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CHAPTER I

INTRODUCTION

Composites are becoming more widely used as primary structural

materials, hence the concern for predicting reliability iso also increasing.

As fiber-reinforced composite materials make the transition from labora-

tory test coupons and non-critical components to major production items,

methods for predicting the fracture and strength characteristics are

necessarily drawing more attention. The question of attempting to under-

stand the nature of fracture and damage growth in laminated composites

can be approached in several different ways. One may analyze the laminate

as being composed of a homogeneous orthotropic material (or of homogeneous

orthotropic layers) and use numerical methods such as finite elements

to obtain results for the response of particular structures or even to

investigate local effects near geometric or load discontinuities. The

use of an equivalent homogeneous material and of numerical methods

to investigate local effects is not always satisfactory [i]. It is often

the multiphase nature of a composite that gives it its unique properties,

especially near the damaged regions. To replace the actual material

by an equivalent homogeneous material may well remove one of the most

important characteristics of the material.

Another approach is to use empirical models (descriptive models)

which generally do not account for the physics of the particular materials,

but contain parameters that are adjusted to gain results agreeing with

experiments. Such descriptive models have little use in understanding



damage growth and local effects, but can be valuable in developing

design guidelines for structural components.

By contrast, the present study is concerned with developing rela-

tively simple mathematical models that contain the important physical

and geometric properties of the composite (predictive models) such that

it is possible to investigate the fundamental behavior of a laminate

in terms of the various material properties of each lamina. One of

the main difficulties with such modeling is selecting significant

properties to have a model complete enough to be reasonably accurate.

At the same time it should be simple to solve. Zweben gives an excel-

lent discussion of this "materials modeling approach" in [2].

Some of the first work in modeling a unidirectional composite in

this manner was done by Hedgepeth [3], where no damage other than an

initial transverse notch was considered. The study was extended by

Hedgepeth and Van Dyke [4] for the special case of one broken fiber

with longitudinal splitting. The extension to more than one broken fiber

with longitudinal damage could not be developed conveniently by

influence functions as in [3] and [4] because the broken fiber adjacent

to the damage region was not typical of any of the remaining fibers.

Goree and Gross [5] used Fourier transforms to modify the solution to

account for an arbitrary number of broken fibers as well as for longi-

tudinal matrix damage to include both yielding and splitting initiating

at the notch tip between the last broken fiber and the first unbroken

fiber. Goree, Dharani and Jones [6] added constraint layers to the main

lamina to account for either a misalignment of fibers in a multi-ply

unidirectional laminate, or for the presence of angle plies which give
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support to the unidirectional ply. The constraint layer was taken as

being fully bonded to the unidirectional lamina at all times in the

above model.

The analysis presented here is an attempt to extend the above dis-

cussed model to include the effect of debonding between the notched

unidirectional lamina and the surface constraint plies. The laminate

is modeled as a two dimensional region of a unidirectional lamina

with symmetrically located surface constraint layers whose fibers make

an angle theta with the unidirectional ply, (Figure i).

In the vicinity of a notch in a laminate, the broken fibers exert

longitudinal shear stresses in the matrix which are transferred to the

nearest unbroken fibers. The shear-lag assumption [2, 7, 8] is used

for this shear transfer between fibers in the unidirectional lamina.

An equivalent expression is used for the corresponding effect of the

constraint layers. Since the shear transfer does not depend on the

transverse displacements, it uncouples the longitudinal and transverse

equilibrium equations. Hence, the longitudinal displacements can be

calculated without solving the transverse displacement equations.

The fibers support all of the longitudinal stress in the unidirec-

tional lamina because the longitudinal extensional modulus of the

fibers is assumed to be much larger than that of the matrix. Debonding

between plies in the vicinity of the crack is considered to be of

finite width and extends to infinity in the longitudinal direction.

The extreme fibers of the debond zone are assumed to be attached to each

other across the debonded region by a spring of stiffness depending on

the constraint layer properties and on the width of the debonded zone.

That is, the layer debonds but is still connected to either side of
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debonded zone

Figure i. Unidirectional Lamina with Broken Fibers, Surface
Constraint Layers and Debonding.



the region and carries load due to the longitudinal displacement of

the extreme fibers of the debonded zone. This can be more clearly seen

by referring to Figure i.

As an initial investigation, the basic mechanism of crack growth

is limited to a model containing broken fibers only. Subsequently, a

model is next developed to account for additional longitudinal damage

parallel to fibers in the monolayer, (Figure 2). Splitting and yield-

ing of the matrix is assumed to initiate at the notch tip and to pro-

gress longitudinally between the last broken fiber and the first

unbroken fiber.

There are three different zones in the model.

(i) unidirectional ply with bonded constraint layers, fiber
numbers (0) to (N-l) and (M+I) to (_).

