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SUMMARY

A six-degree-of-freedom simulation analysis has been performed for the Space
Shuttle Orbiter during entry from Mach 10 to 2.5 with realistic off-nominal condi-
tions using the flight control system usually referred to as the blended entry
digital autopilot specified in May 1978. The off-nominal conditions included the
following: (1) aerodynamic uncertainties in extrapolating from wind-tunnel-derived
characteristics to full-scale flight characteristics, (2) an error in deriving the
angle of attack from onboard instrumentation, (3) the failure of two of the four
reaction control-system thrusters on each side (design specification), and (4) a
lateral center-of -gravity offset and vehicle asymmetries.

With combinations of the above off-nominal conditions, the control system per-
formed satisfactorily with a few exceptions. The cases that did not exhibit satis-
factory performance displayed the following main weaknesses. Marginal performance
was exhibited at hypersonic speeds for a few cases with a sensed angle-of-attack
error of 4°. At supersonic speeds the system tended to be oscillatory, particularly
with increased rudder effectiveness. The system diverged for several cases because
of the inability to hold lateral trim. Several system modifications were suggested
to help solve these problems and to maximize safety on the first flight: alter the
elevon-trim and speed-brake schedules to keep the elevon more positive at the higher
supersonic speeds, delay switching to rudder trim until the rudder effectiveness is
adequate, and reduce the overall rudder loop gain. These and other modifications
were incorporated in a flight-control-system redesign in May 1979.

INTRODUCTION

A reusable Earth-to-orbit transportation system known as the Space Shuttle has
been developed by the National Aeronautics and Space Administration (NASA). The
Space Shuttle is designed to insert payloads of up to 29 500 kg into a near-Earth
orbit, retrieve payloads already in orbit, and land with a payload of up to
14 500 kg. The Space Shuttle consists of an Orbiter, an external fuel tank, and two
solid rocket boosters (SRB). The SRB's will be recovered after each launch for
limited reuse. The external tank is designed for one use and is not recovered.

The Orbiter will have the capability to enter the Earth's atmosphere, glide up
to a 2040-km cross range, and land horizontally. A closed-loop entry guidance system
has been developed to provide the necessary commands for either the automatic flight
control system or a pilot-operated, augmented flight control system. A general
description of the Space Shuttle configuration and mission is given in reference 1,
and the Orbiter avionics are described in reference 2.

The initial flights of the Space Shuttle are designed to verify the vehicle
flight worthiness. The first flight was designed to demonstrate the safe ascent and
return of the Orbiter and crew for conservative flight conditions. The vehicle was
launched from the John F. Kennedy Space Center into a 220-km circular orbit inclined
38°, After approximately 20 orbits, a deorbit maneuver occurred, which was followed
by the entry and landing at the Hugh L. Dryden Flight Research Facility of the Ames
Research Center. A further description of this flight is presented in reference 3.




The NASA Langley Research Center performed evaluations of the guidance and
flight control system as it evolved for the first mission. These evaluations were
performed to cover system uncertainties thoroughly, identify weaknesses, and suggest
appropriate modifications to maximize mission safety. The analysis reported herein
is concerned with the flight control system, usually referred to as the blended entry
digital autopilot, which was specified by the contractor in May 1978. This control
system, which was developed under the guidance of the Lyndon B. Johnson Space Center,
has evolved from the system analyzed in reference 4. The analysis of the flight
control system was performed with the aid of a six-degree-of-freedom simulation with
man-in-the-loop capability. The flight regime studied was from a Mach number of
approximately 10 and an altitude of 50 km down to the initiation of the terminal-
area-energy management (TAEM) guidance phase, which occurs at an altitude of approxi -
mately 26 km at a Mach number of 2.5. This 360-sec segment of the entry represents
the period where the Orbiter performs its most extreme maneuvers, where the aerody-
namic parameters are undergoing significant changes as the vehicle decelerates from
hypersonic to low-supersonic velocities, and where the angle of attack is lowered
from 36° to 10°. These simulation studies considered the center of gravity to be
located at 66.25 percent of the body reference length with a lateral center-of-
gravity offset of 0.0381 m (1.5 in.) toward the right wing (the maximum amount
allowed by Shuttle design specifications). 1In addition, two of the four yaw thrust-
ers on each side were assumed to be inoperable (off). The design specification calls
for the Space Shuttle Orbiter to be able to fly safely with this condition. To these
were added the aerodynamic uncertainties (ref. 5) that are intended to encompass any
differences that might occur between the wind-tunnel data base and actual flight
values. These uncertainties are based on the scatter in the wind-tunnel data and
historical comparisons of flight and wind-tunnel data for various aircraft and
lifting-body configurations. In addition to uncertainties, projected errors in
deriving angle of attack from onboard instrumentation were included in the simula-
tions. Since the Orbiter has no method of directly measuring angle of attack until
velocity has been reduced to Mach 2.5, this error was initially estimated to be as
much as +4°. Without the aerodynamic uncertainties and the sensed angle-of-attack
error, the flight control system is able to fly the entry mission safely.

Following the study reported in reference 4, the roll and yaw channels of the
flight control system were extensively modified to decrease the sensitivity to errors
in sensed angle of attack. The study described herein is similar to the study
reported in reference 4 except for the modified control laws. The baseline preflight
trajectory for the first Space Shuttle launch (STS-1) was studied with these aerody-
namic uncertainties and angle-of-attack error, and control-system modifications were
suggested to handle the problems that were encountered.

SYMBOLS

All coefficients and vehicle rates are in the body-axis system. Computer sym-
bols used in the figures are shown in parentheses. Values are given in SI Units and,
where considered useful, also in U.S. Customary Units. Measurements and calculations
were made in U.,S. Customary Units.

b reference wing span, m
C1 rolling-moment coefficient, Rolling moment/qmsb
c1 effective-dihedral parameter, 6C1/661 deg"

B




(P)

rolling-moment coefficient due to aileron deflection,
-1
bcl/aba, deg

rolling-moment coefficient dque to rudder deflection,
bcl/bér, deg'1

pitching-moment coefficient, Pitching moment/quE
yawing-moment coefficient, Yawing moment/q_Sb
1

directional-stability parameter, bcn/bﬁ, deg’

yawing-moment coefficient due to aileron deflection,
-1
bcn/béa, deg

yawing-moment coefficient due to rudder deflection,
6Cn/66r, deg_1

side-force coefficient, Side force/q_S
1

side-force coefficient due to sideslip angle, deg

side-force coefficient due to rudder deflection,
GCY/aér, deg”

mean aerodynamic chord, m

stability-axis yaw rate due to side acceleration,
deg/sec

acceleration due to gravity, where 1g = 9.8 m/sec2
(32.152 ft/sec?)

specific impulse, sec
moment of inertia about body roll axis, kg-m2
moment of inertia about body pitch axis, kg—m2

moment of inertia about body yaw axis, kg-m2

product of inertia in body XY-plane, kg--m2
product of inertia in body XZ-plane, kg—m2
product of inertia in body YZ-plane, kg-m2
Mach number

side acceleration, g units

commanded roll rate, deg/sec

roll rate about body axis, deg/sec




p' =p + (180g sin 6 tan ¢)/nd

q, free-stream dynamic pressure, Pa
r yaw rate about body axis, deg/sec
r' (RPRIME) =r - (180g sin ¢ cos G)nd

S reference area, m2

VR Earth's relative velocity, m/sec
X,Y,2 roll, pitch, and yaw body axes, respectively
a (ALPHA) angle of attack, deg

ac (ALPHAC) commanded angle of attack, deg

B (BETA) sideslip angle, deg

A increment

6a (DELA) aileron-deflection angle,

[(Left elevon) - (Right elevon)l/2, deg

BF (DELBF) body-flap-deflection angle (positive down), deg

6e (DELE) elevator-deflection angle (positive down),
[(Left elevon) + (Right elevon)]/2, deg

6r (DELR) rudder-deflection angle (positive trailing edge left),
deg

6SB (DELSB) speed-brake-deflection angle, deg

°] pitch angle about body axis, deg

o] standard deviation

¢ (PHI) roll angle about body axis, deg

¢c (PHICM) commanded roll angle, deg

Abbreviations:

DAP digital autopilot

GDRC scheduled rudder forward-loop gain

KGDA scheduled aileron forward-loop gain

RCS reaction control system




i
l

TAEM terminal-area-energy management
( YAWJET) number of yaw RCS thrusters firing (positive right side thrusters)

A dot over a symbol indicates the rate of change with time.

