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USERS' MANUAL FOR COMPUTER PROGRAM FOR THREE-DIMENSIONAL ANALYSIS
OF COUPLED-CAVITY TRAVELING WAVE TUBES
Thomas A. 0'Malley

Analex Corporation
Cleveland, Ohio 44135

SUMMARY

The use of the coupled-cavity traveling wave tube (TWT) for space com-
munications has led to an increased interest in the efficiency of these de-
vices. Efficiency improvements have generally been along two 1ines: (1) the
development of efficient muitistage depressed collectors to recover a high
percentage of the kinetic power in the spent beam; and (2) improvements in the
efficiency of the basic interaction process through velocity resynchronization
and other methods. To pursue the second 1ine, we have recently developed a
flexible, three-dimensional, axially-symmetric, large-signal computer program
written in FORTRAN IV for use on the IBM 370 time-sharing system. The present
report i1s a users' manual for this program.

The basic programming approach consists of dividing the beam into rings
and calculating the trajectories of these rings as they pass through a sequence
of cavities each of which may have different geometrical and electrical proper-
ties. Extreme flexibility is provided in the variety of tube features that can
be modeled since each cavity has individually entered input parameters. The
program can handle lumped or distributed severs, input and output couplers,
cavity match details provided for cavities near the end of a stack, voltage-
Jump velocity resynchronization with an arbitrary number of discrete steps (up
to one per cavity), and velocity taper designs of almost arbitrary complexity.
Backward waves can be handled by an interative procedure.

INTRODUCTION

The use of the coupled-cavity traveling wave tube (TWT) for space com-
munications has led to an increased interest in the efficiency of these de-
vices. Efficiency improvements have generally been along two lines: (1) the
development of efficient multistage depressed collectors to recover a high
percentage of the kinetic power in the spent beam; and (2) improvements in the
efficiency of the basic interaction process through velocity resynchronization
and other methods. The NASA Lewis Research Center has been interested in the
first approach to efficiency enhancement for sometime (refs. 1 to 3). In the
second approach, we have developed a flexible, one-dimensional, large-signal
computer program (refs. 4 to 6). This computer program, because of the limita-
tions of one-dimensional motion, i1s not highly accurate in its calculation of -
electron trajectories or beam-wave interaction. Also, one-dimensional motion
does not allow calculation of beam interception or vector velocities of elec-
trons. Beam interception data is required in order to determine the properties
required of an effective magnetic focusing system. Vector velocity data 1s
particularly important in the design of efficient collectors. The vector




velocities at the output of the tube are required as input data to a computer
program which analyzes collectors.

Because of the need to overcome the aforementioned 1imitations inherent
in a one-dimensional program, we have recently developed a three-dimensional
program written in FORTRAN IV. This program retains all of the features in
the one-dimensional program and is essentially a generalization of that program
to a three-dimensional, axially-symmetric simulation.

The basic programming approach is to follow a ring-model beam through a
sequence of cavities each of which may have different geometrical and elec-
trical properties. Extreme flexibility is provided in the variety of tube
features that can be modeled since each cavity has individually entered input
parameters. The program can handle lumped or distributed severs, input and
output couplers, cavity match details provided for cavities near the end of a
stack, voltage-jump velocity resynchronization with an arbitrary number of
discrete steps (up to one per cavity) and velocity taper designs of almost
arbitrary complexity. Backward waves can be handled by an iterative procedure
similar to that described by Kino, et al. (ref. 7).

In this report, we first discuss the computer model of the coupled-cavity
TWT. A detailed discussion of the program structure follows. The input data,
output data, program variables, and program subroutines are then described.

MODEL OF COUPLED-CAVITY TWT

The model of a coupled-cavity TWT is illustrated in figure 1. The beam
is divided into a series of disks, and each disk is subdivided into an arbi-
trary number of rings. A complete description of the beam trajectory is ob-
tained by following the rings contained in a single beam wavelength (ref. 8).
The rings may penetrate each other in both the radial and axial directions.
The rings expand or contract radially according to the radial forces acting on
them. The rings do not contract or expand in the axial direction; the axial
thickness of a ring is assumed to be constant. Also the rings do not become
warped; that is, the trace of a ring in the r-z plane is always a rectangle.

The axial and radial thickness of a ring comes into play only in the
modeling of beam interception and in the calculation of space charge forces.
For all other forces, it is assumed that the charge and mass of a ring are
concentrated at the ring's centroid radius and that the ring has zero axial
thickness.

tach ring, as it enters the tube, has a charge equal to 1/R of the
charge of the disk, where R is the number of rings per disk. Also the ini-
t1al cross-sectional area is the same for all rings. For the case of R = 3,
the ring dimensions at the tube entrance are given in figure 2. The axial
thickness 24 of all rings is Ag/Ng, where Ag 1is the beam wavelength and
Ng 1s the number of disks in a beam wavelength.

For an arbitrary value of R, we have

= b, J=1, ..., R (n




Fin,j = 25 -1 "y J=1, ..., R (2)
Tout,y ~ 532%—7 "3 1=To .o R ()

In modeling beam interception, we must make assumptions on the values of
the inner and outer radii, given the value of the centroid radius. The assump-
tion is that the ratio of the inner radius to centroid radius and the ratio of
the outer radius to centroid radius remain constant. These ratios are deter-
mined from equations (2) and (3). At the end of an integration step, if the
outer radius of a ring exceeds the tunnel radius a, then the outer radius is
redefined to be a, and the portion of the ring located beyond r = a is
assumed to be intercepted. The remaining partial ring, since its outer radius
has been redefined, has a redefined value of centroid radius given by

2 2
r +r
in,j out, j
rJ = ‘y/ > . J=1, ..., R (4)

