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EXECUTIVE SUMMARY

SOLAR ARRAY SWITCHING POWER
MANAGEMENT TECHNOLOGY FOR SPACECRAFT POWER SYSTEMS

INTRODUCTION

Projected spacecraft utilization for the 1980s and beyond shows a
~growing trend toward extended lifetimes and larger electric power systems
which require improved power control and management, and increase capa-
bility to accommodate multiple missions. It also is likely that these
large space structures will utilize ion propulsion to maximize the pay-

lToad mass fraction.

One method of improving power control and management is offered
by Solar Array Switching Power Management (SASPM).

SASPM is an approach to power management that employs switches to
directly connect groups of solar cells in such a way-as to provide system
voltage regulation, electrical power distribution, and the ability to
reconfigure solar arrays for changing load requirements.

The objective of this study is to identify SASPM concepts and tech-
nology advancements which have the capability of increasing power systems
efficiency and reducing costs. A comparison to conventional power management
approaches was made, and the potential benefits of the SASPM technique in
the areas of cost and weight reduction, reliability enhancement, heat
rejection requirements, reconfiguration flexibility, and ease of growth
were demonstrated. ’

For this study a set of mission characteristics were defined for the
three following selected typical missions:

o Manned low earth orbiting (LEO) platform (250kW average load)

o Unmanned geosynchronous equatorial orbit-(GEO) platform
(50kW average load)

® Unmanned ion propulsion orbit transfer vehicle (IPOTV), 50 to
250kW load.




For each mission, an electrical power system (EPS) and power management
system (PMS) were designed, using both SASPM and-conventional power pro-
cessing techniques. The SASPM and conventional power systems were then
compared primarily on the basis of efficiency, mass, and cost.

The power transfer efficiency for SASPM was computed to be in
excess of 98% for all three missions, while the power transfer efficiency
for a buck regulator system was computed to be greater than 96%. The
potential benefits derived from application of solar array switching
power'management are summarized below: |

Cost of power processing 25 - 67% reduction
Mass of power processing 34 - 64% reduction
Cost and mass of solar array 2% reduction

Mass of spacecraft active radiator 6 - 12% reduction
Cost of spacecraft active radiator 10 - 20% reduction

It is therefore recommended that SASPM development be continued for
general power systems application, and also for the high voltage appli-
cation with ion propulsion. For general poWer systems of medium voltage
(up to 200 volts), the technology is ready now. For ion propulsion,
higher voltage (up to 1000 volts) is required. The necessary technology
advancements that should be addressed are:

1. High voltage solar array technology, primarily in low
earth orbit.

2. High voltage MOSFET technology.

Technologies that would enhance the SASPM concept are fiber optics,
microprocessors, and radiation resistant solar cells.

ii



1.0 MISSION CHARACTERISTICS

In order to determine the effects of solar array segment switching,
specific parameters for the three subject missions had to be identified.
The three missions identified had certain aspects in common:

Use of a photovoltaic solar array power source
Use of solar array switching power management
STS launch and servicing

1990's technology

Use of a dc distribution system

High voltage (>50 Vdc) systems

Use of ion propulsion.

A dc distribution system was chosen to minimize the number of series
elements between the source and the load.

1.1 MANNED LOW EARTH ORBIT (LEQ) PLATFORM DEFINITION

To minimize the atmospheric drag in LEO, and to take advantage of the
possible plasma shielding capability, a concentrator solar array was selected.
Nickel hydrogen batteries were selected over nickel cadmium because of the
reduction in mass, and the projected less sensitive thermal requirements.

Fuel cells were ruled out because of the Targer solar array required to
support electrolysis of the water byproduct. A single phase fluid system
was chosen for thermal control because of the reduced mass over a refrigera-
tion or a heat pipe system. A block diagram of the electrical power system
is shown in Figure 1.

The power platform will be Taunched into LEO by the shuttle transporta-
tion system. After deployment and checkout, various payloads will be brought

on-line.

The SASPM will be required to charge the nickel hydrogen batteries,
while supplying power to payload and housekeeping loads (240 volts). A
dedicated high voltage part of the solar array will supply, through the
SASPM, high voltage power for the ion propulsion engines. This power is
delivered at 800 volts during sunlight periods only.

