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FURTHER DEVELOPMENT OF XTRAN3S
COMPUTER PROGRAM

FINAL REPORT--CONTRACT NAS1-17072
NASA Langley Research Center
Hampton, Virginia

I. INTRODUCTION

The purpose of this report is to describe further developments and
enhancements to the XTRAN3S computer program, a code for calculation of steady
and unsteady aerodynamics, and associated aeroelastic solutions, for V
three-dimensional wings in the transonic flow regime. The program was
developed by the Boeing Military Airplane Company (BMAC), Seattle, Washington,
under Contract F33615-78-C-3201 to the Flight Dynamics Laboratory of the U.S.
Air Force Wright Aeronautical Laboratories, entitled "Transonic Unsteady
Aerodynamics for Aeroelastic Applications., The final report on that contract
is Refs., 1-3.

Additional work on the program was performed by BMAC under Contract NAS2-10762
to the NASA Ames Research Center, entitled "Addition of Boundary Layer
Correction Procedures into Transonic Inviscid Codes (Phase II)". The final
report on that contract is Ref. 4.

The present work has been performed under Contract NAS1-17072 to the NASA
Langley Research Center. Work reported herein may be summarized by the
following list of tasks: '

1) The XTRAN3S program, including the boundary layer modifications
described in Ref. 4 has been converted to run on the CDC Cyber 203
computer and installed at NASA Langley Research Center;



2)

3)

4)

5)

~The program has been modified to include a more accurate method of

aerodynamic coefficient and generalized force integration than was
included in the original version;

The input processor of XTRAN3S has been modified to accept surface
ordinates and siopes defined at the aerodynamic grid points at the
user's option, in addition to the least square error polynomial
definition included in the original program;

A method of modifying the maximum array dimensions for the aerodynamic
and aeroelastic -computations has been provided.

A modified grid mapping transformation has been included in the
program. This will allow accurate and stable computations to be
performed for wing planforms with other than very modest degrees of
sweep and taper, thus overcoming a major limitation of the original
version of the program.

Results of a checkout case for the modified program are included.

In addition, several other potential modifications and improvements, where

actual implementation is considered outside the scope of the present effort,

are described,

Finally, modifications to the XTRAN3S User's Manual (Ref. 2) and a sample
input data set are included as Appendices.



II. XTRAN3S PROGRAM MODIFICATIONS AND ENHANCEMENTS COMPLETED

2.1 Viscous Boundary Layer Modification

The original XTRAN3S program, as described in Refs. 1-3, calculates inviscid
transonic flow over three-dimensional wings using a modifed small disturbance
finite-differencé algorithm. In Ref. 4, the inclusion of a viscous ramp
model, used to simulate the displacment effect of a shock-boundary layer
interaction, and a two-dimensional quasi-steady strip boundary layer integral
method employing the lag entrainment equations due to Green (Ref. 5), was
described.

These modifications have now been incorporated in the Version 1.5 of the
XTRAN3S code installed on the Cyber 203 at NASA Langley Research Center. 1In
order to exercise the viscous wedge and boundary layer portions of the
program, additional input data describing wedge and boundary layer control
parameters must be included in the XTRAN3S data input file. These additional
data are described in Appendix A.

Test cases have been run on the Langley Research Center Cyber 203 for the
inviscid, wedge, and wedge plus boundary layer versions of the code. The test
planform was a “typical" transport wing, with a leading edge sweep angle of 30
degrees, a full-span aspect ratio of 8,0 and a taper ratio of 0.4. The
airfoil section used was the MBB-A3 8 percent thick airfoil. This case was
used as a checkout case for the work described in Ref. 4, Because a
modification to the viscous flow portion of the code was made after the
results of Ref. 4 were generated, the present report has included some of the
recently calculated results. In addition to corrections to the wedge
procedure that were not incorporated in Ref. 4., Version 1.5 of XTRAN3S uses a
ten-step Runge-Kutta integration of the boundary layer equations, as opposed
to the single-step procedure employed in the earlier version. This has been
necessary to obtain converged results with the modified grid transformation
discussed below. The results are described in a later section of this

report. Only steady state results for a rigid wing have been included. The
input data for the wedge plus boundary layer test case are given in Appendix B.

)



2.2 Modified Aerodynamic Coefficient and Generalized Force Integration Method

Aerodynamic coefficients (1ift, moment, etc.) have been determined in XTRAN3S

by integration of calculated surface pressures, as described in Ref. 1. It
has been observed, that since pressures are determined by a process of

numerical differentiation, a potential source of error is introduced if the
integration and differentiation algorithms are not identical. In steady state
calculations, this source of error can be eliminated by calculating section
coefficients in terms of circulation, determined by the difference in velocity
potential between the upper and lower surfaces at the trailing edge. For
unsteady flow, this determination must include other terms and considerations.

In this section, relationships for determining aerodynamic coefficients and
generalized forces by an alternate integration method are presented. This
alternate representation has been incorporated in the Langley version of
XTRAN3S.

For unsteady flow, an approximation to the surface pressure coefficient,
consistent with other small disturbance approximations to full potential flow,
is given by

Cp=-2¢,-240, (1)

where ¢ is the nondimensional small disturbance potential defined from the
full potential

§(X,Y,Z,T)=U°°CR[7‘+‘IS("'7:2,’~‘)] -(2)‘



where the physical dimensions X, Y, Z, and T have been nondimensionalized by

- X 5{1-Y'; 2 £, t=AUT

Ca Cr Cr Ce

where CR is the wing reference chord and k is a nondimensional scaling on
time. If k is set to the reduced frequency uCR/V“ for a specified
oscillatory motion at a circular frequency © the relation between
nondimensional and physical time scales becomes t = GT.

In the XTRAN3S code, the pressure coefficient Cp was found by a combination of
central second-order spatial differencing and first-order backward temporal
differencing of the nondimensional disturbance potential expressions of
Equation 1.

In solving the dynamic aeroelastic equations of motion for a flexible aircraft
structure, the modal approach adopted in XTRAN3S required calculation of the
generalized force Qi

Q; Fo(x,y.t) Y.(xy) drdy (3)
S

h elastic mode 0i(x,y) where

for the it

Gy t) 20Ul [Ch x,y,6) ~Cp, iy, 2)] ()

and L, U denote the lower and upper surfaces.

Numerical differentiation, followed by numerical integration, introduces a
truncation error which may be eliminated by application of the following
scheme.