DESCRIPTION OF SPACE SHUTTLE ORBITER

The physical characteristics of the Orbiter are summarized in table I. The
longitudinal center of gravity is located at 66.25 percent of the body reference
length measured from the nose. A sketch of the Orbiter and its control effectors
(control surfaces and reaction—control-system (RCS) thrusters) is shown in fig-
ure 1. The baseline trajectory is depicted on a world map in figure 2, and fiqure 3
shows the time history of selected nominal trajectory parameters.

Guidance System

The quidance system has separate algorithms for the three different quidance
regimes: entry, terminal-area-energy management, and autoland. The entry guidance
is designed to take the Orbiter from the atmospheric interface, at an altitude of
122 km, down to the initiation of the terminal-area-energy-management (TAEM) phase
which occurs at an altitude of approximately 26 km at Mach 2.5. At an altitude of
approximately 3 km, the autoland guidance is engaged and directs the Orbiter until
touchdown. Since the current study was concerned with flight from M = 10 to 2.5,
only the entry algorithm was needed. During entry, the angle of attack follows a
preselected schedule, whereas roll angle is modulated to control both down range and

cross range. Additional information on the gquidance algorithm can be obtained in
reference 6.

Flight Control System

The flight control system specified in May 1978 converts either guidance-system
commands or pilot-control commands into aerodynamic control-surface deflections and
reaction-control-system (RCS) thruster firings. It also takes rate gyro and accel-
erometer feedbacks and provides stability, damping, and turn-coordination outputs to
these effectors. The aerodynamic control surfaces depicted in figure 1 include ele-
vons (which are used as ailerons and elevators), a rudder with speed-brake capabil-
ity, and a body flap for longitudinal trim. The RCS thrusters are used to supplement
control about the roll, pitch, and yaw axes. The roll and pitch thrusters are used
only during the early portion of the entry at low dynamic pressures. The yaw RCS
thrusters are used down to Mach 1. The thrust level per thruster used in this study
was 3870 N, and the Is was 289 sec. The flight control system, usually referred
to as the blended entry digital autopilot (DAP), has several system changes through-
out the trajectory depending upon the guidance algorithm and the relative effective-
ness of the various control effectors. From the entry interface down to the TAEM
interface, in the automatic mode, the control system nulls angle-of-attack errors by
using the pitch thrusters (until dynamic pressure increases to 960 Pa) and the ele-
vons. From the TAEM interface to landing, in the automatic mode, a normal-
acceleration error is nulled by the elevons. In the manual mode, the control system
converts stick deflections to rate commands. The body flap is a trim device used to
maintain the average elevon deflection (elevator) near a preselected profile. Since
the elevons are also used as ailerons, the aileron characteristics are a function of




the elevator deflection, and thus this preselected profile is used to help insure the
proper aileron characteristics. The elevon and body-flap time histories for the
nominal entry are shown in figure 4. The speed brake follows a schedule down to

Mach 0.9, after which it follows a guidance-system command. Between Mach 10 and 0.9,
the speed brake is used to provide a pitch-up moment to aid in longitudinal trim.
Below Mach 0.9, the speed brake is used to control dynamic pressure. The nominal
speed-brake time history is also shown in figure 4. A detailed description of the
longitudinal channel and the speed-brake and body-flap channels is presented in
appendix B of reference 6.

Control about the lateral-directional axes for a dynamic pressure less than
96 Pa is achieved with roll and yaw RCS thrusters only. As the dynamic pressure
increases, the ailerons are added for control; and at a dynamic pressure of 480 Pa, /
the roll thrusters are turned off. From initial entry into the atmosphere down to J
about Mach 1.5, the control system operates in a "spacecraft mode," where the roll- :
rate command is directed to the yaw channel to produce a yawing rate and a small
sideslip angle fB. This f generates a rolling moment because of the positive
effective dihedral of the Orbiter. In this mode, the ailerons are used for turn
coordination and directional trim. The spacecraft mode was chosen for two reasons.
First, the aerodynamics for this flight regime of the Orbiter are such that the
vehicle exhibits roll-reversal characteristics; that is, if the ailerons are used to
roll the vehicle with no yaw input from any other surface or RCS, the vehicle will
start to roll in the desired direction and then roll in the opposite direction. The
rudder is ineffective at flight conditions above Mach 4, and thus the RCS system
would be required to provide much of the maneuver coordination. Second, to roll
about the velocity vector at high values of a requires a large yawing moment about
the body axis. After Mach 1.5, the control system switches to a more conventional
aircraft mode where ailerons are used for roll control and the rudder is used for
turn coordination. Between Mach 3 and 1.5, the flight control system is a blend
between those two control modes which results in a blended-system designation. The
roll and yaw channels of the flight control system are described in more detail in
appendix A.

DESCRIPTION OF SIMULATION

The Reentry Flight Dynamics Simulator (RFDS) used for this study is a nonlinear,
six-degree-of-freedom, interactive digital-computer program with man-in-the-loop
capability developed by the Langley Research Center. The cockpit is not a replica of
the Space Shuttle Orbiter cockpit, but it does have the instrumentation and controls
necessary for engineering investigations. The vehicle response was recorded on time-
history charts. A more complete simulation description is available in reference 6.
A static aeroelastic model, described in appendix B, was added to the simulation for
this study.

TEST CONDITIONS

The off-nominal conditions considered in this evaluation involved aerodynamics,
vehicle asymmetries, sensed angle-of-attack errors, side accelerometer errors, and
yaw RCS thruster failures. The Space Shuttle design specification requires that the
Orbiter be able to fly safely with two of the four yaw thrusters on each side inoper-
able (off). Because of this requirement, all runs for the study had such a failure.




The nominal and off-nominal aerodynamics used in this study were obtained from
reference 7. The off-nominal values were estimated 30  envelopes of possible varia-
tions between wind-tunnel-derived characteristics and full-scale flight characteris-
tics. Because a normal distribution was assumed, the variations could be either
added to or subtracted from the nominal aerodynamics. The aerodynamic data base
consisted of the six force and moment coefficients for the airframe with undeflected
controls. These coefficients are functions of Mach number, angle of attack, and
sideslip angle. To these are added the force and moment contribution of the control
surfaces (functions of Mach number and angle of attack). The elevons (when used as
an elevator), the body flap, and the speed brake are all considered to have nonlinear
aerodynamic increments which are functions of Mach number, angle of attack, and sur-
face position. Both the aileron and rudder have linear aercdynamics that are a func-
tion of Mach number and angle of attack, with the aileron aerodynamics also being a
function of the average elevon position. The off-nominal aerodynamics are a function
of Mach number.

All possible lateral-directional combinations involving moments generated by the
bare airframe and the aileron were considered in this study. Table II shows the
nomenclature used in the discussion of the results to describe these 16 cases of off-
nominal conditions. Examination of the aerodynamic data of reference 7 revealed that
the rudder derivatives C1 ’ cY , and cn , are approximately linearly dependent;

or Sr or
therefore, they were varied together. 1In addition, none of the rudder derivatives
were allowed to differ in sign from the nominal. Figqure 4 of reference 4 shows the
range of off-nominal lateral-directional stability and the aileron and rudder control
effectiveness. The curves were generated by assuming that the angle of attack was
exactly the angle commanded by the guidance algorithm and that the elevator position
was the desired position used by the body-flap-control logic. The aileron is used
for directional trim, as shown in appendix A of the present paper. This requirement
places a great deal of dependence on Cn « Reference 4 indicates that because of
da
the uncertainity in the data, Cn could switch signs below Mach 5.5 and the magni-
da

tude could vary greatly above Mach 5.5. Thus, the control system should show a high
sensitivity to uncertainties in Cn « This sensitivity will be confirmed in the

ba
discussion of the results that follow.

Reference 7 also presents the longitudinal aerodynamic characteristics. How-
ever, longitudinal uncertainties were not, in general, included in the present study
because reference 8 showed that variations in longitudinal aerodynamics do not impact
the control of the Orbiter unless (1) the vehicle no longer can be trimmed or (2) the
elevator must move to a position that adversely affects the aileron characteristics.
This control system uses the body flap to maintain the proper elevator position;
thus, no effects of pitching-moment variation would be expected until the body flap
was forced to its limit and the elevator had to move from its desired position, which
did not occur in the flight regime of this study.

Vehicle asymmetries, because of manufacturing uncertainty, have been estimated
and were included in the modeling of the system. The values were given in coeffi-
cient form and are ACI = 00,0004, Acn = -0.0002, and AC_ = +0.,0034., Also, a lat-
eral center-of-gravity offset of 0.0381 m (1.5 in.) was included to account for manu-
facturing and payload-loading uncertainties.