A summary of the LEO mission characteristics is shown in Table 1.

1-1
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volts.

Table 1. Mission Characteristics Summary

*
Not simultaneous
*

(Number of LEO-GEO trips).

*
Depends upon Van Allen belt exposure

LEO GEO IPOTY

Solar Array Concentrator | Planar Planar
Solar Array Reconfiguration | No Yes Yes
Battery (Ah) NiH, (250) AgH,(150) | NiH,(50)

Full Charge Rate (A) 97 15 5

Trickle Charge Rate (A) 3 2 1
Voltage

Main Bus (Vdc) 200-240 200-260 100-120

Ion Propulsion (Vdc) 800 800 800
Load Power

Payload (kW) 250 50* --

Housekeeping (kW) 25 5 5

Ion Propulsion (kW) 23 5-50* 50-250
Battery Charging Power (kW) | 256 16 3
Minimum Useful 20-30 8-10 *k

Life (yrs)
Orbit (km) =400 -- -

1.2 UNMANNED GEOSYNCHRONOUS EARTH ORBIT (GEO) PLATFORM DEFINITION

For reasons similar to those given for the manned LEQ platform, a dc

important factor in GEO.

The planar array is projected to be
two-thirds the mass of a concentrator array.

1-3

distribution system was chosen, with a main bus voltage range of 200 to 260
GEO missions are mass limited and, therefore, a lightweight planar
array was chosen as the power source.

The increased area is not an




For energy storage silver hydrogen batteries were selected. These
batteries have a higher energy density and, therefore, less mass than nickel
hydrogen, and are projected to have a cycle life of 10 years in GEQ. The
thermal control system is the same as for LEO, the lightest weight system.
A block diagram of the electrical power system is shown in Figure 2.

The GEO platform is launched into LEO, deployed, and checked out.
Ion propulsion engines provide the power for transfer to GEO.

The SASPM will be required.to configure the array for either primary
ion propulsion -or payloads. Except for housekeeping loads, the solar array
is initially configured to supply high voltage to the ion propulsion system.
After transfer to GEQO, the major part of the array will be reconfigured to
supply payloads (at 260 volts). A small part of the array will then supply
high voltage for stationkeeping thrusters. Ion propulsion will operate
only during sunlight periods.

Once in GEQ, the SASPM will be required to charge the silver hydrogen
batteries, while supplying power to payload and housekeeping loads. For
orbit relocation, payloads are shut off, the SASPM reconfigures the array
to supply ion propulsion, and then reconfigures again to the original position
to supply payloads.

A summary of the GEO mission characteristics is given in Table 1.

1.3 UNMANNED ION PROPULSION ORBIT TRANSFER VEHICLE (IPOTV)

As with the other two missions, a dc distribution system was selected.
Since the ion propulsion only operates during sunlight, energy storage is
required only for housekeeping loads (5 kW). A vo]tage'range of 100 to 120
volts is selected for housekeeping loads.

The IPOTV is mass sensitive and, therefore, a planar array was selected.
Nickel hydrogen batteries were selected because of the longer cycle life.
A single phase fluid system was selected because of its mass advantage over
aither a refrigeration or a heat pipe system. A block diagram of the
electrical power system is shown in Figure 3.

1-4
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The IPOTV will be launched into LEO by the shuttle transportation system.
After checkout, the array will be folded and the vehicle will dock to the
manned LEO platform awaiting its first mission. The vehicle will undock,
extend the solar array, dock to a payload and carry it to the desired orbit,
and return to the LEO platform.

The IPOTV makes many trips through the Van Allen belt. This results
in accelerated degradation of the solar array. The high voltage supply to
the ion engines will be affected, and the engine will be throttled back in
proportion to the power and voltage loss. Nominal high voltage for this
study is 800 volts; however, it appears feasible to start out with 960
volts (four 240-volt sections) and allow the voltage to degrade to 720
volts, and then switch in another section. In this way the useful life

.of the array can be extended by a factor of 2. The output power capability
would continue to degrade to a Tower 1limit of 50 kW, at which time the
panels would be replaced.

