictable flows fall into the

category of equilibrium flows, which in turn may be defined as flows in

which the production and dissipation of turbulence energy, shear stresses,

etc. are in balance. This balanced condition implies that there exists

a one-to-one relationship between the Reynolds stresses and the mean

flow. Physically, this means that the turbulent flow is independent of

its history, or that it has existed for a significant time under the

effects of mild pressure gradients and without recent or rapid changes

in the boundary conditions, for example, blowing, bleed, slip, etc.

Examples of such flows are boundary layers on mildly curved bodies at

subsonic speeds, shock-free supersonic flows, far wakes, and mixing

layers well downstream of their initiation.

Turbulence models can be divided into three major categories:

models suitable for integral methods, eddy-viscosity models, and

Reynolds-stress models. We will discuss each of these categories in

the folloWing paragraphs.
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A. Integral Method Models

Many of the practical calculation schemes, including integral

methods, are based on a subset of the Navier-Stokes equations termed the

boundary-layer equations. For flows in which v/u is everywhere a

small quantity, this system of equations, although substantially

simpler than the Navier-Stokes system, contains all the relevant

physics. In subsequent sections of the text we will consider these

equations almost exclusively, since they simplify the discussion with­

out significant loss of generality. The fundamental simplifying

assumption is that variations with respect to x are much smaller than

those with respect to y. This reduces the number of equations by one,

for the two-dimensional case, by deleting the y-momentum equation, thus

making the pressure distribution .a parameter of the problem rather than

part of the solution and changing the remaining system of equations to

parabolic in x rather than elliptic. This latter change permits sub­

stantial savings in computing costs since the resulting system can be

solved by a marching procedure rather than by a sweeping method. The

earliest methods developed for the computation of boundary-layer flows

were integral methods, and such methods are still in use today. The

principal use of these methods today is for design studies where many

sets of calculations for the same kinds of flows are required. In this

application where the calculation is used to interpolate between experi­

mentally established bench-marks, integral methods are without peer.

These methods are computationally very fast and permit the easy incorpora­

tion of empirical information via data correlations. In discussing these

9



methods, we are called upon to discriminate between the requirements

of engineering application and of science. In the first case, we are

concerned with the effects of fluid flow on an object of arbitrary

shape; in the second, we are concerned with the effects of an object of

arbitrary shape on a fluid flow. The choice of viewpoint determines

the type and detail of information sought.

In applied engineering one is concerned with such parameters as

pressure distribution and skin friction, and any method which will pro-

vide this information accurately and cheaply for the particular flow

configuration at hand, is satisfactory. Given an adequate data base

and a limited range of performance requirements, integral methods are

quite satisfactory.

One can obtain any of several integral methods by simply integrat-

tng the momentum and continuity equations with respect to y. Any text

on classical boundary-layer theory will provide examples of how this

can be carried out. Additional relations may be obtained by taking

moments of this equation with respect to u and its powers before

integration (ref. [9]).

The basis of most integral methods currently in use is Head's

Entrainment Method [10]. In this method the momentum and continuity

equations are integrated across the boundary layer to yield the Karman

Integral Equation

de + e dUe Cf
dx (2 + H) U dx = T

e

10
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where

6= i 0
: (l - : ) dy

o e \ e

0*
H ="6

This provides us with one ordinary differential equation in the three

unknowns, skin friction coefficient Cf , momentum thickness e, and

shape factor H. A second equation is obtained by integrating the con-

tinuity equation across the boundary layer over the same limits, and

combining the result with the definition of displacement thickness, 0*;

that is,

d
dx (0 - 0*)

= v(6) _ 0 - 0* dUe
u dx

e
(12)

where v(6) = v /u is proportional to the rate at which free-stream
e e

fluid is entrained into the boundary layer. Using Head's notation, let

v(6) = F and (6 - 6*) = ~, we can define a new shape factor as

where, for power-law velocity distributions, u/u
e

n= (y/o) ,

Green [11] notes that experimental data for Head's F(H
1

) can be well

correlated by the linear function of H

11



F = 0.025H - 0.022 (13)