Using Equations (1) and (4), we may separate the steady and unsteady parts of
the pressure coefficient so that Equation (3) may be written

Q=296 [[[~(9,-9,,) v, drdy

-H‘éhpt,_-‘?{u) WA- d%dy]

The first term may now be integrated directly by parts to give

crgec[ [ L0 )B4, TN
ﬁizz 1E
(40 Yy drdy
~6f LE
bh 1€

E R S R

where the inner integral has been carried out streamwise from the leading to
trailing edge of the wing. Note that although the spatial derivative of

velocity potential is no longer integrated, the modal slopes Uxi are now
required as well as modal deflections V..
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For the special cases of normal force, axial force, and pitching moment, the

following expressions can be used.
Normal Force: = . -
.y": - l J Wx . - o

3
/
J(Iu,c. . WX < )cu):.

X lyy 5 Y.o= 1

Thus, the sectional force and moment expressions currently written:

Axial Force: Y.
L

Pitching Moment: }”-
A

(ce,): f (¢, -C, )d*

(c*Cm); * f(C;s,_ ~Co, M p-v.) A2

(C:(lz:)j = \f.<’¢3/1 - (%ﬁ -F ‘) Ax
may be rewritten as follows:

(Cc,v) = ‘z(‘{’ﬁ;— Pre ) 2'75‘/(56,3 ?5 )/l
Cn) = {0t ) [ o188
’fo(% “Beo (2 -%,) X }

(7a)

(7b)

(7c)

(8a)

(8b)

(8c)

(9a)

(9b)
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Note that for the axial force term: 1) the leading edge terms do not cancel
out as with the generalized force or 1ift and moment expreésions, due to the
difference in siope on the upper and lower surface, and 2) the surface
curvature f" must be available as well as the slope. The curvature is
calculated internally by differencing the slopes. The remaining integrals are
carried out by'the Simpson's Rule method as before. These alternate
formulations for normal force pitching moment, axial force, and generalized
force, have been incorporated in the present version of XTRAN3S.

2.3 Direct Input of Surface Ordinates and Slopes

In the original version of the XTRAN3S program, airfoil section geometry was
defined in terms of separate polynomials describing the upper and lower
surface. The coefficients and exponents of the surface polynomial were
usually to be obtained from a least-squares error curve fitting procedure.
This is the "FUNCTIONAL" option for airfoil geomtry input defined in Ref. 2.

In order to allow the user to input a surface geometry definition obtained
from any alternate method (such as a cubic spline fit) an alternate input
method has been included, defined as the "TABULAR" option. The exact form of
the required input data is described in Appendix A, When the TABULAR option
is exercised for a given airfoil section, the program expects nondimensional
input data in the form of streamwise distance in percent of local chord and
upper or lower surface ordinates and streamwise slopes at the aerodynamic mesh
points ("XI MESH") which will be used in the finite difference solution. Note



that the input and computational points must correspond exactly as no
interpolation is performed in the streamwise direction. A sample data set
including the “TABULAR" data option is given in Appendix B.

2.4 Variable Array Dimensions

The size of computational arrays for XTRAN3S were originally determined by the
limitations of core storage of the CDC 7600 computer. The computational mesh
was used for 60 streamwise, 20 spanwise, and 40 vertical mesh points,
including the outer mesh boundaries. The effect of varying these numbers of
points on the accuracy or stability of the solutions has not been assessed,

Because of the virtual memory features of the Cyber 203 system an absolute
core limitation is no longer applicable. A method for using alternate sizes
of flow field computational arrays, as well as surface boundary conditions and
number of mode shapes, has been provided. Because the current version of
Cyber 203 Fortran does not support PARAMETER-type data specification, it is
necessary for the user to modify a file containing several UPUATE correction
sets. These correction sets are then used to create a modified source
program, which is then compiled and run in the usual fashion. The UPDATE
correction sets that have been included in the current Cyber 203 version are
stored on files at the NASA Langley computing facility. The files containing
these correction sets may be modified by using a change option in a standard
text editor, such as XEDIT. Note that in allocation statements (DIMENSION,
REAL, etc.) actual values must be substituted for the variable names defined
below. In DATA statements, actual numerical values are changed as required.
Statements which define the limits of DO loops or dimensions passed through
calling sequences may be changed at the user's option. The following
parameters and their default values are defined in the correction sets and may
be changed by the user:

Parameter Definition Default Value

DNXIW Maximum number of streamwise grid points 50
on the wing surface

DNETAW Maximum number of spanwise grid points 20
on the wing surface



DNXIT Maximum number of total streamwise 60
grid points

"~ DNETAT Maximum number of total spanwise grid 20
points

DNZT Maximum number of total vertical grid 40
points

DNMAES Maximum number of total generalized 20

aeroelastic coordinates .

DNSAES Maximum number of structural degrees 100
of freedom for aercelastic solutions
inertia force points

DNFAES Maximum number of external force degrees 20
of freedom for aeroelastic solutions

DNMODES Maximum number of specified modal motions 5

Note that any or all of these parameters may be changed separately by the
procedure. Since the correction sets are incorporated in the modified old
program library with the default dimensions, it will be necessary to YANK
these existing sets, modify them, and replace it during the UPDATE procedure.
(Familiarity with the terminology of the CDC UPDATE system is assumed here.
Other readers may consult the UPDATE Reference Manual, Ref. 6.)

2.5 Modified Grid Mapping Transformation

Various studies with XTRAN3S, by investigators at BMAC and several other
aerospace companies, NASA Ames, NASA Langiey, and the Air Force have shown
that, while the program could perform adequately for moderate-to-high aspect
ratio wings, it was difficult or impossible to obtain converged solutions for
low or high aspect ratio wings with more than moderate degrees of sweep and
taper. These numerical difficulties were found to be primarily a consequence
of the grid transformation system employed in the XTRAN3S numerical
algorithm. This grid transformation tended to give a highly skewed physical
mesh in the wing plane with distortion of the outer mesh boundaries, as shown
schematically in Fig. 1. A modified grid mapping scheme results in a grid
with rectangular outer boundaries in both the physical and computational
spaces illustrated in Fig. 2. This mesh has a reduced degree of skewness in
regions away from the wing and has apparently alleviated these numerical
difficulties.

10



In the current method, separate grid stretching schemes are applied in the
regions ahead of, over, and behind the wing. As the transformations are
1inear within the three regions, no attempt has been made to retain second
derivative continuity at the wing boundaries. This does not seem to
signficantly affect the results described below, however.

