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SUMMARY

A study has been conducted of the feasibility of employing decoupling procedures
to control a large flexible space antenna. Control involves commanding changes in
the rigid-body modes or nulling initial disturbances in the flexible modes. The
study is intended to provide preliminary engineering-type data, in parametric form,
which would be useful in the final design of a large space antenna control system.
The data illustrate the effect on control requirements of the number of modes con-
trolled; of the number, type, and location of control actuators; and of variations in
the closed-loop dynamics of the control system. A brief analysis is included which
compares decoupled-control results with those obtained by using a linear quadratic
requlator approach. Time history responses are presented to illustrate the effects
of the control procedures.

INTRODUCTION

The operational status of the NASA space transportation system (STS) has opened
a wide area for application of large antenna systems which can be deployed in space.
Examples of relatively near-term missions utilizing these antennae include personal
comminication systems, Earth observation systems, radio astronomy systems, and elec-
tronic mail systems. (See ref. 1.) In order to meet the stringent pointing and
surface-contour requirements, extensive analysis is needed to develop efficient and
reliable control-system designs for these systems. 1In the last several years, vari-
ous methods of controlling the attitude and modal displacements of large space struc-
tures have been developed and analyzed. Examples of these studies are given in
references 2 to 5. References 2 and 3 apply decoupled and modern control theory
approaches, respectively, to control of a long flexible one-dimensional beam in
orbit. Reference 4 uses similar approaches for control of a two-dimensional flexible
space platform, and reference 5 applies modern control theory techniques to control
of a three-dimensional space antenna.

This paper presents results of an antenna-control-system design procedure which
utilizes linear decoupling theory. The 122-m-diameter hoop-column antenna (ref. 6),
which can be deployed in a single STS flight, is used as the basis for the study.
The hoop-column concept, shown in the sketch on page 2, consists of a deployable
central column attached to a deployable hoop by cables in tension. The resulting
structure has a large number of flexible modes in addition to the rigid-body rotation
and translation modes. Decoupling theory is a convenient tool for devising control
laws for such structures because the theory allows for independent control of each
mode. For example, the rigid-body modes can be controlled without affecting the
flexible modes. The theory also allows the feedback gains to be computed in closed
form such that desired closed-loop dynamics are achieved while maintaining the inde-
pendent control capability.

The objectives of this paper are (1) to apply the decoupled analyses of refer-
ences 2 and 4 to control of a three-dimensional large space antenna, (2) to provide
preliminary engineering-type data which could be used in the final design of a
decoupled—control system for a large space antenna system, and (3) to compare the
decoupled results with those obtained with a linear quadratic regulator approach.
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Results are presented for various arrangements of control-moment gyros on the
antenna column and for arrangements of reaction-control jets on the column or hoop.
Control requirements in terms of maximum torque/force and total momentum/impulse are
presented in relation to closed-loop dynamics, which cover a wide range of frequen-
cies and damping ratios. Although the results presented are primarily for the three
rigid-body rotation modes and up to six of the lowest frequency flexible modes, lim-
ited results are included on the effect of controlling the three rigid-body transla-
tion modes. Comparisons are given between the decoupled-control results and those
obtained with the linear quadratic requlator approach for a number of cases using
control-moment gyros on the antenna column. Time histories of control requirements,
along with the ensuing modal responses, are presented to illustrate the effects of
the control procedures.

It should be noted that the results of this study represent the ideal perfor-
mance of the decoupled-control approach, in that perfect estimates are assumed for
the modal measurements required for feedback. In addition, the number of controllers
equals the number of modes to be controlled in the system, and perfect controllers
(no actuator dynamics included) are assumed. The important problem of stability in
the presence of control and observation spillover due to the effects of uncontrolled
modes (residual modes not included in the math model) is not included in this analy-
sis. These effects are discussed in reference 7.
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SYMBOLS AND ABBREVIATIONS
system matrix (eq. (B1))
maximum modal amplitude
modal amplitude (eq. (3)), where n is the mode number (1, 2, «.., 6)
steady-state modal amplitude
control influence matrix (eq. (B1))
lower half of B matrix (eq. (B1))
matrix relating output (decoupled) vector to state vector (eq. (6))
control-moment gyro
center of gravity
displacement vector (eq. (4))
feedback gain matrix (eq. (7))
force

force vector

component of force, where i is the control direction, and Jj 1is the
actuator location

feedforward gain matrix (eq. (7))
acceleration of gravity
moment of inertia matrix

impulse, where 1 1is the control direction, and Jj is the actuator
location

I, center-of-gravity moments and product of inertia
objective function (eq. (11))

gain matrix (eq. (10))

lever arm matrix (egs. (A2) and (A3))

linear quadratic regulator

distance (fig. 1)

angular momentum, where i is the control direction, and Jj 1is the
actuator location



m modal mass

n

P control-vector-weighting matrix (eq. {(11))

0 state-vector-weighting matrix (eq. (11))

RCS reaction-control system

r radius of hoop

] Laplace operator

T torque

T torque vector

Ti,j components of tquue, where i is the control direction, and j 1is the
actuator location

T natural period

t time

t1 time to damp to 1 percent of initial disturbance

u control vector (eq. (7))

v input command vector (eq. (7))

w weight

X,Y,2 coordinates of antenna center of gravity

x state variable

X state vector

X, Y, 2 coordinates of modal data (fig. 1)

y output vector (eq. (6))

o) angle between actuators on antenna hoop (fig. 1)

g damping ratio

Cd desired damping ratio

Cn natural damping ratio

0,6¢,¢ rotation angle about X-, Y-, and Z-axis, respectively

T time constant

¢ mode shape matrix




¢' mode slope matrix

w frequency

wd desired frequency

wn natural frequency

Subscripts:

d desired

flex flexible mode

i,3 i is the control direction, and 3j 1is the actuator location
max maximum

n mode number

rb rigid-body mode

A bar over a symbol denotes a vector or a matrix.

MATHEMATICAL MODEL OF ANTENNA

A large space structure such as the hoop-column antenna has, in theory, an infi-
nite number of flexible (vibration) modes. To facilitate analytical treatment of the
control problem, a finite order, linearized model was formulated. For the analysis
of this report, the structural model was selected to contain from three to six of the
lowest flexible modes of the 122-m-diameter hoop-column antenna, as described in
reference 6., The three rigid-body rotation modes are included in the analysis, and
limited results which include the three rigid-body translation modes are presented.

The equations of motion used to represent the rigid-body and vibration modes of
the antenna are given below. Details of their implementation for specific arrange-
ments of control actuators are given in appendix A.

Rigid-body rotations (for small angles) about the antenna center of gravity are
represented by

0 LT
X
-1
d |=I | T Ty (1)
¢ LT




Translations of the antenna center of gravity can be expressed as

X Y £
y =95 ¢ (2)
w Y
Z % f
Z

Variations in modal amplitudes of the flexible modes are represented by

A +2 wA +wA =—pf+0¢ T n =1, 2, «.., 6) (3)
n nnn n n mo\n n
where f and T are vectors of control forces and torques, respectively, m, is
the modal mass, ¢n is the column of the mode shape matrix relating to the nth
vibration mode, and ¢n is the corresponding column of the mode slope matrix. (See
appendix A for details.) It should be noted that Al values in equation (3) are
modal amplitude displacement variables and do not represent actual physical displace-
ments. The physical displacement at some point on the antenna would include linear
combinations of the modal amplitudes and mode shapes and is given by the
transformation

d = ¢A (4)

The mode shape and modg slope data used in the analysis were taken from unpub-
lished results of a NASTRAN model of the 122-m-diameter hoop-column antenna system
and are provided in table I. The data of table I consist of orthogonal mode shapes
and slopes at four positions on the mast as well as mode shapes at increments of 15°
around the hoop of the antenna. Table II shows the weight and inertia properties of
the antenna. The modal masses, frequencies, and natural damping ratios of the six
flexible modes considered in the analysis are also given in table II.

DECOUPLED CONTROL

Since decoupling theory has been analyzed extensively in the literature (for
example, see refs. 8 and 9), the discussion of this paper is limited to some general
remarks concerning its application. Examples are given in appendix B to illustrate
the manner in which the theory was applied to the system equations of the current
analysis. Typical B, F, and G matrices for two six-control cases are shown in
table III and are discussed subsequently.




The second-order equations in the analysis (egs. (1) to (3)) can be reduced to
first-order equations (state-vector form) and written as

X = AX + Bu (5)

The output vector § of states to be decoupled is defined as

<
21

(6)

where C is a matrix which selects the states to be decoupled. For the present
analysis, the output vector is taken to be the entire state amplitude vector, so that
complete decoupling is obtained for all modes in the model. Complete decoupling
requires as many actuators as there are state amplitudes to be decoupled.

