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USERS'MANUALFOR COMPUTERPROGRAMFORTHREE-DIMENSIONALANALYSIS

OF COUPLED-CAVITYTRAVELINGWAVE TUBES

Thomas A. O'Malley

Analex Corporation
Cleveland,Ohio 44135

SUMMARY

The use of the coupled-cavltytravelingwave tube (TWT) for space com-
munlcatlonshas led to an increasedinterestin the efflclencyof these de-
vices. Efficiencyimprovementshave generallybeen along two lines: (1) the
developmentof efficientmultistagedepressedcollectorsto recovera high
percentageof the kineticpower in the spent beam; and (2) improvementsIn the
efficiencyof the basic interactionprocessthrough velocityresynchronlzatlon
and other methods. To pursue the second llne, we have recentlydevelopeda
flexible,three-dlmenslonal,axlally-symmetrlc,large-slgnalcomputerprogram
written In FORTRANIV for use on the IBM 370 tlme-sharlngsystem. The present
report is a users'manual for this program.

The basic programmingapproachconsistsof dividingthe beam Into rings
and calculatingthe trajectoriesof these rings as they pass througha sequence
of cavitieseach of which may have differentgeometricaland electricalproper-
ties. Extremeflexibilityis provided In the varietyof tube featuresthat can
be modeled since each cavity has individuallyentered input parameters. The
programcan handle lumpedor distributedsevers, input and output couplers,
cavity match detailsprovidedfor cavitiesnear the end of a stack, voltage-
Jump velocity resynchronlzatlonwlth an arbitrarynumber of discretesteps (up
to one per cavity),and velocitytaper designsof almost arbitrarycomplexity.
Backwardwaves can be handledby an Interatlveprocedure.

INTRODUCTION

The use of the coupled-cavltytravelingwave tube (TWT) for space com-
municationshas led to an increasedinterestin the efficiencyof these de-
vices. Efficiencyimprovementshave generallybeen along two lines: (1) the
developmentof efficientmultistagedepressedcollectorsto recovera high
percentageof the kineticpower in the spent beam; and (2) improvementsin the
efficiencyof the basic interactionprocessthrough velocityresynchronlzatlon
and other methods. The NASA Lewis ResearchCenterhas been interestedIn the
first approachto efficiencyenhancementfor sometime(refs.1 to S). In the
second approach,we have developeda flexible,one-dlmenslonal,large-slgnal
computerprogram (refs.4 to 6). This computerprogram,becauseof the limita-
tions of one-dlmenslonalmotion, is not highly accurate In Its calculationof
electrontrajectoriesor beam-waveinteraction. Also, one-dlmenslonalmotion
does not allow calculationof beam interceptionor vector velocitiesof elec-
trons. Beam interceptiondata Is requiredin order to determinethe properties
requiredof an effectivemagneticfocusingsystem. Vector velocitydata Is
particularlyimportantIn the design of efficientcollectors. The vector



velocities at the output of the tube are required as input data to a computer
program which analyzes collectors.

Because of the need to overcome the aforementioned llmltations inherent
in a one-dimensional program, we have recently developed a three-dimensional
program written in FORTRANIV. This program retains all of the features In
the one-dimensional program and is essentially a generalization of that program
to a three-dimenslonal, axially-symmetric simulation.

The basic programming approach is to follow a r|ng-model beam through a
sequence of cavities each of which may have different geometrical and elec-
trical properties. Extreme flexibility is provided in the variety of tube
features that can be modeled since each cavity has individually entered input
parameters. Theprogram can handle lumped or distributed severs, input and
output couplers, cavity match details provided for cavities near the end of a
stack, voltage-Jump velocity resynchronization w|th an arbitrary number of
discrete steps (up to one per cavity) and velocity taper designs of almost
arbitrary complexity. Backward waves can be handled by an lterative procedure
similar to that described by Klno, et al. (ref. 7).

In thls report, we first discuss the computer model of the coupled-cavity
TWT. A detailed dlscusslon of the program structure follows. The input data,
output data, program variables, and program subroutines are then described.

MODEL OF COUPLED-CAVITYTWT

The model of a coupled-cavltyTWT is illustratedIn figure I. The beam
is divided into a serles of d_sks,and each dlsk |s subdlvldedinto an arb|-
trary number of rings. A completedescrlptlonof the beam trajectoryis ob-
talned by followingthe rings containedIn a slnglebeam wavelength (ref. B).
The rings may penetrateeach other |n both the radialand axial directions.
The rings expand or contractrad|allyaccordlngto the radlalforces actlng on
them. The rings do not contractor expand _n the axial d|rectlon;the axial
thicknessof a ring _s assumedto be constant. Also the rings do not become
warped; that is, the trace of a ring in the r-z plane Is always a rectangle.

The axial and radialthicknessof a ring comes into play only in the
modeling of beam interceptionand In the calculationof space charge forces.
For all other forces, It Is assumedthat the chargeand mass of a rlng are
concentratedat the ring'scentrold radiusand that the rlng has zero axial
th|ckness.

Each ring, as It enters the tube, has a charge equal to I/R of the
charge of the dlsk, where R is the numberof rlngs per disk. Also the Inl-
tial cross-sectionalarea Is the same for all rings. For the case of R = 3,
the ring dlmenslonsat the tube entranceare glven In flgure 2. The axial
thlckness _d of all rlngs Is Xe/Nd, where _e Is the beam wavelengthand
Nd Is the numberof dlsks In a beam wavelength.

For an arbltraryvalue of R, we have

rj = _ b, j = l, ..., R (I)



_2_- rj J = l (2)

2
rln,J = - 1 ' ' "'"

R

_/2 2j rj J : 1 R (3)rout,J = J - l ' ' ""'

In modeling beam interception,we must make assumptionson the values of
the inner and outer radii,given the value of the centrold radius. The assump-
tion Is that the ratio of the inner radiusto centroldradiusand the ratio of
the outer radius to centroldradius remain constant. These ratiosare deter-

mined from equations(2) and (3). At the end of an integrationstep, If the
outer radius of a ring exceedsthe tunnel radius a, then the outer radius is
redefinedto be a, and the portionof the ring locatedbeyond r = a Is
assumedto be intercepted. The remainingpartialring, since its outer radius
has been redefined,has a redefinedvalue of centroldradiusgiven by

_r 2 2r3 In..1+ rout,.1= 2 , J = I, ..., R (4)

The programhas an optionallowing a one-dlmenslonalbeam to be used in
the first N cavities,where N is an input parameter,and a switch is then
made to a three-dlmenslonalsimulation. The resultsfor the first N cavities
would be nearly identicalto those of the one-dlmenslonalprogramdescribedin
reference4 becausethe same model is used in both programs. This reportwlll
discuss only the three-dlmenslonalmodel since the one-dlmenslonalmodel is
thoroughlydocumentedin references4 and 5. A basic understandingof refer-
ences 4 and 5 is presupposedin this report. The tube body Is treatedas a
conductingtunnel of radius a divided axiallyInto a series of discrete

cells, where the length of the kth cell is denoted by Lk In the center of
each cell is a gap of length 2_k. Impressedacross the Kth gap Is a com-
plex voltage Vke_=t.

In the absence of a beam, there wlll be a simple known relationamong the
various Vk. For a forward-propagatlngwave in the pass band of a uniform
structure,

-(:+IBl)Lk
Vk+l = e Vk (5)

where : and Bl are known from cold-testmeasurements. The power flowing
along the structurewill be given by

IVk12
Pk - 2Zk (6)

where Zk also is known from cold-testmeasurements.
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The voltage wave In the presence of the beam is calculated by adding a
complex induced voltage to the propagating wave, that is,

-(_*tB1)L k
Vk+1 = e Vk + aVk+1 (7)

where aVk+1 Is an induced voltage to be defined later.

The body of a coupled-cavlty TWTis supposedly a periodic structure. If
thls were the case, all cavities would have the same L, _, :L, BIL, and Z.
However, a real tube has input and output couplers, severs, and perhaps veloc-
Ity tapers and cavity match details, all of which require individual non-
periodic treatment In the model. Thus, the properties of individual cavities
are separately specified input parameters in the program, and a great variety
of tube design variations such as complicated velocity tapers or voltage-Jump
configurations can be easily modeled. Equation (7) Is easily modlfled to
handle such a quasl-perlodlc structure,

Vk+l _k 11Z_+l Vk= V _ + avk+l

where

-(:L)k -i(BiL)k
•k=e e

The factor _/Zk+I/Zk ensuresthat power flow Is conserved.

PROGRAMSTRUCTURE

The programconsists of two major elements: the dynamicsof the beam
rings and the beam-wavecouplinganalysis. These two elementsare described
In detail in the followingsections.

Dynamicsof Beam Rings

Equationsof motion. - As discussedin reference4, page 4, it is more
convenientto let the independentvariablebe the axial position z rather
than the tlme t, and we calculatethe functions r(z) and t(z). Here r(z)
is the centroldradius of the rlng In questionwhen it reachesthe axial posl-
tlon z, and t(z) is the tlme of arrivalof the rlng at the axial position z.
The transformationfrom equationsof motionwlth t as independentvariable
to equationsof motionwlth z as independentvariableis given by

d2z

d2t - dt2

dz2 - (dz_ 3 (B)
\tit/



d2r d2z dr

d2r dr2 dt2 dz

2 ( 12 (9)
\dr/

Insteadof using t, z, and r, we use the normalizedvariables e, I_,and
p definedby

e = _t (I0)

z

I_= a (11)

r

R = a (12)

In terms of the normalizedvariables,the transformationequatlonsare

dZe de2

d_2- /_3 (13)
@e/

D

d2p dO2 dO2 d_
= /._2 (14)d_2 r____|

\de/
Althoughthe normalizedvariablesare used In the program,the unnormalized
variableswill be used in any explanationfor which greaterclaritycan be
achieved. At each integrationstep, the usual equationsof motion with t as
independentvariableare used to calculate d2z/dt2 and d2r/dt2. Knowing
these quantities,we then calculate d2t/dz2 and d2r/dz2 from equations(8)
and (g).

The equationsof motion with t as independentvariablemay be in either
relativisticor nonrelativistlcform. The equationsfor d2z/dt2 and d2r/dt2
for the rlng In questlonare

dt2 - + g D ri_Br) + U (15)

dr--2= rf,r Esc,r B re2 + Ur (16)

where _ Is the angular velocity of the rlng and B is deflned as



B = I (nonrelatlvlstlccase)

(]7)

B = _ v (relativisticcase)

In the above equations,Bz and Br are the axlal and radial componentsof the
magnetic inductionat the locationof the ring, Err z and Erf.r are the com-
ponentsof the rf electric fleld,and Esc z and _sc r are the componentsof
the space-chargefield. For the nonrelatl_Istlccase,'Uz and Ur are zero.
For the relatlvlstlccase, Uz and Ur are complexexpresslonsInvolvlnga
factor W definedas

W = -q Idr + E r) + dz + E z)I (18)
rno2c2a_ (Erf,r sc, _ (Erf,z sc,

where _ is the angular frequency. Uz and Ur are then given by

dz q dr Be
Uz = W _ + m dt _ (19)

dr q dz Be
= w --- (20)Ur dt m dt

where Be Is the azlmuthalmagnetic inductiongiven by

-PoIo,aver
Be - (21)

2_r2
max

In the above expression,Po Is the permeabilityof free space, rmaX Is the
outer radlus of the outermostrlng, and Io,ave _s the averagebeam current.

The angular velocity _ of the rlng Is glven by

e = eo - _[_(r'z) - o(r°'z°_]g2_r2 (22)

where _(r,z) Is the magnetlc flux at the rlng locatlon(r,z),and the sub-
scrlpt o denotescondltlonsat the tube entrance.

The coordlnatesystem used In the programhas Its origin at the beglnnlng
of the flrst cavity. The kth cavity Is dlvlded Into Nz equal parts of
length Azk, given by

Lk
Azk = _--

Z

The nth node In the first cavlty,denozedby Znl, Is deflned by
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Znl : (n - ½) az I n = I, ..., Nz (23)

The nth node In the kth cavlty, denoted by Znk, Is glven by

IZnk : Lm + n - az k (24)
m=l k 2, , Nc

where Nc Is the number of cavltles. A point that lies midway between two
nodes Zn k and Zn+1 _ ts denoted, ,.. by Zn+l/2. k. Such a point Is called the
nth antlnode tn cavity k (ftg. 3). The numerical integration of equations
(8) and (9) for the 1th ring ls such that tt(z) and rt(z) and the ftrst
derivatives of these functions are evaluated at antlnodes, and the second
derivatives are evaluated at nodes. The numerical integration scheme ts the
same as that described In reference 4, equations (8) to (11), for calculating
tl(z). The Identical scheme ts used for calculating rt(z ).

The numerical Integration method used here Is not as accurate, for a
flxed step stze, as the wldely used Runge-Kutta methods or predlctor-corrector
methods. The advantage of the method used here Is that It requires evaluating
accelerations only once per integration step, whereas the other methods re-
quires evaluating accelerations at least twice per Integration step. To be
competitive with the method used here, another method requiring evaluation of
accelerations twice per step would have to achieve comparable accuracy with
double the step slze. Such a comparison between the method used here and a
Runge-Kutta method requiring evaluation of accelerations twice per step has
been made. The method used here achieved the greater accuracy.

Intttal conditions. - At times It ls convenient to use a single subscript
to denote the rtng number; for example, tl(z ) would denote the ttme of arrtval

of the 1th rlng at the axial position z, where t runs from 1 to RNd.
At other times It Is convenient to use a double subscript to denote the rtng
number; for example, tlj(z ) would denote the time of arrival of the ring
which originally was the jth rtng making up the t th disk, where J
runs from 1 to R and 1 runs from 1 to Nd.

The tntttal total velocity of all rings ts

Vo : I, ..., "d (2s>
+ mj I

c2

where c Is the velocity of light, lqjl/mjll Is the charge-to-mass ratio, and
Vo Is the beam voltage. The initial angular velocity of all the rings is



ejl,° = eo= mJl J = l, ...,R
2_r_t,o I = 1, ..., Nd (26)

where Wc ts the cathode flux at an outermost ring and rRl,o Is the initial
radius of an outermost ring. The initial axial velocity Is

lzjl, ° = _ (rjl,o _o)2 J = l, ..., R1 = 1, ..., Nd (27)

where rjt,o Is the initial radius of the (J,l) th ring. From equation (27),

zjt Is not the same for all rings. It Is the largest for the innermost rings

and the smallest For the outermost rings. It follows that the beamwavelength,

defined as zjl,o divided by frequency, ls not the same for all rings. This

ts an inconvenience we wlsh to avoid, so we assign to zjl,o the value It
would have If R were equal to ].

