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Introduction

The abundance of ammonia (NH 3 ) in the atmosphere of Jupiter [Wildt, 19371

stands in marked contrast to the ready photolysis: NH 3 + by w NH2 + H by solar

radiation in the 160 to 230 rim region [Calvert and Pitts, 19601. In the

absence of recycling mechanisms, all of the Jovian NH 3 should have been

irreversibly converted to hydrazine ( N2H 4 ) and molecular nitrogen (N 2 ) over

the relatively short period of 60 million years [Strobel, 1973; Atreya and

Donahue, 19791. Although some NH 3 is regenerated in the upper atmosphere by

the reaction:

NH2+H+M;NH3+M

substantial amounts are converted to hydrazine via combination of NH 2 free

radicals:

NH2 + NH2 + M -* N 
2 
H 4 + M
	

(2)

Hydrazine loss processes in the upper atmosphere include photolysis to form N2

and H2 [Strobel, 1973; Atreya and Donahue, 1979; Houston and Hawkins, 15821,

reaction with atomic hydrogen [Stief and Payne, 19761 and condensation from

the cold upper atmosphere [,Strobel, 19731. Ammonia is ultimately regenerated

by conversion of N 
2 
H 
4 

and N2 to NH 3 in the planet's hotter interior with

upward convection of the product NH3 [Strobel, 19731. If ground state NH 2 is

promoted by solar radiation to the electronically excited A state, it could

then react with H2 to form NH 3 [McNesby, 19691. However, electronically

excited NH2 could be deactivated in collision with H 2 rather than chemically

react to form NH 3 . Nicodem and Ferris [19731 presented experimental evidence

against any significant contribution from electronically excited NH 2 and

Strobel 119751 and Atreya and Donahue 119791 argue that the average absorption

cross section of NH 2 in the visible is about three orders of magnitude too

small for this process to be significant in the region where most NH 3 is

photochemically destroyed. There is also the possibility of regenerating NH3

if the initial ammonia photoproduct, NH
29
 would react with another trace

species, abstracting an H atom.
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The discovery of phosphine (PH 3 ) as a minor component of the Jovian

atmosphere [Ridgeway, 1974; Ridgeway et al., 1976; Larson et al., 19773 has
led to a great deal of speculation by planetary modelers regarding the role of

PH 3 in the complex atmospheric chemistry of that planet. Since the flash

photolysis experiments of Norrish and Oldershaw [19611 show that elemental
phosphorus (P 

n )is the end photoproduct of the decomposition of PH 3' Prinn and

Lewis [19751 have suggested that the red colorations in the Jovian atmosphere,
in particular the Great Red Spot, are a result of the photochemical production

of red phosphorus particles. The more recent product analysis experiments of

Ferris and Benson [19811 suggest that the initial stable product of the
photodecomposition of PH 3 is P2H 4 which may yield P. upon further reaction.

Strobel 119771 has proposed that the photochemistries of NH 3 and PH 3 are

linked since both PH 3 and NH 3 are present in the Jovian stratosphere and upper

troposphere, absorb solar radiation in the same UV region, and undergo the

same photolysis scheme. Specifically, the reaction

NH  + PH 3 -► NH 3 + PH2	 (3)

would, if the rate were fast enough at Jovian stratospheric temperatures,

regenerate ammonia in the upper atmosphere while at the same time accelerating

the decomposition of PH3 . Regeneration of NH 3 was shown to be the more

significant effect. For reaction (3) to be competitive with reaction (2), the

dominant NH  loss process, Strobel [1977] estimates that its rate would have

to be comparable to the rate for the reaction:

H + PH3 ; H2 + PH2	 (4)

which also contributes to the decomposition of Jovian PH 
3' 

