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ABSTRACT

The calculation of viscous flows with coupling methods
is surveyed. The approximétion levels and concepts are
first outlined, as well as the generalized formulations of
the viscous displdcement over the inviscid flow. Then,
the strongly interacting methods that are based on thin
viscous layers approximations are discussed.

In this way, a matching formulation of the viscous
flow, calculated as a difference with the inviscid overlay-
ing flow,vis suggested, in order to restore approximately
the normal pressure gradient inside of the layers, as well
as to remove the supercritical behaviors, in the Crocco-

Lees sense. This analysis maintains simple viscous inte-

~gral equations. A review is then given of the main numeri-

cal techniques presently available for the coupling problem.
The global state of the art and possible extensions are
looked at through the viscous methods for airfoils. New
results are presented for trailing-edge separation, and

an approximate method is suggested to capture numerically

the viscous interaction under the shock-waves.
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COMPUTATION OF FLOWS INCLUDING STRONG VISCOUS INTERACTIONS
WITH COUPLING METHODS

J.C. LeBalleur

I. INTRODUCTION

High Reynolds numbers flows are characterized by the /1*
existence of very rapidly changing localized phenomena that
closely associate the effects of viscosity and turbulence,
generally contained in the thin layers, and their effect on
the sStructure of non-dissipative flows. A typical example

of such a condition is the shock-boundary layer interaction.

These concentrated ard small-scale phenomena may con-
dition the macroscopic flow completely, owing to the non-
linéarity of the equations which govern them and which gen-
erate complex flow conditions, called strong viscous inter-
actions, in contrast to flows with weak interactions which
are fundamentally different and lead to solutions close to

conventional approximations of inviscid flows.

Notwithstanding the considerable progress made in adap-
ting numerical methods to the resolution of complete Navier-
Stokes equations, which in principle are able to process
strong interacting flows, a purely mathematical approach
to the aerodynamic problem remains difficult to the extent
where it remdins highly dependent upon the accuracy of
the numerical techniqués, the preparation of large enough
turbulence models, the necessary recourse to very fine
meshworks requiring the use of very power, and stildi-un-'

available, computer means.

Accordingly, a more physical approach is present in

all practical numerical aerodynamics. It appears, among

*Numbers in the margin indicate pagination in the original text.
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other places, when introducing equations for boundary
conditions or for simplified local "models", when pre-
paring composite resolution methods based on the coup-
ling of several distinct numerical methods, when it is
necessary to use meshworks adpated to local flow condi-
tions. It is clear that the origin of such methods is
intricately interrelated with the multiple-scale struc-
ture of the flow as well as with the existence of approx-
imated equations and numerical methods adapted to each
scale. The adaptation of these methods to the physics

of the phenomena has often proven to be a source of ef-
ficiency, particularly for relatively modest levels of
viscous approximation. A typical_ example is given by
the difficult calculation of transonic airfoils for which
methods based on inviscid flow and interacting boundary
layer analyses exhibit even better performances than the
Navier-Stokes type analyses, both in terms of computer

costs and their accuracy.

On the long-term, we may conclude that the adapta-
tion of coupling methods to the specific phygical aspects
of high Reynolds numbers should lead, in conjunction with
the development of direct resolution methods, to greater
economy for equal performances, or to the processing of
more complex problems for a given computer cost (three- /2
dimensional flows, for example), or to an indirect devel-
opment of new numerical techniques for resolving Navier-

Stokes equations.

Parts 2 and 3 of this report will succinctly examine
the approximation levels and the gemeral concepts:which
seem to be outlined from current methods of computing
flows with strong viscous interactions. Parts 4, 5 will
discuss methods based on simple viscous approximations,
obtained from Prandtl or'thin layer hypotheses. After

discussing their effects on a computer model by coupling
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with the inviscid flow, we will briefly survey the numer-
ical methods currently capable of resolving a coupling of
this type, which is a basiciproblem whose study is still

very recent and limited. Finally, we will take a lobk at the
capabilities and future prospects for the coupling methods

of this category by examining an example offering a synthesis
of transonic airfoils where various interacting viscous phen-
omena interfere.

2. NUMERICAL APPROXIMATION OF VISCOUS FLOWS: GENERAL
LEVELS OF ANALYSIS AND COUPLING METHODS

It is not within the scope of this brief analysis to
review the various methods used to calculate viscous flows,
as our objective here is simply to offer a qualitative out-
line of the main .approximation methods, the possible approx-

imation levels, and their application limits.

As shown in figure 1, a classification into four lev-
els seems conceivable;, level I combining the various meth-
ods based on a direct resolution, while levels II, III, IV
correspond to the main indirect approaches or coupling meth-
ods. Although relatively strong approximations may be used
for each level, which prohibits a rigorous structural organ-
ization, the general nature of the most complete methods of
each category increases from level IV to level I.

2.1. Methods of Direct Resolution

Level I corresponds to the methods of direct resolution
and includes in particular the complete resolution of the
Navier-Stokes equations, as well as the resolutions limited
to large-scale turbulent structures, with modelization of
fine structures. From a standpoint leaning toward methods

currently usable in applications, level I corresponds to an
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approach which may be qualified as a general approach [l to
4] ‘to the extent that it adopts the same numerical method
and the same system of equations which are uniformly valid
in the entire flow field. We are referring to averaged
Navier-Stokes equations, associated with a turbulence model,
or Navier-Stokes equations truncated by thin layer approxi-

mations [5,6].
2.2. Direct Methods With Equation Commutation

The first extension of the overall approach consists
of retaining a single numerical method, but by commutating
the resolved equations over the complete or simplified sys-
tems [7], figure 2, as a function of the calculation regions.
This approach, similar in its intentions to the methods of
coupling by regions, cannot be regarded identical to it. It
is actually clear that the equation commutation boundaries
thus employed do not in any way materialize distinct regions
of numerical calculation, linked by their boundary conditions-
alone; on the contrary; a numerical ceontinuity of the deri-
vatives at the commutation boundaries is implicitly postu-
lated. The approach of commuting equations by region es-
sentially consists of simplifying the calculations by assum-
ing a priori that part of the equation terms are discarded
in certain regions, in accordance with the precision of the
numerical resolution technique. This simplification may be
completed by optimizing the geometry of the commutation
boundaries.

2.3. Strong Coupling Methods With Division Into Computation
Regions

The equation commutation approach may generate new
mathematical or numerical problems compared to an overall

approach with complete Navier-Stokes equations, in the event
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of a large truncation of these. For example, they will
be associated with order changes in equations with par-
tial derivatives, changes in the domain of dependence and

in the required boundary conditions.

This leads us to level II and to the coupling approach
by separating the computation regions (figure 3) in which
the mathematical and numerical problems are treated separ-
ately, while the overall problem is restored by means of
a rigourous coupling, called strong coupling, between the
boundary conditions of the various sub-regions along their
common boundaries. The equations used in the various sub-
regions are generally either complete Navier-Stokes equa-
tions, or Prandtl or::Euler.equations truncated in thin

layer approximations [8, 9, 10, 1l1].

Changes in the order and nature of equations with
partial derivatives with computation sub-regions forces us
to modulate the number of coupling conditions along the com-
mon or connecting boundaries, and to make selections on the
basis of the physics of the phenomena as well as on the
nature of the local equations. The coupling of aerodynamic
parameters to a connecting boundary no longer leads in this
particular case to a linking of their :normal derivatives to
this boundary, the lack of residual connection being repre-
sentative of the precision of the coupling model, for a

determined division of regions and equations.

Note that the transition from level I to level II
creates a new numerical problem. This consists of making
a strong coupling of boundary layers associated with various
sub~-problems, using iterative or implicit methods in steady
or unsteady conditions. It 'is clear that this major pro-
blem could not be summarized by establishing a computation
flow chart, and in aerodynamics it has been the subject

matter of a limited number of studies esséntially motivated
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by linking the Euler and Prandtl equations (see paragraph
5).

2.4. Methods Of Strong Coupling With Division Into A
System Of Equations

The technique described above of the division into
domains supposes that in each of them the equations re-
solved themselves describe the local behavior of the flow.
In the case of modest approximation 1levels, like that of
the Prandtl equations, such a condition may lead to large
limitations. It should be remarked that such a connecting
technique: is"to be avoided in the analytical methods of
connected asymptotic expansions, in which the calculation
domains associated with the various scales become super-

posed in the same physical domain.

We have found [3, 12 to 15] that the introduction of
overlapping calculation domains, (figure 4) in the formula-
tion of coupled composite methods for calculating viscous
flows at high Reynolds number, could lead to considerable
progress, physically related to the possibility of proces-
sesing the viscous flow in terms of differences with the
fictive inviscid flow which it is the closest to. This

analysis -constitues a generalization of the boundary layer

methods, whether conventional or with strong coupling along

a wall, which we will assume to be plane in order to simpli-

fy the presentation,'iffﬂ and y are the components for the
velocity, p the density and p the pressure, if u, v, p, P
are their homologues for the overlaid inviscid flow, the
equations for the viscous flow, notated|® + @) will be dis-
sociated into a system of inviscid flow equations, notated
@ and into a system of matching viscous equations notated

[@). The unsteady dynamic equations therefore become:

/3
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ox,dy,‘cxy represent the stress tensor components. This
matching formulation of the viscous problem leads to a
very similar resolution as in the method of coupling by
domains, owing to the strong coupling that must be achiev-
ed between and the boundary conditions so that:

0 = lim [f-Ff] with f = {u,v,p,p} (2.3)
S L
We may still notice that the importance of selecting
the external boundary of the viscous layers y = §(z),
which is relatively arbitrary in the method of coupling by
linking the domains, is eliminated.