The program has an option allowing a one-dimensional beam to be used in
the first M cavities, where N 1is an input parameter, and a switch is then
made to a three-dimensional simulation. The results for the first N cavities
would be nearly identical to those of the one-dimensional program described in
reference 4 because the same model is used in both programs. This report will
discuss only the three-dimensional model since the one-dimensional model 1is
thoroughly documented in references 4 and 5. A basic understanding of refer-
ences 4 and 5 s presupposed in this report. The tube body is treated as a
conducting tunnel of radius a divided axially into a series of discrete
cells, where the length of the kth cell is denoted by Lk, In the center of
each cell is a gag of length 2%x. Impressed across the kth gap is a com-
plex voltage Vge ot

In the absence of a beam, there will be a simple known relation among the
various V. For a forward-propagating wave in the pass band of a uniform
structure,

—(a+1B] )Lk

v = e Vi (5)

k+1

where « and By are known from cold-test measurements. The power flowing
along the structure will be given by

Py = 31— (6)

where Zy also is known from cold-test measurements.




The voltage wave in the presence of the beam is calculated by adding a
compiex induced voltage to the propagating wave, that is,

—(a+1B1 )Lk

v =e Vk + AVk+] (7)

k+1
where AVg,7 1s an induced voltage to be defined later.

The body of a coupled-cavity TWT is supposedly a periodic structure. If
this were the case, all cavities would have the same L, %, oL, BiL, and Z.
However, a real tube has input and output couplers, severs, and perhaps veloc-
ity tapers and cavity match details, all of which require individual non-
periodic treatment in the model. Thus, the properties of individual cavities
are separately specified input parameters in the program, and a great variety
of tube design variations such as complicated velocity tapers or voltage-jump
configurations can be easily modeled. Equation (7) is easily modified to
handle such a quasi-periodic structure,

where

-(al), -i(B,L)
1k=e ke 177k

The factor \/zk+1/zk ensures that power flow is conserved.

PROGRAM STRUCTURE

The program consists of two major elements: the dynamics of the beam
rings and the beam-wave coupling analysis. These two elements are described
in detail in the following sections.

Dynamics of Beam Rings

Equations of motion. - As discussed in reference 4, page 4, it is more
convenient to let the independent variable be the axial position 2z rather
than the time t, and we calculate the functions r(z) and t(z). Here r(z)
is the centroid radius of the ring in question when it reaches the axial posi-
tion z, and t(z) 1s the time of arrival of the ring at the axial position z.
The transformation from equations of motion with t as independent variable
to equations of motion with z as independent variable is given by

_d%
d°t dt? -
2= [ \3 | (8)
dz dz
dt




d’r  d’zar
d’r  at?  gt2 92
2~ 2 (9
dz dz
dt

Instead of using t, z, and r, we use the normalized variables e, ¥, and
p defined by

8 = ut (10)
Z

|3 =3 (11)

oot (12)

In terms of the normalized variables, the transformation equations are

2 7 \3 (13)

a

2
dp d7E dp
de? 9%
dg? de\?
de

(14)

Although the normalized variables are used in the program, the unnormalized
variables will be used in any explanation for which greater clarity can be
achieved. At each integration step, the usual equations of motion with t as
independent variable are used to calculate d2z/dt? and d2r/dt2. Knowing

these quantities, we then calculate d2t/dz2 and d2r/dz2  from equations (8)
and (9).

The equations of motion with t as independent variable mag be in either
relativistic or nonrelativistic form. The equations for d2z/dt? and d2r/dt2
for the ring in question are

dzz

dz _,<q _ »
dt2 = B {m (Erf,z * [sc,z - MBr) * Uz} (15)

d2r

d?r q . 102
dt2 "3{nl(Erf,r ¥ Esc,r * r”Bz) * 8 re- + Ur} (16)

where # 1is the angular velocity of the ring and B 1is defined as



=}
]

1 (nonrelativistic case)

(17)
vl
1 - = (relativistic case)

c2

™D
]

In the above equations, B, and B, are the axial and radial components of the
magnetic induction at the location of the ring, E¢ , and E.¢ , are the com-
ponents of the rf electric field, and Egc , and Ege , are the components of
the space-charge fleld. For the nonrelativistic case, U, and U, are zero.
For the relativistic case, U, and U, are complex expressions involving a
factor W defined as

e ) (18)

r daz
mm2c2a dt (Erf,r ¥ Esc,r) ¥ dt (Erf,z ¥ Esc,z

where  1s the angular frequency. U; and U, are then given by

dz qdr 8”

Uz=wd—t'+ﬁa't—5_ (19)
dr q dz Bﬂ

U =W-—7 - = — (20)

r dt mdt o

where By 1s the azimuthal magnetic induction given by

15 ave
B - —o0.ave (21)

8 2
Z“rmax

In the above expression, n, 1s the permeability of free space, rp,x 15 the
outer radius of the outermost ring, and Io,ave is the average beam current.
The angular velocity @ of the ring is given by

.. ¥(r,z) - y(r_,z)
a:o-g[ 200]8 (22)

0 m
2nr

where y(r,z) is the magnetic flux at the ring location (r,z), and the sub-
script o denotes conditions at the tube entrance.

The coordinate system used in the program has its origin at the beginning

of the first cavity. The kth cavity i1s divided into N, equal parts of
length Az, given by

The nth node in the first cavity, denozed by z,7, is defined by




1 -
Z, = (B - 2) AZ] n=1, ..., Nz (23)

The nth pode in the kth cavity, denoted by Zpnk, s given by

k-1 ] n=1, ..., NZ
an=m§ Lm*(”‘?)“k k=2, ..., N (24)

where N. 1s the number of cavities. A point that 1ies midway between two
nodes z, , and In+),k s denoted by z,,7,5 k. Such a point is called the
nth antinode in cav1t¥ k (fig. 3). The numerical integration of equations
(8) and (9) for the 14th ring is such that t4(z) and ry(z) and the first
derivatives of these functions are evaluated at antinodes, and the second
derivatives are evaluated at nodes. The numerical integration scheme 1s the
same as that described in reference 4, equations (8) to (11), for calculating
ty(z). The 1dentical scheme is used for calculating ry(z).