• )2zjl,o = zo = u - b So (28)

where b ls the initial beam radius.

Since tjl(z) and rjl(z) are the trajectory functions to be calculated,
we must specify the initial values of these functions and their first deriva-
tives. These are given by

(l - 1)_ d
tjt = • (29) ,z

o

rj1 = V-=-_-_ b j = 1, ..., R (30)
1 = ], ..., Nd

dz = -- (31)
z

o

=

d_-z1 = 0 (32)
d

For some app]lcatlons drjl/dz Is nonzero. For such cases, drjl/dz is speci-fied in the input data.

Space charqe forces. - The starting point In developing the space-charge
model Is an expression for the potential field due to a point charge q in
a cylindrical tunnel. From reference 5, equation (10), the potential at
(r2,e2,z) Is

8



_PmslZI 3s(Pmsr2)Js(Pmsrl )V(r2'_2'z) = ---q----2_ca2 (2 - 6so)e cos s(_2 - _1) ]2o Pms[Js+l(Pmsa)m=l
s = 0

(33)

where a Is the tunnel radius, co Is the permltt_vlty of free space, and
I

l_ for s = 0Js(Pmsa) = O, 6so = for s _ 0 (34)
t

and the charge Is located at (r1,_1,0). Ne can obtain the electric fleld set
up by the point charge from the equation E = -VV. By a simple integration,
we can then find the electric f_eld due to a charged ring of charge ql and
rad|us r1. The field at (r2,z) |s

sgn(z)ql E 3°(Pmrl)3°(Pmr2) -PmlZlEz(r2,z) - -- -- e (35)
2_Coa2 [31(Pma)]2m= 1

= _PmlZI

Er(r2,z) _ ql _ Jo(Pmrl)31(Pmr2) e
2_Coa2 [31(Pma)]2 (36)m= ]

where Pmo has been replaced by Pm"

The space charge force on a reference rlng of charge q2 and radius r 2
and located at z, due to a source ring of charge ql and radius r 1 and
located at z = O, Is then given by

F21,z(rl'r2 °z) = q2 Ez(r2'z) (37)

F21,r(rl'r2,z) = q2 Er(r2'z) (38)

Equations (35) to (38) cannot be used to calculate space-charge forces
because the summationsw111 approach infinity if r I approaches r 2 and z
approaches zero. He must take into account the nonzero axial and rad|al thick-
ness of the rings. A fully general calculation can be made by Integrating over
both the source ring, located at (rl,0)o and the reference rlng, located at
(r2,z). Because of the complexity Involved, _t is not feasible to calculate
these expressions each time the space charge force on one rlng due to another
Is desired. Instead the radlal and ax|al space-charge forces are calculated
for an array of values of r 1, r 2, and z and stored In a table. This cal-
culation 1s done once, Just prior to the beginning of the s_mulatlon. In the
simulation, the space-charge forces are evaluated by a three-dimensional linear
Interpolation on the table.



In carryingout the integrationsover the axial and radial thicknessesof
the rings,assumptionsmust be made on what these thicknessesare. It is
assumedthat the axial thickness,_d = Xe/Nd (see fig. 2), remainsconstant.
The radialthicknessis determinedfrom the assumptionthat the ratio of the
inner radiusto centroldradiusand the ratio of the outer radiusto centrold
radius remainconstant. The inner and outer radii are obtainedfrom a given
centrold radiusby using equations(2) and (3). Since these radii depend on
the ring type J, the space-chargeforce is reallya functionof five vari-
ables: rl, r2, z, Jl, J2- Since Jl and J2 can take on all valuesfrom l to
R, R2 tables must be calculated. The storageand time requirementsfor cal-
culatingthls many tablesmay be excessivefor some applications. These re-
quirementsare reducedif a less general formulationis adopted. We note that
when calculatingthe rf electrlc-fleldforces on a referencering, the approach
we take is to calculatethis field and evaluate it at the centroldvalues of r
and z of the referencering. We can adopt the same approachwith the space-
charge field forces;that is, we calculatethe space charge field by inte-
grating over the axial and radial thicknessesof all source rings and then
evaluate the field at the centroldvalues of r and z of the referencering.
Since we integrateover source rings but not referencerings,the space-charge
force is now a functionof four variables: rl, r2, z, Jl- In this approach
only R tables must be calculated.

The two models for calculatingspace-chargeforces describedin the previ-
ous paragraphwill be referredto as the R2-tablesmodel and the R-tables
model. We will discussthe relativemerits of the two models. But first we
mentiona modificationthat can be made to the R-tablesmodel. The modifica-
tion is to integrateover the axial thicknessof the referencering. This
modificationonly slightlyincreasesthe computationalcomplexityand does not
increasethe number of requiredtables. Also space-chargeforces become
smoother functionsof z. To indicatethe increasedsmoothnessas a function
of z, figure 4 shows the axial space-chargeforce on an innermostrlng due to
another innermostring, as a functionof z, with and without the modification
Just described. Anotheradvantageof this modificationis that, for cases
where rI = O, r2 > 0 and z < _d, the summationfor the radial space-charge
force is a convergentseries,whereasthis series is divergentwithout the
modification. Also, the summationsfor both axial and radialforces converge
more rapidlywith the modification. In all furtherdiscussionsof the R-tables
model, it is assumedthat the modificationIs made.

Comparisonof the R2-tablesmodel to the R-tablesmodel for a variety
of cases shows that disagreementin the space-chargeforce on a referencering
due to any one source ring is less than 7 percent in practicalsituations.
Typicallythere is considerablyless disagreementin the space-chargeforce on
a referencering due to all source rings. Figure 5 shows a typicalcomparison
of the R2-tablesmodel to--theR-tablesmodel. We considerthese disagreements
to be reasonablysmall,especiallywhen comparedto the error already present
In the model from the assumptionthat there are no gaps in the tunnel. We
thereforeadopt the R-tablesmodel becauseof its reducedcomputationaland
storagerequirements.

The expressionsfor the axial and radialspace-chargeforces for the
R-tablesmodel are obtainedby carryingout the appropriateintegrationsin-
volved in equations(35) and (36). Letting rl,ln and rl,out be the inner
and outer radii of the source ring, we obtain
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F21'z(rl'r2'z) = sgn(z)qlq22gc°a2m'_--1_ J°(_mr2)Ga(rl'tn'rl'°ut)Gh(Z)[Jl(Pma)]2Izl > _d (39)

F21 r(rl.r2 ,z) qlq2 _ 31(_mr2)Ga(rl,ln'rl,out)Gb(Z)
. - 2_Coa2 _ [Jl(uma)] 2m=l

sgn(z)qlq2 _ 3°("mr2)Ga(rl'In'rl'°ut)Gc(Z)1

F21,z(rl,r2,z) =
2_Coa2 [Jl(Uma)] 2m=l

>Izl < _d (40)

F21,r(rl,r2,z)- qlq2 _ 31(_mr2)Ga(rl'_n'rl'°ut)Gd(Z)
2_Coa2 [Jl(_ma)] 2m=]

where the functions Ga, Gb, Gc, Gd are definedas

rI,outJl(Pmrl,out) - rI,InJl(Pmrl,In) •
Ga(rl,ln'rl,out) =

_m r(,out- rl,ln

-Pmlz I -.m(Iz I-o-d) -.m(Izl+_d)-2e + e + e

Gb(Z) = 292Pmd

(41)

-.ml z I .m( Izl-_d) -.m( Izl+_d)2-2e -e +e

Gc(Z) = 292_m d

-.mlZl .m(IZl-_ d) -.m(IZl+_ d)
-2Pm(IZl-_d) - 2e + e + e

Gd(Z) = 2_2
_m d

For the reglon rI = O, r2 > O, z < _d, the summationfor the radial
space-chargeforce Is a very slowlyconvergingseries. For thls region,we
use an alternatecomputation. We subdlvldethe reglon into two regions:
(1) rI = O, 0 < r2 < 0.125a, z < td, and (2) rI = O, r2 > 0.125a,z < td.
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For the first region the tunnel wall Is far removed from the source ring and
reference ring, and we consider the rings to be In free space. For this case
the radial force on a reference ring of zero axial thickness Is given by

1

F21 r(rl = O,r2,z) qlq2r2

- + - + r

-z +r

- 1 >' 0 < r2 < 0.125a (42)

- + -Z +r

The radial force on a referencerlng of axlal thlckness _d Is obtainedby
numericallyintegratingthe above equation. For the second region,the pres-
ence of the tunnel wall cannot be neglected. It can be shown that

aF21,r(rI = O,r2,z) =0
arl

Thus F21,r(rI = O,r2,z)should differ only slightlyfrom F21,r(rI = arsc,r2,z),
where rI = arsc representsthe first nonzero rI grld point. We use thls
approximationIn the second regionfor calculating F21,r(rI = O,r2,z).

F21,r(rI = O,r2,z)= F21,r(rI = arsc,r2,z), r2 > 0.125a (43)

For the region rI = O, r2 = O, z < _d, the summationfor the axial space-
charge force Is a divergentseries. For thls case, the source and reference
"rings"are actually llne chargesof length _d which partiallyoverlapone
another. We choose to truncatethls summationafter lO0 terms,a somewhat
arbitrarychoice,and use the resultfor the axial force. It should be noted
that the grld points In thls regionwlll be used rarely,If at all. They wlll
be used only when a referencerlng and a source ring, at the same time, have
centrold radii less than arsc and are separatedaxiallyby less than _d.

From figure 4, we have an idea of the smoothnessof the axlal space-charge
force as a functionof z. The radial force as a functionof z has a similar
degree of smoothness. From examiningthese functionswe can determinethe
spacingbetweengrld points In the z-dlrectlonthat Is required In the space-
charge tables for sufficientlyaccurate interpolation. In figure 4, _d/a = I/3.
The shape of these functionsvaries somewhatwlth varyingvalues of _d/a.
After examiningthese functionsfor a range of values of _d/a, we decidedto
use two differentgrld spacings. Letting aZsc be the spacingbetween z grld
points,we use
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1
AZsc = _- i,d, 0 < z < 3i,d (44)

1
AZsc = 2 i,d' z > 3i,d (45)

Let Zmax be the last z grid point in the space-charge tables. In the
simulation, if the axial separatlon distance between two rlngs exceeds Zmax,
the space-charge forces are set to zero. He calculate Zmax such that the
error in setting these forces to zero is less than 1 percent. An empirical
formula Is used to obtain Zmax.

nt'o'°)/ n !/ 'o
z';'-°.°, o.. j _o. o j r <->

Zmax _d
m< 0.127 (47)a - 2.22, a

It is undesirable for Zmax to be nearly equal to an integer multiple of i,d"
To avoid such an occurrence, Zmax ls increased slightly so that z/i, d is equal
to an integer plus 1/2. To cut down on storage requirements, we use no more
than 26 z grid points. If Zmax/td Is greater than 9 1/2, we must increase
the grid spacing AZsc to satisfy the constraint of a maximumof 26 z grld
points. When Zmax/i,d ls greater than 9 1/2, aZsc Is redefined to be

1
aZsc = 4 i,d' 0 _ z _ 3i,d (48)

Zmax - 3i,d
AZsc = 13 ' z > 3i,d (49)

We should also examine the space-charge forces as functions of either of
the two r variables. We concentrate our attention on the radial force since
this is the more rapidly-varying force. We consider an example of the func-
tional dependence on r in figure 6. For this case, R = 3 and the source
ring ls a "middle" ring of inner radius 0.326a, centrold radius 0.4a, and outer
radius 0.462a. Figure 6 ls the radial space-charge force on a reference ring,
due to the source ring, as a function of the reference ring's centrold radius.
The two rings are at the sameaxial position. The vertical dotted lines re-
present the inner and outer radius of the source ring. The other dotted line
represents the linear interpolation of this function for a radial grid spacing

of Ar_r = a/Nor r with r_oNSr'r.=I0. The accuracyof the InterpolatlonIspoor In'thereg16nsnear 326a and r = 0.462a. At r = 0.462a the

interpolationerror is 27 percent. When Nsc r Is Increasedto 20, this error
Is reducedto 12 percent. For rough-cutruns_ Nsc r = I0 may providesuffl-
clent accuracy,but Nsc,r = 20 shouldbe used when greateraccuracy is de-
slred. The larger value of Nsc r shouldcertainlybe used in cases where the
averagebeam diameter Is small c6mparedto the tunnel dlameter.
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The radial space charge force becomesmuch more rapidlyvaryingas either
of the r variablesbecomessmaller. For this reason,we use a smallergrid
spacingfor small values of r in such a way that the total number of grid
points is still Nsc r + I. For largervalues of r, the spacingbetweengrid
points is only slightlygreaterthan it would be for completelyuniformspacing.
The radialgrid spacingis given by (we assume Nsc,r is a multiple of 5)

5a a

Arsc N2 , 0 < r < (50)_ _ Nsc,r
sc,r

5a(N - I) a
sc,r r > N (51)

arsc = 4N2 ' sc,rsc,r

The space charge force on a given ring may be a slowly varyingfunction
of the independentvariable z. This is llkelyto be true in the beginning
cavities of the tube. To take advantageof the slowly varyingnatureof the
space charge force, the calculatlonis not done on every integrationstep.
The calculatlonof space charge forces is Inltlallydone every Nth step,
where N is an input. The value of N may change duringthe slmulatlonin a
manner to be describedlater. On those integrationsteps where space charge
forces are not calculated,they are approximatedby quadraticcurve fits.
Each ring has its own curve fit. These curve fits are obtainedby fittinga
quadraticpolynomlalthroughthe latest three calculatlonsof space charge
forces. Let us say that these three calculatlonswere done when z was equal
to za, zb, and zc. At an integrationstep where a new space charge force
calculatlonis due, at z = Zd, the valuescalculatedare comparedwith those
obtainedwhen the curve fits based on the points za, zb, and zc are eval-
uated at zd. If the differencein the valuesfor any ring is exceededby a
speclf_edtolerance,the next calculatlonof space charge forces occurs I/2 N
steps later. In general,N is halvedeach time the specifiedtoleranceis
exceeded.

