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- 
The par t ia l  1~01-r volume o f  hydrogen i n  th r  melt. ?,,, i s  

not determined. Due t o  very low s o l u b i l i t y  o f  hydrogen i n  
the me1 t, iH can be substituted by the. .. 

a-Sil icon and i ron decrease the sol u b l l  t t y  o f  hydrogen 
i n  aluminium, whereas wi th  i ron a t  higher temperature, 
and t i tanium i t  increases. 

... using F ick '  s f t r s t  law: 

... 20-40 seconder ... 
Pores size and number were.. . 
.. . by col losion as.. . 
Het rogeneous... 

S i l icon and i ron  decrease the s o l u b i l i t y  o f  hydrogen whl le 

t i tanium increases it. A t  high temperature, i r o n  also 
increases the hydrogen sol u b i l  i t y .  

Equation 5, re f lec ts  the s o l u b i l i t y  o f  hydrogen i n  the 

melt as a funct ion o f  pressure and temperature. The p a r t i r l  

molar voluae o f  hydrogen i n  aluminium, vH, i s  not detertined. 
I n  the present analysis, i t  i s  assuned that  TiH and i t s  var i -  

at ion wi th  the temperature i s  the same as the molar volume o f  
1 aluminium, . This i s  because the s o l u b i l i t y  o f  hydrogen i n  

the almtnium melt, max 2xl0-~ Inole f ract ton i s  very small. 

Equation 5 then becomes; , 

F.J Data of  the car:ial m c l ~ r  vcluna cf hyCrogen 

i n  the melt hqs been fwnd  i n  the l i t e ra tu re .  

Just as an example 5 has been subst i tuted by 

the . .. 
a-Sll icon and i ron  decrease the so lubl l  I t y  o f  

hydrogen I n  aluminium and t i tanium increases jt. 

... using Flck'  s f i r s t  law combined w j th  counum 
gas law: 

. . . 20-40 seconds.. . 
The size and number o f  pores were.. . 
... by col l ls ior .  rs... 

Si l iconandi rondecreasetheso lub i l i tyo f  2s 
hydrogen while t l t s n l u  Increases it. (Last 
sentence shoulbbe omitted. ) 

Lines 11 t o  23 should Ce omttted 

... and teaperature. No value on the p a r t i a l  

molar volune o f  hydrogen i n  the melt has been 
found i n  the 1 l terature. For the calculat ions 
t h i s  value I s  ,ndt c r i t i c a l  for the laoderate 
pressures. I n  '&e present anal ysls. Just as an 
example i t i s  asslawd that  VH and I t s  var ia t ion 
w i th  the temperature I s  the same as the molar 

volme of  al lainium tl. Equation 5 then becomes: 

Paper I. Page 13, Table 3 Calculatlons f o r  T i  and Fe are not valid. 
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ABSTRACT 
-------- -------- 

So lub i l i t y  o f  hydrogen i n  A1 , Al-4%Ti, Al-7%Si, Al-1O%Fe 

and also i n  Au-Cu, Au-Pd a l loys i s  investigated. Ef fect  of 

a1 loying elements on the hydrogen so lub i l i t y  I r e  determined 

by evaluating so lub i l i t y  equations and interact ion coe f f i -  

cients. 

F o m  t i on of rounded pores i n  hydrogen supersaturated 

A l ,  A l -  4%Ti, and Al-lO%Fe a l loys  i s  i r rest igated.  A model 

f o r  nucleaticn and growth o f  rounded pores i n  the me1 t i s  

presented, and i s  applied f o r  pure aluminium. These samples 

were remelted i n  reduced gravi ty and reduced ambient 

pressure. The resu l t ing materials consisted o f  numerous 

expanded pores, dispersed i n  the metal 1 i c  matrix. A1 -4%Ti 

samples, saturated a t  0.5 and 1 atm hydrogen and remelted a t  

0.1 atm ambient pressure, achieved 50% re la t i ve  reduction i n  

density wi th a uniform pore d is t r ibut ion.  

The e f f ec t  cf hydrogen, a1 1 oying elements, modifiers and 

pressure drop, caused by sol i d i f  ica t ion on the shrinkage 

porosity i n  aluminium s i l i con  and aluminium copper a l loys are 

studied. A model f o r  formation o f  shrinkage pores, regarding 

these parameters i s  a1 so presented . 

Ef fect  o f  hydrogen on the t rans i t ion from duc t i l e  t o  

b r i t t l e  i n  i ron  base amorphous ribbon i s  studied. The 

presented resu l ts  indicate that  small amount of hydrogen i n  

the melt p r i o r  t o  rapid quenching can cause ernbrittlement i n  

the amorphous ribbons. 

Key words : 

Hydrogen, aluminium, gold, palladium, poreformation, 

nucleation, growth, shrinkage, metal 1 i c  foam, microgravi ty, 

amorphous, embrittlement. 



INTRODUCTION 
------------ ------------ 

Pores i n  most cases are formed i n  metals during casting 

and so l id i f i ca t ion  and may reduce the desired properties. 

However, pores can be useful i n  some special applications 

i.e. producing very l i g h t  materials o r  materials w i th  a high 

damping capacity. I n  these cases, a large number o f  pores 

should be evenly d is t r ibuted i n  the meta l l ic  matrix and the 

material i s  known as metal 1 i c  foam. 

Whether the problem i s  t o  e l  iminate or t o  enhance the 

forma t i on  of pores, a basic understanding o f  the mechanisms 

involved i n  the poreformation i s  necessary. I n  t h i s  respect, 

a fundamental knowledge of gas so lub i l i t y  i n  the me1 t, 

induced pressure by the dissolved gas, nucleation and growth 

o f  the pores, and so l i d i f i ca t i on  mechanism are a l l  essential. 

F'nal ly, from these informations, the production o f  metal 1 i c  

foam can be considered. A l l  these mechanisms have been 

investigated i n  t h i s  thesis, and the resu l ts  thus obtained 

were used i n  investigation of poreformation i n  aluminium 

a1 toys. 

1. GAS SOLUBILITY 
----------------- ----------------- 

Hydrogen i s  one o f  the most comnon gases dissolv ing i n  

metals. It is ,  f o r  instance, the only gas which dissolves i n  

aluminium. Diatomic gases, such as hydrogen, dissolve i n  the 

me1 t s  as atom by gradual steps (1  ). The to ta l  reaction f o r  

hydrogen dissolut ion can be wr i t ten  as: 

A t  equilibrium, the chemical potential o f  hydrogen i n  

the gas phase and i n  the me1 t, should be equal. Considering 

the ef fect  of external pressure (2)  on the above reaction 



g i  ves: 

which normally i s  expressed by: 

The p a r t i a l  molar volume o f  hydrogen i n  the me1 t, 4, i s  

no t  determined. Due t o  very low s o l u b i l i t y  of hydrogen i n  the  

melt, %can be subst i tu ted  by the molar volume o f  mel t  . 
The amount o f  dissolved gas can thus be calculated from 

equation 5. 

I n  the absence o f  external pressure and w i t h  moderate 

pressures o f  hydrogen, equation 5 reduces to: 

This equation i s  known as Sieverts law (3). The values 

o f  constants A and 8, f o r  aluminium and gold a l l oys  are 

determined experimentally a t  P =P . The Siever ts  apparatus 
H2 

was employed f o r  the measurements, and the r e s u l t s  are 

presented i n  the papers I and 11. E f f e c t  o f  a l l o y i n g  elements 

on the gas solubi li t y  are determined by ca l cu la t i ng  

i n te rac t i on  c o e f f i c i e n t s  (4). The r e s u l t s  ind ica te  tha t :  

a-Si 1 icon and i r o n  decrease the sol ubi 1 i ty o f  hydrogen 

i n  aluminium, whereas w i t h  i r o n  a t  higher temperature, 

and t i tanium i t  increases. 

b-For gold a l loyed w i t h  copper o r  palladium, hydrogen 

s o l u b i l i t y  increases w i t h  a l l o y i n g  conte::t. 



2. NUCLEATION 
------------- ------------- 

Nucleation o f  pores i s  normally treated by the method 

derived by Gibbs (5) more than 100 years ago. The pressure 

caused by the dissolved gas i n  the melt, P '  , i s  the d r i v ing  
H2 

force f o r  poreformation i n  castings. During cooling, the gas 

sol ubi 1 i t y  i n  the me1 t decreases, see equation 5. Assuming 

tha t  the gas content i n  the mel t  remains constant, P '  
H2 

increases, and can be evaluated as a function o f  i n i t i a l  gas 

content , appl i ed  ambient pressure and temperature from 

A t  mechanical equil ibrium, the gas pressure i n  a bubble, 

Fbis re lated t o  the ambient pressure Pa, and surface tension 

Y 

Gas pressure required f o r  nucleating a bubble can be 

calculated by equating P =PI ,and considering the act iva t ion 
H2 

energy for nucleation (6): 

This indicates tha t  P '  o f  about 4000G atm, i s  required 
H2 

t o  form a bubble homogeneously. This presswe i s  too high t o  

be achieved i n  even highly supersaturated me1 t s  computed by 

equation 7. I t  i s  thus, concluded that  the pores, observed i n  

the samples, must have formed hetrogeneously. The usual meth- 

od t o  t r ea t  the hetrogeneous nucleation i s  t o  look a t  a gap, 

formed on a f l a t  substrate. I n  paper I V ,  a model f o r  hetro- 

geneous nucleation i s  presented. I n  a me1 t, there usual ly are 

par t i c les  which can cause hetrogeneous nucleation. In a sphe- 

r i c a l  substrate, the size o f  the part ic les,  as well  as, the 

difference i n  surface tensions i n f  1 uence the nucleation. 

Assuming : 



the required work f o r  nucleat ion can be calculated as a func- 

t i o n  o f  p a r t i c l e  size. 

P '  obtained from equation 11, reduces from 40000 atm t o  
" 2  

l c ; ~  pressures of 10-20 atm w i t h  p a r t i c l e s  la rger  than 2 urn, 
aad i t  reduces fu r ther  w i t h  l a rge r  par t ic les .  Aluminium oxide 

f u l f i l l s  the condi t ion se t  by expression 10, ref(7), and i t  

i s  e a s i l y  formed dur ing mel t ing and cast ing according t o  the 

fo l lowing react ion: 

The sources o f  water i n  the above reaction, are due t o  

moisture i n  the a i r ,  combustion products and etc. The r e s u l t -  

i ng  atomic hydrogen dissolves rap id l y  i n  the mel t  and preci -  

p i t a t e s  as pore during so l i d i f i ca t i on .  

3. GROWTH PROCESS 
----------------- 
----------------a 

I n  order t o  study the nucleat ion and growth o f  the pores 

and a l so  the production o f  me ta l l i c  foam, aluminium, A1-IO%Fe 

and A1 -4ITi  were saturated w i t h  hydrogen a t  1000 C. E lectro-  

magnetic 1 ev i  t a t  ion technic was employed. The degree o f  sa tu- 

r a t i o n  was con t ro l l ed  by varying the pressure o f  hydrogen 

during gas treatment. The equipment i s  described i n  the paper 

I I I. After equi 1 ibrium, they were quenched i n  a watercooled 

copper mould, a t  ambient pressure o f  6 atm. This treatment 

enhances formation o f  f i nne r  pores (8-1 1 ), which were inten-  

ded fo r  producing meta l l i c  foam. The size o f  the pores i n  the 

samples increased w i t h  the hydrogen con ten t  between 50-200 

p m .  I n  the case o f  pure aluminium they were mostly spherical 

whi le i n  A1-4%Ti and A1-1OXFe they were i r regu la r  and i n f l u -  

enced i n  shape by primary T i  (P ) and Fe(8). The growth mecha- 

nism f o r  pores i n  aluminium samples has been t reated by the 
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fo i  1 owing model : 

During quenching, P i  increases. A suf f ic ient  pressure i s  

achieved a t  a c r i t i c a l  %emperature w i th  the presence o f  

part ic les,  which pores can nucleate. As the cool ing 

continious, the degree of supersaturation increases. Ndrogen 

atoms w i th  higher potent ia l  i n  the surrounding, d i f fuse  i n t o  

the bubble, and i t  expands. With the increase o f  radius, the 

pressure inside the bubble diminishes and causes a higher 

d r i v ing  force f o r  d i f fusion;  

A t  the same time due t o  depletion , d i f fus ion  distance 

for  hydrogen atoms increases and i t  reduces the ra te  of gas 

transport t o  the bubble. The rate o f  transport o f  hydrogen 

can be calculated using Fick 's f i r s t  law: 

The concentration of  hydrogen i n  bulk me1 t x i i s  obtained 

from the gas analyses. Hydrogen concentration i n  the me1 t a t  
P 

the gas bubble interface, XHis given by equations 5 and 8 as: 

Combining eqations 1 7-1 9 resul ts:  

Inser t ing dr/dt=dT/dt.dr/dT and integrat ion gives the 

f ina l  pore size. 



dT 
rf 2 (3Pa+4Y) 
1 dr = P TdT 
r* 3R #r* 

(21 
vm 

This model ind icates t h a t  the f i n a l  s ize  o f  the  pores 

increases w i t h  the hydrogen content, and decreases w i t h  

higher ambient pressure and higher coo l ing  rates. The r e s u l t s  

based on the presented model were i n  a good agreement w i t h  

the measured values presented i n  the paper I V .  

4.METALLIC FOAM 
--------------- --------------- 

The above mentioned samples were remelted a t  redaced 

grav i  t y  and reduced ambient pressure. Reduced g r a v i t y  was 

achieved e i t h e r  using a sounding rocket  o r  an a i rp lane f l y i n g  

a parabol ic  t ra jec tory .  The devices f o r  remelt ing the samples 

are described i n  the paper 111. A f i lament  extracted from a 

halogen p ro jec to r  lamp was used as the heat ing element. It 

was inser ted i n  a c a v i t y  i n  the sample. Sample was remelted 

i n  about 15 seconds and so l  i d f y  i n  about 20-40 seconde depen- 

ding on the gas (He o r  Ar) and ambient pressure. During re-  

me1 t i ng ,  pores expanded and they remained wh i th in  the  samples 

dur ing sol i d i f  icat ion.  Thus, pieces of m e t a l l i c  foams, about 

2-3 grams were made. Density o f  the samples before and a f t e r  

remelt ing were measured. Re la t ive  reduct ion o f  densi ty  was 

calculated f o r  the samples. Pores s ize  and number were meas- 

ured. The resu l t s  are presented i n  paper V . 

Samples o f  A1-4%Ti t reated a t  0.5-1 atm hydrogen and 

remelted a t  0.1 atm achieved 50% reduct ion i n  densi ty  w i t h  a 

uniform d i s t r i b u t i o n  o f  pores. I n  aluminium cases, r e l a t i v e  

reduct ion of density d i d  no t  exceed more than 5%. Pore were 

i r r e g u l a r  and r e l a t i v e l y  large. The shape o f  pores i n  these 

cases was inf luenced by co l l os ion  as we l l  as expansion. A1 , 
A1-lO%Fe, and A1-4%Ti have s o l i d i f i c a t i o n  range o f  0, 200, 

390 C, respect ively.  Hydrogen s o l u b i l i t i e s  as measured i n  

previous work increases f o r  the a1 loys  i n  the same order. The 

resu l t s  ind ica te  t h a t  increasing sol i d i f  i c a t i o n  range and gas 

s o l u b i l i t y  are e f f e c t i v e  parameters i n  producing m e t a l l i c  

foam. Expanded pores, a re  more e f fec t ive ly  trapped i n  the 



mushy zone, by primary T i  and Fe and co l  los ion  was reduced. 