The numerical integration method used here 1s not as accurate, for a
fixed step size, as the widely used Runge-Kutta methods or predictor-corrector
methods. The advantage of the method used here is that it requires evaluating
accelerations only once per integration step, whereas the other methods re-
quires evaluating accelerations at least twice per integration step. To be
competitive with the method used here, another method requiring evaluation of
accelerations twice per step would have to achieve comparable accuracy with
double the step size. Such a comparison between the method used here and a
Runge-Kutta method requiring evaluation of accelerations twice per step has
been made. The method used here achieved the greater accuracy.

Initial conditions. - At times it is convenient to use a single subscript
to denote the ring number; for example, ty(z) would denote the time of arrival
of the 1th ring at the axlal position z, where 1 runs from 1 to RNg.

At other times it is convenient to use a double subscript to denote the ring
number; for example, t1j(z) would denote the time of arrival of the ring
which originally was the Jth ring making up the ith disk, where )

runs from 1 to R and 1 runs from 1 to Ng.

The initial total velocity of all rings is

Cu . 1 J=1, .., R
"0 Y% = € '- a 2 31 =1, e Ny (25)
|y
m 0
c

where ¢ 1s the velocity of light, |q31/m 1| is the charge-to-mass ratio, and
Vo 1s the beam voltage. The initial anguqar velocity of all the rings is




-

-q
1,

. . m C
ﬁ = ﬂ = 1 j
Ji,o o 2 r2 1
v Ri,o

ua n
-
= 0

(26)

where . 1s the cathode flux at an outermost ring and rRy,o s the initial
radius of an outermost ring. The initial axial velocity is

: 2 2 J=1, ..., R
19,0 © -vko - (rji,o Bo) gi oo Ny (27)

where rjj o 1s the initial radius of the (3,1)th ring. From equation (27),

éji Is not the same for all rings. It is the largest for the innermost rings
and the smallest for the outermost rings. It follows that the beam wavelength,

defined as ;11 o divided by frequency, 1s not the same for all rings. This

Is an inconvenience we wish to avoid, so we assign to the value it

%ji 0
would have if R were equal to 1.

. . . \2
Zji,o =z, = ‘/;g - <3§Z b ¢0> (28)

where b 1s the initial beam radius.

Since tjy4(z) and rj1(z) are the trajectory functions to be calculated,
we must speciey the initial values of these functions and their first deriva-
tives. These are given by

(1 - e, h
tyy = —— (29)
ZO
57 = 1
Fy1 = 2R D 121, ....R (30)
P T N
dt
—d-P:!— (3N
ZO
dr
—d-li=o ) (32)

For some applications drji/dz 1s nonzero. For such cases, drj1/dz 1s speci-
fied in the input data.

Space charge forces. - The starting point in developing the space-charge
model 1s an expression for the potential field due to a point charge q 1in
a cylindrical tunnel. From reference 5, equation (10), the potential at
(rp.,02,2) is 8




©
:E:: e 121 I (n ro)d (u )
V(r,.8,,2) = __9__E (2 -5 e ms o os s(8, - 8,) s't'ms 27°s' ms ;
2we @ Mg 47 (M) ]
m=1
s =0
(33)
where a 1s the tunnel radius, ¢, 1s the permittivity of free space, and
1 for s =0
Isupg2) = 0, 850 = go for s #0 (34)

and the charge is located at (rq,87,0). We can obtain the electric field set
up by the point charge from the equation E = -9V. By a simple integration,

we can then find the electric field due to a charged ring of charge qy and
radius ry. The field at (rp,z) is

sgn(z)q J (u.ry)d (v ry) -w |z]
Ez(rz'z) - 21 § : ot'ml’ o r;Z e m (35)
2we a — [9,(n2)]
® -u_lz|
c q Jolugry)dy(ugro) o m 36
r(r2’z) = 2 _ ) (36)
Zicoa : lJ](Hma)]
m =

where wpo has been replaced by up.

The space charge force on a reference ring of charge qp and radius rp
and located at 2z, due to a source ring of charge ¢y and radius ry and
located at z = 0, s then given by

Fap o(F1eTpe2) = G, E,(r).2) (37)

F2]’r(r],r2'z) q2 Er(rz,z) (38)

Equations (35) to (38) cannot be used to calculate space-charge forces
because the summations will approach infinity if riy approaches rp and z
approaches zero. We must take into account the nonzero axial and radial thick-
ness of the rings. A fully general calculation can be made by integrating over
both the source ring, located at (ry,0), and the reference ring, located at
(rp,z). Because of the complexity involved, it is not feasible to calculate
these expressions each time the space charge force on one ring due to another
is desired. Instead the radial and axial space-charge forces are calculated
for an array of values of ry, ro, and z and stored in a table. This cal-
culation is done once, just prior to the beginning of the simulation. In the
simulation, the space-charge forces are evaluated by a three-dimensional linear
interpolation on the table.