For calculatingspace charge forces,the positionsof all rings must be
known at a time t. This informationis not readilyavailablesince z rather
than t is the independentvariable. To calculatethe space charge force on
the ith ring locatedat some z, we must determinethe positionsof all the
other rings at the time ti(z). Considerthe jth ring. The time of arrival
tj(z) at z is known. By the periodicityof the motion,the ring that origi-
nally was m wavelengthsbehind the jth ring arrivesat z at the time
tj(z) . mT, where T is the reciprocalof frequency. Similarly,the ring
teat originallywas m wavelengthsahead of the jth ring arrivesat z at
the time tj(z) + (-m)T. We considerall such rings and find m such that

Itl(z)- (tj(z)+ mT)l = Minimum (52)

We may call the ring in questionthe jth ring in the mth cycle. We assume
that the jth ring in any other cycle is too far away from the ith ring, at
the time ti(z), to contributesignificantlyto the space charge force on them m
Ith ring. Let (rj,zk)be the positionof the jth ring in the mth cyclem m
at the time ti(z). We obtain (rj,zj)by assumingthat this ring has con-

stant axial velocity Vjz(Z) and _on_tant radialvelocity Vjr(Z) in the tlme
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tnterval spanned by tt(z) and tj(z) + mT. Then (rj,z) ts given by

m

rj = rj(z) + Vjr(Z)[tt(z ) - (tj(z) + mT)] (53)

m

zj = z + Vjz(Z)[tl(z ) - (tj(z) + mT)] (54)

The space charge force Is then calculated based on the reference ring radius
m m

rt(z), the source ring radius rj, and the axlal separation distance z - zj.
The calculation ts done for all rings, excluding the t th ring, and the re-

sults are summedto obtain the total space charge force on the t th ring.

Whenthe axial separation distance z - z_ is greater than Zmax (see eqs.
(46) and (47))° the space charge calculation is not done for this term tn the
sun_atton.

As discussed In reference 2, relativistic corrections are applied to
axial lengths. In the space-charge equations, z and td are replaced by
z' and _ given by

_d
(55)

z' = z (56)

Radlofrequency electrlc field forces. - If the complex voltage V on a
given gap Is known, the electric field In the neighboring region can be written
in an expansion of the form

GO

- _V _ CmI°(Ymr) e-IBmz et_t (57)Ez(r'z't) - 2o_stnh(_) LIo(Yma----__
m _ -_

- MV _ IBmCmll(Ymr) -IBmZ ei_t -Er(r'z't)- 2_ slnh(_) YmLlo(Yma) e (58)m = -_

where

2_[p slnh(p)coS(Bm_) + Bm_ cosh(p)sln(Bm_)]
Cm = 2 2 (59)

(_) + (Bm_)
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2_m
Bm = go + _ (60)

Ym= - (61)

and BoL Is the lowest order phase shift per cavity. The shapingfactor
is an input parameter.

We define Qz(r,z)and Qr(r,z)as

GO

Cmio(Ymr) e-IBmz

GO

iBmCmiI -IBmZQr(r,z) = _ (Ymr)
slnh(_) YmLio(Yma) e (63)

m = -_

Equations(57) and (SB) can now be writtenas

-V l_t
Ez(r,z,t)= _-_Qz(r,z)e (64)

-V l_t
Er(r,z,t)= _ Qr(r,z)e (65)

Equations(64) and (65) are appropriateto a forward-travellngcircuitwave.
For a combinationof a forward-and backward-travellngwave, the appropriate
expressionsare

-l * r (66)Ez(r,z,t)= _ [Qz(r,z)Vf+ Qz( ,Z)Vb]ei_t

-1
Er(r,z,t)= _ [Qr(r,z)Vf+ Q_(r,z)Vb]ei_t (67)

The electrlc-fleldforce on a ring of charge q and locatedat (r,z) at time
t is then given by

Many of the quantitiesin equations(57) to (69) change from cavity to cavity.
When a particularcavity,let us say the kth cavity, is being discussed,the
subscript k wlll be appendedto these quantities. We now considerthe ith
rlng in the kth cavity locatedat the nth node Znk. The centrold radius
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of the ring Is rl(Znk). The electric-field force is evaluated at r = ri(Znk)
and z = Znk. From equations (68) and (69), the electric-field force on the
ring is

-qt t=ti(Znk)]Fz,ln k = Re 2Tk (Qzk(rt(Znk),Znk)Vfk + Q_k(rt(Znk),Znk)Vbk)e (70)

-ql luti(Znk)]Fr,lnk = Re 2Tk (qrk(rl(Znk),Znk)Vfk+ q_k(rl(Znk),Znk)Vbk)e (71)

The Qzk(r,z)and Qrk(r,z)functionsare evaluatedfor an array of r and
z values and stored In tableswhen cavity k Is entered. The z valuesare
the nodes Znk, n = l, ..., Nz. The r values are equallyspaced values
from r = 0 to r = a. The number of r values Is an input parameter. The
Qzk(ri(Znk),Znk)and Qrk(rl(Znk),Znk)In equations(70) and (71) are evaluated
by doing a linear interpolationin r on these storedtables. The number of
terms includedIn the summationsfor Qzk and Qrk Is determinedby an input
parameter. If cavity k has the same Lk, _k, Bok, Pk as cavity k-l, then
Qz,k-I = qzk and Qr,k-I = Qrk and new tablesdo not have to be calculated.
When new tables do have to be calculated,the old tables are no longerneeded,
and the new tablesmay occupy the same storagespace as the old tables. The
electrlc-fleldforces are evaluatedby equations(70) and (71).

Voltage-Jumpelectricfield forces.- If adc voltage V3 is imposed
across the gap of a cavity,the resultantelectricfield in the cavity is given
by (ref. 5)

Ez(r'z)= T 1 + _ DmIo(kmr)CoS(kmZ (72)m = l

-v r£ ,]Erlr'z)= L Lm= 1 DmIllkmr)Sln(kmZ (73)

where

2p[_ slnh _ cos k _ + k t cosh p sin k _]

Dm = m m m (74)
slnh g[ 2 + (kmt)2] io(kma)

2m_
km = T (75)

We define Rz(r,z) and Rr(r,z) as

Rz(r,z)= l + _ DmIo(kmr) cos(kmZ)m = 1 (76)
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Rr(r,z)= _ DmIl(kmr)sln(kmZ) (77)m=l

Equations(72) and (73) can now be writtenas

-VjRz(r,z)
Ez(r'z)= L (78)

-V3Rr(r,z)
Er(r'z)= L (79)

As before,when referringto the kth cavity,the subscript k wlll be ap-
pended to those quantitieswhich may change from cavityto cavity. We now con-
sider the ith ring in the kth cavlty locatedat the nth node Znk.
From equations(78) and (79), the electrlc-fleldforce on the ring Is

-qlV3kRzk(rl(Znk),Znk)

Fz,lnk = Lk (80)

-qlVjkRrk(rl(Znk),Znk)

Fr,lnk = Lk (81)

The Rzk(r,z)and Rrk(r,z)functionsare calculatedand stored In a table and
have the same featuresas the Qzk(r,z)and Qrk(r,z)for rf electrlc-fleld
forces

Magnetic field forces.- The programprovidesoptionsfor simulatingtwo
types of magnetic focusingfields: (1) uniformsolenoidalfocusingand (2)
periodicpermanentmagnetic (PPM) focusing.

The magnetic field for uniformsolenoidalfocusing Is given simply by

Bz(r,z)= Bo (82)

Br(r,z)= 0 (83)

where the constant Bo is a program input.

The second type of magnetic focusingIs PPM focusing. We consider first
"singleperiod"PPM focusing. Figure 7 shows the geometryof the rlng magnets
which are centeredalong the z-axls. The gap lengthbetweenmagnets Is 2g, the
inner diameteris 2a, and the magnetic period!s P. Also shown in figure 7 is
the shape of the axial magnetic field at r = a. The origin Is at the center
of a gap so that Bz is an even functionof z. The assumedshape of Bz(a,z)
in the region Izl P/2 Is

i

Bz(a,z)= Bo cosh _z, 0 < Izl< _- - 2 (84)
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P
Bz(_,z) = o, < Izl2 - <_ _ - 9 (8s)

z) = -Bo cosh - , _- g <_Izl <__ (86)
m

where the shaptng factor g Is an Input parameter.

The magnettc fte]d can be found ustng a Fourier sertes expansion. Ne note
that Bz Is axla]]y symmetric and satisfies LaPlace's equation, and Br ts
zero at z = + P/2. The Fourier series expansion which satisfies these condi-
tions and has the required behavtor at r = 0 ts

8z(r,z ) = _ anlo(knr ) cos(knZ) (87)n = ]

where kn Is given by

2n_
= _ (88)kn p

Uslng the equatton dtv _ = O, we can showthat Br Is gtven by

Br(r,z ) = _ anIl(knr) coS(knZ) (89)
n = ]

The coefficients an can be evaluated If Bz(r,z) ts a known functlon of z
at somevalue of r, let us say r = ro. Weobtatn

an - Pio(knro ) Bz(ro,Z) cos knZ dz (90)

m

If r o = a, we use the assumedfteld shapes given by equations (84) to (86).
Substituting tnto equatton (90), we obtaln

m m

88o[_ slnh gg cos kng + kn cosh gg sin kng]

an = P/_2 + k2n)Io(kna) , n odd

t

(91)

an = O, n even

In practice, the fteld shapes at r = a are not precisely known and cannot be
conveniently measured. Alternatively, the on-axts values Bz(O,z) are con-
ventently measurable and can be used In equatton (90), letttng ro = O, to
evaluate an. For the case of measured data, the Integral In equatlon (90)
Is evaluated numerically.
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"Double period" PPMfocusing 1s treated In muchthe sameway as "single
pertod" PPMfocusing. Flgure 8 shows the geometry of the rtng magnets whtch
are centered along the z-ax!s. As before, the gap length between magnets 1s
2g, the Inner diameter ls 2a, and the magnetlc pertod ts P. Also shown tn
figure 8 ls the shape of the axtal magnetlc fteld at r = a. Whereas the
single perlodlc case has Its origin at the center of a gap, the double perlodtc
case has Its orlgln mldway between two adjacent gaps. The orlgln ls placed
herg tn order to make Bz an even function of z. The assumedshape of
Bz(a,z) tn the regton Izl _ P/2 ts

P
Bz(a,z)= O, 0 < Izl <__ - g (92)

= Bo cosh - , _ - g <_Izl < g * g (93)

Bz(a,z ) P 3P= O, _ + g <_ Izl <__- - g (94)

z) = -Bo cosh - , _- - g < Izl <__- + g (95)

3P P
Bz(_,z) = O, _- * g _ Izl _ _ (94)

In the sameway as before, the magnetic field can be found using a
Fourter serles expansion. The results for Bz(r,z) and_ Br(r,z) are
identical to those tn equations (87) to (90). If ro = a, we use the assumed
field shapes gtven by equations (92) to (96). Substituting Into equatton
(90), we obtain

(2 cos 4)(880)[; slnh _g cos kng , kn cosh ,g stn kng] "_

an= (:) t °odO
p _2 + k Io(kna)

(97)

an = O, n even

As before, the on-axis values Bz(O,z), obtained from measured data, may be
used In equation (90), letting r o = O, to evaluate an.

The magnetic flux ¢(r,z) for both "single period" and "double period" PPM
focusing 18 given by

anil(knr)
_(r,z) = 2_r cos k z (98)

knio(kn_) nn=l
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The magnetic flux ls needed for calculating the angular veloclty g of a rlng

(see eq. (22)). Knowing _, the axial magnetic force rgBr and the radial

magnetic force rgBz on a ring can be calculated.

As before, when referring to the kth cavity, the subscript k will be
appended to those quantities which may change from cavity to cavity. We now

consider the I th rlng In the kth cavity located at the nth node Znk.

The angular velocity _ink of the rlng is

ql _k(rl(Znk)'Znk ) - _o

_lnk = _o - _ 2_rl(Znk)2 (99)

The axial and radial magnetic forces on the ring are

Fz,lnk = qlri(Znk)_inkBrk(r1(Znk),Znk) (I00)

Fr,lnk = -qlr1(Znk)_inkBzk(rl(Znk),Znk) (101)

The Bzk(r,z),Brk(r,z),and _k(r,z) functionsare calculatedand stored in a
table and have the same featuresas the Qzk(r,z),Qrk(r,z),Rzk(r,z),and
Rrk(r,z)tables•

Rings with small radius.- In this sectionwe discussthe behaviorof
rings which become very small In radius. As we shall see, a modlflcatlonto
the slmulatlonwlll be required. It Is Instructlveto analyzethe equatlons
of motion and obtain an approximationto the radialmotion of such rings.

We look at the case of an innermostring, which Is really a disk, slnce
thls ring type Is the one most likely to become very small. We use non-
relativisticequationsand assume the cathodeflux Is zero. From equation
(16), the radial equationof motion |s

d2r _ + + r_Bz) + r_2 (I02)
dt_ = m (Erf,r Esc,r

From equatlon (22), _ Is

= -q _(r.z_ (lO3)
m 2_r2

For small r, Bz(r,z) can be approximated by Bz(O,z). Then _(r,z) can be
approximated by

_(r,z) = _r2Bz(O,z) (104)
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Substituting equation (104) lnto equation (103), we obtain

-qBz(O,z)
-

2m (105)

Substltutlonof equation(I05) Into equation(102) yields

22
d2r -q Bz(O,z)r

- + g ( + r) (106)dt2 - 4m2 m Erf,r Esc,

We transformthe above equationto one with z as independentvariable,as-
sumingthat the axial velocity vz Is constantover the regionof interest.

d2r -q2B_(O,z)r
_ = + ---q- + r) (I07)dz2 4m2v2 mv2 (Erf,r Esc,

z z

For r small enough,the space-chargefleld is dominatedby the self-force.
We assume r Is small enough that the space-chargefleld can be approximated
by the self-forceonly. From Gauss' law, the self-forceIs closelyapproxi-
mated by

q

Esc,r = 2_CoEdr (108)

Equation (I07) becomes

22

d2r -q Bz(O,z)r ._q_ / q2 _1

" (lo,,.omV  o
The first two terms on the right hand slde of equation (109) are negligible com-
pared to the th|rd term for small enough r. We then obtain the approximation

d2r K

dz2 r (110)

2 Iq/mlI
K - q _ o

2_ComV_d 4_CoUoV2 (111)Z

Equatlon (110) cannot be solved analytically; however, we can determine
the mlnlmum value of r. For shorter notation, we use a "prlme" to denote
differentiation with respect to r. We consider the situation where r(z) and
r'(z) are known at somepoint z1.
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r(z 1) = r 1

I

r'(zl) : r I

Weassume further that r(z) ts decreasing and reaches a minimumvalue r 2 at
somepoint z2. The following derivation for r 2 ts self-explanatory.