Because angle of attack is not measured directly during the portion of the entry
investigated in this study, it must be derived from the onboard inertial platform
data. When error sources such as platform drift and winds are considered, angle of
attack can be in error by as much as +4°, Since the flight control system (see
appendix A) uses angle of attack extensively, the system should be sensitive to this
potential error in sensed a.

The accelerometer assembly is mounted in the forward avionics bay (ref. 2) and
is subject to an estimated 30 alignment uncertainty of 0.9°. Also, vehicle thermal
deformation may contribute to misalignment errors. To simulate the possible align-
ment error, the sensed side acceleration used by the flight control system was modi-
fied to include a component of the normal acceleration in some of the simulation
runs.

DISCUSSION OF RESULTS

In order to evaluate these off-nominal effects on the flying qualities of the
Space Shuttle Orbiter, a test maneuver was devised to represent the maneuvering
required during the entry phase. As noted earlier, the Orbiter flies a preselected
angle-of-attack schedule and modulates the commanded value of ¢ to control both
down range and cross range. The test maneuver was devised to maintain the initial
¢ for a short period of time, to roll 60° at maximum roll rate, and then to roll
back 55°. The commanded angle of attack a, was generated by the guidance
algorithm. The test maneuver was initiated at Mach numbers of 10, 7.5, 5.0, and 4.2
along the entry profile, and the behavior of the Orbiter was examined. The length of
time for the initial ¢ hold was varied with Mach number to get the roll to 60° and
the reversal to occur at the most critical time. Unless otherwise noted, all cases
were flown with the automatic control system - that is, with no pilot inputs.

System Performance at Hypersonic Speeds

At hypersonic speeds, the body-flap effectiveness in pitch was such that apply-
ing both the pitching-moment uncertainty and the increment due to vehicle asymmetry
in the worst directions changed the body-flap deflection required for trim but not to
its limit. Thus, the elevator remained at its desired value, and there was no appar-
ent effect on the vehicle maneuver performance.

Figure 5 shows the vehicle response with the test maneuver initiated at Mach
numbers of 10 and 7.5 with nominal aerodynamics, no error in sensed a, two yaw RCS
thrusters on each side inoperable (off), and a lateral center-of-gravity offset of
0.038" m (1.5 in.). The o« profile shows the Orbiter transitioning from its initial
value to lower values. The steps noted in the commanded angle-of-attack values occur
because the gquidance algorithm is interrogated every 1.92 sec; thus, the flight con-
trol sees the guidance commands as a series of step commands. The data indicate that
th Orbiter performed the maneuver with no lateral oscillation and with very little
sideslip. The yaw thrusters receive the roll-angle error signal and are fired to
produce a body-axis yawing rate and small sideslip angle, thus allowing the effective
dihedral to generate a rolling moment. The aileron is used to provide the turn
coordination above Mach 1.5 according to the feedback control law

(Gain) sin « DNY + (Gain 1) r' cot a - p' + (Gain 2) cos a P =0
c




where Gain 1 was approximately 1.0 and Gain 2 was negative and much less than 1.0 for
Mach numbers greater than 3.0. The symbol DN is a lagged side-force feedback with
a gain which is a function of p above Mach 4.2. (See appendix A.) The sum of

the r' and p' terms in the equation is approximately equal to the stability-axis
yaw rate divided by sin a. When the difference between these two terms is zero, the
rate of change of the sideslip angle is zero and the turn is "coordinated." There-
fore, the change in the DN, term will be small. This side-acceleration term is in
the control law to help control B when the angle of attack is not known very accu-
rately and the term r'-cot a - p' 1is not correct for true turn coordination. Thus,
the overall effect of this control law is that B and f$ are minimized in the pres-
ence of substantial yawing rate. The yaw jets fire to establish and stop the maneu-
ver and to limit sideslip. The aileron deflections required to coordinate the maneu-
ver were approximately 0.05° and are difficult to see in figure 5. The apparent
steady-state aileron deflection is the deflection required to trim the 0.0381-m
(1.5-in.) lateral center-of-gravity offset.

Ef fect of sensed ® errors.- Figures 6 and 7 show the vehicle performance with
sensed angle-of-attack errors of -4° and 4°, respectively. A sensed a error of -4°
causes the vehicle to fly 4° higher than the guidance command, and then all the sig-
nals, which are a function of a in the flight control system, are incorrect. Thus,
in figqure 6 the roll rate was smaller than that for nominal & and considerable yaw
thruster firing was required to sustain the maneuver. The aileron was deflected in
the positive direction from trim (compare figs. 5(a) and 6(a) at 40 sec), which
should have resulted in a larger value of p. However, the adverse yaw due to aile-
ron drove B positive, and the positive dihedral effect actually reduced p. In
figure 7, where the vehicle performance with an « error of 4° is presented, the
roll rate reached 5° per second, the vehicle tended to overshoot the ¢ value, and
considerable yaw thruster firing was required to keep the maneuver rate§ from
increasing even more. The aileron deflected in the negative direction from trim
(compare figs. 5(a) and 7(a) at 40 sec), which drove B negative. This resulted in
large roll rates which proved to be difficult to control.

Effect of off-nominal aerodynamics.- Without any error in sensed a, the flight
control system has sufficient tolerance to handle adequately the entire off-nominal
aerodynamic matrix given in table II at Mach 10 and 7.5. Several examples of the
maneuver performance are presented in figures 8 and 9. There were minor differences
in the p, r', B, &, and yaw-jet time histories; but the maneuver performance was
excellent. a

Ef fects of combined off-nominal aerodynamics and sensed a errors.- With an «
error of -4° at Mach 10, the off-nominal aerodynamics had little effect on the system
performance as indicated in figqure 10. Since the vehicle was holding an angle of
attack that was 4° higher than the flight control system expected, the roll rate p
was lower than nominal. The higher RCS fuel-consumption cases for the entire test
matrix at Mach 10 are those shown in figqure 10. The worst cases for an « error of
-4° at Mach 7.5 are shown in figure 11. Comparing figures 10 and 11 with fig-
ures 6(a) and (b), respectively, shows that off-nominal aerodynamics has very little
effect on maneuver performance at hypersonic speeds with a sensed « of -4°.

With a sensed « error of +4°, which caused the vehicle to fly 4° lower than
the control system expected, the effect of off-nominal aerodynamics was more signifi-
cant. The RCS fuel consumption increased by as much as 30 percent at Mach 10, B
excursions greater than 1° were common, and roll-angle overshoots occurred fre-
quently. Some Mach 10 cases are presented in figure 12.



With C less negative (cases 5 through 8 and 13 through 16 as shown in
" 8a

table II), less RCS fuel was consumed, but the maximum B excursions were larger.

(Compare cases 3 and 7 in figs. 12(a) and (b), respectively.) The cases with posi-

tive increments in Cn and C, such as case 16 (see fig. 12(e)), resulted in

B B
the largest maximum sideslip excursions; whereas the cases with a negative increment
in Cn and a positive increment in c, such as case 11 (see fig. 12(d)), consumed
B

the most RCS fuel. More aileron effectiveness (positive increment in C
‘8a

resulted in larger sideslip excursions and more RCS fuel consumed. Case 9 in fig-

ure 12(c) had the smallest maximum B excursion but was one of the largest fuel-

consumption cases. The bare airframe characteristics were examined in the previous

study. The characteristics at Mach 10 for nominal aerodynamics and case 11 with and

without the a error of 4° were shown in table III of reference 4. This vehicle has

two convergent lateral-directional oscillatory modes which vary in period and time to

half-amplitude with aerodynamics and «. The conclusion in the previous study was

that off-nominal aerodynamics and a errors did not significantly change the bare

airframe characteristics, and thus any degradation in vehicle performance was due

primarily to the control-system augmentation.

) usually

The maneuver performance at Mach 7.5 was very similar to the results at
Mach 10. Figure 13 shows the results for six cases. Although none of the cases
exhibited any control problems, the yaw-jet time histories showed that several cases
were near the yaw-jet control-authority limit when trying to reverse or maintain the
rolling rate. Cases 9 and 11 required one yaw jet all the time and two much of the
time to maintain the rolling rate on the second reversal between 30 and 40 sec, and
then two yaw jets were required for 6 to 7 sec to stop the rolling maneuver. Case 11
came very close to saturating the control system even though the maneuver itself
loocked good.

Some additional uncertainties were combined with case 11 to see if control could
be maintained. Figure 14(a) shows the maneuver performance with a misalignment of 1°
in the accelerometer assembly, which results in a component of the normal accelera-
tion N, being sensed as a side acceleration. This puts a bias signal on the sensed
Ny used in the turn coordination in the flight control system. The roll rate for
the first reversal was larger than nominal (see fig. 14(a)), and an overshoot in roll
angle occurred. During thc second reversal, the roll rate was less than nominal, and
the maneuver was completed satisfactorily. The real-time simulation results indi-
cated that the system performance became worse at slightly higher Mach numbers than
for the maneuver shown in figure 14(a). The results for the same case with the
maneuver occurring just prior to 2 sec are shown in figure 14(b). The roll-angle
overshoot is slightly greater.