Differentiating equation (13) with respect to x and combining

equations (11) and (12) yield

6 dH = H(H2
du 1_ 1) .!.-~ + H - [(H - l)F - HCf ] (14)dx u dx 2e

Equations (11) and (14), together with a skin-friction law, for example,

the Ludwig-Tillman Law

C
f

= 0.246 exp(-1.S61H)Ree-o.268 (15)

provide the necessary three equations. The system of ordinary differ-

entia1 equations is then solved by any standard integration routine,

for example, Runge-Kutta. or Adams Moulton. For examples of these

schemes any standard text in boundary-layer theory or the 1968 Stanford

Conference Proceedings should be considered. The turbulence information

is contained in equations (14) and (15) which reflect correlations of

experimental data.

In reference [11]. Green extended this method to compressible

flows. and in reference [12], Green and his coworkers incorporated an

ordinary differential equation, based on the turbulence energy equation,

to describe the entrainment rate. This latter method, the Lag-Entrainment

Method, is an effort to incorporate flow history into the calculation.

It is a reasonably successful procedure for some types of flows and is

in fairly common use today.

The advantages of methods of this type are computational simplicity

and the ease with which the turbulence equations can be modified to

incorporate new empirical information, that is, by simply introducing a

12



different correlation of the skin-friction coefficient. The principal

disadvantage is a lack of flexibility in dealing with flows even slightly

different from those for which the correlations were developed. That is

to say, when a new flow situation is encountered new data correlations

obtained in like flows must be used.

Differential methods or, more properly, difference methods intro-

duce substantially more flexibility in their description of the varia-

tion of the mean flow, but require more detailed information about the

turbulence. The balance of the turbulence modeling techniques discussed

here will be those appropriate to differential mean-flow descriptions.

B. Eddy-Viscosity Models

For boundary-layer flows it is generally agreed that the Reynolds

normal stresses u'2 may be ignored in comparison with the Reynolds shear

stresses u'v', except perhaps in the neighborhood of the separation

point. This agreement is based on a combination of experimental data

and general unwillingness to complicate the problem further by consid-

ering Reynolds normal stresses. If we argue that the turbulent shear

stress should be defined in an equivalent manner to the laminar shear

stress, we can propose a new turbulent viscosity. Applying this argu-

ment to the two-dimensional, incompressible boundary-layer equations,

defined above, we can write after Boussinesq

au
-u'v' = € ay (16)

where € is the so-called eddy or turbulent viscosity. Note that this

viscosity is a property of the fluid motion and not a physical property

of the fluid itself, that is,

13



-u'v'e: =
auay

Substituting this into the momentum equation we obtain

- au + - au 1 dn + a (1 + e:) auu- v-=-_.::£. \)- --
ax ay p dx ay \) ay

(17)

(18)

From dimensional considerations and by analogy with kinetic theory, the

eddy viscosity is proportional to the product of a length scale and a

velocity scale. The various assumptions that go into defining these

scales and the type and number of equations used for this purpose

establish a classification scheme within the class of eddy-viscosity

methods.

1. ZERO-EQUATION MODELS

By zero-equation models is meant that the model requires no partial

differential equations to describe the eddy viscosity. The current

most commonly used algebraic eddy viscosity model is that due to Cebeci

and Smith [13], with subsequent improvements by Cebeci [14]. This is a

composite model, in keeping with the experimental observations embodied

in the similarity laws noted earlier, that is,

{

E: •

E: = min E:~

o

(19)

In the inner region, the length scale is taken as proportional to the

distance from the wall, with a damping term near the wall due to

van Driest [15], and the velocity scale is taken as this distance times

the normal gradient of velocity, that is,

14



where

is the length scale with near boundary damping, and where

+The term p was introduced to fit data better in pressure gradients.