In the original version of XTRAN3S, the following shearing transformation was
applied in order to map a swept tapered planform in the physical domain into a
rectangular wing planform in the Cartesian computational domain:

 Em ey |
§: C(L;)‘j )7:5 j $ - Z (10a)

In the modified scheme, the following transformation is applied for points
ahead of the wing leading edge (x< XLE)

-l Yo
§=(x- qu))( 7 xmj)) (10b)

For points downstream of the trailing edge (x> XTE) the following
transformation is applied:

Xon~ 1 ) (10c)
2 -%. ( +1
§=( 1Y, 'J))( Zon - L0

11



where X\yp and XDN define the upstream and downstream limits, respectively,

of both the physical and computational meshes, nondimensionalized with respect
to CR.
transformation as before. It may easily be seen that at the following limits,

In the region over the wing, Equation (10a) defines the mesh

these limiting values of the transformation are obtained:

at x = Xp. g = Xyp (11a)
at x = xLE(y) : £=0 (11b)
at x = xTE(y) £E=1 . _ (lic)
at x = x;, _ £ = Xy (11d)

In the current scheme, the linear stretching in the three different regions
yields a discontinuity in the second derivative of the mesh spacing., Although
other transformation schemes are possible and could be easily incorporated,
the present approach has shown considerable improvement in convergence of the
results when compared with the previous version of XTRAN3S. |
Since the coordinate transformation employed enters directly into the
numerical algorithm employed in XTRAN3S, the final expression of the ADI

numerical scheme, Eq. 21 of Ref. 1, must now be re-written as follows:

i) E-sweep:

BS, qbaj) Ds[“ (4@ qbs) (’4’ ¥ ]
+zG's'(87 ?")07(3-34’") + 57(;.-:-‘ S? ‘Pn)

! n h n

12



ii) TN-sweep:

< - / 1 Z n
85 (258)- 45 (557 5% ¢)
(10 (5 -5)
iii) T-sweep:

A (7o) a5, (425)-

E, AtZ

z Sy é;SS(‘PM’ ‘PM)] (12¢)

where the forms of the coefficients and difference operators are as defined in
Ref. 1, except that:

a = §X[E+2GS(§_:)<}J?] (13a)
& = §: [F+ G (_z’;'i)z] (13b)

X = §; (CTN+ H)cg + §j (2&~+H)<{>§<{>7

Loty (@3, ]8 0 (s 4 13e)

i3



and

Y = .i_;qﬁs + HS,#{ , H‘f’;‘f’? (13d)

‘The following forms of the transformation derivatives have been used:

For x< XLE:

| g7 : x!
S = uP 3 §J - xUP xl.z(j)CX‘ x()f) (14a)
( Yoe =Yg (y))

o . - (%)~ 5¢ 1Y) (14b)
§,° cy ) §j: cwy)
For x> XTE:
Xoo-1 ) - (xou")(x;g('ﬂ))(x'xbl") (14c¢)

:

! gj (Xpp = Xre (y))z

14



III. RESULTS FOR MODIFIED COMPUTER PROGRAM

A modified version of a computer program XTRAN3S is available for calculating
the steady and unsteady aerodynamic loads and aeroelastic response of thin
clean wings in transonic flow. Al1 of the results presented here were
generated using Version 1.5 of XTRAN3S on the NASA Langley Cyber 203 system.
The basic code has been modified to account for viscous effects by
incorporating the method of Ref. 4, and other modifications described above.
Appendix A describes alterations in user input specifications for the modi fed
version of XTRAN3S. )

For the sample case considered, calculations were performed which generated an
inviscid solution, a solution using the viscous ramp alone, and a full viscous
solution employing the viscous ramp in conjunction with the boundary-layer
equations,

A1l computations were performed on a nonuniform 60 x 20 x 40 (&, n, z)
Cartesian computational mesh with the wing surface defined by 39 x 12 points
in the £ - n plane. The computational domain was defined by

-15.375 < E £ 26.575

0 < n < 5.3

-13.0375 <

A
Y

< 13,0375

and minimum grid spacing taken as

AEmin = 0.01
Anmin = 0,10
Acmin = 0,025

15



which occur at the wing leading edge, at the wing tip, and adjacent to the
wing surface respectively. XTRAN3S default values were employed for the &-
and t-mesh distributions. The n-mesh and surface geometry description for
the case considered may be found in Appendix B. For all calculations the
time scaling, k, was selected as 0.2 and a time step of At = 0.0034906585
was employed. This corresponds to a distance of one root chord of travel in
57.3 time steps at the freestream velocity. For a reduced frequency of

kc = 0.2, the choice of At results in five time steps per degree of
circular frequency change along the pitching cycle of a forced oscillation.
Nominal values of the viscous ramp parameters were selected as follows:

50 = 0,02,

= 0.02,
Ep 2
ER = 0.10.

These choices have proven adequate for a number of both steady and unsteady
two-dimensional solutions. Results were generated on the Cyber 203 computing
system and required approximately 2.1 seconds of CPU time per time step of
calculation for both inviscid and wedge alone solutions, and 3.8 seconds per
time step for full viscous computations. No attempt has been made to optimize
the executable code for the Cyber 203.

A1l converged steady state solutions were run for 900 time steps at the
indicated values of k and At, These choices were found to be conservative
with respect to both stability and convergence. The low frequency
approximation (i.e., €, = 0) was made in the wake jump condition (Eq. 10a

of Ref. 4) and downstream boundary condition (Eq. of Ref. 4). In general, the
following procedure was employed in generating steady-state results:

i) a converged inviscid solution was obtained using an undisturbed
condition as an initial state (i.e., ¢ = ¢t =0);

16



ii) a converged wedge alone solution was obtained using the inviscid
solution as the initial state, updating the wedge computation at
each time step;

i11) a converged full viscous solution was obtained using the wedge
alone solution as the intial state, updating the boundary-layer
computation at each time step.

For the sample case, a typical transport wing planform and a section geometry
corresponding to the MBB-A3 airfoil were chosen, A wing planform identical
to the Lockheed-Georgia "Wing A" was employed (AR = 8.0, ) = 0.4) except

that the leading edge sweep angle was set to 30°, The planform is shown in
Fig. 3a. The airfoil section, shown in Fig. 3b, has a blunt leading edge, a
thickness ratio of 8.9 percent, moderate aft camber, and has been selected as
an AGARD standard for evaluating transonic aeroelastic analysis methods.