(ii) unidirectional rply with debonded constraint layers, fiber

numbers (N+I) to (M-l), and

(iii) intermediate fibers (N) and (M) of the following ply.

An equilibrium equation is written for each fiber using the basic

stress-displacement relations given by Hooke's law and the shear-lag

assumption. A description of the solution to these equations is given

in the following sections. The stresses and displacements are determined

as a function of number of broken fibers, constraint layer parameters

and debonded zone size. The results are compared to the corresponding

fully bonded cases.
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Figure 2. Unidirectional Lamina with Broken Fibers, Longitudinal

Matrix Damage, Surface Constraint Layers and Debonding.



CHAPTER II

FORMULATION

Two Dimensional Shear-Lag Model with

Broken Fibers, Surface Constraint

Layers and Debonding

A unidirectional array of parallel fibers with surface constraint

layers, debonding and an arbitrary number of broken fibers is shown in

Figure i. Debonding is assumed to exist from the last broken fiber (L)

to an unbroken fiber (M) of the unidirectional lamina. The constraint

layers are intended to represent adjacent layers of a unidirectional

lamina. They are assumed to be placed symmetrically about the uni-

directional lamina to give a laminate with no bending. The broken

fibers are assumed to occur along the x-axis and, since the loading

is symmetric, only the first quadrant of the laminate is considered

in the analysis. The basis analysis and assumptions are the same as

in [6], however, in order to clearly indicate the modifications needed

to account for surface debonding, it is necessary to repeat the basic

formulation.

The fibers are taken to be of much greater stiffness and strength

than the matrix and the longitudinal load is therefore assumed to be

carried by fibers only. Load is transferred between fibers by shear

stresses as given by the classical shear-lag assumption. The axial

fiber stress an(y) and the matrix shear stresses Tn(y) and T'(y)' n '

are then given by the simple relations:
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dv

(y) = EF nn -_-y' (i)

GM

Tn(y ) = _-- [Vn(Y) - Vn_l(y)] , (2)

T_(y) = _ [Vn(Y) - Vn_l(y) ], (3)

where

Vn(Y ) = axial displacement of the fiber (n) at the location (y),

EF = Young's modulus of the fiber,

t = thickness of the unidirectional ply,

t' = thickness of the constraint plies.

The stiffnesses GM/h and G_/h' must account for interaction

between fibers [5, 7, 8]. GM and G_ are typically not the shear moduli

for the "neat" matrix nor are h and h' necessarily fiber center-line

distances. The ratios GM/h and G_/h' are equivalent stiffnesses and

are assumed to be material constants and depend only on the fiber and

matrix properties, the fiber volume fraction, orientation of plies,

and not on the size of the damage region. Only for large spacing can

GM and h be expected to approach the "neat" matrix and center-line

values.

By the virtue of the shear-lag assumption the longitudinal and

transverse equilibrium equations become uncoupled and the longitudinal

displacement and stress in the fibers as well as the matrix shear

stress can be obtained without solving the transverse equilibrium

equations. Therefore, only the equilibrium equations in the longi-

tudinal direction will be considered in the following discussion.



As pointed out earlier and in [5], GM/h and G_/h' are to be de-

termine experimentally. For example in [9] and [i0], it is shown that

the shear stress becomes larger as the fiber spacing decreases, that

is, (0(I//d)) for rigid fibers where'd' is the minimum distance be-

tween the fibers. Local failure may occur at critical points through

the thickness in advance of laminate splitting which would give an

apparent shear stiffness considerably different from that of the matrix

alone.

The debonded fibers, (N) and (M) are considered to be connected

by springs due to the presence of the angle-plies of the constraint

layers. The springs are assumed to have a linear force-displacement

relation and the stiffness (k) per unit area for a particular laminate

to decrease proportional to thelength of the spring.

With reference to the free-body diagrams, Figures 3 through 5, of

the elements for different ranges of fibers, the equilibrium equations

are

AF doF

t dy + (_In+l _In)+(T'In+l T'In) t'- - -_- = 0 (4)

for n = 0, i, 2,...,N-I, M+I,...,

A_ doF

+ (Tln+l-TIn) = 0 (5)t dy

for n = N+I, N+2,...,M-2, M-I,

where

AF = area of fiber.

For fiber N

AF d°F kt'

t dy + (TIN+I-TIN) +--t-(VM-VN)-T'[N t'_t 0. (6)
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Figure 3. Free-body Diagram for a Typical Element of the Fully Debonded
Zone (Fibers No. (N+I) to (M-l)).
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NOTE: Diagram shown as above for clarity only. In the actual laminate,
the constraint layers are symmetric with a layer of thickness

t'/2 placed on each side of the unidirectional ply.