An advantage of the matching formulation (2.2) appears
clearly by approximating with intermediary assumptions
which fall between Prandtl's assumptions and those of Navier-
Stokes equations for thin layers. We therefore have:
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which, according to (2.3), gives p (z,y) =plz,y).
This approximation of the pressure is much less restric-
tive than that deduced from the Prandtl equations in a
coupling by linking the domains:
.0 Flry)aEl)ep(=d)
H

while the resolution of the parabolic system (2.4) with
U, ‘v, p, P> given by (2.1) is as complex as the resolution
of simple Prandtl equations.

In the event of less extensive simplifications than
(2.4), or of an application of the Navier-Stokes equations
(2.2), the selection of the matching formulation becomes
intricately related to the selection and conditioning of
. the numerical techniques applied to (2.1) and (2.2) as
well as to their coupling. Finally, we will note that at
approximation level II in figure 1, the\division made into
a system of viscous and non-viscous equations implies an
analysis of a strong interacting coupling, which':corres-
ponds to a strict resolution of (2.1) (2.2) (2.3), and
which accounts for the influence exerted by the downstream
flow on the upstream flow. Approximations of this type,
although relatively simplified, have been studied recently
[16, 17, 18]. Conversely, other approaches maintain ap-
proiﬁnations of systems of parabolic equations , resolved
directly from upstream to downstream, which makes them

.4)

(2.5)

/4
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comparable to boundary layer methods for weak interactions
of level IV [19, 20].

2.5. Weak Coupling Methods

Approximation levels I and II correspond to a model-
ization of the viscous flow capable of describing flows
of strong viscous interactions, at least qualitatively,
owing to the viscous equations resolved or to the strong
coupling effect at the inviscid flow, in the case of the
simplest viscous equations. We should still consider that
this ctapacity of processing regions of strong interaction
implies the use of suitably fine interconnections in order
to be effective, for any equation resolved. In turbulent
flows, even for the simplest systems of equations, the
resolution scales should not be coarser than the local
thickness of the viscous layers involved.

Levels III and IV correspond to simplified analyses
whose application generality is smaller, but which remains
the support of most current applications. The most com-
monly used are the boundary layer methods of level IV, used
in conjunction with conventional inviscid flow calculations,
resolved in uncoupled mode. The absence of a coupled reso-
lution comes from the concept of a weak interaction or coup-
ling, related to the asymptotic second order theory of the
boundary layer in laminar cases [21], and to theories of
the same nature in turbulent cases [22,23].

Figure 5 shows the scheme of the simplification
made at the coupling level. 1In a first approximation, the
field of inviscid flows is obtained independently of any
boundary layer. It determines a simplified pressure field
for the boundary layer which makes it possible to calculate
the boundary layer and its displacement thickness in the



first approximation. This makes it possible to determine
the final approximation of the inviscid flow, as well as
that of the boundary layer pressure field. A second order
approximation may then be calculated for the boundary lay-
er, which then always has a normal predetermined pressure
gradient, but which is not zero in the case of a wall cam-
ber. The coupling is "weak" provided that the viscous lay-
er is completely conditioned for a given approximation order
by the inviscid flow upon which no mutual influence is ex-

erted.

In this analysis, the notion of iteration on the vis-
cous displacement thickness is absent and is replaced by
a direct and single correction. Any shortcoming in such
a single correction precisely marks the appearance of phen-
omena of strong viscous interactions, related to the separ-
ations, shock waves, training édge, as well as to the ne-
cessity for multiple layered models if we still want to
use asymptotic theories [23 to 31] without being able to
eliminate the appearance of a strong coupling problem.

A characteristic property of a weak asymptotic coup-
ling is that it leads to the resolution of a parabolic
system, for the viscous problem, in which we do not know
the effect exerted by the downstream flow on the upstream
flow. Such an influence can be determined only through
the boundary conditions set by the inviscid flow, and
which is therefore totally eliminated for a supersonic
external flow, or even in the approximation of a one-

dimensional subsonic inviscid flow.

The corresponding simplification made of the resolu-
tion can therefore be carried out upstream to downstream,
and has been the subject of transpositions in methods
abandoning the simple Prandtl equations for less restric-
tive equations, qualified at level Iv in figurel of the <

10



parabolic approximations of the Navier-Stokes equations.
In this case, the Navier-Stokes equations were first
subjected to thin layer approximations, which consisted

of eliminating the viscous diffusion terms according to
Ox, if Ox represents the direction of the main flow. This
simplification of levels I or II is not self-sufficient in
the general case where the system of equations is complet-
ely parabolized in the direction of positive x's, particu-
lary in the presence of subsondc flow regions [32, 33].

We may therefore speak of systems of elliptical equations
because of the pressure field, provided that the systems
remain parabolic either when the pressure is fixed, or
when its mean longitudinal variation along x is fixed,
while its secondary variation in plane y0z is calculated
[34], or when the longitudinal pressure variation is also
calculated upstream to downstream, but at the cost of a
quasi-one-dimensional approximation and of a pressure

change in the momentum equation according to Ox [35].

In all of the cases, the switch from such a parabol-
ized weak coupling problem to an elliptical strong coup-
ling problem of level I or II, implies the addition of an
iteration on the pressure, capable of eliminating at con-
vergence the various approximations used for each parabol-
ized iteration [16, 17, 34, 36].

2.6. Intermediary Methods Between Weak And Strong Couplings

Figure 1, of level III, shows examples of this type
of analysis. The first may be given through an progressive
extension of the methods of computing aixfoils. Starting
with the obvious short-coming-of a weak coupling approach,
an extension toward the investigation of a strong coupling
was progressively developed, by means of iterations on the
viscous displacement effect. Although the approximgtion
levels obtained differed considerably between the different

11
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methods, for example [15, 29, 37 to 40], either because

of the use of smoothings or relatively arbitrary modeli-
zations of the displacement thickness, or due to numeri-
cally or analytically incomplete coupling techniques in
regard to separations, trailing edges, boundary layer/sheck
wave interactions or calculation meshings, it is clear that
the overall variation should lead to strong coupling meth-
ods of level II.

A second category of intermediary methods between
weak and strong couplings is given by forming a model of
inviscid flow separations. A first example is given here
by calculating inviscid flows containing vortex sheets
issuing from predetermined separation lines [41]. A second
example is that of farming models bf large separations by
calculating free isobar boundaries in an inviscid flow.

These models are especially used in stall problems [42].
3. DBOUNDARY CONDITIONS OF INVISCID FLOWS - DISPLACEMENT

The methods of calculating inviscid flows is based
on the slip condition expressing wall tightness, arnd on
the Joukowski condition which when used seems to recall
alone that the objective is to form a model of a viscous
flow. The calculation also brings to light, in regard to
weak solutions, the slip sheets through which the normal
velocity and pressure are continuous.

If the physical problem is approached by analyzing
a viscous flow, at the scale of a continous medium, such
slip conditions become impossible for any Reynolds number
and it is the asymptoti¢ theory ' of the boundary layer
which tells us that the external non-viscous flow to be
considered is subjected to these slip conditions, in a
first approximation. These slip conditions therefore

acquire an origin related to the viscosity. At the



second approximation order, a normal non-zero velocity on
the walls, as well as a normal velocity and pressure dis-
continuity on the slip sheets, express the viscous displace
ment effect on the residual inviscid flow region. If in-
dices 1 and 2 designate the successive orders of approxima-

tion, we have for example:

J - a-{i @« Qeynolcs ]
& (z) /f’f“i](x,o} : ﬁ-f_o//[f’f"'//x,oj -[(_}-‘7;](:,}‘)/ ‘/i { (31)
[‘az"‘](x,o) ’.':T /P' “ J"/{.:,a) ]

3.1. Strong Coupling Along Adjoining Regions

The transposition of these conditions to coupling
problems at finite Reynolds number was initiated by Crocco
and Lees [43] to calculate supersonic separations in a
strong coupling approach along adjoining regions (figure 6)
using the Prandtl equations for 0<y<8§(x), & being the phys-
ical thickness of the boundary layer. In the most usual
case where only one boundary condition of viscous origin
in y = §(xz) is needed for 'determining the inviscid flow,
the relationship used by Crocco and Lees is general, since
it is based only on the integration of only one equation
of continuity in y. If XK(x) is the wall camber:

13
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This displacement formulation §*(x) is exempt from approx-
imation other than that associated with the calculation of

[oul Geyy).