K
r" = -

r

2Kr'
2r'r" -

r

dr%2 2K dr
_zz_dzJ - r dz

(dr_ 2 d__E
d \dz/ = 2K r

J':2Kln r'
\dz/I1 1

r2
(r_)2 - (r_)2 = 2K In rl

' = O, we haveContinuingthe derivationand noting that r2

,)2 r2-(rl

2K - In rl

-(r_)2/2K r2
e = m

r 1

-( r_)2,'2K
r2 = rI e

We considera numericalexamplefrom a computerrun simulatingthe Com-
municationsTechnologySatellite(CTS) 200-wattTWT (ref. 9). The pertinent
data are:

rI --O.05a = 0.3175x10-4 m

23



-3.5 (corresponds to 3.5 ° angle)r_ - 57.3

u = v = 0.63x108 in
o z sec

I = 0.07 amps
0

With this data, we obtain for r2/a

r 2
-- = 0.73x10 -3a

The actual trajectory, obtained from numerical integration of equation (110),
Is shown In figure 9. In the neighborhood of the minimum point, r" Is changing
very raptdly and very small integration steps need to be taken. Since the
program ts designed to have a fixed number of equally-sized steps per cavity,
It Is not possible to accurately calculate the type of trajectory shown In
figure 9, without using a prohibitively large numberof steps per cavity. We
notice from figure 9 that the ring approaches the z-axls so closely that It
almost appears as though the rlng Is reflected from the axis. In the program,
we slmulate such a trajectory as though the rlng Is indeed reflected from the
z-axls. Assumea ring has radius r and flrst derlvatlve r' at the end of
an Integration step and that the step size Is Az. If the ring satisfies the
following condltlon,

r + 2Az r' < 0

then the decision ls made that the normal Integration modew111 not accurately
calculate the ring radius over the next step. Instead the acceleration on the
ring Is set to zero and the simulation proceeds. Whenthe integration step ts
reached at whlch the rlng radius would otherwise becomenegative, the reflec-
tion takes place and dr/dz changes sign. After the reflection takes place,
the actual value of the ring acceleration Is restored, and the normal modeof
simulation proceeds. In flgure 10 the resultant trajectory (dashed llne) ls
compared to the actual trajectory.

Beam-WaveCoupling Analysis

The flelds induced by the beam current can be conveniently represented by
Induced gap voltages. The analysis for obtaining expressions for the induced
voltages Is given tn reference 5 (pp. 11-15). From equations (66) and (67),
the forward and backward components of the vector electrtc field can be
expressed as

-Vf l_t
_f(r,z,t) = 2--_-_(r,z ) e (112)

-Vb l_t
_b(r,z,t) = _ Q*(r,z) e (113)
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where _(r,z) Is defined as Qz(r,z)az . Qr(r,z)ar. Equations (46) and (47) of
reference 5, when generalized to the three-dimensional case, become

z / _*(r,z) • _l(r,z)du (114)avf = Jv

zfaVb = _-_ _(r,z) • _l(r,z)du (115)

where _l(r,z) Is the fundamental Fourier componentof the beamcurrent density
_(r,z,t), v Is the volume of the cavity In question, and Z Is the cavlty's
interaction impedance.

Since IQr(r,z) l << Iqz(r,z) l and I31r(r,z) l << I31z(r,z) l, we may approximate
_(r,z) • _l(r,z) by qz(r,z) Jlz(r,z). Appendix B gives a deviation of the
following expression for 31z(r,z)

NdR

sin \2_1_Z) / _1=tl(Z)
1 g(r;rl,ln'rl,out)ql (z) e (116)

31z(r'z) = T _ 2 _ _d
,out - rl,l 2vl(z)

1 = 1

In the above expression g(r;rl,ln,rt,out) Is the rectangular function defined
by

g(r;rl,ln,rt,ou t) = 1 rt,tn < r < r 1' ,out
(117)

g(r;rl,ln,rl,out) = 0, r < ri,ln or r > ri,out

th
where rl,ln and rl,ou t are the inner and outer radius of the 1 ring.
The backward induced voltage, from equation (115), now becomes

_Vb = _ Jlz(r,Z)Qz(r,z)dv (118)

Using equation (116), equation (118) becomes

L NdR

1 qt(z ) stn _2_(z)/ -t=t|(z)

&Vb = 4_ T ,_ z)- r2 _ =_d e
,out ( 1,1n(z 2Vl(Z)

I = l
2
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r_l, rl'°ut(z)

x Qz(r,z) 2gr dr dz (119)

tn (z)

The Integration tn r can be shownto be

co

r,outzr t ,OUt(Z) _t i)mZ ,
rCmI1(Ymr)e

Qz(r,z) r dr =
tn(z) st nh LYmIo( yma)

r I tn (z)m= -_

(120)
We deftne S(r,z) as follows:

- t BmZ
S(r,z) =, _ Cmll(Ymr)e

slnh p LYmalo(Yma) (12t)
m= -_

Equation (1.20) becomes

r_l, rl'°ut(z) Qz(r,z) r dr = a rl,out(Z ) S(rt,out(Z),Z )In (z)

-a rl,ln(Z ) S(rl,tn(Z),Z ) (122)

_llth the atd of equatlon (122), equation (119) becomes
L

f2&Vb = Gb(Z)dz (123)

where Gb(Z) Is given by

NdR

Gb(Z) Z 1 qt(z ) stn 2vt(z) _lutt(z)
- 4t -[r_,out(Z) - r_,ln(Z)] _td e

2vt(z)t =1

x 2_a[rl,out(Z ) S(rl,out(Z),Z ) m rtotn(Z) S(rt,ln(Z),Z)] (124)
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L
2

Similarly. 6Vf is given by f

_Vf = J Gf(z) dz (125)L
Z --_ --

2

where Gf(z) Is given by

NdR

Z 1 ql(z ) sin 2v_(z) -l_tl(z)Gf(z)
,_,out(Z) - r_ ln(Z_ _d e

, 2vl(z )= 1

x 2wa[rl,out(Z) S*(ri,out(Z),Z) - rt,tn(Z) S*(rt,tn(Z),Z)] (126)

In equations (123) to (126), the integration variable z is the axial position
relative to the center of cavity k. To avoid excessively cumbersomenotation,
the subscript k has been omitted from these equations. The integrals In
equations (123) and (125) are evaluated with the use of Slmpson's rule with end
corrections. The end corrections were derived with the assumption that the
number of nodes per cavlty Nz is a multiple of four. Equations (123) and
(125), with the subscript k restored, now become

N
z

&Vfk = &zk _ 6nGf(Znk)
(127)

n = I

N
z

&Vbk = &zk _ 6nGb(Znk) (128)
n = 1

where, from Slmpson's rule with end corrections, the 6n are

1 17 2
61 = _ + _ 6n = _, 4 _ n _ Nz - 2, if n is odd!

62 4 7__ 6 4 nI

= 3 - 24 n = 3' 4 < n < Nz 2, if n is eve

2 2 1 9 (129)
63 = g + _ 6Nz-1 = g +

6Nz = 27
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From equations(124) and (126),the evaluatlonof Gf(Znk)and Gb(Znk) re-
quires the evaluationof Sk(rl.out(Znk),Znk)and Sk(ri.ln(Znk),Znk)for
i = I, ..., NdR. The Sk(r,z) functionis calculatedand stored in a table in

the same manner and with the same featuresas the Rzk(r,z),Rrk(r,z),Qzk(r,z)
and Qrk(r,z) tables. The evaluationof Sk(r,z) in equations(124) and (126)
is done by linearly interpolatingthe table in the r variable.

Calculatingthe effectsof the backwardwave requiresan Iteratlveproce-
dure. In the first pass throughthe tube, the AVbk are calculatedand stored
for each cavity k• From the AVbk, the backwardvoltages for a cavity chaln
from cavity kl to cavity k2 are obtained from

Vb,k2 = AVb,k2 (130)

Z_/Z--_+l -(=L)bk -I(BIL)kVbk = AVbk + Vb,k+1 e e , k = k2 - I, .., kl (131)

By a cavity chain, we mean a sequenceof consecutivecavitieswhose backward
voltagesare to be calculated. After Vbk are known for the desiredcavities,
a second pass is made through the tube. The secondpass yields a new set of
AVbk that can be used for calculatinga set of Vbk for a third pass. The
processcontinuesuntil convergenceis obtained. In many applicationsthe
Iteratlveprocedurewill converge faster if the iterationis done on one cavlty
chain at a time. Thls would be true, for example,for a tube having severs.
The program has the capabilityof performingthe Iteratlveprocedurefor an
arbitraryset of cavity chains.

The computationalprocedurein the beam-waveinteractionprocess is as
follows:

(1) When cavity k is entered,calculateand store the Sk(r,z)table
given by equation (121). If cavity k has the same Lk, _k, Bok, _k as
cavity k-l, then Sk_l(r,z)= Sk(r,z)and a new table does not have to be
calculated.

(2) Obtain a first approximationto AVfk by assumingthat the rings
have constantaxial and radial velocitiesin cavity k. Thus

dt(Zlk) 1

tl(Znk)= ti(Zlk)+ dz (Znk - Zlk)

n = I, ..., Nz (132)
dr(Zlk)

ri(Znk)= ri(Zlk). dz (Znk - Zlk)

Knowing ri(Znk),we can readilycalculate rl,out(Znk)and rl,ln(Znk).
Knowing ti(Znk), rl,out(Znk)and ri in(Znk),we can calculatethe first ap-
prox1matlonto aVfk from equationsI126), (127) and (129).

(3) Let the forwardvoltagefor cavity k be

Z._//Z__._1 -(=L)f,k-I -i(BiL)k_1Vfk = Vf,k_l e e + AVfk
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If there is a backward voltage, we assume it is known from equatlon (131) using
the set of AVbk obtained from the previous pass through the tube.

(4) Proceed with numerical integration of the equations of motion to ob-
tain trajectory data at each node and antlnode in the cavity.

(5) At the nth node in the cavity, after tl(Znk) and rt(Znk) have
been obtained, calculate and store 6n Gf(Znk) and 6n Gb(Znk). These quanti-
ties are the nth terms in the summations of equations (127) and (128).

(6) Whenthe last integration step in cavity k has been done, calculate
a better approximation to AVfk from equation (127). The AVfk so obtained
replaces the old AVfk calculated in step 2. Also, calculate AVbk from
equation (128). The AVbk are stored for use in the next pass through the
tube.

(7) If additional accuracy is required, make another pass through the
cavity, repeating steps 3 to 6.

(8) Repeat steps 1 to 7 for cavity k + 1.
(9) When the last cavity Is done and the effects of the backward wave

have to be determ|ned, make a second pass through the tube. The backward volt-
ages for the second pass are determined from the AVbk of the first pass.

(10) Make as manypasses through the tube as are required to obtain
convergence.

Summaryof Program Steps

The entire computational procedure Is given in flow chart form in ftgure
11. The procedure is summarized by the following steps:

(1) Read Input data.
(2) Calculate the tables for space charge forces.
(3) Begin numerical Integration of equations of motion with z as the

independent varlable.
(4) Whena new cavity is entered, let us say the kth cavity, print

data for cavity k - 1. If the parameters of cavity k are different from
those of cavity k - 1, calculate the tables that are required for evaluat|on
of rf forces, voltage-jump forces, magnetic forces, and induced voltages.
Obtain a first approximation to AVfk by assuming that the rings have con-
stant veloclty throughout cavity k. Attenuate and phase shift Vf k 1 and
vectortally add the result to AVfk to obtain the forward voltage _or
cavity k.

(5) When the last integration step in cavity k has been done, calculate
a better approximation to AVfk, and use the new approximation in place of the
old. Also, calculate and store AVbk.

(6) If additional accuracy is required, make a second pass through
cavity k.

(7) Repeat from step 4 for cavity k + 1.
(8) If the effects of the backward wave are to be determined, make a

second pass through the tube.
(9) Make as manypasses through the tube as are required to obtain

convergence.

DESCRIPTIONOF INPUT DATA

The followingdata are requiredby the program. In the followingdef_nl-
tlons, a "magneticsection"is defined to be one-halfof the magneticperiod
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for single-perlodPPM focusingand is definedto be one-fourthof the magnetlc
perlod for double-perlodPPM focuslng.

Nam___eeSymbol Description

ACM a Tunnel radius,cm

ALPHL(K) (=L)fk Voltageattenuatlonof forwardwave in going from cavity K
to cavlty K + l, dB per cavity;K = l, LASTCV

ALPHLR(K) (=L)bk Voltageattenuationof backwardwave in golng from cavity
K + 1 to cavity K, dB per cavlty;K = l, LASTCV. (ALPHLR
needs to be loaded only if KLOSS = I.)

BO(K) Bok Value of axial magnetic fleld Bz(r,z)at r = a and
z = midpointof gap in Kth magnetic section;webers per
squaremeter; K = 1, LASTMG. Note that r = a corresponds
to the boundaryvalue of r, and that a Is also the tunne_____!l
radlus. BO(K) needs to be loadedonly If NBZDAT = O.

BILDP(K) (nIL)k Phase shift of voltagefor cavity K; K = I, LASTCV.

BCM(I) b Ith beam radius In one-dlmenslonalregion,cm; I = I,
NUMB. See NUMB, NBI, NB2 for relatedinputs. If there Is
no one-dlmenslonalregion(KAVI3 = INITCV),only BCM(1) is
used and BCM(I) Is initialbeam radius.

•BZDATA(1) Experimentallyobtainedvalue of Bz(r,z)at r = 0 and
z = Ith axial data point; I = I, NBZDAT + I. I = 1
correspondsto the beginningof a magnetic sectionand
I = NBZDAT + l correspondsto the end of a magnetic
section. The axial data pointsmust be equa]lyspaced.
BZDATA(1)needs to be loadedonly if NBZDAT_ O.

DRDZ(I) dr Initialvalue of dr/dz for Ith ring; I l, NRINGS.
I = l correspondsto an innermostring. _ = NRINGS corre-
spondsto an outermostring.

FREQGH f Frequency,GHz
IOBMA Io Beam currentat tube entrance,mA
INITCV Number of first cavityconslderedin the presentcase
ISAVE ISAVE = II + I2 + I3, where 11, 12, and 13 aFe definedas

follows:
II = O: No action.