Fiqure 14(c) shows the effect of applying an uncertainty to CY for the afore-

B

mentioned case. Since CY is nominally negative, applying a positive increment

B

effectively decreased the side-acceleration feedback which resulted in slightly less
B control and higher roll rates in the negative roll direction. BAs the figqure
shows, the CY increment resulted in a larger roll-angle overshoot and longer yaw-

B

jet firings.
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Figures 14(d) through (f) show the results of the same case with an accelerom-

eter misalignment of ~1° and both with and without the uncertainty in C_ . During
B
the roll reversal with positive p, shown in figure 14(d), two yaw jets were firing
to decrease r', but the aileron was deflected to increase r'. Thus, the roll rate
exceeded the nominal system design and was increasing until the roll-angle error
signal changed signs. The rolling inertia then caused a large and unacceptable over-
shoot. A negative increment in C, effectively increased the Ny feedback and
kept p from becoming much greater than 5. (See fig. 14(e).) A positive increment
in CY allowed p to become very large with a very large and unacceptable over-
B
shoot. (See fig. 14(f).) Thus, the system performance was unacceptable at hyper-
sonic speeds with two failed yaw jet, a sensed a error of 4°, an accelerometer
misalignment of -1°, and case 11 off-nominal aerodynamics with and without a positive
increment on CY . 'Te worst case (fig. 14(f)) was examined with all four jets
B

operational. The system performance was satisfactory as is shown in figure 14(g).

In summary, the vehicle performance was satisfactory with the test maneuver
initiated at Mach 10 or 7.5 for all cases with two yaw RCS thrusters on each side
inoperable (off), a lateral center-of-gravity offset of 0.0381 m (1.5 in.), and off-
nominal aerodynamics with and without a sensed a error of t4°. The system appeared
to be close to saturation in some cases for a sensed a error of 4°. Adding a 1°
misalignment of the accelerometer assembly and a positive increment on C did
result in a large and unacceptable roll-angle overshoot. B

System Performance at Supersonic Speeds

In the supersonic-speed range of interest in this study (Mach 5 to 2.5), the
aerodynamic characteristics changed significantly, which forced some flight-control-
system reconfiguration as well as gain scheduling. The gain on the NY feedback
that is a function of p is terminated at Mach 4.2. The rudder is activated at
Mach 4.5. As the Mach number decreased, the elevon had to deflect more negatively to
trim the vehicle as the pitching-moment characteristics changed. As the elevon
deflected more negatively, Cn6 tended to become more positive; and as Mach number

a

decreased, Cn6 tended to be more positive. Since a negative cn6 was used to
a a

provide lateral trim at the higher Mach numbers, a transition in the trim network

took place. Also, the rudder began to be effective in the lower Mach number range.

Since the rudder deflection and rate were limited when the speed brake was fully

open, the speed brake had to be partially closed.

The analysis of this flight regime was accomplished with simulation initializa-
tion at Mach 5 and 4.2. Once again, the roll-reverse-roll maneuver was used to
stress the system at several different times while the control system followed the
guidance-commanded angle-of-attack schedule.

Effect of sensed a errors at Mach 5.- The Mach 5 maneuver performance with the
maneuver occurring after 10 and 25 sec is shown in figure 15. The vehicle performed
the maneuver very satisfactorily with both nominal o« and sensed «a errors. In
some cases when the rudder was activated (Mach 4.5), a rudder-deflection spike, a B

1




spike, and a p spike occurred at the initiation of the roll reversal; and an oscil-
lation in p, &6, and B followed the maneuver. For the longer runs (figs. 15(4),
() and (f)), the transition from aileron trim to rudder trim is evident as &

faded to 0 and 6r went to a negative value. a

Ef fect of off-nominal aerodynamics at Mach 5.- All off-nominal aerodynamics
cases listed in table II were run with nominal rudder effectiveness, but only the two
worst cases (cases 3 and 7) are presented in fiqure 16. With the maneuver beginning
just after 10 sec, it was completed satisfactorily for cases 3 and 7; but an oscilla-
tion in p, B, 6a, and § followed the maneuver. With the maneuver beginning
just after 25 sec, the initiation of the roll reversal was accompanied by large p,

B, and & spikes; and for case 3, the system diverged. Cases 3 and 7 have the same
bare-airframe characteristics which were given for case 7 in table V of reference 4
for this speed range. The bare airframe has four convergent aperiodic modes for
these flight conditions. Thus, the control system itself must be the source of the
oscillatory instability. The problem was believed to be caused by a forward-loop-
gain mismatch between the rudder and the aileron. At the simulated Mach number and
angle of attack for the cases, the rudder produces almost as much adverse rolling
moment as yawing moment. Thus, to obtain the desired p, relatively large aileron
and rudder deflections as well as yaw-jet pulses were required. The sideslip angle
B became large, and the roll rate became excessive. The controllers were able to
arrest the high rolling rate initially; but as the NY feedback was removed, B
became excessive and the vehicle oscillation became severe.

The scheduled rudder forward-loop gain (GDRC) was reduced from 1000 to 750 above
Mach 1.2. (See appendix A.) The Mach 5 maneuver performance for several cases, with
the maneuver initiated at about 25 and 40 sec, is presented in figure 17. Both the
nominal case and case 7 improved slightly with the reduced rudder gain. Case 3
improved significantly, but the maneuver was still unacceptable. There was a further
slight improvement by reducing GDRC to 700. Also, 20- and 40-percent increases in
the scheduled aileron forward-loop gain (KGDA), when coupled with GDRC = 750,
produced a slight improvement over the case with nominal KGDA. Since other Shuttle
program simulation studies and analyses have shown that GDRC = 750 was desirable,
even though some stability margin for the nominal system may be lost, a GDRC value of
750 was used for the remainder of this analysis.

For cases 6 and 7 where C was more positive than nominal, the § deflec-
neo a
tion for lateral trim reached approximately 3°. The maximum trim deflection allowed
by the control system is 5°.

Of f-nominal rudder characteristics (table II) were added to the other off-
nominal aerodynamic characteristics. The results for several cases with increased
rudder effectiveness, which aggravated the rudder instability, are presented in
figure 18.

The Mach 5 maneuver-performance results for decreased rudder effectiveness are
shown in fiqure 19, 1In all cases, the maneuver was completed satisfactorily without
severe oscillations. However, in all cases the rudder was driven to the trim limit
of 9° and the yaw jets were required to maintain trim. Case 7, the worst case,
required one yaw jet full time and a second yvaw jet most of the time to maintain
trim. Other runs were made with case 7 to see if maneuvering while using most of the
yaw-jet control authority for trim would cause the system to fail. The maneuver in
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some runs was worse than that shown in figure 19(d), but control was adequate to
complete the maneuver and maintain trim.

Ef fects of combined off-nominal aerodynamics and sensed a errors.- Some Mach 5
maneuver-performance results for a sensed a error of 4° and off-nominal aerody-
namics (nominal rudder) are shown in figure 20. In several cases, the rudder insta-
bility continued to be a problem, although control was always maintained. For the

cases where Cn<5 was more positive than nominal, such as cases 5 and 14, éa was
a

driven toward the trim limit of -5° as & became more negative. For cases 5

and 14, considerable yaw-jet firing took Slace before the maneuver began to maintain
trim, and large values of B (about 1.5° for case 14) were required for trim. To
perform the first roll reversal, the jets fired in the opposite direction to that
required for trim; and thus as B became more positive, the balance of roll due to

B and roll due to aileron was upset. Then, a large negative roll rate occurred
which the system had difficulty stopping, particularly for case 14 where the aileron
was more effective in roll. Less control authority was available to roll back, since
the jets were already required to help hold trim, and the rudder produced a negative
rolling moment as it was deflected to augment the yaw jets. This problem was further
aggravated by applying the off-nominal aerodynamic increment to the pitching moment
in the direction that would move the elevon more negatively and by reducing the side-
acceleration feedback by applying a positive increment to C .

Y
B
During simulation tests, an astronaut pilot used the roll-panel trim switch to

help provide more symmetric p, but combinations were found where the pilot was
unable to handle the vehicle in this flight regime.

One solution to this problem is to modify the body-flap schedule and keep the
speed brake open longer, which tends to keep the elevon down. This will insure that
Cn6 stays negative farther into the entry until the rudder has sufficient effec-

a

tiveness to handle the trim requirements.