The decoupling control law is taken as
u = Fx + Gv (7)

where v 1is the input command vector, and F and G are feedback and feedforward
gain matrices, respectively. The output is related to the input through the transfer
function H{s) by

A A

y(s) = H(s) v(s) (8)

where ; and v are of the same order. The circumflex in equation (8) indicates
the Laplace transform and

H(s) = C(sI - A - BF)-1BG (9)

where I is the identity matrix. Decoupling theory provides a method for determin-
ing the F and G matrices such that the transfer function H(s) is diagonal and
nonsingular. Therefore, independent control is possible for each of the decoupled
(output) variables. The dynamics of the transfer function can also be specified.
This is important because the desired closed-loop dynamics of the decoupled variables
having been specified, the transient and steady-state responses of the system are
known. For the present application, these responses are simply solutions to the
second-order equations (e.g., x + ZdeA§ + wix = wdv), where Wy and Cd are the
desired closed-loop frequency and damping ratio, and v is the command. Although
closed-form solutions to these equations exist for specified initial conditions and
step commands, in the present analysis the system equations (eg. (5)) were integrated
numerically by using the feedback law of equation (7). This was done to facilitate
control requirement computations. Various methods exist for determining the feedback
and feedforward gains required to achieve decoupling., For example, the computer
program of reference 8, based on algebraic theory of linear systems, provides a




general purpose approach to the problem. In the examples of appendix B, the method
of reference 9 was used because it gives insight into the nature of the decoupling
process.

Linear Quadratic Regulator Control

In order to establish a standard for comparison of the decoupled-control
results, a limited analysis was made in which state feedback control gains were cal-
culated by using the asymptotic linear quadratic regulator (LQR) approach of refer-
ence 10, (Ref. 11 provides a computer program for performing these computations.)
The control law for the LOR results was given by

u = Kx (10)

The control gain matrix was computed subject to the constraint of equation (5) such
that the following function was minimized:

t

J=1im | (%Tox + aTrd) at (11)
tre o

0 and P are weightings on the states and controls; these weightings are varied in
order to achieve the desired closed-loop dynamics. Decoupled and LOR comparisons in
the present analysis are limited to control of the rigid-body rotation and first
three flexible modes with six torquers on the antenna mast.

Antenna Open-Loop Response

Vibratory response characteristics of the antenna caused by initial disturbances
in the modal variables and by step control inputs will now be summarized. The
unforced transient behavior of the six vibration modes considered in the analysis
(eq. (3)) is presented in figure 2. Shown are the modal amplitude variations with
time resulting from an initial displacement of 1 in. in each modal variable. These
response characteristics and those for other assumed damping ratios are summarized in
figure 3. Shown is the percent of initial displacement as a function of the number
of cycles for various damping ratios. The time to damp to a certain percent can be
determined from figure 3 by using the modal periods of table II. For example, mode 1
(Z = 0.01) requires 74 cycles or about 623 sec to damp to 1 percent of an initial
displacement, whereas mode 6 requires 37 cycles, or about 41 sec, to achieve the same
reduction in amplitude. Note that for ¢ > 0.59, vibrations will damp to 1 percent
in less than 1 cycle.

Vibratory response characteristics of the system to step inputs in torque or
force are given in table IV. Columns two, three, and four of the table show the
steady-state and peak values attained in the modal variables for a unity control
input, mode shape (¢), and mode slope (¢'). Since the system is linear, the results
given in columns two, three, and four of table IV can be scaled to represent other
values for torque, force, mode shape, or mode slope. For example, the last two
columns of table IV show the maximum steady-state amplitudes attained for a unity
force input on the hoop or a unity torque input on the column. These values are




obtained by multiplying the second column of table IV by the largest values of ¢
or ¢' (table I) on the hoop or column, respectively.

As previously mentioned, the results of table IV are for modal amplitudes and
should not be confused with physical displacements of the system. The actual dis-
placement at some position on the antenna is given by equation (4) (where the values
of ¢ are given in table I). For example, if we assume that all six modes have an
amplitude of 1 in., then the deflection in the y~direction at position 1 (fig. 1)
would be given in inches by

dy 1 = (0.2137) (1) + (0)(1) + (0.6703)(1) + (0)(1) + (-0.1131) (1)

+ (0.0045) (1) = 0,7754

RESULTS AND DISCUSSION

Results of the study are presented to illustrate the effect on control require-
ments of (1) the number of modes controlled, (2) the number, type, and location of
control actuators, and (3) variations in the closed-loop dynamics (wd, £,) of the
control system. Although most of the results are limited to control of the three
rigid-body rotation modes plus the first three vibration modes, the effect of adding
up to three additional vibration modes and of including the three rigid-body transla-
tion modes is also considered. As described in appendix A, the controls utilized are
either control-moment gyros (CMG's) or reaction-control-system (RCS) jets. The con-
trollers are three-axis devices aligned along the x-, y-, and z-directions (fig. 1).
Although most of the results involve the use of decoupled controls, comparisons are
also presented between decoupled results and those obtained with a linear quadratic
regulator (LQR) approach.

Typical Decoupled Responses

Typical position and rate responses are shown in figure 4 for a six-control case
with initial displacements of 0.01 rad in the rigid-body modes and 1 in. in each of
the first three flexible modes. The closed-loop characteristics of these responses
are given in table III, along with the B, F, and G matrices. 2As explained in
the previous section on decoupled control, the data of figqure 4 are simply linear,
second-order responses at the specified damping ratio and frequency and would be the
same for any six-actuator arrangement for which the control influence matrix is
invertible (eq. (B4)). Also, if initial modal amplitudes were set at zero for any of
the variables of figure 4, those variables and their rates would remain at zero, and
the other responses would be as shown.

Time histories of the control required to produce the responses of fiqure 4 are
given in figure 5 for cases where either CMG (fig. 5(a)) or RCS (fig. 5(b)) actuators
were used. Shown also are time histories for cases where initial disturbances were
either in the rigid-body modes alone or in the flexible modes alone. The control
time histories of figure 5 are for the actuator arrangement of table III,

The momentum and impulse time histories of figure 5 represent the total areas
under the torque and force responses. Momentum and impulse, along with the maximum
value for control inputs, are used in the report as a measure of control requirements
when making various comparisons.



Consider the torque and force time histories of figure 5. The inputs at zero
time are the result of rigid-body position gains, inasmuch as the flexible gains are
zero because of the closed-loop requirement that the antenna vibrate at its natural
frequency. The initial control peaks are caused by the flexible-mode rate feedback
terms. The momentum and impulse histories of fiqure 5 indicate the predominant con-
trollers for the various modes. For example, figure 5(a) shows that the CMG unit at
position 2 is mainly used for rigid-body control.

Initial-Condition Effects

The control requirement results of figure 5 are summarized in the first three
cases of table V. Shown are the maximum control inputs and the total impulse and
momentum for the initial conditions of figure 5. The impulse and momentum values are
the sums of those attained for each of the six controllers. Cases 4 through 9 of
table V give results for initial displacements in the individual modes.

Since the system equations are linear, the results of table V can be scaled to
any constant positive multiple of the initial conditions shown. For example, a dis-
turbance of 0.1 rad in the rigid-body modes would result in a peak force of 53 1lb and
an impulse of 1250 lb-sec. Note that adding the contributions due to rigid-body
disturbances alone (case 1) to those due to flexible-mode disturbances (case 2) does
not give the result of simultaneous disturbances in all modes (case 3). Although
control requirements vary linearly with initial-condition variations, they may be
dependent on the direction of the initial-condition disturbance, as is shown in
cases 10 through 13 of table V.

Consider the cases of table V which have initial conditions on only the rigid-
body modes. The maximum control inputs for these cases occur at zero time (see
fig. 5) and can be calculated from the initial conditions and the rigid-body position
gains (first three columns) of the feedback matrices of table III. For example,
consider case 1 of table V. Examination of the F matrix of table III{b) shows that

the peak force occurs in the first controller and can be calculated by using the
first three gains in the first row as follows:

fye 1 = (213 + 301 + 15)(0.01) = 5.3 1b

Peak forces or torques for other combinations of initial rigid-body disturbances can
be calculated in a similar manner.

The rigid-body results given in table V are for initial disturbances in the
rigid-body modes, and control is effected through use of the feedback matrix. Simi-
lar results could be obtained if the initial rigid-body positions were set at zero
and commanded to go to a nonzero condition. In this case, peak control inputs would
result from the feedforward gains (G) of table III, and the control law would use
both the F and G gain matrices. (For example, see ref. 2.)

The results of table V should be considered only as examples of the individual
and collective effects of initial-condition variations. The control requirements for
a particular set of initial disturbances can only be determined by solving the system
equations. In the remaining discussions of the report, initial conditions will
either be 0.01 rad in the rigid-body modes or 1 in. in the flexible modes.
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Actuator Location Effects

The effect on control requirements of actuator placement on the antenna will now
be considered for six~-control cases. The use of CMG-type controllers was limited to
the four positions on the column shown in figure 1, inasmuch as these were the only
locations for which mode slope data were available (table I). RCS controllers could
be located on either the column or the hoop. Comparisons are limited to systems
using two three-axis controllers of either the CMG or the RCS type with their axes
aligned along the x-, y-, and z-directions of figure 1. That is, one- or two-axis
controllers, combinations of CMG or RCS units, and gimbaled controllers were not
considered.

Positions 1 and 2 (top and bottom, respectively) on the column (fig. 1) were
found to yield the lowest CMG control requirements. The results for this arrange-
ment, as well as those for the two next best locations, are given in table VI. 2all
other CMG locations on the mast required much higher values of torque and momentum.