This results in an inner eddy viscosity of the form

(20)

In the outer region the length scale is taken as proportional to the

boundary-layer thickness and the velocity scale is taken as the so-called

velocity defect. These definitions can be combined as

£0 = 0.0168 jr8 (ue - u)dy
o

In figure 3 we show a comparison of the predicted and measured

(21)

velocity distributions in physical variables, corresponding to the same

cases shown in similarity variables in figure 2. It can be noted that

presentation of data in these different forms emphasizes different

regions of the boundary layer, and can provide additional insight into

the physics of the flow. It can be seen that the calculations based on

the zero-equation model provide a good representation of the zero and

favorable pressure-gradient data while missing the adverse pressure-

gradient results rather badly. This failure appears as a significant

underprediction of the boundary-layer thickness coupled with an

15



underprediction of the wall-shear stress. Failure in the accurate

prediction of flows with strong adverse pressure gradients is a major

shortcoming of these methods. As shown in figure 4 the skin friction

as predicted with the Cebeci-Smith model is compared with the experi­

mental data of Simpson, Chew, and Shivaprasad [16]. This flow is

essentially a two-dimensional diffuser with a strong adverse pressure

gradient leading to separation. The comparison is typical of algebraic

eddy-viscosity models incorporated in a standard boundary-layer code in

the neighborhood of separation. In these cases, the comparison is con­

fused by the appearance of an additional complication, the separation­

point singularity, which renders the mean-flow equations invalid at the

separation point. This point will be discussed further in a subsequent

section.

From the computational point of view, models of this type are the

simplest models that satisfy the requirements of a robust difference

solution to the boundary-layer equations. If such models are to be used

within a Navier-Stokes formalism, some ad hoc assumption must be made

regarding the location of the boundary-layer edge and the definition of

the velocity there. These parameters lack a clear definition in any

situation in which the normal derivative of velocity does not decrease

monotonically as the outer flow is approached (cf. refs. [17] and [18]).

2. ONE-EQUATION MODELS

As noted above, the goal of turbulence modeling is to produce the

universal model. To redress the shortcomings of zero-equation models

it seems plausible to require that the scaling parameters of the

16



turbulence be based on a property of the turbulence rather than on a

property of the mean flow. In the mid 1960s Glushko [19] took a step

in this direction by proposing that the velocity scale should be the

square root of the kinetic energy of the turbulence, while retaining an

algebraic length scale. The turbulence energy equation may be written

(ref. [20]) as

aq2/2 aq2/2::-r::T au a (_ q2U~)
at + UQ, axQ, + uiuQ, axQ, + axQ, pUQ, + -2- = (22)

The various terms in this equation, from left to right, are the rate

of increase of turbulence energy, the increase of this energy due to

the convection by the mean flow, the production of turbulence energy,

the transport of turbulence energy by turbulent and pressure diffusion,

and, finally, a term that accounts for the dissipation of turbulence

energy into heat. In attempting to solve this equation, the first three

terms can be allowed to stand as they are while the latter two terms,

comprising the turbulent and pressure diffusion and the dissipation,

must be modeled.

Rubesin [21] gives a clear presentation of the original G1ushko

model and extends it to compressible flow. In addition, he introduces

the elliptic terms required for consistency with a full Navier-Stokes

solution. The Glushko model for steady mean flow, including the modeled

terms, may be written as

ij aq,,2
x
/ 2 + V aq,,2

y
/ 2 = v "lay [1 + £ (Ar)] aq2/2 + v£S .. aU i

a a a ay 1J ax.
J

(23)
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where

s:=~+~+;t2
2 2

e:e: = ­
\)

the turbulence kinetic energy

the dimensionless turbulent viscosity

the mean strain rate

and t is the turbulence length scale. To complete the model the

relations

r = I q 2 j2t
\)

e: = H(r)ar

r 0 r 0.75<- <
r - r

0 0

(:0 -0.75) 2
0.75 r 1.25H(r) r < - <= - r

r 0
0

1 1.25 ~-E....
r

0

1. 0 ~ 1.< 0.230 0

t y/o + 0.37 0.23 ~ f < 0.57- =0 12.61

1.48 - y/o 0.57 ~ f < 1.482.42

where

(24)

a = 0.2 c = 3.93

r
o 110 0.4

were suggested by G1ushko. He also proposed the boundary conditions

18



y = 0 q2 = 0

Y + QO q2 = 0

This latter condition is required by the form of the·equations at large

y. The constants and functional relations were chosen to provide agree-

ment with experimental results for flat-plate flows.