Figure 4. Free-body Diagram for a Typical Element of the Fully Bonded
Zone (Fibers No. (0) to (N-l) and (M+I) to (_)).
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NOTE: Diagram shown as above for clarity only. In the actual laminate,
the constraint layers are symmetric with a layer of thickness

t'/2 placed on each side of the unidirectional ply.

Figure 5. Free-body Diagram for a Typical Element of the Intermediate
Zone (Fiber No. (N)).
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For fiber M

doF

t dy + (TIM+I TIM) kt' I- t (VM-V N) +r' t'M+l -t- : 0. (7)

Using the stress-displacement relations (i), (2) and (3), in the

above equilibrium equations, the following set of difference-differen-

tial equations is obtained:

_EFh d2Vn

+ (l+C R) (Vn+l-2vn+vn_ l) = 0 (8)
GMt dy 2

for n = 0, i, 2,...,N-I, M+I, ....

AFEFh d2v n
+ (Vn+l-2v n+vn_ I) = 0 (9)

GMt dy 2

for n = N+I, N+2,...,M-2, M-I.

For fiber N

AFEFh d2VN

2 + (VN+l - 2VN + VN-l) + CR2(VM- vN) - CR(VN - VN__=0. (i0)
GMt dy

For fiber M

AFEFh d2vM

2 + (VM+l - 2VM+ VM-l) - CR2(V M- vN) + CR(VM+ I - VM)=0. (ii)
GMt dy

where

k t'

CR2 = (gM/h) t

(12)
(G_/h') t'

CR =
(GM/h) _-"

The constraint layer provides additional longitudinal stiffness to

the unidirectional ply, the effect being given by the constant CR. The

debonding effect is represented by the second constraint ratio CR2.
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To match the differential equations for the bonded case [9], CR2

must reduce to CR when M- N = i. The only varying parameter for CR2

in a particular laminate is the width of the debond zone, (M- N).

Since CR2 represents a linear spring and loses its stiffness (k) per

1

unit area proportional to its length then CR2 = M-N "

CR

Hence, CR2 - M-N (13)

Noting the coefficient of the second derivative in Equations (8)

through (12), the following changes of variables as suggested in [6]

are made.

_I%EF h

dv

On = _ _n = EF dy '

I AFh

Vn = __VN' (14)

where

o = applied remote stress,

and n, _n and Vn(n) are non-dimensional.

Algebraic manipulation of Equations (3) and (14) gives

dV
n

on = o -_--y, (15)

IG_F

rn = _ _E_ (Vn- Vn-1)" (16)

The resulting equations in non-dimensional form are

d2V

_____nn+ (1+C R) (Vn+I- 2V +Vn_l) = 0 (17)
d2 n

for n = 0, i, 2,...,N-I, M+I,...,



15

d2V

n + (Vn+l_ 2Vn+Vn_l ) = 0 (18)
dq2

for n = N+I, N+2,...,M-2, M-I.

For fiber N

d2VN

-- + (VN+ I- 2VN+VN_I) +CR2(V M-VN) -CR(V N-VN_ I) = 0. (19)
dn 2

For Fiber M

d2VM

--+ (VM+I-2VM+V M I)-CR2(VM-VN)-CR(VM+I-V M) = O. (20)
do2

These equations can be written as follows, where the left-hand

side is the same in each equation.

d2V

-- - +Vn_ I) = 0 (21)n + (I+C R)(Vn+ 1 2Vn
dn2

for n = 0, i, 2,...,N-I, M+I,...,

d2V

-----n-n - + Vn_l) 2V + Vn_l) (22)2 + (1+C R)(Vn+ I 2Vn = CR(Vn+I- n
dn

for n = N+I, N+2,...,M-2, M-I.

For fiber N

d2VN

--dq2 + (I+CR)(VN+ I- 2VN+VN_I) = CR(VN+ I-VN) - CR2(VM-VN). (23)

For fiber M

d2VM
--+ (I+CR)(VM+ I- 2VM+VM_ I) =-CR(V M-VM_ I) +CR2(V M-VN). (24)
dn2

These difference-differential equations may be reduced to differen-

tial equations as in [6] by introducing a new function V(q,0) defined

as
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Vo(n) oo
V(n,O) = _ + Z Vn(n) cos (nO) (25)

n=l

from which
7[

2 y V(n,0) cos (n0)d0. (26)V (n) =
n 'IT

0

Making use of orthogonality of the circular functions, Equations

(21) through (24) are then written as one equation, valid for all n and

n as

2 i 2(l+CR)[l-cos(0)] cos (n0)d07[olT$2

7[fi )- 71220t£ E=N Gg(n) cos (£0) cos (nO) dO, (27)

where

G£(n) = - CR(V_+I- 2V£+V£_ l) (28)

for Z = N+I,...,M-I,

GN(n) = -CR(VN+ 1-vN) +CR2(V M-vN) , (29)