Consider the results shown in table VI for which the flexible disturbances are
zero. For these cases, the flexible modes add nothing to the feedback law because
the modal displacements and rates remain at zero. Why then are the control require-
ments different for each CMG arrangement? This occurs because each arrangement
requires different rigid-body feedback gains so as not to disturb the flexible modes.
Had only the rigid-body modes been controlled with one three-axis CMG, all positions
on the column would have given identical results.

The use of RCS-type controllers will now be considered. RCS controllers con-
fined to the mast are excluded, since rigid-body rotations about the z-axis (fig. 1)
of the antenna cannot be achieved with this arrangement. No combinations of RCS
units on the column and hoop were found to be superior to the case where the RCS
controls were placed only on the hoop. Figure 6 shows control requirements for cases
where one three-axis RCS was located at position 5 (fig. 1) on the hoop and another
three-axis RCS at various locations around the hoop. (The symbol & represents the
separation angle between the actuators as measured from position 5.) As the angle
between the RCS's is reduced, a singular condition is approached, and the control
requirements increase rapidly. The same is true as the separation angle approaches
180°, For the rigid-body and flexible-mode disturbances chosen, figure 6 shows that
the optimum separation angle between the RCS's is about 120° to 150°. The results of
figure 6 are, of course, dependent on the magnitude and direction of the initial
disturbance, as was shown in case 10 of table V for the RCS controllers at posi-
tions 5 and 6. 1In the remainder of the report, RCS controls will be located at
positions 5 and 6 when the effects on control requirements of changes in the closed-
loop system dynamics are compared.

Closed-Loop Damping-Ratio Ef fects

Previous results of the report have used a closed-loop damping ratio ({.) of 0.9
for all modes. The effect on control requirements of wvariations in Cd will now be
considered for the CMG and RCS locations and closed-loop frequencies of table III.
‘The effect of variations in the closed-loop frequency values of table III is pre-
sented in a later section of the report.

Figure 7 shows that for rigid-body disturbances, total momentum and impulse
decrease as damping ratio is increased. Values of total momentum and impulse are
approximately inversely proportional to the damping ratio. The magnitudes of peak
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torques and forces are constant, since they are caused by position feedback operating
on the initial conditions, as previously described.

Figure 8 shows that for flexible-mode disturbances, the control requirements are
reduced as the damping ratio is reduced. The reduced damping ratio, of course, leads
to an increase in time to damp the disturbances, as shown in figure 8(a). The time
shown is that required to damp the first flexible mode to 1 percent and is indepen-

dent of the controller type. The higher frequency modes would damp more rapidly for
fixed damping ratios.

The maximum torques and forces shown in figure 8 are basically caused by the
damping terms in feedback and cannot be determined from initial conditions and the
F matrix, as is the case for rigid-body disturbances. It should be noted that the
F matrices of tabhle III can be converted to approximate (by neglecting the natural
damping term in eq. (B6)) the feedback matrix obtained for other values of Cd by
proper scaling of columns 7 through 12. For example, for 0.7 damping in the pitch
mode, column 7 would be multiplied by 0.7/0.9.

Closed-loop damping-ratio effects can be summarized as follows: To minimize
control requirements with respect to Cd’ large values (0.9 or greater) should be
used for the rigid-body rotation modes, but the flexible modes should be damped as
lightly as is practical. The lower limit on flexible-mode damping would be deter-
mined by mission requirements, since a reduction in damping leads to an increase in
time to damp an initial disturbance. An additional method for reducing control
requirements, which involves the introduction of lag into the feedback gains, is
discussed in a later section of the report.

Closed-Loop Frequency Effects

The effect on control requirements of variations in closed-loop frequency will
now be considered for six-control cases. As in the previous section, the results are
for the CMG and RCS locations of table III.

Figure 9 shows the effect on control requirements of changes in the rigid-body
frequency for various combinations of initial disturbances in the rigid-body modes.
The results of figure 9 are for a rigid-body damping ratio of 0.9, since this value
results in nearly minimum total momentum and impulse (fig. 7).

Figure 9 shows that the total momentum and impulse are linear functions of the
rigid-body frequency for the combinations of initial disturbances shown. The peak
values of torque and force are functions of the initial disturbances and the term
ué, which is included in the position feedback gain (eq. (B6)). As was the case with
closed-loop damping ratio, the maximum control inputs of figure 9 can be determined
from the feedback gain matrices of table III. For example, the peak force due to a
rigid-body command in pitch (® = 0.01 rad) for Wy = 0.1 rad/sec comes from element
F4’1 of the feedback matrix of table III and is given by

fhax = (-223)(0.01) = -2,23 1b

The corresponding peak force for md = 0.2 rad/sec would be

(-2.23)(0.2)2/(0.1)2 = -8.92 1b
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as is shown in fiqure 9(b). Peak control inputs for other combinations of rigid-body
disturbances and frequencies can be calculated in a similar manner.

The rigid-body control requirements can be reduced by lowering the closed-loop
frequency, but the time to damp an initial disturbance increases substantially, as
shown in fiqure 10, Given is the time to damp an initial disturbance to 1 percent
for Cd = 0.9, The results shown are from time history computations but can be
approximated for any closed-loop dynamics by the equation given in fiqure 10.

All previously presented results have been for the case where the flexible modes
have been allowed to vibrate at their natural frequencies (w, = wn). The effect on
control requirements of changes in the flexible-mode closed-loop frequency will now
be presented. Figure 11 gives results obtained when the three flexible-mode frequen-
cies were either increased or decreased by a certain percentage of their natural
frequency. (The w, = Wy data correspond to previously given results for the con-
troller arrangement of table III.)

Figure 11(a) shows total momentum and peak torque as a function of Wy for
various damping ratios for the six-torque case. As shown, the sensitivity to changes
in vibration frequency (from wn) increases as the damping ratio is reduced. In
general, the lowest control requirements occur at Wy = Wpye However, for damping
ratios of 0.6 or greater, increases in the closed-loop frequency above Wy, lead to
some reduction in total momentum with little increase in peak torque.

Figure 11(b) shows results of changes in the closed-loop vibration frequencies
for the six-force case. The total impulse and peak force data of fiqure 11(b) follow
similar trends to the previously discussed case using CMG controllers.

Figure 12 shows the effect on control requirements of setting all three
flexible-mode frequencies at the same value. It is interesting to note that the
minimum RCS control requirements occur approximately at the value for the lowest
flexible-mode natural frequency. This is also true for the peak torgque requirement
of the CMG actuators. The trend of decreasing total momentum and impulse with
decreasing damping ratio (figs. 8 and 11) is reversed in figure 12, That is, greater
damping in the flexible modes generally gives lower momentum and impulse require-
ments. Also, for certain cases, the momentum and impulse requirements are competi-
tive with those for which the vibration modes were left at their natural frequencies.
For example, table VII compares CMG and RCS cases for which the vibration frequencies
were all set at 1 rad/sec with a similar case for which the natural vibration mode
frequencies were unchanged. For the RCS case of table VII with Cd = 0.6, the total
impulse is actually lower for w3 = 1 rad/sec than for w3 = w,.

The previous discussions have considered rigid-body and flexible modes individu-
ally by varying their closed-loop dynamics (Cd, wd) and perturbing only the modes
under consideration. What effect do the closed-loop dynamics of the unperturbed
modes have on control requirements? For the idealized (perfect knowledge of antenna
dynamics, no residual modes, perfect feedback measurements, etc.) results shown in
the analysis, the unperturbed mode dynamics have no effect on control requirements,

~since the decoupling procedure does not disturb these modes.

Effect of Additional Modes on Control Requirements

Previously presented results have related to control of the rigid-body rotation
modes and the first three flexible modes. The effect on control requirements of
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including up to three additional flexible modes in the control law will now be con-
sidered. Results are limited to the case of CMG-type actuators located on the
antenna column.

Results are summarized in table VIII for control of from six to nine modes. The
desired closed-loop dynamics are given in the table, and results are shown for vari-
ous combinations of initial disturbances in the rigid-body and flexible modes. The
results of table VIII can be scaled to other initial conditions, as previously
described.

Case 1 of table VIII is the previously discussed six-control case and is given
for comparison. All other cases contain the CMG actuators for this case, plus addi-
tional actuators. Cases 2, 3, and 4 of table VIII give the minimum control require-
ments with respect to peak torgue and total momentum for seven, eight, and nine
controlled modes, respectively. (The F matrices and the nonzero portion of the
B matrices are given in table IX for these cases.) Cases 5 to 7 were the next best
controller arrangements found. (Replacing T 3 with T 4 9ave virtually the same
control requirements for the nine-control case as those of’'case 4 in table VIII.)
Other actuator arrangements either gave an uncontrollable condition, or else the
torque and momentum were orders of magnitude greater than those shown.

Consider case 2, the seven-control case, of table VIII as compared with the six-
control case. Although the rigid-body control requirements increase only slightly,
there is a large increase for initial disturbances in all flexible modes. (Note that
for cases 2 and 3, including initial disturbances in the first three flexible modes
only does not increase the control requirements substantially.) Case 3 of table VIII
shows that inclusion of the eighth mode results in only slight increase in control
requirements. However, the nine-mode case shows large increases in both rigid-body
and flexible-mode control requirements.

Various approaches can be used to reduce the control requirements given in
table VIII. The most obvious way is to reduce the damping in the flexible modes.
Another method, which introduces time delays (lag) into the feedback gain matrix,
will now be discussed.