Steady-state solutions were generated for inviscid, wedge alone, and fully
viscous cases for freestream conditions corresponding to M = 0.85, a =
1.0% and Re = 107. Results of the pressure distributions at four

spanwise mesh stations are compared in Fig. 4. Viscous effects near shocks
and on the aft lower surface are apparent. It is recommended that the
wedge-alone procedure not be used except as an intermediate step, as this
gives only a partial compensation for viscous flow effects, and yields
physically unrealistic answers.

17



IV. ADDITIONAL POTENTIAL MODIFICATIONS AND
ENHANCEMENTS TO THE XTRAN3S COMPUTER PROGRAM
4.1 State Transition Matrix Structural Integrator
The dynamic equations of motion for an elastic airplane may be formulated in

terms of generalized displacement response a; which are solutions of the
following set of equations:

M; 31— t M; [zkiwé]i; tM w9 s 2,3 N

where

M. = ﬂ' 'y/;(xly) lﬁ(x,y) A§  generalized mass
S

and

z& ) ff&(x,%{)y)&(x’y)d: generalized force
S

of the ith

vibration modes of natural frequency wi), and ¢; are the assumed modal

generalized coordinate ¢i(x,y) (usually representing
damping factors.

In Ref. 7, the dynamic problem was formulated (for a two-dimensional case) in
terms of a state variable equation of the form

JZ=Az+ Bu

and a state transition matrix integrator

Xy, = $7, +10B(3u,-u,.,)

18



was employed. This form of numerical integration can be used if the problem
is re-formulated in the following manner:

In general, the dynamic problem can be written as a matrix equation

(31 T Ta1(31[MT TxI(3] = [MT {reo)

where [M], [G], and [K], are the generalized mass, damping, and stiffness
matrices, respectively, and {F(t)} is the time-varying generalized force,
inciuding aerodynamic and external force contributions, if any.

The problem may now be recast in state variable format by letting

X={$} | ’(szO

then . z
X=AX+Bu

where

0 I
(2Nx 20)

" -[M T'[ K] -[M]-‘[G]J

-1 (Q.I\/X/U)

u = { F({-)} (Nx/)

Two cases can be considered: a) where the generalized coordinates represent
orthogonal modes, and b) where the generalized coordinates are non-orthogonal
or where additional matrix elements, such as control system coupling terms,
have been added.

19



In case a) the generalized mass, stiffness, and damping matrices are diagonal,
and analytical forms of the integration matrices ¢ and © exist.

Reorganizing the state vector such that the states for each normal mode are
grouped together, x? =(q1, dl’ dps 62,..., ay &N) yields a ’

system A matrix with diagonal (2x2) submatrices composed fropm the frequency,
Wis and damping T of the ith mode. For each degree of freedom, the

(2x2) matrix of elements of the state transition matrix ¢ are defined as

(e*cos 6t - Fambt ) ( Le™ pinst )

At
é =€ = (a%+6%) .
- % ™ pin 42 )(e“*cw&u%'e“tm 4¢)

and the elements of the integral of the transition matrix 6 are

0, = ;f—:%,{-u,cm(rtq;( - LY ain b2 |
o, = ag%[%m&t - con 42 |

8, * -zr“*[a,mzrt-6w6—t]
81 =0_§%[(6+§)be]

where for each individual normal mode

Y
= - _ 2 2
a = g‘w" 6’—(&)‘:"&1)
and hence a
S" - a'?.* 6‘1

and t is the integration step size.
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For case b), analytical forms of the transition matrix are not available, and
a partial series approximation of the form

‘ . At 2,2 | A3.3 i hn
d=e" - I*A'l:*i'-!At +§-!A\t +---~+_-n-,A t

£ ,
e - \fe“é-ﬂdr =Tt+d ALT4 L A et
(3 2! 3!

may be employed.

It may be noted that since the elements of the ¢ and @ matrices are
dependent only on the values of op and L for case a), or on the input
matrices [M], [G], and [K] they need be calculated only once.

Implementation of the transition matrix scheme may be accomplished in XTRAN3S
by modifying (or providing a special version) of the subroutine AERUEL, since
v all structual integration is accomplished within that routine. The input
natural free vibration frequencies Wy and the damping coefficients L

may be determined externally and input directly (this requires modification of
the input processor) or determined from the input mass generalized, damping
and stiffness matrices by the following relationships:

for] = EmI k]
cs] - tDRI M T

An UPDATE correction set for incorporating the state transition matrix
integration procedure is stored on file at the NASA Langley computing

facility. This may be incorporated directly into the modified version of the

program or modified as desired. No aeroelastic check cases have been run

2 4

'\

111

using this new procedure, as this was considered outside the scope of the

present effort,
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4.2 Efficiency Improvement Through Enhanced Vectorization*

The original version of XTRAN3S was developed using the CDC 7600 computer.
During the code development period, advanced vector machines, such as the
Cyber 203 and CRAY-1S, became available. The code was adapted to operate on
these two machines, but only minimal changes to the code were performed to
take advantage of "implicit" vectorization, i.e., those portions of the code
that could easily be adapted to vector computation through the existing nature
of the computational algorithm described in Ref. 1.

Later studies with a pilot code version of XTRAN3S, operational on the
CRAY-1S, showed that at least a factor of two improvement in computational
efficiency could be achieved by rearrangement of operations to permit a larger
degree of implicit (or automatic) vectorization., (This represents a speed-up
factor of almost five compared to an unvectorized or scalar code operating on
the same machine.) These concepts are generally applicable, but not directly
t ransportable, to the Cyber 203 version of the code, since the Cyber 203
requires longer vectors than the CRAY-1S to achieve improved efficiency when
compared with scalar computations.

In this section, the original algorithm of Ref. 1 will be described with
respect to its implications for vectorization. Then the modifications
necessary to achieve a higher degree of vectorization on the CRAY-1S will be
discussed, and finally the adaptation of those modifications to the Cyber 203
will be discussed.

