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ABSTRACT 

The calculation of viscous flows with coupling methods 

is surveyed. The approximation levels and concepts are 

first outlined, as well as the generalized formulations of 

the viscous displacement over the inviscid flow. Then, 

the strongly interacting methods that are based on thin 

viscous layers approximations are discussed. 

In this way, a matching formulation of the viscous 

flow, calculated as a difference with the inviscid overlay

ing flow, is suggested, in order to restore approximately 

the normal pressure gradient inside of the layers, as well 

as to remove the supercritical behaviors, in the Crocco

Lees sense. This analysis maintains simple viscous inte

gral equations. A review is then given of the main numeri

cal techniques presently available for the coupling problem. 

The global state of the art and possible extensions are 

looked at through the viscous methods for airfoils. New 

results are presented for trailing-edge separation, and 

an approximate method is suggested to capture numerically 

the viscous interaction under the shock-waves. 
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COMPUTATION OF FLOWS INCLUDING STRONG VISCOUS INTERACTIONS 
WITH COUPLING METHODS 

J.C. LeBalleur 

I. INTRODUCTION 

High Reynolds numbers flows are characterized by the 

existence of very rapidly changing localized phenomena that 

close1y associate the effects of viscosity and turbulence, 

generally contained in the thin layers, and their effect on 

the structure of non-dissipative flows. A typical example 

of such a condition is the shock-boundary layer interaction. 

These concentrated artd small-scale phenomena may con

dition the macroscopic flow completely, owing to the non

linearity of the equations whicb govern them and Whlch gen

erate complex flow conditions, called strong viscous inter

actions, in contrast to flows with weak interactions which 

are fundamentally different and lead to solutions close to 

conventional approximations of inviscid flows. 

Notwithstanding the considerable progress made in adap

ting numerical methods to the resolution of complete Navier

Stokes equations, which in principle are able to process 

strong interacting flows, a purely mathematical approach 

to the aerodynamic problem remains difficult to the extent 

where it remains highly dependent upon the accuracy of :"" ~ 

the:nume:r:i.6al techniques, the preparation of large enough 

turbulence models, the necessary recourse to very fine 

meshworks requiring the use of very power, andstilw-;un-' 

available, computer means. 

Accordingly, a more physical approach is present in 

all practical numerical aerodynamics. It appears, among 

*Numbers in the margin indicate pagination in the original text. 
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other places, when introducing equations for boundary 

conditions or for simplified local "models", when pre

paring composite resolution methods based on the coup

ling of several distinct numerical methods, when it is 

necessary to use meshworks adpated to local flow condi

tions. It is clear that the origin of such methods is 

intricately interrelated with the multiple-scale struc

ture of the flow as well as with the existence of approx

imated equations and numerical methods adapted to each 

scale. The ad~ptation of these methods to the physics 

of the phenomena has often proven to be a source of ef

ficiency, particularly for relatively modest levels ·of 

viscous approximation. A typical~ example is given by 

the difficult calculation of transonic airfoils for which 

methods based on inviscid flow and interacting boundary 

layer analyses exhibit even better performances than the 

Navier-Stokes type analyses, both in terms of computer 

costs and their accuracy. 

On the long-term, we may conclude that the adapta

tion of coupling methods to the specific phy,~ical aspects 

of high Reynolds numbers should lead, in conjunction with 

the development of direct resolution methods, to greater 

economy for equal performances, or to the processing of 

more complex problems for a given computer cost (three

dimensional flows, for example), or ·to an indirect devel

opment of new numerical techniques for resolving Navier

Stokes equations. 

Parts 2 and 3 of this report will succinctly examine 

the approximation levels and the general concepts :,which 

seem to be outlined from current melbpods.of computing 

flows with strong viscous interactions. Parts 4, 5 will 

discuss methods based on simple visoous approximations, 

obtained from Prandtl or',thin layer hypotheses. After 

discussing their effects on a computer model by coupling 
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with the inviscid flow, we will briefly survey the numer

ical methods currently capable of resolving a coupling of 

this type, which is a basic i'prob1em whose study is still 

very recent and limited. Finally, we will take a lobk at the 

capabilities and future prospects for the coupling methods 

of this category by examining an example offering a synthesis 

of transonic airfoils where various interacting viscous phen

omena inter£ere. 

2. NUMERICAL APPROXIMATION OF VISCOUS FLOWS: GENERAL' 
LEVELS OF ANALYSIS AND COUPLING METHODS 

It is not within the scope of this brief analysis to 

review the various methods used to calculate viscous flows, 

as our objective here is simply to offer a qualitative out

line of the main.approximation methods, the possible approx

imation levels, and their application limits. 

As shown in figure 1, a classification into four lev

els seems conceivable,! level I combining the various meth

ods based on a direct resolution, while levels II, III, IV 

correspond to the main indirect approaches or coupling meth

ods. Although relatively strong approximations may be used 

for each level, which prohibits a rigorous structural organ

ization, the general nature of the most complete methods of 

each category increases from level IiV'to level I. 

2.1. Methods of Direct Resolution 

Level I corresponds to the methods of direct resolution 

and includes in particular the complete resolution of the 

Navier-Stokes equations, as well as the resolutions limited 

to large-scale turbulent structures, with mode1ization of 

fine structures. From a standpoint 1eariing toward methods 

currently usable in applications, level I corresponds to an 

3 

' ..... 
:.; .•.. 



approach which may be qualified as a general approach [1 to 

4J :to the extent that it adopts the same numerical method 

and the same system of equations which are uniformly valid 

in the entire flow field. We are referring to averaged 

Navier-Stokes equations, associated with a turbulence model, 

or Navier-Stokes equations truncated by thin layer approxi

mations [5,6]. 

2.2. Direct Methods With Equation Commutation 

The first extension of the overall approach consists 

of retaining a single numerical method, but by commutating 

the resolved equations over the complete or simplified sys

tems 17J, figure 2, as a function of the calculation regions. 

This approach, similar in its intentions to the methods of 

coupling by regions, cannot be regarded identical to i.t. It 

is actually clear that the equation commutation boundaries 

thus employed do not in any way materialize distinct regions 

of numerical calculation, linked by their boundary conditions· 

alone; on the contrary:;· a numericaL continuity of the deri

vatives at the commutation boundaries is implicitly postu

lated. The approach of commuting equations by region es

sentially consists of simplifying the calculations by assum

ing a priori that part of the equation terms are discarded 

in certain regions, in accordance with the precision of the 

numerical resolution technique. This simplification may be 

completed by optimizing the geometry of the commutation 

boundaries. 

2.3. Stv.ong Coupling Methods With Division Into Computation 
Regions 

The equation commutation approach may generate new 

mathematical or numerical problems compared to an overall 

approach with complete Navier-Stokes equations, in "the event 
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of a large truncation of these. For example, they will 

be associated with order changes in equations with par

tial derivatives, changes in the domain of dependence and 

in the required boundary conditions. 

This leads us to level II and to the coupling approach 

by separating the computation regions (figure 3) in which 

the mathematlical and numerical problems are treated separ

ately, while the overall problem is restored by means of 

a rigourous coupling, called strong coupling, between the 

boundary conditions of the various sub-regions along their 

common boundaries. The equations used in the various sub

regions are generally either complete Navier-Stokes equa

tions, or Prandtl or:~Eule.:i:\'equations truncated in thin 

layer approximations [8, 9, 10, 11]. 

Changes in the order and nature of equations with 

partial derivatives with computation sub-regions forces us 

to modulate the number of coupling conditions along the com

mon or connecting boundaries, and to make selections on the 

basis of the physics of the phenomena as well as on the 

nature of the local equations. The coupling of aerodynamic 

parameters to a connecting boundary no longer leads in this 

particular case to a lin~~ng of their :normal derivatives to 

this boundary, the lack of residual connection being repre

sentative of the precision of the coupling model, for a 

determined division of regions and equations. 

. Note that the transition from level I to level II 

creates a new numerical problem. This consists of making 

a strong cOllpling of boundary layers associated with various 

sub-problems, using iterative or implicit methods in steady 

or unsteady conditions. It'is clear that this major pro

blem could not be summarized by establishing a computation 

flow. chart, and in aerodynamics it has been the subject 

matter of a limited number of studies essentially motivated 

5 



by l~nking the Euler and Prandtl equations (see paragraph 

5) • 

2.4. Meth~s Of St~ong Coupling With Division Into A 
System Of Equations 

The technique described above of the division into 

domains supposes that in each of them the equations re

solved themselves describe the local behavior of the flow. 

In the case of modest approximation levels, like that of 

the Prandtl equations, such a condition may lead to large 

limitations. It should be remarked that such a connecting 

technique' is·to be avoided in the analytical methods of 

connected asymptotic expansions, in which the calculation 

domains associated with the various scales become super

posed in the same physical domain. 

We have found [3, 12 to 15] that the introduction of 

overlapping calculation domains, (figure 4) in the formula

tion of coupled composite methods for calculating viscous 

flows at high Reynolds number, could lead to considerable 

progress/physically related to the possibility of proces

sesing the viscous flow in terms of differences with the 

fictive inviscid flow which it is the closest to. This 

analysis ·constitues a generalization of the boundary layer 

methods, whether conventional or with strong coupling along 

a wall, which we will assume to be plane in order to simpli

fy the presentation, ·if!u and v are the components for the 

velocity, P the density and p the pressure, if u, V, p, P 

are their homologuesfor the overlaid inv~scid flow, the 

equations for the viscous flow, notated leD + CD will be dis

sociated into a system of inviscid flow equations, notated 

iei). and into a system of matching viscous equations notated 

l~: The unsteady dynamic equations therefore become: 
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i)e~% .,. oe.ltr :: _ qz 
ax 0, ~ 

UP.ll.II f upu1 = _ l!!:... 
clr rJj c1j 

Ufli. - piZ c1fll- eiT 0 
ax f CJy =-

Op.ll.z. _fii'.,. eJe.llu- fii.ii = _ aft-ft _ 00; _ u~~1J 

"..r Uj c:lr ux eJj 

OP.ll.ll' - piiu o"r - fU :-_ cJ~-ft _ 00; _ cJ~'>:Jl 
o.r f OJ "aJ' ~ 

(2.1) 

(1.2) 

ax' d y' ·1;xy represent the stress tensor components. This 

matching formulation of the viscous problem leads to a 

very similar resolution as in the method of coupling by 

domains, owing to the strong coupling that must be achiev-

ed between and the boundary conditions so that: 

o = lim [I-f] with I = {u,v,p,p} 
}_IJII 

We may still notice that the importance of selecting 

the external boundary of the viscous layers y = 0($), 

which is relatively arbitrary in the method of coupling by 

linking the domains, is eliminated. 