GM(n) = CR(VM- VM_I) - CR2(V M- VN), (30)

GO(H) = l- _ [CR(V I- V0) - CR2(V M- V0) ]. (31)

The equation is of the form

7[

2 i F(n,0) cos (n0)d0 = 0 for all n and n (32)
0

and as F(n,0) is even valued in 0, if the integral is to vanish for

all n, the function F(n,0) then must be zero. The single equation

specifying V(n,0) is then

M

d2---_V- 62V = - Z G£(n) Cos (£0) (33)2
dn £=N

where

62 = 2(1+CR) [i- cos (0)].
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The solution to the problem of vanishing stresses and displace-

ments at infinity and uniform axial compression on the crack surface

will now be sought. The complete solution will be obtained by adding

the results corresponding to uniform axial stress and no broken

fibers to the solution of the followin_ problem. The aDpropriate

boundary conditions are:

dVn(R)

Vn(n) = 0 , dR = 0 as n . _ for all fibers, (34)

dVn(n)
dR = _n (R) = - i at B = 0 for all broken fibers, (35)

Vn(n) = 0 at h = 0 for all unbroken fibers. (36)

The complete solution to Equation (24), satisfying vanishing stresses

and displacement at infinity is given by

M

V(R,O) = A(O)e -(6n) + f i sinh(_(R-t)) E G£(t)cos(£O)dt, (37)
R £=N

where the function A(e) is yet unknown. The remaining two boundary

conditions give

dVn(0) _ 2 f -6A(6).f osh(6t) Z G_(t)cos(£O)d cos(n0 dO
dR _ 0 L 0 k £=N

= - i (38)

for all broken fibers, and

Vn(0) = 72 0f (6)-_ inh(_t)£=NE G£(t)cos(£6) cos(n6 d0

= 0 (39)

for all unbroken fibers.

Equation (37)can be solved exactly by taking

M L

A(O) - _i 0f sinh(_t)£=Ny' G_(t)cos(_O)dt = m=0Y Bm cos(m6). (40)
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Eliminating A(O) from Equations (38) and (40), the stress boundary

condition (35) reduces to

-- B cos(m0) +/ e G£(t)cos(£O)dt cos(n0)dO (41)
TO 0 m 0 £N

------ i.

From Equations (37) and (40), A(O) can be eliminated to obtain

V(n,O) in terms of B and G£(t). Recalling the relation betweenm

V(_,O) and Vn(_ ) an expression can be obtained for longitudinal fiber

displacements as

V (_) 2 ife-(_) L= -- E B cos(m@)

n _ 0 [ m=0 m

1 i D(_,n t) M' 7. G_(t) cos (£0)dt cos(nO)dO (42)
+2 0 _ £=N

where

-_In-tl -6 (_+t)
D(_,_,t) = e - e (43)

The longitudinal fiber stress is obtained by differentiating

Equation (42) with respect to _ and is

dVn(n) 2
f 6 7. B cos(mO)e -(on)

_ (_-n"n" - dR - _ 0 m=0 m

+ e 2 P e Z_N G£(t)cos(£8 cos(nO)d0,

where (44)

p = 1 for t _< _

p =-i for t > n.

Equations (28), (29), (30), (41) and (42) can be solved for the unknowns

Bm and G£(t ).
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Limit Case of an Infinitely Wide
Debonded Zone

This is an extension of the model developed previously, such that the

debonded zone is now assumed to extend to infinity. Since by Equation (12)

k t'

CR2 = (GM/h) t '

and

1

k = M_----_ then CR2 . 0

for a debond zone of infinite width.

Physically, the spring between fibers at the extremities of the de-

bonded zone has no stiffness as it has an infinite length. Also, for

fibers (M) and (M-I) far from the crack tip VM = VM_ I. Then using

CR2 = 0 and VM = VM_ 1

Equations (21), (22), (23), (24) reduce to

d2V
n

+ (I+C R) (Vn+1 2V + = 0 (45)
dn2 - n Vn-l)

for n = 0, I, 2,...,N-I, M+I,..., and

d2V
n

2 + (Vn+l- 2Vn+Vn-l) = 0 (46)
dn

for n = N+I, N+2,...,M-2, M-I.

For fiber N

d2VN

dn 2 + (VN+I- 2VN+V N_I ) = - CR(VN+ I-VN)° (47)

Following the same technique as before, the single differential

equation to be solved is then

N

d2V - 52 V = - E H%(_)cos(£e) (48)
dq 2 _=0
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where

H£(q) = CR(V%+I- 2V_+ V%_I) . (49)

For fiber (0)

H0(q ) = CR(V 0_VI). (50)

The boundary conditions (34), (35) , (36) yield

B cos(m0) + e_(6t) N_ Y. H_(t) cos (£0)dt cos (n0)d0 (51)
0 0 m 0 _=0

=- 1

for £ = i, 2, 3,...,N.