The SASPM will be required to supply a dedicated low voltage array
section (120 volts) for housekeeping loads, and battery charging. The
rest of the array will be dedicated to the ion propulsion system.

A summary of the mission characteristics for the ion propulsion
orbit transfer vehicle is given in Table 1. (Page 1-3).
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2.0 SOLAR ARRAY SWITCHING

2.1 SASU FUNCTIONS

The analysis of the three proposed missions shows that the SASU must
accomplish several functions. First, it must provide voltage regulation
for the 100 to 260 volt spacecraft buses and the 800 volt ion propulsion
buses. The SASU must also provide the charge control mechanism for the
spacecraft batteries which requires additional control circuitry that can
be modified based on the battery state of health. For the ion propulsion
application, arcing conditions can occur within the ion engines which
result in a short on the ion propulsion power bus. Although the solar
array is in itself current limiting, a required function of the SASU is
to ensure that the solar array power can be diminished to the point that
the arc is extinguished. For the GEO and IPOTV applications, solar array
reconfiguration is advantageous and can be performed by the SASU. Finally,
there are times when solar arrays must be deactivated at LEQ for mainte-
nance and refurbishment. This function can easily be accomplished by the
SASU.

The critical parameter specifications for SASPM are listed in Table 2.
These parameters can be broken into two general categories of dc or steady-
state conditions and ac or time-variant conditions. The dc conditions
require a monitoring and control mechanism that can control related system
parameters within a certain accuracy of resolution. This requirement has
a direct effect on the size of the array segments that must be switched.

For example, a voltage regulation specification of 5 percent requires that
the incremental change in array output capability must be small enough to
maintain the 5 percent accuracy for all bus loading conditions. The ac
conditions (load variations, transient response) set the requirements for
the SASU to respond to perturbations in the power system. The ability of
the SASU to respond to perturbations is a function of the frequency at which
the sections are switched and the size of the array segments that are switched.
Foir example, the designér must decide whether to switch four 1 kW sections
at a fixed frequency or eight 500 watt sections at twice the frequency for a
4 kW load change on the bus. A review of Table 2 shows that the array
sections size and the switching frequency are the two principal design
parameters that must be determined in the design of a SASU. Therefore, a
closer look at these two parameters is in order.

2-1




Transient response
o Turn on/off
o Load/source

Output impedance

Stability

Load varfations/
Characteristics

EMI Susceptibility

Percent Overshoot
Time Period

Ohms
Frequency Range
Phase/Gafn Margin

Watts/Time

Vp-p/Frequency

Table 2. SASPM Critical Parameter Specifications
- SASU
Specification Specification Design Parameters
Regulation
0C voltage Limit Percent Array section size

Array section size
Switching Frequency

Array section size
Switching frequency
Switching frequency

Array, section size
Switching frequency

Array section size
Switching frequency

Battery Charging/Discharging/State-of-Health

DC Current Limit
o Full charge

o Trickle charge

Yol tage Limit
o Temperature
compensated
o Programable

Ampere-Hour
Integration

Cell Voltage
Monitoring

Overtemperature
Protection

DC Current Limit
Transient Response

Stored Energy

SEPS and S/C Bus
Vol tages

Power Requirements

Reconfiguration
Time

Amperes

Volts, °F

Anpere-Hours/
S0C/DOD

volts

°F

Arc Protection {SEPS)

Array section size

Array section size

Switching frequency

Array section size
(dc voltage limit)

Array section size

Amperes
Time Period

Joules

Array section size
Switching frequency

Array section sfze
Switching frequency

Solar Array Reconfiquration

Yolts

Watts

Seconds

Array section size

Array section stize

Switching frequency




2.2 SOLAR ARRAY SWITCH CONFIGURATION

There are four basic configurations that are possible when considering
the solar array switching concept as shown in Figure 4. In the illustrated
examples each solar array segment is equal in size. Each of the four
basic switching configurations can also be combined with one or more of the
other configurations to form many different options for the SASPM concept.
The advantages and disadvantages of each of the four basic switching con-
figurations are discussed below:

1) Series Switching-Series Array. The series switching-series array

configuration bypasses unused array sections with make before

break single-pole, double-throw switches in series with the segments.
This concept controls the open circuit voltage of the array while
the short circuit current of the array is uncontrolled. An
advantage of this configuration for the ion propulsion application
is that the ability to extinguish arcs is automatically incorporated
in the series switching arrangement by the addition of a third
switch position. Another advantage is that the stress on the solar
.cells due to shadows is not a problem, as discussed below. The
disadvantages of this configuration are that the wiring complexity
is increased, and the switchgear is larger and more compliex than

the other configurations. Also, the series connected switches
contribute to the losses when the array power is needed. The
switches are also floating, which requires a more complex drive
circuit. A series blocking diode is required for eclipse periods.

2) Shunt Switching-Series Array. The shunt switching-series array

configuration controls the open circuit voltage of the array by
shorting series array sections. The array short circuit current
is uncontrolled in this configuration. The advantage of this
configuration is that the switches are open when full array

power is required from the load. Therefore, this results in a
highly efficient system at EOL. A disadvantage of this configura-
tion is the number of series solar cells that can be shorted is
limited. In the shorted condition, a weak solar cell (the one
with the lowest short circuit current) can be driven in the

2-3
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reverse direction, which creates overheating of the cell in the
form of hot spots. This condition is especially bad if a section
of the solar array is shadowed. The condition is also more
apparent in the lightweight solar arrays where thermal conductivity
is not as good. This configuration also suffers from increased
wiring complexity and floating switches. Also, arcs may be more
difficult to extinguish for the ion propulsion application, since
the solar array is never disconnected from the ion engines.

Series Switching-Parallel Array. The series switching-parallel

array configuration controls the current of the solar array by
opening or closing parallel array sections. The advantages of this
configuration are that the switches add no additional wiring complexity
to the existing design, simple switch drive electronics can be used.
since the switches may be employed at the ground level, and series
blocking diodes may not be required if the switches have sufficient
reverse blocking voltages. Also, the ability to extinguish ion
‘engine arcs is automatically incorporated and there is no stress

on the array due to shadowing. The diéadvantage to this configura-
tion is that the power dissipation in the switches occurs when the
solar array power is needed by the loads. This dissipation is very
small, however, for high voltage buses.

Shunt Switching-Parallel Array. The shunt switching, parallel-array
configuration controls the short circuit current of the solar array

by shorting parallel array segments. The advantages of the con-
figuration are that the switch dissipation occuré during periods

when excess power is available, and the switch drive electronics

are simple since the switches may be employed at the ground level.
The disadvantages of this configuration are that the shadowed cell
stress is a severe problem since the total array is short circuited,
800 volt switchgear is required, series blocking diodes are required,
and arcs may be more difficult to extinguish for the ion propulsion
appTication since the ion engine is never disconnected from the

solar array.

2-5



The series switching, parallel-array configuration has been selected
for controlling the array sections that supply the spacecraft bus. Switch-
ing current sections is ideal for battery charging, and there is low stress
on the solar array during shadowing. This configuration has the lowest
wiring complexity, simplest switch drive electronics, and the inherent
ability to extinguish in engine areas.

The series switching, series-array configuration was selected for
high voltage ion engine control. The series array segments are ideal for
voltage control in the absence of a battery. This cannot be accomplished
with parallel array segments. The wiring is slightly more complex than
the series switching, parallel array configuration, but the other advantages
are the same.

2.3 SASU SEQUENCING APPROACHES

Once the switch configuration has been selected, then the manner in
which the switches are sequenced must be determined. Five basic sequencing
concepts were derived for the study and are shown in Figure 5. The advantages
of each concept is discussed below.

1) Series Sequenced. The series-sequenced approach uses a shift

register to sequentially switch each array segment. Each array
segment is equal in size. The advantages of this approach are that
the control method is straightforward, the stability of the feed-
back loop is easily determined, and a minimum number of control
lines is required to the shift register. The disadvantages of

this approach are that a large number of switches are required for
fine control of the power bus and a high switching frequency is
required for a fast transient response.