The results of four cases with decreased rudder effectiveness and a sensed «
error of 4° are presented in figure 21. The less effective rudder decreased the
oscillatory tendency exhibited in figure 20. However, cases 6 and 14 exhibited loss
of control when the rudder ineffectiveness was added to the aileron trim problem
discussed previously. The pilot's use of the roll-panel trim switch helped to avoid
loss of control, but combinations were again found that he was unable to handle.
This further demonstrated the requirement to schedule the speed brake and body flap
for effective aileron trim until the rudder effectiveness is assured.

Increased rudder effectiveness and a sensed a error of 4° caused the response
to be more oscillatory than that for the nominal rudder. This can be seen by compar-
ing figures 20 and 22.

With a sensed a error of -4° and nominal rudder, the system was oscillatory
after the rudder was activated, and the roll rate exhibited some asymmetry. Four

representative off-nominal aerodynamic cases for these conditions are shown in
figure 23. '

The nominal aerodynamics and the two worst cases for increased rudder effective-
ness (cases 3 and 7) are presented in figure 24, The response performance shows that
the system was more oscillatory with increased rudder effectiveness. With decreased
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rudder effectiveness, even with nominal aerodynamics, the control system required two
yaw thrusters to hold trim as the rudder went to the trim limit (fig. 25). Case 3
appears to have divergent oscillation toward the end of the run, and cases 7 and 15
did diverge as the yaw thruster and the rudder were unable to maintain control.
Again, the system must be modified to make sure that C has the proper sign until
the rudder is effective. "8a

Effect of sensed a errors at Mach 4.2.- The roll-reverse-roll maneuver was
performed satisfactorily at 25 sec after initiation at Mach 4.2 for nominal and off-
nominal angles of attack as shown in figure 26. The oscillatory tendency of the
system was evident in each of the cases shown. Also, the improper turn coordination
is evident because the angle-of-attack error decreased or increased p, as was shown
at the higher Mach numbers.

Ef fect of off-nominal aerodynamics at Mach 4.2.- All cases listed in table II
were run with nominal, decreased, and increased rudder effectiveness with the maneu-
ver beginning 25 sec after initiation at Mach 4.2. With nominal rudder effective-
ness, the maneuver was completed satisfactorily in all cases. However, cases 3
and 7, presented in figure 27, exhibited the system instability seen previously. The
oscillatory tendency was present before and after the maneuver; and large p, B8,
6a, and 6r spikes occurred at the initiation of the second reversal.

With decreased rudder effectiveness, the maneuver was satisfactorily completed
in all cases even though during the maneuver the rudder reached its trim limit of 9°
even with nominal aerodynamics, as shown in fiqure 28(a). 1In case 3, the combined
trim deflection plus the deflection required to execute the roll reversal resulted in
a rudder deflection greater than 20° (fig. 28(b)). The yaw thrusters were on at the
same time, and thus the yaw control was nearly saturated. In case 6, shown in fig-
ure 28(c), the aileron was on the trim limit of 5° at the initiation of the run; but
the system recovered, completed the maneuver, and maintained control throughout the
run. Toward the end of each run presented, the rudder effectiveness increased as
Mach number and angle of attack decreased, and the system control margin increased.

The nominal and the two worst cases with increased rudder effectiveness are
presented in figure 29. The oscillatory tendency and the p, B, &, and §
spikes at the beginning of the second reversal are similar to those of the prgvious
cases. Again, the system appears to be marginally stable.

Ef fects of combined off-nominal aerodynamics and sensed a errors.- The
response performance is shown in figure 30, with a sensed o« error of -4° (the
vehicle flies 4° higher than the system expects) and nominal rudder effectiveness.
The three worst cases (cases 3, 5, and 7), which are shown in figure 30, all exhibit
the asymmetric roll-rate characteristic that has been shown in previous results.
Also, the rudder-deflection spike and the high roll rate at the beginning of the
second roll reversal followed by the oscillation are typical of the high-rudder-gain
problem discussed previously.

With decreased rudder effectiveness and a sensed o error of -4°, the rudder
went to the trim limit, and two yaw thrusters were required to maintain the roll
rate, at least part of the time, for the nominal-aerodynamics case shown in fig-
ure 31(a). Cases 3, 7, 11, and 15 all resulted in an unacceptable performance
because the combination of two yaw thrusters that failed and very low rudder effec-
tiveness were too much for the system. The two worst cases (cases 3 and 7) are pre-
sented in figures 31(b) and (c), respectively. Control was completely lost for
case 7 as the vehicle rolled over. Revising the body-flap and speed-brake schedules
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to provide more positive elevon deflection, and thus negative Cn , and using the
ba

aileron for lateral trim to lower Mach numbers are probably the only ways to circum-

vent this problem.

Increased rudder effectiveness with a sensed a error of -4° produced the
oscillatory tendency that occurred previously. The response results for nominal
aerodynamics and two off-nominal aerodynamics cases are presented in fiqure 32.
Case 7 was the worst with an excessive roll rate and large B with an oscillation
preceding and following the maneuver.

The response results for two cases with a sensed a error of 4° and nominal
rudder effectiveness are presented in fiqure 33. Case 3 exhibits the oscillatory
tendency previously discussed and has the large roll-rate spikes at the initiation of
the roll reversals. Case 5 has the additional problem that the aileron was on the
trim limit and two jets were firing initially. As the rudder took over this trim
function and the maneuver was made, the oscillaton amplitude was reduced. The aile-
ron was on the trim limit for case 7, and the ensuing oscillation diverged. BAs has
been mentioned previously, revision of the elevon-trim and speed-brake schedules to
drive the elevon down (more positive) to provide more negative C is required to
help alleviate the trim problem. "5a

The response results with increased rudder effectiveness are presented in fig-
ure 34, The case with nominal aerodynamics performed satisfactorily, but the oscil-
latory tendency was evident. All the off-nominal aerodynamics cases with decreased
aileron effectiveness (cases 1 through 8) exhibited marginal maneuver performance and
the oscillatory tendency, although none lost control. Time histories of the two
worst cases (cases 3 and 5) are presented in fiqure 34.

The response results for a few cases with decreased rudder effectiveness are
presented in figure 35. The maneuver performance for nominal aerodynamics was very
satisfactory even though the rudder did momentarily go to the trim limit. The maneu-
ver was marginal for case 3 aerodynamics as the rudder deflection reached 19°.

Again, the vehicle was untrimmed initially for case 5 aerodynamics. However, the

oscillation converged, and the maneuver was accomplished even though the rudder drove
to the trim limit.

In summary, at supersonic speeds (Mach 5 to 2.5) two basic design problems exist
in the flight control system. With increased rudder effectiveness, the system tends
to be oscillatory after the rudder is activated. The system diverged until the rud-
der forward-loop gain was reduced by 25 percent. With decreased rudder effective-
ness, control was lost in several cases because of the inability to hold lateral
trim. The rudder is too weak at Mach 4 to take over trim, and the aileron may be
unable to trim because of the sign change in Cn « 'Thus, the body-flap and speed-

da
brake schedules must be modified to get a more positive elevon deflection and, there-
fore, a more negative C at lower Mach numbers.

N8a
CONCLUDING REMARKS
A six-degree-of-freedom simulation analysis has been performed for the Space
Shuttle Orbiter during entry from Mach 10 to 2.5 with realistic off-nominal condi
tions using the flight control system referred to as the blended entry digital
autopilot specified in May 1978. This flight control system has evolved from
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previous studies of a similar approach. The off-nominal conditions included the
following: (1) aerodynamic uncertainties in extrapolating from wind-tunnel-derived
characteristics to full-scale flight characteristics, (2) an error in deriving the
angle of attack from onboard instrumentation, (3) the failure of two of the four
reaction control-system thrusters on each side (design specification), and (4) a
lateral center-of -gravity offset and vehicle asymmetries. The effect of misalignment
of the side accelerometer was also examined for a few cases.

With combinations of the aforementioned four off-nominal conditions, the control
system performed satisfactorily with a few exceptions. The cases that did not
exhibit satisfactory performance displayed the following main weaknesses. Marginal
performance was exhibited at hypersonic speeds for a few cases with a sensed angle-
of -attack error of 4°. (The vehicle flew 4° lower in angle of attack than the flight
control system expected because of error.) At supersonic speeds the system tended to
be oscillatory in roll rate, sideslip, and control deflections, particularly with
increased rudder effectiveness. The system diverged for several cases because of the
inability to hold lateral trim with the lateral center-of gravity offset and vehicle
asymmetries. Several system modifications were suggested to help solve these prob-
lems and to maximize safety on the first flight: alter the elevon-trim and speed-
brake schedules to keep the elevon more positive at the higher supersonic speeds,
delay switching to rudder trim until the rudder effectiveness is adequate and reduce
the overall rudder loop gain. These and other modifications were incorporated in a
flight-control-system redesign in May 1979.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

February 21, 1984
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APPENDIX A

ROLL AND YAW CHANNELS OF FLIGHT CONTROL SYSTEM
The flight control system described in reference 6 was revised to solve the
problems discussed in reference 4. The revised roll and yaw channels are described
in this appendix.