II = I: Initialstate of the presentcase wlll be stored
In COMMON/STATE/foruse in a futurecase.

I2 = O: No action

I2 = 2: Initialstate of the presentcase wlll be stored
in a specifieddata set.

I3 = O: No action.

I3 = 4: Final state of the present case will be stored
in a specified data set.

ISTATE Used only when INITCV_ 1:

ISTATE= l: Initialstate of presentcase Is equal to
initialstate of previouscase.

ISTATE= 2: Initialstate of presentcase iS equal to
final state of previouscase.

ISTATE = 3: Initialstate of presentcase Is equal to
initialstate of the last case for which 11 (see ISAVE)
was equal to I.

ISTATE= 4: Initialstate of presentcase I_ equal to the
state stored in a specifieddata set.
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JSCF Initially, space charge forces are evaluated once every
JSCF steps.

KAVI3 Number of the first cavity in the three-dlmensionalregion
KIMP KIMP = O: Pierce impedanceIs enteredas input.

KIMP = l: Total impedanceIs enteredas input. (See ZIMP
for relatedinput.)

KLMAG KLMAG = O: Cavity lengthsand magnetic sectionscoincide.
KLMAG _ O: Cavity lengthsand magnetic sectionsdo not

coincide.
KLOSS KLOSS= O: ALPHLR(K)will be set equal to ALPHL(K); thus,

ALPHLR(K)does not need to be loaded.
KPLOT KPLOT= O: Plots are desired.

KPLOT_ O: Plots are not desired.
KPPM KPPM = I: Single period PPM focusingIs to be used.

KPPM = 2: Double period PPM focusingIs to be used.
KPRINT KPRINT = O: Print input data.

KPRINT _ O: Do not print input data.
KREL KREL = O: Use relativisticequationsof motion.

KREL _ O: Use nonrelatlvlstlcequationsof motion.
KSMSIG KSMSIG = O: Print small-slgnalparameters.

KSMSIG _ O: Do not print small-slgnalparameters.
KSPACE KSPACE = O: Calculatespace charge forces.

KSPACE _ O: Set space charge forces equal to zero.
KSOLEN KSOLEN = O: Use PPM focusing.

KSOLEN # O: Use solenoidalfocusing;Bz = BO, Br = O.
KVEL(I) Number of cavity for the Ith printoutof normalizedaxial

velocitiesof rings; I = l, NVEL
KWRITM KWRITM = O: Do not print normalizedmasses of rings.

KWRITM _ O: Print normalizedmasses of rings whenever
normalizedaxial velocitiesof rings are printed.

KWRITV KWRITV = O: Do not print normalizedradialvelocitiesof
rings.

KWRITV _ O: Print normalizedradialvelocitiesof rings,
Vr/Uo, whenever normalizedaxial velocitiesof rings are
printed.

LASTCV Number of last cavity consideredIn the presentcase
(LASTCV_ 70)

LASTMG Number of maqnetlc sections(LASTMG< 70)
LCIRCM(K) Length of K_h cavity,cm; K = l, LASTCV.
LGAPCM(K) Length of gad in Kth cavity,cm; K = l, LASTCV.
LMAGCM(K) Length of Kth magnetic section,cm; K = l, LASTMG.

LMAGCM(K)needs to be loadedonly If KLMAG._0
MSHAPE(K) Used in defining electricfield shape for Ktn cavlty,

inversemeters;K = l, LASTCV;

Ez(a,z)at gap edge
cosh (m_)

Ez(a,z)at gap center =

where m = MSHAPE(K)and _ = half-lengthIn meters of
Kth gap.
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MU(K) _ Used in definingmagneticfield shape for Kth magnetic
section,inversemeters;K = l, LASTMG;

Bz(a,z)at gap edge

Bz(a,z)at gap center = cosh(_g)

where _ = MU(K) and g = half-lengthin meters of Kth
magneticgap. MU(K) needs to be loadedonly if
NBZDAT = O.

NBI Used only when there is a one-dlmenslonalregion
(KAVI3> INITCV). Beam radius changesfrom first value to
second value at end of NBIth cavity. (NBI needs to be
loaded only if NUMB > l.)

NB2 Used only when there is a one-dlmenslonalregion
(KAVI3> INITCV). Beam radiuschangesfrom second value
to third value at end of NB2th cavity. (NB2 needs to be
loadedonly if NUMB = 3.)

NBWM NBWM = O: No backwardwave.

NBWM > O: Number of last cavity consideredin calculating
backwardwave.

NBZDAT NBZDAT = O: Magnetic fieldsare determinedby input data
B_ and MU.

NBZDAT_ O: Magneticfields are determinedfrom experi-
mental data. The number of experimentaldata values for
Bz(O,z) is NBZDAT . I. (NBZDAT_ lO0)

NCAVSS Number of cavity for which small-slgnalparametersare
calculated

NDISKS Nd Number of disks (NDISKS_ 24)
NMAX For sums that are stored in tables,excludingspace-charge

force tables and magneticfield tables,NMAX is the upper
limit. (NMAX _ 50)

NPGRID Nr Number of grid points in r directionis NPGRID + I. r = 0
is first grid point and r = a is last grid point.
Refers only to the grid for calculatingforces on rings
due to electricand magnetic fields. (NPGRID_ 20)

NPSC Nsc,r Number of grid points in r directionis NPSC + I. r = 0 is
first grid point and r = a is last grid point. Refers
only to grid for calculatingforces on rings due to
space-chargefields. (NPSC_ 20)

NRINGS R Number of rings per disk (NRINGS< 4)
NUMB Number of discretevalues for the--beamdiameter in the one-

dimensionalregion, l < NUMB < 3
NVEL Number of cavitiesfor whTch rlng axial velocitiesare to be

printedout.
NXGRDI Nz Number of nodes in z-dlrectlonper cavity, in one-dlmenslonal

region. (NXGRDI_ 64); NXGRDI must be a multipleof 4.
NXGRD3 Nz Number of nodes in z-dlrectlonper cavity, in three-

dimensionalregion. (NXGRD3_ 64); NXGRD3must be a
multipleof 4.

NXMAG Number of grid points in z-dlrectlonper magnetic section.
NXMAG must be a multipleof 4. Normally,NXMAG shouldbe
about the same as NXGRD3. NXMAG does not have to be
loaded if KLMAG = O. (NXMAG_ 64)
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PCDPA _c/_a Normalizedcathodeflux: PCDPA = _c/_a, where _c is
cathodeflux at r = a. _a = _a_Bo,where a Is tunnel
radiusand Bo _ BO(1).

PINDBM Input power, dBm
TOLDV Error criterionfor determiningwhetheran additionalpass

througha cavity is required. If

AVf'new- AVf'°ld> TOLDV
Vf,new

then an additionalpass is made.
TOLSC Error criterionfor determiningwhetherthe frequencyof

calculatingspace charge forces should be doubled. If
for any ring the differencebetweenthe calculatedspace
charge force and the extrapolationof the quadraticcurve
fit Is greaterthan the productof TOLSC and the maximum
rf electricfield force in the cavity,the frequencyof
calculatingspace charge forces is doubled.

TOLTBL Error criterionused In electricand magnetic field tables
for determiningthe number of terms to includeIn infinite
summations. Suggestedvalue: TOLTBL = 0.02.

TWOGCM(K) 2g Lengthof gap in Kth magneticsection,cm; K = l, LASTMG
V_B Vo Beam voltage,volts
VJUMP(K) Vjk The dc voltageJump for Kth cavity,volts; K = l, LASTCV
ZIMP(K) Zk If KIMP = O, ZIMP(K)Is the Pierce Impedencein ohms for

Kth cavity;K = l, LASTCV
If KIMP = l, ZIMP(K)is the total impedancein ohms for
Kth Cavity;K = l, LASTCV

DESCRIPTIONOF OUTPUT DATA

The programoutput consistsof both printedoutputand plots. The plots
are produced only If the input parameterKPLOT is zero. The printedoutput
includesthree parts: (1) printingof small-slgnalparameters(only If the
input parameterKSMSIG Is zero); (2) a cavlty-by-cavltyprintingof selected
data; (3) printingof data on ring dynamicsat selectedcavities. The program
can be easily modifiedto calculateand print other data if desired.

First, the input data are printed In NAMELISTformat. (The printingof
the input data can be suppressedby lettingKPRINT be nonzero.) Then the
small-slgnalparametersare printed if desired. The small-slgnalparameters
are as follows:

Name Symbol Description

UO u0 Initialbeam velocity,m/sec
BEB Beb Productof beam propagationconstantand beam radius
BIB Bib Productof wave propagationconstantand beam radius
KP Kp Pierce impedance,ohms
ZC Zc Total impedance, ohms
C C Pterce's C
B b Pierce'sb
D d Pierce loss parameter d 1
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OGAXN Asymptotic gain per cavity, dB/cavity
OO Q P%erce'sspace charge parameter,QC/C
AIPA2 Al + A2 Launchingloss, dB

The followingdata are printedfor each cavity:

CAV Cavity number
VMAG Magnitudeof gap voltage,volts
ISMAG Magnitudeof normalizedinducedcurrent
ISPHA Phase of normalizedinducedcurrentdividedby
LSGAIN Large-signalgain, dB

POUT _ Output power dividedby IoVo NR

- l _ Pi (NR = NOISKS*NRPO)AVERHO p Average of the ring radii P = N-Ri = 1

RMSANG RMS value of the angle that the velocityvectorsof the rings
make with the z-axls; in degrees

RMSVEL RMS value of the normalizedradialvelocitiesof the rings,
where the normalizationis with respectto uo, the
initial axial velocity

NR

f ,7

| =l

PKE Change in beam kineticpower referredto Initialbeam kinetic
power,divided by IoVo

INTRC Power loss due to beam interception,dividedby IoVo
PRF Power in forwardwave, dividedby IoVo
PBW Power in backwardwave, dividedby IoVo
PLC Cumulativepower loss (exceptfor loss due to beam %nter-

ceptlon),dividedby IoVo
PBAL Power balanceequal to

PKE - PJUMP + PRF + PBW + PLC + INTRCl +
IV
0 0

where PJUMP is the power due to all voltagejumps up to the.
currentcavity

SC IntegervariableKSCF: space charge forcesare evaluated
every KSCF integrationsteps.
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At selectedcavities,the followingdata are printed:

"Normalizedaxial velocities" - Axial velocitiesnormalizedwith respectto
uo, the initialaxial velocity

"Normalizedradial velocities"- Radial velocitiesnormalizedwith respectto
uo, the initialaxial velocity;printed
only if KWRITV_ 0

"Normalizedring masses" - Ring masses normalizedwith respectto initial
ring mass; printedonly if KWRITM w 0

"Ring radiusdividedby a" - Ring radii normalizedwith respectto a

DESCRIPTIONOF GLOBAL VARIABLES

Global variablesare variablesthat are used by more than one subroutine
and hence are put into COMMON blocks. In the followingdescriptions,we ex-
clude input data variablessince these have alreadybeen described.

Name Symbol Description

DELV(K) aVfk Forwardinducedvoltagefor kth cavity,
volts; K = l, LASTCV

DELVR(K) AVbk Backward inducedvoltagefor kth cavity,
volts; K = l, LASTCV

DVTEMP(K) AVfk Approximateforwardinducedvoltagefor kth
cavity,obtainedby assumingrings have
constantaxial and radial velocities
throughoutcavity,volts; K = l, LASTCV

DVRTEM(K) AVbk Backward inducedvoltageof previouscase,
for kth cavity,volts; K = l, LASTCV

VGAP(K) Vk Sum of forwardvoltageand backwardvoltage
for kth cavity,volts; K = l, LASTCV

VGAPF(K) Vfk Forwardvoltagefor kth cavity,volts;
K = l, LASTCV

VGAPR(K) Vbk Backwardvoltagefor kth cavity, volts;
K = l, LASTCV

A a Tunnel radius,meters
ALFI(3,I) Ratio of inner radiusto mean radiusof

(3,I)th ring, I = l, NDISKS;_ = l, NRINGS
ALF2(3,I) Ratio of outer radiusto mean radiusof

(3,I)th ring, I = l, NDISKS;J = l, NRINGS
ALFI¢(J) Initialratio of inner radiusto mean radius

of a ring,where 3 = l is an innermost
ring and 3 = NRINGS is an outermostring

ALF2_(3) Initialratio of outer radius to mean radius
of a ring, where 3 = l is an innermost
ring and J = NRINGS is an outermostring

ALPHLB(K) (:L)bk Voltageattenuationof backwardwave in going
from cavity K + l to cavity K, dB per
cavity;K = l, LASTCV

B(I) b Ith beam radius in one-dimenslonalregion,
meters; I = l, NUMB
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BSUBR(IR,IZ) Br(riR,Ziz) Radial componentof focusingmagnetic field
at grld point (riR,ziz),webers per square
meter; IR = l, NPGRID . l, IZ = l, NXMAG.
Calculatedin TBL3M and MAGCF.

BSUBZ(IR,IZ) Bz(riR,ziz) Axial componentof focusingmagneticfield
at grid point (riR,ziz),webers per square
meter; IR = l, NPGRID + l, IZ = l, NXMAG.
Calculatedin TBL3M and MAGCF.

C c Speed of light,meters per second
Cl(I) Constantassociatedwlth Ith beam diameter;

I = l, NUMB. CalculatedIn INDAT.
C2(I) Constantassociatedwlth Ith beam dlameter;

I = l, NUMB. CalculatedIn INDAT.
C3 Constantcalculatedin INDAT.
CAVFLG Flag used by subroutineKSCKC to determine

which of two adjacentcavities is to be
selectedwhen positionedat the boundary
betweenthe two cavities

CNORM c/_w_ Normalizedspeed of light
CONSTI ConstantcalculatedIn INDAT
CONST2 No longer used
CONST4 ConstantcalculatedIn INDAT
COSY(K) Array of cosine values used in TBL3E;

K = l, 2 * NXGRID . I. CalculatedIn INDAT.
COSYB(K) Array of cosine values used In TBL3M;

K = l, 4 * KPPM * NXMAG + I. CalculatedIn
INDAT.

CTHETA cos e Cosine of normalizedtlme

DELP Ap Normalizeddistancebetweentwo adjacentgrld
points In radialdirection. CalculatedIn
INDAT.

DELPSC(I) Ith normalizeddistancebetweentwo adjacent
grid points in radialdirectionin space
charge tables;I = l, 2. CalculatedIn
SCAT3.