2) Binary Count. The binary count approach uses a binary counter as

the sequencing device. The solar array segment sizes are binary
weighted for this approach. The advantages of this approach over

the series-sequenced appraoch is that the required number of switches

is reduced. This approach, . like the series-sequenced approach,
uses a minimum number of control lines and the control method is
straightforward. The feedback loop stability is also easily de-
termined. A disadvantage of this approach is that the last segments
require larger switches. Also, a very high switch frequency is
required for fast response.

~)
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2-7




3) Binary Count/Sequenced. This approach combines the advantages of

4)

the shift register and the binary counter. The binary counter is

‘used for fine control and the shift register is used to switch

large segments. In this manner, the number of switches are reduced
over the series-sequenced approach and the requirement to switch

large power in the final section is eliminated. Like the first two
approaches, this approach uses a minimum number of control lines,

the control method is straightforward, and the feedback loop stability
is easily determined. This approach also has the same disadvantage

as the first two in that a high switching frequency is required

for fast response. '

Linear/Sequenced. The linear sequenced approach uses a small linear

shunt regulator in conjunction with shift register. The linear
regulator provides the fine control up to the power level in each
array segment. An advantage of this approach is that fine control

can be provided by the linear regulator with a relatively lower
switching frequency in the shift register. This approach also has
increased design flexibility when considering the linear and digital
design tradeoffs. The disadvantages of this approach are that higher
power is dissipated in the linear regulator as compared to the digital
approaches and the stability of the feedback loop is more complex
with the combination of linear and digital elements.

Direct Address. The direct address approach uses a microprocessor

in conjunction with a demultiplexer to provide the switching control.
An advantage of this approach is that several switches could be
addressed simultaneously and thereby reduce the transient response
time. This approach also provides the maximum flexibility in
adapting to vérying spacecraft conditions over the life of the
mission. The disadvantage of this approach is that it .is the most
complex control scheme, and the stability of the feedback loop is
more difficult to determine if multiple array segments were switched
at varying frequencies. Also, the speed of the microprocessor

could be a limiting factor in the achievement of a fast transient
response.
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2.4 SASPM SYSTEM CONCEPT

System concepts were derived for each of the three missions. The LEO
mission concept is shown in Figure 6. Since power must be supplied to both
the spacecraft and the ion propulsion system simultaneously, reconfiguration
of the solar array is not necessary. Each of the power buses has its own
feedback control system. The spacecraft bus feedback control measures bus
voltage and battery current and controls the solar array switching unit
accordingly, through the SASU control logic. A microprocessor controller
measures battery state-of-health and provides battery charge control by
varying the references of the voltage and current error amplifiers. The
ion propulsion bus feedback loop measures the bus voltage and controls its
SASU through control logic. Inputs from the ion propulsion system can
modify the bus voltage and provide for arc protection.

The GEQO mission concept is shown in Figure 7. Solar array reconfigura-
tion is accommodated by a six-pole, double-throw switch. Four parallel
solar array segments are reconfigured into four-series segments in this
arrangement. The SASU control logic must also be reconfigured to transfer
control to the desired power bus and to accommodate the new switching arrange-
ment. The battery and bus control methods are the same as described in the
LEQO mission, except that the battery charge control algorithms are tailored
for GEO. Reconfiguration and ion propulsion system modifications are
accommodated through spacecraft level commands.

The switching concept for the IPOTV mission is shown in Figure 8. A
reconfiguration concept is shown that allows for a 33 percent increase in
the ion propulsion bus voltage to accommodate voltage degradation. Ini-
tially four equal solar array segments are utilized, with the fourth segment
divided into three equal subsegments. The subsegments are switched in
series with the remaining segments to attain the voltage increase. The
monitoring and control methods are much the same as for the LEO mission.

2-9



The SASPM concept has inherent reliability in the number of
switches controlling small segments of the array. A failure of a
switch would reduce the peak power capability of the array, but would
not otherwise affect the power processing function. A failure in a
conventional regulator could result in loss of the power processing
function. Redundancy in the form of parallel switches is easy to
implement on SASPM, while redundant conventional regulator channels
. increases weight and cost rapidly.