Symbols

This flight control system was designed for measurements in the U.S. Customary
Units. Therefore, units are given in both the SI and U.S. Customary Units.

AL approach and landing guidance

ALPDG angle of attack, deg

AUTO autopilot control mode

BANKERR control-system roll—-angle error, deg
BETAF control-system angle of sideslip, deg
BETDG angle of sideslip, deg

COSALP cosine of angle of attack

COSTHE cosine of pitch angle

COTALP cotangent of angle of attack

DACM roll-rate error, deg/sec

DaM roll-rotation hand-controller command, deg
DAMAX roll-stick-command limit, deg

DAMS shaped roll-stick command, deg

DAMSF filtered roll-stick command, deg

DAMSFGN gain to convert roll-stick command to rate command, (deg/sec)/deg
DAMTR roll-panel-trim command

DAMTRS roll-panel-trim rate, deg/sec

DAT aileron-trim rate, deg/sec
DATR aileron~trim rate due to crossfeed and forward loop, deg/sec
DATRI aileron-trim rate due to crossfeed, deg/sec
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DATRIM aileron-trim command, deg

DAY side-acceleration error, g units

DAYF filtered side-acceleration error

DELAC aileron-deflection command, deg

DNY stability-axis yaw rate due to side acceleration, deg/sec
DR preliminary rudder-deflection command, deg

DRC rudder-deflection command, deg

DRCC limited yaw-rate error for crossfeed, deg/sec

DRF filtered rudder-deflection command, deg

DRFS rudder-trim rate, deg/sec

DRFSI rudder-trim deflection, deg
DRJET yaw-jet-rate command, deg/sec
DRM rudder-pedal command, deg

DRMS shaped-rudder-pedal command, deq
DRMTR yaw-panel trim

DRRC yaw-rate error, deg/sec

EARLY flight-control-system subphase
ENTRY entry guidance

ERRBANK roll-angle error, deg

FADER signal fading logic

FLATURN flat-turn regime

GALR scheduled gain to blend between yaw-jet/aileron control and aileron/rudder
control

GDA gain to convert roll-rate error into aileron command, deg/(deg/sec)

GDAY gain to schedule side-acceleration feedback to aileron and roll jets

GDRC scheduled gain used to obtain GGDRC, deg/(deg/sec)/Pa

(deg/(deg/sec)/(1b/Et2))
GGDRC gain to convert yaw-rate error to rudder-deflection command, deg/(deg/sec)
GLIN linear coefficient in roll-stick shaping, deg/deg
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GNY

GPC

GPFBAY

GPPHI

GTRR

H1

KGDA

MACH

MANRY

NY

PAR

PC

PCCO

PCLIM

PDAC

PDACF

PDG

PE

PEP

PGAIN

PHICM

PHICMS

PHIDG

PP

APPENDIX A

gain to convert rudder-pedal command to side-acceleration command,
(g units)/deg

gain used to schedule roll-rate command to aileron

gain used to schedule high gain on side-acceleration feedback,
(g units)/(deg/sec)

gain to convert roll-angle error to roll-rate command, (deg/sec)/deg
gain used to scale yaw-rate error

gain used to scale rudder-trim integrator

acceleration due to gravity, where 1g = 9.8 m/sec2 (32.152 ft/secz)
flight-control fast-cycle time, sec

scheduled gain used to obtain GDA, deg/(deg/sec)/Pa (deg/(deg/sec)/(lb/ftz))
Mach number

pilot-commanded roll/yaw mode

side-acceleration feedback, g units

coefficient of squared term in roll-stick shaping, deg/deg2
commanded roll rate, deg/sec

preliminary yaw-rate error, deg/sec

filtered preliminary yaw-rate error, deg/sec

roll-rate-command limit, deg/sec

scaled aileron command, deg

filtered aileron command, deg

sensed roll rate, deg/sec

turn-coordination roll-rate error, deg/sec

aileron rate-trim signal for low dynamic pressure, deg/sec
aileron-trim signal for low Mach number, deg

guidance-system roll-angle command, deg

smoothed roll-angle-quidance command, deg

sensed roll angle, deg

= PDG + (RTDG)(TANP) (SINTHE) /V, deg/sec

|
\
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PTEM side-acceleration feedback gain, deg/sec
OB dynamic pressure, Pa (lb/ftz)

RCS reaction control system

RDG sensed yaw rate, deg/sec

RFDS Reentry Flight Dynamics Simulator

RP = RDG -~ (RTDG) (SINPHI) (COSTHE)/V, deg/sec

RTDG 57.3(qg), deg-m/sec2 (deg-ft/secz)

SINALP sine of angle of attack
SINPHI sine of roll angle
SINTHE sine of pitch angle

SMOOTHER quidance-command smoothing logic

TAEM terminal-area-energy-management guidance

TANP tangent of roll angle

TEMA lateral-acceleration command due to rudder-pedal input, g units
TEMB body-axis roll-rate command, deg/sec

Uxc number of roll RCS thrusters commanded to fire

UzC number of yaw RCS thrusters commanded to fire

\Y airspeed, m/sec (ft/sec)

YALCM guidance yaw-rate command, deg/sec

YPT filtered acceleration due to yaw-panel trim, g units
YPTI acceleration due to yaw-panel trim, g units

z z-transform variable

Description of System

The block diagrams of the roll and yaw channels are presented in figures A1 and
A2, respectively. The system was designed to minimize the time required to complete
the flight-control calculations in the onboard digital computers. This was accom-
plished by operating various elements of the control laws at the minimum acceptable
frequency; thus, a variation in computational frequency existed among the various
signal paths of the flight control system. The frequency is indicated on the block
diagrams either in the figure legend or by the dashed boxes around the control-system
signal paths.
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Computational frequency differences between the guidance system and flight con-
trol system resulted in a requirement to smooth the signals at the interface. This
was accomplished by the SMOOTHER logic which is shown as a block in figqure Al(a).
Lateral-trim logic switching required a signal-fading logic indicated by the block
FADER in figqure Al(c). The SMOOTHER and FADER logics are described in detail in
appendix B of reference 6.

Roll channel.- The aileron command and roll RCS command control laws are pre-
sented in figure Al. Figure Al1(a) shows how either the roll-stick command (DAM) or
the smoothed roll-angle-guidance command (PHICMS), depending on pilot selection
(MANRY) in the cockpit, is converted to roll-rate command (PC). This command signal
was directed to the yaw channel (fig. A2(b)) and to the aileron and roll RCS jet
commands, as is shown in figure A1(b).

The Orbiter enters the Earth's atmosphere at approximately 40° angle of attack,
holds this « until it decelerates to a Mach number of around 13, and then begins a
slow transition in «, reaching 13° angle of attack near Mach 2.5. At the higher
angles of attack, the stability-axis roll rate was obtained by using the yaw thruster
to produce a body-axis yawing rate and letting the relatively large effective dihe-
dral generate the body-axis rolling rate. The aileron was used only as a coordi-
nating controller in maneuvering.

The gain GPC (fig. Al1(b)) was very small at the higher Mach numbers because of
the scheduled gain GALR, and thus only a small percentage of the roll rate commanded
was directed to the roll thrusters and ailerons. At the lower Mach numbers, GPC was
1.0 and the commanded roll rate was directed entirely to the ailerons. Thus, the
scheduled gain GALR was the mechanism by which the flight control system was blended
from one type of system to another. Note, the roll ;ets (UXC = Jet command) were
disengaged at a dynamic pressure of 479 Pa (10 1lb/ft<).

Crossfeed between the yaw channel and the roll channel DRRC was used to generate
the aileron trim signal above Mach 4. (See fig. Atl(c).) Below Mach 4, lateral trim
was handled by the rudder-forward-loop integration. The 40-sec FADER was triggered
at this Mach 4 switch to minimize the transient.