DELX(I) A_ Integrationstep slze in Ith cavity string;
I = l, NSCAV. CalculatedIn INDAT.

DELXSC(I) Ith normalizeddistancebetweentwo adjacent
grid points In axial directionIn space
charge tables;I = l, 2. CalculatedIn
SCAT3.

DPR Conversionfactor from degrees to radlans,
DPR = 180/_

ECHARG e Chargeof an electron,coulomb; ECHARG Is
posltlve

EMASS Mass of an electron,kg
EPS_ Co Permlttlvltyof free space, farad/meter
ERRWT(I,J) Error weights used In determiningthe number

of terms to includeIn the summations
calculatedIn TBL3E and TBL3M; I = l, 5;
J = l, NPGRID + I. CalculatedIn INDAT.

FREQ f Frequency,Hz
I_B

Io Beam currentat tube entrance,amps
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I_BAVE Beam currentat tube entrance,reducedby the
percentageof the beam that has been inter-
cepted,at the presentaxial position,amps.
CalculatedIn ACC.

INTLS Power loss due to the cumulativebeam inter-
ceptionthat has taken place up to thepre-
sent axial position,watts

ISCAV(K) Number of cavity string in which Kth cavity
is located;K = l, LASTCV

ITER Presentnumberof iterationof beam rings
traversingcavity

KBEGIN Equals zero at beginningof case and is set
equal to l immediatelythereafter.

KCAV Number of currentcavity
KOUNTP Counter for data points to be plotted

KPDZC(K) Kp/Z Ratio of Pierce Impendenceto total impedance
for Kth cavity;K = l, LASTCV

KSCAV Number of presentcavity string. (A cavity
string Is a string of consecutivecavities
all havingthe same geometricaland elec-
trical properties.)

KSCF Space charge forcesare calculatedevery
KSCF steps.

KSCFT Used to store a previous value of KSCF.
KSTOP Equals zero until end of last cavity,when

it Is set equal to I.
KX Number of currentnode, counted from first

node of first cavity
KX_ Initialnode of presentcase, counted from

first node of first cavity
KXPRI Number of currentnode, counted from first

node of currentcavity
KXSC Number of node, countedfrom first node of

first cavity,at which the most recent cal-
culationof space charge forces was done

LAMB _ Beam wavelenqth,meters
LCIR(K) Lk Length of K_h cavity,meters; K = l, LASTCV
LDISK td Axial lengthof a ring, meters
LDISKN _d/a Normalizedaxial lengthof a rlng
LMAG(K) Length of Kth magnetic section,meters;

K = l, LASTMG
LSMALL(K) _k One-halfof gap length In Kth cavity,

meters; K = l, LASTCV
MDISK md Mass of a disk at tube entrance,kg
MLSHML m_ mt is the productof MU and LSMALL for the

slnh m_ currentcavity
MRING_ Mass of a rlnq at tube entrance,kg
MRING(J,I) Mass of (J,I)th ring, kg; I = l, NDISKS;

J = l, NRINGS
MUA(I) Ith zero of Bessel function Jo; I = l lO0
MUD _o Permeabilityof free space, henry/meter
NB Number of currentbeam-dlameterregion.

(A beam-dlameterregion Is a region
throughoutwhich the beam diameter Is con-
stant.) Appliesonly to one-dlmenslonal
region.
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NCAVPS(I) Number of cavities in Ith cavity string;
I = I, NSCAV

NCASE Number of currentcase

NCUMCS(I) Number of last cavity in Ith cavity string;
I = l, NSCAV

NPSCI Number of grid points in the first of two
radialgrids in space-chargetables

NR Total number of rings in a beam wavelength
(NDISKS* NRPD)

NRPD Number of rings per disk (NRPD = l in one-
dimensionalregion.)

NSCAV Total numberof cavity strings
NXGRID Number of nodes in z-directionper cavity
NXISC Number of grid points In the axial grld in

space-chargetables
POB Po Io/uo, charge densltyper unit lengthat

tube entrance,coulomb/m
PBW(K) Power in backwardwave in Kth cavity,

watts; K = l, LASTCV. CalculatedIn ENBAL.
PHIDN(J,I) _jl/= Normalizedangularvelocityof (3-I)th ring;

I = l, NDISKS;3 = 1, NRINGS. Calculated in
FACC3.

PI n 3.141593

PKE(K) Kineticpower at end of Kth cavity minus
kineticpower at beginningof tube, watts;
K = l, LASTCV. CalculatedIn ENBAL.

PLC Cumulativepower loss at end of Kth cavity,
watts; K = I, LASTCV. Calculatedin ENBAL.

POBAL Power balance. CalculatedIn ENBAL.
PRF(K) Power in forwardwave In Kth cavity,watts;

K = l, LASTCV. CalculatedIn ENBAL.
PRICL Power In backwardwave in presentcavity,

watts. Same as PBW(K). Calculatedin
ENBAL.

PSI(IR,IZ) _(riR,ziz) Magnetic flux at grld point (riR,ziz),webers;
IR : l, NPGRID + l, IZ = I, NXMAG.
Calculatedin TBL3M and MAGCF.

PSIA na2Bo Normallzingfactor. CalculatedIn INDAT.
PSCI(3,I) Radial space charge force on (3,I)th rlng
PSC2(J,I) at each of the latest 3 selectedvalues of
PSC3(3,I) independentvariable _ used for quadratic

curve-fltting;O = l, NRINGS;I = I, NDISKS.
CalculatedIn SCFT3.

PSCA(3,I) Coefficientsof the quadraticpolynomialused
PSCB(3,I) for curve-flttlngthe radial space charge
PSCC(J,I) force on (J,I)th ring; J = I, NRINGS;

I = l, NDISKS. CalculatedIn SCFT3.
QDISK qd Chargeof a dlsk at tube entrance,coulombs
QRINGO Charge of a ring at tube entrance,coulombs
QRING(J,I) Charge of (J-l)th ring, coulomb;

I = l, NDISKS;J = l, NRINGS

RELC(J,I) _ v2 Relativl}ticlcorrectionfactor for (3-I)th
_ "Ji ring; = , NDISKS;J = l, NRINGS.
c2 Calculatedin FACC3.
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RHO_(J) PoJ Initialvalue of normalizedmean radius of a
ring, where J = l Is an innermostrlng and
J = NRINGS is an outermostring;
J = l, NRINGS. CalculatedIn INDAT.

RHOMAX Normalizedouter radius of the outermostring
at the currentvalue of E. Calculated
in ACC.

RHO(3,I) PJi Normalizedradius of (J-I)th ring;
I = l, NDISKS;3 = l, NRINGS. Calculated
in XINT.

RHOP(3,I) _dPll First derivativeof PJl with respectto _;
dE I = l, NDISKS,3 = l, NRINGS. Calculated

in XINT.

RHOPP(3,I) _d2pll Second derivativeof PJl wlth respectto

E2 InI=Ace.l,NDISKS,J = l, NRINGS. Calculated

SBET_A(I) Boa Value of Boa for cavities In Ith cavity
string; I = l, NSCAV

SCAI(I) Ith entry in table of space charge forces
SCA2(I) for first, second,and third beam diameters;
SCA3(I) I = l, NXISC + I. Calculatedin SCAT1.

Appliesto one-dlmensionalregion only.
SCHOLD No longer used.
SIMPS(I) 61 Ith coefficientfor Simpson'srule integra-

tion; I = l, NXGRID. Calculatedin INDAT.
SINY(K) Array of sine values used in TBL3E;

K = l, 2 * NXGRID + I. Calculatedin INDAT.
SINYB(K) Array of sine values used in TBL3M;

K = l, 4 * KPPM*NXMAG+ I. Calculatedin
INDAT.

SLCIR(I) Length of cavitiesIn Ith cavity string,
meters; I = l, NSCAV

SLSMAL(I) One-halfof gap length for cavitiesin Ith
cavity string,meters; I = l, NSCAV

SMSHAP(I) Electricfield shapingfactor for cavities in
Ith cavity string,meters; I = l, NSCAV

SRIMB2 _/l - (cU--q)2 Relatlvlstlcc°rrecti°nfact°r"calculatedlnINDAT.
SSGAIN(K) Small-signalgain at Kth cavity, based on

small-signalcalculationsusing geometrical
and electricalpropertiesof cavity number
NCAVSS;K = l, LASTCV. Calculatedin
SMSIG.

STHETA sin e Sine of normalizedtime

THT(J,I) ejl Value of normalizedtime of arrivalof
(J-I)th rlng at currentaxial position
_; I = l, NDISKS;J = l, NRINGS.
CalculatedIn XINT.

THTP(J,I) deji First derivativeof ej. with respectto {;
-- I = l, NDISKS;J = I,INRINGS. Calculated
dE in XINT.
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THTPP(3,I) d2e.. Second derivativeof ell with respectto _;
2_LI/ I = l, NDISKS:3 = I,_NRINGS. Calculated

d_2 in ACC.

THTPLT(J,I) Value of e for (J,I)th ring used In plots;
I = l, NDISKS;3 = l, NRINGS

TPXR(IR,IZ,L) Real (TPXR)and imaginary(TPXI)components
TPXI(IR,IZ,L) of the Lth table for the data point

(riR,Ziz);IR = l, NPGRID + l;
IZ = l, NXGRID:L = l, 5 for TPXR: L = l, 3
for TPXI. CalculatedIn TBL3E.

TXR(IZ,L) Real (TXR} and imaginary(TXI) componentsof
TXI(IZ,L) the Lth table for the data point ziz;

IZ = l, NXGRID;L = l, 3 for TXR: L = l, 2
for TXI. Calculatedin TABLI. Used for
one-dlmenslonalregiononly.

TWOG(K) 2g Gap lengthof Kth magneticsection;meters;
K = l, LASTMG

TWOPI 2_ 2_

U_B uo Initialaxial beam velocity,m/sec
U_NORM Uo/_a Normalizedinitialaxial beam velocity
V_BSUM(K) Beam voltageplus sum of all voltageJumps up

to Kth cavity,volts; K = l, LASTCV
VGAPIM Voltageacross first gap, volts
VMAX The maximum IVGAP(K)I, where the maximum is

taken over all valuesof K up to the pre-
sent cavity;volts. Calculatedin BTWNC.

W _ Radlan frequency,_ = 2_f; rad/sec
X { Currentvalue of normalizedpositionalong

tube axis, measuredfrom beginningof first
cavity

X_ _o Initialvalue of normalizedpositionalong
tube axis for the presentcase, measured
from beglnnlngof first cavity

XICAV(K) Normalizedaxial positionat end of Kth
cavity;K = l, LASTCV

XIMAG(K) Normalizedaxial positionat end of Kth
magnetic section;K = l, LASTMG

XISCAV(I) Normalizedaxial positionat end of Ith
cavity string;I = l, NSCAV

XIMXSC Maximumnormalizedaxial separationdistance
in space charge force tables. (If two
rings are separatedby a distancegreater
than XIMXSC,the space charge force on one
ring due to the other is set to zero.)
Calculatedin INDAT.

XISCI The three latestvalues of _ at which space
XISC2 charge forceswere calculated
XISC3

XPRI Presentvalue of normalizedpositionalong
tube axis, measuredfrom beginningof cur-
rent cavity. CalculatedIn ACC.

XSCI(J,I) Axial space charge force on (J,I)th ring at
XSC2(J,I) each of the _atest 3 selectedvalues of In-
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XSC3(J,I) dependent variable _ used for quadratic
curve-fitting; J = 1, NRINGS, I = 1, NOISKS.
Calculated In SCFT3.

XSCA(3,I) Coefficients of the quadratic polynomial used
XSCB(J,I) for curve-flttlngthe axial space charge
XSCC(J,I) force on (J-I)th ring; J = I, NRINGS;

I = I, NDISKS. CalculatedIn SCFT3.
ZC(K) Total impedancefor Kth cavity,ohms;

K = l, LASTCV
IOTABL(K) Io(xk) Tables of Bessel Functions Io and Il,
IITABL(K) Ii(xk) startingwlth xI = 0 and wlth an incre-

ment of 0.03 In x; K = 1,5667
SCAP(IPI,IP2,IX,II) Tables of radial (SCAP) and axlal (SCAX)
SCAX(IPI,IP2,IX,II) space charge forces for three-dlmenslonal

region;IPI = I, NPSC + I; IP2 = I, NPSC + I;
IX = I, NXISC . I; II = I, NRINGS. Calcu-
lated in SCAT3.

DESCRIPTIONOF SUBROUTINES

In thls section,the COMMON blocks,the maln program,and each subroutine
are described. Flow charts are includedfor the more complex subroutines.

COMMON Blocks

The programhas flve COMMON blocks. COMMON/INDATA/contains the input
data. COMMON/MREAL/contains real and integerglobal variables. COMMON/MCOMP/
contalnscomplexglobal variables. COMMON/PLOT/containsarrays used for
plottingApplegatediagrams. COMMON/STATE/containsarrays used for storing
initialstates and final states. An initialstate Is a collectionof vari-
ables whose values are those at the beginningof the first cavity In the tube
sectionunder consideration. A final state Is the same collectionof vari-
ables but whose values are those at the end of the last cavity In the tube
section. The variablesIn thls collectionare those whose valuesmust be known
In order to start the simulationof a tube section. It Is necessaryto store
these initialand final states becausethey may be used in later cases. For
example, In simulatingthe second tube section,we use the final state of the
first tube sectionas a startup.

Maln Program

The maln program reads the first lO0 zeros of the Bessel function 30.
SubroutinesSTDAT, INDAT,and SMSIG are then called. When the last integration
step has been done, the final state Is stored In COMMON/STATE/. Dependingon
the value of ISTATE,the final state may also be stored In a data set for
possibleuse in a future case. The main programcalls XINT to integrateone
step and calls BTWNS to check on what action shouldbe taken between steps.
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Subroutine ACC

Subroutine ACC Is called by subroutine XINT. Subroutine ACCfirst checks
to see tf a new space-charge calculation is required. A new calculation is
required If the last calculation was KSCFsteps ago or If the current value of

is at a boundary between two beam-diameter regions. If a new calculation
ts required, then either subroutine SCFT1or SCFT3 Is called. Next, subroutine
ACCcalculates the normalized axial and radial accelerations of each ring. In
the one-dimensional modethis calculation is done In the sameway as tn the
one-dimensional computer program (ref. 4). In the three-dlmenstonal mode, the
accelerations result from the following forces: space-charge forces, rf
electric-field forces, voltage-Jump forces, magnetic forces, centripetal forces,
and forces due to relativistic effects. The space-charge forces are calculated
by quadratic curve fits, and the other forces are obtained by a call to sub-
routine FACC3. Subroutine ACCalso calculates THTPP(3,I) and RHOPP(3,I), the
second derivatives of the functions etj(_) and PtJ(_), respectively.