Equations (49), (50), (51), (52) can be solved for the unknowns Bm

and H%(t). The longitudinal displacement is given by

=- e-(6q) E B cos(me)
Vn(q) _ m=0 m

1 7D(6'_'t) N }
E H_(t) cos (%0)dt cos (ne)d0, (52)

+2 o

while the longitudinal fiber stress is given by

(_ L -(6q) (me)_n(q ) = 2 f 6 E B e cos
_0k m=0 m

+f 2 pe 2
0 _=0

(53)

where

p = 1 for t < q ,

p =-1 for t > q
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Two Dimensional Shear-Lag Model with

Broken Fibers, Longitudinal Matrix

Splitting and Yielding, Surface

Constraint Layers and Debonding

The solution developed in Section I will now be extended to in-

clude longitudinal splitting and yielding of the matrix as shown in

Figure 2. All the previous assumptions are assumed valid and it is

only necessary to account for additional damage. It is assumed that

splitting and yielding of the matrix initiates at the notch tip and

progresses longitudinally between the last broken fiber and the first

unbroken fiber. The matrix is assumed to be elastic-perfectly plastic.

The last broken fiber is considered to be the first debonded fiber.

All the equations remain the same as (4), (5), (6) and (7) for all

fibers except for fibers (L) and (L+I). The equilibrium equation for

fiber (N) is

dqF_N

t dy - TO < y- 42 > - TIN+ kt___'t(VM-V N) -T'IN -t-t= 0 (54)

when y < £i '

for fiber (N+I)

dOF[N+I

t dy + TIN+2 + t0 < y- £2 > = 0 (55)

when y _ £i"

TO = matrix yield stress,

£i = length of longitudinal matrix damage at the crack tip,

42 = length of longitudinal matrix split at the crack tip.

The above equations on introduction of the stress-displacement rela-

tions (i), (2), (3), become,
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for fiber (N), when y--<£i

AFE F d2VN GM kt'

t 2 TO < Y-£2 > - -h (VN-VN-l) + -t--(VM-VN)
dy

GM t'

- -_- (VN-VN_l) _- = 0, (56)

and for fiber (N+I), when y <_ £1

_E F d2VN+l GM
t _ +_- (VN+2-VN+l)+TO < Y-£2 > = 0. (57)

dy

Equations (56) and (57) are re-written as

_EFh d2VN

2 + (I+C R)(vN+ I- 2vN+vN_ I)
GMt dy

= + (I+C R)(vN+ I-vN)-CR2(v M-v N) +T O < Y- £2 > ' (58)

_EFh d2VN+l
2 + (I+C R)(vN+ 2- 2VN+ l-v N)

GMt dy

= - (I+C R)(vN+ l-v N) +CR(VN+ 2-vN+ I) -t 0 <y- £2 >" (59)

IEF_h

[GMAF

TO = _0-_EFht

The resulting overall non-dimensional equilibrium equations are
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d2VN
-- - + Vn_ I) = 02 + (i+ CR) (Vn+1 2Vn (61)
dn

for n = 0, i, 2,...,N-I, M+I, .....

For fiber (N), when q <

d2V N

dq2 + (I+CR)(VN+ 1 2VN+VN_I)

= (I+CR) (VN+I-VN)-CR2(V M-VN) +_0 <n-_>" (62)

For fiber (N), when n >

d2VN

dq2 + (I+CR)(VN+ I 2VN+VN_ I) =CR(VN+ I VN)- CR2(V M-VN). (63)

For fiber (N+I), when q <

d2VN+ 1

-- + (i+ CR) (VN+ 2 - 2VN+ 1 VN)
dn2

= - (I+ CR) (VN+I- VN) + CR(VN+ 2- VN+I) - _0 < n - 8 >. (64)

For n = N+2, N+3,...,M-I, and N+I, when n >

d2V
n

.... + Vn_l). (65)
dn2 + (i+ CR) (Vn+1 2Vn+Vn_l) CR(Vn+ 1 2Vn

The differential equation to be solved is the same as Equation (33)

while G£(q) is given by

GN(q) = -(I+C R)(VN+ I-VN) +CR2(V M-VN) -_0 < q- g > for n! e ,

= - CR(VN+ I-V N) + CR2(V M-V N) for n > _, (66)

@N+l(n) = (I+C R)(vN+ I-VN) -CR(VN+ 2-VN+I) +_0 <n-g >

for _ <e , (67)

G£(n) = CR(V£+ I - 2V£ + V£_I) (68)

for £ = N+2,...,M-I and N+I for _ > _.
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Since Gg(N) should match at n = e for g = N+I and N,

m

VN(e) - VN+l(e) = TO. (69)