At room

temperature, both reactions (3) and (4) are exothermic, the former by about 24
and the latter by about 25.5 kcal/mole [Okabe, 19781. There has been only one
study of reaction (4) while no measurements of the rate of reaction (3) have

been reported. The H + PH 3 reaction was examined in our, laboratory [Lee et

al., 19761 and we found k 4 = (4.52 _* 0.39) x 10-11 exp( -740 ± 50/T) em3
molecule -1 s -1 over the temperature range 209-495 K. Buchanan and Hanrahan
[1970], in radiolysis studies of PH 3-NH 3 mixtures, found that PH 3 was a very

4
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good scavenger of H and NH  and set an upper limit, of 2-3 kcal/mole for the

activation energies of reactions (3) and (4). Ferris and Bossard [19821

photolyzed PH 3-NH 3 mixtures and suggested that reaction (3) proceeds at room
n

temperature.

Since there have been no direct or indirect studies of the rate of

reaction (3) and because of this reaction's possible importance in

understanding the regeneration of NH 3 and decomposition of PH 3 in the Jovian

atmosphere, we have measured the absolute rate constant for this reaction over

as wide a range of temperature and pressure as experimentally possible. The

technique employed was flash photolysis coupled with detection of NH 2 via

laser induced fluorescence.

Experimental

The experiments described in this study were conducted using the flash

photolysis-laser indue ,ad fluorescence (FP-LIF) technique. Our original flash

photolysis-resonance fluores l :ence apparatus [Klemm and Stief, 1974; Michael

and Lee, 19791 and the modifications to it for radical-molecule reactions

[Stief et al., 1980; Michael et al., 19821 have been described in detail

previously. Details of temperature measurement and control are given in Klemm 	 t

and Stief [19741 and Stief et al. [19801. Specific modifications for the

detection and monitoring of the NH  radical, as well as operational

procedures, have also been recently discussed [Stief et al., 19821. Thus,

only changes specific to this study will be described.

NH  radicals were generated by the flash photolysis of ammonia highly	 i
i

diluted in argon. To spectrally isolate the photoflash, a 175.0 nm

interference filter (Ditric Optics, Inc., skewed FWHM of -13 and +25 nm) was

mounted over the flashlamp. In later experiments, a 206.0 nm interference

filter (Acton Research Corp., skewed FWHM of -15 and +25 nm) was used to

minimize photolysis of PH3 . Both filter combinations yielded identical rate

data.

Detection and monitoring of NH  was accomplished via laser induced

fluorescence [Hancock et al., 1975]. The previously described [Stief et al.,

5
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19823 CW dye laser system and tuning technique were utilized to precisely

adjust output wavelength to either 570.3 nm or 568.2 nm, wavelengths which

correspond to strong NH  absorptions by populations of rotational levels of

the (0,10,0)n vibronic state [Kroll, 19751. Use of either wavelength produced

identical NH  decay constants. A 577.0 nm interference :i.lter (Ditric Optics,

Inc., FWHM t 9.8 nm) was placed in front of the detector to discriminate

against scattered laser radiation. The detector was at right angles to both

the flashlamp and the laser systems. A Melles-Griot sheet polarizes was also

mounted in front of the detector with its plane of polarization perpendicular
e

to that cif the laser system. Thus, the isotropically scattered fluorescent

photons were selectively passed to the detector and not the polarized

scattered 1,aser light. The combination of the polarizer and 568.2 nm

excitation wavelength resulted in a much improved signal-to-noise ratio

compared to our previous work on NH  kinetics [Stief et al., 19821.

Gas handling techniques have been described in detail in previous reports

from this laboratory [Klemm and Stief, 1974; Michael and Lee, 1979; Stief et

al., 1980; Michael et al., 19821. Ammonj,a (Air Products, 99.99%) and

phosphine (Ideal Gas Products, 99.998%) Vrere purified by bulb-to-bulb

distillation at 168 K and 123 K respectively, the middle fraction being

retained in both instances. Typical impurities in the ammonia and in the

phosphine are trace quantities, respectively, of oxygen, nitrogen and water

and hydrogen, nitrogen, and hydrocarbons. Most of these were readily removed

by distillation, but, in any event, these species are known to be virtually

unreactive with the NH  radical. Argon (Matheson, 99.9995%) was used as a

diluent in gas mixtures without further purification. Fresh gas mixtures were

prepared daily.