An advantage of the matching formulation (2.2) appears 

clear~y by approximating with intermediary assumptions 

(2.3) 

which fall between Prandtl's assumptions and those of Navier

Stokes equations for thin layers. We therefore have: 
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op.a - pii. "fit - fiT _ 0 ax + ;), -

()e.u.'- pilI. f i>p.atr_ F.a~ = _ dZ".%? 
(2.4) 

clr Uj ") 

()ft-! ... 0 

"J 

which, according to (2.3), gives p (x,y) =~x,y). 

This approximation of the pressure is much less r.estric

tive than that deduced from the Prandtl equations in a 

coupling by linking the domains: 

while the resolution of the parabolic system (2.4) with 

u, ·v, p, (j,. given by (2.1) is as complex as the resolution 

of simple Prandtl equations. 

In the event of less eoctensive simplifications than 

(2.41, or of an application of the Navier-Stokes equations 

(2.21, the selection of the matching formulation becomes 

i~tricately related to the selection and conditioning of 

the numerical techniques applied to (2.1) and (2.2) as 

well as to their coupling. Finally, we will note that at 

approximation level II in figure 1, the division made into 

a system of viscous and non-viscous equations implies an 

analysis of a strong i:ntr.~racting coupling, which' :corres

ponds to a strict resolution of (2.1) (2.2) (2.3), and 

which accounts for the influence exerted by the downstream 

flow on the upstream flow. Approximations of this type, 

altho~gh relatively simplified, have been studied recently 

116, 17, 18J. Conversely, other approaches maintain ap

proximations of systems of parabolic equations , re.solved 

directly from upstream to downstream, which makes them 

8 
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comparable to boundary layer methods for weak interactions 

of level IV r19, 20]. 

2.5. Weak Coupling Methods 

Approximation levels I and II correspond to a model

ization of the viscous flow capable of describing flows 

of strong viscous interactions, at least qualitatively, 

owing to the viscous equations resolved or to the strong 
coupling effect at the inviscid flow, in the case of the 

simplest viscous equations. We should still consider. that 

thtscapacfty of processing regions of strong interaction 

implies the use of suitably. fine interconnections in order 

to be effective, for any equation resolved. In turbulent 

flows, even for the simplest systems of equations, the 

resolution scales should not be coarser than the local 

thickness of the viscous layers involved. 

Levels III and IV correspond to simplified analyses 

whose application generality is smaller, but which remains 

the support of most current applications. The most com

monly used are the boundary layer methods of level IV, used 

in conjunction with conventional inviscid" flow calculations, 

resolved in uncoupled mode. The absence of a coupled reso

lution comes from the concept of a weak interaction or coup

ling, related to the asymptotic second order theory of the 

boundary layer in laminar cases [21] ~ and to theories of 

the same nature in turbulent cases [22,23]. 

Figure 5 shows the scheme of the· simplification 

made at the coupling level. In a first approximation, the 

field i:6f inviscid flows is obtained independently of any 

boundary layer. It determines a simplified pressure field 

for the boundary layer which makes it possible to calculate 

the boundary layer and its displacement thickness in the 

9 



first approximation. This makes it possible to determine 

the final approximation of the inviscid flow, as well as 

that of the boundary layer pressure field. A second order 

approximation may then be calculated for the boundary lay

er, which then always has a normal predetermined pressure 

gradient, but which is not zero in the case of a wall cam

ber. The coupling is "weak" provided that the viscous lay

er is completely conditioned fQl:" a given approximation order 

by the inviscid flow upon which no mutual influence is ex

erted. 

In this analysis, the notion of iteration on the vis

cous displacement thickness is absent and is replaced by 

a direct and single correction. Any shortcoming in such 

a single correction precisely marks the appearance of phen

omena of strong viscous interactions, related to the separ

ations, shock waves, training edge, as well as to the ne

cessity for multiple layered models if we still want to 

use asymptotic theories [23 to 31] without being able to 

eliminate the appearance of a strong coupling problem. 

A characteristic property of a weak ~symptotic coup

ling is that it leads to the resolution of a parabolic 

system, for the viscous problem, in which we do not know 

the effect exerted by the downstream flow on the upstream 

flow. Such an influence can be determined only through 

the boundary conditions set by the inviscid flow, and 

which is therefore totally eliminated for a supersonic 

external flow, or-even in the approximation of a one

dimensional subsonic inviscid flow. 

The corresponding simplification made of the resolu

tion can therefore be carried out upstream to downstream, 

and has been the subject of transpositions in methods 

abandoning the simple Prandtl equations for less restric-

tive equations, qualified at level Iv in figurel of the < 
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parabolic approximations of the Navier-Stokes equations. 

In th~s case, the Navier-Stokes equations were first 

subjected to thin layer approximations, which consisted 

of eliminating the viscous diffusion terms according to 

Ox, if Ox represents the direction of the main flow. This 

simplification of levels I or II is not self-sufficient in 

the general case whe~e the system of equations is complet

ely parabolized in the direction of positive XIS, particu

lary in the presence of subson~c flow regions [32, 33]. 

We may therefo~e speak of systems of elliptical equations 

because of the pressure field, provided that the systems 

remain parabolic either when the pressure is fixed, or 

when its mean longitudinal variation along x is fixed, 

while its secondary variation in plane yOz is calculated 

134J, or when the longitudinal pressure variation is also 

calculated upstream to downstream, but at the cost of a 

quasi-one-dimensional approximation and of a pressure 

c.m.nge in the momentum equation according to Ox [35]. 

In all of the cases, the switch from such a parabol

ized weak coupling problem to an elliptical strong coup

ling problem of level I or II, implies the addition of an 

iteration on the pressure, capable of eliminating at con

vergence the various approximations used for each parabol

ized iteration f16, 17, 34, 36]. 

2.6. Intermediary Methods Between Weak And Strong Couplings /5 

Figure 1, of lev.el III, shows examples of this type 

of analysis. The first may be given through an progressive 

extension of the methods of computing ai~foils. Starting 

wi th the obvious short-cCi)ming·of a weak coupling approach, 

an extension toward the investigation of a strong coupling 

was progressively developed, by means of iterations on the 

viscous displacement effect. Although the approximation 

levels obtained differed considerably between the different 

11 



methoas,for example 115, 29, 37 to 40.], either because 

of the use of smoothings or relatively arbitrary modeli

zations of the dispdacement thickness, or due to numeri

cally or analytically incomplete coupling techniques in 

regard to separations, trailing edges, boundary layer/shock 

wave interactions or calculation me'shings, it is clear that 

the overall variation should lead to strong coupling meth

ods of level II. 

A second category of intermediary methods between 

weak and strong couplings is given by forming a model of 

inviscid flow separations. A first example is given here 

by calculating inviscid flows containing vortex sheets 

issuing from predetermined separation lines [41]. A second 

example is that of f.<hrmiI'lg models bflarge separations by 

calculating free isobar boundaries in an inviscid flow. 

These models are especially used in stall problems [42]. 

3. BOUNDARY CONDITIONS OF INVISCID F,LOWS - DISPLACEMENT 

The methods of calculating inviscid flows is based 

on the slip condition expressing wall tightness, arid on 

the Joukowski condition which when used seems to recall 

alone that the objective is to form a model of a viscous 

flow. The calculation also brings to light, in regard to 

weak solutions, the slip sheets through which the normal 

velocity and pressure are continuous. 

If the physical problem is approached by analyzing 

a viscous flow, at the scale of a continous medium, such 

slip conditions become impossible for any Reynolds number 

and .it is the asymptotic theory of the boundary layer 

which tells us that the external non-viscous flow to be 

considered is subjected to these slip conditions, in a 

first approximation. These slip conditions therefore 

acquire an origin related to the viscosity. At the 



second approximation order, a normal non-zero velocity on 

the walls, as well as a normal velocity and pressure dis

continuity on the slip sheets, express the viscous displace

ment effect on the residual inviscid flow region. If in

dices 1 and 2 designate the successive orders of approxima

tion, we have for example: 

(3.1 ) 

3.1. strong Coupling Along Adjoining Regions 

The transposition of thes.e conditions to coupling 

problems at finite Reynolds number was initiated by Crocco 

and Lees 143] to calculate supersonic separations in a 

strong coupling approach along adjoining regions (figure 6) 

using the prandtl equations for O<y<o(x), 0 being the phys

ical thickness of the boundary layer. In the most usual 

case where only one boundary condition of viscous origin 

in y = o(x) is needed for 'determining the inviscid flow, 

the relationship used by Crocco and Lees is general,since 

it is based only on the integration of only one equation 

of continuity in y. If K(x) is the wall camber: 

13 
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[ "j • _, I qlK _(!_J'I)[_1 dfll. j j -:u:- (;e.G J 11' I( i d:c ell dz (:rJ ) 

(3.2) 

This displacement formulation o*(x) is exempt from approx

imation other than that associated with the calculation of 

[pill (x; y); 

Other methods of introducing the coupling condition (3.2) 

in the calculation of inviscid flows are frequently used. It 

may seem more convenient to consider that there is either no 

flow through the boundary of the inviscid flow, and we are 

then speakins of a displacement concept, or that this bound

ary is simply based on the wall. In the two cases, a cer

tain equivalence with (3.2) may be obtained by considering 

an approximated analytical shift of ,(13.2) from y = 0 (x) in 

y = y(x). The equation of non-viscous continuity gives: 

[; J(Z,Yj=[:Jr:c,JJ-(Y_J)!e: ~~~j(~,y) + ..... . 

which leads to a slip condition if y = 0*, an injection 

condition if y = 0 and if the correspondi~g expressions 

for o*(x): 

[: }t;t;,o") 
dJ' 

=-1' 
d~ 

The displacement formulations (3.4) (3.5) (3.6) are still 

approached, as well as the equivalence with (3.2). The 

14 
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asymptotic validity of this equivalence when it( _III is not 

automatic where the expansion order (3.3) depends on the 

order of dp~/dx, a quantity often not bound when 

in the asymptotic theories with multiple layers. The 

formulations (3.4) (3.5) may still be outlined from any 

approximation by se~ecting new definitions for 5*(x). 