Other methods of introducing the coupling condition (3.2)
in the calculation of inviscid flows are frequently used. It
may seem more convenient to consider that there is either no
flow through the boundary of the inviscid flow, and we are
then speaking of a displacement concept, or that this bound-
ary is simply based on the wall. In the two cases, a cer-
tain equivalence with (3.2) may be obtained by considering

an approximated analytical shift of (3.2) from y = §(x) in

y = y(x). The equation of non-viscous continuity gives:
r _ r i 1 df’a B
[T]{I,Y)-[u_](z'a)—(y J)/(’T W/(—Z’,Y) P (3.3)
which leads to a slip condition if y = 6*, an injection /6

condition if ¥y = 0 and if the corresponding expressions
for 6*(x):

; Pz
[y = 5= o (34)
. J M
[el’](xlﬂ) = E‘/F“J_/(x,o) PR (3.5)

. J
J J/x)/("f—]{x,)’) -//[fujfx,y) -[F‘ff(x,y)/’./! (s.6)

The displacement formulations (3.4) (3.5) (3.6) are still
approached, as well as the equivalence with (3.2). The

14



asymptotic validity of this equivalence when #_.. is not
automatic where the expansion order (3.3) depends on the
order of dpu/dx, a quantity often not bound when

in the asymptotic theories with multiple layers. The
formulations (3.4) (3.5) may still be outlined from any

approximation by selecting new definitions for §#*(z).

3.2, Stong Coupling Along Overlapping Regions

Such a change in the definition of §#*(x) is easily
done by introducing (figure 7) overlapping calculation
regions over which the wviscous:equations’are segmented:. .
as described in paragraph 2.4. 1In this case, the simple
integration of the continuity equation (2.2) in y gives,

since

[e U]{x,oj = 71— /(’” J’j{x,o}

8tz) [e¢Jiz.0) =/~//F“]{z,,u) (62 ey f %

(3.7)

This generalization of the definition of &§(x) takes into
account the normal pressure gradients inside the viscous
layer, through variations, in y of the viscous term oo and of
the non-viscous term pu; these may possibly be rapid, even
discontinuous, unlike boundary layer analyses. A schemat-
ic illustration is given in figure 8, for the case where

(/1) = ¢(x,y) is assumed to be a continuous function.

A formulation of &%(x) adapated to the displacement

concept may likewise be defined:

15
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Zaff"fj(z,;) % = v/.[f;‘z](x,;() %

All things considered, use of a displacement thickness to
formulate a coupling problem is in no: way the same as us+

ing boundary layer approximations.

4. SIMPLE APPROXIMATIONS OF THE VISCOUS FLOW - INFLUENCE
OF A STRONG COUPLING

For both historical and practical reasons, current

coupling methods' have been mainly developed on the basis

of boundary layer assumptions. We will confine ourselves
in the remainder of this report to this class of methods,
using either Prandtl:iequations, or a similar extension of
thin layer equations, described in paragraph 2.4, in which
the pressure EYx,y) is identified with that of the non-vis-
cous calculation p(x,y).

4.1. Separation and Reverse Flow Regions

The boundary layer problem, subjected to the Prandtl
equations and decoupled from the inviscid flow, must be
formed by an external boundary layer condition, for which
the pressure p(x, §) has been used for a long time in the
same way as in the asymptotic theories of weak interactions.
We thus know the singular behavior pf Goldstein [44] for
"square roots" offered by solutions near a position of zero
friction in two~dimensional steady flows, a behavior also
offered by integral boundary layer methods [12]. In un-
steady flows [45] or thrée-dimensional flows [46]), the
integral methods demonstrate a different type of singu-

larities which are formed of discontinuities of integral

16



thicknesses associated with the weak solutions of equa-
tion systems, which are no longer initially localized in
reverse flow regions, and which might explain certain num-
erical anomalies found in the solution of the Prandtl un-
steady equations with reverse flows and a set pressure
field. '

However, we were able to show that these singular-
behaviors should not be confused with a validity limit of
the Prandtl equations, or with an abrupt separation from
the viscous layer and from .the wall, but that they result
from ther pressure selected for the external boundary con-
dition. When the pressure becomes a calculation unknown,
either by formulating an inverse problem subjected to an
external condition, or by coupling with the inviscid flow,
consistent and realistic solutions were obtained for small
separations [12, 47 to 55]. The same behavior was observed
for unsteady conditions [45]. Yetit still clear that that
the Prandtl problem for strong couplings with the external
inviscid flow no longer constitutes a parabolic system
free of downstream effects, even without the reverse flows,
owing to the boundary condition, unknown a priori, formed
by the external pressure distribution with coupling lef-
fect (figure 6).

4.2. Downstream Influence On The Upstream In Supersonic
And Transonic Flows

The essential question raised by the matching calcu-
lation of the Prandtl and;EUIer'equations is the following:
is ' the elliptical nature of the unsteady Navier-Shokes
equations 'alsoz - found in the coupling model when the
inviscid flow is locally supersonic so that the down-
stream influence on the upstream cannot have an exclus-

ively non-visous origin? Since Crocco-Lées' first work, a

17
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a long investigation was conducted [12, 14, 56 to 59] and
the answer found was positive for "subcritical" viscous

layers, and negative for "supercritical layers."

In the‘subcritical case, the coupling of hyperbolic
non-viscous equations with parabolic viscous equations
leadsito a problem of initial conditions which is improperly
presented, to the extent where an exponential amplification
of any initial disturbance occurs on a short scale, corres-
ponding to the boundary layer thickness, approximately,
according to a branching solutions process. The aspect of
an improperly presented problem is eliminated if one of the
boundary conditions is transferred from upstream to down-
stream, which reveals the elliptical nature of the model.
Furthermore, the branching process generally makes it pos-
sible to introduce such a downstream boundary condition as
a purely optional constraint which is the case in the coup- -
ling 'model .foy the boundary conditions currently applied
to the downstream in Navier-Stokes type calculations. The
occurrence of a downtream to upstream influence due to the
coupling effect also finds a theoretical support in strong
interaction asymptotic theories, such as the triple-deck
laminar model, for example. We were also able to verify
numexically that the supersonic triple-deck equations are
also asymptotic solutions of the coupling model, when the
Reynolds number moves toward infinity [27], figure 9.

In the supercritical case, the elliptical nature of
the viscous equations is only partially found in Chlocco-~
Lees coupling model, by means of weak solutions whose
pressure jumps suddenly . transform the supercritical lay-
ers into subcritical laYers, each time a downstream in-
fluénce on the upstream is locally indispensable. The
supercritical behavior isitherefore found agains near

the downstream after passing a "critical point," where
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the stability required of the solution plays the role of a sup-
Blementary downstream condition for the subcritical region [59].
A simple interpretation of the behavior patterns of the model in
the vicinity of jumps and critical points may be directly deduced
from the local behavioral patterns of the branching solutions, as
well as the stabilizing boundary conditions needed, see figures
10 to 11.

The preceding gaps in the Crocco-Lees model are not related
to the abproximations used to solve the Prandtel equations if an
integral method is used, as was often believed to be the case,
but are actually due to the simplified pressure field EYx) =
p(x,8) of the viscous layer. 1In an integral method the rela-
tionship (3.2) leads to a guasi-linear relationship between the
viscous deflection{@.(%) and the pressure gradient in y = 8(x):

_

8- BT F .0 (4.1)

Dl'vanisheS'Ua zero for separations or for reattachments where the
pressure gradient cannot be any value, but must be §*(dp/dx) =
—(C3/D2) to assure the regularity of the solutions. D2 reduces
to zero at the critical points, where the regularity forces
8.(%/p,) . The symmetry of the Goldstein and Crocco-Lees
singula;ities may be noted for the coupling model for adjoining

regions. The relationship (4.1) -or simply

/""@.'sgg_,c. | -2 (4.2)
is a deterﬁinant for the branching solutions, which are stable
according to x if B < 0, and unstable if B > 0. For an attach-
ed layer, the unstable case corresponds to a subcritical be-
havior and to an elliptical type problem. Note, however, that

in the case of a separation, D, changes its sign, and therefore

1
so does B, and this leads to table branching solutions in the

separated region and the downstream effecti.on the upstreamchas the
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result of selecting stable solutions at the reattachment
point, figure 12. 1In the case of a local solution of the
Prandtl equations, we are left [57] with a relationship
analogous with (4.2), demonstrating the importance of the
local Mach number M in supercritical behaviors:

. 5 _ .
Ve, .5/ 717%—”'7? 4 (4.3)
The limit € + 0 often being singular, the behavior of the
branching solutions is generally not deduced directly from
(4.3), see [3, 12, 15]. Nevertheless, it follows from

(4.3) that the supercritical behaviors (B < 0) can be de=
rived only from the presence of supersonic viscous regions,
‘and’ that they are highly dependent upon the selection of

the boundary § in the matching model. Any subcritical
coupling may thus be converted into a supercritical coup-
ling, by selecting a boundary y = 8(x) farther away from

the wall [3].

The subcritical or supercritical nature of Crocco-Lees
therefore is not an intrinsic property of the viscous layer,
but ofi the adjoiningcoupling model*([3, 15]. Its physical /8
interpretation should therefore call on the external in-
viscid flow. We may thus note that the supercritical be-
havior of a supersonic separation at increasing Mach number
appears only when the focalization shock wave approaches
until it reaches the external boundary of the viscous layer,
with any penetration inside the viscous layer being excluded
by the calculation model and being simulated by a pressure
jump, figure 13.
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4.3. Approximated Treatment Of the Normal Pressure Gradient.
Matching Formulation

The shortcomings just described of the simple Crocco-
Lees model for processing flows with strong viscous inter-
action in supersonic states, as well as in transonic states
(M #1.20), are the result of a too simplified pressure
field p(z) = p(x,8). However, we have found [3, 12, 13, 15]
that it is quite easy to discard these shortcomings by
establishing a matching formulation of the viscous calcula-
tion, corresponding to the viscous calculation regions and
the overldpping non-viscous regions, figure 7, as described
in paragraph 2.4., and if the approximation over the pressure
becomes p (xz,y) = plxz,y).