i

	

Unlike previous reports from this laboratory, in which gas mixtures were 	 i

continuously flowed through the reaction cell, for this study the experiments

	

were carried out under static conditions. Initial experiments showed that an 	 1

aerosol of particulate matter was formed on flash photolysis of reaction

mixtures containing phosphine, ammonia, and argon but not on photolysis of

mixtures containing ammonia and argon only. Mixtures containing phosphine and

argon only did not result in aerosol formation upon exposure to the flash, but

this is as expected if phosphine photolysis was minimized or eliminated by the

6



interference filter on the flashlamp. This phenomenon caused intense laser

light scattering within the reaction cell and resulted in saturation of the

detecting photomultiplier tube, The effect was reduced significantly by the

use of the polarizer described above. Tests indicated that the onset of
y

particulate formation was directly related not only to flash energy but also

to [PH 3 3 and total pressure. It was also inversely related to temperature.

In order to further minimize this phenomenon, it was necessary to limit total

pressure, partial pressure of PH 3 and flash energy. Because low total

pressures were used and had to be accurately regulated, static conditions were

necessary. Even so, all experimental conditions were varied substantially.

Gas mixtures were completely replenished frequently within the reaction cell

and routine diagnostic tests, carried out on first-order decay plots,

indicated that there were no contributions from secondary reactions.

7
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Results

In the experiments reported here, (PH 3 a was s 6 x 10 14 molecules/cm 3 or

greater while CNH 2 ] o was of the order of 5 x 10 11 radicals/cm 3 or less. Thus

pseudo-first-order conditions were achieved with (PH 3 ] >> [NH2 ] and the decay
n

of NH  radicals is given by: 	 {

W NH21 = - 
kobserved t + Zn[NH2 10	(5)

The observed pseudo-first-order decay constant is represented by:

kobserved = 
k3 [PH 3 a + kd	 (61

where k 3 is the bimolecular rate constant for reaction (3) and k d is the first

order rate constant for the diffusional loss of NH  radicals from the reaction

volume viewed by the detector. Accumulated fluorescent counts are

proportional to [NH2 ) and plots of Zn (counts-background) vs time were linear

as required by equation (5). Typical examples are shown in Fig. 1. kobserved

was determined from linear-least-squares analyses of such plots.

Experiments were carried out on a series of reaction mixtures, each set

of mixtures having a constant [NH 3 1 and a varying [PH 3 3 and run at the same

total pressure and temperature. For each [PH 3 ] in the set, experiments were

performed over a range of flash intensity. 	 Under such conditions, equation

(6) predicts that a plot of the measured 
kobserved 

values vs [PH 3 1 will yield

a straight line having a slope of k 3 and an intercept of kd.

Linear-least-squares analysis was used to determine k 3 in this manner. An

example of such a set of experiments is shown in Fig. 2, It was found that

experiments with [PH 3 ] = 0 (included for the determination of k 3 ) agreed

within experimental error with the intercepts of such plots (kd). 	
i

Rate data for the reaction of NH  with PH 3 at the various experimental

conditions employed in this study are presented in Table 1. The error limits

quoted are at the one standard deviation level. The rate constant is

invariant with [PH 3 ], total pressure and flash intensity (i.e., initial [NH2])

and increases with increasing temperature. A plot of Zn k vs 1/T is shown in

8

.^.a •-1 -. ..•mss. r +s r .. :..	 r. r	 ..	 ..,	
Z



Fig. 3, and the best representation for the data over the temperature range

218-456 K is given by:

k 3 = (1.52 ± 0.16) x 10-12 exp(-928 ± 56/T) cm3 molecule-1 s-1

where the errors are given aw, the one standard deviation level. This

expression is shown as a solid line in Fi4, 3.