In carrying out the integrations over the axial and radial thicknesses of
the rings, assumptions must be made on what these thicknesses are. It is
assumed that the axial thickness, 24 = Ao/Ng (see fig. 2), remains constant.
The radial thickness is determined from the assumption that the ratio of the
inner radius to centroid radius and the ratio of the outer radius to centroid
radius remain constant. The inner and outer radii are obtained from a given
centroid radius by using equations (2) and (3). Since these radii depend on
the ring type J, the space-charge force is really a function of five vari-
ables: ry, rp, z, Jy, Jp. Since J; and jo can take on all values from 1 to
R, RZ tables must be calculated. The storage and time requirements for cal-
culating this many tables may be excessive for some applications. These re-
quirements are reduced if a less general formulation is adopted. We note that
when calculating the rf electric-field forces on a reference ring, the approach
we take is to calculate this field and evaluate it at the centroid values of r
and z of the reference ring. We can adopt the same approach with the space-
charge field forces; that is, we calculate the space charge field by inte-
grating over the axial and radial thicknesses of all source rings and then
evaluate the field at the centroid values of r and 2z of the reference ring.
Since we integrate over source rings but not reference rings, the space-charge
force is now a function of four variables: ry, rp, z, J1. In this approach
only R tables must be calculated.

The two models for calculating space-charge forces described in the previ-
ous paragraph will be referred to as the RZ2-tables model and the R-tables
model. We will discuss the relative merits of the two models. But first we
mention a modification that can be made to the R-tables model. The modifica-
tion is to integrate over the axial thickness of the reference ring. This
modification only slightly increases the computational complexity and does not
increase the number of required tables. Also space-charge forces become
smoother functions of z. To indicate the increased smoothness as a function
of z, figure 4 shows the axial space-charge force on an innermost ring due to
another innermost ring, as a function of 2z, with and without the modification
Just described. Another advantage of this modification is that, for cases
where ry =0, rp >0 and z < 24, the summation for the radial space-charge
force is a convergent series, whereas this series is divergent without the
modification. Also, the summations for both axial and radial forces converge
more rapidly with the modification. 1In all further discussions of the R-tables
model, 1t is assumed that the modification is made.

Comparison of the R2-tables model to the R-tables model for a variety
of cases shows that disagreement in the space-charge force on a reference ring
due to any one source ring is less than 7 percent in practical situations.
Typically there is considerably less disagreement in the space-charge force on
a reference ring due to all source rings. Figure 5 shows a typical comparison
of the R2-tables model to the R-tables model. We consider these disagreements
to be reasonably small, especially when compared to the error already present
in the model from the assumption that there are no gaps in the tunnel. We
therefore adopt the R-tables model because of its reduced computational and
storage requirements.

The expressions for the axial and radial space-charge forces for the
R-tables model are obtained by carrying out the appropriate integrations in-
volved in equations (35) and (36). Letting r1,in and ry oyt be the inner
and outer radii of the source ring, we obtain

10
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sgn(2)q,4, Iolunra)Ba(ry 40Ty out)Gp(2)
Fa1,2{MyeMp02) = 2 EE: N
’ 2we_a [3,(n _a)]
0 m =1 1 'm
LIZI > !d (39)
w
1,9, 1 {ugra) G0y 1n'r1 out) Gp(2)
F (r Wr ,Z) = T 4
21,rt 1" 2 o a2 [ a)]
o 1'¥m Y,
m=1
~
sgn(z)q1q2 Jo("mr2)6a(r1.1n'r1.out)Gc(z)
Fa1,2{Mf202) = 2
’ 2%e a [J](uma)]
=1
1zl <1y (40)
4,9, I uro)6,(ry 4007y out?8e(2)
Foy,p(FyeTpe ) = 2 2
2we A [J](pma)] p
m=1
where the functions G,, Gy, Gc, Gy are defined as
y f oy Dout 1007 out? ~ M1, 10101, 40! A
a*",1n" "1, 0ut 12 2
2 "m\'1,0ut 1,in
-1zl “up(121-2) —um(IZI+2d)
G (z) = -2e + e + e
b 2 2
Ym d
> (41)
-umIZI u (IZI—ﬁd) -um(IZl+id)
G (2) = 2 - 2e - e + e
2 2
Ym d
-p_|z| w (l1z]-2,) -u (lz]+2 )
2u (lzl-2) -2 "+ " e ™ d
Gd(Z) = 2 2
Ym d J

For the region ry =0, rp >0, z < %4, the summation for the radial
space-charge force i1s a very slowly converging series. For this region, we
use an alternate computation. We subdivide the region into two regions:
(1) r =0, 0<rp <0.125, z <%y, and (2) r; =0, rp > 0.125a, z < 24.

n




For the first region the tunnel wall is far removed from the source ring and
reference ring, and we consider the rings to be in free space. For this case
the radial force on a reference ring of zero axial thickness is given by

" _ 1
Ge-2) el
q,q,r 2 2
F (ry = 0,r,,2) = 222 <
21,rt' 1 7 T2 T Aqe R 1
od 5
(—Qd <-2d )2 2 2
\T-Z% TR/

1

'} 2 2
Y ) 2
(2 - 27 + f‘2

g

The radial force on a reference ring of axial-thickness L4
numerically integrating the above equation.
ence of the tunnel wall cannot be neglected.

0 < ry < 0.125a (42)

N =

is obtained by
For the second region, the pres-
It can be shown that

an].r(r] = O.rz.z) i

=0
ar]

Thus  Fa7 r(ry = 0,rp,z) should differ only slightly from Fpy r(ry = Argc,rp,2),
where ry’'= Argc represents the first nonzero ry grid point. We use this
approximation in the second region for calculating Fpy r(ry = 0,rp,2).

Ar r, > 0.125a

sc'T202)s 5 (43)

For,r(ry = 0irpu2) = Fyp (g =

For the region nry
charge force is a divergent series.
"rings" are actually line charges of
another. We choose to truncate this

= 0, rp = 0, z

< %4, the summation for the axial space-
For this case, the source and reference
length 94 which partially overlap one
summation after 100 terms, a somewhat

arbitrary choice, and use the result for the axial force. It should be noted
that the grid points in this region will be used rarely, if at all. They will
be used only when a reference ring and a source ring, at the same time, have
centroid radii less than Arg. and are separated axially by less than 4.