3.2. Stong Coupling Along Overlapping Regions 

Such a change in the definition of 5*(x) is easily 

done by introducing (fi'gure 7) overlapping calculation 

reg ions over' ,which the viscous :equa ti.:ons '_are segmented"" ' 

as described in paragraph 2.4. In this case, the simple 

integration of the continuity equation (2.2) in y gives, 

since 

O. lim ,-'" [fU- fii j 

[eujrx.Oj s ; /f'.LlJ'jrx.Oj 

O(:r:) [fJl jrx. O) :. j"/ [fJljrz,yJ -[eii. ]r:r:. '/) } dl 
4 

} (3.7) 

This generalization of the definition of 5(x) takes into 

account the normal pressure gradients inside the viscous 

layer, through variations. in y of the viscous term (JU and of 

the non-viscous term P~i these may possibly be rapid, even 

discontinuous, unlike boundary layer analyses. A schemat

ic illustration is given in figure 8, for the case where 

(u/li) = ~(x"y) is assumed to be a continuous function. 

A formulation of 5*(x) adapate'dto 'the displacement 

concept may likewise be defined: 

15 
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All things considered, use of a displacement thickness to 

formulate a coupling problem is in no':' way the same as us-<: 

ing boundary layer approximations. 

4. SIMPLE APPROXIMATIONS OF THE VISCOUS FLOW - INFLUENCE 
OF A STRONG COUPLING 

For both historical and practical reasons, current 

coupling methods' have been mainly developed on the basis 

of boundary layer assumptions. We will confine ourselves 

in the remainder of this report to this class of methods, 

using either Prandtl: ~equations, or a similar extension of 

thin layer equations, described in paragraph 2.4, in which 

the pressure p(x,y) is identified with that of the non-vis

cous calculation p(x,y)~ 

4.1. Separation and Reverse Flow Regions 

The boundary layer problem, subjected to the Prandtl 

equations and decoupled from the inviscid flow, must be 

formed by an external boundary layer condition, for which 

the pressure p(x,o} has been used for a long time in the 

same way as in the asymptotic theories of weak interactions. 

We thus know the singular behavior of Goldstein [44] for 

"square roots" offered by solutions near a posi ti<i>.n of zero 

friction in two-dimensional steady flows, a behavior also 

offered by integral boundary layer methods [12]. Inun

steady flows 145] or three-dimensional flows [46], the 

integral methods demonstrate a different type of singu

larities which are formed of discontinuities of integral 
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thicknesses associated with the weak solutions of equa

tion systems, which are no longer initially localized in 

reverse flow regions, and which might explain certain num

erical anomalies found in the solution of the Prandtl un

steady equations with reverse flows and a set pressure 

field. 

However, we were able to show that these singular 

behaviors should not be confused with a validity limit of 

the Prandtl equations, or with an abrupt separation from 

the viscous layer and from~.the wall, but that they result 

from tIher:pressure selected for the external boundary con

dition. When the pressure becomes a calculation unknown, 

either by formulating an inverse problem subjected to an 

external condition, or by coupling with the inviscid flow, 

consistent and realistic solutions were obtained for small 

separations [12, 47 to 55J. The same behavior was bbserved 

for unsteady conditions 145J. Yet3.t still clear that that 

the Prandtl problem for strong couplings with the external 

inviscid flow no longer constitutes a parabolic system 

free of downstream effects,even without the reverse flows, 

owi!lg to the boundary condition, unknown a. priori, formed 

by the external pressure distribution with coupling I.ef

fect (figure 61. 

4.2. Downstream Influence On The Upstream In Supersonic 
And Transonic Flows 

The essential question raised by the matching calcu

lation of the Prandtl and Eu'ler equations is the' following: 

is .~ th~.~ e:lliptical nature of the unsteady Navier-Sb<l>.kes 

equ.ations·also::: found in the coupling model when the 

inviscid flow is locally supersonic so that the down

stream influence on the upstream cannot have an exclus

ively non-visous origin? Since Crocco~Lees' first work, a 

/7 
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a long investigation was conducted [12, 14, 56 to 59J and 

the answer found was positive for "subcritical" viscous 

layers, and negative for "supercritical layers.'~ 

In the subcritical case, the coupling of hyperbolic 

non-viscous equations with parabolic viscous equations 

leads :to a problem of initial conditions which is improperly 

presented, to the extent where an exponential amplification 

of any initial disturbance occurs on a short scale, corres

ponding to the boundary layer thickness, approximately, 

according to a branching solutions process. The aspect of 

an improperly presented problem is eliminated if one of the 

boundary conditions is transferred from upstream'to down

stream, which reveals the elliptical nature of the model. 

Furthermore, the branching process generally makes it pos

sible to introduce such a downstream boundary condition as 

a purely optional constraint which is the case in the coup~ 

linglmodel,£op the boundary conditions currently applied 

to the downstream in Navier-Stokes type calculations. The 

occurrence of a downtream to upstream influence due to the 

coupling effect also finds a theoretical support in strong 

interaction asymptotic theories, such as the triple-deck 

laminar model, for example. We were also able to verify 

numerically that the supersonic triple-deck equations are 

also asymptotic solutions of the coupling model, when the 

Reynolds number moves toward infinity [27J, figure 9. 

In the supercritical case, the elliptical nature of 

the viscous equations is only partially found in Cbocdo

Lees coupling model, by means of weak solutions whose 

pressure jumps suddenlY._ transform the supercri tical lay

ers into subcritical layers, each time a downstre'am in

fluence on the upstream is locally indispensable. The 

supercritical behavior is i·.therefore found agains near 

the downstream after passing a "critical point," where 

18 



the stability required of the solution plays the role of a sup

plementary downstream condition for the subcritical region [59]. 

A simple interpretation of the behavior patterns of the model in 

the vicinity of jumps and critical points may be directly deduced 

from the local behavioral patterns of the branching solutions, as 

well as the stabilizing boundary conditions needed, see figures 

10 to 11. 

The preceding gaps in the Crocco-Lees model are not related 

to the approximations used to solve the Prandtel equations if'an 

integral method is used, as was often believed to be the case, 

but are actually due to the simplified pressure field p(x) = 
p(x,o) of the viscous layer. In an integral method the rela

tionship (3.2) leads to a quasi-linear relationship between the 
.1- ...... _ 

viscous deflection[8.(%) and the pressure gradient in y =' o(x): L __ _ 

(4.1) 

D1 'vanishes to zero for separations or for reattachments where the 

pressure gradient cannot be any value, but must be o*(dp/dx) = 
-(C3/D

2
) to assure the regularity of the solutions. D2 reduces 

.~ to zero at the critical points, where the regularity forces 

9 ~-(D,,/f)1 T The symmetry of the Goldstein, and Crocco-Lees 

singularities may be noted for the coupling model for adjo~ning 

regions. The relationship (4.1) or simply 

/ B.!!L c i 8. ".. + (4.2) 
/ " ... 

is a determinant for the branching solutions, which are stable 

according to x if B < 0; and unstable if B > O. For an attach-

ed layer, the unstable case corresponds to a subcritical be

havior and to an elliptical type problem. Note, however, that 

in the case of a separation, Dl changes its sign, and therefore 

so does B, and this leads to table branching solutions in the 

separated region and the downstream effecbl,on the' ups"tfeamchas the 
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result of selecting stable solutions at the reattachment 

point, figure 12. In the case of a local solution of the 

Prandtl equations, we are left [57] with a relationship 

analogous with (4.2), demonstrating the importance of the 

local Mach number M in supercritical behaviors: 

(4.3) 

The limit E + 0 often being singular, the behavior of the 

branching solutions isgeneralJ,.y not deduced directly from 

(4.3), see [3, 12, 15]. Nevertheless, it follows from 

(.4.3) that the supercri tical behaviors (B ~ 0) can be de':", 

rived only from the presence of supersonic viscous regions, 

and that they are highly dependent upon the selection of 

the boundary 0 in the matching model. Any subcritical 

coupling may thus be converted into a supercritical coup

ling, by selecting a boundary y = o(x) farther away from 

the wall [3]. 

The subcritical or supercritical nature of Crocco-Lees 

therefore ~s not an intrinsic property of the viscous layer, 

but o;fi the adjoining coupling model* [3, 15]. Its physical 

interpretation should therefore call on the external in

viscid flow. We may thus note that the supercritical be

havior of a supersonic separation at increasing Mach number 

appears only when the focalization shock wave approaches 

until it reaches the external boundary of the viscous layer, 

with any penetration inside the viscous layer being excluaed 

by the calculation model and being simulated by a pressure 

jump, figure 13. 
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4.3. Approximated Treatment Of the Normal Pressure Gradient. 
Matcning'Pormulation 

The shortcomings just described of the simple Crocco

Lees model for processing flows with strong viscous inter

action in supersonic states, as well as in transonic states 

(M ±1.201, are the result of a too simplified pressure 

field p(x) = p(x,O). However, we have found [3, 12, 13, 15] 

that it is quite easy to discard these shortcomings by 

establishing a matching formulation of the viscous calcula

tion, corresponding to the viscous calculation regions and 

the o~erlapping non-viscous regions, figure 7, as described 

in paragraph 2.4., and if the approximation over the pressure 
becomes p (x,y) = p(x,y). 

By retaining only Prandtl's viscous term in the system 
(2.21" we obtain by integrating in y the equation of motion 

along x and its first moment relative to u: 

! ( [r /"" -r";IXf) dj } - [e~'lr x. 0) • ? Ix. 0) - :." [(1' -P] (z. j -;, (4.4) 

(4.5) 

while the equation of motion in [x, o(x)] gives the 

entrainment equation: 

with (4.6) 

The approximation p(x,y) = p(x,y) also discards the 

last term in (4.4) and in (4.5). If we define the general':' 

ized integral thicknesses for motion and kinetic energy in 

an analogous mode to that adopted for the displace~ent 

thickness in (3. 7) : 
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[ J(x} f O{X} } [('~IJ{:t;, o) .1[('iL' -1.alj (x,}) oj 

( Jr.r) ~ fJ"(xJ} [eJJ.' ] (x. 0) ~ j"[ fU'-~ - pii!j (x.j) OJ 

J; {X} JJ.(z.o) • j"[p. -ii } (x.JI) d, 

We obtain integral equations very close to those derived 

with the Prandtl equations: 

(4.7) 

(4.8) 

(4.9) 

Note, however, that the kinetic energy equation (4.9) 

requires a modelization of a term for the normal pressure 

gradient ~p, related to the variation of ap/ax in y in (4.5), 

whereas the entrainment equation (4.6) does not require it. 