Discussion

Comparison with previous measurements is not possible since this study

represents the first determination of the rate constant for the reaction NH  +

PH 3 - NH
3
 + PH2 (3). However, there is an estimate available which was made

in order to account for the results of the radiolysis of NH3 - PH 3 mixtures.

Buchanan and Hanrahan [1970] estimated that reactions (3) and (4) would
have an upper limit of 2-3 kcal/mole for their activation energies. Further,

they postulated that neither reaction would have a substantial steric factor

and concluded that the rates of reactions would be within one or two orders of

magnitude of collisional frequency at room temperature. Our determination of

1.84 kcal/mole for the activation energy of reaction (3) and that of 1.47

kcal/mole for that of reaction (4) by Lee et al. [1976] are in moderate
agreement with Buchanan and Hanrahan's estimate. The agreement with their

further estimate is less satisfactory. For reaction (4), Lee et al. obtained

a pre-exponential factor of 4.52 x 10-11 cm 3 molecule -1
 3_ 1 and found k4 =

3.45 x 10-12 cm 3 molecule
-1
 s -1 at 298 K, a factor of 102 slower than

collisional frequency. We find that the pre-exponential factor for reaction

(3) is 1.52 x 10-12 cm 3 molecule-1 s-1 , a factor of 30 smaller than that for

reaction (4), and k 3 = 6.11 x 10-14 cm3 molecule -1 s -1 at 298 K, a factor of 5
x 10 3 slower than collisional frequency. Clearly, the prediction of Buchanan

and Hanrahan regarding the steric factor (and hence the Arrhenius

pre-exponential factor) for reaction (3) is much larger than the experimental

result. This results in a considerable over-estimate of k 3 at all

temperatures.

9
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Since there have been no previous studies of this reaction with which to

compare our results, we thought it instructive to consider reaction (3) from a

theoretical standpoint. In order to determine if our me^,lsured aotivation

elsergy is reasonable, we oarried out a Bond-Energy-Bond Order (8EBO)

calculation according to the methods of Johnston [1966) and incorporating

reoent modifications [Jordan and Kaufman, 1975; Gilliom, 19767. Known values

for the int prnuelear distances and bond energies of NH 2 and PH 3 [Herzberg,

19661 as well as for an N-P single bond (1.67 9 and 70 kcal/mole,

respectively) [Goldwhite, 19817 were used. In order to evaluate the Morse

parameter, 0, it was necessary to estimate the frequency of single bond N-P

and the reasonable value of 700 am `1 was chosen. The selected value is

consistent with the assignment of the N-P stretching frequency to the 680-820

cm-1 region [Rao, 19631. Using these parameters, the BEBO calculation

predicts a barrier height of 2.05 kcal/mole at n PH = 0.904 and n NH = 0.096.

This result implies RNH = 1.673 R and RPH = 1.449 a, meaning that the complex
is very close to the reactants.

These results led us to cons.ruct an abstraction activated complex model

with N-H-P colinear, all HPH angles at 93.3° (the bond angle in PH 3 ) and the

angle of 'the abstracted hydrogen with either of the NH  hydrogens

approximating that in NH 3. The pre-exponential factor for the reaction was

then estimated by using Activated Complex Theory [Laid"ler, 19693, where:

KT	 Q 
A - °—_ h QNH2QPH3

with Q being the partition function of the activated complex. Evaluation of

the translational, rotational, and electronic partition functions for the

reactants and the activated complex and inclusion of one free internal

rotation (consistent with the activated complex model chosen) leads to:

A = 1.18 x 10-8 T-3/2
	

qv

NH2 PH3

q v qv

1
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with q v being the vibrational partition function of a species. Use of the

known vibrational frequen gvles for NH  and PH3 [Nakamoto, 19783 allowed the

evaluation of those vibrational partition functions as a function of

temperature. The only important vibrations for the activated complex should

be the PH2 twist and wag (which were taken as 878 and 636 am -1 , respectively,

by analogy with P2H4 [Durig, 19753) and the two N-H-P bends (which were taken

as 860 and 820 om -1 by analogy with CZHF - [Nakamoto, 19783). These values

were used to evaluate q v 4 as a function of temperature.