Equations (41) , (42) , (66) , (67) , (68) and (69) can be solved for the

unknowns B and Gg(t). The expressions for displacements and stressesm

remain as given by Equations (42) and (44).
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CHAPTER III

SOLUTION TECHNIQUE

In all the problems discussed so far, the solution reduces to a

series equation coupled with one or more Fredholm integral equations

of the second kind. Since there is no exact form of solution avail-

able to solve such a system of equations, a computer program is de-

veloped by modifying a numerical procedure given in [12]. The tech-

nique makes use of a method by Riez [13] to solve a linear Fredholm

integral equation of the second kind defined within a semi-infinite

interval of integration. A given integral over a semi-infinite in-

terval may be approximated by the Gauss-Laguerre quadrature rule as

oo k -xi

f f(x)dx = 7 wie f(xi) , (70)
0 i=l

where xi is the ith zero of the Laguerre polynomial, Lk(X), and wi

is the corresponding weight function given by

Xo
1

wi = [(k+l)Lk+l(Xi) ]2 " (71)

The Laguerre polynomial Lk(X ) is given by

ex dk (xke-X)

Lk(x) = dxk ' (72)

Since the form of the equations for each solution is the same for

the three particular cases discussed above, the development and appli-

cation of the numerical procedure can be demonstrated without any loss

of generality by taking equations corresponding to one of the solutions.
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Consider the problem of an infinite debonded zone with a con-

straint layer given by the equations

H£(n) = CR(V£+ I - 2V£ + V£_ I) (49)

for _ = i, 2,...,N-I, N,

H0(n)= CR(Vl- V0); (50)

2 -6 Y. B cos(m0)
0 m=0 m

+ f e_(_t) NE tt_(t) cos(gO)dt cos (nO)dO = - 1, (51)
0 _=0

for n = 0, I,...,L-I, L,

V (n) = 2 f e-(_]) E B cos(m6)
n _ 0 m=0 m

1 7D(6,h,t) N I
Y H_(t) cos(%O)dt cos(nO)d0. (52)

+2-0 _ _=0 J

Substituting the expression for Vn(_) in (49) and (50) yields

2 -(_n) L
H_(n) = CR 7 e Y. B cos(m0)

0 m=0 m

X {cos((%+l)O) - 2 cos(_O) + cos((£-l)O)}d6

f oo+ i I D(6,n,t) N
6 E Hn(t)cos(n8)

0 0 n=0
-I

X {cos((£+l) 0) - 2 cos(]_0)+cos((]_- l)6)}dOdt[,(73)
.J

2 (_n) L

= B cos(m0) {cos(6) -l}dO
H0( )cR [ e-0 m m

1 7 7 D(6,n,t) N J+ -- E H (t)cos(nO) {cos(0) - l}dtdO • (74)
700 6 n=0 n J
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The integral over the spatial variable 't' in the Equations (51), (73)

and (74) can now be replaced by the series in Equation (70) to yield

LZ 2CR i[e- (_ni) (
cos(me) cos((%+l)O) - 2 cos(he)

m=0 _ 0

+ cos((_-l)e))Bm] de

--- Y K 2K_(qi,tj)
+ 6iJ _ j=l ,tj)-

_-I ) t. ]
+ K (qi,tj) e ] wt. H_(tj)

J

- Z Z

n=0 j=l tj) - ,tj)

n#_ t.

_-i ) ; ]
+ Kn (qi,tj) e wt. Hn(tj) = 0, (75)

J

for _ = 1,2,...,N-I, N,

Z 7 e-(6qi)-- cos (m0){cos (0) - I}Bm d6
m=0 _ 0

+ 6ij-- _ Z (qi,tj) _ 0 3
j=l K0(qi,t j e w tj H0(t j)

[_ N k ;Knl 0 )) t. ]
+ N _ (qi,tj) - Kn(qi,t j e 3 wt" Hn(tj) = 0, (76)

n=l j=l j

and
L

y 2 f [_ 6cos(m0)cos(n0)Bm]d0II
m=0 0

N k 2 f(e-(_t j) )_ t.
+ E E -- cos(he)cos(n0 e 3 wt" G_(tj)de=-i (77)

_=0 j=l _ 0 J

for n = 0,1,...,L-I, L,

where

Km(qi,tj) = f D(6,qi,tj)eos(m0)cos(n0)d0. (78)0



28

The solution therefore reduces to solving a system of linear

algebraic equations for the constants B and for explicit values ofm

the functions H£(t) at specified quadrature points. The above system

of equations is solved by the method of Gauss-elimination with partial

pivoting.