5. EFFECT OF SHRINKAGE 
...................... -------.-------------- 

Formation o f  shrinkage pores i n  aluminium, aluminium 

copper and aluminium s i l i c o n  a l l o y s  are studied and the 

resul  t s  are presented i n  paper V I  . The e f fec t  o f  hydrogen 

content, mode o f  s o l i d i f i c a t i o n ,  impur i t i es  i .e aluminium 

oxide, and modi f ie rs  on the poros i ty  are invest igated. The 

hydrogen content o f  the a l l o y s  p r i o r  t o  cas t ing  was varied, 

w i t h  water saturated argon i n jec ted  i n t o  the mel t  f o r  

d i f f e r e n t  periods. They were  subsequent;^ cas t  i n  a 

rectangular cas t  i r o n  mould. The hydrogen content, area 

f rac t i on  o f  po ros i t y  and s ize  o f  the pores was then measured. 

The ef fect  of mod i f ie rs  was studied by adding 100 ppm Na o r  

250 ppm S r  a f t e r  gas treatment. The r e s u l t s  ind icated t h a t  

the poros i ty  i n  the samples increases w i t h  durat ion o f  gas 

treatment more than the hydrogen content. With longer per iod 

o f  gas treatment, the amount o f  aluminium oxide i n  the mel t  

increases which subsequently forms more nucleat ion s i t e s  f o r  

pores. This conclusion i s  i n  accordance w i t h  the model for  

hetrogeneous nucleat ion presented above. Porosi ty  a1 so 

increased w i t h  the s i l i c o n  content and add i t i on  o f  modif iers. 

S i l i c o n  reduces reduce the surface tension (12), which 

f a c i l i t a t e s  the pore nucleat ion. 

A model f o r  formation o f  shrinkage pores i n  long s o l i d i -  

f i c a t i o n  range a l l o y s  i s  a lso  presented. The enrichment o f  

hydrogen and the pressure drop i n  the me1 t caused by shr in-  

kage are accounted for  i n  t h i s  model. During s o l i d i f i c a t i o n ,  

mel t  i n  the i n t e r d e n d r i t i c  area i s  enriched w i t h  hydrogen and 

the pressure o f  hydrogen i n  the mel t  thus increases, and can 

be calculated through equation 7. I t  i s  becuase the hydrogen 

s o l u b i l i t y  i n  the s o l i d  i s  much less than i n  the l i q u i d .  Due 

t o  h igh d i f f u s i v i t y  o f  hydrogen and a l so  shor t  distance f o r  

d i f f us ion ,  100um dendr i te  arm spacing, the l eve r  r u l e  can be 

appl ied. The pressure drop caused by shrinkage i s  ca lcu la ted  

w i th  a model presented by Piwonka (13). Assuming t h a t  pore 

nucleat ion i s  hetrogeneous and t h a t  the s ize  o f  the pores are  



less than the remaining l i q u i d  between the dendrite arms, 

maximum pore size can be calculated as funct ion o f  hydrogen 

conteqt, dendrite arm spacing, and distance from the ra iser  

by equation: 

That size o f  the shrinkage pores varies between 10-50 urn 
close t o  the ra iser  and 43-60m close t o  the ch i1  1 depending 

on the hydrogen content. These resu l t s  are i n  a good 

agreement w i th  the measured s ize o f  the sh r i  kage pores pre- 

sented in paper VI. 

6. Hydrogen Embrittlement 
......................... ......................... 

The hydrogen embri tt lement i s  a we1 1 known phenomena i n  

metals and special ly i n  steel. The mechanisms are d i f f e ren t  

for various metals. I n  steels, an accepted mechanism appears 

to  be associated w i th  the migration of hydrogen atoms t o  

l a t t i c e  imperfections o r  s t ra in  f i e lds  associated w i th  the 

imperfections. During the l a s t  stage o f  the pore growth, the 

pressure increases and causes the d i f fus ion  o f  hydrogen t o  

the structure, which can lead t o  hydrogen embrittlement. This 

process can a1 so occure i n  amorphous metals provided tha t  

they contain hydrogen before production. This matter has been 

studied i n  the paper V I I .  

Experiments were performed by in jec t ing  hydrogen gas t o  

Fe(SiBC) a l loy ,  before rapid quenching by c h i l l  block melt 

spinning method. Cool ing ra te  and hydrogen content were 

varied. The X-ray measurements and bending t es t  indicated 

amorphous structure but  b r i t t l e .  The ef fec t  o f  hydrogen on 

the amorphous t rans i t i on  was negl ig ib le.  Embri ttl ement caused 

by hydrogen i n  these samples, has the same mechanism, 

although due t o  rapid quenching pores d i d  not form and 

hydrogen i s  d i r ec t l y  trapped i n  the structure. 



CONCLUDING REMARKS 
='==*========I==== 

The papers presented i n  t h i s  thesis show that :  

I ) Pores nucleate heterogenously . Reducing hydrogen and 

fore ign p a r t i c l e s  i n  the me1 t would reduce the porosity.  

11) The p o s s i b i l i t y  o f  producing meta l l i c  foam i n  reduc- 

ed g rav i t y  i s  proved. Al loys w i t h  long s o l i d i f i c a t i o n  range 

and moderate hydrogen content and low remelt ing pressure 

inhance the process. 

111) Existence o f  t,ydrogen i n  i r o n  base amor?hous 

ribbon, cause t r a n s i t i o n  from d u c t i l e  t o  b r i t t l e  behaviour. 
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used in equation LIST OF SYHBOLES 
==rtfDrt=tSt==P= 

0 

u82 
standard chemical potent ia l  

of hydrogen i n  the gas phase 
0 

51 standard chemical potent ia l  
of hydrogen i n  the melt 

R gas constant 

T temperature 

X~ - m l e  f rac t ion  of hydrogen i n  me1 t 

v n p a r t i a l  molar volus# o f  hydrogen 

t t o t a l  pressure i n  the gas phase 

standars pressure of hydrogen 

pressure o f  hydrogen 

L?il constant 

v 
m molar v o l m  o f  melt 

P '  pressure o f  hydrogen i n  the melt 
H2 

Pb Pressure i n  the bubble 

r radius of the bubble 
'/P surface tension between me1 t and gas 

P 
a 

ambient pressure 
W* act ivat ion energy f o r  nucleation 

k Boltzman constant 

Y surface tension between pa r t i c l e  and melt 
n y P~P, y t i e  10,11 

radius of the pa r t i c l e  

number of moles o f  gas i n  the bubble 

vol m e  of the bubble 

hydrogen d i f f u s i v i  t y  

cool ing ra te  

i n i t i a l  hydrogen content 

dendrite arm spacing 

Sisverts constant 

radius of shrinkage pore 

v iscosi ty 

corrected shrinkage coef f ic ient  

so l i d i f i ca t i on  ra te  

length of the casting 

t ro tos i  t y  fac tor  

ha l f  o f  the mould height 
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1. ABSTRACT 
-.---------- ----------- 

So lub i l i t y  o f  hydrogen i n  l i q u i d  aluminium and Al-Ti, 

A1 - S i  , and A1 - Fe has been studied. The s o l u b i l i t y  equations, 

the standard heat o f  solut ion and the dependency of 

interact ion paran~~ters  on temperature have been determined. 

S i l icon and i ron  decrease the s o l u b i l i t y  o f  hydrogen while 

t i tanium increases it. A t  high temperature, i r o n  also 

increases the hydrogen sol ubi 1 i ty. 



2. INTRODUCTION 
--------------- --------------- 

Di f ferent  forms o f  porosity, l i k e  pinholes, blow-holes, 

inter-dendri t i c a l  porosity, gas bubbles, etc. are d i r ec t l y  

re lated t o  the gas content o f  a melt p r i o r  t o  casting. 

I n  aluniniun alloys, hydrogen i s  the only gas which 

dissolves i n  a measureable amount. It i s  the main cause f o r  

pore formatis;n i n  these alloys. Measuring the gas s o l u b i l i t y  

i n  the me1 t provides basic information t o  understand and 

explain the mechanism o f  pore formation. 

Thee are two main methods f o r  measuring gas s o l u b i l i t y  

i n  metals: 

i ) Sampling Method 

i i )  Hot Volune Method 

'The "Sampling Method" i s  based on f i r s t  equil ibeiaating 

the samples a t  the desi red temperature and atmosphere, 

followed by a rapid quench. The gas content o f  the quenched 

samples i s  then measured by "Extraction method" o r  "Vacuum 

melting". The loss o f  gas from the samples during quenching 

and handling and also during gas determination causes 

inaccuracy wi th  t h i s  method. However, t h i s  method has been 

widely used (1-14). 

The "Hot Volume Method", o r i g i na l l y  developed by Siverts 

i n  1910 (15-16), i s  based on the dif ference of volumes o f  an 

iner t  and a soluble gas which are required t? f i l l  the 

react ion chamber a t  constant temperature. The dif ference i n  

volumes i s  the s o l u b i l i t y  o f  the reactive gas a t  that  

temperature. This method has also been widely used (17-25). 

Some disadvantages w i th  the "Hot Volume Method" are 

absorption and reaction o f  react ive gas w i th  the crucible, 

the reaction chamber and oxides on the sample. The dif ference 



i n  the heat conductivi t ies o f  the gases also en ta i l s  varying 

thermal gradients which fur ther  incv-eases measurement errors. 

For exam~le hydrogen has a thermal conductivi ty equal t o  
4 

4 . 7 ~ 1 0 -  (cal/cmjseclK) a t  50% (26). It i s  1.2 and 10 times 

largcr  than helium and argon respectively a t  the same temper- 

ature. 

Ransley (27,28,5), Gpie(29) and Simensen (30) have 

measured tho s o l u b i l i t y  o f  hydrogen i n  A1-Cu, Al-Si, A1-Mg 

a l loys using both the above mentioned methods. 

I n  the present invest igat ion s o l u b i l i t y  o f  hydrogen i n  

pure aluminium and under the a l loy ing  influence o f  t i t a n i ~ m ,  

s i l i c o n  and i r o n  have been determined using the "Hot Volune 

Methcd" . 

L. APPARATUS AND EXPERIMENTAL PROCEDURE 
--------------------------------------- ....................................... 

3.1 APPARATUS 

The apparatus i s  shown i n  f igure 1. It consists mainly 

o f  a 50 mn inner diameter ( i  .d) quartz reaction chamber and a 

mercury burette. The crucible, located i n  the reaction 

chamber, i s  o f  aluminium oxide. The dead volume o f  the 

reaction chamber was reduced by inser t ing two half-spheres o f  

quartz a t  the top and bottom o f  the crucible. The temperature 

was measured w i th  a chrome1 -a1 me1 thermocouple protected by 

an aluninium oxide tube. A low frequency induction furnace 

was used as the heat source. 

Reaction chamber was sealed by s i  1 icon greased glass 

j o i n t  which was cooled by a water-jacket system. Ambient 

pressure and temperature were registered w i th in  an accuracy 

o f  20.25 m Hg and 20.25°~ respectively. Me1 t temperature was 

control led wi th in  ~ O C .  The main buret te was also used as an 

internal  manometer. 

The burette was made o f  a 20 nun i .d. tube having a 



height o f  800 mn. The volune o f  the buret te was larger  than 

tha t  o f  the reaction chamber. This reduced the errors t ha t  

could have been caused by refi 11 ing. 

The volume and pressure i n  the buret te were control led 

by varying the leve l  o f  a mercury reservoir. This was act iva- 

ted by a modified screw system driven by an e l ec t r i c  motor. 

The hot volume was measured w i th  he1 ium. It has the thermal 

properties close t o  hydrogen. Instead o f  constructing a pur i -  

f i ca t ion t ra in ,  gases of high p u r i t y  were used. Both gases 

were supplied by AGA Stockholm. The impurity content o f  both 

gases were: 

o2 < 10 P P  

H20 < 10 Ppn 
t o t a l  pu r i t y  > 99.995% 

3.2 PREPARATION OF THE SAMPLES 

Pure aluminium (99.98% ) and ingots o f  A1-7% S i  were 

supplied by A.S.V (Ardal og Sunndalsora Verk, Norway). Alloys 

o f  4%Ti and 1 OXFe were made as fo l  lows: 

Pure aluminium was melted i n  a "Super Kanthal" furnace 

i n  a graphite crucible. The desired amount o f  a l l oy ing  

element was wrapped i n  an aluminium f o i l  and added under 

protect ive argon atmosphere. Samples were then cast i n t o  a 

graphite mould w i th  a diameter o f  33 mn and cut  t o  a height 

o f  50 m.A hole f o r  placing the thermocouple was d r i l l e d  ir, 

the center o f  each sample. The samples were then washed w i th  

aceton. The mass o f  the samples were measured. Samples were 

normally i n  the range o f  110- 120 grams. 

3.3 PROCEDURE OF THE EXPERIMENTS 

Samples were inserted i n t o  the reaction chamber and 
0 

degassed f o r  ha l f  an hour a t  about 750 C. The buret te was 

f i l l e d  w i th  helium and then connected t o  the reaction 

chamber. Pressure i n  the buret te was balanced w i th  the 



ambient pressure by varying the level  o f  the reservoir. The 

vol m e  o f  he1 ium i n  the buret te p r i o r  and a f t e r  connection t o  

the reaction chamber a t  a given melt temperature was adjusted 

t o  S.T.P. conditions. The hot volume f o r  helium can thus be 

depicted by : 
A 

OvT i s  the volume which contains an equivalent amount o f  He; 
gas a t  0 C as the actual volume does a t  the investigated 

temperature and pressure. Hot volumes o f  he1 i un were measured 

a t  d i f f e ren t  temperatures i n  the range of 665-920 OC . The 

same procLdure was repeated w i th  hydrogen. It took about 10-15 

minutes t o  reach equilibrium.The dif ference i n  the hot volume 

f o r  hydrogen and he1 ium gave the amount o f  hydrogen dissolved 

i n  the me1 t a t  the temperature cf in terest  and can be determ- 

ined by equation (2): 

where: 

m = mass o f  the sample (grams) 

PI= ambient pressure (cm Hg) 

Po= standard pressure (76 cm Hg) 
0 

TI= room temperature ( K)  
0 Tc standard temperature (273 K )  

D = diameter o f  the buret te (2 cm) 

hl= height o f  the mercury i n  the burette 

before connection t o  the reactiom chamber (cm) 

h2= height o f  the mercury i n  the buret te 

a f te r  connection t o  the reaction chamber (cm) 

S = s o l u b i l i t y  o f  hydrogen (cc Hd100 g r )  



4. RESULTS 
---------- ---------- 

The resu l ts  are presented i n  table 1. The volumetric 

s o l u b i l i t y  o f  hydrogen (cc H2/100 grams) as a fuaction of 

temperature f o r  aluminium and A l -  a l loys  are shown i n  f igures 

2-5. Figures 2-5 show tha t  the solubi 1 i t y  o f  hydrogen increa- 

ses w i t h  increasing temperature. Titanium has a strong e f f ec t  

on the s o l u b i l i t y  w i th  increasing temperature, f igure 3. 

S i l i con  and i r on  both decrease the so l ub i l i t y ,  f igures 4-5 . 

5. THEORY 
--------- -- ----- -- 

5.1 PURE ALUMINIUM 

Dry hydrogen dissolves i n  l i q u i d  aluminium a l l o y  by 

three gradual steps (31 1: 

a: Dissociat ion o f  molecular hydrogen i n t o  atomic form 

i n  the boundary layer: 

112 H2(g) - H (g) 
b: Dissolving o f  atomic hydrogen i n  the boundary layer 

of the me1 t: 

H (g)  - H* 
c: ' ransport o f  hydrogen t o  the bulk o f  the mel t  by 

d i f fus ion:  

H* - - H 

Total react ion can be wr i t ten  as: 



I n  pure aluminium we have : 

I n  t h i s  treatment wt.pct o f  hydrogen i s  used as the 

standard state. It i s  f u r t h e r  assumed t h a t  a c t i v i t y  o f  hydro- 

gen, fH,goes t o  u n i t y  when th2 concentrat ion o f  hydrogen goes 

t o  zero and P i s  e q ~ a l  t o  1 atm. Thus: 
'42 

AGO=-R.T. l n ( % ~  pure) ( 5 )  

I n  f i g u r e  6, log(XH) i s  p l o t t e d  as a func t ion  of (1/T) 

f o r  pure aluminium. A s t r a i g h t  l i n e  i s  f i t t e d  t o  the po in ts  
0 

by the l eas t  square method. A s ~ m i n g  t h a t  AH' and AS var ies 

s i  i g h t l y  a t  the invest igated temperature range, t h e i r  values 

may be calculated from the  slope and in te rcept  respect ively.  