A certain approximation is still present, however, if the 

entrainment equation (4.6) is transformed so that only the 

folwQwing terms occur: p(x,O), u(x,o), v(x,o): 

i [d! tN* + I. J" O('ll I .. £ 
/ F - dZ eu. ar }(%,o) (4 .10) 

Besides the benefit of accounting for an approximated 

normal pressure gradient, the matching formulation (3.7) 

(4.7. to 4.l0} leads us to replace the integral B in (4.3) 

with an integral B' 112] for the analysis of supercritical 

behaviors: 
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nonviscous 

viscous 

The first imprQv.ement,commdn to (3.7) (4.7 to 4.11) 

(4.11) 
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is to totally discard the relatively arbitary role of 

the adjoining boundary y = 8(x). Secondly, the term 

(1_M2) in (4.3), generator of supercritical behaviors 

when M>l, 'is replaced by (M2_M2), a term which is most 

likely always positive. We were thus able to conclude 

[12] thatt!?-e coupling along overlapping regions always 

leads to subcritical behaviors, where the downstream in

fuelnce on the upstream is fully observed, and where the 

pressure distributions on the walls p(x,o) are always con

tinuous. Consequently, the possible shock waves always 

generate by focalization within the non-viscous calculation 

region, which may even occur within the viscous layers, fig

ure 14. In these intense cases of normal pressure gradient, 

a second order may be applied a posteriori to the approxima

tion p(x,y) = p(x,y~ ,in the form: 

(4.12 ) 

K(x) is a mean camber of the stream'.lines, which may be 

indistinguishable from that of the walls or mean lines of 

waves only in regions of weak interactions. At the wall, or 

at the center of a wake, we obtain: 

p(x,o) - p(x,o) = K(x) [8*(x) = B(x)] 

Finally, it should be pointed out that the super

critical behaviors, eliminated in the preceding overlap

ping coupling should still be possible in the coupling 

by addi~g a displacement thickness, where relationship 

(4.11) becomes: 

(4 .13 ] 

(4.14) 

an integral in which the first term may always be negative, 
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threshold of transition to supercritical behavior 

therefore being essentially M = 2 for a flat plate tur

bulent layer. 

5. NUMERICAL METHODS FOR STRONG COUPLINGS 

The simplifications brought to the resolution of the 

viscous fluid, at level II in figure 1, by segmentation 

of the calculation regions or of the equations used, have 

another role of artificially generating a strong coupling 

numerical problem. In the case of a coupling by adjoining 

regions, it is necessary to assure a rigorous compatibility 

of the boundary conditions of the various sub-problems on 

their common boundaries. Since the nonlinearity of the 

viscous equations in practice makes an iterative solution 

inevitable, it may be assumed that the problem remains 

virtually the same in the coupling by segmentation of the 

equations, with overlapping calculation regions. 

5.1. Nature Of The Problem 

This strong coupling of the boundary. conditions over 

the interfaces of the various constituent calculations re

quires a less rigorous numerical resolution than that used 

in each subproblem, with the risk of degenerating the 

strong coupling treaetment into a weak coupling approxima

tion. This condition is reinforced by the high sensiti~ 

vity of the inviscid flow calculations to the accuracy of 

the numerical treatm~nt of the boundary conditions. It 

is even more sensitive if we consider that in thin layer 

viscous problems, the coupling effect alone can change 

the mathematical nature of the behavior of the various 

subproblems, via branching solutions reviewed in paragraph 

4.2 and lead to differences of about 1 between the solu

tions subjected to a rigour coupling and those derived 
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with an appromixated coupling. 

If the finite differences methods are used, for 

example, the coupling must be made in each discretiza

tion node of the interface with the consistent numeri-

cal schemes, compable to those used in each region. The 

interpolation over the interface is conceivable in the 

case of discontinuous meshes, p~ovided that it is consis

tent with the numerical scheme order, and with the regions 

of mathematical influence. Conversely, the use of smooth

ings or filtering is to be discarded, unless the technique 

may be reduced to the insertion of a numerical dissipation, 

which is evanescent when the discretization step leads to 

zero. 

If we consider the solution of evolving problems, the 

same problem with a strong coupling may be overcome at 

each time step to avoid a viscous resolution inconsistent 

in time or a weak interaction approach. In the case of 

iterative relaxation or pseudo-unsteady methods, in which 

only the final solution matters, the stability in time may 

be disregarded. Conversely, coupling errors at each iter

ation should not augment and a specific stability study 

should be considered. The specificity and difficulty of 

such a study is due to the fact that although it is nec

essary to analyze the magnitudes bovdering over the coup

ling interface, error increases is managed by an operator 

calling on the resolution of the subproblems adjacent to 

this interface, which defines'a mathematical problem over' 

a space whose dimension is larger than that of the inter

face where the coupling errors are studied. 

Yet, it is clear that, apart:' from unusual circumstan

ces, the definition of an iterative coupling metho~ may be 

reduced to a simple definition of a calculation flow chart, 
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in the case of a strong coupling. In the first place, 

it is necessary for the coupling to selectl consistent 

numerical schemes, at least in terms of space, observing 

not only the dependency' domairls of the i:equations 'of 

each subregion calculated separately, but also the real 

dependency domain of the coupled mathematical problem, 

specifically accounting for the possible branching solu

tions. For example, the consistency will not be obtained 

for the coupling of the Euler and Prandtl equations along 

a locally supersonic boundary, with attached buscritical 

boundary layer, if the schemes with differences totally 

decentered upstream are used and if, at least for quanti

fying the coupling relationships, one of them does not 

escape this choice. On the contrary, we have shown in 

this case, the advantage of a decentering toward downstream 
[13] • 

In the second place, the generality of an iterative 

coupling method implies that the complex stability problem 

is mastered, for the purpose of adapting the relaxation 

techniques, i.e. modulating the stabilizing relaxation 

coefficients as a function of time intierv~ls and local 

spaces, as well as of the aerodynamic magnitudes. This 

constraint is similar,to the necessity of calculating, 

in an explicit unsteady numerical method, the local maximum 

ttme l'nter;Val compatible with the stability of the calcula

tion as a function of the local space interval. 

The elimination of this constraint has for a long 

time led to unstable iterations for boundary layer calcu

lations over airfoils and to a relatively arbitrary use of 

smoothing techniques. These instabilities, which are purely 

numerical, are influenced by the weak or strong aspect of 

the local viscous coupling interaction, but they are not 

always absent if the discretization interval is small 

enough. They particularly appear for flat plate boundary 
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layers [60]. Figure 15 gives an illustration relative 

to the inviscid flow - unsteady boundary layer coupling 

[61] near a uniform flow over a flat plate. It shows 

that, all other things being equal, a slight reduction 

in the space interval or increase in the time interval 

is sufficient for switching from a staple'.,qoupling iter

ation to an unstable iteration. 

Finally, a reductii;oIl' -of the numerical instabilities 

of explicit :~type simple .;i.terati.!ve cc)Upling techniques, 

may obvruously be investigated in the development of 

methods which process the coupling in a more implicit 

manner, for each iteration, or based on more general 

nonlinear numerical techniques. 

5.2. Behavioral Law of The Steady Boundary Layer 

Most of the viscous - nonviscous numerical coupling 

methods have a slightly implicit nature, for reasons of 

simplicity, qpp1ication generality and interchangeability 

of the viscous and nonviscous modules. Recourse to vis

cous modules using Navier-Stokes equations, which are com

plete or in the approximation of thin layers, remains 

rare in the coupling methods [8 to II, 32 to 34] for the 

part specific to the coupling. Conversely, more accurate 

methods are outlined in the case of simple viscous approx

imations as described in paragraph 4. 

In the case of integral boundary layer methods, the 

problem to solve is essentially that of an inviscid flow 

whose boundary condi tions are no "longer known in advance. 
On the contrary, these become solutions of a r:system af . 

Qrdinary'differential equations on the boundary as, for 

example (3. 7) (4.8) (.4.9), relating the pressure p (x .. 0) .. 

the angular direction of the flow ~ ti!J(XrDJ as well as' the 
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viscous thicknesses. After a few eliminations, we may 

extract the relationship between :!"7:&,o{ and p (x, 0) actual

ly applied to the inviscid flow: 

, If "'" ,1/, e - II, I .::L t ,fJ 
, tlz 

x is measured along the boundary of the inviscid flow 

AI, A2, Ag, 0* depend on other differentail equations, on 

the initial values of the viscous thicknesses as well as 

(5.1) 

on nonviscous variations ,'8(JC) and p (x). Equation (5.1) 

leads to highly nonlinear behaviors; Al is reduced to zero 

during separations or reattachments, A2 is reduced to zero 

at the critical points when these were not eliminated. The 

small scale term 0* leads to phenomena of branching solu

tions, whose importance was reviewed and which lead to the 

inclusion of supplementary downstream boudnary conditons. 

In the case where the integral boundary layer methods 

are replaced by local Prandtl viscous equations, the beha

vior of the viscous boundary, as a boundary condition of 

the inviscid flow, remains appreciably the same as (5.1), 

at least if we confine ourselves to an an~lysis of distur

bances around a solution 

(5.1 ' ) 

a relationship to compare with (4.2) (4.3) (4.11) (4.14). 

Use of the fundamental relationship (5.1) asa closing 

boundary conditio,n of an inviscid flow calculation there

fore represents in a schematic form the coupling problem 

to be solved, in the case of thin viscous layers. Note 

that the viscous relationship (5.1) does not give the 

variables I 8 (z,DF and p (x .. 0) a symmetrical role; only the 

pressure has a function in the form of a derivative. This 
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major difference with the nonviscous problem undoubtedly 

is due to the thin layer aspect more than to the viscous 

approximations used. 