As shown in Equation (12) above, the computational algorithm for solution of

unsteady transonic flow implemented in XTRAN3S is an alternating-direction

implicit (ADI) scheme employing approximate factorization to solve the

modified transonic small disturbance potential equation, via a finite

difference approximation. The original partial differential equation has been

replaced by a set of algebraic equations for potential at a finite number of

grid points, Starting from a known or given value of the potential oM at

a given time.tn, the solution is advanced to tn+1 = t" 44t via a

*NOTE: The reader is assumed to be familiar with the concepts df
vectorization employed by "pipeline" computers such as the CRAY-1S
and Cyber 203.
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series of “predictor-corrector" steps. Equation 12 represents three sets of
matrix equations, with the solution or “sweep" direction corresponding to a
coordinate of the computational mesh., Each equation is solved implicitly for
the value of the potential along the sweep direction. The number of equationé
so solved is the product of the number of points in the computational mesh in
the other two cordinates. Thus, if the number of points in the computational
£ Nn’ and NC

respectively, the following represents the number of solutions required to

mesh in the £, n, and g directions are N

advance the potential solution one step:

E-sweep: N x N_ equations, length N
n g ! 4

n-sweep: N_ x N_ equations, length N
4 12 n

g-sweep: N_. x N_equations, length N
c n 4

For the n and ¢ sweeps, the equations are tridiagonal, i.e., a matrix
formulation has non-zero terms only on the diagonal elements and in elements
adjoining the diagonal. The ¥ sweep equations are lower quadra-diagonal due
to the use of a mixed difference operator, i.e., backward differences in
regions of supersonic flow and central differences in regions of subsonic
flow, with a combined shock-point operator.

The solution process for each equation set (sweep) involves four distinct
steps: a) formulation of the left-hand side, b) formulation of the right-hand
side, c) solution, and d) setting of field and boundary condition values of
potential based on this solution,

Since formulation of the left- and right-hand sides are essentially repetitive
statements of the finite difference approximations, as are the boundary
conditions, these portions are particularly well adapted to vectorization.

The solution process, on the other hand, employs a recursive algorithm and
thus cannot be directly vectorized. Several alternate formulations of the
solution process including vectorizable soiution algorithms, were evaluated,
but proved to provide less improvement in efficiency than the method described
below.
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In the original version of XTRAN3S, the equations for the g-sweep, Equation
(12a) are solved sequentially for each n mesh point, with a constant ¢

mesh point location. Thus for the default values of Ng = 60, Nn = 20,

NC = 40, 20 equations of length 60 are solved for each £-n plane,

Then, for the same g-n plane, the n-sweep equations (60 equations of

length 20) are solved sequentially in the downstream (increasing )
direction due to the presence of the backward spatial or "upwind" difference
approximation to ¢xt' This process is then repeated for the next g-n

plane in the increasing ¢ direction. The g-sweep is performed by

accessing the data, formulating the equations, and solving for each &-g
plane sequentially in the increasing downstream direction, with the process
then repeated for the next plane in the increasing n direction. Since

n+1’ are dependent on @n,

solutions of the z-sweep equations, ¢
- . (A

o""1 and the solution of the n-sweep equations g, but not on the

solutions to the §-sweep equations,?ﬁ need not be stored in a

three-dimensional array.

The process of the three sweeps for the original scheme and the access of the
data from the three-dimensional to two-dimensional arrays, are illustrated in
Figure 5.

With the availability of the CRAY 1S and Cyber 203, with features of
vectorization and very large available storage, other data arrangement and
sweeping schemes have been investigated. In addition, a method for
vectorization of the tridiagonal and quadradiagonal solution algorithms has
been employed. This method, suggested by the work of J. Lambiotte of NASA
Langley Research Center, formulates each step of the tridiagonal or
quadradiagonal recursive solution procedure as a vector operation (or
vectorizable do-loop). Since for the n and g sweeps the equations are
inter-dependent in the £ direction, reorganization of solutions is required
for vectorization.

For the CRAY-1S, the scheme illustrated by Figure 6 has been adopted. For the’
g-sweep, data is accessed mutually for each g-g plane (rather than each

£-n plane), and a vectorized solution is performed in the g direction,

i.e., each step in the solution process is a vecFor,operation of length 40.
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This is then repeated for the next £-% plane, and the intermediate result

¥ is stored in a three-dimensional array. For the n-sweeps, the data is
accessed in the n - ¢ planes, and a vectorized solution of length 40 is
again performed in the ¢ direction, with the results %‘stored in a
three-dimensional array. Finally, the Z-sweeps are performed as a
vectorized solution of length 20 in the n direction, and the advanced values

Qn+1 are stored in place of the values ¢" at the

of the potential
previous time step. It should be noted that four three-dimensional "levels"
of storage, CPn, CPn'l, '5, and"g are required for this scheme,

compared with three for the original scheme. In addition, however, nine
additional three-dimensional arrays for vector equation coefficients and
right-hand sides have been stored to improve efficiency and decrease the
amount of re-calculation required. For the default mesh, the amount of
storage for three-dimensional arrays has increased from 144,000 to 624,000.
The total storage requirement has thus increased from about one-half million

words to over one million words.

Since efficiency on the Cyber-203 is improved with very long vectors, the
following modification to the above scheme is recommended. For the E-sweep,
each £-¢ plane is treated separately although each of the 800 (=20x40)
E-sweep equations is independent. It should prove possible to reorganize
the E-sweep equation solution into a single vector operation of length 800.
The n and ¢ sweeps, however, would still require sequential vector
operations of length 40 and 20 due to upstream dependence. If the improved
efficiency of 800 length vector operation is realized, a significant speedup
could be accomplished as a comparatively large portion (45 percent) of the
computational workload occurs in the &-sweep due to the large number of
operations performed.

An alternate approach would be the use of a vectorized solution algorithm such
as cyclic reduction as discussed by Lambiotte (Ref. 8), Calahan, et al

(Ref. 9), and others. The method would involve considerable rearrangement of
the data into very long vectors. The 800 E-sweep equations could be solved

as a single vector of length 48,000 provided the data is arranged in matrix

25



form so that the equations are properly decoupled. The n-sweep and

z-sweep equations could be rearranged with each n-¢ plane into vector
operations of length 800. Experience with these methods has been less than
encouraging, however, and the improved scalar efficiency of the Cyber 203 as
compared to the STAR-100 may make this approach undesirable.

4.3 Efficiency Improvement by use of a Cartesian Physical Mesh

As described in Section 2.5 above, the original version of XTRAN3S has been
modified to incorporate different physical to computational mesh
transformations in various regions of the flow field, provide a mesh with
reduced skewness, as illustrated in Figure 2. Computations with the scheme on
lower aspect ratio, highly tapered wings has shown that computational
reliability has significantly improved, i.e., solutions that were previously
unstable could now be obtained. Computational efficiency, as measured by the
size of the time step required, and thus the amount of CP time, to obtain a
converged stéady or unsteady solution was not apparently improved. This is a
reasonable finding, since the basic stability of the algorithm is controlled
by the explicit treatment of the cross-terms (e.g. ¢En) in the

transformed modified small disturbance equation.