Ef fects of Feedback Lag

An important characteristic of decoupled control is that columns of the feedback
(or feedforward) gain matrix can be altered without affecting the decoupling process.
The desired dynamics will be changed, but the system will still be decoupled. For
example, multiplying a column corresponding to a particular rate feedback by a con-
stant changes the desired damping ratio by that constant. (See eq. (B6).) Columns
of the gain matrix can also be multiplied by time-varying quantities without affect-
ing the decoupling. This approach was used to investigate the effect on control
requirements of introducing time lag into the feedback matrix.

Time histories of the standard six-torque case of table III with and without lag
are shown in figure 13. Figure 13(a) is for rigid-body disturbances with
T = 20 sec, and figure 13(b) is for flexible-mode disturbances with < = 10 sec. lag
was introduced by multiplying the F matrix of table III by the quantity
(1 - et 7). The overall effect is that the closed-loop damping ratios increase from
their natural values to 0.9, and the rigid-body frequencies rise from zero to
0.1 rad/sec as time increases. Note that, for both rigid-body and flexible distur-
bances, the peak torque and total momentum are reduced for the lagged cases of fig-
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ure 13. The reduced control requirements do, however, result in an increased time to
damp, as illustrated in the time histories in fiqure 13(b) and as shown in the fol-
lowing discussion.

Figure 14 shows the effect on control requirements of various lag times for the
six-torque case of table III. Figure 14(a) gives results for rigid-body distur-
bances. Note that reductions in momentum and peak torque can be achieved with little
increase in the time required to damp the initial disturbance.

Figure 14(b) gives results for disturbances in the flexible modes with the time-
to-damp curve corresponding to the first flexible mode. As previously shown in fig-
ure 8(b), momentum and peak torque can also be lowered by reducing the closed-loop
damping ratio in the flexible modes. For comparison purposes between reduced damping
ratio and lag, suppose that it is desired to damp the first flexible mode to 1 per-
cent in 20 sec. From fiqure 8(a), this would require {, = 0.3 and would result in
a momentum and peak torque of 2640 ft-lb-sec and 154 ft-1lb, respectively. Fig-
ure 14(b) shows that T = 22.5 sec would damp the mode in 20 sec and would result in
momentum of 2480 ft-lb-sec and peak torque of 96 ft-1lb. Thus, for this example, 1lag
is more effective than reduced damping ratio.

Table X gives results for the eight-control case (case 3, table VIII) using lag,
reduced flexible-mode damping, and combined lag and reduced damping. As shown in
table X, significant reductions in control requirements are achieved, with the best
result occurring in the case of reduced damping combined with lage For this case,
the 10-sec time constant increased the time to damp A1 (to 1 percent) from 10 to
about 18 sec.

Comparisons of Decoupled and Linear Quadratic Regulator Results

Control requirement comparisons are given in table XI for cases using the linear
quadratic requlator (LQR) and decoupled approaches. The results shown are for three-
axis CMG controllers at positions 1 and 2 on the antenna column. The procedure used
for the LQOR cases was to adjust the state variable weightings in the minimization
function (diagonal of ©Q in eq. (11)) such that several sets of desired closed-loop
dynamics were obtained. (The identity matrix was used for P.) The resultant damp-
ing ratios and undamped frequencies (Cqg and wy) were then used as inputs to the
decoupling program to calculate the decoupled gains. Thus, the closed-loop dynamics
shown in table XI were identical for the LOR and decoupled comparison cases.

For all cases shown in table XI, the rigid-body modes have frequencies of about
0.1 rad/sec and damping ratios of about 0.9. The flexible-mode frequencies are near
their natural values with damping ratios of about 0.9, 0.5, and 0.1 for cases 1, 2,
and 3, respectively. The weightings (Q) required to obtain the dynamics shown in
table XI, the associated LQOR gains (K), and the decoupled feedback gains (F) are

given in table XII. The B matrix is the same as that for the CMG case of
table III.

Consider the cases shown in table XI with rigid-body disturbances. The total
momentum results are comparable for the LQOR and decoupled approaches, but the peak
torques are lower for the LQR cases. For flexible disturbances, the peak torques are
about the same, with the momentum being somewhat smaller for the LQR cases. Compari-
sons are also given in table XI for combined rigid-body and flexible disturbances.
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Although the results of table XI tend to favor the LQOR approach with respect to
control requirements, the decoupled approach has advantages in other areas. For
example, the decoupled feedback gains are computed in closed form and yield the exact
desired closed-loop dynamics, but the LQR approach requires an iterative solution to
obtain approximate desired closed-loop dynamics. Also, the decoupled gains give a
known transient and steady-state response, whereas only the steady-state response is
known by use of the LOR method. This is illustrated in figure 15 for case 2 of
table XI. Shown are position, torque, and momentum responses for both rigid-body
(fig. 15(a)) and flexible-mode (fig. 15(b)) disturbances. Note the transient excur-
sions in the flexible-mode amplitudes in fiqure 15(a) and in the rigid-body attitude
angles in figqure 15(b) for the LQR cases.

The preceding comparisons are not intended to favor the LQR or the decoupled
approach, since either method could be made superior for a given set of closed-loop
dynamics. For example, lag could be introduced into the decoupled feedback gain
matrix to produce reduced control requirements. The LQR results could also be
improved with time-varying gains or by a judicious choice of weightings (P) on the
control variables of equation (11). The results are only intended to show that for
the conditions of table XI, the decoupled results are competitive with the LOR
results. FPurther study of the two methods is warranted for the effects of spillover
when residual modes are included in the analysis. Also, the two methods should be
compared for the more practical situation where observers are incorporated into the
control law design to estimate the required state variables.

Control of Rigid-Body Translation

Previously presented results have neglected the translation of the antenna cen-
ter of gravity. This is adequate for anqular-momentum-type (CMG) controllers but not
for thruster (RCS) controllers. Results which include center-of-gravity translation
effects will now be presented. The results are not intended as representative of
control requirements for orbit changes, since more efficient methods exist for these
maneuvers.

Translation modes (eqg. (2)) were included by assuming that a three-axis RCS
controller was located on the antenna column at the center of gravity such that it
introduced no rotations. Since no modal data were available at this location, the
data of table I at position 4 (near the c.g.) were used to approximate the effect of
the flexible modes on the control requirements. Two controller arrangements were
considered. In one case, three-axis RCS actuators were located at the c.g. and at
positions 5 and 6. This was done for comparison with the standard six-mode RCS
results previously presented. The second case used the c.g. thrusters along with
three-axis CMG's at positions 1 and 2 for comparison with the previously given six-
mode CMG results. In both cases, the modes controlled are the three translation,
three rotation, and first three vibration modes. The nonzero rows (last 9) of the
B matrix, the F matrix, and the associated state vector are given in table XIIT
for each of the cases considered.

Results for the previously described controller arrangements are given in
table XIV for various combinations of rotation, translation, and flexible-mode
initial conditions. Cases 1 and 2 of table XIV should be compared with cases 1 and 2
of table V to see the effects of adding c.g. control. Note that CMG control require-
ments are the same for cases 1 and 2 of tables XIV and V, since momentum devices do
not cause translations of the antenna c.g. Cases 3 through 6 of table XIV show the
effects of rigid-body translation commands. The arrangement which includes the six
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CMG controllers provides the lowest RCS control requirements; however, some CMG con-
trol is required to maintain undisturbed vibrations.

The results of table XIV can be scaled to other initial conditions, as previ-
ously described. Also, the results (cases 3 to 6) can be scaled to other
translation-mode closed-loop frequencies, as was the case with rotation modes. That
is, the impulse and momentum are nearly linear functions of Wy and the peak forces
and torques are functions of wib.

CONCLUDING REMARKS

A study has been conducted of the feasibility of employing decoupling procedures
to control a large flexible space antenna. Control involved commanding changes in
the rigid-body modes or nulling initial disturbances in the flexible modes. The
study was intended to provide preliminary engineering-type data, in parametric form,
which would be useful in the final design of large space antenna control systems.

The data illustrate the effect on control requirements of the number of modes con-
trolled; of the number, type, and location of control actuators; and of variations in
the closed-loop dynamics (frequency and damping ratio) of the control system. A
brief analysis was also included which compared decoupled-control results with those
obtained by using a linear quadratic regulator (LQR) approach. Observation based on
the study indicates the following:

1. The location of controllers has a large effect on control requirements. For
the limited amount of modal slope data, the best locations for two three-axis
control-moment gyros (CMG's) were at the top and bottom of the column. When
reaction-control-system (RCS) controllers were used, the lowest control requirements
were obtained with the RCS units on the hoop. The optimum separation angle for two
three-axis RCS units on the hoop was about 120° to 150°.

2. To minimize control requirements with respect to the selection of closed-loop
damping ratio, large values (0.9 or greater) should be used for the rigid-body rota-
tion modes, whereas the flexible modes should be damped as lightly as is practical.
The lower limit on flexible-mode damping would be determined by mission requirements
regarding the time to damp initial disturbances.

3. With regard to selecting the closed-loop frequency, rigid-body control
requirements can be reduced by lowering the frequency; however, the time to damp an
initial disturbance increases substantially. For vibration control, maintaining the
closed-loop flexible-mode frequencies at their natural frequencies generally results
in the lowest control requirements.