The s o l u b i l i t y  equation and value o f  &loare given i n  t ab le  2. 

The respect ive volumetric func t ion  (cc H2 / I 00  grams) as a 

funct ion of temperature i s  presented i n  f i g u r e  2. 

5.2 THE EFFECT OF ALLOYING ELEMENTS ON THE SOLUBILITY 

Although, react ion ( 3 )  i s  v a l i d  f o r  the s o l u b i l i t y  o f  

hydrogen i n  aluminium a l loys ,  however due t o  the i n te rac t i on  

o f  the a l l o y i n g  elements, the value o f  fH i s  not  u n i t y  . The 

solubi 1 i t y  data presented i n  f igures  2-5 show a st rong i n f l u -  

ence from the a l l o y i n g  elements. l he re fo re  equation 4 should 

be t reated as fol lows: 

By def in ing AGE as the excess f r e e  energy (31): 

0 0 
qG,=AG -AGE =-R.T.ln(lH a l l o y )  

and r e w r i t t i n g  equation ( 9 )  r e s u l t s  i n  : 



Figures 7-9 depict p lo ts  o f  log(%N a l l o y )  as a funct ion 
0 

o f  (1/T) f o r  the three investigated al loys. The values o f  4 i 1  
0 

and AS1 are evaluated i n  the same way as f o r  pure aluminium. 

So lub i l i t y  i s  calculated, converted t o  (cc He /100gr) and 
0 

p lo t ted  i n  f igures 3- 5. The s o l u b i l i t y  equations and AH1 are 

also given i n  tab le  2. Equation 8 may be rewr i t ten t o  give: 

f H = . F ~ ~ P ( - ~ E / R . ~  )=(%H pure)/(%H a1 loy)  (11) 

llGEcan be calculated as: 

Wagner( 33) and Chipman(34) have defined " in terac t ion 

parameter" as the coef f ic ients  i n  the Taylor expansion o f  the 

logarithm o f  the a c t i v i t y  coef f ic ient :  

The f i r s t  and second terms i n  the r i g h t  hand side o f  

equation (13) are assumed t o  be zero and the t h i r d  term ,"in- 

teract ion parameter" may expressed i n  (wt.pct) as : 

- where the der iva t ive  i s  taken f o r  the l i m i t i n g  case o f  

zero concentration o f  the solute (35-37). Values o f  GE , are 

calculated from tab le  2 . Values o f  log( fH)  a t  700-800-900 OC 
i and the in terac t ion coef f ic ient ,  eH , a t  these temperatures 

are calculated and presented i n  table 3. 



6. CONCLUSION 
------------- ------------- 

Comparision o f  the present data on the so lub i l  i t y  o f  

hydrogen i n  pure aluminium w i t h  those reported by Opie (29) 

and Ransley (27) shows present values t o  be about 8% higher, 

compared t o  those reported by Ransley and about the  same as 

Opie's resu l ts .  For A1-7%Si the resu l t s  are about 10% higher 

than t h a t  reported by Opie. No data was found on the  sol ubi -  

l i t y  o f  hydrogen i n  A1-4%Ti and A1-IO%Fe. Table 3 shows the  

e f fec t  o f  a1 l oy ing  elements and temperature dependency, and 

i t  can be concluded that :  

1. S i  1 icon decreases the  sol ubi 1 i t y  o f  hydrogen i n  a1 umi - 
nium a t  a1 1 o f  the invest igated temperature of i n t e -  

rests.  

2. I ron  decreases the sol ubi 1 i t y  but  t h i s  e f fec t  becomes 

less a t  increasing temperatures. 

3.Ti tanium increases the sol u b i l  i t y  and the e f f e c t  

becomes la rge r  a t  increasing temperatures. 

The s o l u b i l i t y  o f  hydrogen i n  the s o l i d  s ta te  i s  always 

m ~ c h  lower than t h a t  i n  the l i qu id .  It thus may be expected 

tha t  there i s  a small e f f e c t  from the a l l o y i n g  elements on 

tne s o l u b i l i t y  i n  the s o l i d  state. It means t h a t  the r i s k  f o r  

poreformation w i l l  increase i n  a l l oys  containing t i tanium, 

but w i l l  decrease fo r  s i l i c o n  and a t  low temperatures a lso 

f o r  i ron. 
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1. ABSTRACT 
----------- ----------- 

Hydrogen sol ubi 1 i t y  i n  gold, gold-copper and gold- 

palladiur,i a l loys  has been studied. So lub i l i t y  equations, 

standard heat o f  sol u t ion and temperature dependency o f  the 

interact ion parameter have been determined. Both copper and 

palladium increase the sol ubi 1 i ty.  With increasing temperatu- 

re, palladium has higher e f f ec t  on the s o l u b i l i t y  o f  hydrogen 

than copper. 



2. INTRODUCTION 
--------------- --------------- 

The relat ionship between the gas content of the me1 t and 

defects due t o  porosi ty i n  the casting has been an interes- 

t i n g  subject for years. I n  short, melts have gas s o l u b i l i t i e s  

about 5-10 times greater than i n  the so l i d  state a t  the melt- 

ing point. This solubi 1 i t y  increases w i th  increasing tempera- 

ture. During casting, gas s o l u b i l i t y  decreases w i t h  dimini- 

shi nq me1 t temperatures. A sharp decrease o f  the sol ubi 1 i t y  

a t  the melt ing po in t  also cause a concentration pi le-up o f  

the gas a t  the so l i d i f i ca t i on  front. 

With the presence o f  proper nucleants i n  the l i q iud ,  the 

pores w i l l  form and grow. Al loying elements influence the gas 

s o l u b i l i t y  o f  the melt which i n  turn a f fec ts  the pore forma- 

t i o n  mechanism. Hydrogen i s  the only gas which d-issolves i n  

gold i.: small quartt i t ies (1-2). Adding a l loy ing elemelzts stich 

as copper o r  palladium t o  pure gold i n  dental a l loys  i s  

common. i h o  practice, not only reduces costs but also 

enhances mechanical properties o f  the a1 loys. However, some 

draw backs are that they increase the hydrogen s o l u b i l i t y  i n  

the l i q u i d  state. This increase i n  the so lub i l i t y ,  i n  tu rn  

increases the tendency f o r  poreformation i n  the casting. 

Gas s o l u b i l i t y  measurements are performed by two main 

methods, namely "Sampling Method" (3-16) and "Hot Vol m e  

Method" (17-27). So lub i l i t y  o f  hydrogen i n  pure gold i n  so l i d  

and 1 iqu id  state has been studied e a r l i e r  (1-2) using both 

methods. The aim o f  the present work i s  t o  study the e f f ec t  

o f  temperature and a1 loy ing elements, copper and pal l a d i m ,  

on the hyarogen s o l u b i l i t y  using the "Hot Volume Method". 

Th is  method was o r i g i na l l y  developed by Sieverts (17-18) and 

has been used i n  an e a r l i e r  work by one o f  the authors (35). 

Tne method i s  based on the dif ference o f  volumes o f  an i n e r t  

and a reactive gas which are required t o  f i l l  the reaction 

c hanber a t  constant temperature. The observed dif ference i n  

volunes corresponds t o  the s o l u b i l i t y  o f  the reactive gas a t  

the investigated temperature. 



3. APPARATUS AND EXPERIMENTAL PROCEEDURE 
........................................ 
--------------------------ae------------ 

3.1 APPARATUS 

The Sieverts apparatus was used i n  t h i s  work. Figure 1 

shows the schematic drawing o f  the apparatus. It was mainly 

composed o f  a quartz reaction chamber and a mercury burette. 

The crucib le was also made o f  quartz. The reaction chamber 

and crucib le had inner diameters o f  15 and 6 mn respectively. 

Thermocouples o f  Pt  ,Pt-1 OXRh and Pt-6%Rh,Pt-30%Rh were used 

f o r  Au-Cu and Au-Pd al loys. They were protected by an alumin- 

ium oxide shield. Melt temperature was control led w i th in  22 

'C. The mercury buret te was made o f  a 6 mn i.d. tube w i th  

height o f  850 mm. The height o f  mercury i n  the buret te could 

be measured w i th in  +0.25mm. Helium was used as the insoluble 

gas t o  detect the hot volume. High pu r i t y  helium and hydrogen 

were used. The impurit ies content are given below: 

02< 10 ppm 

H20 < 10 ppm 

Tot81 pu r i t y  > 99.995% 

A low frequency induction furnace was used f o r  me1 t ing. 

The furnace enabled good s t i r r i n g  and fast response while 

adjust ing temperatures. S i l i con  grease was used i n  the glass 

goints. To cool the quartz j o i n t ,  water jacket was u t i l i zed .  

3.2 PREPARATION OF THE SAMPLES 

A1 loys were made o f  pure gold (24K), high pu r i t y  copper 

and palladium. Experiments were i n i t i a l l y  performed w i t h  pure 

gold and subsequently by adding copper, t o  make a l loys 

containing 4, 8, 10, 12, 13, 15, 20, 40% Cu. The same 

proceedwe was repeated f o r  pal ladiun: t o  make a1 loys o f  2, 4, 

6, 8, 102 Pd. The i n i t i a l  mass o f  pure gold was about 30 

grams. 



3.3 PROCEDURE OF THE EXPERIMENTS 

Each experiment was i n i t i a t e d  by evacuation o f  the 

apparatus for about 30 minuts a t  1 1 0 0 ~ ~ .  Ambient pressure and 

temperature were recorded using a mercury thermometer 

(accuracy 20.25 C )  and a mercury barometer (accuracy t0.25 mn 

Hg). The burette was f i r s t  f i l l e d  w i th  helium and then 

connected t o  the react ion chamber. The hot volume o f  the 

system a t  S.T.P. and given melt temperature "T" could be 

calculated by: 

-where: 

PI= ambient pressure (an Hg) 

Po= standard pressure (76 cm Hg) 
0 

TI= room temperature ( K )  
0 

To= standard temperature (273 K)  

h l  ,hz= height o f  mercury i n  the buret te before and a f t e r  

conection t o  the reaction chamber (cm) 

D = diameter o f  the burette (0.6 cm) 

The hot volume o f  the system was zedsured a t  d i f f e ren t  

temperatures.The same procedure wbs applied w i th  hydrogen i n  

the same range o f  temperatures.It took about 20 minutes t o  

reach equi l ibr ium f o r  each temperature.The amount o f  hydrogen 

dissolved i n  the melt could be calculated as: 

where m i s  the mass o f  the sample i n  grams, and S i s  the 

s o l u b i l i t y  i n  ( cc Hz /  100 grams). 



4. RESULTS 
---------- ---------- 

The resu l ts  o f  the measurements are given i n  tables 1 

and 2 f o r  Au-Cu and Au-Pd a l loys respectivly. The s o l u b i l i t y  

measurements i n  (cc H2/100 grams) as a  function of temper- 
0 

ature, C, are also given i n  f igures (2-16). A l l  resu l ts  ind i -  

cate that  the s o l u b i l i t y  increases w i th  temperature and 

a l loy ing element. They also show that  Pd increases the solu- 

b i  1 i t y  o f  hydrogen more than copper.This w i  11 be discussed 

la te r .  

5. THEORY 
--------- --------- 

5.1 PURE GOLD 

Hydrogen dissolves i n  the melt by three gradual 

steps (28): 

a: Dissociation o f  molecular hydrogen i n t o  atomic form 

a t  the boundary 1  ayer o f  the me1 t : 

b: Dissolving o f  atomic hydrogen i n  the boundary layer 

o f  the melt: 

c: Transport o f  hydrogen i n t o  the bulk o f  the me1 t by 

d i f fus ion:  

The t o t a l  reaction can be wr i t ten as: 



The standard f ree  energy changes fo r  t h i s  reac t ion  i s :  

Concentration i n  weight percent and hydrogen pressure o f  

one atmosphere are selected as the standard state. As the 

concentrat ion goes t o  zero, a c t i v i t y  c o e f f i c i e n t  o f  hydrogen, 

fH, goes t o  un i ty ,  and; 

0 
AG =-R.T.ln(%H pure) ( 3 )  

and: 

0 0 
Neglecting small va r i a t i on  o f  AH and AS w i t h  tempera- 

ture,  the general form o f  the s o l u b i l i t y  can be depicted as a 

s t r a i g h t  l i n e  i n  log(%H pure) as a func t i on  of I T ) .  The 

best s t r a i g h t  l i n e  was f i t t e d  t o  the po in ts  f o r  the pure gold 
0 

by the l eas t  square method. The value of AH and the corrected 

form o f  s o l u b i l i t y  w i t h  standard dev ia t ion  aregiven i n  t ab le  

3. 

5.2 THE EFFECT OF ALLOYING ELEMENTS ON THE SOLUBILITY 

Although r ~ a c t i o n  (1) i s  s t i l l  va l id ,  but  due t o  the 

i n te rac t i on  o f  a l l o y i n g  elements, the  value o f  fH i s  nu t  oqual 

t o  un i t y  anymore. The s o l u b i l i t y  data presented i n  f igures  

(2-16) show a strong in f luence from the a l l o y i n g  elements. 

Equation 2 can thus be rewr i t t en  as: 

d = - R . T . l n ( f  .%H a l l o y )  ( 5) 

AGO=-R.T. l n  f,-R.T.ln(%H a l l o y )  (6) 



Again by neglect ing the v a r i a t i o n  o f  AH: and AS; w i t h  

temperature, a s t r a i g h t  l i n e  should pass through these po in ts  

i n  log(%H) and (1/T). The best s t r a i g h t  l i n e  Yas passed by 
0 0 

the 1 east square method and values o f  4i1 and .AS, were calcu- 

la ted.  They were t ransfered t o  the proper u n i t  and p l o t t e d  

w i t h  s o l i d  l i n e  i n  re levant  s o l u b i l i t y  diagrams. Equations 6 

and 7 give the r e l a t i o n  between excess f r e e  energy and a c t i -  

v i t y  coef ic ien t :  

The f i r s t  and second terms on the r i g h t  hand s ide o f  the 

equation are assumed t o  be zero. Wagner (30) named the t h i r d  

term as i n te rac t i on  coe f f i c i en t .  I t  was modif ied s l i g h t l y  by 

Chipman(31) and i s  expressed i n  (wt.pct) as: 

I n  equation 12, the de r i va t i ve  i s  taken as the l i m i t i n g  

case o f  zero concentrat ion o f  the so lu te  (29,32-34). To 

ca lcu la te  the values o f  "f,," a t  temperatures between 1100- 

1300, w i t h  i n te rva l  o f  l oo%,  the corrected fonn o f  so lub i -  

l i t y ,  as given i n  tab le  ( 3 )  i s  used. 

i Values o f  i n te rac t i on  coe f f i c i en t ,  eH ,were calculated 

a t  mentioned temperatures and are presented i n  Table (4). The 

temperature dependency o f  the i n te rac t i on  c o e f f i c i e n t  i s  a lso 

given i n  the same table. Total  heat o f  so lu t i on  as a func t ion  

o f  the a1 loy ing  content f o r  Au-Cu and Au-Pd are p l o t t e d  i n  

f i gu re  17. 



6. CONCLUSION 
-------------- ------------- 

Hydrogen sol  ubi 1 i t y  i n  gold, go1 d-copper and gold-pal l a -  

dium a l l oys  i s  re la ted t o  the a l l o y i n g  content. Figures 2-16 

show the increasing s o l u b i l i t y  w i t h  increasing a l l oy ing  

content. Pal ladium increases the s o l u b i l i t y  more than copper. 