An alternate approach, considered early in the program development but
rejected, would be the use of an identical physical and computational fully
Cartesian mesh and solution of the original (untransformed) modified small
disturbance potential equation on this mesh. This scheme was rejected because
of a) the increased amount of data manipulation required for a mesh not
aligned with planform edges, b) the occurrence of misalignment between
physical and computational boundary condition points, possibly causing severe
pressure fluctuation as observed in Mach-box schemes, and c) the apparent
success of the mesh transformation scheme of Equation (10a), as illustrated by
the Bailey-Ballhaus method for steady three-dimensional transonic flow.

It has been postulated that computational stability, and thus efficiency,

could be improved if explicit treatment of the cross terms could be avoided.
Use of a fully implicit algorithm on the transformed mesh showed no
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significant improvements, for reasons not understood at this time. However,
modifications of the pilot code to incorporate a fully Cartesian mesh has been
performed with the result of a significant improvement in the size of the time
step allowed.

Figure 7 illustrates schematically the Cartesian physical and computational
mesh used for the F-5 wing model, compared with Figure 1 and 2, which use the
transformed grid with distorted and rectangular outer boundaries,
respectively. With a time scaling variable, k, of 1.0, a time step of
approximately .0145 was required to obtain a converged rigid steady sofution
for the F-5 wing at .50 angle of attack and a Mach number of .95 using the
transformed grid., With the Cartesian grid, this maximum time step could be
increased to approximately .0872 improving computational efficiency by a
factor of 6.

This improvement in stability is apparently due to the removal of several of
the cross terms from the equation, and the reduction in magnitude of others
due to removal of the transformation scaling factors Ey and gy.

There are two potential disadvantages, however, and the user must consider
these in the context of his particular problem:

a) The grid must be tailored to each individual planform by aligning mesh
points at a uniform spacing with respect to the leading edge (1/2
percent behind the leading edge, for example), to avoid spanwise
pressure fluctuations (this has shown to be less critical with respect
to the trailing edge, but this must be considered as well); for a
constant swept leading edge, uniform grid spacing in both chordwise and

spanwise directions is thus required.

b) There will be some 1oss of resolution in the pressure distributions, and
hence possible inaccuracies in intergrated aerodynamic coefficients and
generalized forces, especially near the tips of highly tapered
planforms. On the F-5 wing, for example, a grid of 45 mesh points on
the wing root chord yield only 13 points at the tip chord. This loss of
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resolution is also seen in the details of pressure distributions near
the leading edge. It may be necessary to enforce minor modifications to
1eading edge slopes to achijeve the right degree of expansion around the
leading edge. Here, other available solutions such as experimental
data, full potential, dr XTRAN3S with the transformed grid system, may
provide guidance.

Comparison of calculated pressures with the viscous boundary-layer
approximation for the F-5 wing using the transformed and Cartesian grids
are shown in Figs. 8 and 9. Also shown are the experimental data of
Ref. 10. It may be seen that overall pressure levels are adequately
predicted, but shock locations are expecially near the tip, somewhat
further aft for the Cartesian grid. This is typical of numerical
methods with increased dissipation due to the truncation errors of the
coarser mesh. No evaluation of this new approach has been performed for
unsteady or aeroelastic solutions at the present time,

With the modifications described in Section 4.2 and 4.3 incorporated in
the pilot code, a converged solution for the rigid F-5 wing at a
constant angle of attack can be obtained in about 90 seconds of CP time
on the CRAY-1S. It is estimated that unsteady aeroelastic solutions,
such as described in Ref,11, could be obtained in about 3 minutes CP
time for each Mach number, dynamic pressure combination. These
estimates would vary for the Cyber 203, depending on the degree of
vectorization that could be applied and the speedup achieved.
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V. CONCLUSIONS

The XTRAN3S computer program, for calculation of unsteady transonic flow and

aeroelastic solutions for three-dimensional thin clean wings, has been
modified and enhanced, and these improvements have been incorporated in
Version 1.5 installed on the Cyber 203 system at NASA Langley Research Center.

These

1)

3)

Other

modifications and enhancements consist of:

Incorporation of a viscous boundary layer method;

Incorporation of a modified integration method for aerodynamic
coefficients and generalized forces;

Modification of the input processor to accept direct input of surface

ordinates and slopes, as well as least-square polynomial coefficients;

A method of modifying the maximum array dimensions for aerodynamic and
aeroelastic computations; and

A modified grid transformation to provide reduced skewness for the
physical mesh, improving the ability of the code to obtain solutions for
swept, tapered planforms.

potential modifications have been presented and discussed, including:

Incorporation of a state transition matrix method for structral
integration in aeroelastic problems;

Efficiency improvement through enhanced vectorization; and

Efficiency improvement through incorporation of a Cartesian physical
mesh.
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Results of computation on the Cyber 203 using the modified version of the
program have been presented.

Modifications to the User's Manual for XTRAN3S and a sample data set have been
incorporated Appendices.
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APPENDIX A

MODIFICATION OF XTRAN3S INPUT DATA REQUIREMENTS

The input data required by XTRAN3S is in the form of a card deck or a card
image file. All data is free field. Section A describes the input data deck
structure while Section B spells out the required input cards for
implementation of the direct input and viscous options and the associated
formats and ground rules. This Appendix may be considered as a revision of
Section V of Ref. 2, and should be used in conjunction with that Section.

A. Input Data Deck Structure
The input data deck for XTRAN3S has four levels of organization.

1. Program Deck - This includes all inputs for one problem. The deck
“boundaries" are

" first record - BEGIN PROBLEM DEFINITION
last record - END OF PROBLEM

2. Data Section - A program deckbis divided into data sections.
Specifically, the deck is divided into the following ten data sections:

1) Problem Definition Section

2) Computational Control Section
3) Computational Grid Section

4)  Geometry Section

5) Boundary Condition Section

6) Structural Modal Section

7) Structural Matrix Section

8) Checkpoint/Restart Section

9) Post-processing Section

10) Viscous Calculation Section
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As noted previously, the first section must be the Problem Definition
Section. The order of the remaining sections is immaterial. The first
record in each section must be of the form "BEGIN etc." No section
terminator is required. '

Data Record - Sections are in turn divided into data records or
statements. As noted above, the first record is of the form "BEGIN
etc." In most cases the order of the remaining records in the section
is immaterial. All exceptions to this rule are specifically noted.
Record boundaries are governed by the following rules.