5.3. Methods Of Initial Supersonic Conditions 

The local function of relationship (5.1) initially 

led to an investigation of supersonic solutions to the 

strong coupling problem. In this case, the apparent simpli

fication of the initial conditions methods, proceding from 

upstream to downstream with simultaneous resolution of (5.1) 

was widely used by Crocco-Lees and numerous successors [32, 

33, 43, 59, 62 to 66J particularly in'the case of a simple 

wave. However, we know that the unstable branching solutions 

result in an: ,incorrectly defined problem, requiring a tech

nique of resolution by successive probes over an initial 

disturbance, so as to select, when convergence is reached, 

a solution having a behavior or stability which"is adapted 

to downstream conditions. The scheme in figure 16 shows 

that the initial disturbance £ was' conventionally produced 

on the pressure in subcritical cases, whereas it was pro

duced over the initial position of the pressure jump and 

thus enabling the solution to cross a critical point lo

cated farther downstream, in the most supercritical cases, 

and without singularities. 

In practice, such a resolution is extremely difficult 

and lacks generality. It is virtually unachievable as soon 

as:!the region where the strong interaction begins, Le. the 

disturbance region, is not known in advance, or as soon as Ill: 

successive strong interactions are present, a fortiori if 

they mutually interfere with each other. 
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5.4. Pseudo-unsteady Methods 

The first important improvement was suggested by Werle

Vatsa I67 to 69] for simple wave type external supersonic 

flows in which the nonviscous calculation is reduced to a 

simple local algebraic relationship between the pressure 

and direction of the flow. By means of a slip coupling 

over the displacement surface, we obtain : 

p = - B a* x xx 
(5.2) 

Werle-Vatsa!.s· basic idea was siiJmply,.,to replac.ethe coupling 

problem with a; fictitious 

placing the term a * with xx . 

problem of variation obtained :by re

Ia* - a
t
*], and calculating the xx 

asumptotic state when t + ~ using a numerical· method of 

alternating directions with two steps, the first being implicit 
in (y~tl, the second in (x~t). If we consider, for example, the 

equation of motion in x which contains the only unsteady term: 

pU Ux = pv uy = B[aii - a;] + [£ uY]y (5.3) 

we obtain schematically to pass from time n to time (n+l): 

The first half time step leads to a conventional calcu

lation of the boundary layer where a**, and therefore xx 
p is applied. It is resolved upstream to downstream, as x . 
the linearization of the equations calls on the preceding 

time step introduced to avoid singular behaviors at the 
separations. The second half time step is reduced to: 

2 
= ~t 

which leads to the simple resolution of the tridiagonal 
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· f ~,. n+l f d' . t' Th th d matr~ces or u , a ter ~scret~za ~on. e me 0 

was extended by Napolitano, Werle, Davis [69] to semi

unlimited incompressible external flows within the frame

work of laminar triple-deck equations. In this case, the 

albegraic relationship (S.2) should be replaced by a Cauchy 

integral (S.6} which makes the half-time step more complex 

(S • 71 : 

(S .6) 

(S .7) 

After discretization (.S.7) leads for o,.n+l to an algebraic 

system exhibiting a full matrix, but with diagonal domin

ance. A relaxation iteration is therefore necessary, in 

incompressible flows, to solve the second half time step 

by successive inversions of simple tridiagonal matrices. 

A quite' differerlt p:seudo-unsteady method .was suggested 

by Briley, McDonald I70] and was used by Gleyzes, Cousteix, 

Bonnet [71] to calculate short transitional separation bulbs 

of leading edges, in incompressible flows, using a simpli

fied local strong coupling approach. The basic idea was 

to use real unsteady equations of the boundary layer, while 

retaining the steady inviscid flow equations. The resolu

tion is also pseudo-unsteady, to the extent where the bound

ary layer is calculated from the nonviscous pressure field 

of the preceding instant, the inviscid flow being adjusted 

a posteriori as a steady flow under the most recently cal

culateddisplacement effect. This simple technique is 

still justified only by the obtainment of asymptotic steady 

solutions when t + 00. 

S.S. Direct Or Inverse Methods Of Relaxation 

This principle of this class of methods lies on a more 
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rigorous formulation and on an extension of conventional 

iterative methods, used to improve the weak coupling 

techniques at the cost of a few successive approximations 

over the displacement thickness. 

The strong coupling is obtained here for a rigorous 

convergence of the successive decoup1ed resolutions of the 
inviscid flow and unsteady boundary layers problems, while 

excluding any arbitrary smoothing technique. The stability 

of the iteration is controlled by sub-relaxation [3, 13, 39, 

72, 73]. The linkage of the segmented viscous and nonvis~ 

cous calculations is i:quite convenient and leads to a broad 

generality of use in subsonic, transonic or supersonic states. 

The downstream influence on the upstream in supersonic flows /12 

may be obtained automatically [3, 13, 15], as in pseudo-

unsteady techniques, by directly applying the appropriate 

boundary condtions downstream, whether strong successive 

mutually interfering interactions, or streams not reducing 

to a simple wave are involved. The counterpart of this 

generality appears, for certain cases, in the preliminary 

calculations required for the coupling iteration. However, 

experience has shown 13, 13, 15, 39, 77] .that this coupling 

iteration may be easily compete with those required to cal-

culate inviscid flows, in the case of subsonci or transonic 

relaxation methods. In this case, the coupling iteration 

appears as an explicit relaxation technique for the vis-

cous boundary condition (5.1) applied to inviscid flows, 

and the increased computer costs associated with viscosity 

is limited. 

Considering that relationship (5.1) becomes identified 

with a boundary layer resolution, the doup:ling:iteration, 

called direct or inverse, depending on whether we are sol

ving for the cycle (n+l) a direct or inverse type nonviscous 

problem: 
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Direct : (5.8) 

Inverse : 
(5.9) 

For the direct method, if we assume that the inviscid 
n+l flow is an operator which ~elates a pressure p (x) to a 

gi~en ang~lar~di~tribution 8·~) , the inclusion of (5.8) 

leads to operator:F related to the iteration of the overall 

fixed point: 

9'''(.%) z: F [0" (.J:)} (5.10 ) 

Likewise, when Al may be reduced to zero owing to a 

separation, the resolution (5.8) should be avoided and, 

assuming that an inverse inviscid flow operator correlates 

I e-(r). with the data of pn(x), by addirig relationship (5.9), 

integrated in x, we obtain an inverse fixed point iteration; 

(5.11) 

The adoption of one of the two techniques (5.10) (5.11), 

or even their joint use in an alternating· combined method 

(5.l0) or (5.11) as a function of the predefined regions 

on boundary Ox,were used by Lock [39], Lineberg, Steger 

[74J, Le Balleur [61, 72], Carter [73], Melnik, Chow, Mead 

I26, 29J, among many other authors. In all of these cases, 

the method was stabilized by a large sub-relaxationw, in

dependent.from x, determined without any other criterion 

than the previous numerical experience: 

(5.12) 

The lack of generality of the previous approach was, 

however, eliminated by the present author tprough a study 

of approximated stability [13] permitting a local calculation 
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of w(x). The study shows that operator F of (5.10), 

linearized around 8-~)., appreciably implies that the 

harmonic distributions of disturbance Te(x)':'6"/.r.) } are 

specific functions and that the corresponding approxi

mation of the specific complex values of F is ~o, that 

of G being ~l with: 

(5.13 ) 

M designates the local Mach number of the nonviscous flow, 

a the harmonic frequency, B is a parameter of viscous 

form related with B' in (4.11), or (A2IAl) in (5.1). 

The.highest specific value ~o (x) or ~l(X) makes it pos

sible to determine w(x)J hiqh1y deoendend upon x like 

~o or ~l '(see [13]), while a local over-relaxation is not 

te be ex1uded. 

If R(a} and: J(<<) designate the real and imaginary parts 

of }lo for example, the stability of (5.12) will be obtained 

if: 

77 "'",.. . -, 11:: 
(5.14 ) 

In the direct case (5.10), a discretization step, 

small ~ increases the highest frequency a of the possible 

disturbances and reduces the value of w(x) in the direct 

problem (5.10), while w must be eero at separation or re

attachment points where A1= OJ B + 00, ~o + 00. In inverse 

mode (5.11), however, the cancellation of ~1 leads to these 

points at w = 1. 

Numerically, the local calculation of w(x) shows that 

the direct mode relaxation (5.10) is well conditioned for 

attached boundary layers, the inverse relaxation on the 

pressure (5.11) is also near separated layers or when it 
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is close to being near:separated layers. 

5.6. Implicit Linearized Method 

Besides the dual nature of the preceding behavior, 

physically related to a dominant influence of the inviscid 

flow or the boundary layer for the pressure deterimination, 

depending on whether the boundary layer is more abtiached 

or more separated, the fact that there is a strongerr:re

course to a sub-relaxation when ~x is smaller shows the 

explici t nature of the".method (5.10) as well as the pro:" 

bable advantage of a more implicit method. The idea of 

a Newton method for solving thediscretized equation (5.10) 

was suggested by Burne, Rubbert, Nark [60]. Accordingly, 

for each iteration, we must 
n P.. and the boundary layer 
7.-J 

are expressed if we select. 

determine the inviscid flow 

B~. influence matrices. They 
7.-J 

for variables p(x) and o*(x), 

discretized in p. and 01 in the inviscid flow, in p. and 
7.- 7.- 7.-

0t in the boundary layer: 

} 
(5.15) /13 

r'" r"''' 8" (- -. ) Qi - 0, = ii 1i - Ji 

For iteration (n+l) we may therefore adopt the solution 

of the linearized coupled problem which is expressed in the 

form ofa matrix: 

} (5.16 ) 

If the nonlinear effects on P~j and B~j are weak, 

the convergence must be rapid. Each iteration is still 

complex, requiring the inversion of a full matrix. [I _ pnBn] 
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and above a14l an: ,estimate of the influence matrices pn and 

En, a priori a costly evaluation within the framework of 

finite differences methods, particularly in transonic flows. 

Little information is currently available about this method, 

although its use is indicated by Thiede [54]. A very sim

ilar technique is described by Arieli, Murhpy [76] for 

pseudo-direct calculations of the boundary layer. 