While this model is historically interesting, as the first real

break from equilibrium concepts in a practical calculation scheme, it

has a major conceptual shortcoming - that the length scale is still an

algebraically defined quantity defined in terms of distance from the

wall. For more geometrically complicated situations, for example,

corner flows, backward-facing steps, etc., additional ad hoc relations

for the length scale must·be proposed.

From the computational point of view, this model, along with the

other multi-equation models requires an implicit calculation scheme

because of the large range of eigenvalues (i.e., stiffness) associated

with these equations. Given a little care, however, serious computa-

tional difficulties can be avoided. One problem which cannot be avoided

here is the need to specify an additional condition on the inflow

boundary, that is, the initial turbulence energy profile. A procedure

for obtaining such a profile (ref. [22]) is to start the calculation as

a laminar flow with an initial energy distribution given by

f = q~2* (~)2 exp {t [1 _(~)2]} (25)

where q 2*/2 and y*/o are specified constants, and let the calculation
o

simulate a transition process. Beckwith and Bushnell [22] conducted a

parametric study on the effects of varying the initial energy and found

19



that at too low a value the energy simply damps with increasing downstream

distance. This procedure is satisfactory in the absence of any experi­

mental data. Murphy and Rubesin [18] found that if experimental velocity

profiles are to be matched in initiating a calculation, a slightly

inconsistent energy profile can cause the solution to have an initial

jump from the starting condition. This behavior is shown in figure 5

for the flat-plate data of Wieghardt (presented in ref. [5]).

3. TWO-EQUATION MODELS

A much more general eddy viscosity model can be proposed by the

introduction of a differential equation to define the length scale as

well as the velocity scale. This is particularly important when we

consider flows such as those over a backward-facing step or over the

trailing edge of an airfoil. In these cases the distance from the wall

is not well defined and, if a zero- or one-equation model is being used,

some ad hoc assumption must be rnade with regard to the length scale.

Two-equation models provide more general models by permitting the same

length-scale equation to be used, regardless of the flow configuration.

The principal difficulty in proposing such a model is in arriving at the

appropriate form for the new differential equation. Since mixing length

is a wholly artificial concept it is necessary to identify the proposed

length scale with some average-eddy size. Taking the position that all

turbulence properties are probably transported in an analogous fashion,

one can model the length-scale transport equation after the turbulence

kinetic-energy equation. Some authors have chosen not to model the
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actual length scale, but rather a turbulence-field parameter which is

related to it.

One of the earliest two-equation models and the one in most general

use today is that due to Jones and Launder [23J. The second equation

defines a new parameter, the dissipation, which is related to the

length scale defined previously as t = k 3j2 /€. This model can be

written as

de:
pu. -- =

J dX j

where

These constants and functional relations are obtained by matching

experimental data in widely differing flow configurations. Note that

we have retained the symbol k for turbulence energy in this case,

since this model and its descendants are generally known ask~epsilon

models.

As might be expected, this increase in generality is not obtained

without some cost. In particular, the computational work required by

these methods is substantial, and in both time-marching and steady-state
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calculations extreme care must be taken to prevent instabilities from

propagating. These instabilities occur near surfaces where the

turbulence-field variables are rapidly varying. The large variations

in the scales of the problem occurring in this region is reflected in

the computations as stiffness in the governing equations. In a recent

paper, Viegas and Rubesin [24] overcame much of the numerical diffi­

culty by defining wall functions to be satisfied by all the differen­

tial equations, for compressible flow, at small y. This procedure

apparently makes a first-order improvement in terms of the ease with

which these equations can be solved without degrading their accuracy.

Some ad hoc assumptions must still be made, however, in flows where an

unambiguous distance from the wall is not available, for example, the

edge of a backward-facing step.

When the proper initial conditions are available for these higher­

order methods their accuracy is, in general, comparable to that of the

Cebeci-Smith model for flows for which the latter works well (fig. 5).

In addition, they can be uSed in cases for which simpler models would

require' many changes. The cost of these methods is significant, however,

and one should always use the simplest method consistent with the

results sought. For a recent review of the performance of the higher­

order methods Marvin's discussion in reference [25] is useful.