By retaining only Prandtl's viscous term in the system
(2.2), we obtain by integrating in y the equation of motion
along x and its first moment relative to u:

| o [ [T ], Tr-iliey) ¢

| -};{//eu By |-l te,0) = 26e,0) - %1/""]@5‘) 7 (4.4)
|
!
|

.(_)'.)_//pa F”’]{z}{)d}/ /Ioau](za)_ e’ P - 2/ [" “]‘;/5( (4.5)
while the equation of motion in [x, §(x)] gives the
entrainment equation:
with “v / <.d) * (4.6)

T
! . oz - 72, }
| “’W‘)/ ‘¥ 7 f'/ eu[3w-2)fy] ) 9)

The approximation p(x,y) = p(x,y) also discards the
last term in (4.4) and in (4.5). If we define the dgeneral-
ized integral thicknesses for motion and kinetic energy in
an analogous mode to that adopted for the displacement
thickness in (3.7):
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[J’(.c) y 9"{.:)][(’13](;,0) ;/[F“’- ?‘z’](x,‘t{) a} 1 ' (4.7)

) ‘ J:(JJ) a(z,a) -a/’[JL-E](I‘y} a}(

We obtain integral equations very close to those derived
with the Prandtl equations:

48 48'+28 du

= T2 9t e dz:]fx") (4.8)
48" 8" oput  , I ‘

L I PO AL (4.9)

Note, however, that the kinetic energy equation (4.9)
requires a modelization of a term for the normal pressure
gradient ¢p, related to the variation of 3p/%x in y in (4.5),
whereas the entrainment equation (4.6) does not require it.
A certain approximation is still present, however, if the

c entrainment equation (4.6) is transformed so that only the
following terms occur: p(x,o), u(x,o0l), vlixz,0):

[ [dr _ 488, 48 dea/ _f
[ & "t T (z,0) (4.10)

Besides the benefit of accounting for an approximated
normal pressure gradient, the matching formulation (3.7)

(4.7 to 4.10) leads us to replace the integral B in (4.3)
with an integral B' [12] for the analysis of supercritical

behaviors:
‘ < lm // HLE #(y) = nonviscous
} €0 yr Mt 4 M(y) = viscous (4.11)

' The first improvement, commdn to (3.7) (4.7 to 4.11)

22



is to totally discard the relatively arbitary role of

the adjoining boundary y = &§(x). Secondly, the term

(1_M?) in (4.3), generator of supercritical behaviors

when M>1, is replaced by (M2-M2?), a term which is most /9
likely always positive. We were thus able to conclude

[12] that the coupling along overlapping regions always
leads to subcritical behaviors, where the downstream in-
fuelnce on the upstream is fully observed, and where the
pressure distributions on the walls p(x,0) are always con-
tinuous. Consequently, the possible shock waves always
generate by focalization within the non-viscous calculation
region, which may even occur within the viscous layers, fig-
ure 1l4. 1In these intense cases of normal pressure gradient,
a second order may be applied a posteriori to the approxima-
tion p(z,y) = p(z,y) .in the form:

| 2R L k() [ent- o2 [ (z.y) (4.12)
b9

K(x) is a mean camber of the stream'lines, which may be
indistinguishable from that of the walls or mean lines of
waves only in regions of weak interactions. At the wall, or
at the center of a wake, we obtain:

p(z,0) - plx,0) = K(x) [8§*(x) = 6(x)] (4.13]
Finally, it should be pointed out that the super-
critical behaviors, eliminated in the preceding overlap-
ping coupling should still be possible in the coupling

by adding a displacement thickness, where relationship
(4.11) becomes:

lﬁf'c’i’fa [/ '#] Z f-M:M‘ (4.14)

an integral in which the first term may always be negative,
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threshold of transition to supercritical behavior
therefore being essentially M = 2 for a flat plate tur-
bulent layer.

5. NUMERICAL METHODS FOR STRONG COUPLINGS

The simplifications brought to the resolution of the
viscous fluid, at level II in figure 1, by segmentation
of the calculation regions or of the equations used, have
another role of artificially generating a strong coupling
numerical problem. 1In the case of a coupling by adjoining
regions, it is necessary to assure a rigorous compatibility
of the boundary conditions of the various sub-problems on
their common boundaries. Since the nonlinearity of the
viscous equations in practice makes an iterative solution
inevitable, it may be assumed that the problem remains
virtually the same in the coupling by segmentation of the

equations, with overlapping calculation regions.
5.1. Nature Of The Problem

This strong coupling of the boundary conditions over
the interfaces of the various constituent calculations re-
quires a less rigorous numerical resolution than that used
in each subproblem, with the risk of degenerating the
strong coupling treaetment into a weak coupling approxima-
tion. This condition is reinforced by the high sensiti-
vity of the inviscid flow calculations to the accuraconf
the numerical treatment of the boundary conditions. It
is even more sensitive if we consider that in thin layer
Vviscous problems, the coupling effect alone can change
the mathematical nature of the behavior of the various
subproblems, via branching solutions reviewed in paragraph
4.2 and lead to differences of about 1 between the solu-

tions subjected to a rigour coupling and those derived
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with an appromixated coupling.

If the finite differences methods are used, for
example, the coupling must be made in each discretiza-
tion node of the interface with the consistent numeri-
cal schemes, compable to those used in each region. The
interpolation over the interface is conceivable in the
case of discontinuous meshes, provided that it is consis-
tent with the numerical séheme order, and with the regions
of mathematical influence. Conversely, the use of smooth-
ings or filtering is to be discarded, unless the technique
may be reduced to the insertion of a numerical dissipation,
which is evanescent when the discretization step leads to

Zero.

If we consider the solution of evolving problems, the
same problem with a strong coupling may be overcome at
each time step to avoid a viscous resolution inconsistent
in time or a weak interaction approach. In the case of
iterative relaxation or pseudo-unsteady methods, in which
only the final solution matters, the stability in time may
be disregarded. Conversely, coupling errors at each iter-
ation should not augment and a specific stability study
should be considered. The specificity and difficulty of
such a study is due to the fact that although it is nec-
essary to analyze the magnitudes bérdering over the coup-
ling interface, error increases is managed by an operator
calling on the resolution of the subproblems adjacent to
'this interface, which defines a mathematical problem over °
a space whose dimension is larger than that of the inter-

face where the coupling errors are studied.
Yet, it is clear that, apart from unusual circumstan-

ces, the definition of an iterative coupling method may be
reduced to a simple definition of a calculation flow chart,

25



in the case of a strong coupling. 1In the first place,

it is necessary for the coupling to select. consistent
numerical schemes, at least in terms of space, observing
not only the dependency domains of theiequations of

each subregion calculated separately, but also the real
dependency domain of the coupled mathematical problem,
specifically accounting for the possible branching solu-
tions. For example, the consistency will not be obtained
for the coupling of the Euler and Prandtl equations along
a locally supersonic boundary, with attached buscritical
boundary layer, if the schemes with differences totally
decentered upstream are used and if, at least for quanti-
fying the coupling relationships, one of them does not
escape this choice. On the contrary, we have shown in
this case, the advantége of a decentering toward downstream
[13].

In the second place, the generality of an iterative
coupling method implies that the complex stability problem
is mastered, for the purpose of adapting the relaxation
techniques, i.e. modulating the stabilizing relaxation
coefficients as a function of time intlervals and local
spaces, as well as of the aerodynamic magnitudes. This
constraint is similar, to the necessity of calculating,
in an explic¢it unsteady numerical method, the local maximum
timé interval compatible with the stability of the calcula-
tion as a function of the local space interval.

The elimination of this constraint has for a long
time led to unstable iterations for boundary layer calcu-
lations over airfoils and to a relatively arbitrary use of
smoothing techniques. These instabilities, which are purely
numerical, are influenced by the weak or strong aspect of
the local viscous coupling interaction, but they are not
always absent if the discretization interval is small
enough. They particularly appear for flat plate boundary
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layers [60]. Figure 15 gives an illustration relative
to the inviscid flow - unsteady boundary layer coupling
[61] near a uniform flow over a flat plate. It shows
that, all other things being equal, a slight reduction
in the space interval or increase in the time interval
is sufficient for switching from a stabler:goupling iter-

ation to an unstable iteration.

Finally, a reduction.of the numerical instabilities
of explicit type simple.iterative coupling techniques,
may obviously be investigated in the development of
methods which process the coupling in a more implicit
manner, for each iteration, or based on more general

nonlinear numerical techniques.
5.2. Behavioral Law of The Steady Boundary Layer

Most of the viscous - nonviscous numerical coupling
methods have a slightly implicit nature, for reasons of
simplicity, application generality and interchangeability
of the viscous and nonviscous modules. Recourse to vis-
cous modules using Navier-Stokes equations, which are com-
plete or in the approximation of thin layérs, remains
rare in the coupling methods [8 to 11, 32 to 34] for the
. part specific to the coupling. Conversely, more accurate
methods are outlined in the case of simple viscous approx-

imations as described in paragraph 4.