The above procedure is followed in all the three cases;however,

for the instance of longitudinal matrix damage , an additional step is

required. The presence of longitudinal damage has a very significant

effect on displacement in the damage region and hence on G£(t). If

the semi-lnfinite integrals are expressed as a series expansion given

by (70), the number of quadrature points lying in the damage region is

not sufficient to represent the displacement function accurately in

that region. For example, out of 35 quadrature points, only five lie

between zero and two, a typical value for alpha (_). So in order to

approximate the integral more accurately, more points are required in

the region from zero to alpha (_). The following procedure is used;

The integral is split as sum of two integrals

f f(x)dx = f f(x)dx + f f(x)dx = f f(x)dx + f f(x+_)dx. (79)
0 0 a 0 0

The finite interval integrals can be approximated by Gaussian integra-

tion [14] as

k*

Z w_ f(y_), (80)
0f f(x)dx = _ J=l 3

where

yj* = (_ + l)x_. (81)

x_ is the jth zero of the Legendre polynomial P (x)3 n '

and w_ is the corresponding weight function given by
3
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w_ = 2 , , 2

3 (l-x .2" [Pn(Xj) ] " (82)
j)

The Legendre polynamial is:

1 dn (x2- i)n. (83)Pn(X) =
2nn! dxn

Physically it would be more direct to specify the applied stress,

number of broken fibers, L, and determine the damage zone _ and 6 de-

pending on given yielding and splitting conditions. As _ and B appear

in the limits of the integrals, this is not convenient computationally

and it is easier to specify the number of broken fibers, N, and the

damage zone parameters _ and B and to compute the required applied

stress _
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CHAPTER IV

RESULTS

Debonding with no Longitudinal Matrix

Damage in the Unidirectional Ply

The effect of the width of the debonded zone was of particular

significance in this study. Results are given in Figure 6 for various

numbers of broken fibers with a constant constraint ratio. Debonding

was assumed to start at the last broken fiber and extend longitudinally

to infinity, (Figure 2). The critical fiber is defined as the fiber

which has the maximum stress. The stress in the critical crack-tip fiber

decreased initially for a small debonded zone, but subsequently increased

with an increase in the width of the debonded zone. In fact, the stress

concentration in the limit case of an infinitely wide debonded zone,

was more than that of the bonded case, (Table I).

One result of particular significance is that the maximum decrease

in the stress in the critical fiber occurs for a small debonded zone

and is essentially independent of the initial crack length. Figure 6

shows that a debonded zone width of two fibers spacings results in the

largest decrease in the maximum fiber stress for five, seven, nine and

twenty-one broken fibers.

Debonding acts like a constraint (CR2) between the last broken fiber

(N) and last debonded fiber (M), resulting in a redistribution of stresses

in the vicinity of the crack tip, hence decreasing the stress in the

critical fiber. A higher constraint ratio resulted in a larger drop

in critical stresses as shown in Figure 7 but gave higher critical

stresses in the limit case Figure 8.
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5

Constraint Ratio = 0.5

Debonded Zone Starts from
Last Broken Fiber.

Crack Length = No. of Broken Fibers

x Fiber Spacing

4 21 broken fibers

z

3

7 broken _fibers _

5 broken fibers

1 2 3 4 'l 7

debonded zone width (M-N), fibers

Figure 6. Maximum Fiber Stress as a Function of Debonded Zone Width
and Crack Length.
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4
Number of Broken Fibers = 7

Debonded Zone Starts from
Last Broken Fiber

z

OR= 0.5

CR = 1.0

| |

1 2 3 4 l/ CO

debonded zone width (M-N), fibers

Figure 7. Maximum Fiber Stress as a Function of Debonded Zone Width
and Constraint Ratio.
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w

Infinite Debonded Zone Width

Crack Length = No. of Broken Fibers

x Fiber Spacing

3 "

2

1
I I I | •

1 3 5 7 9 11

number of. broken fibers (n)

Figure 8. Maximum Fiber Stress as a Function of Crack Length
and Constraint Ratio.
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Table I. Maximum Stress Conconcentration vs. Width of Debond Zone

Number of Broken Fibers = 7

First Debonded Fiber (N) = 3

Constraint Ratio (CR) = 0.5

Width of Debonded Zone Maximum Stress Concentration

(M-N) fibers K

1 2.5461

2 2.3258

3 2.3392

4 2.3601

2.5813

Debonding with Longitudinal Matrix

Damage in the Unidirectional Piy

The effects of debonding accompanied with longitudinal matrix splitting

and yielding at the crack tip are indicated in Figures 9 and i0 where

some typical results were obtained for seven broken fibers. A two/one

split strain to yield strain condition is assumed. This ratio was selected

for comparison with the results of [5] and is approximately equal to

that for brittle epoxy. A debonded zone of two fiber widths starting

at the last broken fiber is assumed.

The maximum fiber stress, normalized by a laminate constant

oJ EFht
To = T is plotted against the normalized applied stress.

GMAF

Figures 9 and i0 give results for CR = 0.5 and 1.0, respectively.

The results are plotted for a monolayer having four different combina-

tions of constraint and/or damage as given below.