0 If the last non-blank character on the card is a "+" then the
record continues onto the next card.

o} Maximum record length is 250 items.

0 Record terminators are / or card boundaries.

0 The space between / and the card boundary is "ignored" and hence is
available for comments. If a record is only comment it must begin
with */.

Data Item - Records are in turn composed of data items. This.is the

finest level of subdivision for the program deck. The delimiters or

"boundaries" of items are of two types.

] colon : this is used at most once per record and then only after
k eywords.,

o} commas, blank spaces and record terminators.
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B.

Record Formats

The following ground rules concerning notation apply throughout this section.

a)

e)

f)

[[ J]-- Data items enclosed by double brackets have optional input
formats. One or more of the indicated options must be selected.

[ J-- Data items enclosed by brackets have optional input formats.
Only one of the indicated options must be selected.

( )-- Data items enclosed by parentheses have default values. If the
default is acceptable for definition of the problem data, the particular
item or items need not be input. Al1 default values are defined in the
descriptions of the input data.

ITEM -- An item typed in all upper case letters is called a key-word.
At least the underlined portion of a key-word must be input. This is
always the first four characters including trailing blanks.

Item -- An item with only the leading character typed in upper case
denotes that it must either be selected from a list of system key-words

" or that it is identical to an item previously defined by the user.

item -- An item typed in all lower case letters is defined strictly by
the user,

The formats for data sections 1 through 3 and 5 through 9 given in Ref. 2 are

identical to those. Additional data for direct input of airfoil ordinates and

slopes is required in Section 4, and this is described below. The additional

data required for viscous calculations is given in Section 10, which follows.

4.

Geometry Section

The following card formats for geometry data input should replace those given
in Ref. 2.
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19)  FORMAT: [FUNCTIONAL, TABULAR], NASA

The airfoil section can be described by polynomials (FUNCTIONAL) or by a table
of coordinates (TABULAR). If the functional format is chosen, polynomial
coefficients and exponents from a suitable source, such as a least squares fit
program may be entered. If the tabular option is chosen, ordinates and slopes
must be defined at the aerodynamic mesh points (percent of local chord defined
by the XI mesh definition given in Section 3), and may be provided by any
suitable source (spline fit to measured data, for example). If the tabular
option is chosen, the keyword NASA must be entered as written., The presence
of this keyword allows for a future program enhancement.

If the FUNCTIONAL option is chosen, cards 20, and 21) as given in Section 4 of
Ref. 2 are entered to defined the upper and lower surface polynomials. If the
TABULAR option is chosen, cards 20A) and 21A) are required:

20A) UPPER: NZU, XpseeeeX,
dzdxl,....,dzdxnzu

'y Zl,ooooznzu,

21A) LOWER: nzl,  STRRETS SRS SPPRRYS ST

ddel"””ddenzl
where nzu and nzl are the number of points defining the upper and lower
surface of the airfoil. For the current implementation, this must be equal to
the number of streamwise mesh points on the wing surface.

10.  Viscous Calculation Section
The purpose of this section is to specify the Viscous Calculation option

if the user so desires. If this option is not desired, then this
section should be omitted.
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4)

6)

BEGIN VISCOUS FLOW PARAMETERS

This data record is used to indicate that processing of data
associated with the Viscous Calculation is to follow. The
following card statements (2-5) are optional and need only be input
if values other than the defaults are to be specified. Data
records 2-4 define data associated with the viscous wedge (all
values are nondimensional by local section chord).

(SHOCK OFFSET DISTANCE: xoffst)

Input of the shock offset distance.
The default is SHOCK OFFSET DISTANCE: .02.

(PRECURSOR LENGTH: xprec)

Input of the precursor length.
The default is PRECURSOR LENGTH: .02.

(RAMP LENGTH: xramp)

Input of the ramp length.
The default is RAMP LENGTH: 0,10.

(CALCULATION INTERVAL: iblcal)

Ihput of the viscous flow calculation update interval for both
wedge and boundary-layer computations.
The default is CALCULATION INTERVAL: 1

_BOUNDARY-LAYER SOLUTION

This data record is required if the boundary-layer calculation is
to be executed and it also is the first data record associated with
the boundary-layer calculation., The fo]lowihg card statements
(7-11) are optional and need only be input if values other than the
default values are to be input.
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7)

8)

10)

11)

(PRINT INTERVAL: iblprt)

Input of the boundary-layer print interval.
The default is PRINT INTERVAL: 50.

(REYNOLDS NUMBER: reyinf)

Input of the free stream Reynolds number based on root chord.
The default is REYNOLDS NUMBER: 1.0E7

(TEMPERATURE: tinf)

Input of the free stream temperature (degrees Kelvin).
The default is TEMPERATURE: 300.0

(SUTHERLAND LAW CONSTANT: so)

Input of the Sutherland Law Constant (degrees Kelvin).
The default (defined for air) is SUTHERLAND LAW CONSTANT: 110.0.

(PRANDTL NUMBER: prt)

Input of the turbulent Prandtl number.
The default is PRANDTL NUMBER: 0.9
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APPENDIX B