From figure 4, we have an idea of the smoothness of the axial space-charge
force as a function of z. The radial force as a function of z has a similar
degree of smoothness. From examining these functions we can determine the
spacing between grid points in the z-direction that is required in the space-
charge tables for sufficiently accurate interpolation. 1In figure 4, 24/7a = 1/3.
The shape of these functions varies somewhat with varying values of 24/a.

After examining these functions for a range of values of 24/a, we decided to
use two different grid spacings. Letting 8z5c be the spacing between =z grid
points, we use
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(44)

1
bz =%

Az

1
sc 2 (45)

Let 2Zpayx be the last z grid point in the space-charge tables. In the
simulation, if the axial separation distance between two rings exceeds Zmax e
the space-charge forces are set to zero. We calculate zp,, such that the
error in setting these forces to zero is less than 1 percent. An empirical
formula 1s used to obtain zp,y.

n 0.345 2 n 0.345
zmax 2d/a ad/a 2d
— = 0.09 0.693 - 0.26 0.693 + 2.41, 5— > 0.127 (46)
zmax ld
5 = 2.22, 3 < 0.127 (47)

It is undesirable for z,,, to be nearly equal to an integer multiple of Ly-
To avoid such an occurrence, zp,, 1s increased slightly so that z/%4 1s equal
to an integer plus 1/2. To cut down on storage requirements, we use no more
than 26 z grid points. x/%q 1s greater than 9 1/2, we must increase
the grid spacing Azg. to saT?sfy the constraint of a max1mum of 26 z grid
points. When Zz,,,/%4 1s greater than 9 1/2, 8zg. 1s redefined to be

1
bz, =g 0<zx<3n, (48)

Az

z> 3 (49)

sC 13 ' d

We should also examine the space-charge forces as functions of either of
the two r variables. We concentrate our attention on the radial force since
this is the more rapidly-varying force. We consider an example of the func-
tional dependence on r in figure 6. For this case, R = 3 and the source
ring s a "middle" ring of inner radius 0.326a, centroid radius 0.4a, and outer
radius 0.462a. Figure 6 is the radial space-charge force on a reference ring,
due to the source ring, as a function of the reference ring's centroid radius.
The two rings are at the same axial position. The vertical dotted lines re-
present the inner and outer radius of the source ring. The other dotted 1ine
represents the linear interpolation of this function for a radial grid spacing
of Arge = a/Nge r with N sc,r = 10. The accuracy of the interpolation is
poor in the regions near '0.326a and r = 0.462a. At r - 0.462a the
interpolation error is 27 percent When Ngc r 1s increased to 20, this error
s reduced to 12 percent. For rough-cut runs, Nsc r = 10 may provide suffi-
cient accuracy, but Nsc r = 20 should be used when greater accuracy 1s de-
sired. The larger value'of Ny ,r should certainly be used in cases where the
average beam diameter is small compared to the tunnel diameter.
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The radial space charge force becomes much more rapidly varying as either
of the r variables becomes smaller. For this reason, we use a smaller grid
spacing for small values of r 1in such a way that the total number of grid
points is sti11 Ngc  + 1. For larger values of r, the spacing between grid
points is only slightly greater than i1t would be for completely uniform spacing.
The radial grid spacing is given by (we assume Nse,r is a multiple of §5)

ar = 22 0<r<—2 (50)
sc N2 Nsc r
sc,r !
5a(N - 1)
Ar = sc,r ’ r> a (51)
s¢ 4N2 Nsc r
sc,r !

The space charge force on a given ring may be a slowly varying function
of the independent variable z. This is 1ikely to be true in the beginning
cavities of the tube. To take advantage of the slowly varying nature of the
space charge force, the calculation is not done on every integration step.

The calculation of space charge forces is initially done every nth step,
where N 1is an input. The value of N may change during the simulation in a
manner to be described later. On those integration steps where space charge
forces are not calculated, they are approximated by quadratic curve fits.

Each ring has its own curve fit. These curve fits are obtained by fitting a
quadratic polynomial through the latest three calculations of space charge
forces. Let us say that these three calculations were done when 2z was equal
to z5, zp, and z.. At an integration step where a new space charge force
calculation is due, at z = z4, the values calculated are compared with those
obtained when the curve fits based on the points z,, z,, and 1z, are eval-
uated at zy4. If the difference in the values for any ring is exceeded by a
specified tolerance, the next calculation of space charge forces occurs 1/2 N
steps later. In general, N s halved each time the specified tolerance is
exceeded.

For calculating space charge forces, the positions of all rings must be
known at a time t. This information is not readily available since z rather
than t 1s the independent variable. To calculate the space charge force on
the 14th ring located at some 2z, we must determine the positions of all the
other rings at the time t4(z). Consider the jth ring. The time of arrival
tj(z) at z 1s known. By the periodicity of the motion, the ring that origi-
nally was m wavelengths behind the jthA ring arrives at z at the time
t4(z) + mT, where T 1s the reciprocal of frequenc¥. Similarly, the ring
tgat originally was m wavelengths ahead of the } h ring arrives at z at
the time tJ(z) + (-m)T. We consider all such rings and find m such that

[ty(z) - (tj(z) + mT)| = Minimum (52)

We may call the ring in question the jth ring in the mth cycle, We assume
that the Jth ring in any other cycle is too far away from the jth ring, at
the time t4(z), to contribute significantly to the space charge force on the

1th ring. Let (rm,zr) be the position of the Jjth ring in the mth cycie
at the time t4(z). We obtain (rm,zm) by assuming that this ring has con-
stant axial velocity vjz(z) and constant radial velocity vjr(z) in the time
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interval spanned by t4(z) and tj(z) + mT. Then (r?,z?) is given by

ry = ry(2) + v (D) E(2) - (ty(2) + mD)] (33)
2y = 2+ vy, (D) [(2) - (ty(2) + nT)] (54)

The space charge force is then calculated based on the reference ring radius
ry(z), the source ring radius rm, and the axial separation distance z - .
The calculation is done for all rings, excluding the ith ring, and the re-

sults are summed to obtain the total space charge force on the 1th ring.