5.7. Semi-Inverse Relaxation Methods 

The the practical standpoint, the complexity of the 

method described above as well as the mixed type relaxation 

ruterative methods (direct or inverse by regions) leads us 

to suggest 13, 13 to 15, 75] a new relaxation iteration for 

separated boundary layer regions or those on the verge of 

reaching this state. This method may be qualified as semi

inverse in that only the boundary l~yer problem is processed 

in inverse mode, the given data being either the direction 

of the external flowe-(;:.).j or the displacement thickness 

o,.n (x). As shown in figure 17, 8/'(x) gives a double pres

sure predictor f.or each iteration, one given by the inviscid 

flow pn (x), the other given by the bounda~y!.layer p (x), the 

probleIU.peing to correct I(i-(~) iteratively so that pn(x) 

will converge near p(x). 

An approximated stability analysis of the direct or 

inverse coupling iterations described in paragraph 5.4 

enabled us to offer a solution to this problem. We may 

notice that if the correction selected [~~·rx:.} - (!)~;')f is such 

that the disturbance [pn+l(x) - p~(x)] in the inviscid flow 

is exactly. fi3(x) - pn(x)]' the new distribution 6 A ·CZ ) is 

identical to the result of an inverse calculation of the 

inviscid flow subjected to p(x). The chainage of such an 

inverse calculation simulated for the inviscid flow and a 

true inverse calculation for the boundary layer, therefore 

repr@duces iteration (5.11) and may be stabilized like it, 
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by a local calculation of a relaxation coefficient w(:J:) r 

according to (5.13) (5.14). The analysis must still be 

completed by an appropriate technique in order to solve 

the problem of small inverse disturbances, of the Prandtl

Glauert type, enabling l~"''rx)- e."(-:!.J to be calculated from 

[p(:J:) - pn(:J:)]. We have shown [13] that a harmonic anal

ysis makes it possible to reduce each frequency mode a ' 

to a local algebraic relationships whose association with 

with the relaxation (5.13) (5.14) leads us to the following 

corrections, if Un(:J:) and U(:J:) designate the velocities re

lated to the pressures pn(:J:) and p(:J:): 

Subsonic points: 
(5.17) -

Supersonic p6ints 

by adopting a' a = (1T/~), the dependency of the preceding max 
local corrections on 0- with respect to a are finally elim-

inated. Among other advantages, the semi-inverse iteration 

(5.171 requires only a detection of the coupling errors on 

the pressure gradient. As a result, it can easily be alter

nated with the direct iteration (5.12) as a function of the 

local form parameter of the viscous layer" without ever lead

ing to discontinuous pressure distributions during the course 

of the convergence, for any number of regions resolved in in

verse mode, or for any modifications made during the itera

tions. 

For example, this combined method was used to calculate 

the supersonic separation on a compression bar, in a laminar 

or turbulent flow, on the assumption of a simple wave, by 

solving a we11-de£ined problem directly with a zero pressure 

gradient at the last calculation point, figures 18 and 19. 

It ~as also applied to calculate symmetrical transonic air

foils in tbeories ofismall disturbances with shook or lead

ing edge separation and to capture numerically the strong 

interaction at the base of a shock over a fine mesh, figures 

20 to 22. 
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A semi-inverse slightly different correction was 

suggested by Carter [78J more recently. For each itera

tion, the correction is made of the displacement thick

ness o,.n (x) ·and not of the angular direction of the flow. 

In the incompressible case, for example, the correction e~) 

is expressed in a local algebraic form: 

in which n is a relaxation coefficent, even over-relaxa

tion coefficient (1 < n < 2). This method was recently 

used by Kwon, Pletcher [79], Whitfield et al. [SO]. 

It·is interesting to note that there is an analogy 

between (5.1S) and (5.17) in the subsonic case. If we 

assume, for example, that the coupling is obtained by 

inclusion of the displacement thickness, or· eJ a (do~/dx), 

the derivation of ts .1S) directly gives: 

(5 .1S) 

(5.19 ) 

The rigorous identity of the formulations (5.17) (5.18) 

should therefore be obtained for the incompressible case, 

if n = [Bb.x/'ITo*B-b.x).]. The analogy (5.17) (5.19) also 

shows the ambiguity of the notion of over-relaxation or 

subrelaxati6n in (5.l7) (5.lS), the subrelaxati6n in 

figure 17 occurring in {5.l7)·only at the concept level, 

the over-relaxation n of (5.1S) being weighted by the 

multiplicative factor 0*. 

Finally, let us recall that the use.of non-automatized 

semi-inverse type techniques was first mentioned by Kuhn 

[81, S2]. 
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5.8. Semi-implicit Methods 

Recent trials have been carried out to develop methods 

which are partially free of the explicit nature of the re

laxation techniques described in paragraphs 5.5 and 5.7, but 

leading to simpler solutions than Newton's method in para

graph 5.6. 

A first analysis was suggested by Veldman [83] in the 

case of unlimited incompressible flows for which the rate 

of disturbance induced on the viscous layer is given by a 

homologous Caudhy integral of (5.6), if the coupling is ob

tained by a distribution of sources on the wall: 

l
tt» 

a. _ a" :a _If_ dJ 
-t». x_ ~ 

(5.20) 

After the discretization, the velocity distribution 

u. or pressure distribution p. becomes associated, by virtue 
1. 1-

of (5.201 with the displacement thickness distribution 61 
1-

by a linear form whose coefficients A .. , predominantly dia-
1.J 

gonal, can be calculated directly. We may express: 

Inviscid flow: n+1 1 P . - A.. 61 n+ = EA .. 
1- 1-J 1- j<i 1-J 

.t'*.n+1 i,9, .. pt" 
u +T. I~/. 

J j>i ! 

-. 

Schematically, the boundary layer appears in a dis-

crete form like an appreciably'lowe-t.:jtriangualr matrix oper

ator B • • : 
1.J 

n+1 Boundary Layer: 6~ 
1-

It is clear that the iteration indices nand (n+l) 

were selected in (5.21) and (5.22) so that a resolution 

wo~ked.-~out from upstream to downstream may implicitly 

solve the first members in f3tation i; the second members 

being known, according to a Gauss-Seidel type techn~que. 
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Like the Gauss-Seidel technique, the method (5.21) (5.22) can 

also be over-relaxed. 
, ~ " I 

A second semi-implicit analysis developed by Wai, Yoshihara 

[84] for calculations of transonic airfoils in a small distur

bance approximation. The potential problem: 

( 1 _ 11,' - "\~.x: ) ~.t:l: f r'11 =: 0 (5 • 23 ) 

I p; (x,o) • !(:r.) -If' ®ex) (5.24) 

is solved, in the inviscid flow where ,8 (:r.) by the Murman-Cole 

relaxation method, implicit column-wise along y, semi-implicit or 

implicit in x, depending on the decentering applied to~ and ~ .-
x xx 

In the inviscid flow, the boundary layer behavioral relationship 

(5.1) gives: 
! 

cj> (x"O) = !(x) + b(x) <t> -I- a(x) 
y . xx 

(5.25) 

a relationship in which b(x) and a(x) should be calculated by the 

other boundary layer equations. If this calculation is performed 

from upstream to downstream while scanning the columns at the same 

time for cj>, it is clear that (5.25) (5.23) may be solved simultan

eously in semi-implicit mode, exactly like for inviscid flows, with 

the same discretization for <Py and <t> • 'i' The main advantage is that xx 
the interactive treatment (5.25), even when discreticized in semi-

implicit mode for <t> r the improvement being that of a a Gauss-Seid
xx 

el technique, in analogy with (5.21) (5.22). 

The simultaneous relaxation of the integral boundary layer 

equations and of the stream function, through successive implicit 

scannings by columns, was also indicated by Moses, Jones, O'Btien 

[85 lin the case of separated :subsonic flows. It is used by Ghose, 

Kline,! [8 6J in the calculation of diffusers. 

6. SYNTHESIS EXAMPLE - CALCULATION OF AIRFOILS 

Among the methods of calculating compressible flows of viscous 

fluids past airfoils, using coupling methods like those used in 

the approximations in paragraphs 4 and 5, 
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we may mention those of Bavitz [37], Bauer, Korn [38], 

Lock, Collyer, Firmin, Jones [39], Melnik, Chow, Mead 

[29], Wai, Yoshihara [84], Nandanam, Stanewsky, Inger 

[40], Le Balleur [15], such a list not being limitative. 

We are not interested here in the comparativeperforman

ces of the methods from a practical standpoint, most still 

being the subject matter of current developments and gen

erally providing more accurate results than currently us

able Navier-Stokes solvers [87J. What we are looking for 

here is simply an example of a synthesis calculation, dir

ectly usable in applications, combining various viscous 

interactions mutally influencing each other (trailing edge, 

shock-boundary layer interaction, separation), and reveal

i~g the development of methods for an effective treatment 

of strong couplings and those offering a complete enough 

methodology to·completely describe the viscous flow at 

high Reynolds number, in a direct extension of numerical 

techniques developed for inviscid flows. 

6.1. Bavitz, de Bauer, Korn et ale Methods 

In these first methods of calculating airfoils in 

viscous flows, the approximations used for the coupling are 

still close to the weak coupling methods. The wake is still 

not taken into account. The displacemement effect of the 

boundary layers is obtained by altering the airfoil design 

geometry after adding the displacement thickness. The 

stabilization and convergence of the coupling iterauions 

are relatively uncertain and incorporate smoothings or ex

trapolations of o*(x), an empirical processing of the trail

ing edge region being used as a compensation in the Bavitz 

method. The 1nviscid flow is calculated using the poten

tial Garabedian, Korn method. The nonconservative form is 

mos often preferred owing to a certain error compensation 

because the viscous effects at the base of the shock are 

not taken into account, the mesh being selected so as to 
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extend the compression under the shock far enough to avoid 

any separation in the boundary layer calculation [37]. 