The resulting pre-exponential factor is temperature dependent and is

tabulated as a function of temperature in Table 2. Using the 2.05 kcal/mole

activation energy predicted by the BEBO calculation, our theoretical

bimolecular rate constant is also tabulated in Table 2, along with the

experimentally determined rate constant at that particular temperature. While

this theoretical treatment is at best a crude approximation of the actual

reaction dynamics, it is in very good agreement with our experimental results.

Our results for NH2 + PH 3 maybe contrasted with those for the H + PH3

reaction as mentioned above and also with the reaction

OH + PH3 * H2O + PH2	(8)

Fritz et al. [19823 have recently studied this reaction and obtained the result

k8 0 (2.7 ± 0.6) x 10 -11 exp(-155/T) cm 3 molecule'-1 s -1	 (9)

The reactions of isoelectronic NH  and OH radicals with PH 3 provide an

interesting contrast. Reaction (8) is almost twice as exothermic as reaction

(3) (40.3 kcal/mole vs. 24.0 kcal/mole [Okabe, 19783), has a much smaller

activation energy (308 cal/mole vs. 1.84 kcal/mole) and an order of magnitude

higher pre-exponential factor. The Arrhenius parameters and room temperature

rate constants for the reaction of H, OH and NH  with PH 3 are summarized in

Table 3 to facilitate comparison.

11
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Our observations of the formation of a particulate aerosol in extreme

experimental conditions may be compared with the results of Norrish and

0ldershaw [19611. They observed a similar phenomenon in their PH 3 flash

photolysis experiments and attributed it to the formation of small phosphorus

particles produced from the secondary reactions of their primary initial 	
r

photoproduct PH 2 , which would remain suspended in the gas phase if the total

pressure of their system were high enough. Our flashlamp-filter combination

was chosen specifically to minimize PH 3 photolysis and experiments carried out

on PH 3-Ar gas mixtures showed that no particles were being formed from PH3

photolysis. However, in NH3-PH 3-Ar gas mixtures particulate aerosols could be

formed. If the aerosol was of phosphorus particles, th P,.i the PH2 necessary

for a P  formation sequence such as that of Norrish and Oldershaw [19611 or

Ferris and Benson [19811 would have had to have come mostly from reaction (4),

reaction (3) being fifty times slower at 298 K (Table 3). Since we observed

that the formation of particles was directly related to high flash energies

(e.g., high initial CH7 from NH 3 photolysis), high [PH 3 1, and high total

pressures (to suspend the particles in the gas phase), we argue that the

particles formed were indeed phosphorus and that their formation was primarily

due to the reactions of PH 2 radicals formed via the reaction H + PH 3 + PH2 +

H2 (4). "i, occurred only under extreme experimental conditions. Under our

normal 6 ,*erating conditions, no particulate formation was observed and,

because we were directly following [NH 2 I as a function of time, our kinetic

data was not perturbed by secondary reactions. It is clear that more

investigation is needed to determine the mechanism of how PH 2 is converted to

P ry , Moth in the laboratory and possibly on Jupiter.

Conclusions

The potential role of the reactions NH  + PH3 
.0 

NH 3 + PH2 (3) and H + PH3

+ PH2 + H2 (4) in models of the aeronomy or photochemistry of the atmosphere

of Jupiter was outlined in the Introduction. Thus the extrapolation of our
r

present results for reaction (3) and our previous study [Lee et al., 19763 of
reaction (4) to Jovian temperatures is of considerable interest. At 150 K, k

3.2 x 10-15	

3

cm molecule s -1	 s-1.and k 4 = 3.3 x 10-13 em3 molecule-1 

Strobel [19771 has argued that for reaction (3) to be competitive with the

dominant NH  loss process, i.e., combination to form hydrazine (N 2H 4 ), k;

12



should be comparable to k 4 . Since we now find k 3 to be two orders of

magnitude slower than k 4 , it appears that reaction (3) can make only a

negligible contribution to both the recycling of NH 3 and the decomposition of

PH 3 in trI;^ upper atmosphere of Jupiter as Kaye and Strobel 119831 confirm in a

photochemical model of the Jovian tropopause region.