When the axial separation distance z - z| 1s greater than Zmax (see egs.

(46) and (47)), the space charge calculation is not done for this term in the
summation.

As discussed in reference 2, relativistic corrections are applied to
axial lengths. In the space-charge equations, z and L4 are replaced by
z' and !' given by

'}
) - d . (55)
()
0
V-\¢
' = z (56)

Radiofrequency electric field forces. - If the complex voltage V on a
given gap is known, the electric field in the neighboring region can be written
in an expansion of the form

Colo¥m CalofTn) -13 z
m ot
E(rz,t) = 50— Pl ) Bl gat (58
M 2% S1nh(u) YmLIo(Yma)
m= -

where

20 n sinh(u)cos(Bml) + Bml cosh(u)sin(Bm!)]
Cm = 5 5 (59)
(W + (B 2)
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Bm = Bo + = (60)
2
2 w_
Yn = Bm - 2 (61)

and BglL 1s the lowest order phase shift per cavity. The shaping factor
is an input parameter.

We define Q,(r,z) and Qr(r,i) as

C I (7 r) -1Bmz
(02 = Sty E T (v.a) (Y a) e (62)
N 1B.C I(y.r) -18 2
mm 1 m
%(re?) = STohGay :E:: Tl () © (63)
ms= - .

Equations (57) and (58) can now be written as

£,(r.z,t) = 5y 0 (r,2) 't (64)
E(r.z2,t) = 55 0.(r,2) " (65)

Equations (64) and (65) are appropriate to a forward-traveling circuit wave.
For a combination of a forward- and backward-traveling wave, the appropriate
expressions are

E,(r.z,t) = 5 [0,(r,2)V, + Q3(r,2)v, Je'™ (66)
E(r,z,t) = 55 [Q.(r,2)V, + Q%(r,2)V, Je @t (67)
r e ’A N A | r b

The electric-field force on a ring of charge q and located at (r,z) at time
t 1s then given by

F, = Re[ﬁ‘ (Q,(r,2)V; + o;(r.z))e“"t] (68)
Fo = Re[g (Q(r,2)V, + o;(r,z))e’“’t] (69)

Many of the quantities in equations (57) to (69) change from cavity to cavity.
When a particular cavity, let us say the kth cavity, is being discussed, the
subscript k will be appended to these quantities. We now consider the 1th
ring in the kth cavity located at the nth node Znk- The centroid radius
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of the ring is ry(zpk). The electric-field force is evaluated at r = ry(zpk)
and z = zpk. From equations (68) and (69), the electric-field force on the
ring is ,

[ -q, . futy(z,,)

Fa.ink = Re | %, (Q(ry(Zp 12 Wy + Q5 (ry(Zp 0020V, )e (70)
[ -q, . lot, (2, )

IL-r,‘ink = Re EE; (Qrk(r1(znk)'znk)vfk * Qrk(r't(znk)’znk)vbk)e (71)

The Qzk(r,z) and Qpx(r,z) functions are evaluated for an array of r and

z values and stored in tables when cavity k 1s entered. The z values are
the nodes zpk, n =1, ..., N;. The r values are equally spaced values
fromr =0 tor = a. The number of r values is an input parameter. The
Qzk(ri(zpk) »Znk) and  Qpek(ry(zpk)»zpk) in equations (70) and (71) are evaluated
by doing a 1inear interpolation in r on these stored tables. The number of
terms included in the summations for Q,x and Qp¢ 1s determined by an input
parameter. If cavity k has the same Ly, %, Bk, wk as cavity k-1, then
Qz,k-1 = Qzx_ and Qp 7 = Qrx and new tables do not have to be calculated.
Hhen new tab]es do have to be calculated, the old tables are no longer needed,
and the new tables may occupy the same storage space as the old tables. The
electric-field forces are evaluated by equations (70) and (71).

Voltage-jump electric field forces. - If a dc voltage V; 1s imposed
across the gap of a cavity, the resultant electric field in the cavity is given
by (ref. 5)

-V ©
E,(r,2) = —Ei [1 + mjg:] Dmlo(kmr)cos(kmz{] (72)
Y5
E(r,2) = —[—[::E: DI (k F)sin(k zi} (73)

where

2ufwp sinh y cos k & + k & cosh p sin k 2]
m m m
O = 2 2 (74)
. sinh wlw™ + (k 2)"] I (k a)

2mmw
kn = 1 (75)

We define Ry(r,z) and Ry(r,z) as

R(riz) =1+ D D1 (kr) cos(k 2) (76)

m= ]
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R.(r,2) = m:g:1 D, I1(kr) sin(k 2) (17)

Equations (72) and (73) can now be written as

-V.R (r,z)

E,(r,2) = ——!—f————— (78)
-V.R (r,z)

£.(r,2) = ——i—f————— (79)

As before, when referring to the kth cavity, the subscript k w111 be ap-
pended to those quantities which may change from cavity to cavity. We now con-
sider the 1M ring in the kth cavity located at the nth node Znk

From equations (78) and (79), the electric-field force on the ring is

=43V 5 R (3 (2002000

Fz,1nk = Ly (80)
-q, Vo R (r.(z .),Z )
173k rk) 1Y nk’ ' “nk

Fr,1nk = Ly (81)

The Rgk(r,z) and Rpg(r,z) functions are calculated and stored in a table and
have the same features as the Qx(r,z) and Qp(r,z) for rf electric-field
forces

Magnetic field forces. - The program provides options for simulating two
types of magnetic focusing fields: (1) uniform solenoidal focusing and (2)
periodic permanent magnetic (PPM) focusing.