Transverse Constraint Matrix Debonding
Notch Layer Damage

i) x

ii) x x

iii) x x x

iv) x x x x
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4
Number of Broken Fibers = 7

Hedge.peth '

Solution

Debonded Zone of Two

Fibers Starts from CR = 0.5
Last Broken Fiber

OF (with debonding)

o

Fht CR = 0.0 /

no damage
(net section)

/

/ o F = ooo

/ _ yield
/

0 split

0 ! !

0 1 _ 2

To

Figure 9. Maximum Fiber Stress for Yielding and Splitting for a
Constraint Ratio of 0.5
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4

Number of Broken Fibers = 7

CR 1.0

without debondi

edgepeth's

olutxon

Debonded Zone of Two CR = 1.0

Fibers Starts from (with debonding)

OF Last Broken Fiber

/- FhT
To = _o/_ A- / JF GR = 0.0

_o damage
I (net section)

J oF = Om

/ _yield/
ssplit

Figure I0. Maximum Fiber Stress for Yielding and Splitting for a
Constraint Ratio of 1.0.
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For case (ii), unidirectional lamina with no constraint, it

was found in [5] that once the split forms the critically stressed

fiber unloads and the split length becomes unbounded under a five-to

ten-percent further increase in applied stress. The fracture reduces

to an unnotched laminate with the net-section fracture stress being

independent of the initial crack length.

For cases (iii) and (iv), the critically stressed fiber does not

reduce to a net section state but continues to carry load after splitting

with increasing applied load. However, in the presence of debonding,

the maximum fiber stress is relieved.

Hence, in terms of load carrying capacity, the worst case is (i)

where the monolayer has no damage other than an initial transverse

notch, while the best case is (ii) where the notched monolayer is not

constrained but has longitudinal matrix damage. Cases (iii) and (iv)

lie between the above models where debonding allows the larger load

carrying capacity.

For all fully bonded constraint layer cases, the maximum

fiber stress occurs in the first unbroken fiber at the end of the split

(y = £i ) for no (or low) constraint ratio [5] and at the notch

tip (y = 0) for high constraint ratios [I0]. The same behavior occurs

for debonded cases, but in case of high constraint ratios and high values

of alpha (a) and beta (8), the maximum fiber stress occurs in the last

debonded fiber at y = O. This shows that under the above conditions

the first unbroken fiber is highly relieved of stresses and can result

in discontinuous damage of the fibers. The following table quantita-

tively illustrates the above behavior.



38

Table II. Location of Maximum Fiber Stress

Number of Broken Fibers = 7

Broken Fiber Index (L=N) = 3 (Figure 2)
Stress Concentration at

n: = Position: n: = Fiber No.

(i) Bonded Cases:

i) CR = 0.0.; e = 3.00; B = 2.25

n . 4 5
n+

0.00 1.527 1.447

B 1.817 1.441

ii) CR = 1.0; e = 1.00; B = 0.36

n . 4 5
n+

0.00 2.294 1.538

B 2.008 1.497

(2) Debonded Cases:

i) CR = 1.0; _ = 0.94; B = 0.30; N = 3; M = 5

n . 4 5

n+

0.00 1.843 1.841

B 1.841 1.529

ii) CR = 1.0; _ = 2.30; B = 1.68; N = 3; M = 5

n . 4 5
n+

0.00 1.474 1.939

i.423 I. Iii
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The main aim of this research project was to investigate the effects

of interlamina debonding between notched unidirectional lamina and con-

straint plies. The significant results are as follows:

(i) The maximum stress in the crack tip fiber decreases initially
for a small debonded zone, but increases as the width of the
debonded zone is increased.

(ii) The largest decrease in the maximum fiber stress occurs for

a debonded zone width of two to three fiber spacings. Further

this debond zone width is essentially independent of crack
length.

(iii) For a small debond zone, the maximum fiber stress in the mono-

layer decreases as the constraint ratio increases.

(iv) In the presence of longitudinal matrix crack-tip damage and
constraint layers, the maximum fiber stress in the unidirec-

tional ply is further relieved if debonding takes place.

(v) For a large constraint ratio with longitudinal matrix damage
at the crack tip, debonding reduces the stress in the first
unbroken fiber such that the maximum fiber stress can occur

at the end of the debond zone.

The following modifications are recommended:

(i) Extend damage to the whole laminate, that is, account for damage
in the constraint plies.

(ii) Represent finite longitudinal debonded zones around the crack.

(iii) Understand the concept of constraint ratio in terms of geo-

metric and physical layer properties. Since the constraint

ratio is not defined in terms of layer properties, it is not

possible to make quantitative predictions about laminate

strength. Approximate best fit curves [6] and experimental

studies [15] can help in determining constraint layer

parameters to find constraint layer ratios.
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