It can a lso be rea l ized by comparing the i n te rac t i on  coe f f i c -  

i e n t  vi'lues; eH Pd 3-4 times more than eH Cu was calculated 

when very small amount o f  a1 l o y  was added t o  pure gold. Comp- 

ar ison of the f igures  2-10 fo r  Au-Cu, a lso  shows s l i g h t l y  

lowered gas s o l u b i l i t y  f o r  a l l o y s  o f  10-12%Cu. Var iat ion o f  

the heat o f  so lu t ion  indicates a minimum f o r  Au-Pd a t  about 

6%Pd. For Au-Cu al loys,  the  heat o f  so lu t i on  decreases 

gradual l y  w i t h  increasing copper content. 
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TABLE 2 : SOLUBILITY OF HbDROGEN (ccH~/~(&RAMs) FOR Au-PD ALLOYS(~C) - 



ALLOY 3 SOLUBILITY(cm H,/100 gram) SOLUBILITY (wt .pet) AH' 1Kcal/mle) 

Au-0 8Cu Log S- 15.3820.95)-(85922453J/T Log(tH)-(). 33~0.95)-(8592+_453)/~ 39.326.6 

~ o g  r-(2.84~0.04)-I4540+_50)/T 

Loq S- (1.7f0.011- (2774_+3)/T 

Loq S-(O.420.18)-t1420f8O)/T 

Log 81 (1.62f0.19) - (32002270I /T 
Loq S=(0.78f0.1s)-(l270f2OO)/T 

Log S=(1.6520.O6)-(2246281)/T 

Log 8=(1.06~0.04)-(L170_+15)/T 

Log 8- (0.7320.01)- (610_+8)/T 

Au-0 IPd Log S- (6.98f0.01)- (10940f73)/T Leq(IHl= (2.93~0.01)-(10940~23)/T S0.120.1 

Au-2 8Pd Log 8-(3.71?0.02)-(5439~27)/T Log(tH)= I-0.3520.02)-(5439_*27)/T 24.920.1 

Au-4 %Pd Log 8=12.82~0.01)-1394b~2.7)/T Log~8H)=~-l.23~0.Ol)-~3946~ZZ7)/T 18.120.1 

AU-6 OPd Log 8- (1.7120.01) - (192424.2)/T Log(tH)-(-2.34~0.01)-(1924~4.2)/T 8.820.02 

Au-8 tPd Log S= (4,7820.01) - (6389fl,8)/T Log(8HJ=(0.7320.01)- (6389*,1.8)/T 29.2520 .Ol 

Au-1OIPd Log S-(7,2520.02)- (10187f291/T Log(tH)- (3.220.02) -1101$7229)/T 16.620.1 

SOLUBILITY EQUATION AND STANDARD HEAT OF SOLUTION 

TEN%) 1100 1200 1300 

Au-Cu -0.14 -0.07 -0.02 eiU- -0,96+5,9. lom4 .T 
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1. ABSTRACT 
----------- 

The design o f  high pressure cast ing and rap id  heating 

furnaces are discussed. These furnaces were used f o r  studying 

the nucleat ion and growth o f  pores and a lso  t o  study the 

poss ib i l  i t y  of producing metal 1 i c  foams i n  reduced gravi ty .  



P a r t i c l e  composites a r e  d j f f  i c u l  t t o  produce from me1 ts.  

Due t o  va r ia t i on  i n  the densi ty  of two phases, they e i t h e r  

f l o a t  o r  sediment during the production process. Thus, i t  

leads t o  uneven d i s t r i b u t i o n  of the p a r t i c l e s  i n  the matr ix.  

I n  order t o  avoid segregation of the pa r t i c l es ,  i t  has been 

proposed t o  use a micro-grav i ty  environment. One o f  the most 

d i f f i c u l t  composite t o  produce from mel ts  i s  m e t a l l i c  foam, 

i .e metals conta in ing numerous small gaseous pores. 

I n  order t o  inves t iga te  the nucleat ion and growth of 

pores and a lso  t o  produce m e t a l l i c  foams d i r e c t l y  from melts, 

aluminium base a1 loys were supersaturated w i t h  respect t o  

hydrogen on ear th  and remelted i n  reduced g r a v i t y  and under 

reduced pressure. 

Reduced g rav i t y  was achieved by two methods. I n  the 

f i r s t ,  a mater ia l  science module was f lown w i t h i n  the 

f r-amework of the Swedi sh sounding rocket  program, PIRAT 

(Pointed Infra-Red Astronomical Telescope ) . The payload was 

launched on the 30th o f  September 1981 using a Nike-Black 

Brant V C rocket. A peak a l t i t u d e  o f  270 Km was attained. The 

durat ion o f  the micro-g f l i g h t  was 410 seconds g i v ing  average 

accelerat ion leve ls  o f  0.3-2x16) g. Reduced g r a v i t y  i n  the 

second case was achieved on board a Lockheed F104 a i r c r a f t ,  

flown i n  a parabol ic t ra jec to ry .  Reduced accelerat ion l eve l s  

of 0.03-0.1 G were achieved f o r  about 50-60 seconds. 

To accomodate the cons t ra in ts  imposed by the f l i g h t  

condi t ions remel t ing furnaces were spec ia l l y  designed t o  

overcome the l i m i t a t i o n s  o f  weight, power supply and durat ion 

of the experiment. 



3. THE HIGH PRESSURE CASTING FURNACE 
- -  ---- -- ------ - ---------------.-- .-  -----------------------------.------- 

Hydrogen s o l u b i l i t y  i n  mel ts  i s  a func t ion  o f  the mel t  

propert ies, temperature and hydrogen pressure. By r a p i d  cool - 
ing, d issolved hydrogen can be arrested w i t h i n  the small 

pores i n  the sample. To produce samples w i t h  the required 

hydrogen supersaturation, a furnace was requi red wherein h igh 

pressure could be regulated and where f a c i l i t y  ex is ted fo r  

rap id  quenching. 

The e lec t ro  magnetic l e v i t a t i o n  technique was chosen. 

With such a technique, the samples could be reacted w i t h  the 

gas a t  high temperature whi le  desired pressure could be 

appl ied and due t o  good s t i r r i n g ,  required time f o r  d issolv-  

ing hydrogen i n  the sample could be minimized. By tu rn ing  the 

furnace o f f ,  sample could be e jected i n t o  a water-cooled 

copper mould and thus be quenched. 

Gas t reated samples had t o  be a t  l e a s t  about 10 grams 

w i th  diameter o f  18 mm and height  o f  15 mm before machining. 

These l i m i t a t i o n s  were imposed by the f l i g h t  condit ions. 

Figure 1 shows a schematic drawing of the l e v i t a t i o n  equip- 

ment b u i l t  f o r  t h i s  purpose using a 1 5  kHz induct ion furnace. 

I t  consis ts  o f  a quartz tube w i t h  the inner diameter 46 mm, 

the wal l  thickness 2.5 11m, and the height  400mm. A copper tube 

w i th  f i v e  turns ( 6 6 m m )  functioned as the induct ion c o i l .  

The lower sect ion o f  the furnace housed a graphite 

c ruc ib le  and a water-cooled copper mould. The quartz tube was 

sealed a t  the top and the sample was inser ted from the bottom 

w i th  the help of a pneumatic device. The water-cooled copper 

n ~ c ; ~ l d  was soldered to  the bottom section. A stomati te 

c y l  inder was used as heat and e l e c t r i c  i nsu la to r  and was 

inscr ted between the c ruc ib le  and the nlould. A graphi te tab le  

w ~ l 5  placed in  the c ruc ib le  j u s t  above the ou t l e t .  The table 

supported the me1 t i n  the center of the induc t ion- f ie ld  where 

Ihrl l i f t i n g  force was a t  i t s  minimun~. 



The wal l  thickness o f  the c ruc ib le  was c r i t i c a l .  Thick 

wal ls  reduce the l e v i t a t i o n  fo rce  and t h i n  wa l ls  l i f t  the 

sample out of the induct ion f i e l d .  The thickness i n  the 

present work was about 3 mm, which was found optimal i n  t h i s  

spp l ica t ion .  The pos i t i on  o f  the tab le  was a lso  c ruc ia l .  It 

was imperative tha t  i t  should be placed exact ly  where the 

induct ion f i e l ?  balanced tne g r a v i t y  f i e l d .  This, i n  turn, 

was inf luenced by the mass and the a l l o y  composition. The 

l a t t e r ,  was due t o  change o f  the e l e c t r i c a l  resistance of the 

sample and the re la ted  e f f e c t  on the eddy currents. 

3.1 EXPERIMENTAL PROCEDURE 

The candidate a l loys ,  A1 , A1-4XTi and A1-1OXFe were cas t  

i n t o  a \.:;ter cooled copper mould w i t h  the diameter 18 mm and 

the height  20 mw. They were subsequently machined t o  a height 

of 15 mnl and washed w i t h  aceton. 

Clean specimens were placed on the graphi te table ins ide  

the c ruc ib le .  The reac t ion  chamber was then closed, evacuated 

and r e f i l l e d  w i t h  hydrogen t o  a predetermined pressure. The 

pressure of hydroge, ras var ied between 0.5 t o  5 a h .  With 

t h i s  technique, d i f f e r e n t  quant i t iec  of hydrogen could be 

dissolved w i th in  the sample. Once the sample had melted the 

process was continued f o r  f u r t h e r  s i x  minutes before the 

furnace was switched o f f .  The me1 t was e jected through the 

channel under the tab le  and v ia  the o u t l e t  hole i n t o  the 

copper mould beneath the c ruc ib le .  To enhance the formation 

of smaller pores, the ambient pressure dur ing quenching, was 

increased t o  6 atm by add i t i on  o f  argon. The me1 t temperature 

was measured by a pyrometer and was about 1 0 0 0 ~ ~  f o r  a 1  I the 

runs. The t o t a l  s o l i d i f i c a t i o n  time i n  the mould was between 

5-1' seconds dependent on the a l loys .  A f t e r  cast ing the 

~ ~ ~ ~ i ~ i ) l e ! ;  were stored i n  1 i q u i d  n i t rogen except dur ing inachin- 

ing t o  proper dimensions. The steuctur  o f  the pores fomed 

i n  t h i s  work Jre discussed i~ reference 1. 



The power package i n  the mater ia l  science module was 

b u i l t  o f  28 s i lver-z 'nk c e l l s  o f  5 Ah capaci ty  which gave a  

nominal vol tage 36 V a t  a  cur ren t  load o f  1 1  amp. This a l low- 

ed abvut 400 W capacity f o r  each furnace dur ing the heat ing 

sequence. For the heating elements under the e x i s t i n g  condi- 

t ions, a  novel so lu t ion  was resorted to. A f i lament  was ex- 

t rac ted  from a  halogen p ro jec to r  lainp, Phi 1  i p s  7787,36V,400W. 

This element had the appropriate dimension and the power 

capacity t o  meet the required heat ing ra te .  To prevent rap id  

vaporizat ion and prolong the l i f e  o f  the f i lament ,  argon o r  

he1 ium atmosphere was employed. The appl ied  voltage was a1 so 

r e s t r i c t e d  to  30 vol ts .  The 1  i f e  time o f  the f i laments was 

now wel l  above the durat ion o f  the experiment. The current  

through the f i lament  was about 10 amperes a t  30 v o l t s  g i v ing  

a power output o f  about 300 W. To prevent shor t  c i r c u i  t i n g  o f  

the f i lament  by the melted sample a  t h i n  boron n i t r i d e  cap 

was inser ted between the sample and f i lament .  Boron n i t r i d e  

i s  an e l e c t r i c a l  i nsu la to r  w i t h  good thermal proper t ie .  The 

samples should be me1 ted w i th in  1 5  seconds. Equation 1 

depicts the appropriate mass t h a t  could be me1 ted w i t h i n  the 

1  i m i  ted time and power f o r  pure aluminium; 

ni mass o f  the sample (gram) 

. PT' , change of temperature i n  the sol i d  phase, 640 ( c )  
' 

me1 t over heat, 50 ( C  ) 

C S  , C L  t h e  spec i f i c  heat o f  s o l i d  and l i q u i d  aluminium 
I' P 

0.215 and 0.26 (ca l /g/K)  

L hedt of fusion of aluniiniuni 95 ( ca l / g )  
ni 

t t o t a l  heating and mel t ing  time, 1 5  sec 

P power del ivered t o  the sample, 240 (W) 

(calculated w i t h  802 e f f i c i e n c y )  

m=3-4 grdnis , volume ~ 2 . 5 - 3  cm 



Thc shape and diinensi ~n o f  the sdn~ples were based on tne 

d rb ign  of the f i lament  dnd a l lowed mass as ca l cu l a ted  above. 

F i g w e  2 shows the f ~ r n a c e  assembly c o n s i s t i n g  o f  the 

f i lament ,  t he  boron n i t r i d e  cap and t he  sample. The furnace 

and sample were assembled by a t t a c h i n g  the sample d i r e c t l y  t o  

the mounting p l a t e  by a screw, f i g u r e  3. The boron n i t r i d e  

cap was then placed i n  the  c a v i t y  o f  the  sample and the  heat- 

i n g  f i l a m e n t  was subsequently lowered i n t o  the cap. Each 

furnace had a he igh t  o f  50 nrm and diameter of 63 mm. The 

temper6 t u r e  was monitored by c hromel -a1 umel thermocouple 

inser ted  i n t o  the sample through a d r i l l e d  hole,  f i g u r e s  2,4. 

lhcee o f  these furnaces were incorporated i n  a cann i s t e r  

s h o ~ n  i n  tbe f i ~ u r e  4. System pressure was monitored by an I C  

pressure transducer mounted on a PC-board a t  the Dottom of 

:lie ,annister. Four cann i s t e r  were incorporated i n  the  module 

Tor the eventual f l i g h t .  

4 . 1  ACTIVATION OF THE FURNACES 
.............................. 

Acce le ra t ion  dur i l tg  the fl i g h t  was moai to red  by acce le r -  

ometers (G-sensors). When en te r i ng  i n t o  the low g l e v e l  p a r t  

o f  the f l  i g h t ,  the G-sensors s t a r t e d  t l ; ~  con t ro l  e l e c t r o n i c s  

f n r  t * je  furnaces i n  the canc i s t e r s .  When the f i r s t  sample had 

1-m~ hed 3 prede tcrmined temperature, the power was switched 

o f f  a f t e r  a programmed de lay (3-6 seconds) and the nex t  

f u r  nace ivas then switched on. This procedure was repeated f o r  

d i  i the furnaces. Depending 03 the gas and pressure used i n  

+fit: cann is te r  i t  took 2G-41' seconds f o r  the  samples t o  

,>,-11 l i l i f y .  

:; . LI)UlPi.ltNT FOR V I D E O  OBSERVATION 
. . - - . - -. . - - - - - - - - - - - - -. - -.. - ----  

Tri t> cr.pcr.imcnts were repeL:ted on board a Lockheed a i r -  

( r., i  t t  w~ t.h ., i ~ t l i  l a r  equ iy ien t .  The processes were rnor~i to red  by 

I I o r  d r  i vcrl Ldillerd. I 1  1 ull~iria t i o r i  o f  the saupl es was 

% , \ v i ( red by s i x  incandescent lamps (24v, 10W). The me l t  i ng t  



expansion and s o l i d i f i c a t i o n  o f  the samples were photographed 

a t  d ra te  of three frames per seconds. The equipment i s  shown 

i n  f i gu re  5. Tota l ly  n ine f l i g h t s  were performed and 27 

samples were processed. The rcsul  t s  of t h i s  invest igat ion are 

presented i n  reference 2. 
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1. ABSTRACT 
----------- ----------- 

Prec ip i t a t i on  o f  rounded pores i n  a1 umini um, A1 -4STi and 

A1-1OLFe has been studied. Samples were equ i l i b ra ted  w i t h  

hydrogen a t  1 0 0 0 ~ ~  and subsequently quenched a t  an ambient 

pressure o f  6 atm. During quenching, due t o  'ncreasing hydro- 

gen pressure i n  the me1 t, pores were formed. A model f o r  

nucleat ion and growth o f  these pores i n  pure metals has been 

presented. I n  accordance t o  t h i s  model, existence of fo re ign  

p a r t i c l e s  i n  the mel t  i s  necessary fo r  pore formation and 

pore s ize  increases w i t h  the i n i t i a l  hydrogen content. The 

measured s ize  o f  the pores i n  pure aluminium are  i n  a good 

agreement w i t h  computed values. 