6.2. Collyer, Lock et al. Methods 

The investigation of more complete methods for strong 

interacting phenomena was initiated by Lock and his asso

ciatesby first solving the inviscid flow using small dis

turbancestransonic techniques, figure 23, then using Gara

bedianlsland'Koin's potential method, and this was inde

pendently of the practical performances of the analyses men

tioned above. Figure 23 recalls that the wake effects were 

introduced in the form of a normal velocity jump, corres

ponding to the displacement effect (3.5) and in the form of 

a tangential velocity or pressure jump associated with the 

wake curve effect of the type (4.13). The curve of the 

stream lines under consideration is still a mean curva

ture. Furthermore, in the case of the complete potential 

equation, the wake conditions are applied to a mesh line 

and not to the viscous wake itself. The separations are 

not processed. 

Compared to,the preceding methods, the i.main improvements 

besides treating the wake a'r:e that the normal velocity on 

the airfoil wall is processed to determine the displace

ment effect without altering the design geometry, the sim

Ultaneous iteration on the viscous effects and on the 

potential calculation, the replacement of the smoothing 

techniques on 0* with a uniform viscous sub~relaxation, 

determined empirically without altering the solution when 

convergence is reached. The latter improvement consisted 

of simulating as close as possible the pressure jumps of 

the shock waves provided by the potential calculation, by=. 

weighting the conservative and nonconservative numerical 

techniques. No special viscous processing was intr~duced 

for the shock-boundary layer interaction. 
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6.3. Meillnik, Chow, Mead Method 

Like the method just described, this anlysis is 

applied to airfoils free of separations, based on the 

Green integral method ofr boundary layer and wake cal

culations, and does not introduce any special processing 

for the strong interaction at the base of the shock waves. 

Fi.gure 24 recalls that, excluding the trailing edge region, 

the viscous boundary conditions applied to theinviscid 

flow are similar to the method of Lock et al., the condi

tions on the wake always being applied to a slightly dif

ferent line than that of the real wake. 

The improvement of the methods consists of using the 

Jameson potential calculation in a conservative form, and 

using a sophisticated processing of the strong turbulent 

interaction at the leading edge: the latter is based on an 

asymptotic multi-deck analysis, figure 25, and guarantees 

a rational behavior of the mdoel at the infinite limit of 

the Reynolds number. From the practical standpoint, we 

should notice in figure 25 that the viscous calculation 

model incorporates a non-irrotational normal pressure gra

dient in the external layer. This is expressed in the po

tential calculation by a local modulation of the tradition

al coupling boundary conditions at the leading edge, figure 

24. It generally leads to overvalued. pressure jumps on the 

wake in theirnmediate vicinity of the trailing edge. 

6.4. Nandaman, stanewsky, Inger Method. 

This me~hod is simp1er thant the two preceding ones, 

excep~ for ~he processing of the shock-boundary layer 

interaction. It uses the Jameson potential method, in a 

conservative and nonconservative form, as well as an inte

gral method for the boundary layer. The wake is not computed. 
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The separations are not processed. The coupling is obtained 

by altering the design geometry of the airfoil by adding 

a displacement thickness subjected to a large smoothing, 

particularly in the shock region. 

The method would therefore be comparable to those 

described in paragraph 6.1., if a more sophisticated proces

sing of the shock-boundary layer interaction.,were not incor

porated. The latter appears as a separate module whose role 

is to determine as accurately as possible the state of the 

boundary layer after the shock, and to provide a more real

istic estimate of the pressure on the wall in the shock re

gion. This module is based on Inger's non.;...asymptotic multi

deck analysis 188]. The results are better if the compres

sion applied to the Inger module, theoretically that of a 

straight shock, is that of a maximum deflecting oblique 

shock. 

6.5. Wai, Yoshihara Method 

The method is a recent development and is used for the 

potential flow of a simple small transonic:small disturbances 

calculation. The boundary lyaer and the wake are calculated 

using an integral method, including separations. The first 

feature consists of a simultaneous resolution of the poten

tial small disturbances equations and of the viscous bound

ary condition (5.1), during the relaxation by column:oasso-L 

ciated with the Murman-Cole technique. This process, eli

cited in paragraph 5.8, is semi-implicit in that the scan

nings per columns must be repeated to assure the convergence. 

Conversely, the interactive processing of the viscous calcu

lation eliminates the singularity problems at the separation. 

The second feature of the method is to replace the 

modelization, called viscous ramp modelization, with an 
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integral calculation of the boundary layer in the shock 

region, in the case of separation, in the absence of re

solving the strong coupling with a fine enough mesh. The 

modelization schemati.<±ally consists of establishing a ramp 

for the displacement surface with an angle which corres

ponds to a predetermined recompression level on a shock 

polar, where the empiricism leads to the selection of an 

intermediary value between the sonic deviation and the max

imum deviation [89]. This modelization of 0* is necessary 

not only for improving the comparison with the experiment, 

but also to assure the convergence of the calculation. 

6.6. Le Balleur Method 

The method uses for the inviscid flow the potential 

calculation of Chattot, Coulombeix, Tome [90] which solves 

the equation in a conservative form, with the Jameson arti

fical viscosity. The boundary layer, laminar or turbulent, 

as well as the wake are calculated with an integral method 

including the reverse flows, the wake being calculated with 

or without the dissymetry effect. The matching formulation 

of paragrph 4.3 for the inviscid flow leads to boundary 

conditions on the wall and on the wake which are similar to 

those of Lock et ale or o£ Melnik et al •• Yet the geometry 

of the wake line is here still periodically dapated during 

the calculation to coincide with the mean viscous wake line. 

The method does not provide any special pr.ocessing of the 

leading edge,but strictly observes here the strong coupling 

assicated with the matching formulation. The curvature ef~ 

fect applied "(4.131 incorporates the averaged estimates of 

K(x), which are distinct for the upper and lower half-wakes. 

The coupling is achieved by a direct'or semi-inverse 

relaxation iteration, as a function of the instantaneous 

local form parameter of the viscous layer. This iteration, 

described in paragraphs 5.5 and 5.7, is comparable to that 
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used for calculating the inviscid flow, figure 26. The 

pressure gradient along the wall is estimated in the in

viscid flow using cen~ered schemes for subsonic flows, 

and decentered downtream for supersonic flows. The bound

ary layer transition at the wake is assimilated with a con

tinuous process for the inviscid flow as well as for o*(x), 

but discontinuous for the viscous calculation. The method 

automatically captures the modification brought to the 

pressure distr'cibutions by the. viscosity in the immediate 

vicinity of the trailing edge, provided that the meshes 

are approximately· ,the local thickness of the viscous layer, 

whether there is a separation or not. 

Figures 27 to 32 show the use of the method at low 

velocities and at high incidences, for the NACA 0012 airfoil. 

On this airfoil, the calculation approaches the stall inci

dence, with a 70%:)upper'.:surface')separa'bion from the. chord;: 

and a reattachment in the wake. In the present state of 

of <tthe method "s development, this calculation at an inci

dence of 16° is possible only by observing the wake dis

symetry, figures 27 and 31 show the aspect ratio .. change 

associated with its mean line. Figures 3·9 to 41 show l!>.y the 

plotting of the stream lines and of the iso-Mach lines that 

the calculation method restores not only the distant invis

cid flow, but also the mean viscous flow in detail. 

Figures 33 and 34 show the use of the method in sub

critical transonic cases on the RAE 2822 airfoil, tested 

by Cook, McDonald, Firmin [9lJ. In supercritical.transonic 

cases, in contrast to the calculations made in the small 
disturbances approximation, figures 20-21, it remains cur

rently impossible to numerically capture the strong inter

action at the base of the shock waves on a fine mesh adap~ 

ted to the local boundary layer thicknesses, owing to the 

rlUmerical difficulties of solving the potential equation 
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on such meshes. Without this complete resolution of the 

local viscous coupling, the compression under the shock 

is overestimated by the conservative method applied to 

the inviscid flow. 

To correct this problem, an approached method was 

defined for the shock-boundary layer interaction. As fig

ure 36 schematizes, this method simply consists of solving 

a local fictitious interaction on an enlarged scale E2' 

compatible with the mesh. This is a homothetic image of 

the real scale interaction El, obtained by simple expan

sion of the local thickness 0 of the viscous layer in the 

ratio CE2/El}, yet without altering the Reynolds number 

Ro. The strong coupling made over the fictitious inter

action region E2 leads, on the one hand, to a more realis

tic interactive estimate of the boundary layer thickness, 

and on the other hand, to an expected reduction in the re

compression level, as shown in figure 37. In contrast, the 

processing is essentially an approximation in that the al

teration undergone by the inviscid flow in region E2 is 

inconsistent with the overall calculation scale C. For 

this, a quality numerical solution will therefore be: 

maintained only if E2 « C~ and even E2 ~~ 'L~ L represen~

ing the extent· ofi:the supersonic pocket. It may be observed 

in figure 38 that, thanks t6'J,the(~single viscous coupling 

effect, the calculation predicts a Mach number, after a s 

shock which is slightly less than unity, which is closer 

to the experiment. It may also be observed that the numer

ical structure of the shock of the potential calculation is 

replaced by a continous viscous compression, which is rela

tively spread out owing to the mesh used, figure 37. Fig

ures 42 to 44 show the appearance'of the iso-Mach lines and 

of the stream lines in the c,Uculated',viscdlUs flQwl .. 
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7. CONCLUSIONS 

A spectacular effort has been made over the past few 

years in the inviscid flow region with a view to reinforc

ing the effectiveness and generality of the calculation 

techniques. It is important to stress first the major 

valorization resulting';in practi~efrom the coupling of 

these techniques with complementary viscous calculations, 

provided, however, that too restrictive approximations of 

the weak coupling are avoided. Changes in the methods of: 

predicting local and overall wing and airfoil character

istics shows this trend. 

In this light, we may note the conjunction of progress 

made .. ·.o;ff<.I.an:analyticalnat.ul1.e on interactive viscous calcu

lations of fundamental phenomena such as trailing edge flows, 

thin layer separations, boundary layer - shock interactions, 

wi th progress made of<.<.l.a numerical i.:nature, consisting mainly 

of developing new original strong coupling techniques. These 

improvements have made it possible to go beyond the stage of 

processing specific or local phenomena, and to synthesize 

computer means adapted to the complex flows encountered in 

industrial applications which compete with overall methods 

for direct resolutions of the viscous flow. 