Yaw channel.- The rudder and yaw RCS command diagrams are presented in fig-
ure A2. Below Mach 4.5, the rudder was active and commands could be input through
the rudder pedals DRM (fig. A2(a)). The system was designed, however, for the yaw
channel to operate without requiring manual inputs through the rudder pedals. At the
higher angles of attack, the stability-axis roll rate PC was used to genevate a yaw-~
rate error (DRRC) (fig. A2(b)). At the lower angles of attack, the yaw-rate feedback

RP is the predominant feedback signal and is sufficient to provide the desired turn
coordination.
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APPENDIX B

AEROELASTIC MODEL

A static aerocelastic model developed for the Lyndon B. Johnson Space Center was
used in the Reentry Flight Dynamics Simulator (RFDS). The model uses a series of
curve fits to the aeroelastic data to generate factors or increments to be applied to
the rigid-body aerodynamic coefficients. The curve fits were developed with dynamic
pressure in U.S. Customary Units, and thus the coefficients in the equations are for
U.S. Customary Units. To convert to S.I. Units, the coefficients must be multiplied
by 47.880258. The purpose of this appendix is to present the formulation of this
model.

Symbols
AE1 conversion factor for rudder derivatives
AE2 conversion factor for f derivatives
AE3 conversion factor for pitch and lift elevon effectiveness and aileron
effectiveness in roll
AE6 conversion increment for lift
AE7 conversion increment for pitch
AE8 conversion factor for yaw due to aileron deflection
AE41 conversion factor for inner-elevon-panel hinge moment
AE42 conversion factor for outer-elevon-panel hinge moment
AE51 conversion factor for rudder hinge moment
AE52 conversion factor for rudder/speed-brake hinge moment due to sideslip
Ch rigid-body inner-elevon-panel hinge-moment coefficient
e,i
Ch rigid-body outer-elevon-panel hinge-moment coefficient
e,o
Ch rigid-body rudder/speed-brake hinge-moment coefficient due to
B sideslip, deg_1
Ch rigid-body rudder hinge-moment coefficient, deg-1
Oér
Cy, rigid-body lift coefficient
Cy, rigid-body 1lift increment due to elevon deflection
e
C rigid-body rolling-moment coefficient due to sideslip angle, deg_1
1
B
c1 rigid-body rolling-moment coefficient due to aileron deflection, cleg'1
da



OB

RFDS

rigid-body
rigid-body
rigid-body
rigid-body
rigid-body
rigid-body
rigid-body

rigid-body

APPENDIX B

rolling-moment coefficient due to rudder deflection, deg'1

pitching-moment coefficient

pitching-moment increment due
yawing-moment coefficient due
yawing-moment coefficient due
yawing-moment coefficient due
side-force coefficient due to

side-force coefficient due to

Mach number

dynamic pressure, 1b/ft2

Reentry Flight Dynamics Simulator

angle of attack, deg

sideslip angle, deg

The notation

to elevon deflection

to sideslip angle, deg-1

to aileron deflection, deg™!
to rudder deflection, deg"1
sideslip angle, deg'1

rudder deflection, deg"1

( )flex signifies that the rigid-body coefficient in the paren-
theses has been converted to a flexible-body coefficient, and the notation
signifies the rigid-body contribution of the vertical tail.

( )vert

Conversion of Rigid-Body Coefficients to Flexible-Body Coefficients

cY
ér/ flex

CI
ér/flex

C
Ner flex

(
(>

B)flex

AE1 C
Y&r

AE1 C1
dr

AE1 C
Nsr

C - (1 - AE2)/C
YB ( YB)vert

The following equations were used to convert the rigid-body aerodynamic coef-
ficients to the approximate flexible-body aerodynamic coefficients. The AE factors
in each equation are the conversion factors which will be defined subsequently.
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C =C - (1 - AE2)/C
( 1B)flex 1B IB vert

C C - (1 - AE2)/C
nBflex nB nB)vert

AE3 C
L

N /‘7; N
[
11
~—
Hh
._l
13
L3
[]
o

C = AE3 C
me flex me
(@ = AE3 C1
16a flex Sa
C = AE8 C
Nsal flex Nsa

(CL)flex = AE6 + C_

(Cm> flex = AE7 + cm

C
h

]

o
B
@]

( )flex e,i
C
(11 )fhx h&o
= AES5
2 Ch
B/flex g

C = AE51 C
< hér) flex h6r

The vertical-tail components C ' C , and c
B)vert B)vert

il
o]
23]
B
N
(@]

are given in

1'B)V'ert

tables BI, BII, and BIII, respectively.
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The conversion factors are listed as follows according to Mach number:

APPENDIX B

For Mach numbers above 5:

AE1 = 1 - 0.0005 QB

AE2 = 1 - 0.0002 OB

AE3 = 0.995 - 0.0002 QB

AE8 = 0.995 - 0.000175 OB
AE6 = AE7 = 0

AE41 = AE42 = 1 - 0.0002 OB
AE51 = 1 - 0.00015 QB

AE52 = 1 - 0.00025 OB

From Mach 5 t

o 3:

AE1

AE2

AE3

AE8

AE41

AE51

AE52

= 0,98 - 0.0006 OB + (M - 3)(0.015 + 0.0005 QOB)

= 0.995 - 0.0003 QB + (M - 3)(0.0025 + 0.00005 QOB)
= 0.995 - 0.00035 QB + (M - 3)(0.000075 QB)
= 0.995 - 0.0003 OB + (M - 3)(0.0000633 QB)

= AE42 = 1 - 0,0003 OB + (M - 3)(0.00005 QB)

0.995 - 0.0002 OB + (M - 3)(0,0025 + 0.000025 QB)

1 - 0.0004 OB + (M - 3)(0.000075 QB)

c e cmm——-
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From Mach 3 to 2:

AE1 = 0.98 - 0,001 OB + (M - 2)(0.03 + 0.0003 QOB)

AE2 = 0,985 - 0.0005 QB + (M - 2)(0.01 + 0.0002 OB)

AE3 = 0.99 - 0.0005 OB + (M - 2)(0.005 + 0.,00015 QB)

AE8 = 0.99 - 0.00042 OB + (M ~ 2)(0.005 + 0.000127 QOB)

AES51 0.995 - 0.0004 OB + (M - 2)(0.0002 OB)

AE52

0.99 - 0.0007 OB + (M - 2)(0.01 + 0.0003 QB)

From Mach 5 to 1.5:

AE6 = 0.00125 + 6 x 10" OB + (M - 1.5)(-3.57143 x 10”4 - 1.71429 x 1076 gB)
AE7 = -0.001 - 8 x 10" Q0B + (M - 1.5)(2.85714 x 10”4 + 2.285714 x 107® oB)

From Mach 3 to 1.5:

AE41 = 0,985 - 0,00055 Q9B + (M - 1.5)(0.01 + 0.000167 QOB)

AE42 0.99 - 0.00045 OB + (M - 1,5)(0.006667 + 0.000133 QB)

From Mach 2 to 1.5:

AE2 = 0.975 - 0.0005 QOB + 0.02(M - 1.5)
AE6 = 0.00125 + 6 x 10" OB + (M - 1.5)(-3.57143 x 104 - 1.71429 x 107° oB)
AE7 = -0.001 - 8 x 10°% 0B + (M - 1.5)(2.85714 x 10”4 + 2.285714 x 10™® oB)

AE41 0.985 - 0.00055 QB + (M - 1.5)(0.01 + 0.000167 QB)

AE42

0.99 - 0,00045 OB + (M - 1.5)(0.006667 + 0.000133 OB)
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AE51 = 0.99 - 0.0006 OB + (M - 1.5)(0.01 + 0.0004 QB)

AE52 = 0.965 - 0.0008 OB + (M - 1.5)(0.05 + 0.0002 QB)

From Mach 2 to 1.2:

AEl = 0.9 - 0.00127075 OB + (M - 1.2)(0.0875 + 0.000375 QB)

AE3

0.96 - 0,00085 QB + (M - 1,2)(0.0375 + 0.000348 QB)

AES8 = 0,97 - 0.0007 OB + (M - 1.2)(0.025 + 0.00036 OB)

From Mach 1.5 to 1.2:

AE6 = 0.003 + 0.000052 OB + (M - 1.2)(-5.8333 x 1073 - 1,5333 x 10”4 oB)

AE7 -0.003 - 4 x 107> OB + (M - 1.2)(0.0066666 + 1.06666 X 1074 OB)

AE41 = 0,98 - 0.00085 OB + (M - 1.2)(0.016667 + 0.001 OB)

AE42 = 0,98 - 0,0006 OB + (M - 1.2)(0.033333 + 0.0005 QB)

AE51

0.96 - 0.0007 QB + (M - 1.2)(0.1 + 0.000333 OB)

AE52 0.985 - 0.0007 QB - (M -~ 1.2)(0.066667 + 0.000333 OB)

From Mach 1.5 to 0.95:

AE2 = 0,995 - 0,0003 OB - (M - 0.95)(0.036364 + 0.00036364 OB)