In the case of integral boundary layer methods, the
problem to solve is essentiall§ that of an inviscid flow
whose boundary conditions are no"longer known in advance.
On the contrary, these become solutions of argystem df
ordinary differéntial equations on the boundary as, for
example (3.7) (4.8) (4.9), relating the pressure p(x,0),
the angular direction of the flow) @/ ,) as well as the
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viscous thicknesses. After a few eliminations, we may
extract the relationship between ¥7z0) and p(xz,0) actual-
ly applied to the inviscid flow:

4,9-”:6”% fll (5.1)

z is measured along the boundary of the inviscid flow -
Ay, Az, 43, §* depend on other differentail equations, on
the initial values of the viscous thicknesses as well as

on nonviscous variations ‘@) and p(z). Equation (5.1)
leads to highly nonlinear behaviors; 4£) is reduced to zero
during separations or reattachments, 4, is reduced to zerb
at the critical points when these were not eliminated. The
small scale term 8* leads to phenomena of branching solu-
tions, whose importanée was reviewed and which lead to the

inclugion of supplementary downstream boudnary conditons.

In the case where the integral boundary layer methods
are replaced by local Prandtl viscous equations, the beha-
vior of the viscous boundary, as a boundary condition of
the inviscid flow, remains appreciably thé same as (5.1),
at least if we confine ourselves to an analysis of distur-
bances around a solution

[ 8y(%,0):, p(zp)] :

!4,[a-o,].iz LY (5.1)

a relationship to compare with (4.2) (4.3) (4.11) (4.14).
Use of the fundamental relationship (5.1) as a closing
boundary condition of an inviscid flow calculation there-
fore represents in a schematic form the coupling problem
to be solved, in the case of thin viscous layers. Note
that the viscous relationship (5.l1) does not give the
variables/@(z0)' and p(xz,0) a symmetrical role; only the
pressure has a function in the form of a derivative. This
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major difference with the nonviscous problem undoubtedly
is due to the thin layer aspect more than to the viscous

approximations used.
5.3. Methods QOf Initial Supersonic Conditions

The local function of relationship (5.1) initially
led to an investigation of supersonic solutions to the
strong coupling problem. In this case, the apparent simpli-
fication of the initial conditions methods, proceding from
upstream to downstream with simultaneous resolution of (5.1)
was widely used by Crocco-Lees and numerous successors [32,
33, 43, 59, 62 to 66] particularly in the case of a simple
wave. However, we know that the unstable branching solutions
reésult in an incorrectly defined problem, requiring a tech-
nique of resolution by successive probes over an initial
disturbance, so as to select, when convergence is reached,
a solutionhaving a behavior or stability which.is adapted
to downstream conditions. The scheme in figure 16 shows
that the initial disturbance e was conventionally produced
on the pressure in subcritical cases, whereas it was pro-
duced over the initial position of the pressure jump and
thus enabling the solution to cross a critical point lo-
cated farther downstream, in the most supercritical cases,
and without singularities.

In practice, such a resolution is extremely difficult
and lacks generality. It is virtually unachievable as scon
as«the region where the strong interaction begins, i.e. the
disturbahce region, is not known in advance, or as soon as /1
successive strong interactions are present, a fortiori if

they mutually interfere with each other.
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5.4. Pseudo-Unsteady Methods

.The first important improvement was suggested by Werle-
Vatsa [67 to 69] for simple wave type external supersonic
flows in which the nonviscous calculation is reduced to a
simple local algebraic relationship between the pressure
and direction of the flow. By means of a slip coupling
over the displacement surface, we obtain :

p, = - B a*mx (5.2)
Werle-Vatsals basic idea was simply'.to replace the coupling
problem with akfictitious problem of variation obtained:byvre-
placing the tefm Géx with [G;x - 5%]}'and calculating the
asumptotic state when ¢ + «® using a numerical method of
alternatingAdirections with two steps, the first being implicit
in (y,t), the second in (x,t). If we consider, for example, the
equation of motion in xz which contains the only unsteady term:

Pu u, = pv u, = 8[6;; - 6;] + [e uy]y (5.3)

y

we obtain schematically to pass from time n to time (n+1):

Py asd an : l"l.
[(o‘“‘z*t’“‘}]mi-‘ﬁ[(‘r;:)-72;([‘ s )j,‘[éa;]}

I3

(5.4)
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fhe first half time step leads to a conventional calcu-
lation of the boundary layer where‘G;;, and therefore

Py is applied. It is resolved upstream to downstream, as
the linearization of the equations calls on the preceding
time step introduced to avoid singular behaviors at the
separations. The second half time step is reduced to:

2

2 (647 | 254"t F 4 54 (5.5

£ n+l _ £ )" _
B (Gxx) B(dxx)
which leads to the simple resolution of the tridiagonal
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matrices for 6% n+l

, after discretization. The method

was extended by Napolitano, Werle, Davis [69] to semi-
unlimited incompressible external flows within the frame-
work of laminar triple-deck equations. In this case, the
albegraic relationship (5.2) should be replaced by a Cauchy
integral (5.6) which makes the half-time step more complex
(5.7):

F T S I
T TW O J. z5 d (5.6)
PN ) %mv ﬂ; . z/ﬂ [J:rul_ z}-fu‘! ; )—"'] J
(Jz:) 7 Y Tz, 8 5 (5.7)
After discretization (5.7) leads for 6*n+1 to an algebraic

- system exhibiting a full matrix, but with diagonal domin-
ance. A relaxation iteration is therefore necessary, in
incompressible flows, to solve the second half time step

by successive inversions of simple tridiagonal matrices.

A qudite differerit pseudo-unsteady method was suggested
by Briley, McDonald [70] and was used by Gleyzes, Cousteix,
Bonnet [71] to calculate short transitional separation bulbs
of leading edges, in incompressible flows, using a simpli-
fied local strong coupling approach. The basic idea was
to use real unsteady equations of the boundary layer, while
retaining the steady invisé&id flow equations. The resolu-
tion is also pseudo-unsteady, to the extent where the bound-
ary layer is calculated from the nonviscous pressure field
of the preceding instant, the inviscid flow being adjusted
a posteriori as a steady flow under the most recently cal-
culated displacement effect. This simple technique is

still justified only by the obtainment of asymptotic steady
solutions when t > «, '

5.5. Direct Or Inverse Methods Of Relaxation

This principle of this class of methods lies on a more
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rigorous formulation and on an extension of ¢onventional
iterative methods, used to improve the weak coupling
techniques at the cost of a few successive approximations

over the displacement thickness.

The strong coupling is obtained here for a rigorous
convergence of the successive decoupled resolutions of the
inviscid flow and unsteady boundary layers problems, while
excluding any arbitrary smoothing technique. The stability
of the iteration is controlled by sub-relaxation [3, 13, 39,
72, 73]. The linkage of the ségmented viscous and nonvis-
cous calculations isiquite convenient and leads to a broad
generality of use in subsonic, transonic or supersonic states.
The downstream influence on the upstream in supersonic flows
may be obtainéd automatically [3, 13, 15], as in pseudo-
unsteady techniques, by directly applying the appropriate
boundary condtions downstream, whether strong successive
mutually interfering interactions, or Streams not reducing
to a simple wave are involved. The counterpart of this
generality appears, for certain cases, in the preliminary
calculations required for the coupling iteration. However,
experience has shown [3, 13, 15, 39, 77] that this coupling
iteration may be easily compete with those required to cal-
culate inviscid flows, in the case of subsonci or transonic
relaxation methods. In this case, the coupling iteration
appears as an explicit relaxation technique for the vis-
cous boundary condition (5.1) applied to inviscid flows,
and the increased computer costs associated with viscosity
is limited. | |

Considering that relationship (5.1) becomes identified
with a boundary layer resolution, the coupling  iteration,
called direct or inverse, depending on whether we are sol-
ving for the cycle (n+l1) a direct or inverse type nonviscous
problem: )
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) +1 _
" Direct : o™ . N =t A ) (5.8)
| : _e’f_‘_]"”. A 6tk

Inverse [d-t 5 4, 54, h (5.9)

For the direct method, if we assume that the inviscid
flow is an operator which relates a pressure pn+1(x) to a
given angularidistribution ¢*=z) , the inclusion of (5.8)
leads to operator!# related to the iteration of the overall

fixed point:

8%c) = F[0')] (5.10)

Likewise, when A, may be reduced to zero owing to a

1
separation, the resolution (5.8) should be avoided and,
assuming that an inverse inviscid flow operator correlates
| @*(z) with the data of pn(x), by addirig relationship (5.9),

integrated in x, we obtain an inverse fixed point iteration;
p"l(z) = ¢ p™(x)] (5.11)

The adoption of one of the two techniques (5.10) (5.11),
or even their joint use in an alternating combined method
(5.10) or (5.11) as a function of the predefined regions
6n boundary 0x, were used by Lock [39], Lineberg, Steger
[74), Le Balleur [61, 72], Carter [73], Melnik, Chow, Mead
[26, 29], among many other authors. In all of these cases,
the method was stabilized by a large sub-relaxationfw, in-
dependent .from =z, determined without any other criterion

than the previous numerical experiénce:

0" . 0%a) ¢ w[f[e'(z}] - 9'“’)/ g (5.12)
B ‘

The lack of generality of the previous approach was,
however, eliminated by the present author through a study
of approximated stability [13] permitting a local calculation
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of w(x). The study shows that operator F of (5.10),
linearized around €0%:),, appreciably implies that the
harmonic distributions of disturbance‘;7'9/1)'.-'0‘/:)] are
specific functions and that the corresponding approxi-
mation of the specific complex values of F is py, that

of G being u; with:

/lp./(llsf /p:

-4 (5.13)

M designates the local Mach number of the nonviscous flow,
a the harmonic frequency, B is a parameter of viscous
form related with B’ in (4.11), or (A,/4;) in (5.1).