The recycling or inhibition of the photochemical destruction of NH 3 in

the Jovian atmosphere is therefore probably best accounted for at the present

t 14me by a combination of the reaction NH 2 + H M NH 3 (1) and the reaction NH  +

NH  M N 2H 4 (2) [Strobel, 1973; Atreya and Donahue, 19791. The latter is
followed by condensation of N 2H 41 convection to the hot interior, thermal

decomposition of N
2 
H
4
to NN  and finally reaction of NH  with abundant H2 at

the high temperature required to overcome the considerable activation energy

for this reaction. If sufficient N2H
4
 remains in the vapor phase au,.ch that

photolysis or reaction with atonic hydrogen are significant loss processes,

the resulting product N2 can similarly be transported to the hot interior

where the overall reaction N 2 + 3H 2 + 2NH 3 becomes important.
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Table 2. Calculated Tempera ture Dependent Pre-Exponential Factor A(T) and
Bimolecular Rate Constant k for the Reaction NH  + PH3	NH3 + PH2

T(K) A(T)'
kcal: k	 aexpt^l 

218 3.76 x 10 -12 3.30 x 10-14 (2.41 0.40)	 x 10-14

247 3. 18 x 10-12 4.87 x 10 14 ( 3.27 0. 65 )	 x 10-14	 p`

298 2.53 x 10-12 7.93 x 10 14 (6.11 0.60)	 x 10-14

363 2.07 x 10-12 1.20 x 10-13 (1.25 0.19)	 x 10-13

456 1.74	 x 10-12 1.81	 x 10 13 (2.14 0.13)	 x 10-13

a. units are em 3 molecule-1 s-1.

i
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Table 3. Comparison of Room Temperature Rate Constant and Arrhenius
Parameters for Reactions of H, OH and NH  with PH3

Reactant	 k(298 K)	 A	 E	 Reference
cm3 Molecule-1 s-1 

cm3 molecule-1 s-1	
k cal/mole

	

H	 3.45 x 10-12	 4.52 x 10 11	 1.47	 a

OH	 1.6 x 1A
-11

2.7 x 10' 11 	0.31	 b

NH 	 6.11 x 10-14	 1.52 x 1012	 1.84	 c

a. Lee et al., 1976.

b. Fritz et al., 1982:

c., this work.
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Fig. 1. Decay plots

218 K: PPH
247 K3

3
-1 ; 298 K:

s -1 ; 363 K:

11 s -1 . To

Figure Captions

of NH  fluorescent counts vs time at four temperatures.

0 27.3 mtorr, PNH = 342 mtorr, kobserved = 146 ± 12

PH
P	 : 72.4 mtorr3 P NH3 	observed= 302 mtorr, k	 2 219 ± 4
3 

PPH3 = 75.0 mtorr, PNH3 = 250 mtorr, kobserveo ' 270 * 7

PPH3 = 49.3 mtorr, PNH3 = 144 mtorr, kobserved = 417 *-

tal pressure is 2.5 torn for all four experiments.

Fig. 2. Plot of kobserved 
vs 

PH3
P	 at 298 K and 4 torr total pressure.

Individual points denote experiments performed at different flash

intensities, i.e., different values of [NH 2 ]o . The linear least

squares line is given by kobserved 2 (5.46 ± 0.19) x 10-14 em3

molecule- i 3 -1 [PH 3 ] + (52.2 ± 3.0) s-1.

Fig. 3. Arrhenius plot of rate data for the reaction NH  + PH 3 . The linear

least squares line is given by k 3 = (1.52 t 0.16) x 10 -12 
exp(-928 *_

56/T) cm 3 molecule -1 3-1.
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