Yet, it is clear that the two approaches to phenomena 

of viscous interaction, the overall approach and the strong 

coupling approach, are actually more complementary than com

petitive. The current selection of relatively simple vis-

·cous approximations in the coupling methods is actually 

guided only by the concern to use coarser discretization 

meshes than those which are indispensable in the overall 

approach for numerically solving viscous layers and sub

layers. Coupling methods using simple viscous equations, 

and particularly those of Navier-Stokes type calculations, 
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produce in practice the minimum mesh densities compatible 

with the numerical resolution of strong coupling phenomena. 

Such densities, are between those used in inviscid flows 

and those of the Navier-stokes type calculations, and lead 

to an economy which may be taken advantage of for calcula

ting mome 'complex flows, incorporating for example mUltiple 

viscous interactions or three-dimensional phenomena. 

For less restrictive meshes, the progress made in the 

overall approach has obvious effects on the calculation of 

viscous regions in the method of coupling by regions. Fin

ally, it is also conceivable to use Navier-Stokes solvers 

in the:.Jc6upling methods replac'iihg current inviscid flow cal

culationsand on analogous meshes. Such a technique would 

make it possible, in three-dimensional flows, for example, 

to capture the macroscopic viscous phenomena by a local re

solution of the Navier-Stokes equations with a turbulence 

model, whereas the concentrated phenomena of thin layers 

near the walls, their interaction with the external flow 

as well as their impact on the generation of vortex sheets 

would continue to benefit from lessl.oostly processings, 

through extensions of integral interactive boundary layer 

methods currently developed for airfoils 'and wings with a 

large aspect ratio. 

From the specific standpoint, then, a few salient ideas 

or requirements may be extracted from current coupling tech

niques: 

Ul the implementation of strong interaction coupled 

calculations presents two relatively different methods. The 

first uses a concept of regions linked by their boundary 

conditions, with the possibility of directly incorporating 

existing modules of the Navier-Stokes type. The second is 

based on the notion of overlapping viscous and nonv.iscous 

calculation regions, with the possibility of developing 

original methods for solving Navier-Stokes equations using 

an equation scattering technique. 
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(ii) The necessary replacement of weak coupling 

approximations with a Btrqng'rigonous coupling leads to 

an imperative requirement to develop specialized numer

cical methods, raising problems that are at least as com

plex as those associated with numerical techniques for 

inviscid and viscous flows. This requirement became ob

vious for trailing edge, separation and shock-boundary 

layer problems. The analysis is especially not very de

veloped for a coupling between the Euler and Navier-Stokes 

equations. 

(iii) The processing of boundary layer - wave shock 

interactions seems to be one of the most delicate problems 

of the calculation techniques, not only due to the error 

range attached to the turbulence mddelizations, but also 

due to the reduced scales which should be used locally, 

even for calculating inviscid flows in the case of coupling 

method using mimimal meshes. Similar problems of mUltiple 

resolution scales are presented in viscous layer separations 

in the vicinity of leading edges. 

(iv) Among the improvements made in calculating air

foils, the replacement of the Euler equations for the po

tential equation shall be examined, particularly for higher 

transon~d flows, in the event of a separation generating 

under the shock, with the ultimate benefit of a direct ap

plication to internal flows. Calculation-experiment com

parisons brought to light from the corrections of error 

ranges on windtunnel walls, should also be highly desirable 

for refining existing methods of calculation. 

" (.v) Calculations of airfoils in extreme flows, near 

stall or separation states under the shock, for exmaple, 

reveal the very strong sensitivity-:of the overall flow 
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to the precision of the viscous layer calculation from 

the very origin of the latter. The development of tur

bulence models is therefore very important, even in the 

simplified forms encountered in integral methods. 
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Y,V 

----:__ x,u 

-;; -"C ClJf"(lJtur~ K=~ 
... ax~y 

From Lock - Firmin - Jon~3 - Co/~ ~r 

Fig 23 - Coupling' calculation of airfoils 

-------
..... --

in viscous flows: boundary condition 
of the inviscid flow, in small dis
turbances, according to ref. [77]. 

Source co 
F=1 
-ex,." L. !!... [pua-l 

P dz J 
'on 

Trailinq 
F,G,H*1 

K_dB (wake curvature) -a; 

Fig 24 - Coupling calculation of airfoils in 
viscous flows: boundary condition 
of the inviscid flow according to 
Meinik# Chow, Mead, ref. [29]. 

---INVISCID FLmP(1) -----

Ma 
layer Nonviscous rO-l( 

Wall layer 

Fig 25 - Nonseparated turbulent trailing 
edge: asymptotic model by Meinik, 
Chow according to reference [29]. 
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M: t·1ach number 
e: wall-velocity angle 

-~ en (xl 

DIRECT INVISCI~ IT lLow 
1 RELAXATION -+ (n+ 11 

- : ""'kN l---<¢, M" 1,1 

(ATl'ACHFD : n =kN SEPARATED I 

DIRECl' BOUND- INVERSE BaJN['-

Mcr IAYER 1 ARY IAYER 

S(xl [~:J ., (xl 

r.a::::AL CORRECl'ION 
SUB-RErAXATICN ' SEMI-IND~ MEI'Hor: 
CAL. w (x). local 

[ dM _ dMn] ~ '1+ 1 n] e n"'l _en =w(xl[S _ en] - _ ... e -e 
dx dx 

e n+ 1 
(xl 

Fig 26!- Mixed relaxa tion,,1rnethod: direct or 
semi-inverse. 

AIRFOIL NACAOO12 - 1=15'- 145X21 Nodes 

Fiq 27 - Mesh with positioninq of the wake in the symmetrical 
(M = 0,116, a = IS' , R = 2 x 10'). approxima tion. 
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NACA 0012 
M .0,116 
ex • 140 

Gt .1,9 lOG 
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turbulent calcul. (equil.) 
experiment (laminar -
turbulent) 

0,5 
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I 
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I 
I 
I 
I 
It 
'0 

~ + Viscous. flow cal. 

o Experiment 

x 
L 

OL-_ ......... _--L __ "--_~ 

o 5 10 15 a: 0,5 

Fig z8- NACA airfoil 0012 Fiq 2q - NACA 0012 airfoil lift 
Vo = 40 mIs, R = 1,9x 10'. strong coup-
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(V = 40 m/s) turbulent coupled 
ca~culation. 

. 4 

.3 
M .0,116 
(1_15· 

ling calculation (turbulent, 
symmetrical wake) • 

R ... 1,9xlcf 

.2 

o 

6" 

C • == .... -.~ 
NACA 0012 

2 

6/1 Cr H 
SURFACE! T UPPER 

5 • . • 
4 • . 

~ . :5 •• .. ./ 2 ..... 
•••• 6" 

~ . 
•••• X 

0 0 
0.5 L 0 

Fig 30 - Viscous effects at the trailing 
edqe and pressure plateau. CouPled turbulent 
calculation, symmetrical wake. 
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NACA0012 1=16 - JCFOIL9 - 181121 

(M =0.116, a -= 1ft>, R =2 x lW). 

Fig 31 - Mesh with wake positioning in the 
dissymetrica1 approximation. 

+5.00 Cp 

+3.00 

+2.00 

... Exoerimp.nt 
_ CilcuT: H = 0,116 

a:16° 6 
R=1.9.10 

( Trai ling edge regie n 
<cc( 

~ . 
(cccc L separatl.or 

ccc 

»»»»»»»» )()()C) 

Cp 

-1 

Cp Mo=O,604 

a., = 2:57 

a =6,310' 

«««««(~ 
»»»»» 

," rea tt hment 0 ~+---:}~----~r::---~----==-
+1.00 

o 

_1.00 

wake 
--------~f __ ~ C NACA0012 -

Fig 32 - Calculation of the 
NACA 0012 at high incidence 
with dissymetrica1 wake. 
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c::: RAE 2822 ------
Fiq 33 - Calculation of the RAE 
airfoil in a subcritica1 flow. 
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Cp 

-1 

Mo =0,676 

<XG = -2)8 
ell: 5710' , . 

a r-ro~----------~--~~--------

\ 

+1 

Fig 34 - Calculation of the RAE 2822'in a subcritical flow . 

RAE2822 CAS08 - JCFOlL8 - 181X21 

_.F~g 35 - Mesh in a supercritical transonic flow with 
f. symmetrical wake. 
Shock-boundary = EaSeE2 «L<C I 
layer interaction 

/-'"'" 
/' 

/ 

fictitious interact. !-t-o--_
C
=.2_-.I 

scale I L 

'" I' c 

6 .'!< _.' Co2 
6'** .Cst=£'1 Key: *fictitious 

**reaI 

Fig 36 - Approximate calculation of the shock 
boundary layer interaction if ~~L<C 
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+1.50 Cp 

+1.00 
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Fig 37 

+7,50 Cp 

+1,00 
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-0.50 

_1,00 

Shock/boundary la~er interaction 
ordinary coupling 

»)))))))))) 

suggested method 

C:: __ R._~_E_2_82_'2_--=-:-_ ~ 

Effect of the shock/boundary layer 
interaction. 

*Experiment 

.. * :M=Q730 
a. =3°19 

_ C4lcul: M=O,732 
0.:3° 
R=6.5.106 

Tr6nsitiOll : xt =0/13 

C RAE2822 

Fig 38 - Calcula~ion of the RAE 287.2 in a 
supercritical flow. 
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NACA 0012 (M = 0,116, (JI."" 16", R ",,2 Ii lei). 

Fig 39 _ streamlines in the inviscid flow - NACA airfoil 0012 

Fig 40 _ streamlines in a viscoUS flow - NACA airfoil 0012 

\ 

\ 

Profll NACA 0012 (M '" 0,116, a"" 16", R '" 2 Ii lei). 

Fig 41 _ Isomach lines in a viscoUS flow NASA airfoil 0012 
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.Profll RAE 2822 supercrltlque (M = 0,732, a = 3°, R = 6,5 x 10"). 

Fig 42 - Isomach lines\ in an :inviscid flow - RAE aUpercritical 
2822 airfoil 

\ 

\. 
\ 

\ 

/ I Fig 43 - Isomach lines in a flow -su.percritical 
° ~AF. ?822 airfoil 

Profll RAE 2822 supercrltlque (M =0,732, a=3 ,R";:{j;SX IO'fF 

::Profll RAE 2822 (M =0,732, a=3°, R = 6,5 x 10"). 

Fig 44 - Streamlines in an inviscid flow 
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