The .highest specific value vo (x) or ui(x) makes it pos-
sible to determine w(x), highly dependend upon x like

Lo Oor M1 (see [13]), while a local over-relaxation is not
te be exluded.

If R(a) énd;l(d)designate the real and imaginary parts
of u, for examble, the stability of (5.12) will be obtained
if:

1.R

« - —
w(z) $ 2Wpt (A ) Dopl = (- I S (5.14)

In the direct case (5.10), a discretization step,
small Ax increases the highest frequency o of the possible
disturbances and reduces the value of w(x) in the direct
problem (5.10), while w must be zero at separation or re-
attachment points where 4,= 0, B+ ©, o = ». In inverse
mode (5.11), however, the cancellation of u; leads to these
points at w = 1.

Numerically, the local calculation of w(x) shows that
the direct mode relaxation (5.10) is well conditioned for
attached boundary layers, the inverse relaxation on the

pressure (5.11l) is also near separated layers or when it
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is close to being near..separated layers.
5.6. Implicit Linearized Method

Besides the dual nature of the preceding behavior,
physically related to a dominant influence of the inviscid
flow or the boundary layer for the pressure deterimination,
depending on whether the boundary layer is more attlached
or more separated, the fact that there is a stronger: re-
course to a sub-relaxation when Az is smaller shows the
explicit nature of theumethod (5.10) as well as the pro-
bable advantage of a more implicit method. The idea of
a Newton method for solving the discrétized equation (5.10)
was suggested by Burne, Rubbert, Nark [60]. Accordingly,
for each iteration, we must determine the inviscid flow
PZJ.
are expressed if we select . for variables p(x) and §*(z),

and the boundary layer sz influence matrices. They

discretized in p; and 6} in the inviscid flow, in E; and
Gg in the boundary layer:

2

BB (5-8") : (5.15) /13

58 8 (5-F)

For iteration (n+1) we may therefore adopt the solution
of the linearized coupled problem which is expressed in the

form of a matrix:

| ’ - 2an )=? ,.--R" #n A pn -
LR T (1P ) [P ) s PE pmr) ]
(5.16)

;4 ,Jqula J’:;:-M- ()'—"', 5,;[(,‘- ;‘)* (}",- ﬁ'}]

If the nonlinear effects on sz and sz are weak,
the convergence must be rapid. Each iteration is still

complex, requiring the inversion of a full matrix.[I - Pan]

35



and above all ah::estimate of the influence matrices P" and
Bn, a priori a costly evaluation within the framework of
finite differences methods, particularly in transonic flows.
Little information is currently availableé about this method,
although its use is indicated by Thiede [54]. A very sim-
ilar technique is described by Arieli, Murhpy [76] for

pseudo-direct calculations of the boundary layer.
5.7. Semi-Inverse Relaxation Methods

The the practical standpoint, the complexity of the
method described above as well as the mixed type relaxation
bterative methods (direct or inverse by regions) leads us
to suggest [3, 13 to 15, 75] a new relaxation iteration for
separated boundary laYer regions or those on the verge of
reaching this state.  This method may be qualified as semi-
inverse in that only the boundary layer problem is processed
in inverse mode, the given data being either the direction
of the external flow .®%x), or the displacement thickness
§**(x). As shown in figure 17, &%x) gives a double pres-
sure predictor for each iteration, one given by the inviscid
flow pan), the other given by the boundary'ilayer p(zx), the
problem _being to correct “fﬁﬁ iteratively so that pn(x)
will converge near p(zx).

An approximated stability analysis of the direct or
inverse coupling iterations described in paragraph 5.4
enabled us to offer a solution to this problem. We may
notice that if the correction selected [&"k)- %)/ is such
that the disturbance [pn+1(x) - p*(x)] in the inviscid flow
is exactly [p(z) - p"(x)], the new distribution . e~) 1is
identical to the result of an inverse calculation of the
inviscid flow subjected to p(x). The chainage of such an
inverse calculation simulated for the inviscid flow and a
true inverse calculation for the boundary layer, therefore
reproduces iteration (5.11) and may be stabilized like it,

36



by a local calculation of a relaxation coefficient w(x),
according to (5.13) (5.14). The analysis must still be
completed by an appropriate technique in order to solve

the problem of small inverse disturbances, of the Prandtl-
Glauert type, enabling [/é“l)- @'(z)] to be calculated from
[plx) - pn(x)]. We have shown [13] that a harmonic anal-
ysis makes it possible to reduce each frequency mode o -

to a local algebraic relationships whose association with
with the relaxation (5.13) (5.14) leads us to the following
corrections, if U"(z) and U(z) designate the velocities re-

lated to the pressures p”? (z) and p(zx):

Subsonic points: o S8/T y JU 1 U

T B VIl T dx U d (5.17) ~
Supersonic points gt BN L - 1"‘#/
P P I 7 v ry B

by adopting a_: o = (w/A), the dependency of the preceding

local correctzgﬁs on:#* with respect to a are finally elim-
inated. Among other.advantages, the semi-inverse iteration
(5.17) requires only a detection of the coupling errors on
the pressure gradient. As a result, it can easily be alter-
nated with the direct iteration (5.12) as a function of the
local form parameter of the viscous layer, without ever lead-
ing to discontinuous pressure distributions during the course
of the convergence, for any number of regions resolved in in-
verse mode, or for any modifications made during the itera-
tions.

For example, this combined method was used to .calculate
_ the supersonic separation on a compression bar, in a laminar
or turbulent flow, on the assumption of a simple wave, by
solving a well-defined problem directly with a zero pressure
gradient at the last calculation point, figures 18 and 19.
It was also applied to calculate symmetrical transonic air-
foils in theories of 'small disturbances with shock or lead-
ing edge separation and to capture numerically the'strong
interaction at the base of a shock over a fine mesh, figures
20 to 22.
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A semi-inverse slightly different correction was
suggested by Carter [78] more recently. For each itera-
tion, the correction is made of the displacement thick-
ness §*"(x) and not of the angular direction of the flow.
In the incompressible case, for example, the correctioniak{

is expressed in a local algebraic form:

§2"*L _ g sa" | %n ] (5.18)

in which Q is a relaxation coefficent, even over-relaxa-
tion coefficient (1 < © < 2). This method was recently
used by Kwon, Pletcher [79], Whitfield et al. [80].

It is interesting to note that there is an analogy
between (5.18) and (5.17) in the subsonic case. If we
assume, for example, that the coupling is obtained by
inclusion of the displacement thickness, or & (d8*/dz),

the derivation of (5.18) directly gives:

R L T w0 ¥ o A SR N iy | (5.19)

PZ3 dr U dx Ut i

The rigorous identity of the formulations (5.17) (5.18)
should therefore be obtained for the incohpressible case,
if Q@ = [BAx/wd§#*B-Ax)]. The analogy (5.17) (5.19) also
shows the ambiguity of the notion of over-relaxation or
subrelaxation in (5.17) (5.18), the subrelaxation in
figure 17 occurring in (5.17) only at the concept level,
the over-relaxation Q of (5.18) being weighted by the
multiplicative factor d&*.

Finally, let us recall that the use of non-automatized

semi-inverse type techniques was first mentioned by Kuhn
[81, 82].
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5.8. Semi-implicit Methods

Recent trials have been carried out to develop methods
which are partially free of the explicit nature of the re-
laxation techniques described in paragraphs 5.5 and 5.7, but
leading to simpler solutions than Newton's method in para-
graph 5.6.

A" first analysis was suggested by Veldman [83] in the
case of unlimited incompressible flows for which the rate
of disturbance induced on the viscous layer is given by a
homologous Cauchy integral of (5.6), if the coupling is ob-
tained by a distribution o? sources on the wall:

| ‘,““”’fi{;xl.’; 5 "‘5’%‘ (u3") (5.20)

After the discretization, the velocity distribution
u, Or pressure distribution p; becomes associated, by virtue
of (5.20) with the displacement thickness distribution 62
by a linear form whose coefficients Aij’ predominantly dia-
gonal, can be calculated directly. We may express:

Inviscid flow: p2+1- 4., §intl = 5 4., 6§n+1 + 3
>

§éhematically, the boundary layer appears in a dis-
crete form like an appreciably‘lowegjtriangualr matrix oper-

ator Bij:

6*n+1 n+l n+l
i

- B =.L. B D, +.%L. B.,. p.

Boundary Layer: ii i jet 77 J a3t 13 * g

It is clear that the iteration indices n and (n+1)
were selected in (5.21) and (5.22) so that a resolution
worked’out from upstream to downstream may implicitly
solve the first members in station 7, the second members
being known, according to a Gauss-Seidel type technique.
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Like the Gauss-Seidel technique, the method (5.21) (5.22) can
also be over-relaxed.