Because of the inherent modularity of the SASPM approach, growth
of the system is easy to implement. Since each array segment is '
separately controlled, any number of segments could be added.
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CONVENTIONAL POWER PROCESSING BASELINE

Four basic conventional power processing concepts were identified:

Transformer coupled converter (TCC) system
Buck regulator/charger system

Boost regulator/charger

Shunt regulator/charger,

It was rapidly determined that the fourth candidate (a linear shunt approach)
was not viable for the high power systems being considered because of

excessive thermal control requirements.

Analysis showed the buck regulator system to be the lowest cost and

mass system for the three selected missions.

LEQ Platform Conventional System

The sizing model for the LEQO platform is shown in Figure 9. Sizing
of the conventional system for the LEQO platform was based on the following

assumptions:

The parts count associated with the c1rcu1ts reflects a non-
redundant configuration.

The weight estimate was derived based on actual TRW design,
plus a reduction factor assuming a switching frequency between
20 and 30 kHz.

Each power stage is fused to protect against internal faults.
Overload and overvoltage protection has not been imp]emented.

Conversion efficiency of 96.5 percent for the buck regulator is
based on projected improvements in existing designs.

Shuttle transportation costs were derived assuming a dedicated launch

with full capability utilized:

Dedicated launch $30.2M

29,484 kg $1024/kg

65,000 pounds $465/pound
2-14
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FIGURE 9. LEO Solar Array Switching Power Management EPS Sizing Model

Costs for other system elements were estimatecd basecd on the following

factors:
Cassegranian Concentrator Solar Array
o Projectad manufacturing cost $30/watt
¢ Projected mass 45 W/kg
Planar Solar Array
¢ Projected manufacturing cost $46/watt
e Projected mass 200W/Kq

Pumped fluid radiator

o Projected manufacturing cost $33/watt
e Projected mass 80.6W/Kg
e Heat exchangers $40,000 each
® Projected mass of heat 10 kg each
exchangers
e Plumbing/engineering $20,000/heat exchanger

Power Processors

° Projected manufacturing cost $300/part

e Projected mass Based on projections from
existing designs
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GEO Platform Conventional System

The GEO mission has two power system configurations: one for orbit
transfer or orbit maneuvering, and one in which payloads are supplied
the bulk of the power. The system sizing model is shown in Figure 10.

The sizing assumptions are the same as for the LEQ mission.

IPOTV Mission Conventional System

The concept of the IPOTV power system was to start with a 250 kW array
and use it until it degraded to 55 kW before replacing it. The system
sizing model 1is shown in Figure 11. Sizing assumptions are the same as
the other two missions.

COMPARISON OF SASPM AND CONVENTIONAL SYSTEMS

Since the buck regulator was the best of the three conventional

~ systems analyzed, a comparison of the buck regulator system and SASPM

was made. The comparison parameters for the three missions are as listed
in Tables 3, 4, and 5. The following conclusions were reached as a
result of this study. SASPM offers these benefits over conventional
power system techniques.

o Projected reduction in the cost of power processing:
25 to 67 percent.

e Projected reduction in the mass of power processing
equipment: 17 to 64 percent

e Cost and mass of the solar array was reduced 2 percent for
the LEO and GEO missions. At today's cost, this range of
savings would be $2M to $16M. (Projected 1990s: $.1M to $IM)

e Projected reduction in the mass of the total spacecraft active
radiator: 6 to 12 percent ‘ ‘

e Projected reduction in the cost of the total spacecraft active
radiator: 10 to 20 percent.

In order to proceed with development of the SASPM concept, it became
apparent that certain technology advancements were necessary. These necessary

advancements are:

® Development of space-qualified, high voltage MOSFETS to accommodate
the ion propulsion voltage.

e Development of space-qualified high voltage solar arrays to
accommodate ion engine drive.
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Table 3. LEO MISSION SIZING COMPARISON

Buck Regulator SASPM Delta %

e Mass of Processors, Kg 662 24 421 (64%)
Parts Count (Electrical) 11,193 6,898 4,295 (38%)
Cost @ $300/Part, M$ 4.0 2.3 1.7 (43%)

e Solar Array Requirement, 702,725 687,427 15,302 (2%)
watts
Area, square meters 4,685 4,583 102 (2%)
Mass, Kg 15,616 15,276 340 (2%)