V. REYNOLDS STRESS MODELS

All of the preceding results effectively ignore the question of the

basic validity of the eddy-viscosity concept. Experimental results

obtained over the last 20 years or so have shown that while eddy
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viscosity is a convenient concept from the computational viewpoint, it

has little physical basis. This should come as no surprise since the

fundamental assumption of the arguments based on kinetic theory of the

eddy-viscosity concept requires that, analogous to the mean free path,

some measure of the typical eddy size be small compared with the dimen­

sions of the container. Since the largest eddies have a dimension of

the same order as the boundary-layer thickness, it is not surprising

that, under some conditions, the theory fails to provide good predic­

tions. What is surprising is that the concept works so well as long as

we restrict our attention to flow in zero and favorable pressure

gradients.

A logical next step in the hierarchy of turbulence models is the

Reynolds stress model. We will consider three models in this category

reflecting the development of these methods over the last 15 years.

The earliest Reynolds stress model used routinely in computation

was that due to Bradshaw, Ferris, and Atwell [26]. In their method it

is assumed that the Reynolds shear stress is proportional to the turbu­

lence kinetic energy. A form of the turbulence-energy equation is then

solved for the Reynolds shear stress directly. As with the Glushko

model, the diffusion and dissipation terms must be modeled. This was a

complete break from the eddy-viscosity concept, and the direct link

between Reynolds stresses and the mean field embedded in all the models

discussed previously.

23



The equations for the Bradshaw model may be written as

1 ~ a 2 a 2) aii- p ii !S:. + V~ = T - - DIFF - DISS
2 ax ay xy ay

and

where DIFF is the turbulent diffusion term, modeled as

(
T )1/2

DIFF =;X aay G (f)

and DISS is the dissipation term modeled as

/
3/2

DISS = CLP
)

and the empirical functions Land G are shown in figure 6. Note that

in an equilibrium condition, Production = Dissipation, the dissipation

length scale L is exactly analogous to the mixing length, and this

equation can be used to define it. While this model is a significant

conceptual advance over the Glushko model it suffers a similar short-

coming in terms of generality in that the length scale is still defined

algebraically in terms of the distance from the wall.

A substantially more complicated model is the algebraic Reynolds

stress model proposed by Rodi et al. [27]. This model uses the basic

two-equation model of Jones and Launder as a starting point, but rather

than defining an eddy viscosity, Rodi et al. chose to define the indi-

vidual Reynolds stresses in terms of algebraic relations between the

turbulence energy and the dissipation, or length scale. In the limit

of equilibrium flow this method reduces to the usual Jones-Launder model

24



since the Reynolds shear-stress equation contains the same constitutive

relation for stress as does the original model.

In reference [28], Launder, Reece, and Rodi propose a full Reynolds

stress model providing differential equations for the transport of all

six of the Reynolds stresses, which must be solved simultaneously with

the dissipation equation. These last two methods are still in the rela-

tive1y early research phase and have seen only very limited application

as of this time. As a result their usefulness and generality remain an

open question. For the equations describing these methods the reader

should examine the cited references.

VI. SEPARATED FLOWS

Separated flows have. so far. been the most difficult aerodynamic

flows to predict accurately because 1) reliable experimental data for

separated flow are extremely difficult to acquire. and 2) classical

boundary-layer calculations fail at the separation point as a result of

singularity in the equations. The rationale for considering them here

is that these flows provide a sufficiently hard test for turbulence

models to permit discrimination between various models. As was pointed

out by Goldstein [29]. the singularity in the boundary-layer equations

is associated with the specification of the streamwise pressure gradient

at the separation point. If some parameter other than pressure, for

example, displacement thickness, skin friction, or some bounding stream

function, ~s specified the boundary-layer equations are well behaved
{

despite the presence of the separation.
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Solutions obtained in this manner, so-called inverse solutions to

the boundary-layer equations, have been compared with solutions to the

Navier-Stokes equations for the same distributions of skin friction and

have been found to reproduce all the relevant physical parameters as

long as v/u remains small, that is, as long as the flow is "slender."