2. INTROOUCT JON 
--------------- --------------- 

Pores a re  usual ly  formed i n  cas t  metals dur ing coo l ing  

and s o l i d i f i c a t i o n  processe. I n  general, the various types o f  

pores can be re la ted  t o  the gas content of the me1 t p r i o r  t o  

cast ing and they can be c l a s s i f i e d  i n t o  three groups: 

A )  Rounded Pores; 

When the gas content o f  a me1 t i s  greater  than i t s  gas 

s o l u b i l i t y  these pores may p r e c i p i t a t e  i n  the melt. They are  

mostly spherical  and due t o  the buoyancy forces, usua l ly  

located i n  the upper sect ion o f  cast ings. 

B )  Elongated Pores; 

When the i n i t i a l  gas content 1s below the gas s o l u b i l i t y  

of the 1ne1 t, a t  the ambient pressure and s o l i d i f i c a t i o n  

temperature, t h i s  type of pores nucleate a t  the sol i d i f i -  

ca t ion  Front and grow i n  an e u t e c t i c - l i k e  react ion (1-4). 

C) Shrinkage Pores; 

They form i n  par ts  o f  the me1 t tha t  soi i d i f y  l a s t  and 

dl., gften termed as shrinkage pores. They are  formed due t o  

the pressure drop caused by the s o l i d i f i c a t i o n  shrinkage and 

t h e i r  shape i s  inf luenced by the dendr i te  s t ruc ture  (4-7). 

I n  the present invest igat ion,  formation o f  rounded pores 

has been studied. Aluminium a l l o y s  were equ i l i b ra ted  a t  1000 
0 

C w i th  hydrogen a t  various pressures. Af ter  equ i l  ib ra t ion ,  

the specimens were quenched a t  an ambient pressure o f  6 atm. 

This treatment enhances formation o f  snialler pores (8-16). 

Tnese pores were metal lographical l y  examined and i n  the case 

of pure a1 urninium, theoret :,a1 l y  analysed. 

I n  a fo l low up inves t iga t ion  ( 1  7), samples produced by 

the above method were remelted a t  the reduced ambient 

pressures and reduced grav i ty .  This treatment enabled the 

pores t o  expand and resu l ted  i n  a metal 1 i c  foam. Reduced 

g rav i t y  was achieved by e i t h e r  using a sounding rocket or  an 



a i r c r a f t  f l y i n g  i n  a parabol i c  t ra jec to ry .  

3. EXPERIMENTAL WORK 
.................... .................... 

Samples of pure A1 , Al-4%Ti and Al-IOXFe, weighing about 
0 

12 grams each, were electromagnetical ly l e v i t a t e d  a t  1000 C 

f o r  about 6 minutes i n  a hydrogen atmosphere. The l e v i t a t i o n  

equipment i s  shown i n  f i ~ u r e  1 and i s  described i n  d e t a i l  i n  

references ( 17,18). The inves t iga t ion  was c a r r i e d  under hyd- 

rogen pressures of 0.5, 1 ,  3 and 5 atm. A t  the terminat ion o f  

each run, the furnace was switched o f f  and the sample was 

quenched i n  a water-cooled copper mould located beneath the 

cruc ib le.  The mould diameter and height  were 18 and 20 mn 

respect ive ly  . During the quenching step, the ambient pressure 

i n  the react ion chamber was increased to  6 atm by apply ing 

argon. Cooling r a t e  of the melts dur ing quenching was about 
50- 70 O~lsec .  

4. EXPERIMENTAL RESULTS 
----------------------- ....................... 

The density o f  the samples was measured by immersing 

them i n  the water. The t o t a l  volume o f  the pores, Vp , was 

then computed by equation 1 : 

where iioand P are  dens i t ies  o f  the sample i n  the pore-free 

s ta te  and the t reated s ta te  respect ive ly .  Samples were subse- 

quently sectioned i n t o  two halves along the v e r t i c a l  a x i s  and 

prepared f o r  metal lographic invest igat ions.  The area f r a c t i c n  

of porosi ty ,  the average and a1 so the l a rges t  s ize  o f  the 

pores for  each case were measured using a False Color TV 

Analyser. The average number o f  the pores was ca lcu la ted  from 

the measured pore s ize  and t o t a l  volume of porosi ty .  Examin- 

a t i o n  of the samples indicated tha t  pore s ize  d i s t r i b u t i o n  i n  

the cast ings were no t  uniform. Small pores (20-50um) tended 

t o  concentrate a t  the periphery, wh i le  l a rge r  pores knded t o  

accumulate a 1 ong the center. 



Figures 2a-c, show micro-graphs taken from the cent ra l  

area of samples t reated a t  5 atm hydrogen. I n  the case of 

pure aluminium pores were mostly spherical  whi le  i n  Al-4%Ti 

and A1-1OAFe a l l o y s  they were i r r e g u l a r  and inf luenced i n  

shape by primary T i  (8 )  and Fe(8), f i gu res  3a-c. A t race o f  

aluminiumoxide could be detected a t  the periphery o f  the 

pores, f i g u r e  3a. 

Hydrogen content o f  the samples was between 1 t o  4 ppm. 

The measurements, as presented i n  tab le  I, ind ica te  t h a t  the 

hydrogen content, as wel l  as poros i ty  and s ize  of the pores 

increased w i t h  the pressure of hydrogen dur ing gas treatment. 

These values were higher f o r  the invest igated a l l o y s  than the 

respect ive ones i n  pure a1 uminiunl. 

Hydrogen dissolves i n  me1 t s  as atoms (19) ; 

Chemical po ten t ia l  o f  hydrogen i n  the gas phase and i n  

the mel t  a t  the equ i l ib r ium must be equal. The e f fec t  o f  

external pressure on the system (20)  can be considered as: 

where: 
0 

i i ~  2 
= standard chemical po ten t ia l  o f  hydrogen i n  the 

gas phase (J/mole) 
0 ' I , ,  = standard chemical po ten t i a l  o f  hydrogen i n  the 

mel t  (J/mole) 

X H =  hydrogen concentrat ion i n  the me1 t (mole f rac t i on )  
2 Po= standard pressure o f  hydrogen ( 1E5 N/m = I  a tm) 

pH= equ i l ib r ium pressure o f  hydrogen dur ing gas 
2 ' treatment (N/m 

Pt=  t o t a l  pressure i n  the system, equal t o  P during gas 

treatment a t  1000 C ( ~ / m ~ )  
"2 



V = p a r t i a l  molar volume o f  hydrogen i n  the mel t  H 
(m3/mle) 

T = me1 t temperature ( K )  

R = gas constant, 8.314 ( J / m o l e / ~ )  

This gives: 

Equation 4 can be rewr i t t en  as: 

Equation 5, r e f l e c t s  the s o l u b i l i t y  of hydrogen i n  the 

me1 t as a func t ion  of pressure and temperature. The p a r t i a l  
- 

molar volume o f  hydrogen i n  aluminium, VH, i s  no t  determined. 

I n  the present analysis,  i t  i s  assumed tha t  k a n d  i t s  va r i -  

a t i o n  w i th  the temperature i s  the same as the wolar vol m e  of 
A1 

aluminium, Vm .This i s  because the s o l u b i l i t y  o f  hydrogen i n  
-4 

the aluminium mel t  , max. 2x10 mole f r a c t i o n  i s  very small. 

Equation 5 then becomes; 

The molar volume o f  aluminium, used i n  equation 6, as a 

funct ion of temperature (21 ) i s  ca lcu lated by: 

The constants A and B i n  equation 6, can be determined 

experimentally. Thei r  values, f o r  the case o f  hydrogen 

s o l u b i l i t y  i n  pure l i q u i d  aluminium (22,23) a re  equal t o  

1.42x10-~ (mole f r a c t i o n )  and 61 78 ( K )  respect ive ly .  For 

A1 -4:,;?i and A1-lO"de, A and B have a1 so been determined (23). 

The dissolved hydrogen content i n  pure aluminium, tab le  I, 

were 1.5 t o  3 times l ess  compared w i t h  the ca lcu la ted  values. 



Hydrogen equ i l  ibr ium pressure i n  the me1 t, 
during 

quenching as a func t ion  o f  me l t  temperature can be calculated 

w i t h  equation 6. The t o t a l  pressure i n  the system Pt , i s  

equal t o  the pressure o f  argon during quenching. Equation 6 

may be rewr i t t en  as: 

Eqi 1 ibr ium pressure o f  hydrogen i n  the pure aluminium 

melt, as a funct ion o f  temperature i s  p l o t t e d  i n  Fig.4. This 

pressure, a t  i t s  sol  i d i f  i c a t i o n  temperature, var ies between 

10 t o  25 atn~, depending on the i n i t i a l  gas content. 

The pressure balance f o r  a bubble i n  mechanical e q u i l i b r -  

ium w i t h  a 1 i q u i d  phase gives the required pressure o f  hydrog- 

en i n  the me1 t fo r  homogeneous nucleation; 

where: 

r = radius of the bubble ( m )  

Y = surface tension between 1 i q u i d  and gas (N/m) 

Pb= pressure ins ide  the bubble (NI~') 
2 Pa= ambient pressure (Nlm ) 

The work expended f o r  the formation o f  a bubble o f  s ize 

rb,(24) i s  described by: 

2 3 W=4arbY-4ar ( P  -P ) /3  b b a  ( 3 )  

Subst i tu t ing  equation 10 i n t o  equation 11 gives; 

Mechanical and chemical equ i l  i b r i  um co-exis t  a t  the 

riucleation of a bubble. Accordingly Pb, becomes equal t o  P,, . 
Equation 12 can be thus rewr i t t en  as: 2 



Where W* i s  the a c t i v a t i o n  energy f o r  nucleat ion (24) 

equal t o  60kT; k, i s  the Boltzman's constant. r~ ,as a 
2 

funct ion o f  me1 t temperature f o r  d i f f e r e n t  values of surface 

tension i s  ca lcu la ted  then, f i g u r e  5. For aluminium w i t h  

surface tension (25) of 0.914(N/m), homogeneous nucleat ion 

occures a t  hydrogen pressures o f  about 40000 atm, see Fig. 5. 

For pore nucleat ion t o  take place a t  hydrogen pressures of 10 

t o  25 atm, the surface tension must be below 0.01 (N/m). It 

i s  therefore concl uded t h a t  a1 1 the "rounded pores", observed 

i n  the present inves t iga t ion  must have been formed by hetero- 

geneous nucleat ion. 

I n  a melt, there usual ly  a re  p a r t i c l e s ;  such as oxides, 

which can cause heterogenous nucleat ion of the pores. The 

mechanism o f  t h i s  nucleat ion i s  normal ly t rea ted  by con- 

s ider ing the gap formed on a f l a t  substratz,  which i s  shown 

i n  f i gu re  6. I n  a spherical substrate, the s ize  of p a r t i c l e s  

as we1 1 as the d i f ference i n  surface tensions inf luence the 

spread o f  the qas around the p a r t i c l e .  I n  order t o  simp1 i f y  
the problem,we have assumed char ~ ~ ' ~ l ~ ~ ' ~ = n , w h e r e  ~ ~ ' S n d  yLIg 

are surface tension o f  1 i q u i d - p a r t i c l e  and 1 iquid-gas, res- 

pect ive ly .  If n i s  greater  than 1, (26) the bubble w i l l  

spread around the p a r t i c l e  and the cond i t ion  described by 

f igure  7 w i l l  be obtained. Ac t iva t ion  energy f o r  the pore 

nucleat ion can now be w r i t t e n  as; 

where: 

rg = c r i t i c a l  bubble radius (m) 

rp = p a r t i c l e  radius (m)  

n = Y  L /PIyL /g 

Subst i tu t ing  r i and  W*=60kT i n t o  equation 14 y i e l d s  



From t h i s  the pressure of hydrogen, PHZ, required f o r  

heterogeneous nucleat ion as func t ion  o f  the p a r t i c l e  size, rp  

can be calculated a t  Pa=6 atm , f i g u r e  8. With the presence 

o f  the p a r t i c l e  sizes l a rge r  than 2 u m i n  the me1 t, the 

requi red hydrogen pressure f o r  the nucleat ion reduces t o  

about 10 atm. With t h i s  pressure the c r i t i c a l  me l t  tempera- 

tu re  fo r  nucleation, T*, i s  determined depending on the 

i n i t i a l  hydrogen content, i t s  values ranging between 680-750 
0 
(:-The c r i t i c a l  s ize  o f  the pores i s  then evaluated t o  12 u m 

a t  =10 atm. 
2 

With progressive cool ing, the nucleated bubble grows by 

d i f f u s i o n  o f  hydrogen from the surrounding supersaturated 

l i q u i d .  The growth process, using F i ck ' s  f i r s t  law, i s  

described by ; 

dnli  871 2 d r  - 4 a r 2 ~  b H x"-x' H H - -  - -(31J r +4Yr )- - - - 
d t  3Rr a b  b d t  ,/I1 rb 

where $and $are concentrations o f  hydrogen i n  bulk  

1 i q u i d  and a t  the 1 iquid-bubble in ter fdce,  respect ive ly .  The 
0 P 

former, XH, i s  the measured hydrogen content, and the l a t t e r  X H  

obtained from equation 6. When r >1? uw, \ , and equation 

6 becomes ; 

-6 2 
I nse r t i ng  the hydrogen d i f f u s i v i t y  (271, DH=3.8x10 (mlsec), 

at1cl the change of vari-able; dr/dt=dr/dT. dT/dt=-50. dr/dT, equa- 

t i o n  ( 1 7 )  i s  then integrated to; 
.. 

From equation 18, the pore size, rf, as a funct ion o f  

c r i t i c a l  temperature and i n i t i a l  hydrogen con ten t  can be 

determined, F i g .  9. 



Area percent and t o t a l  volune o f  po ros i t y  f o r  the other  

inves t iga ted  a l l o y s  a l s o  increased w i t h  the hydrogen content  

and were greater  than i n  the pure aluminium cases. This can 

be r e l a t e d  t o  the d e n d r i t i c  s o l i d i f i c a t i o n ,  ex is tance o f  

pr imary phases i n  the m e l t  dur ing  pgre nuc le3t ion,  and a l so  

g rea te r  hydrogen s o l u b i l i t y  i n  these me1 t s .  However, due t o  

the change i n  the  me1 t composit ion dur ing  sol  i d i f  i ca t i on ,  the 

pressure of hydrogen can n o t  be evaluated. 

6. CONCLUDING REMARKS 
..................... ..................... 

In t h i s  paper, we have ?resented a model f o r  format ion 

and srowth o f  the pores i n  the mel t .  This model ind ica tes  

t h a t  the presence o f  p a r t i c l e s  i n  the me1 t, f o r  format ion of 

pores i s  necessary. These p a r t i c l e s  a r e  most ly a1 uminium 

oxide. More ever, the s i z e  of the pore increases w i t h  the 

h igher  hydrogen content.  The computed s i ze  o f  the pores a re  

i n  a good agreement w i t h  the  experimental r e s u l t s .  The 

hydrogen content  of t he  samples was about one t o  f i v e  times 

l ess  than those ca l cu la ted  dur ing  hydrogen treatment. This 

has been ascr ibed t o  i n s u f f i c i e n t  quenching and the h igh  

d i f f u s i v i  t y  o f  hydrogen dur ing  hand1 i n g  and preparat ion f o r  

gas ana lys is  treatments. Pore s i ze  i s  inverse ly  p ropor t iona l  

t o  the coo l i ng  r a t e  and i t  reduccs w i t h  h igher  coo l i ng  ra te .  