A second semi-implicit analysis developed by Wai, Yoshihara
[84] for calculations of transonic airfoils in a small distur-

bance approximation. The potential problem:
V(1M 20 ) B r gy = O (5.23)

g (x,0) - flz) 4 @a) (5.24)
is solved, in the inviscid flow where ;@/z) by the Murman-Cole
relaxation method, implicit column-wise along y, semi-implicit or
implicit in x, depending on the decentering applied to.¢x and ¢xx:
In the inviscid flow, the boundary layer behavioral relationship

i (5.1) gives:

.
¢ny,0) = f(x) + b(z) . + elx) (5.25)

a relationship in which b(x) and e¢(x) should be calculated by the
other boundary layer equations. If this calculation is performed
from upstream to downstream while scanning the columns at the same
time for ¢, it is clear that (5.25) (5.23) may be solved simultan-
eously in semi-implicit mode, exactly like for inviscid flows, with
the same discretization for ¢yiand ¢xx'm The main advantage is that
the interactive treatment (5.25), even when discreticized in semi-
implicit mode for ¢xx' the improvement being that of a a Gauss-Seid-
el technique, in analogy with (5.21) (5.22).

The simultaneous relaxation of the integral boundary layer
equations and of the stream function, through successive implicit
scannings by columns, was also indicated by Moses, Jones, O'Brien
[85] in the case of separated ssubsonic flows. It is used by Ghose,
Kline::[86] in the calculation of diffusers.

6. SYNTHESIS EXAMPLE - CALCULATION OF AIRFOILS
Among the methods of calculating compressible flows of viscous

fluids past airfoils, using coupling methods like those used in

the approximations in paragraphs 4 and 5,
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we may mention those of Bavitz [37], Bauer, Korn [38],
Lock, Collyer, Firmin, Jones [39], Melnik, Chow, Mead
[29), Wai, Yoshihara [84], Nandanam, Stanewsky, Inger
[40], Le Balleur [15], such a list not being limitative.
We are not interested here in the comparative performan-
ces of the methods from a prac¢tical standpoint, most still
being the subject matter of current developments and gen-
erally providing more accurate results than currently us-
ablé Navier-Stokes solvers [B87]. What we are looking for
here is simply an example of a synthesis calculation, dir-
ectly usable in applications, combining various viscous
interactions mutally influencing each other (trailing edge,
shock-boundary layer interaction, separation), and reveal-
ing the development of methods for an effective treatment
of strong couplings and those offering a complete enough
methodology to completely describe the viscous flow at
high Reynolds number, in a direct extension of numerical
techniques developed for inviscid flows.

6.1. Bavitz, de Bauer, Korn et al. Methods

In these first methods of calculating airfoils in
viscous flows, the approximations used for the coupling are
still close to the weak coupling methods. The wake is still
not taken into account. The displacemement effect of the
boundary layers is obtained by altering the airfoil design
geometry after adding the displacement thickness. The
stabilization and convergence of the coupling iterations
are relatively uncertain and incorporate smoothings or ex-
trapolations of §*(x), an empirical processing of the trail-
ing edge region being used as a compensation in the Bavitz
method. The inviscid flow is calculated using the poten-
tial Garabedian, Korn method. The nonconservative form is
mos often preferred owing to a certain error compensation
bétauseé the viscous effects at the base of the shock are

not taken into account, the mesh being selected so as to
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extend the comprdssion under the shock far enough to avoid
any separation in the boundary layer calculation [37].

6.2. Collyer, Lock et al. Methods

The investigation of more complete methods for strong
interacting phenomena was initiated by Lock and his asso-’
ciates by first solving the inviscid flow using small dis-
turbances transonic techniques, figure 23, then using Gara-
bedian'siand Korn's potential method, and this was inde-
pendently of the practical performances of the analyses men-
tioned above. Figure 23 recalls that the wake effects were
introduced in the form of a normal velocity jump, corres-
ponding to the displacement effect (3.5) and in the form of
a tangential velocity or pressure jump associated with the
wake curve effect of the type (4.13). The curve of the
stream lines under consideration is still a mean curva-
ture. Furthermore, in the case of the complete potential
equation, the wake conditions are applied to a mesh line
and not to the viscous wake itself. The separations are
not processed.

Compared to the preceding methods, the main improvements
besides treating the wake are that the normal velocity on
the airfoil wall is processed to determine the displace-
ment effect without altering the design geometry, the sim-
ul taneous iterétion on the viscous effects and on the
potential calculation, the replacement of the smoothing
techniques on 6* with a uniform viscous sub-relaxation,
determined empirically without altering the solution when
convergence is reached. The latter improvement consisted
of simulating as close as possible the pressure jumps of
the shock waves provided by the potential calculation, by=
weighting the conservative and nonconservative numerical
techniques. No special viscous processing was introduced

for the shock-boundary layer interaction.
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6.3. Melnik, Chow, Mead Method

Like the method just described, this anlysis is
applied to airfoils free of separations, based on the
Green integral method ofr boundary layer and wake cal-
culations, and does not introduce any special processing
for the strong interaction at the base of the shock waves.
Figure 24 recalls that, excluding the trailing edge region,
the viscous boundary conditions applied to the inviscid
flow are similar to the method of Lock et al., the condi-
tions on the wake always being applied to a slightly dif-
ferent line than that of the real wake.

The improvement of the methods consists of using the
Jameson potential calculation in a conservative form, and
using a sophisticated processing of the strong turbulent
interaction at the leading edge: the latter is based on an
asymptotic multi-deck analysis, figure 25, and guarantees
a rational behavior of the mdoel at the infinite limit of
the Reynolds number. From the practical standpoint, we
should notice in figure 25 that the viscous calculation
model incorporates a non-irrotational normal pressure gra-
dient in the external layer. This is expressed in the po-
tential calculation by a local modulation of the tradition-
al coupling boundary conditions at the leading edge, figure
24, It generally léads to overvalued pressure jumps on the

wake in the immédiate vicinity of the trailing edge.
6.4. Nandaman, Stanewsky, Inger Method.

This method is simpler thant the two preceding ones,
except for the processing of the shock-boundary layer
interaction. It uses the Jameson potential method, in a

conservative and nonconservative form, as well as an inte-

~gral method for the boundary layer. The wake is not computed.
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The separations are not processed. The coupling is obtained
by altering the design geometry of the airfoil by adding

a displacement thickness subjected to a large smoothing,
particularly in the shock region.

The method would therefore be comparable to those
described in paragraph 6.1l., if a more sophisticated proces-
sing of the shock~boundary layer interaction.were not incor-
porated. The latter appears as a separate module whose role
is to determine as accurately as possible the state of the
boundary layer after the shock, and to provide a more real-

istic estimate of the pressure on the wall in the shock re-

~gion. This module is based on Inger's non+asymptotic multi-

deck analysis [88]. The results are better if the compres-
sion applied to the Inger module, theoretically that of a
straight shock, is that of a maximum deflecting oblique
shock.

6.5. Wai, Yoshihara Method

The method is a recent development and is used for the
potential flow of a simple small trahnsonic :small disturbances
calculation. The boundary lyaer and the wake are calculated
using an integral method, including separations. The first.
feature consists of a simultaneous resolution of the poten-
tial small disturbances equations and of the viscous bound-
ary condition (5.1), during the relaxation by columniasso-.
¢iated with the Murman-Cole technique. This process, eli-
cited in paragraph 5.8, is semi-implicit in that the scan-
nings per columns must be repeated to assure the convergence.
Conversely, the interactive processing of the viscous calcu-
lation eliminates the singularity problems at the separation.

The second feature of the method is to replace the

modelization, called viscous ramp modelization, with an
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integral calculation of the boundary layer in the shock
region, in the case of separation, in the absence of re-~
solving the strong coupling with a fine enough mesh. The
modelization schematically consists of establishing a ramp
for the displacement surface with an angle which corres-
ponds to a predetermined recompression level on a shock
polar, where the empiricism leads to the selection of an
intermediary value between the sonic deviation and the max-
imum deviation [89]. This modelization of §* is necessary
not only for improving the comparison with the experiment,
but also to assure the convergence of the calculation.

6.6. Le Balleur Method

The method uses for the inviscid flow the potential
calculation of Chattot, Coulombeix, Tom& [90] which solves
the equation in a conservative form, with the Jameson arti-
fical viscosity. The boundary layer, laminar or turbulent,
as well as the wake are calculated with an integral method
including the reverse flows, the wake being calculated with
or without the dissymetry effect. The matching formulation
.of paragrph 4.3 for the inviscid flow leads to boundary
conditions on the wall and on the wake which are similar to
those of Lock et al. or of Melnik et al.. Yet the geometry
of the wake line is here still periodically dapated during
the calculation to coincide with the mean viscous wake line.
The method does not provide ‘any special processing of the
leading edge, but strictly observes here the strong coupling
assicated with the matching formulation. The curvature ef-
fect applied '(4.13) incorporates the averaged estimates of
K(x), which are distinct for the upper and lower half-wakes.