*Cost (incl. transportatiog) 37.2 36.4 0.8 (2%)
M

e Active Radiator Requirement,
watts 19,846 None 19,846 -
Area, square meters 44 - 44 -
Mass, Kg (incl. heat 366 -- 366 -

exchanger)
Cost (incl. transportation)M$ 1.7 -- 1.7 -
e Total Mass, Kg 16,664 15,517 1,127 6.8%
o Total Cost, M$ 42.9 38.7 4.2 9.8%

* This cost is based on projected 1990's cost which is more than an order

of magnitude Tower than today's cost.




Table 4. GEO MISSION SIZING COMPARISON

Power Processor Buck Regulator SASPM Delta %

e Mass of Processors, Kg 109 9] 18 (17%)
Parts Count (Electrical) 3,564 2,508 1,056 (30%)
Cost 0$300/Part, M$
+ Transportation - 1.2 0.9 0.3 (25%)

e Solar Array Requirement, 97,666 95,588 2,078 (2%)
watts

Area, square meters 723 708 15 (2%)
Mass, Kg 488 478 10 (2%)
*Cost, incl transportation, M$ 5.0 4.9 0.1 (2%)

e Active Radiator Requirement, 3,905 None 3,905 -
watts
Area, square meters 8.6 - 8.6 -
Mass, Kg (incl. heat 118 - 118 -

exchangers)
Cost (incl. transportation) M$ 0.7 - 0.7
o Total Mass, Kg AL 569 146 (20%)
e Total Cost, M$ 6.9 5.8 1.1 (16%)

* This cost is based on projected 1990's cost which is more thanan order

of magnitude lower than today's cost.



Table 5.

IPOTV MISSION SIZING SUMMARY

Power Processor Buck Regulator SASPM - Delta %
e Mass of Processors, Kg 116 69 47 (M%)
ggrts Cgunt/(Electr;cal) 5,887 1,938 3,949  (67%)
st @ $300/Part, H .
+ Transportation 1.9 0.6 1.3 (67%)
*e Solar Array Requirement, Kw 250 250 0 --
Area, Square Meters 1,852 1,852 0 --
Mass, Kg 1,250 1,250 0 -~
Cost, incl. transportation, 12.8 12.8 0 -~
M
e Active Radiator Requirement, 10,240 None 10,240 -~
watts
Area, square meters 23 -- 23 -~
Mass, Kg 207 -- 207 -~
Cost, incl. transportation M$ 1.0 - 1.0 --
o Ion Engine Initial Thrust 3.810 5.019 1.209( 324)
Capability, N
e Trip Time - First Round Trip
LEO to GEO and back, days 399 312 87 (22%)
e Total Mass, Kg 1.573 1,319 254 (16%)
e Total Cost, M$ 1.57 13.4 2.3 (15%)

»

Solar array beginning of life

capability is fixed at 250 Kw.by design.



SUMMARY

The éomparison of SASPM control techniques with conventional power
processing techniques indicates that it is possible to reduce costs and
mass of spacecraft power processing by employing the SASPM approach.

The SASPM approach has redundancy features and is inherently more
reliable than conventional methods. Multiple switch failures will not
destroy the function of power processing. Switches failing short will
supply part of the minimum load with no effect on the system. Switches
failing open will degrade the peak power performance to the extent
that solar array strings are lost. |

A power transfer efficienty of 98.5% is achievable using SASPM
with today's technology. Higher efficiency will be possible with
improvements in MOSFET "on" resistance, and the use of CMOS circuitry
for microprocessor functions.

Technology is ready now for medium voltage applications (up to
200 volts). Technology and development is needed for high voltage
missions. For ion propulsion, high voltage solar arrays are necessary.

A major concern is high voltage operation in LEO. It appeérs from
work in progress at Lewis Research Center that planar array technology
may not allow voltages to 800 volts. The concentrator concept may offer
a solution. It may be possible to bias the reflecting cones in such a
manner as to keep the plasma away from the array.

2-21