The use of inverse boundary-layer methods as test beds for turbulence

models appears to be an economical approach to the evaluation of these

models in the vicinity of separation. Unfortunately, however, if the

pressure is not that which was observed experimentally, no conclusions

with regard to the specific shortcomings of the turbulence model can be

inferred. A subterfuge was proposed by Arielli and Murphy [30], which

permits one to specify both the additional boundary condition required

to avoid the separation point singularity and the streamwise pressure

distribution. This permits the specification of streamwise pressure

distribution while retaining the economy associated with boundary-layer

calculations.

Several investigators. using inverse boundary-layer methods and the

full Navier-Stokes equations, have considered the problem of turbulent

separation and have found that, in general. current models tend to pro­

vide too much mixing, that is, too large a value of skin friction, as

the separation point is approached and too little mixing or too slow a

rate of recovery of skin friction, downstream of reattachment. In an

important aerodynamic flow situation, the shock-wave boundary-layer

interaction, the separation point itself is reasonably well predicted,

but since this is an inertially dominated flow, this should not be taken
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as evidence in favor of the turbulence model. In fact, a reasonable

prediction of the behavior of the mean flow in this case can be deter­

mined from inviscid considerations alone (cf. ref. [31]).

Calculations of the flow of reference [16] (the flow in a

converging-diverging-converging channel, simulating a subsonic diffuser,

but forcing reattachment in the final converging section) using inverse

boundary-layer and full Navier-Stokes procedures, and specifying the

channel configuration rather than the free-stream velocity, predict the

separation point to be in about the correct location, but predict a

velocity gradient in the free stream to be about twice that observed

experimentally. These independent calculations (refs. [32] and [33])

are consistent with each other and with the observation that the zero­

equation models overpredict turbulent mixing in the approach to separa­

tion. Simpson and Collins [34] suggest that the failure of the predic­

tions is caused by inadequate accounting for the Reynolds normal stresses

in the neighborhood of separation. Since it is extremely difficult to

obtain a truly two-dimensional flow in the neighborhood of a separation

point, and equally difficult to obtain reliable measurements in the

near-wall region, evidence to support or reject this hypothesis is

lacking.

Two useful references on the general topic of separated flows are

the AGARD Conference of Separated Flow in 1976 (ref. [35]) and the

Project Squid Summary Report on Colloquium on Flow Separation in 1979

(ref. [36]).
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VII. UNSTEADY AND THREE-DIMENSIONAL FLOWS

In considering unsteady flows we must introduce a new concept, that

of ensemble averaging. In this case we find,that averaging over long

times will introduce a confusion between actual turbulent motion and

at least some of the high-frequency components of the mean motion. To

avoid this confusion, we can consider the averages to take place over

some large number of successive realizations of the same event. For

example, if we consider a sinusoidally varying mean flow we can take a

data reading every time we reach the same point in the cycle, and then

take an average of these readings over many hundreds of cycles. This

procedure is termed ensemble or phase averaging.

Only within the last 5 years or so has the computational capability

become available to permit routine calculation of unsteady and three­

dimensional viscous flows. As a result, turbulence modeling for these

flows has been almost exclusively an adaptation of the two-dimensional

steady models discussed above. As in the steady case, predictions of

unsteady flows in favorable and mildly adverse pressure gradients can

be made with reasonable accuracy as long as the dimensionless frequency is

not too high. At higher frequencies the existing experimental data are

inadequate to permit a firm judgment to be made. References [37] and

[38] provide an introduction to the literature of unsteady turbulent

flows.

For truly three-dimensional flow (e.g., ref. [39]) too few calcula­

tions have been made to permit any general conclusions to be drawn. An

example of some of these calculations is the work of Kussoy, Viegas,

and Horstmann [40].
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VIII. LARGE EDDY SIMULATION

Within the last 5 years, investigators with access to yery large

computers' have been obtaining solutions to the three-dimensional,

unsteady Navier-Stokes equation on a relatively fine mesh. These solu­

tions, for low Reynolds number turbulent flows, have sufficient spatial

and temporal resolution to capture at least some of the turbulent eddy

structure. Moin et a1. [41], as reported by Rubesin [42], have obtained

solutions of a channel flow at a Reynolds number, based on channel half

width, of 13,800. These conditions correspond to the experiment of

Hussain and Reynolds [43]. In figure 7 (taken from ref. [42]), we show

two velocity profiles corresponding roughly to the maxima of the posi­

tive and negative excursions in the instantaneous velocity, together

with the long time average of the resolved velocities. As can be seen,

the appearance of these profiles gives a quite plausible representation

of a turbulent flow. In figure 8 the same long time averaged profile

plotted on the usual turbulent similarity coordinates are shown.