4. Increasing the number of flexible modes to be controlled (and the number of
actuators) led to an increase in the control requirements. The increase was dramatic
when the sixth flexible mode (nine controllers required) was added to the control
law.

5. When a three-axis RCS controller was added at the center of gravity to con-
‘trol rigid-body translations, the arrangement which included six CMG controllers pro-
vided the lowest RCS control requirements. However, some CMG control was required to
maintain undisturbed vibrations.

6. Incorporating lag into the feedback gains was an effective method of reducing
control requirements without adversely affecting the decoupled performance. The
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addition of lag gives an effect similar to that of lowering the closed-loop damping
ratios.

7. For the present idealized cases, the decoupled-control results were compara-
ble with LOR results with respect to control requirements. Further study of the two
methods is warranted for the effects of spillover when residual modes are included in
the analysis. Also, the two methods should be compared for the more practical situa-
tion where observers are incorporated into the control law design to estimate the
required state variables.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 14, 1984

18




APPENDIX A

CONTROLLER ARRANGEMENT EXAMPLES

Controllers used in the analysis were either control-moment gyros (CMG's) or
reaction-control-system (RCS) thrusters. The controllers were assumed to be perfect,
in that no actuator dynamics were included in the analysis. They were used in a
three-axis arrangement at points on the antenna such that control torques or forces
were about the x-, y-, and z-directions as defined in fiqure 1. The manner in which
the controllers were incorporated into the equations of motion is described below,

Consider the case of a three-axis RCS device located on the antenna column or
hoop. The rigid-body rotation equations are given by

a=1 Lﬂf (a1)

where ao = [0, ¢, ¢]T and
(1 0 -1
x XZ
I-= 0 I 0
Yy
LTIxz 0 Iz._

For forces on the column at a distance A& above the center of gravity (fig. 1),

0 -2 0
L =]2 0 0 (A2)
| O 0 0
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For forces at an angle & on the hoop (fig. 1),

B 0 L r sin & 7
z
L = —Rz 0 -r cos & (A3)
-r sin 8 r cos & 0]
— -

For the case of a three-axis CMG controller on the column, the rotation equations are
given by

a=14"T (A4)

If more than three controllers are used, the control vector dimension increases,
and the L and I matrices must be adjusted to be compatible with the controller
arrangements, as shown in the following examples:

Consider the case of two three-axis RCS controllers located at positions 5
(6 = 0°) and 6 (& = 90°) on the antenna hoop. The rigid-body rotation equations are
given by

0 kz 0 0 XZ r
. _—1 -
a =1 -2 0 -r ~-L 0 o|f (A5)
A z
| O r 0 -r 0 0]
- T
h = [f « The first three vibration modes
w ere' f [ 5 fy,5' fz,S' fx,6' fy,6’ fz,6] e fir
are given by
e ) r ~N (, —1
N 2 (1) (1) (1) (1) (1) (1)
A
1 20 1%, 1P 902 | |0y, L L L %6 %, 6)/™
" . 2 (2) (2)) =
A M= -<2 > . . . . m, |f
B “n 2%, 2% 2R (¢x,5 *2.6)] ™
. (3) (3))/
y 2 ¢ . . . . ¢ m
A 2 A + z,6 3
3 2%h, 3%, 3™ “n,3%3 \ %5 g

(A6)

20




APPENDIX A
The superscripts on the mode shapes refer to the mode number, and the values are
given in table I. For example ¢(2). = 0.2294 ana ¢3) = -0.4889. (Note that

each element of the mode shape matrix is divided by the éppropriate modal mass.)

Now consider three-axis CMG controllers at positions 1 and 2 on the column. The
rotation equations are given by

a=|I |1 T (a7)

- T . . .
where T = [Tx,1' Ty,1' Tz,1' Tx,2' Ty,2' Tz,é] . The vibration equations would be

the same as equations (A6) with f replaced by T and the mode shape matrix ¢
replaced by the mode slope matrix ¢'. The elements of ¢' come from table I at

locations 1 and 2. For example, (1) 0.2253 x 10—3.
X, 1

21



APPENDIX B
EXAMPLES OF DECOUPLING PROCEDURE

Decoupled gain matrix calculations are given below for the two most extensively
studied actuator arrangements of the analysis. The first example uses two three-axis
RCS controllers (six controls) located at positions 5 and 6 on the antenna hoop
(fig. 1), and the second uses three-axis CMG controllers at positions 1 and 2 on the
column. In each case, the controlled modes are the three rigid-body rotations and
the first three flexible modes. Extensions to other actuator arrangements and to
other controlled modes are straightforward.

Consider the RCS controller case of appendix A. Fquations (A5) and (A6) can be
written in state-vector notation as

0 I 0
6X6 66 6X6
: - -
= — o - | - e - " £ = % £
X9 9% | X o1 + R3x6 f6><1 Ax + Bf (B1)
“hex 1 “Pexe |12x12 ®ix6  |12x6

where the subscripts indicate the dimensions of the various elements, and

. . . L) . T
= [ér (br ‘l’l A1I A2I A3I er ¢I ‘lh A1, A2I A;'

L]

0 null matrix
I identity matrix

. 2 2 2
A = diagl0, 0, O

g( R T R T wn,3)

D = di o, 0, 0, 2

29(0n 0 0 20y 4@y qr 2y 50 o0 Ky 30y 3)

-1
R matrix obtained from equation (A5) by multiplying I by the 3 X 6 lever
arm matrix

® mode shape matrix of equations (A6)
£ defined in equation (A5)

The output quantities to be decoupled are the first six elements of x. The
decoupling procedure of reference 9 involves the time differentiation of the output
variables until control quantities appear explicitly in the expression for y. The
associated command v is then defined to give the desired transfer function between
v and y and to permit solving for the control law in the form of equation (7) of
the section on decoupled control.
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Consider 0, the first variable to be decoupled:

;1 = (Row 7 of B)f (B2)

We now add the desired second-order dynamics (w Y Cd 9) to both sides of equa-
tion (B2) and define this to be the command in pltch angle as follows:

- . 2 2 2
vg * 2Cd,6wb,ey9 + wd'eye = 2cd 9 d 99 + W3 ee + (Row 7 of B)f =W ¢} (B3)

Note that we are commanding a second-order response in pitch angle and that the
command must be scaled to the desired frequency. Performing the above operations on
the entire output vector gives

R |
---| £ X D " = v B4
i f6x1 ¥ A6x6 ! Pexe Xq2x1 Ad6x6v6><1 (B4)
6%6 | 6%12
where A = g 2 2 2 2 2 2
a T 9ragivy ' Yg, 0" “a, ¢’ md,A1' “d,Az' a A,
A=Ag-A

R

o
1]

i LI ] _D
dlag<2cd,e“h,e’ ’ 2Cd,A3wd,A3>

If the inverse of the control influence matrix [:— - —:} of equation (B4) exists,

then the equation can be solved for the controls in the following form:

f = F X + G v (BS)
6x1 6X12 12x1 6%6 6X1
where
-1
R N
N PO B6
Fex12 5 [} l é}6X12 (B6)
6X%6
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and

R
G, .=|---| & (B7)
66 [ o ] d e

6X6

The elements of R and © are as defined in equations (A5) and (A6), respec-
tively, of appendix A. For example, from tables I and II and figqure 1,
R(1,2) = 4 = 677 in., and &(2,1) = ¢S2) /m, = 0.2294/153.157. Note that the
1

R
[} - ;] matrix of equation (B6) is composed of only the nonzero rows of the B
o

matrix of equation (B1). For the CMG controller case, the R matrix is replaced by
the inertia matrix of equation (A7), and the mode shape matrix is replaced by the
mode slope matrix, as explained in appendix A.

The B, F, and G nmatrices are given in table III for the previously discussed
RCS and CMG cases. For these cases, the desired rigid-body frequencies (e.q., Wa 9)
were set at 0.1 rad/sec, and the desired flexible-mode frequencies were taken to be
the natural vibration frequencies of table II (e.q., wd,A1 = wn'1). The desired
damping ratio for all modes was 0.9. The gain matrices of table III and of similar
tables in the report are for the inch, pound, second system of units.
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1.
1.