7. ACKNOWLEDGEMENT 
- - - - - - - - - - - - - - - - - - - ------------------ 

This  work has a base study on the producing o f  metal 1 i c  

foam i n  reduced g r a v i t y ,  sponsored by the Swedish Board f o r  

Space A c t i v i t i e s .  



8. REFERENCES 
------------- ------------- 

1- D. Bums and J. Beech, Chemical metal lurgy of i r o n  a s teel  

229,1973, London, The I ron  and Steel I n s t i t u t e .  

2- I. Svensson and H. Fredrikss0~1, Sol i d i f  i c a t i o n  Techno1 ogy 

i n  the foundary and cas t  house. The Metal Society, Warwick 

15-1 7 Sep. 1980 p376-380 

3- 0. B. Burns, 3. Beech: "Grcwth o f  Blowholes During sol i d i -  

f r c i t i o n  o f  Iron-Bdse Alloys", Chemical Metal lurgy of I ron  

and Steel, 1971 

4- H. Fredriksson, I. Svensson, Meta l lu rg ica l  Transactions B, 

vol. 78, Dec. 1976 p. 599-605 

5- T. S. Piwonka FOUNDARb , Aug. 1966 p. 66-69 

6- T. S. Piwonka and M. C. Flemi;.gs,Trans. Metals. Society of 

AIME Vol . 236, Aug. 1966, p. 11 57-66 

7- H. Shahani , The e f f e c t  o f  hydrogen on the shrinkage 

poros i ty  i n  aluminium base a l loys ,  t h i s  thesis.  

8- D. Hanson J. o f  Metals 1935, p 103-123 

9- D. R. Kononow i ron& Steel, Oct. 1957 p. 489-491 

10- W .  P. Desnizky, ibid. February 1958 p .  51-52 

11- S. Z. U i  71, eta1 . TRAES. A.F.S., V €6, p 129-134, 1958 

12- K. 5. 5. Murthy ib id ,  V 91, p 281-286 (1971 j 

13- M. Sugiyama AFS Cast Metals Research Journdl , June 1969 

p 59-62 

14- S .  Lipson TRANSACTIONS A.F.S. ,Vol 73 p. 194-203,1965 

15- J .  M. Middleton, The B r i t i s h  Foundaryman, Pav. 1962, 

p.443-448 

16- 3 .  T. Berry, Modern Casting, January 1961, p. 63-74 

17- H. Shahani and H. Fredriksson, Mater ial  Scince under 

Microgravi ty, Madrid, Spain. 5-8 Apr i 1 1983. 

r 6SA SP-191-June 1983!, p. 71-78 

18- H. Shahani , R. Jonsson, 3n the design o f  h igh pressure 

cast ing and rap id  heatin.! f #maces, t h i s  thesis  

19- R. D. Pehlke Trans. o f  the Metal Soc. o f  AIME vol. 227 

LO- R. A. Swal in,  Thermodynamics ?f so l ids,  John Wiley & sons, 

New York, 1962, p. 143-149 

21- W. J. Coy, R. S. Ma teer ,  Trans. Q. ASM, 1965, 58, 99. 

22- W. R. Opie Transactions AIM€ vol 188 p 1237 J. of Metals 



1950 

23- H. Shahani, S o l u b i l i t y  o f  hydrogen i n  aluminium a l loys ,  

t h i s  thesis.  

24-5. C. t3rice:The growth o f  crystals  from 1 iquids, 

North-Hol land Pub1 icat ion. ,  1973 

25- B. C. A1 len, L iquid Metals, S. Z. Beer, Dekker;1972 

26- J. A. Champion, B. J. Rene Journal of  Material  Science 4 

11 %5) 39-49 

27- W. Eichenauer, 2. Metallkde, Bd65 (1974) H.10 



o
o

m
o

 
u
-
-
0
 

-
-

.
-

m
 

Icc 
ac 

m
 
Y
,
 

1 
- - 

a
 

C
I
 

B
+

S
Y

 
L
 

0
-

 
(I) 

c
 

h
 

w
o

o
 

w
l - 

-
*
 

Q
r

a
n

 
L

U
C

)
 

w
Q

L
 

>
L

O
 

m
r

t
 
b
 

m
0

0
9

m
 

i
.

.
.

 
:

r
~

:
 

m
 
s
 
h

 
1

1
1

1
 

!
*

-
e

m
 

I
.

.
.

.
 

:- 
m

 
rn

 
t , , 

.
.

-
 

I,,,, t 

.
.

.
.

 
I

N
 N

 
N

 
(L

 
I

I
I

I
 

m
-

u
l

~
,

 
;
.
o
 ro

 
a

m
 

.
.

.
.

 
;
C
\
)
 
'L
 

Cx 
N

 



Hyrogen 0.5-Satm I 

. 
Atgon 6 atm 

V-3 
Argon 6 atm 

Pump 

induct ion coil 

OflPhite table 

graphite crucible 

quartz tube 

c opper mou Id 

--.= cooling water /- 

Figure I. Schematic drawing o f  the h igh  I [  
pressure cas t i ng  equipment. 

pneumatic cyllnder - 
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Figure 6. Heterogeneous nuc lea t ion  on a f i a t  

substrate 

F igure  7 .  Heterogeneous nucleation on d spherical 

part. icle 
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ORIGINAL PA= 
OF POOR QUALrrY 

PRECIPITATION OF GAS PORES I N  MkTALI.IC MEI.lS UlIRIN(; COOLING UNDER 
MICROGRAVITY 

ABSTaAET 
addit ion o f  T i  an0 Fe was made i n  order t o  investl- 

I n  the Swedish rocket program f o r  Raterial Science gate the e f f ec t  o f  a second phase i n  the l i q u i d  on 
research a series of experiments i n  pore fo rm-  the pore growth. The so lub i l i t y  o f  hydropen (ref. 
t i on  i n  Al-base al loys have been performed. the 1, 2 )  i n  the three al loys i s  presentea i n  f ig.  1 
al loys were melted under high pressure K2-atmos- a t  a hydrogen pressure of one atmosphere. The 
*re on earth and remelted a t  low pressure i n  
space. Due t o  the pressure difference pores were 
formed. The nucleation and growth o f  the pores 
were analysed as a function o f  the pressure d i f f -  
erence and also as a function of the a l loy  cm-  
position. The resul ts o f  the experiment w i l l  be 
discussed i n  the paper. The growth o f  pores w i l l  
be theoretical ly discussed. 

r IS.. 

Keywords: Metal 1 i c  Foam, Hydrogen, Microgravity 

1. INTRODUCTION 

Part ic le composites are d i f f i c u l t  to produce frcm 
the melt. The part ic les often have another density 
than the liquid. Oue to  th is  they w i l l  f l o ta te  o r  
sediments tr during the production process. One 
thus gets an uneven dist r ibut ion of the part ic les 
i n  the matrix. I n  order to  avoid nmvemy~t of the 
part icles i t  has been proposed t o  use a micro- 
gravity environment. 

One of the most d i f f i c u l t  cqmpuslte'; t o  produc~ 
from a melt i s  metal foams, metals containing a 
l o t  of small gaspores. I n  order to  investigate the 
p s s i b i  1 i t y  to  produre metal todms d i rec t ly  from 
the melt a serles of ery?riments wi th aluminilna 
a1 loys supersaturated wi th r,$drogen were performed 
i n  space. The al loys were produced on earth a t  a 
high pressure o f  hydrogen and a f te r  that remelted 
a t  a reduced hellun pressure i n  a microgravity 
environment. The experiments were performed i n  a 
rocket campaign and i n  an a i r c ra f t  wi th a para- 
bol ic path. 

Three di f ferent  al loys were investigated, namely 
pure A l ,  A1 wi th 4: T i  and A1 wi th 10% Fe. The 

Figure 1. The so lub i l i t y  o f  hydrogen i n  pure A1 
( I ) ,  i n  A1 , 42 Ti (2) and i n  A1 , 10% Fe 
(3) 

f igure shows that  the so lub i l i t y  i s  about 10 tilries 
higher i n  the l i q u i d  than i n  the so l id  a t  the melt- 
ing point. Siever's law t e l l s  us that  the so lub i l i -  
t y  increases with the sqpare root  of pressure. It 
w i l l  rhus be possible t o  get a high hydrogen con- 
tent i n  an a l loy  by melt ing i t  a t  a high hydrogen 
prrssure and a t  a high temperature. I t w i l l  be 
possible t o  store hydmgen i n  the a l loy  by rapid 
quenching of a me1 t treated ucder lhose conditions. 

In  produce the samples an equipment, schematically 
5hown i n  fig. 2, rlpo constructed. 

The sample. M i c h  was cast i n  a copper mould (d i -  
mensions diameter 1R m and height 20 m), was 
placed on the graphite table i n  the crucible. The 
c r~ rc ib le  was mounted on a water cooled copper mould 
by a cy l indr ica l  insulator. 

(a)  A t  the beginning a l l  the valves shown i n  f ig.  
i! were closed. The valve (1) was opened and 
argon wi th 6 atm pressure closed the quartz 
ttrbc w ~ t h  a pneumatic device. 

(b)  Va 1 ve (3) was opened and the chamber was evacu- 

I ' , zn~~~~~~ l i r t t ~ \  11 rlrt* 4th Iiun~p,rrrr Srnrpnrrrr~r tm Matcrrills Sclcnurs unrlcr M~crogravrly. Mtrtlrrtl. S~~r i r t .  5-8 .Iprrl Ia)H? 
(ESA $1'- I V I  Jwtc 1983). 













GAS PcBRFS IN Y I : T A l  1-11. Mtl-IS 
ORIGINAL PA= 
OF POOR QUALm 

Figure 21. Variation of Relative ReduLtim of Figure 22. Variation of  Relative Reduction of 
Oenscty as a fwctim of pore radius dL Density as a function o f  pare radius 

Pa:0.4 atn and 'do= 1.5-3.5 I* a t  P,:l a t 9  and Wo=2-3.5 ppm 

Table i. S q l  i l l < ! y  R-treat- H co(ltent Iwn.htJ ~ I t I n q o e n B L C ~  L. I .0  
r a t  (rul t e r / I W q )  D, lu/ccI *-re D.(q/cc) 

b & 4-71 U .2  

L I1 48Ta 0 . 5  

a2 4 r r t  0 .5  

CC, 4nTr 0.5 

(;GI 4nTh 0 . 5  

EES 4 1 

KE I 4 1 

LL.' 4 I 

• U 4Wi"? 1 

W3 4871 3 

PFL 4 W i  3 

b T %  4 W 1  J 

2 4 5  

W 4  4 e t l  5 



the gravity vector i s  not constant and th is rill 
decrease tke possibi l i ty fw the pores t o  leave 
the saqle. 

I t  has beem rhan that i t  w i l l  be possible to pro- 
duce metal foms i n  space. Due to  the low solubi l i -  
t y  of hydropen i n  A1 the density was i n  th is  case 
only reduced by a factor of two. This can be over- 
COP by using metals with a higher solubi l i ty of 
gases. 

Grants were given by the W i s h  delegation of 
space research. The furnaces mere constructed by 
the k d i s h  Space corporation. Ue are grateful to 
Rolf Jdnssm and Sven Yal i n  fo r  tkir help with 
the experileclts. We are also grateful to D.F.R.F.. 
MU for the possibi l i ty of perfoning the a i rcraf t  
en~erirents. 
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The e f fec t  o f  hydrogen content on shrinkage poros i ty  o f  

A1-CU and Al-Si a l l oys  was studied. A model f o r  formation of 

shr i ikage poros i ty  i s  presented. Experiment and theory show 

that  the amount o f  shrinkage poros i ty  i n  cast ings i s  depen- 

dent on the gas content, pressure drop due t o  shrinkage and 

amount o f  fore ign p a r t i c l e s  i n  the melt. ModiCiers f a c i l i t a t e  

formation ~f these types o f  pores. 



2. INTRODUCTION 
--------------- ------ ----- ---- 

Exist;r!iz cf poros i ty  i n  metals, i n  general, reduces the 

mechanical proper t ies of the products (1-2) .  It has been 

shown e a r l i e r  t h a t  i n i t i a l  gas content o f  the mel t  (3-4), 

mode of s o l i d i f i c a t i o n  (5)  and shrinkage caused by sol i d i f i -  

ca t i on  (6-9) a r e  among the parameters which may in f luence the 

porosi ty .  Due t o  good mechanical and machining proper t ies,  

a1 uminium-copper and aluminium-sil icon a1 l oys  are widely used 

i n  industry.  Hydrogen i s  the only  soluble gas i n  aluminium 

a l l oys  (10) and thus i s  the  leading con t r i bu to r  t o  porosi ty  

i n  these a l loys .  I n  near ly  a l l  cases, the source of the hyd- 

rogen i s  some form o f  water. Water sources i n  foundaries a re  

numerous b u t  the main ones a re  moisture i n  the a i r ,  combus- 

t i o n  products i n  gas burnner furnaces dur ing me1 t ing,  and 

hold ing and moisture absorbed on the surfaces of charge com- 

ponents. Water, i n  contact  w i t h  aluminum me1 t, dissociates t o  

hydrogen and oxygen cccording t o  the f o l  lowing react ion : 

Hydrogen dissolves i n  the me l t  as atoms and oxygen re -  

mains as dross. The react ion r a t e  increases rap id l y  w i t h  

temperature and i s  even more rap id  when Mg i s  present ( 10). 

Hydrogen sol ubi  1 i t y  i n  the me1 t s  decreases w i t h  lowering 

temperature and f a l l s  sharply from 0.7 ppm t o  20 times less  

dur ing s o l i d i f i c a t i o n  (11). When hydrogen content i n  the mel t  

exceeds the s o l u b i l i t y  1 imi t, w i t h  the presence of proper 

nucleants (12), pob?s form and grow. Pores can e i t h e r  form 

p r i o r  o r  dur ing the s o l i d i f i c a t i o n .  The former are spherical  

and r e l a t i v e l y  large. The l a t t e r  a re  small and i r r e g u l a r  i n  

shape and are known as shrinkage poros i ty  ( 1  3). Thei r  forma- 

t i o n  i s  influenced by the hydrogen enrichment and shrinkage 

pressure i n  the in te rdendr i  t i c  area ( 14). 

The present work was aimed a t  studying the e f fec t  o f  

hydrogen on the shrinkage po ros i t i es  i n  pu?e alumin'um, A l -  

4.5Xu dnd A l -  Zf,  4%, 7% Si. Hydrogen content o f  the melts,  



were varied by in j ec t i ng  argon sa tura ted  water and purging 

with argon. In the  case  of A1-4.5%~ samples, AlLiH powder 

and hydrogen gas were a l s o  appl ied.  

A1 loying elements, temperature and modifiers inf luence 

me1 t proper t ies  such a s  sur face  tension,  v i s cos i t y  (29-31 ) 

and the  s o l i d i f i c a t i o n  mechanisms. In aluminium a l l o y s ,  

s i l i c o n  decreases the  sur face  tension of pure aluminium from 

0.9 (N/m) t o  0.8 (N/m), while Cu has no inf luence (30,32,33). 

Modifiers such a s  sodium a l s o  decrease t he  surface tension 

(30). Increasing temperature reduces both t he  surface tension 

and v i scos i t y  of the  a1 loys.  

T h e  e f f e c t  of modifiers Na and S r  (15-28) on the  poros- 

i t y  of A1-Si a l l oys  was s tudied.  They were added t o  t he  melt 

a f t e r  gas treatment and p r i o r  t o  cas t ing .  In the case  of 

Al-4.5Xu, e f f e c t  of aluminium oxide powder on pore nucleat-  

ion was studied. 