Despite the relative crudeness of the calculation, and the various

assumptions regarding initial conditions and subgrid modeling, these

results provide substantial hope for the ability to compute turbulence

in the long term, and in the nearer term such ca1cu1atiqns may provide

substantial insight into the modeling of parameters which presently

cannot be measured.

IX. SOME CONCLUDING REMARKS

In the foregoing we have considered only relatively simple flows

of the type used to evaluate turbulence models. In a situation in which
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the reader is called upon to make use of the information contained here,

the flow situation will almost certainly be much more complicated. Since

one cannot provide the appropriate information for every application, it

seems more appropriate to provide the reader with an appreciation of

where we are with respect to turbulence modeling, and of how we got

there. With this information and an acquaintance with the material in

the works referenced here, it is hoped that the reader will be in a

better position to make rational judgments when confronted with more

complex problems. Some additional references which may be found useful

are references [44]-[46].

We have not considered any of the difficulties associated with

such complicating factors as heat transfer, mass transfer, and/or chemi­

cal reactions since the problem of turbulence is "sufficient unto the

day." In addition to the references cited here the author has frequently

found the following journals to be helpful: the several Transactions of

the ASME, the International Journal of Heat and Mass Transfer, and the

various publications of the AIAA. Workers in specialized fields other

than aerodynamics will undoubtedly require and be familiar with different

sources.
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LIST OF SYMBOLS

A+ function used in defining near-wall damping in Cebeci-Smith eddy

viscosity relation (ref. [13])

Cf skin friction coefficient, ~w/(1/2)Peuo2

F function defined in equation (3)

G diffusion function in Bradshaw et ale model (ref. [26])

H boundary-layer form factor, o*/e

H1 Head's boundary layer form factor, ~/e (ref. [10])

k turbulence kinetic energy in Jones-Launder model (ref. [23])

L dissipation length scale, model of Bradshaw et ale (ref. [26])

~ mixing length

p pressure

+ +p dimensionless pressure gradient parameter in A

q2/2 kinetic energy of turbulence

Re Reynolds number

T a time period, long relative to the turbulent motion period, but

short compared with mean motion period

t time variable

u,v,w velocities

u. shear velocity

x,y,z spatial coordinates

+y a wall unit Reynolds number

6 boundary-layer thickness

6* displacement thickness

Head's parameter = 0 -

= fO 1 - (Au/p u )dy
e 0o

0* (ref. [10])
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FIGURE CAPTIONS

FIG. 1. History of instantaneous velocity. a) Hot-wire signal.

b) Reynolds decomposition.

FIG. 2. Comparison of experimentally determined velocity; profile with

the Law of the Wall-Law of the Wake. a) Strong adverse pressure gradient

(data of Ludwig-Tillman); ID 1200. x • 2.782 m. b) Zero pressure gra­

dient (data of Wieghardt); ID 1400. x = 3.487 m. c) Strong favorable

pressure gradient (data of Herring and Norbury); ID 2800. x = 2.0 ft.

FIG. 3. Comparison of experimental and predicted velocity profiles.

a) Strong adverse pressure gradient. b) Zero pressure gradient.

c) Strong favorable pressure gradient.

FIG. 4. Comparison of experimentally determined skin friction coeffi­

cient with the prediction of an algebraic eddy viscosity model.

FIG. 5. Comparison of experiment skin friction of a flat plate with

predictions using three eddy viscosity closure models.

FIG. 6. Length scale and dissipation functions for the model of

Bradshaw et ale (ref. [26]).

FIG. 7. Instantaneous velocity profiles and Reynolds averaged velocity

profiles from large eddy simulation calculation.

FIG. 8. Reynolds averaged velocity profile of Fig. 7 compared with the

experimental data of Hussain and Reynolds (ref. [43]).
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