TABLE II.- ANTENNA CHARACTERISTICS

9577 x 10'0 1p-in2; I, = 1.9566 x 109 1b-in?;
499 x 10'0 1p-in2; 1 , = 0.8357 x 108 1b-in?;
w =10 020:3 1b

Mode w,, rad/sec T,, sec Ch mo, lb—secz/in
1 0.7466 8.42 0.01 153.157

2 1.346 4.67 .01 5.233

3 1.7025 3.69 .01 3.073

4 3.1813 1.98 .01 .3046

5 4,5294 1.39 .02 1.993

6 5.5905 1.12 .02 723.522
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TABLE IV.-

ANTENNA RESPONSE TO STEP INPUTS

[1-in-1b torque or 1-1b force]

For ¢ = ¢' = 1 Ag, in.
Mode A . : i . For |¢ | For ld)' |
in. 1N. m/sec
sr 0 Pnax max’ / on hoggx on collfn
1 0.0117 0.023 0.0086 0.0117 0.21 x 10‘2
2 .1054 .208 .140 .0573 .20 x 1073
3 1123 221 .188 .0549 21 x 1073
4 .3244 .639 1.016 .0236 15 x 1073
5 .0245 .048 .109 .0030 IR 1073
6 .0044 x 10°2[ .087 x 1073 | .243 x 1073 | .0044 x 107 .43 x 10

TABLE V.- INITIAL-CONDITION EFFECTS ON CONTROL REQUIREMENTS

wrb

0.1 rad/sec;

w
flex

=w]

n

Initial conditions Control requirements
. . ) Three-axis RCS at positions|Three-axis CMG at positions
Case[Rigld-body, rad|Flexible, in. 5 and 6 on hoop (fig. 1) 1 and 2 on column (fig. 1)
0 A A A £ 1b Impulse, T ft-1b Momentum,
o ¢ 1 2173 | maxl' lb-sec ' maxl' ft-1b-sec
1 0.01}0.01{0.01 o] 0 5.3 125 390 9 217
2 o] o] 0 1 1 1 74 653 278 3 878
3 011 .01 .01 1 76 766 621 10 339
4 0110 0 0 0 0 2,2 84 389 3 250
5 0 .01{0 0 0 0 3.0 34 390 3 340
6 0 0 .01 0 0 0] .8 22 324 2 578
7 0 0 0 1 0 0 82 697 278 2 140
8 0 0 0 0 1 0 17 42 265 1 003
9 0 0 0 0 0 1 16 91 251 761
10 {-.01 «01]-.01 0 0 0 3.0 92 390 9 217
11 |0 0 0 -1 1 1 93 745 280 3 555
12 |-.01}-.01}-.01 0 0 0 5.3 125 390 9 217
13 |0 0 0 -1 |-1]- 93 829 278 3 878
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TABLE VI.- CONTROL REQUIREMENTS FOR CMG LOCATIONS ON COLUMN

= 0. ; = . : =
[Cd 9 C 0.1 rad/sec W1 oy wn]
Actuator Initial conditions Control requirements
locations !T | M
(fig. 1) Rigid-bod rad Flexible, in. xir !
g J Y ! f%elb ft-lb-sec
1, 2 0.01 0 390 9 217
1, 3 .01 0 581 13 281
1, 4 .01 0 825 17 128
1, 2 0 1 278 3 878
1, 3 0 1 495 5 102
1, 4 0 1 702 6 507
TABLE VII.- FLEXIBLE-MODE CONTROL REQUIREMENTS FOR
= 1 rad/sec AND =
wd /s md wn
Table III controller arrangements; . = 0.6;
. . . a
Initial disturbances = 1 in.
Parameter wy = 1 rad/sec Wy = Wy
| Tpax!s £t=1b eeveeen.. 318 233
Momentum, ft-lb-sec ... 3780 3000
£ axls 10 eevenvianan 108 65
Impulse, 1b-seC .ceeoee 521 535




TABLE VIII.- EFFECT OF ADDITIONAL MODES ON CONTROL REQUIREMENTS

w = 0.1 rad/sec;

=w;

= 0.9

[?ontrollers 1 through 6 are three-axis CMG's at positions 1 and 2 (fig. 1)1

rb

w
flex n d

Controller Initial conditions Control requirements
Case Modes c sg Flexible, in.

controlled | 7 o o Rigid-body, ' |Tmax|’ Momentum,

rad ft-1b ft-1b-sec
A1—A3 A4 AS AG

1 6 0.01 0 390 9 217
0 1 278 3 878
2 7 Tz 3 0.01 [¢] 390 10 341
! 0 1 0 278 4 311
0 1 2 917 8 379
3 8 TX'3 'I‘z’3 0.01 0 0 0 330 10 342
0 1 0 [¢] 265 4 199
0 1 1 0 2 917 8 267
0 1 1 1 2 917 8 539
4 9 TX,3 Tz,3 Tz,4 0.01 0 0 0 o] 28 313 467 869
0 1 4] 0 0 23 268 165 298
0 1 1 0 0 50 551 181 456
0 1 1 1 0 50 513 181 689
0 1 1 |1 |1 [1.503 x 108 |1.515 x 108
5 7 Tz 4 0.01 0 0 390 11 218
! 0 1 1 3 791 10 068
6 8 TK'3 Tz,4 0.01 0 0 0 390 11 218
0 1 1 1 3 791 10 068
7 8 Tz'3 TZ’4 0.01 0 0 0 390 10 342
0 1 1 1 2 918 8 546
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TABLE X.-~ EFFECT OF LAG AND REDUCED DAMPING ON CONTROL REQUIREMENTS
FOR EIGHT-CONTROL CASE

[wrb = 0.1 rad/sec; Wgyo, = Wi Crb = 0.9]

Initial conditions Control requirements
g
Rigid-body, Flexible, dflex T, S€C |Tmax|' Momentum,
rad in. ft-1b ft-1lb-sec
0.01 0 0.9 0 390 10 342
30 80 8 151
0 1 0.9 0 2917 8 539
10 722 5 221
0 1 (a) 0 930 4 975
(a) 10 270 4 214
a
Mode Cd
1 0.62
2 .34
3 27
4 .14
5 .10
t; = 10 sec for all modes for 1 = O.

37



LOL® GZoL*L J90t" gbe° L 660° SovL® L06° €Lt 006° Lt vo6° 860° €
(Ao ooL*L | LLS® she“ L c0s* 13°) A L06° L’ 006° (AN voe° 860 [4
L68°0 189°L [868°0 Zve* i $88°0 Z8vL°0 [106°0 ZLL*o 006°0 cLL*o £06°0 660°0 8
oas/peax oo9s/pea oas/pea oas/pex oss/pea oes/pex
U \3 U ns n3 U s3 U \3 u \3
esed
ty Cy by ¢ ¢ ]
9PONH
so13sTa93oraRYD dOOT-pPasold (q)
oL ol v8v 966 6 0Le l 0k
8LE C <9 eGeE L €9 L 0
098 6 S8Y 9L6 6 L9 0 L0°0 €
09S 0Ol 6€S 25t ot oLe l Lo*
068 ¢ 2ic 0ov ¢ 0ic L 0]
9.8 6 agd SP6 6 L8¢ 0 10°0 4
¢s9 ot vio ¢vs ol (445 L (10
068 € 8LC €EvS € 9LT l 0
olL6 6 887 968 6 (434 0] L0*0 t
095-q1-33 | qI-33 | oes-qr-33 | qr-33 ‘ut pex
/WN3UDUOK ._meE_ /WUN3USUOKW ~_me.H_ ‘91qTxaTd | ‘Apog-p1b1u
aseD
pet1dnoosg a1
SUOTITPUOD TETITUI

sjuswaatnbaax [oazuo)

s3Insa1 ¥0T pue paldnoossd (e)

(1

*b13) uwnioo euusjue
uc g pue | suot3isod 3I® SII[TO0AJUOD HWD STXe-331YJ

SLINSTI YOT ANY ad1dN00dd JO NOSIYVAWOD -°IX FTdVL

38




39

3 4 . 4 . 4 3 . 4 . 4 4 I 4 . 4 . 4 . mm.ﬂ
Amo_ x ¥T°0 mop x €¥°0 mo, x GZL'0 mFoP x €6°0 ¢_o_ x 2°0 v_o. x T°0 ‘L ‘L "1 Fror x L*0 Npop x T*°0 mpof x ¢°0)betp
1n+3066nG6H" = 0 €ne3cdgysle= LO0+3IRAL20%°~
*0 G0e3999141°=- 20036E£8862°~ ‘0 F0+35929.8° 90+3c12%12°~ *0 vG*3pL29glc-
) *n E0+3.10%09°- *0 °0
—_— ....,x.,lg.ﬂddam"ll’f l..;x,',,..,o .O NOOM.H\,Qhosmo *n oo OQ#MMONDO,”.' *Q
o i ) E0+3.0€60S" *0 Fee+3SYENOT" 50+3BTTygT*~
T T %0 LU*39EGESS*~ £0+3RGI0TH- *0 20+3926621°= H0+3HGTTTIT1°~- *C 90+3ISTLEHE®*~
o T ) €043719R04G" = °0 Gne30EDROT® L0+39662TE°~
T T 0 9U*3%ZESST%- E0+430E£.622°%- ‘0 ED0+39.240L° 90+302€261° = *0 w0*318%2/8°~
B ) *n Y0+3ECEEHS” *0 *0
) L0¥382E0VBH°*= °0 *n E0+3997REH° *n *0 Gn+3TETpL2*- °0
H0+36hb) 0" *0 £n+3F606TA*~ 90+IHLELOHT®
*0 L0+3%E098%°~ E0e3IEHSSOL - "0 €0+3688,62°=- Y0+3I904T0L° *) 90+31.L6GRZ"~
erwM
20+3EB6H6vTL" "0 G0+30€EGgGIIT - LO+IAIH0LFhg)*~ * 0 G0+33138LG661°
10+32009g2 1*=""" "7 ‘0 20+3€TLl2n002°~ 90+3G261618%°~ °n +0+3H690H,0T1"
*0 “50+39994$8L65° = *0 °0 L0+310902246°~ ‘0
ey T 2n*318T196GE” *0 °0 90+361862GRG "~ ‘0
. P T A4 LT RS 2 MG | 90*I22G/ESHT" G0+30NG9LGET® *0 10+32E2E867228°~
TEB+IEYSIHIOTTS T T T T T 10+36%€£/5092° $I+3IBTERGTI2T" N G0+3TEBLYTISY -
“Z0FTEEBREYILY T T T *0 7~ G0*3IDETEGTIT® SNeALATLLIHG?"® 0 Gn+3TASOPTAT®
T0+3200%g2L1 0 Z0FIETLZ0002” ¥0+3950€728G7" °0 v0+3LTEEBYOT
- T *0 H9+3999%8165° 7 0 7 0 *0 9N+3182488.1g" = .o
: B | B FOLELT1 0 6 13 T-Ak D - g ' CNe3/RG6HING" - .o
HOIEYOHRTHS =~ T T Ty HO+I22G,RGYT = GN+36G6FH0H" °n 90+3550%9CER "~
E0+3GYSTEIOT* T T g “T0+365E, 9092 HreJOTE2ERHT® "0 GN+A0LTE565Y" -
N—xwm