The coupling is achieved by a direct o6r semi-inverse
relaxation iteration, as a function of the instantaneous
local form parameter of the viscous layer. This iteration,

described in paragraphs 5.5 and 5.7, is comparable to that
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used for calculating the inviscid flow, figure 26. The
pressure gradient along the wall is estimated in the in-
viscid f£low using centered schemes for subsonic flows,

and decentered downtream for supersonic flows. The bound-
ary layer transition at the wake is assimilated with a con-
tinuous process for the inviscid flow as well as for 6*(zx),
but discbntinuous for the viscous calculation. The method
automatically captures the modification brought to the

pressure distrdbutions by the viscosity in the immediate

vicinity of the trailing edge, provided that the meshes
are approximately -the local thickness of the viscous layer,
whether there is a separation or not.

Figures 27 to 32 show the use of the method at low
velocities and at high incidences, for the NACA 0012 airfoil.
On this airfoil, the calculation approaches the stall inci-
dence, with a 70% .upper-surface-separation from the chord:
and a reattachment in the wake. In the present state of
of the method's development, this calculation at an inci-
dence of 16° is possible only by observing the wake dis-
symetry, figures 27 and 31 show the aspect ratio.change
associated with its mean line. Figures 39 to 41 show by the
plotting of the stream lines and of the iso-Mach lines that
the calculation method restores not only the distant invis-
cid flow, but also the mean viscous flow in detail.

Figures 33 and 34 show the use of the method in sub-
critical transonic cases on the RAE 2822 airfoil, tested
by Cook, McDonald, Firmin [91]. In supercritical.transonic
cases, in contrast to the calculations made in the small
disturbances approximation, figures 20-21, it remains cur-
rently impossible to numerically capture the strong inter-
action at the base of the shock waves on a fine mesh adap-=
ted to the local boundary layer thicknesses, owing to the

rumerical difficulties of solving the potential equation
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on such meshes. Without this complete resolution of the
local viscous coupling, the compression under the shock
is overestimated by the conservative method applied to
the inviscid flow.

To correct this problem, an approached method was
defined for the shock-boundary layer interaction. As fig-
ure 36 schematizes, this method simply consists of solving
a local fictitious interaction on an enlarged scale €,,
compatible with the mesh. This is a homothetic image of
the real scale interaction €1, obtained by simple expan-
sion of the local thickness 8§ of the viscous layer in the
ratio (e,/e1), yet without dltering the Reynolds number
RS. The strong coupling made over the fictitious inter-
action region €, leads, on the one hand, to a more realis-
tic interactive estimate of the boundary layer thickness,
and on the other hand, to an expected reduction in the re-
compression level, as shownin figure 37. 1In contrast, the
processing is essentially an approximation in that the al-
teration undergone by the inviscid flow in region €, is
inconsistent with the overall calculation scale (. For
this, a quality numerical solution will therefore be' -
maintained only if €, << C, and even €, << 'L, L represent-
ing the extent ofithe supersonic pocket. It may be observed
in figure 38 that, thanks t04thénsinglé viscous coupling
effect, the calculation predicts a Mach number, after a =
shock which is slightly less than unity , which is closer
to the experiment. It may also be observed that the numer-
ical structure of the shock of the potential calculation is
replaced by a continous viscous compression, which is rela-
tively spread out owing to the mesh used, figure 37. Fig-
ures 42 to 44 show the appearance of the iso-Mach lines and
of the stream lines in the cadlculated viscdus flawi '
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7. CONCLUSIONS

A spectacular effort has been made over the past few
years in the inviscid flow region with a view to reinforc-
ing the effectiveness and generality of the calculation
techniques. It is important to stress first the major
valorization resulting:in practide from the coupling of
these techniques with complementary viscous calculations,
provided, however, that too restrictive approximations of
the weak coupling are avoided. Changes in the methods of :
predicting local and overall wing and airfoil character-

istics shows this trend.

In this light, we may note the conjunction of progress
made.ofinah-‘analytical nature on interactive viscous calcu-
lations of fundamental phenomena such as trailing edge flows,
thin layer separations, boundary layer - shock interactions,

with progress made ofwa numericalinature, consisting mainly

of developing new original strong coupling techniques. These

improvements have made it possible to go beyond the stage of

processing specific or local phenomena, and to synthesize

- computer means adapted to the complex flows encountered in

industrial applications which compete with overall methods

for direct resolutions of the viscous flow.

Yet, it is clear that the two approaches to phenomena
of viscous interaction, the overall approach and the strong
coupling approach, are actually more complementary than com-

petitive. The current selection of relatively simple vis-

‘cous approximations in the coupling methods is actually

guided only by the concern to use coarser discretization
meshes than those which are indispensable in the overall
approach for numerically solving viscous :layers and sub-
layers. Coupling methods using simple viscous equations,

and particularly those of Navier-Stokes type calculations,
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produce in practice the minimum mesh densities compatible
with the numerical resolution of strong coupling phenomena.
Such densities, are between those used in inviscid flows
and those of the Navier-Stokes type calculations, and lead
to an economy which may be taken advantage of for calcula-
ting mome complex flows, incorporating for example multiple

viscous interactions or three-dimensional phenomena.

For less restrictive meshes, the progress made in the
overall approach has obvious effects on the calculation of
viscous regions in the method of coupling by regions. Fin-
ally, it is also conceivable to use Navier-Stokes solvers
in thepc¢oupling methods replacing current inviscid flow cal-
culations and on analogous meshes. Such a technique would
make it possible, in three-dimensional flows, for example,
to capture the macroscopic viscous phenomena by a local re-
solution of the Navier-Stokes equations with a turbulence
model, whereas the concentrated phenomena of thin layers
near the walls, their interaction with the external flow
as well as their impact on the generation of vortex sheets
would continue to benefit from lesslgostly processings,
through extensions of integral interactive boundary layer
methods currently developed for airfoils and wings with a
large aspect ratio.

From the specific standpoint, then, a few salient ideas
or requirements may be extracted from current coupling tech-

niques:

(i) the implementation of strong interaction coupled
calculations presents two relatively different methods. The
first uses a concept of regions linked by their boundary
conditions, with the possibility of directly incorporating
existing modules of the Navier-Stokes type. The second is
based on the notion of overlapping viscous and nonviscous
calculation regions, with the possibility of developing
original methods for solving Navier-Stokes equations using
an equation scattering technique.
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(1i) The necessary replacement of weak coupling

approximations with a strgng rigorous coupling leads to

an imperative requirement to develop specialized numer-
cical methods, raising problems that are at least as com-
plex as those associated with numerical techniques for
inviscid and viscous flows. This requirement became ob-
vious for trailing edge, separation and shock-boundary
layer problems. The analysis is especially not very de-
veloped for a coupling between the Euler and Navier-Stokes

equations.

(iii) The processing of boundary layer - wave shock
interactions seems to be one of the most delicate problems
of the calculation techniques, not only due to the error
range attached to the turbulence mddelizations, but also
due to the reduced scales which should be used locally,
even for calculating inviscid flows in the case of coupling
method using mimimal meshes. Similar problems of multiple
resolution scales are presented in viscous layer separations

in the vicinity of leading edges.

.(iv) Among the improvements made in calculating air-
foils, the replacement of the Euler equations for the po-
tential equation shall be examined, particularly for higher
transoni¢ flows, in the event of a separation generating
under the shock, with the ultimate benefit of a direct ap-
plication to internal flows. Calculation-experiment com-
parisons brought to light from the corrections of error
ranges on windtunnel walls, should also be highly desirable

for refining existing methods of calculation.
.(v) Calculations of airfoils in extreme flows, near

stall or separation states under the shock, for exmaple,
reveal the very strong sénsitivity:-of the overall flow
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to the precision of the viscous layer calculation from
the very origin of the latter. The development of tur-
bulence models is therefore very important, even in the

simplified forms encountered in integral methods.
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Fia 33 - calculation of the RAE
airfoil in a subcritical flow.
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Fig 34 - Calculation of the RAE 2822:in a subcritical flow.

T |
T
\::f::\x.x.xx.mu\% e

r fj f: =

T NN ey
s mmu ] 1]

7 /« 7 ,"I’ vlm:. T ll,i ’Hh’i;'lmn :::\::t
i i M | TR s T —

7 T T . _— —
T IR I e S R
¥, \

A T:\E\
]

RAE2822 CASO8 - JCFOILS - 181X27

_ Flg 35 - Mesh in a supercritical transonic flow with

symmetrical wake.
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Fig 36 - Approximate calculation of the shock -
boundary layer interaction if <,
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Fig 37 - Effect of the shock/boundary layer
interaction.
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A Fig 38 - Calculation of the RAE 2822 in a

supercritical flow.
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NACA0012(M=o,176,a=16",k=2x10‘).
Fig 39 - Streamlines in the inviscid flow = NACA airfoil 0012

(M =0,116, 16°,R=2X 10°).

0 - gtreamlines in a wiscous flow - NACA airfoil 0012

Fig 4
\ -

6,«=16‘,R=2x10‘),

Profif NACA 0012 M=0,11

Fig 41 - igomach lines in a viscous flow NASA airfoil 0012
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Profil RAE 2822 supercritique (M =0,732, @ =3°, R=6,5 x 10°).

Fig 42 - Isomach llnes\ln an 1nVlSCld flow - RAE supercritical
- 2822 airfoil

[ Fig 43 - Isomach lines in a viscoug flow - supercritical

Profil RAE 2822 supercritique (M = 0,732, a= 3, RRé\}i':v Ilgﬁzz airfoil

| Profil RAE 2822 (M =0,732,a=3", R=6,5 x 10°).
Fig 44 - Streamlines in an inviscid flow
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