The magnetic field for uniform solenoidal focusing is given simply by
Bz(r,2z)

By(r,z)

Bo (82)

0 (83)
where the constant By 1is a program input.

The second type of magnetic focusing is PPM focusing. We consider first
"single period" PPM focusing. Figure 7 shows the geometry of the ring magnets
which are centered along the z-axis. The gap length between magnets is 2g, the
inner diameter is 2a, and the magnetic period is P. Also shown in figure 7 is
the shape of the axial magnetic field at r = a. The origin is at the center
of a gap so that B, 1s an even function of z. The assumed shape of B,(a,z)
in the region jz| < P/2 is

Bz(g,z) = B, cosh wz, 0<Jz] <3 (84)
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T .y - q P

B,(a,2) = 0, >zl 25 -4 (85)
P P P

B (a Z) = -B cosh [ (% - 2)] . 5 -9 < lz} < 5 (86)

where the shaping factor ; is an input parameter.
The magnetic field can be found using a Fourier series expansion. We note

that B, 1s axially symmetric and satisfies LaPlace's equation, and B, 1is

zero at z = + P/2. The Fourier series expansion which satisfies these condi-

tions and has the required behavior at r = 0 fis

o]
B,(r,2) = nz:] a I (kr) cos(k 2) (87)
where kp 1s given by
2nw
ko = p (88)
Using the equation div B = 0, we can show that Br 1s given by
B.(r,2) = Z I,(k r) cos(k 2) (89)
n =1
The coefficients ap can be evaluated if B,(r,z) is a known function of z
at some value of r, let us say r = ry. We obtain
2 P
a = ST+ B (r_.,z) cos k_z dz (90)
n =PI (k) J//ﬂ z\'o n

0

If ro
Subst1tut1ng into equation (90), we obtain

BBO[; sinh ug cos kg + k_ cosh ug sin kg]

P(p + kn)lo(kna)
n even

In practice, the field shapes at
conveniently measured.

r
Alternatively, the on-axis values

evaluate a.
is evaluated numerically.

19

, n odd

= a we use the assumed field shapes given by equations (84) to (86).

3

C(91)

S

a are not precisely known and cannot be

B(0,z) are con-
veniently measurable and can be used in equation (90), letting ry =

0, to

For the case of measured data, the integral in equation (90)




"Double period" PPM focusing is treated in much the same way as "single
period" PPM focusing. Figure 8 shows the geometry of the ring magnets which
are centered along the z-axis. As before, the gap length between magnets is
2g, the inner diameter is 2a, and the magnetic period is P. Also shown in
figure 8 1s the shape of the axial magnetic field at r = a. Whereas the
single periodic case has its origin at the center of a gap, the double periodic
case has its origin midway between two adjacent gaps. The origin is placed
here in order to make B, an even function of z. The assumed shape of
Bz(a,z) 1in the region |z]| < P/2 is

B,(3,2) =0, 0<lzlsg-g (92)

B,(2,2) = B, cosh [;( - -g—)] E-9<lzl<Erg (93)
B,(2,2) =0, Eegcizl<E g (9w

B,(3,2) = -B, cosh [E( - %‘3)] B gzl cEyg | (95)
B(3,2) =0, gfe+gslzl < (94)

In the same way as before, the magnetic field can be found using a
Fourier series expansion. The results for B,(r,z) and_ Bp(r,z) are
identical to those in equations (87) to (90). If r, = a, we use the assumed
field shapes given by equations (92) to (96). Substituting into equation
(90), we obtain

(2 cos %1) (880)[; sinh ug cos kg + k_ cosh ug sin kgl

a =
n =2 2 = ’
P(p + kn)Io(kna)

a =0, n even

n odd

(97

As before, the on-axis values B,(0,z), obtained from measured data, may be
used in equation (90), letting r, = 0, to evaluate an.

The magnetic flux ¢(r,z) for both "single period" and "double period" PPM
focusing 1s given by

: a I .(k.r)
y(r,z) = E 2ar _E;L_JET'COS knz (98)
knlo(kna)

n =1
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The magnetic flux s needed for calculating the angular velocity @ of a ring
(see eq. (22)). Knowing ¢, the axial magnetic force roBr and the radial
magnetic force roBz on a ring can be calculated.

As before, when referring to the kth cavity, the subscript k will be
appended to those quantities which may change from cavity to cavity. We now
th th th

consider the i ring in the k cavity located at the n node Zk:
The angular velocity ”1nk of the ring is
' a5 ¥ ryznd o Zp) - ¥
é =B - — (99)
ink o m 201 (2 )2
i* “nk
The axial and radial magnetic forces on the ring are
Fzoank = 9171 Znid By 0By (ry €2 ) 0 20y) (100)
Froank = ~93M (2008508 (P (Zg )0 20 (101)

The B,i(r,z), Bpg(r,z), and yy(r,z) functions are calculated and stored in a
table and have the same features as the Qu(r,z), Qpk(r,z), Ry(r,z), and
Rek(r,z) tables.

Rings with small radius. - In this section we discuss the behavior of
rings which become very small in radius. As we shall see, a modification to
the simulation will be required. It is instructive to analyze the equations
of motion and obtain an approximation to the radial motion of such rings.