Subroutine APPLE

Subroutine APPLE Is called by the main program at the end of the simula-
tion. Subroutine APPLEmanipulates plot data that has been stored In the
course of the simulation and calls the plotting device for plotting r - z
plots and, optionally, t - z plots.

Subroutine BTOS

Subroutine BTOSis called by subroutine INDATand by the main program.
Whencalled by INDAT, subroutine BTOSstores in COMMON/STATE/the collection
of variables making up the initial state. When called by the main program,
subroutine BTOSstores In COMMON/STATE/the collection of variables making up
the final state.

Subroutine BTWNC

Subroutine BTWNCts called by subroutine BTWNSwhen the end of a cavity is
reached. Subroutine BTWNCdetermines whether another pass through the cavity
Is required. A second pass Is not required if either of two conditions Is met:
(1) a second pass has already been made, or (2) the induced forward voltage is
sufficiently close to the approximation of the induced forward voltage obtained
by assuming constant ring velocities throughout the cavity.

If a second pass Is not required, the subroutine sets up for entrance into
the new cavity. If needed, new tables are calculated by calling the appro-
priate subroutines. Since a second pass through the new cavity may be needed,
It Is necessary to store the state at the beginning of the new cavity. Sub-
routine FSAPPIs called to calculate DVTEMP,the approximation to the induced
forward voltage for the new cavity. The new forward voltage Is then calcu-
lated by phase shifting and attenuating the old forward voltage and adding
DVTEMP. If the old cavity was the last cavity in the one-dlmenstonal region
and the new cavity Is the first cavity In the three-dimensional region, sub-
routine TRN13 is called.
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Subroutine BTWNS

SubroutineBTWNS is called by MAIN. SubroutineBTWNS determineswhat
action should be taken betweenintegrationsteps. First, subroutineINTRC is
called to check on beam interception. Next, the subroutinedetermineswhether
the end of a cavity has been reached. If so, subroutineBTWNC is called. If
the end of a magnetic sectionhas been reached,subroutineTBL3M is called.
Finally,the subroutinedetermineswhether subroutinePLOTS should be called.
SubroutinePLOTS is called only in the three-dlmenslonalregion.

SubroutineCAVP

SubroutineCAVP Is called by subroutineINDAT. SubroutineCAVP calculates
quantitiesrelatedto cavitiesand cavity strings. A cavity string Is a string
of consecutivecavitiesall having the same electricaland geometricalproper-
ties. The number of cavitiescannot exceed 70, and the number of cavity
stringscannot exceed 35.

SubroutineCKPDZ

SubroutineCKPDZ is called by subroutineINDAT. SubroutineCKPDZ calcu-
lates KPDZC(K),the ratio of Pierce impedanceto total impedance,for the Kth
cavity.

SubroutineCROOT

SubroutineCROOT is called by subroutineSMSIG. SubroutineCROOT calcu-
lates the roots of the quartlcpolynomialinvolvedIn calculatingsmall-slgnal
parameters. The subroutinefirst solves for the roots of the cubic polynomial
using the Newton-Raphsonmethod. Using these roots as the first iterates,the
subroutinethen uses the Newton-Raphsonmethod to solve for the roots of the
quartlc polynomial.

SubroutineDVSUM

SubroutineDVSUM is called by subroutineXINT. In the three-dlmenslonal
region,DVSUM Is also called by subroutineFSAPP. SubroutineDVSUM calculates
one term in the summationfor the inducedforwardvoltage,DELV, and one term
in the summationfor the inducedbackwardvoltage,DELVR. These terms are
added to the runningsums for DELV and DELVR. The summationsare those given
In equations(16) and (17).

SubroutineENBAL

SubroutineENBAL is called by subroutineBTWNC. SubroutineENBAL calcu-
lates the power balanceat the end of the cavity in question. There are six
terms In the power balance: PKE, P3UMP, PRF, PBW, PLC, and INTLS. PKE Is the
kineticpower minus the initialkineticpower. PJUMP Is the power due to all
voltageJumps up to the cavity in question. PRF Is the power in the forward
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wave minus the power in the forward wave In the first cavity. PBWis the power
tn the backward wave In the first cavity minus the power In the backward wave.
PLC Is the sum of power losses up to the present cavity. INTLS Is the power
loss due to beam interception. Power balance is equal to one plus the sum of
these six terms divided by the initial beampower.

Subroutine FACCI

Subroutine FACCI is called by subroutine ACCwhen the simulation is in
the one-dimensional mode. Subroutine FACCI calculates EXACC,the normalized
acceleration of a ring due to rf electrtc-fleld force and voltage-Jump force.

Subroutine FACC3

Subroutine FACC3Is called by subroutine ACCwhen the simulation ts in
the three-dimensional mode. Subroutine FACC3calculates EXACCand EPACC,the
normalized axial and radial accelerations of a ring due to rf electric-field
force and voltage-Jump force. The subroutine then calculates RXACCand NPACC,
the normalized axial and radial accelerations due to magnetic focusing force.
The normalized centripetal acceleration, CENTRP,ts then calculated. Finally,
the subroutine calculates RXACCand RPACC,the normalized axial and radial
accelerations due to relativistic effects.

Subroutine FIELD

SubroutineFIELD is called by subroutineFACC3 when the simulationis In
the three-dlmenslonalmode. SubroutineFIELD calculatesEXRO, EXIO, EPRO,
EPIO, BXO, BPO, PSIO, EXDCV, and EPDCV. EXRO and EXIO are the real and
imaginaryparts of the shapingfactor for the axial electricfield. EPRO and
EPIO are the real and imaginaryparts of the shapingfactor for the radial
electricfield. BXO, BPO, and PSIO are the shapingfactorsfor the axial
magnetic field, radialmagnetic field,and magnetic flux field, respectively.
EXDCV and EPDCV are the shapingfactorsfor the axial and radialvoltage-Jump
fields.

SubroutineFSAPP

SubroutineFSAPP is called by subroutineBTWNC. SubroutineFSAPP calcu-
lates an approximation,DVTEMP,to the inducedforwardvoltageby assuming
the rings have"constantaxial and radial velocitiesIn the cavity under
consideration.

SubroutineINDAT

SubroutineINDAT is called by the main program. The subroutinefirst
reads input data from a prestoreddata set. It then reads data enteredat the
terminal in NAMELISTformat. Only input data that differ from those In the
prestoreddata set need to be entered. The input data are stored in a data
set for possible future use. The subroutinethen calculatesconstantsand
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initializes variables. The lnitlal state Is obtained In one of three ways:
(1) if the input parameter ISTATE is 4, the initial state is read from a data
set; (2) If ISTATE ls not 4 and INITCV (initial cavity) ls 1, subroutine INIT
Is called and the initial state Is calculated from input data; (3) If ISTATE
ts not 4 and INITCV Is not 1, subroutine STOBis called and the lnlttal state
is obtained from COMMON/STATE/.There is storage allotment for three states
In COMMON/STATE/.Which of the three Is chosen ls determined by ISTATE (see
definition of ISTATE In the section on description of input data).

After the initial state is obtained, it Is stored In COMMON/STATE/In the
first of the three storage allotments. Thls is done because the initial state
of the present case may be used as the initial state In the following case,
and thus it must be stored. The initial state Is also stored in the third of
the three storage allotments if the input parameter ISAVE Is an odd integer.
This is done because the initial state of the present case may also be required
as the initial state In some future case after the following case, and thus It
must be stored.

The input parameter ISAVE Is the sum of I1, I2, and 13 (see definition of
ISAVE in the section on description of input data). If 12 is 2, the initial
state of the present case Is stored In a specific data set for posslble use In
a future case.

If INITCV ls l, subroutine INDATcalculates the forward voltage for the
first cavity. If INITCV Is not 1, the forward voltage for the cavity previous
to cavity INITCV Is required for startup. This voltage will be known either
from the previous case or by reading it from a data set. The backward voltages
are calculated next. Finally, the induced backward voltages DELVRare stored
In the array DVTRER. Thls is done because In the equations of motion we must
use the induced backward voltages of the previous case. We cannot use the
DELVRarray because thls array changes during the simulation as the new induced
backward voltages are calculated. We therefore use the DVRTERarray In the
equations of motion.

SubroutineINIT

SubroutineINIT is called by subroutineINDAT and only when INITCV (%nl-
tial cavity) is I. SubroutineINIT calculatesinitialvalues for the collec-
tlon of variablesmaking up the initialstate.

SubroutineINTRC

At the end of each integrationstep, subroutineBTWNS calls subroutine
INTRC to check for beam interception. The check is done for each rlng. One
of four conditionsmay occur: (1) both the inner and the outer radiusof the
ring are less than a, (2) the outer radius is greaterthan a and the inner
radius is less than a, (3) both the inner and the outer radiusare greater
than a, (4) the ring has already been completelyintercepted.

If condition (1) occurs, no action Is taken. If condition (2) occurs,
the outer radius is redefined to be a, and the portion of the ring located
beyond r = a Is assumedto be intercepted. The remaining partial ring, since
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its outer radius has been redefined, has a redefined value of centroid radius
given by

r = n rout
2

The mass and charge of the rlng are reduced by the appropriate amounts. The
power lost due to the interception is calculated and added to the running
total. If condition (3) occurs, the ring is assumedto be completely inter-
cepted. Instead of setting the mass and charge of the rlng to zero, it Is
more convenient to set these quantities to negligible amounts and keep the
ring in the simulation. If condition (4) occurs, the outer radius of the
intercepted ring is set to a, and the inner radius is set to a quantity
slightly less than a.

Subroutine HAGCF

Subroutine RAGCFIs called by subroutine TBL3R. In subroutine TBL3R, the
arrays BSUBZB,BSUBRB,and PSIB are calculated prlor to calllng subroutine
RAGCF. These arrays correspond to the magnetlc quantities Bz, Br, and
evaluated at the grid polnts of the magentlc sectlon In question. The axlal
grld points are equally spaced over the length of the magnetlc section. If
each magnetic section does not coincide with a cavity, these axial grld points
wtll not coincide with the Integration nodes. The program requires that the
axial grid points for the Bz, Br, and _ tables colnclde wlth the Integra-
tion nodes. Subroutine MAGCFcalculates these tables by performing linear
Interpolations on the BSUBZB,BSUBRB,and PSIB arrays. The results are stored
In the BSUBZ,BSUBR,and PSI arrays.

SubroutineNBEAM

SubroutineNBEAM Is called by subroutinesBTWNC and SCFTI. When the
slmulatlonIs in the one-dlmensionalmode, subroutineNBEAM calculatesthe
number of the beam-dlameterreglon In whlch XXX Is located.

SubroutineOUTPT

SubroutlneOUTPT Is called by subroutlneBTWNC. SubroutineOUTPT calcu-
lates and prlnts output data. Since the output data have alreadybeen de-
scrlbedIn another sectlon,we w111 not repeatthe descrlptlonhere.

SubroutinePLOTS

SubroutinePLOTS ls called by subroutineBTWNS at each grld polnt z for
whlch plotting InformatlonIs to be stored. Two types of plots are used: r
as a functlonof z and t as a functlonof z, for each rlng to be plotted.
The latter type of plot, which Is similarto the Applegatediagram, Is
optional. The values of z, r, and t for the rlngs In questlonare stored
In arrays for later usage by the plottlngdevice.
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Subroutine SACC1

Subroutine SACCI is called by subroutine SCFT1 (one-dimensional mode
only). Subroutine SACC1calculates the space-charge acceleration of one ring
due to another by ltnear interpolation on space-charge force tables. Although
we use the term space-charge force tables, these tables actually evaluate
accelerations rather than forces. If the two rings are tn two different beam-
diameter regions, two linear interpolations are done and the average is taken.

Subroutine SACC3

Subroutine SACC3Is called by subroutine SCFT3 (three-dlmenslonal mode
only). Subroutine SACC3calculates the axtal and radial space-charge accelera-
tion on one rtng due to another by a three-dimensional linear interpolation on
space-charge force tables. Although we use the term space-charge force tables,
these tables actually evaluate accelerations rather than forces.

Subroutine SCAT1

SubroutineSCATI Is called by subroutineINDAT or subroutineINIT. For
each beam diameter IB and for the Ith separationdistance X, subroutine
SCAT1 calculatesthe space-chargeaccelerationSCATMP(I,IB)of one dlsk due to
another for the one-dlmenslonalmode. Using EQUIVALENCEstatements,we put
SCAI, SCA2, and SCA3 Into COMMON/MREAL/insteadof SCATMP. The arrays SCAI,
SCA2, and SCA3 make up the space-chargeforce tables for the one-dlmenslonal
mode. In thls subroutine,X Is used as the separationdistance betweendisks.
Since X Is also used as a global variable(currentvalue of _), It Is
necessaryto save the global variableIn XSAVE. At the end of the subroutine,
the value of the global variableis returnedto X. In addition,subroutine
SCATI calculatesthe ratio of the largestspace-chaTgeaccelerationto the
smallest. The smallestspace-chargeaccelerationoccurswhen the separation
distance Is largest. SubroutineSCATI also calculatesthe ratio of the beam
wavelengthto the maximum separationdistance.