IX oTqe3 3O | @sed (®)

SNOSTYVAWOD d¥OT ANV Qd1dnoodad ¥od O aNY ‘X ‘g4 -°IIX HTdUL




Ol x Z*0)betp =

0

. 4 . ’ . '} . ] . [ . ] 4 ] i . 4 x -O 4
Hno_ x 90°0 mop x yL70 ‘0L x w0 ‘o 0L x 26°0 ‘' Ol x 7o ‘. 0L x geo ‘L L fLt oL X L*0 N,of 4 -
10+321929€"~ “0 2Zu+3dlb9gee*= LO+*3LET0RE"=
*0 G0+31z2v%21°= 200314 122"~ "0 €£0+3596615° oN+Izes5goz - *0  %0+3925821°~
*n  EN+300G2%E°- *0 °0
L003909EHG" = - *0 *n €0+302.61E° *n "0 g90+3210F€%- 0
€0+39€,1x2° *0  20+38%1e00° GO0+3TThoel"~
*0 L0+366%GEG*- E0e3I9GEHE2°- ) 00+3019g1h° €0+39T€126°~ 0 90+3T»S2gE°~
) T EN+IhHGH2E" = "0 4n+215T610° 10¢36T122€°-
ST T T T ') T Q0+3heHT1T1%- £0+329€09T°- 0 E0+IRATqHY" G0+3AGERGIT = *0  Y0+3IILLESY -
o R *n Y0+36G8€aE° 0 *0
- [U+32LBEEY = T T T Ty ED+dv04R62° ) *0 9ne3LLlEgR2C- *0
- B HN+3296692°%- *0 Ened?G3gl€°= 30+3906G0T°
S e ST U+ 916969 C0#36RTLTZ- *N E0+IR0ERGT e PO+IELI6HG" *0 90+3v56BA2°"
o o CLlx9
bt
- O A4 TI A CLM M) $0¥36957TS29°< L0+30HhhgTHE %= * ¢N+3ISTHELHET®
00+367VIGHLIC"= 4 JUFIEGUEHITT™ T 9OFIITIAETYSTST T T T ey T CRGEIIVGSTHOTT T
T [4) HFO+ILT(GgZBEE =" ~ A ¢ N I 0 : L[0+3J602690+5%= : ) g
T *0 To#3slEge9Egs T T rC : *0 Sr+3.1020€63"- R
“90+3280608%2T T T T T %0 €O+ITYEZ DTG SC+3RHTAGG6T" : *0 J0+TDEELIGATE =
20+3992g9HET =" "0 10+439214]812°~ »N+30R00ET2T" *0 G0+32N0609H4 "=
2043295,810%°~ - *0 $0+3696,1525° GN+3TTL0640G0" "0 ¢0+35418TN6T"
00+36YTGRITCT — TN T T Z0¥3IEG06RIGT H0+360698L6T1° *n $0+352T99¢€0T°
0 © Hp+3JEHYTQZBEE" "9 ‘0 J0+3442059TR" - *0
‘0 10+36TE96JEB" = " *C G0+3ET»50904" = *0
»0+3280g0842°~ T Tt €0+3TTE7,. 918"~ GI+3EG6nTNY>" ') 9N+3IL229ETER" ~
20+3992g99€T" *0 10+3%2T+,812° #Te36E2068Y " "o GN+322650856"
X
cl wm

IX @1qe3 3O ¢

panuT3uoD

esed (q)

-*IIX JTdVL

40




. * - 4 . 4 . 4 - 4 Y 4 4 4 4 . [ ) 4 3
Aoo, x ¥E€°0 wo_ x L*0 hop x 91°0 m_op x T6°0 qPoP x 2°0 v_or x 20 ‘L ‘L fLt oL xL 0 ‘', 0L x ¢eo ‘0L x 2 0)betp
— e Toeaiayadl®=" " 7 *0 2pe36G0Talt
*0 %09309T90E°~ T1003.106.9°- 0 20+42L096436° 90+ 3626061~ *0
‘o 20+3E2€HG9°~ *0
10+36L49LT16°%~ ‘o0 *n 20+3¥TLEEY" ‘o "0 Qe+dlionPEr-
20+3EET25G" 0 [p+ilLlngo*
*0 10¢3T12€6158°~ 20+390€89%°- 0 00+3T0Tgwy’ 2u+3,26298° - °0
20+3€9576L° - 0 bo+3ANTRB2TIT®
0 $0°3b9lE99°= 20031GEGLT - *t 20+7EbEFRE6° 90+355T€gT "= *0
. *n €0+3685R60° *0
10+¢3B65L05°= ‘0 *n 20+3666%29° ‘0 "0 9p+dRlgTiC*~
s €0+36.6025"- RARAAEAL LT A i
- coov e J0¥3G29/05%°- 20+3601196°- *0 2p+3T167p21"°= E0+30%9CER" *0
erwm
: 16+3962 966 T T *0 40+39064qETT"~ L0+320L1LE8°% ‘0
T0=35L5.2607 "0 To+35t214101° YT e36F 50858+ ° = ‘o
e 4| R o ¥ R CA TN -3 1 A T : *0 ) L0+391T1496666° -
T T "0 00+3TY9EILEEY T T *0 a0 53+36R906T8Y -
o €0+3BY6T088Y " B R N R [ P A=Y A A GO*3LEL9YS6T? *n
- LA 4T - TR T T ¥3E90geldET - v0+32202T1271° *0
< 1pe3962L968L= T T Uo7 $0+390649ETT? §0+329H0EH57" 0
T2 0=36L5 2809 M) Y0¥351ZtaT0T -~ y3+389¢69LGT" *0
e ey T g 31996l6%9Y T T T 0 ‘0 G0+30206051R°% =
g T U0 ITHREQLEE - *C ‘0 GN+30)9g1606% -
E0+368Y6T00EY = R "0 c€0+3f0locBYT~ GN+3E05.L0062° ‘ o
0ue3¥esigesd” T T *0 00+3E9Npo2ET* $0+3Te228a0 1" R
ZLlx9
|

IX o1qe3 3o £ 9sed (o)

pepniouod -°*IIX HTHVL

10+324516E" -
£0+3106649°=
*0
*0
v0+3066ECE"
90C+INEYETE =
LU+30EYTHE""
E£0+3095EHG"~
°0
*0
€(+320T6L1°
90+3.6L21€°=

Ghe322092H61°
HN+32LvG6501"
‘0
°0
10+30609697T8"%=
90+335263c494" =
o0+35LETL58T"
»0+332H80F0T7°
*0
"0
on+3A26L1E628" =
GO+T0EH23054" -

41



10+31964,999° =
€0+3L990081E°~
‘o
2l~344T71€98"°
00+30901G69L°~
‘0
10=-3950; 10€L"~
90+38S962L01°
*0
21-35UBgeLee”
20+36¢T19661"°
‘o
01-360699902°~
¥0+3.80£9€E91°
*0
01-38t19pL61°
#0+3969¢,901°
]
16-382L45502°~
€0+3%96£020€°

0
01=357%20861"
90+320EGG6EH T~
‘0
10-3980,10€L"°
¥0+39C620952°~
"0

10-300009G8E"
‘0
°0
00+36L%g0651°~
20-32L1959g1°~
20=3%9%0pv11°~
90-36910,%92°
*0

v0=3L69620L%"

AIX 371dYL 40 SHISVO TOULNOD *D°*D ¥d0d SHOIMLVW 4 dJdNY d

€. ,C

¥
o

10=~3524800%L°~
v0e3BYER6ELY =
‘o0
T0+362E€592% "~
LO=3%0L1%089°
‘o
00+326E1H6E] "~
v0+3L0£20828°
°0
0pe32TLgEETIT"
LO=3vEL09161°
"0
10+392€1€266°%=
S0~316BEY601° =
°n
10+355140296°
Go=3Tvego201°
‘o
10~326EHSE6E" ~
20+3898862L%"
‘0
10v3661902%6°
S0=-3E94£9201°
‘9
10+341090826°«
v0+340e2082€8° -
*o

"0
10~300009G8E"

‘o
€0-3LEvguvi6’~
19-3s12gcLEv -
20-3v8.L6E809°
L0=31%0gTs%L"

0

90~3L08G9EEL"

(L *bt3) 9 pue

¥ ~F< ‘D ‘o ‘g ‘2z ‘R ‘X
L ] [ ) L] [ ] L]