XTRAN3S SAMPLE PROBLEM

FEGIH FRDELEM DEFIMITION ZECTIOHN
TITLE: HTRAMZ EDUNDRRY<LAYER “YALIDATIOM (MEE-A3«sAR=S. 0 TR=0. 92
ETATIC AMALYSIE OF RIGID WING
MACH HMLIMEFR: 0,25
FFREE ZTRERM YELDCITY: 2000,
FATIO OF =ZPECIFIC HEATE: 1.4
TIME ZCHLIMHG: 0.2 ‘
EESTH COMPLUTATIOMAL COMTROL SECTIONM
MA=TIMLM ZTERDY ITERRATIDONS: 1500
TIMF DEFEMIENT ZOLUTIDM: HISH FREGLIEMCY
MODIFIED EXUARTIOM FORM: HMES
IMTEGERTOR ZTEF ZIZE: 0, 0034908555
- BESIN - COMPUTATIOMAL GRID ZECTION
BEGIH I MEZH DEFIMITION
MEZH HMAME: HIMEZH
. MEZH ZDURCE: THELE
MLUMEER DOF UPITREAM MEZHFPOIMTS: 11
HUMEER OF TDOWMHZTREAM MESHPDIMTS: 10
TOTHL HHMEEF OF MEZHPOINTS: &0
EEGIM ETH MEZH DEFIMITION
MEZH HAME: ETAMESH
MEZH ZDOLIRCE: IMPUT
HUMEER OF IMEORRD MESHFDINMTS: 1=
HUMEEFR OF DUTEOARRD MESHFDIMTS: 7
HEFRY OF ETA MESH FOIMTS
L ST N A D S D S0 . 7S 1. 001 20 1. ¥l 2. 008 2. 25 +
. S E B 8. 7O E. Bl 2, F B, (S 3. S0 2, B2 0e . 30:5. 20
EEGIM 2 MEZH DEFIMITIDH
MEZH MAME: ZMEZH
MEZH ZDOLUIRCE: TRELE
HUMEER OF MEZHPOIMTS REDYE WIHS: zoO
MUMEER OF MESHPDIMWTS EBELOW WIWG: 20
BEGIN GEOMETRY ZECTIDH
WIME PLAMFORM TESCRIFTION
FORMAT OF FLANMFORM DATH: REATIO
HEIFECT FRATIO: =.0
THFREFR FARTIO: 0.4
IWEEF RMGLE: Z0.0
FEFEFEHCE ARER: 1,939
. MEAH REROIWMHAMIC CHORD: 1.0
TOTAHL MOMENT CEWMTER FREFERENHCE: G, 0
FEFEREHCE CHOFRD: 1.0
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A3

n

RIFFOIL ZECIOM LIERARY
SFCTION: MEE-AZs UPPER-LOWEF
DIMEMEION: CHORIMISE.NOs VERTICAL » MO
FORMAT : TRELILARs NASA .

UFFER 29, ., 00Ss . 015, 025, 030y . 045, uels . 0205 , 1 00y . 1305, 1505 . 190 +
LE20y 250280 03100, 3409 . 327Us , 400,420y . 4605, 490 5203 S50+
LS80 JE10 . 5805670 T00s 730y . 760s . 790 . 320 . 8501y , 2805 . S10e+
L3Sy 960y 92051, 000, . +
L0075y 01315, 01699, 0199, . 0226y . U25Fs . 02973 . 0329 . 0369 . (402 +
L0428, 0430y . 14660, 0479y . 0428y, 0493, 1495, 04935, 0489, . 0331+ +
c 0471 . 0452y . 04430, 0426y . 0406 , 1204y, 0360y . 0334y, 02306, 0277 s . (1246 s +

L0214y 0181, 0146 . 0181 . 0021y, VOO, GO2Ss . 0000, +
7By . 4350, 3355 L2809 L2448 L BUTGs 1T 1483y L1200, 0979 +
L0793, 0631y, 04868, 0353y, 0229, 1114, 0004e~, 009Gy ~, (1195, +
= 23 s =  (I38) s =, (4BBs—, D547 s —, NZEy —, RST =, 07665 ~, (1531 s +
= 0592 —. 094y = 1008+~ 1 050s=. 1098+, 11339 —, 11679=. 1197 ¢ =, 1212 +

-, 12359s-,1247+-, 1256 -
LOWER 239y, 0035s, 015, 025y, 035y . 045 . 060, 020 . 100s . 130s. 160s.190y +
cEEMs 230N 280 L3100 , 3409 370,400, 4%0s , 460y, 490y . S20y . S50 +
B0y S B0y L BG 0 BT Oy LTy 73N, 7RO . TS0 . 20 . €50y . 880 . 910 +
CHES 900y, 9SNe 1, OO0
= 0Eds = 0039 = 0117 s —. 018F s~ 0133y —, 0149y —, N1&0s—. 015
=12y~ 0133 = 0205y =, U218y —. 0230y —, 02400 =, 0250 —. (2SS,
= 0263y —. 0266 —, IZEEy —. U2ES s —. UESRs—, 024%e =, (237 —. U223
= 0208~ MBSy =, (11E3e =, (113 s = U1 1P =, OOSSs -, (0EEs~, OUIE s
= MOZEy =, D003, 0003, 000%s . 0010y . DOD7e . OO0O0
— DR N -, BT Y~  148S = 1 (s = WS =, GADT sy =, 0482 s =, 03300
= 0403y =, 0303 s =, Q4 02—, 0300y =, 4P —, 02d e —, (2SR —, (228
=.0144s =, O0SE s, 003 0139, (242 . 01344 . 044dy , 1S53 T7e . DES L s
eSS L OFSLe L 07V 02108, U805y . UPFSs L OF 183, 1615y , (453
CE1 9L 0146 =, Q0SS =, 024y —~, (1953
ETATION COUMT: 2. NDHDIMEMEIONAL :
LOCATION: 0.0
MAME: MEER-AZ
LOCATION: 2.77
HAME: MEE-R=
EEGIM EDUNHDARY COMDITION IECTION
LIFTING ZURFACE BOUNDARY COMDITION: STEADY
AMSLE OF ATTHCK: 1.0 DESREES
WARKE EOUMDARY COMDITIOM: ZTERDY
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Figure 1. XTRANG3S Grid — Original Mesh Transformation
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Figure 3a. Typical Transport Wing Planform

Figure 3b. MBB-AS3 Airfoil Section

43



124

0.0

0.2

0.4

0.6

INVISCID M., =0.85
— — — WEDGE o =10
----- WEDGE & BOUNDARY LAYER _
R, =107
eoo

Figure 4a. Chordwise Pressure Distribution for Typical Transport Wing, n.= 0.0
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Figure 4b. Chordwise Pressure Distribution for Typical Transport Wing, n = 0.61
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Figure 4c. Chordwise Pressure Distribution for Typical Transport Wing, n = 0.81
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Figure 4d. Chordwise Pressure Distribution for Typical Transport Wing, n = 0.96
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¢3.0 STORAGE REQUIRED - 3 LEVELS = 144,000

Figure 5. Original Algorithm Storage Scheme
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Figure 6. Modified Algorithm Storage Scheme
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Figure 7. XTRAN3S Grid — Cartesian Mesh
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Figure 8. Measured and Calculated Pressures for F-5 Wing —
Sheared and Cartesian Grid (Inboard Section)
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Figure 9. Measured and Calculated Pressures for F-5 Wing —
Sheared and Cartesian Grid (Outboard Section)
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