SubroutineSCAT3

SubroutineSCAT3 Is called by subroutineINDAT or subroutineINIT. For
the three-dlmenslonalmode, subroutineSCAT3 calculatesand stores In a table
the axial and radial space-chargeaccelerationsof one referencerlng due to
one source ring. The table Is three-dlmenslonalsince these accelerationsare
functionsof three variables: (1) rl, the centroldradiusof the source ring;
(2) r2, the centroldradius of the referencering; (3) z, the axial separation
between the rings. Thls subroutinefirst calculatesthe number of z grld
points and the spacingbetween z grld points. There are two differentgrld
spacingsfor z (DELXSC(I),I = l, 2). Similarlythe subroutinecalculates
two differentgrld spacingsfor the r variables(DELPSC(I),I : l, 2). The
subroutineproceedsto calculatethe space-chargeaccelerationsfor every grld
point. In addition,subroutineSCAT3 calculatesthe ratio of the largest
space-chargeaccelerationto the smallest. The smallestspace-chargeaccelera-
tion occurs when the axial separationdistance is largest. SubroutineSCAT3
also calculatesthe ratio of the beam wavelengthto the maximum separation
distance.
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SubroutineSCFTI

SubroutineSCFTI is called by subroutineACC whenever a new calculationof
space-chargeaccelerationsIn the one-dlmenslonalmode is required. Subroutine
SCFTI first calculateswhat the space-chargeaccelerationswould be If the pre-
sent curve fits are used. Then for each disk the subroutinecalculatesthe
space-chargeaccelerationof the dlsk by summingthe accelerationsdue to all
the other disks. The accelerationof one disk due to another Is obtainedby
linear interpolationon the space-chargeforce tables. The coefficientsof
the new quadraticcurve fits are then calculated. Finally,the subroutine
determineswhetherthe frequencyof the space-chargecalculationshould be
changed. Thls is done by comparingthe space-chargeaccelerationsbased on
the old curve flts with those Just calculated. If the differencefor any dlsk
Is greaterthan the productof TOLSC and the maximumaccelerationdue to the
rf electricfield in the cavity,the frequencyof calculatingspace-charge
accelerationsIs doubled.

SubroutineSCFT3

SubroutineSCFT3 is called by subroutineACC and in some cases by sub-
routines INIT and TRNI3. SubroutineSCFT3 is calledwhenevera new calcula-
tion of space-chargeaccelerationsin the three-dlmenslonalmode Is required.
This subroutinefirst calculateswhat the space-chargeaccelerationswould be
If the presentcurve fits are used. Then for each rlng the subroutinecalcu-
lates the space-chargeaccelerationof the ring by summingthe accelerations
due to all the other rings. The accelerationof one ring due to another Is
obtainedby three-dlmenslonallinear interpolationon the space-chargeforce
tables. The coefficientsof the new quadraticcurve fits are then calculated.
Finally,the subroutinedetermineswhether the frequencyof the space-charge
calculationshouldbe changed. Thls is done by comparingthe space-charge
accelerationsbased on the old curve flts with those Just calculated. If the
differencefor any ring is greaterthan the productof TOLSC and the maximum
accelerationdue to the rf electricfield in the cavity,the frequencyof cal-
culating space-chargeaccelerationsIs doubled.

SubroutineSMSIG

SubroutineSMSIG is called by the main program. SubroutineSMSIG calcu-
lates small-slgnalparametersas given in reference7. This subroutineIs
identicalto the one in the one-dlmenslonalprogramdescribedIn referenceI.
A detaileddescriptionof the subroutineis given i'nthat reference.

SubroutineSTDAT

SubroutineSTDAT is called by the main program. SubroutineSTDAT calcu-
lates standarddata, that is, constantswhose values are independentof input
data.

48



SubroutineSTOB

SubroutineSTOB Is called by subroutlneINDAT when the initialcavity
(INITCV)is not one and when the initialstate is not read from a dataset.
SubroutineSTOB obtainsthe Inltlalstate from COMMON/SIATE/.

SubroutineTABLI

SubroutineTABLI Is called in the one-dlmenslonalmode by subroutine.
BTWNC when a new cavity Is enteredand tables have to be computedfor the new
cavlty. If the new cavity has the same propertiesas the old cavlty,sub-
routlneTABLI Is not called. Thls subroutineis essentiallythe same as
subroutlneTABLE In the one-dlmenslonalprogramdescribedIn reference4.
A detaileddescriptionof thls subroutlneIs given In that reference.

SubroutineTBL3E

SubroutineTBL3E is called In the three-dimensionalmode by subroutine
BTWNC when a new cavity is entered. SubroutineTBL3E computestables for
electric-fieldshapes and voltage-Jumpshapes. Also computedare the tables
needed to calculateinducedvoltages. If the new cavity has the same proper-
ties as the old cavity,new tables are not requlredand subroutineTBL3E makes
a returnto subroutlneBTWNC.

SubroutineTBL3E calculatesthe followingtables:

TPXR(J,n,I) Real and imaginaryparts of the table Qz(r_,zn) for the shap|ng
TPXI(J,n,I) factor of the axial electricfield. See eq_ation(62) for the

definitionof Qz(rj,Zn).

TPXR(J,n,3) Real and Imaglnaryparts of the table Qr(r ,Zn) for the shaping
TPXI(J,n,3) factor of the radial electricfield. See e_uatlon(63) for the

• definitionof Qr(rj,Zn).

TPXR(J,n,2) Real and imaginaryparts of the table S(rj,zn) used in calcu-
TPXI(J,n,2) lating inducedvoltages. See equatlon(121) for the deflnlt%onof

S(rJ,Zn).

TPXR(J,n,4) Table Rz(rj,zn) for the shapingfactor of the axial voltage-
Jump fleld_ See equation(76) for the definit%onof Rz(rj,Zn).

TPXR(J,n,5) Table Rr(rj,zn) for the shaplngfactor of the radialvoltage-
Jump field. See equatlon(7?) for the defin%tionof Rr(rj,Zn).

SubroutineTBL3M

SubroutlneTBL3M Is used In the three-dlmenslonalmode only. Thls sub-
routlneIs called by subroutlneBTWNC when a new cavlty Is enteredand Is
called by subroutlneBTWNS when a new magnetic sectlonIs entered. For slngle
perlod PPM focuslng,a magnetlc sectlonIs definedto be one-halfof the
magnetic period. For double perlod PPM focuslng,a magnetlc sectlonIs de-
flned to be one-fourthof the magnetlc period.
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Subroutine TBL3Mcalculates the following tables:

BSUBZB(J,n) Axial magnetic field Bz at the grid point (rj,Zn)"
BSUBRB(_,n) Radial magnetic field Br at the grid point (rj_Zn)
PSIB(J,n) Magnetic flux field _ at the grid point (rj,Zn_

The axial grid points are equally spaced over the length of the magnetic
section. If each magnetic section does not coincide with a cavity, these axial
grid points wtll not coincide with the integration nodes. Subroutine MAGCFis
called to obtain Bz, Br, and _ at the integration nodes.

Subroutine TRN13

Subroutine TRN13 is called by subroutine BTWNCwhen the transition from
the one-dimensional mode to the three-dlmenslonal mode is made. Subroutine
TRN13 recalulates all those variables whose values change as a result of this
transition.

Subroutine XINT

Subroutine XINT is called by the main program. Subroutine XlNT integrates
the equations of motion over one step. The numerical integration methodis
described in the section on the dynamicsof beamrings.

CONCLUDINGREMARKS

The use of the coupled-cavltytravelingwave tube for space communica-
tions had led to an increasedinterestin improvingthe efficiencyof the
basic interactionprocessin these devicesthroughvelocity resynchronlzatlon
and other methods. In order to analyzethese methods,we have recently
developeda flexible,three-dlmenslonal,axlally-symmetrlc,large-slgnal
computer programfor use on the IBM 370 tlme-sharlngsystem. The present
report is a users'manual for this program. The reportdescribesthe program
in sufficientdetail to allow a user to make modificationsin the program if
desired.
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APPENDIXA

SYMBOLS

a tunnel radius

a inner diameter of rlng magnet

th
an n FouriercoefficientIn expansionfor magnetic field

Bo magnitudeof axial magnetlc field at r = a and z = middle of gap
B radial componentof magnetic field
r

Bz axial componentof magnetic field
b initialbeam radius

c velocityof light

g half-lengthof magneticgap

I modified Bessel Functionof order s
s

J1z(r,z) fundamentalFouriercomponentof the beam currentdensity
J Bessel functionof order s
S

Lk length of kth cavity

_d axial thicknessof a ring

tk half-lengthof kth gap
m mass of a ring

N number of cavities
c

Nd number of disks per beam wavelength
N number of nodes per cavityz
P magneticperiod

Qz(r,z) table for calculationof rf electric field forces

Qr(r,z) table for calculationof rf electric field forces
q chargeof a rlng

R numberof rlngs per dlsk

Rz(r,z) table for calculationof voltage-JumpForces

Rr(r,z) table for calculationof voltage-jumpforces
r(z) centrold radlusof a ring at axial location z

rln inner radiusof a ring

rout outer radiusof a rlng

Ar radlalgrld spaclngfor space charge tablessc

Sk(r,z) table for calculationof inducedvoltages
t(z) time of arrivalof a rlng at axlal location z

T reclprocalof frequency
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uo initialbeam velocity

Vo beam voltage

Vk gap voltage,kth cavity

Vbk backwardvoltage,kth cavity

Vfk forwardvoltage,kth cavity

AVbk backward inducedvoltage,kth cavity

aVfk forwardinducedvoltage,kth cavity

Zk interaction impedance for kth cavity

z axial velocity of a rlng

AZsc axial grld spacing for space charge tables

Azk integration step size In kth cavity

Znk axial position, relative to beginning of first cavity, of nth node
in kth cavity

(_L)bk loss factor for backward voltage In kth cavity

(_L)fk loss factor for forward voltage in kth cavity

_m propagation factor, defined in equation (60)

(B1L) k phase shift of voltage for kth cavity

co permittivityof free space

e(_) normalizedtime of arrivalof a ring at normalizedax|al location

xe beam wavelength

p shaplngparameterfor electrlcfleld
m

p shaping factor for magnetlc field

normalizedaxial position;independentvariablefor equationsof
motion

p(_) normalizedcentroid radiusof a rlngat normalizedaxial location

a(z) charge densityof a rlng at axial location z

€ angular velocityof a ring

magnetlc flux

angular frequency
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APPENDIXB

DERIVATIONOF FOURIERCOMPONENTOF BEAM CURRENTDENSITY

In a prevloussection,the fundamentalFouriercomponentof the beam cur-
rent densitywas definedas

l I

31z(r,z)= _ 3z(r,z,t')e-i=t dt' (B-l)
t-T

We proceedto obtain an expressionfor 31z(r,z)which is convenientfor
computation. The followinganalysis Is a simple generalizationof the one-

dimensionalanalysisgiven In appendixB of reference5. Let tm(z) be the

time of arrivalat z of the Ith rlng in the mth radlofrequency"cycle.
We let m = O for the radlofrequencycycle consideredin the program. To con-
form with previousnotation,we wlll henceforthomlt the 0 subscriptwhen

referringto the cycle consideredin the program;that Is, t_(z)_= ti(z).
Then for any integer m,

t_(z) = tl(z ) - mT (B-2)

In the followingdiscussionwe wlll use the rectangularfunction
g(x; Xl,X2) definedas

g(x; Xl,X2) = l, xI _ x _ x2
(B-3)

g(x; Xl,X2) = O, x < xI or x > x2

Now consider 3z(r,z,t)as a functionof t for some Fixed r and z

(see flg. 12). We can visualizethis as an observerat (r,z), observing

rings as they pass by. At t = t_(z), the value of 3z(r,z,t)Is
th

ol(z)Vlz(Z)g(r;rl,ln,rl,out),where Ül(z) Is the chargedensity of the I

ring, Vlz(Z) is the axial velocityof the Ith ring, and ri,ln and ri,out

are the inner and outer radius of the Ith ring. Furthermore,3z(r,z,t) has

thls value for a tlme intervalcenteredabout t_(z),where the lengthof the

interval is _d/Vlz(Z). We can expressthis partialcontributionto

Jz(r,z,t)as

t_(z) + (B-4)
ol(z)Vlz(Z)g(r; rl,tn,rl,out)g t; t_(z) -2Viz(Z), 2V_z(Z )

The total contribution to 3z(r,z,t) Is obtained by summingover all rings
and cycles.
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NdR =

Jz(r,z,t) = _ _ °l(z)Vlz(Z)g(r; rt,in,rl,ou t)
i =I m=-=

% t (z) + % )x g t; t_(z)- 2VlzlZ), 2VlzlZ) (B-S)

We the have for Jlz(r,z)

l NdRJlz(r,z)= _ _ °i(z)Viz(Z)g(r;ri,ln,rl,out)
i=l m=-=

/ ( .0)t _d , t_(z) + dr' (B-6)
x e-i_t g t'; t_(z) - 2Vlz(Z) 2Viz(Z)t-T

By the perlodictyof the motion,there will be NdR rings passingthe posl-
tlon z in the tlme intervalfrom t-T to t. In general,the NdR rings
do not all come from the same rf cycle. Let "mI be the cycle number of the
Ith ring. From equations(B-2) and (B-6),we obtain

NdR

./ti2 e-i_t' dr' (B-7)Jlz(r,z)= _ _ °i(z)Vlz(Z)g(r;ri,in,rl,out)
i = l -ttl

where til and t12 are given by

_d

tll = ti(z)- miT - 2Vlz(Z) (B-8)

_d

tl2 = tl(z) - mlT + 2Viz(Z) (B-9)

Evaluatingthe integralIn equation(B-7) yields

NdR ( (OSLd'_

l _ sin._2Vlz(Z)/ _i=[tl(z)_miT]
Jlz(r'z)= T _ °i(Z)_dg(r;ri'in'r1'°ut) _JLd x e

% = l 2Vlz(Z)

(B-lO)
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Since _wniT= 2_mI, we have

NdR ( _!&d )s_n 2Vlz(Z ) -|_t_(z)'E31z(r,z ) = g oj(z)lLdg(r; rl,ln,rl,out) _0_d x e

= 1 2V_z(Z)

(B-I])

The charge density ol(z) is g|ven by

qj(z)
(B-12)

°l(z) = (r2 - r_ )_dl,out ,In

where q1(z) is the charge of the Ith rlng. Combiningequatlons(B-It)
and
(B-l2) yields

NdR ('_9-d_ '_

31z(r,z) l _ g(r; rl,ln,rl,out)q1(z)sin 2Vlz(Z)/ _l=tt(z)..
= (r2 2 n) =O_d e (B-13)

I = 1 _ 1,out - rl,l 2Vlz(Z )
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Comparisonof R-tablesmodeltoR2-tablesmodelof spacechargeforces.
Consider3 rings,all atsameaxialposition,andallhavingtheirinitial
dimensions.Beamradius• 0.7x tuberadius, innermostringis ring
#1,etc. Compareradialspacechargeforces.Ax[althicknessis ),el24,

Forceon Dueto R2-tables R-tables
ring# ring# model model

l l I. l?l l. 184
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1.478 1.456

3 1 0.783 0.166
3 2 1.082 1.056
3 3 0.377 0.401

Z 242 2,223

Figure5. - TypicalcomparisonofR2-tablesmodeltoR-tablesmodel.
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