10¢3lwonpllae~
pO*IgeGoelic®
*u
01~30EEn ;6B
€0+3s086 L TIT°
0
10*389846%H2"
20+3265,6G61G° -
0
01=~369622162°~
90+3962,65LE"
*y
go0=32.Em6cl2"
90+32€G0€E o’
.y
§0=3609gquv02*~
%0+30G.6092

o
10¢3Toh0allz"
20+3900G25%1°~

ity

Ofledt6Grige?
0n+3LTwelgg2°-
O*ALECLNG T~
TJe3LL1FGC692°~
€l=39590G6,+°
1N=3ERCNG 24"
0L+369 ESHLA"
2038905960+~
20+32€6/.096c"
Cle3EREFELG) "
€1=30/92%€1"
Uuedeie90LRa®
che3lR6EZHLT®
T1=39151ReTT~
€N*3L2696L641°
cuedEigEE2gr -
11-396R 6607
20+322%6151a°
0 +3lhfpangyz*
20=3€626THTT~

*e 20+3A%LRRLLOT"
g0=30€%gov02° - 2.+ 3ELQFEZGT "~
$0*3ETa 90~ T1=-38G6e10011°

0 ZUu*39.12CL6,"
10+394€522G,°~ 2 +39E1G652HT
$0+3924621E0° 20=3840G9C0n"

Y ELedGEL2TTHr e~

8lx
mm
19~4000096R¢°*

*u Tv=300009Gac"

oy

. .g

*0
10-3000naSBE" *0
‘0

10=3L6€enlvy
90-3R1K565EE"
€0-31902c5%%"*
$0=3%.Ggn029*"
90=-3TLLTTEET -~

90=36qT0,%92°"

G1=39496620°~
2i=35.€09F681"~
UD*3ER®L6EDT ™
bRy
21=-366605%G0F ~
"0
U
*0
Hi=30y) )82 6"
)
*Q

mxmm

. C

vty b o g)

lu+3R499€1635°
20=30G6GT11w"-
£0e3661,L203"% =
bl=3c0mRler2"®
QQeINATQ6GF7° -
BO=2l%6yUBF°
20¢3wag 207" =
AR EVRI S VYRS
£0e3v0GE22RT®
01=306ar25,9°
20=3wf/1R629°
RO=32CR9T60 1"
80~36%8€02,6°~
00+306K2LGHG" =
LD=3GeE66L06° -
A0«3canalgeg”
Ous3ZnygEEza”
L0-35T1610,¢"
10+39¢9g 166G~
2N=3F40.C0Q12° =
EdeJonTLLia2”
HO=3EG669080G"
0re3orugltog”
Ly=4eonlel0sG"
20egnngy leg2"
00e39nARSGTS =
EGe3IN05E226 -

*0

‘0
10e360009GRE"®

lre352069%0E"

- . il

‘o

GheICubpveos”

10=30859%66L"

‘0

2l=374RGEENH
20=3F16029¢€1"
20~104E26266"

]

C=3601€8029°

‘0

‘0

*9
YL=ICUGNESET"

‘g 'y suoTaTsod 3e SISTTOAJIUOD SDU (®e)

X

20+3500[005€°~
np+319%24211°-
£0+330B08%602"
FO+358663/461"°
T1=30GRYEGRS " =
10+4336994023°
20+37€5%92¢,L"
nNedi2C9augT”
10+3(0FS3952° -
20436896295G°
11-3126656€1°-
€Ned434ELBH02 -
Fos3216€2521°
AD=352HCERTT"
FN+3L0v13622°
£0+3364E82¢4E" -
60=30GH9EFT1" ~
cns3R02L962° -
20+350F%2902° -
C0+3(9%2L211°
ON+3IHEHE506 " =
Ene3I6NEBILE" -
&£0=31909EcTT "=
Foe3b 12002~
€0+336F0T1gm%"
0Ge3i€061g18 "=
EnedEld56e2"

10=32000563¢°
16~320009G6a€"°

cooco

0
fT1e316T116149°% -
00+339960161°
10=35391v9gEe°
- ‘0
Z21+320186.92° -
°0

‘0

‘0
©wGe3TeLT1EET"~
‘e

‘0

=*IIIX dTdYL

42




10+4386%0899%°«

21-398240502°
‘0
S1-304L1600€°=

L0+30459500L°
L ]

0

20+3116g0L12°

g0e3LIGT v 1"
*0
*0

G0e35€L 6222°
*0

20+3116g0L12°

G0+3809ggH12°
*0

‘0
‘0
‘0
50+311Egs002°
‘0
90-3G619 LLE°~
L0-38%L)2L052°
*0

60-3.86g0011°

*0
*0
°0
10+38690899%°~
*0
‘0
*0
T1=3491,20€L°
‘0
20+3c6t168LL1"
*0
*0
*0
L0+38€226298°%~
‘o
v0+3580£8G522°~
‘0
*0
20+3c6le8LL1°-
‘0
‘0
)
90+310862TEL"~
‘o0
»0+3580¢8522°
*0
‘0

v0=-3v1l9gepglE"’
°0
‘0

10=3021g5961°

‘o

*0
*0
0
*0
11-322e¢181 L0
*0
10¢306%00999°~
*0
*0
*0
G0*309656961°
*0

»0*35189,€22°
*0
*0
*0
Lo+389680L28°"
0
"9
GO*39¥8GeECHT?®
*0
y0¢36189 €22°%
0
“0
LX)

90369€280%8°~
*0

m—xmm

0
‘0
°0
»0=3€15gg819°~
‘0
90-~324G02E24°*
60=-3.86¢£0011"
*0

L0=3.16,6L61°

mxmm

*0
00+30T9EE6G2"~
*0
E1-3E69TLT6F"~
*0
€1=369216E11"*
°0
91-3069.T.91°
°0
20+31G619L92,°
°0
90+3L1€0268c""
°0
10+3L1996021°=
°0
v0e32L221694°
0
£€0+3286£9016°
20431519192,
0
v0e35.02€921°
°0
1Me3.1985021°
*0
$0032L.2T699%
*0
40+369912611°

10-300009%8¢*
‘0
‘0
'0
*0
0
0
$0=3.9995.68°
20«35.¢£9€G01°%"
‘0
' 0
ELeITHogHLTT"
*0
L0=386,LL152°
0
0
0
60=-3L86£0011"*

00+30T9EE6G2° =
L ]
0
€1=396128829°~
‘0
2123924986504 °
‘0
00+305682886°
L[]
0
$0+329000109°%~
*0
90+366L90894°=
‘0
E0+385199521°%=
‘0
‘0
00+305982886°%«
‘0
%0+329000709°
‘0
S003.99.2904°%-
]
E0e+38G5T9%G21°
‘0

00+356%0%S2¢E"
*0
)

£0-3€001999¢°~

20-3€15929¢€T1’

L0-302185961"°
‘o0
0

€1=3501862,1°%=
‘0
21-30629686E°-
‘0
00¢3019€EQLG2°" =
*0
G0+3302L2€T1°~
*0
20+3.96T%601°
‘0
£0+399GTEH2T"
*0
50311619 01
‘0
90+3TLBEE65Y
g0e330242€11°
‘o
$0+308858901"°
'0
£0+399G1EN21 -
*0
5031161991 %=
*0
G0e3L2%2T196°%w

10-30000968¢ "
‘0
*0
£0-3065€9119°
00¢359960161°
"0
g0=3G52E21 01"’
°0
60=3LB6E00TT*

10=3L16LEL61°

(L *b13) ¢ uoTyTsod e SISTTOIFIUOD SOY pue g pue | suorizrsod 3e sAST[OAIUOD HWD (d)

papnTouod

—*IIIX dTIdVL

43



9*1 Le 4 9c* L°c 9c* ! 0 0 0 0 9
99l G*0lL < 9c* 6l 6G°* 0 L 0 0 0 S
€91 ¥°0lL 4 9z’ v°o 4 A 0 0 l 0 0 v
8c¢ s° 0t 9 ac* Lz £6° i 8 8 0 0 €
8.8¢ 8LC 0] 0 Ls8lt o9rL 0 0 0 L 0 Z
LiZ6 06¢ 0 0 Lel (AR 0 0 0 0 L0*0 l
Oo9s-qT1-33 | d1-31 o9s-qT Xeu 09s-q1 xeu
/N3 UDWOK ~_xmé&_ tostnduy | AT ~_ u_ tosTndug | AT ~_ m«_ 4 A X *uTt pex
‘BTqTX9Td | ‘uct3ieioy | ased
SIBTTOAJUOD DWD XTs pue SDY 88aylL SI9TTOA3UOD SDY SUIN | *utr “*beo
sjuauwaxtnbaa Toajuo)d SUOT3TPUCOD TeT3Tul
u X9 1
[ m = 3y {pes/pea |°Q = Rt {6°0 = @uu

III JT18YL J0 SASYD SOd ANV
DWDO OL TOULNOD NOILVTISNVIL ALIAVID-JAO-YHLNID ONIAAY J0 LOoIJJd

=*AIX HdTdVL

44




DISTANCE. in.

£y - 1183

£y - 2077

£ ks - 1087
Ly - 193

L I - 2406
*® [z - 677

Figure 1.- Antenna coordinates and actuator locations.
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Figure 2.- Unforced responses of natural vibration modes.
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