3. EXPERIMENTAL PROCEEDURE 
.......................... -------------------------- 

Materials  inves t iga ted  in the  present  study were: 

1-  Pure aluminium (99.8%) 

2- Al-2%Si 

3- A1 -4&Si 

4- A1-7%Si , 0 . 3 a g  

5- A1 -4.5%Cu 

A1 -71Si ,0.3LMg, SIS4244, was suppl ied by Ardal og Sunn- 

dal Verk a . s  Norway. A1 loys of 2%, 4% Si were made by adding 

pure allrininium (39.82) t o  a l l o y  SIS4244. A1-4.5Xu was made 

by adding e l e c t r o l y t i c  copper t o  pure Al. Alloys were melted 

in a graphi te  c ruc ib l e  a t  temperatures about i 00 C above 

t h e i r  respec t ive  1 iquidus temperatures. Hydrogen content  of 

the me1 ts  was varied by the  equipment shown in . , g w e  1 ,  a s  

follows: 

1-  In jec t ing  water sa tura ted  argon d t  d i f f e r e n t  time 



i n te rva ls ,  w i t h  22 mm Hg p a r t i a l  pressure o f  water i n  

i n  the gas mixture 

2- Purging the me1 t w i t h  argon. 

3- I n j e c t i n g  d i r e c t l y  hydrogen and AlLiH4, f o r  A1 -4.5Xu 

(AlL iH decomposes eas i l y  and generates hydrogen) 

Hydrogen flam was formed around the lance a f t e r  10 

minutes i n j e c t i n g  watersaturated argon. It indicated tha t  

me1 t was saturated w i t h  hydrogen. I n  the case o f  A1 - S i  

a1 loys, 250 ppm S r  and 100 ppm Na were a1 so added t o  the me1 t 

a f t e r  gas treatment and p r i o r  t o  cast ing. For AI-4.5%Cu, 0.5 

wt.pct a1 uminium oxide powder was sprayed i n t o  the me1 t a f t e r  

20 minutes o f  gas treatment w i t h  water satrated argon. Table 

1 summarizes the treatments performed on the samples. Treated 

melts were cast  i n  a mould as shown i n  f igure  2. The top and 

bottom sections of the mould as we l l  as the c h i l l  were made 

of cast  i ron. The s ide wa l ls  and the r a i s e r  were of asbestos. 

4. EXPERIMENTAL RESULTS 
----------------------- ----------------------- 

The hydrogen analys is  o f  the samples i s  presented i n  

Table 1 and indicates tha t :  

Hydrogen content o f  the samples Z1 t o  23 (Al-4.5% Cu), 

t reated w i t h  argon, AlLiH and hydrogen was unaffected and 

remained a t  0.18 ppm. Hydrcgen content increased f o r  the 

samples 24-28 t reated w i t h  the argnn saturated water. 

These r e s u l t s  can be explained by the d'ssolving mecna- 

nism o f  hydrogen i n  me1 ts. Hydrogen dissolves i n  the me1 t s  as 

atoms ( ; 2 ; .  The d issoc ia t ion  r a t e  ol' the molecular hydrogen 

t o  atom.:c a t  the treatment teapera+ure (750'~) i s  exteremly 

low (35;. This, change o f  hydrogen c..ntent was no t  achieved 

and i t  behaved as an i n e r t  Tas, argon. I n  the other hand, the 

standard f ree  energy change f ~ r  react ion 1 i s  very h igh (I , j  

and the vdlues f o r  the a c t i v i t y  quot ient  al. i s  sc h i  oh t ,t 

f o r  p rac t i ca l  purposes i t  'npl i e s  the complete conve; sion t o  

hydrogen f o r  a1 1 traces o f  water vapour contact ing the metal. 

The r e s u l l  ing atomic hldrogen i s  read i l y  so' sble i n  the me1 t 



up t o  i t s  s o l u b i l i t y .  

I n  order t o  study the e f f e c t  o f  ex t ra  s o l i d  p a r t i c l e s  on 

the poreformation, A1 *03 powder was added t o  sample 28. The 

hydrogen content, compared t o  the s i m i l a r  gas t rea ted  sample 

27, reduced from from 0.43 ppm t o  0.35 ppm. Var ia t ion  o f  

hydrogen content i n  A1-4.5Xu samples as a func t ion  o f  reac- 

t i o n  time i s  presented i n  f i g u r e  3. 

Var ia t ion  o f  hydrogen content i n  aluminium and A1 -Si 

a1 loys  a re  presented i n  f i gu res  4-7. Hydrogen content i n  

these san~ples a l so  increased w i h t  the reac t ion  time. I n  oraer  

t o  study the ef fect  of modif iers,  250 ppm Sr o r  100ppm Na 

were added a t  the end o f  gas treatment. The add i t i on  o f  S r  

and Na t o  the mel t  p r i o r  t o  the cast ing, however reduced the 

gas content. 

The area f r a c t i o n  o f  poros i ty  i n  the samples was mea- 

sured by a False Colour T V  Analyser. Average values o f  poro- 

s i  ty ,  measured i n  4x7 mn2f ie ld  from the ch i1  1 t o  the r a i s e r  

(hor izon ta l  cen t ra l  plane) are presented i n  f i gu res  8-37. 

Most o f  the samples had a "s ink"  on the upper surface, around 

the center.  Existence o f  "s ink"  i n  the cast ings ind ica tes  

tha t  feeding was no t  s u f f i c i e n t  (37).  Samples had h igher  

values of poros i ty  i n  these areas bu t  low poros i ty  c l ose r  t o  

the c h i  11 (38). Fine in te rdendr i  t i c  shrinkage pores, 20-100 

wn, were ~ n i f o r m l y  dispersed i n  the cast ings. Figures 38-40 

show examples taken from samples A1 (pure A1 ),  81 (Al -2%Si)  

and Z1 (A1 -4.5Xu). Pores o f  100-500 c m were a1 so observed 

around the center o f  the cast ings, f i gu res  41-44. 

For equal hydrogen ccntent,  the average values I F  poros- 

i t y  i n  the samples increased w i t h  the s i l i c o n  content, samp- 

l es  A2, 83, C3, D6. Addi t ion o f  A1203, Sr and Na d i d  no t  

change the shape of the pores. Comparing the equal gas con- 

t en t  samples, 03-08, 82-84, C1-C4 i nd i ca te  t ha t  these addi- 

t i v e  increased the poros i ty  values. 



5. DISCUSSION 
. . - - - - - - - - - - - ------------- 

The po ros i t y  i n  the  samples was dependent on the  hydro- 

gen content ,  du ra t i on  o f  gas treatment, and a d d i t i o n  o f  modi- 

f ~ e r s  such as Na o r  Sr  o r  A1203. 

Aluminium ox ide p a r t i c l e s  which form du r i ng  t hc  gas 

treatment according t o  equat ion 1, c o n t r i b u t e  as nuc lea t i on  

s i  tes  f c r  bubbles. The g rea te r  t he  amount o f  A1 .03 , the  
L 

grea te r  i s  the a v a i l a b i l i t y  o f  nucleus s i t e s .  As soon as the  

me1 t becomes supersaturated w i t h  hydrogen, bubble format ion 

i s  f a c i l i t a t e d  by the  l a r g e  number o f  nuc l ea t i on  s i t e s  t h a t  

at-e ava i l ab l e .  Th is  i n  t u r n  r e s u l t s  i n  g rea te r  po ros i t y .  

Modi f iers  a l s o  f a c i l i t a t e  the  nuc lea t i on  o f  pores e i t h e r  

by reaucjng the sur face tens ion o r  a c t i n g  as nucleants.  I n  

rhese samples the  hydrogen con ten t  was lower than expected 

from treatment time, w h i l e  pores were formed more f requent ly ,  

f i g u r e s  12,13,17,21,28,29. 

A t h e o r e t i c a l  model which can descr ibe the  s i ze  and the 

volume f r a c t i o n  ~f the  pores, may p r e d i c t  the qua1 i t y  of the  

products. Such a model should cons ider  mechanism o f  pore 

nuc lea t ion  and i s  developed as below: 

Por t  tormat ion i s  in f luenced  by gas con ten t  o f  the mel t ,  

pressure i n  the l i q u i d  phase, and the sur face tension. The 

s i ze  o f  the pores i s  determined by the volume o f  the  l i q u i d  

conf ined between the dender i te  arms. 

F igures 38-44 i n d i c a t e  t h a t  the samples undergo a 

d.ndritic s o i i d i f i c a t ; o n .  However, the l eng th  o f  the mushy 

ronc  f o r  pure aluminium i s  smal ler  than t h a t  fo: the a l l oyed  

uses. Guring dendr i  t i c  growth, due t o  ~riuch lower s o l u b i l i t y  

of hydrogen i n  the s o l i d  phase ( l l ) ,  i t  enr iches i n  the mel t .  

I>ue t o  the h igh  d i f f u s i v i t y  o f  hydrogen ( 3 8 ) ,  i t  i s  poss ib le  

use the  l e v e r  r u l e .  Hydrogen content  i n  the me1 t can thus 

S r  w r i t t e n  as : 



where: 

kh hydrogen content i n  the me1 t (mole f r a c t i o n )  

X: i n i t i a l  hydrogen content (mole f r a c t i o n )  

fL mel t  f r a c t i o n  

Figure 45 shows the enrichment o f  hydrogen i n  the me1 t 

as a funct ion o f  f r a c t i o n  s o l i d  f o r  the lowest and highest 

measured hydrogen con tents. The average sol ub i 1 i t y  o f  hydro- 

gen a t  one atmosphere and f o r  A1 a t  the me1 t i n g  p o i n t  i s  a l so  

shown on the same f igure .  The hydrogen content o f  the me1 t 

exceeds the equ i l ib r ium so!ub i l i t y  value when more than 60% 

sol i d i f  ica t i o n  has taken place. The requi red supersa tu ra t i on  

for  nucleat ion may be disregarded by assuming t h a t  the pores 

are formed hetrogenously (12). The balance ~f pressures i n  a 

bubble can be represented by : 

2 
B2 

ressure i n  the bubble (N/m ) 
2 

4 pressure i n  the l i q u i d  (N/m ) 
Y s ~ r f a c s  t e n s i ~ c ,  f c r  ;src A? (C.914 N/z j 

r radius o f  the pore :m) 

The hydrogen pressure, $? can be calculated from the 

i n i t i a l  hydrogen content, sol ;d f rac t i on ,  and S i p  r e r t ' s  law; 

where k i s  Siever ts  constant, f o r  pure A1 (0.7 ppm/at~n). 

Due to  the s o l i d i f i c a t i o n  shrinkage, pressure i n  the l i q u i d ,  

PL, decreases. The pressure drcp i n  the 1 i q u i d  i n  the mushy 

zone i s  ca 1 cul  a ted previously (1  4) : 

where: 



11 = v i scos i t y  (1.3E-3 kglmlsec) 

i; = co r rec ted  shrinkage c o e f f i c i e n t  (0.0675) 

0 = s o l i d i f i c a t i o n  r a t e  (1.82E-3 m/sec ) 

L = leng th  o f  the cas t i ng  from r a i s e r  (m) 

t = t r o t o s i t y  f ac to r  ( 2) 

r = rad ius  of the  pores (m) 

h = h a l f  o f  the he igh t  o f  the  mould (0.01 m) 

= denderi t e  arm spacing ( 100 vm) 

n = number o f  chanels per  m du r i ng  s o l i d i f i c a t i o n  

equal t o  1 about 1 ~ 8 / m ~  

Pa= ambient pressure ( 1  atm.) 

I n s e r t i n g  r = fL. X 12 i n  equation 5, r e s u l t s  i n :  

Pressure i n  the l i q u i d  as a f unc t i on  of d is tance from 

r a i s e r  w i t h  d i f f e r e n t  values o f  s o l i d  f r a c t i o n  a re  presented 

i n  f i gu re  46. F igure ind ica tes  t h a t  pressure i n  the l i q u i d  

drops r a p i d l y  w i t h  progress of s o l i d i f i c a t i o n .  The s i ze  of 

the shrinkage pores, r , i s  computed numer ica l l y  by subs t i -  

t u t i n g  PI, and PL from equat ions 4 and 5 i n  equation : 
3 

The r e s u l t s  a re  presented i n  f i g u r e  (47)  as func t ion  of 

d is tance from r a i s e r  and hydrogen content.  The s i ze  o f  the 

shrinkage pores increases from 10 u,m t o  60 urn, w i t h  the hyd- 

rogen content  and d is tance from r a i s e r .  The s i ze  of the  

shrinkage pores i s  i n  a good agreement w i t h  the experimental 

n~ea suremen ts .  

The present niodel does n o t  descr ibe the ex is tance of 

random pores l a r g e r  than 100 un observed i n  some o f  Ihe 

samples, f i gu res  41-44. Formation of these pores may be 

explained as fo l lows :  

A f t e r  J pore i s  formed, i n  accordance w i t h  the presented 

model, f u r t h e r  growth o f  the pore takes place. This growth i s  



due t o  enr ich~ ien t  o f  hydrogen i n  the mel t  surronding the pore 

i n  the i n te rdendr i t i c  regions. I n  the areas c lose t o  the 

c h i l l  o r  mould, mel t  s o l i d i f i e s  f a s t e r  and pores formed i n  

these areas, a re  n o t  able t o  expand ( o r  grow). Thds, pressure 

ins ide  the pores increases. However, i f  the s o l i d  phase i s  

weak or  the me1 t between the dendr i te  arms can be pushed 

away, the pores may expand due t o  the increasin5 pressure 

w i t h i n  t' pores. This can occur i n  the cent ra l  par ts  o f  the 

cast ing which explains the formation of la rger  pores i n  these 

areas. 

6. CONCLUSION 
------------- ------------- 

1- Shrinkage porosi ty  i n  the samples are dependent on 

the durat ion of gas treatment and hydrogen content o f  the 

me1 t. 

2- The pores were formed more frequently i n  the samples 

qod i f i ed  by Na o r  S r .  These samples had r e l a t i v e l y  lower 

hydrogen content. 

3-Average values o f  poros i ty  i n  the samples increased 

w i t h  tne s o l i d i f i c a t i o n  rang induced by C i  content. 

4-The presented model ind icates tha t  tne s ize o f  the 

shrinkage pores increases w i t h  the hyirogen content and 

pressure drop caused by shrinkage. Pressure drop increases 

w i t h  distance from ra iser .  
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TABLE 1 , Treatment performed on the samples 

sampl e react ion time 

(minutes) 

A1 A1 0 

A2 A1 3 

A3 A1 10 

A4 A1 7 

A5 A1 7 

A6 A1 7 

remark Hydrogen con ten t  

(PW) 
0.24 

0.38 

0.45 

100ppm Na 0.20 

100ppm Ma(metal1ic) 0.30 

250ppm Sr 0.23 

0 1 %in flushed w i th  argon 0.15 

0 0.22 

0 wet charge 0.30 

2 0.24 

5 0.39 

7 0.38 

10 100ppm Na 0.20 

7 250ppm Sr 0.28 

3 minutes argon flushed 

0.5% A1 ; i H added 

f 1 ushed w i th  hydrogen 

P =24[kmnHg 

Hydrogen flame formed 

Hydrogen f l ame formed 

Hydrogen flame formed 

0.5% A 1 0 powder added 



Figure 1 .  Schematic drawing of the melting 

and gas treatment apparatus. 

Figure 2. Schematic drawing of mold 
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Figure 5 .  Variation of hydrogen content fo r  A1-2%Si. 
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Figure 8. Var iat ion o f  poros i ty  i n  Figure 9. Var iat ion o f  poros i ty  i n  

saraple A1 . pure A l .  sample A2, pure A1 . 
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Figure 10. Var iat ion o f  porosi ty  i n  Figure 11. Var iat ion o f  poros i ty  i n  

sample A3, pure A1 . sample A4, pure A1 . 
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Figure 12. Variation o f  porosity Figure 13. Var iat ion o f  porosity 
i n  sample A5 ,  pure A1 . i n  sample A6, pure A1 . 
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Figure 14. Variation o f  porosity 

i n  sample B1 ,  2%Si 
Figure 15. Var iat ion o f  porasi t y  

i n  sample 82,  2%Si 
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Figure 16. Variation of porosity Figure 17. Var iat ion o f  porosity 

i n  sample 83,  2%Si i n  sample 84, 2%Si 
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Figure 19. Var ia t ion  o f  poros i ty  

i n  sample C2, 4%Si 

DISTANCE FROM CHILL <CH> DISTANCE FROM WILL tCM> 

= 29 
n 
a 
0 
a 1s 
0 
Q 

10 .. 10 

5 

0 
8 2 4 6 8 10 12 14 16 18 20 

4 .  