From Mach 1.2 to 0.95:

AE1

1,0 - 0.00087075 QB - (M - 0.95) (0.4 + 0.0016 QB)

AE3 = 0.985 - 0.0005 OB - (M - 0.95)(0.1 + 0.0014 QOB)

AE41 = 1.0 - 0.0005 QB - (M - 0.95)(0.08 + 0.0014 QB)
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AE42 = 1.0 - 0.0005 9B - (M - 0.95)(0.08 + 0.0004 QB)
AE51 = 0.97 - 0.0003 9B - (M - 0.95)(0.04 + 0.0016 QOB)
AE52 = 1.0 - 0,0003 OB - (M - 0.95)(0.06 + 0.0016 OB)

From Mach 1.2 to 0.9:

AE6 = 0.005 + 0.000184 QB + (M - 0.9)(-6.666666 x 1073 - 4.4 x 10~4 oB)
AE7 = -2.7 x 1073 - 9.68 X 102 OB + (M - 0.9)(-0.001 + 1.8933333 x 10-4 0B)

AES8 0.995 - 0.00038 OB - (M - 0.9)(0.025 + 0.0014 OB)

From Mach 0.95 to 0O:

AE1 = 1.0 - 0.0006 QB - 0.5M2(0.0006 QB)

AE2 = 0.995 - 0.0003 OB

AE3 = 0.99 - 0.0002 QB - M(0.00526316 + 0.00031579 OB)
AE41 = AF42 = 0.995 - 0.0002 OB - M(0.0003 OB)

AE51 = 0.99 - 0.0003 QOB - 0,021053M

AE52 = 1.0 - 0.0004 QB + M(0.000105 QB)

From Mach 0.9 to 0.6:

AE6 = 0.00125 + 0.000098 QOB + (M - 0.6) (0.0125 + 2.8666667 x 10~% OB)
AE7 = -0.001 - 4.4 X 107> OB + (M - 0.6)(-1.16666 X 10”3 - 2.12 x 10™4 OB)
AE8 = 0,995 - 0.0002 OB - (M ~ 0.6)(0.06 + 0.0004 OB)

34




APPENDIX B

From Mach 0.6 to O:

AE6 0.0015 + 0.000076 OB + (M - 0,25)(0.6285714 x 1074 oB)

AE7 = -0.001 - 3.2 X 10~5 OB + (M - 0.25)(9.28571 x 10”3

- 1.085714 x 10”4 ¢B)

AES = 0.995 - 0.00007 QB - M(0.0002 OB)
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TABLE BI.- VERTICAL-TAIL COMPONENT OF C
B/ vert

Values of C at Mach numbers of -

a, B,vert

deg[ o,25 0.60 0.90 0.95 1.05 1.2 1.55 2.0 3.0 5.0
-5 | -0.0062|-0.0074| -0.0089|-0.0088}-0.0085}{-0,0082| -0.0079|-0.0075}-0.0062] -0.0042

0 -.0060} -.0074y -.0089| -.0088| -.0084| -.0081] -.0077| -.0074] -.00601 -.0040

5 -.0058| -.0070f -.0084] ~.0082| -.0080| -.0076| -.0072] -.0069| -.0055| -.0036
10 -.0056] -.0064| -.0072} -.0071| -.0069| -.0064} -.0057| -.0056| -.0044] -.0032
15 -.0056| -.0062] -.0054| -.0053| -.0050] -.0042} -.0030| -.0028] -.0026] -.0026
20 -.0058} -.0062| -.0030| -.0028| -.0022| -.0008] -.0024| -.0026| -.0002| -.0019
25 -.0058| -,0062{ -.0030f{ -.0028| -.0022| -.0008 .0024 .0027 .0005} -,0008
30 -.0058] -.0062] -.0030f -.0028] -.0022| -.0008 .0024 .0012 .0000] -.0004
35 -.0058} -.0062| -,0030| -.0028} -.,0022| -.0008 .0024 .0012f -.0002| -.0004

TABLE BII.- VERTICAL-TAIL COMPONENT OF C
( B) vert
Values of ¢C at Mach numbers of -

o, ng,vert
489" 25 [ 0.60 | 0.90 | 0.95 | 1.05 1.2 | 1.55 2.0 3.0 5.0
-5 10.00315}10,00324{0.00388]|0.00385|0.00372|0.00372|0.00367|0.00355/0.00285]|0.00190
0 .00310} .00320| .00379| .00378| .00370} .00367| .00360} .00350| .00280}| .00190
5 .00287} .,00308| .00355] .,00359{ .00359} .00345| .00325{ ,00315| .00255| .00180
10 .00260| .00290| .00318] .00325| .00330| .00300| .00260]| .00250| .00210}| .00159
15 .00256] .00281 .00257{ .00268] ,.,00273| .00225] .00152f .00130| .00140| .00122
20 .00260| .00280} .00150| .00153| .00160| ,.00100|-.00026]-.00090| .00030] .00070
25 .00260] .00280f{ ,00150| .00153| .00160| .00100|-.00026}-.00097| .00005| .00045
30 .00260| .00280| .00150| .00153] .00160] .00100|-.00026|-.00070f{ .00002| .00039
35 .00260| .00280] .00150| .00153} .00160} .00100|-.00026|-.00070} .00028| .00034
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TABLE I.- PHYSICAL CHARACTERISTICS OF SPACE SHUTTLE
ORBITER DURING ENTRY

Mass properties:

Mass, kg T - |

Moments of inertia:

Ix, kg—m 0000060 00000000000060000000800000600000000000006006060000OCOCRCORIOOGOIEOEONTE 1 169
IY, kg-m sec0cecesssesesssst0scss0ssssscsssssenesesscsssssssssssssncsee 8 729
T ET
IXY' kg—m @0 cccccsc000000000000000000000000 000000000000 0000000000000 00ss0e 3
IXZ' kg—m e A k-]
IYZ' kg—m $ 000 see0 0000000000000 00s0sessss0s0sssseR000s00s000sssssssss 3

Wing:

388

236
397
771
868
615
441

Reference area' m2 S0 0 0680006060000 800000000000 0000000600500000060600000000000s000 249.91
Mean aerodynamic chord, M cococovssscscscsscscscsscsocsscsssosscssssssccssssscescs 12,06

Span’ M cec000000000000000000606000000000600000000060006000000600000000000600000000c0 23079

Elevon:

Reference area' mz PO O GO P O OOOCOCOSOOBOOLO D OO N OSSNSO DNOEINOSEDINOIOSEOSEOSLNDOPNSOEIOSIPOPIOSEONEDPNOEOSEPOSEOSIOSINDOIOS 19.51
Mean aerodynamic ChOYd, M sececccsocscscosscoscssscossssscscscssocscsscscscscssoscsscssscsnse 2.30

Rudder:

Reference area, m2 00000000 0060000000000 0000000000000 0000000000000000000000000 9.30
Mean aerodynamic Chord, T 000000000000 0000000000000000000000002s00000000000000 1.86

Body flap:

Reference area' mz 0 0 0000000000000 OGO OIDO OO OO DO OGO OOOOEOEONOLESLEEBLRLOIEOINOIOLOLOESLEINS 12.54
Mean aerodynamic ChOXrd, M sesecccccccscsccscsssccsscssssosccccscssscscsssscsssssssoe 2.06
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TABLE II.- OFF-NOMINAL AERODYNAMIC VARIATIONSZ

Cas C
e ng CIB C“Ga Claa
1 - - - -
2 + - - -
3 - + - -
4 + + - -
5 - - + -
6 + - + -
7 - + + -
8 + + + -
9 - - - +
10 + - - +
1 - + - +
12 + + - +
13 - - + +
14 + - + +
15 - + + +
16 + + + +

Rudder variations CY C C1

6r| Dé6r Sr
Increased effectiveness + - +
Decreased effectiveness - + -

3p plus sign (+) indicates that aerody-
namic variation is added to the nominal
coefficient. A minus sign (-) indicates that
aerodynamic variation is subtracted from the
nominal coefficient.
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Figure 3.- Entry-trajectory parameters of Space Shuttle Orbiter for first flight.
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Figure 22.- Mach 5 maneuver performance for a high-sensed
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Figure 27.- Mach 4.2 maneuver performance with nominal rudder effectiveness.
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Figure 31.- Mach 4.2 maneuver performance for a low-sensed a error of 4°
with decreased rudder effectiveness.
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Figure 32.- Mach 4.2 maneuver performance for a low-sensed a error of 4°
with increased rudder effectiveness.
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Figure 34.- Mach 4.2 maneuver performance for a high-sensed a error of 4° with
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