Figure 20. Var iat ion o f  poros i ty  Figure 21. Var iat ion o f  po rss i t y  

35 
CL 

rn 99 
a 
W 

g 2s 

i n  sample C3, 4%Si i n  sample C4, 4 % S i  



QnlSlRAL PAGE :3 
OF POOR QUAL~M 

DISTANCE PROW cHnL CCH) 

Figure 22. Variat ion o f  porosi ty  

i n  sample D l ,  7%Si 
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Figure 23. Variat ion o f  porosi ty  

i n  sample 02, 7%Si 

Figure 25. Variat ion of porosi ty  
Figure 24. Variat ion of porosity i n  sample 04, 7%Si 

i n  sample 03, 7%Si 
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Figure 26. Var iat ion of poros i ty  F igure 27. Var iat ion o f  poros i ty  
i n  sample 05, 7%Si i n  sample ~ 6 ,  7%Si 
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Figure 29. Var iat ion o f  poros i ty  F i q u r c  r8. Variation o f  poros i ty  

i n  sample 07, 7%Si i n  sample 08, 7%Si 
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Figure  30. Va r i a t i on  o f  po ros i t y  F igure  31. Va r i a t i on  o f  po ros i t y  

i n  samp:e Z 1 ,  4.5%Cu i n  sample 22, 4.5%Cu 
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Figdt-e 32. Va r i a t i on  o f  po ros i t y  F igure  33. Va r i a t i on  o f  p o r o s i t y  

i n  sample 23, 4.5%Cu i n  sample 24, 4.5XCu 
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i n  sample Z5, 4 .SXu in  sample 26, 4 . 5 X u  
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Figure 37. Variation of porosity 
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THE EFFECT OF HYDROGEN ON AN IRON BASED BHORPIIOUS ALLOY 
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ABSTRACT 

In t h i s - i n v e s t i g a t i o n  we have sys temat ica l ly  s t u d i e d  t h e  b r i t t l e n e s s  and 
t h e  atomic s t r u c t u r e  i n  an Fe(SiBC) a l loy .  D i f f e r e n t  amounts o f  hydrogen have 
been d i s so lved  i n  t h e  a l loy.  It has then been s t u d i e d  a t  d i f f e r e n t  coo l ing  
rates. 

Hydrogen g a s  of d i f f e r e n t  p a r t i a l  p ressures  w a s  d i s s o l v e d  i n t o  t h e  m e l t .  
The a l l o y  w a s  then rapxdly quenched by a c h i l l  block m e l t  sp inn ing  method. The 
coo l ing  r a t e s  were chaxiged by changing t h e  v e l o c i t y  on t h e  c h i l l i n g  r o l l .  The 
b r i t t l e n e s s  and t h e  atomic s t r u c t u r e  were examined by bending tests and x-ray 
d i f f r a c t i o n .  

X-ray d i f f r a c t i o n s  showed t h a t  t h e  r ibbons were amorphous when t h e  coo l ing  
rate was s u f f i c i e n t .  Amorphous r ibbons  without any hydrogen w e r e  d u c t i l e ,  
c r y s t a l l i n e  r ibbons  of t h i s  a l l o y  were b r i t t l e .  The r ibbons  wi th  d i s so lved  
hydrogen and amorphous s t r u c t u r e  were b r i t t l e  even a t  smal l  amounts of hydrogen. 
A t  t h e  h ighes t  cool ing r a t e s  t h e  r ibbons  wi th  low hydrogen con ten t  were d u c t i l e  
There seems t o  be a connection b e t w e a  t h e  hydrogen con ten t  and t h e  amorphous 
r ibbons  d u c t i l i t y .  The hydrogen content  o3ly has a s l i g h t  i n f l u e n c e  t o  
amorphous s t r u c t u r e .  

Hydrogen e a s i l y  d i s s o l v e s  i n  l i q u i d  metals. The s o l u b i l i t y  decreases  
r a p i d l y  when t h e  metal  s c l i d i f i e s  and wi th  decreas ing temperature.  1.Iany a l l ~ y s  
become b r i t t l e  even when a  small amount of hydrogen is present .  I n  t h i s  
i n v e s t i g a t i o n  w e  have d i s so lved  d i f f e r e n t  amounts of hydrogen i n  a  Fe 
(Si5B:,C4) l i q u i d  a l loy .  Ribbons were then d i r e c t l y  c a s t  f r ~ m  t h e  m e l t  by a 
ch i l l -b lock  melt-spinning sethod. Both amorphous and c r y s t a l l i n e  atoni.: 
s t r u c t u r e s  were obta ined by changing t h e  ve loc i ty  of t h e  c h i l l i n g  s u b s t r a t e .  
The hydrogen con ten t ,  t h e  b r i t t l e n e s s  and t h e  atomic s t r u c t ~ r e  were then 
examined on t h e  ribbons. 

The ribbons were made by a  s i n g l e  r o l l e r  melt sp inn ing  equipment. The 
diameter of t h e  copper r o l l  was 159 m. Three grams o f  t h e  Fe (SiBC) a l l o y  
was used f o r  each experiment and i t  was melted by a high frequency induc t ion  
furnace. The c r u c i b l e  was made of quar tz ;  i r ~  t h e  c r u c i b l e  bottom there was a 
hole  wi th  a  d i m e t e r  of 0.5 mm. A gas  mixture was blown f o r  30 seconds through 
a  l a n c e  onto  t h e  top of t h e  l i q u i d  a l loy . (F ig .  1 ) .  The g a s  mixture  was a 
mixture  of hydrogen and argon. The d i f f e r e n t  amounts of hydrogez gas  which 
were used i n  these  experiments were 0,  5, 10,  50 a i ~ d  100 volume X .  The amount 
of gas w a s  200 1 Lters  per hour. The d r i v i n g  e j e c t i o n  p r e s s u r e  was 100 kPa; 
argon gas  was used (Fig .  2 ) .  The d i s t a n c e  between the c r u c i b l e  and t h e  copper 
r o l e  was 3  mm and the melt j e t  i n c l i n a t i o n  was 90° .  The s u b s t r a t e  v e l o c i t i e s  
were 4, 8, 13, 1 7 ,  21. 25, 29 and 33 m l s .  
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Fig. 1. Gas flow d u r i n g  t h e  g a s  Fig. 2. Gas flow d u r i ~ g  c a s t i n g  
treatment. 

The atomic s t r u c t u r e  was determined b y  x-ray d i f f r a c t i o n ,  us ing  n i c k e l  
f i l t e r e d  C W  r a d i a t i o n .  The anount of hydrogen i n  t h e  specinens  was measured 
by vacuum f u s i o n  w i t h  a S a l z e r  a n a l y z e r  EAH 220. Two grams of t h e  sample were 
heated i n  g r a p h i t e  c r u c i b l e s  t o  200C°C. Th is  w a s  done about one week a f t e r  t h e  
r ibbons  were made. 

D i f f e r e n t i a l  scarbning c a l o r i a e t r y  w a s  c a r r i e d  o u t  i n  a i 4 e t t l e r  TA 2000 C. 
Samples of around 2U mg were heated ia P t  cups w i t h  a rate of 5 ~ l m i n - l  from 
460°C beyond t h e  c r y s t a l l i z a t i o n  temperature i n  Inert atmosphere. The 
temperature axis and t h e  peak a r e a  were c a l i b r a t e d  from a e l t i n g  endo thems  of 
pure indium, aluminium and gold.  

RES L'LTS 

Severa l  d i f f e r e n t  examinations were made on t h e  ribbons t o  determine t h e  
e f f e c t  of hydrogen on t h e  sanples .  

The hydrogen con ten t  was determined by vacuum fus ion .  The r e s u l t s  a r e  
shown i n  Fig. 3 and Fig. 4. 

I n  Fig. 3 it is shown how t h e  hydrogen con ten t  i n  t h e  r rbbonj  v a r i e s  w i t h  
t h e  amount of hydrogen gas i n  t h e  gas mixture. The s u b s t r a t e  v e l o c i t y  was 29 
m l s .  Fig. 4 shows how t h e  hydrogen con ten t  i n  t h e  r ibbons  v a r i e s  wi th  the 
s u b s t r a t e  v e l c c i t y .  The amount of hydrogen gas  i n  t h e  gas  mixtilre was 50%. 

The t h i c k n e s s  of t h e  r ibbons  w a s  measured w i t h  a e ic romete r .  No n o t i c e a b l e  
d i f f e r e n c e  could  be seen on r ibbons  wi th  o r  wi thout  hydrcgen. The average 
th ickness  a s  a f u n c t i o n  of t h e  s u b s t r a t e  ve1oci:y is shown i n  Fig. 5. 

The x-ray d i f f r a c t i o n  exan ina t ion  showed t h a t  t h e  s t r u c t u r z  was c r y s t a l l i n e  
vhen t h e  t h i c k n e s s  was over  50 pm. No n o t i c e a b l e  d i f f e r e n c e  could  be seer, on 
r ibbons  wi th  o r  wi thout  hydrogen. 

The b r i t t l e n e s s  of t h e  r ibbons  was i n v e s t i g a t e d  i n  a r a t h e r  simple way by 
a bending test. The ribbon was bent  180"; i f  i t  breaks  i t  is b r i t t l e  and i f  
no t ,  it is d u c t i l e .  I n  Fig. 6 t h e s e  r e s u l t s  a r e  shown. There is a d e f i n i t e  
d i f f e r e n c e  in b r i t t l e n e s s  of r ibbcns  wi th  d i f f e r e n t  amounts of hydrogen in t h e  
gas  mixture. The r ibbons  which were t r e a t e d  wi th  pure hydrogen showed brittle 
behaviour f o r  a l l  s u b s t r a t e  ~ e l o c i t i e s .  Ribbons wi thout  any hydrogen becorn*? 
b r i t t l e  a t  s u b s t r a t e  v e l o c i t i e s  lower than 20 m l s .  A t  v e l o c i t i e s  lower than 
13 m l s ,  r ibbons  were c r y s t a l l i n e .  
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Fig. 3. The hydrogen content  of Fig. 4. The hydrogen con ten t  of t h e  
t h e  r ibbons  a t  d i f f e r e n t  amounts r ibbons  at d i f f e r e n t  s u b s t r a t e  v e l o c i t i e s .  
of hydrogen g a s  i n  t h e  gas  mixture.  

Fig. 5. The v a r i a t i o n  of th ickness  Fig. 6. D u c t i l i t y  of t h e  r ibbons  a t  
wi th  s u b s t r a t e  v e l o c i t y .  d i f f e r e n t  s u b s t r a t e  v e l o c i t i e s  and 

d i f f e r e n t  amounts of hydrogen gas  i n  t h e  
g a s  mixture.  

D i f f e r e n t j  1 scanning ca lo r imet ry  has been used t o  determine t h e  c r y s t a l -  
lization temper r e  and hea t  o f  c r y s t a l l i z a t i o n .  Two s e r i e s  were determined, 
one i n  which t h e  ~ u e l t  had been t r e a t e d  wi th  100 % Hz, and one in which 100 X 
Ar.  Four r e p r e s e n t a t i v e  DSC thennograms a r e  shown i n  Fig. 7 and Fig. 8. All 
samples spun wizh between 33 and 13 m / s  e x h i b i t  exo thermic  DSC peaks whi le  no 
c r y s t a l l i z a t i o n  peaks could be observed f o r  samples which were made a t  
v e l o c i t i e s  lower than 13 m / s .  
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Fig. 7. DSC curves  f o r  t h e  exothermal F ig .  8. DSC curves  f o r  t h e  exothermal 
c r y s t a l l i z a t i o n  of amorphous r ibbons:  c r y s t a l l i z a t i o n  of amorphous ribbons:  
100% Ar, 33 o/s (above) ; 100 2 Hz,  33  100 Z k r ,  1 3  m / s  (above) ; 100% HZ, 1 3  
m / s  (below). m/s (beiow). 

DISCUSS ION 

According t o  t h e  x-ray d i f f r a c t i o n  evidence t h e r e  was rio n o t i c e a b l e  
d i f f e r e n c e  i n  t h e  atomic s t r u c t u r e  of t h e  r ibbons  which were t r e a t e d  wi th  o r  
witliout hydrogen gas. I t  seems t h a t  hydrogen a t  t h e s e  l e v e l s  has no e f f e c t  on 
t h e  format ion of t h e  atomic s t r u c t u r e  f o r  this a l l o y .  Th is  corresponds t o  t h e  
DSC thermograms. A s  can be  seen i n  Figs.  7 and 8. t h e  t o t a l  c r y s t a l l i z a t i o n  
peak seems t o  be composed of t h r e e  over lapping peaks, i n d i c a t i n g  t h e  k i n e t i c s  
of c r y s t a l l i z a t i o n  t o  c o n s i s t  of s e v e r a l  processes. The t o t a l  heaz of c r y s t a i -  
l i z a t i o n  has  been found t o  be 1 . 3 4  kcal /mole ,  independent of t h e  v e l o c i t y  and 
t h e  hydrogen content .  Our value  is i n  good agreement wi th  p r e v i ~ u s  f i n d i n g s  
f o r  Fe-P-C amorphous a l l o y s  (1). The shapes  of t h e  peaks o f  samples wi th  t h e  
same v e l o c i t y  but d i f f e r e n t  amounts of hydrogen were almost i d e n t i c a l ,  but t h e  
shapes v a r i e d  somewhat w i t h  t h e  v e l o c i t y  as is t o  be seen i n  t h e  f i g u r e s .  

I t  is known t h a t  amorphous a l l o y s  hecome b r i t t l e  when c e r t a i n  amounts of 
hydrogen a r e  present  (2-6). The most common way of d i s s o l v i n g  hydrogen used i n  
t h e s e  i n v e s t i g a t i o n s  was by ca thod ic  p o l a r i z a t i o n  i n  an  a c i d  s o l u t i o n .  The 
hydrogen con ten t  i n  t h e  r ibbons  t h e n  becomes high and they cannot be bent  180' 
wi thout  breaking.  

I n  t h i s  i n v e s t i g a t i o n  t h e  maximum con ten t  of d i s so lved  hydrogen is l i m i t e d  
by t h e  s o l u b i l i t y  i n  t h e  l i q u i d  phase which is about 25 ppm. A t  t h e  h ighes t  
c o o l i n g  r a t e s  most of t h e  hydrogen is l e f t  ' i n  t h e  r ibbons;  t h e r e a f t e r  t h e  
hydrogen con ten t  decreases  wi th  decreas ing  coo l ing  r a t e .  T h i s  can even be 
observed on r ibbons  made from melt  t r e a t e d  w i t h  100 % Ar. The amount of 
hydrogen is r e l a t i v e l y  high even though t h e  m e l t  has ihot been t r e a t e d  wi th  
hydrogen. Th is  has a l s o  been repor ted by r e f .  (7 ) .  



Ribbons t h a t  a r e  made a t  t h e  highest  s u b s t r a t e  ve loc i ty ,  33 m / s ,  become 
b r i t t l e  when t h e  hydrogen content is over  about 20 ppm. The r ibbons t h a t  are 
made a t  lower s u b s t r a t e  ve loc i ty ,  29 m / s ,  become b r i t t l e  when t h e  hydrogen 
content  is over ca 15 ppm. 

It seems t h a t  t h e  cooling r a t e  on amorphous a l l o y s  has  an e f f e c t  on t h e  
s e n s i t i v i t y  t o  hydrogen embrittlement. 

Thanks are due t o  Professor Hasse Fredriksson f o r  many s t imula t ing  
discussions.  
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