We look at the case of an innermost ring, which is really a disk, since
this ring type is the one most 1ikely to become very small. We use non-
relativistic equations and assume the cathode flux is zero. From equation
(16), the radial equation of motion is

2

dr g . 42
2 m (Erf,r * Esc,r * r”Bz) +re (102)
dt
From equation (22), é is
6 = =9 v(r.2) (103)
m 2 :
2wr

For small r, B,(r,z) can be approximated by B,(0,z). Then w(r,z) can be
approximated by

w(r,z) = wr2B,(0,2) (104)
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Substituting equation (104) into equation (103), we obtain

-q8,(0,2)
B = om (105)
Substitution of equation (105) into equation (102) yields
d2r _qzsi(o,z)r q ( c ) (106)
= + E + 1
dt2 4m2 m rf,r sc,r

We transform the above equation to one with z as independent variable, as-
suming that the axial velocity vz 1s constant over the region of interest.

2 —qug(O,z)r

d°r q
= + (E + E ) (107)
d22 4m2v§ mvg rf,r sc,r

For r small enough, the space-charge field is dominated by the self-force.

We assume r 1is small enough that the space-charge field can be approximated
by the self-force only. From Gauss' law, the self-force is closely approxi-

mated by

—9q (108)

Esc,r = 2me 8T

Equation (107) becomes

2.2
a? 9B 0r 2\ (109)
2 - 2 2 2 rf,r 2 21
dz an°v) mv, o™t

The first two terms on the right hand side of equation (109) are negligible com-
pared to the third term for small enough r. We then obtain the approximation

2
9—% - § (110)
dz
2 lg/m| I
K = g - 0 (111)

2 2
chomvzld 41rt:0uovZ

tEquation (110) cannot be solved analytically; however, we can determine
the minimum value of r. For shorter notation, we use a "prime" to denote
differentiation with respect to r. We consider the situation where r(z) and
r'(z) are known at some point zy.
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We assume further that r(z) is decreasing and reaches a minimum value r,
some point z. The following derivation for rp 1is self-explanatory.

- |

Q.
A
ala
N =S
v
N

"

N

ol
= |a
-

.
2 2
(ry)? - (r1)? = 2 n r

Continuing the derivation and noting that r!

2 = 0, we have

“rp*
= In —
2K r]

-(ri)2/2K ry
e = -
"

-(ri)2/2K
] e

We consider a numerical example from a computer run simulating the Com-
munications Technology Satellite (CTS) 200-watt TWT (ref. 9). The pertinent
data are:

r. = 0.05a = 0.3175x10"% m

1
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-3.5 °
ri = 57.3 (corresponds to 3.5° angle)

8 _m_
UO = VZ = 0.63x10 sec
I0 = 0.07 amps
With this data, we obtain for r2/a
r
2 -3
P 0.73x10

The actual trajectory, obtained from numerical integration of equation (110),
is shown in figure 9. 1In the neighborhood of the minimum point, r" is changing
very rapidly and very small integration steps need to be taken. Since the
program s designed to have a fixed number of equally-sized steps per cavity,
it is not possible to accurately calculate the type of trajectory shown in
figure 9, without using a prohibitively large number of steps per cavity. We
notice from figure 9 that the ring approaches the z-axis so closely that it
almost appears as though the ring is reflected from the axis. In the program,
we simulate such a trajectory as though the ring is indeed reflected from the
z-axis. Assume a ring has radius r and first derivative r' at the end of
an integration step and that the step size is az. If the ring satisfies the
following condition,

r+268r' <9

then the decision is made that the normal integration mode will not accurately
calculate the ring radius over the next step. Instead the acceleration on the
ring is set to zero and the simulation proceeds. When the integration step is
reached at which the ring radius would otherwise become negative, the reflec-
tion takes place and dr/dz changes sign. After the reflection takes place,
the actual value of the ring acceleration is restored, and the normal mode of
simulation proceeds. In figure 10 the resultant trajectory (dashed line) is
compared to the actual trajectory.

Beam-Wave Coupling Analysis

The filelds induced by the beam current can be conveniently represented by
induced gap voltages. The analysis for obtaining expressions for the induced
voltages is given in reference 5 (pp. 11-15). From equations (66) and (67),
the forward and backward components of the vector electric field can be
expressed as

v
Ee(roz,t) = 5t B(r,z) e’ (112)
3 b 2 Yot

Ey(riz,t) = 57~ Q%(r,2) ' ® (113)
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where 6(r,z) is defined as Q (r,z)gZ + Qr(r,z)gr. Equations (46) and (47) of
reference 5, when generalized %o the three-dimensional case, become

ave = 5o ~ZT d*(r,2) « 3,(r,2)dv (114)

av, = :—2 [ d(r,z) - 3](r.z)dv (115)

where 31(r,z) is the fundamental Fourier component of the beam current density

3(r.z.t). v 1s the volume of the cavity in question, and Z 1s the cavity's
interaction impedance.

Since [Qp(r,z)| << 1Q,(r,z)] and |Jyp(r,2)] << |Jy,(r,2)|, we may approximate

a(r,z) . 31(r.z) by Qz(r,z) Jyz(r,z). Appendix B gives a deviation of the
following expression for Jy,(r,z)

NdR
w!d
sin {——
g(rir oF )q,:(2) <2v (2)) -lwt (2)
3. (r.2) = 1 1,in’ 1,0ut’™} i e i (116)
1z T . 62 _ r2 > und
i,out i,in 2v1(z)
¥ =1
In the above expression g(r;r1 in* T ) is the rectangular function defined
by ,in ,out
Wy i Tout) = T ST T out
(117)
wrsry inTiout) =0 T ST O T 7Ty out
where r and r are the inner and outer radius of the 1th ring
i,in j,out :

The backward induced voltage, from equation (115), now becomes

AVb = %{ %{nJ]Z(r,z)Qz(r.z)du (118)

Using equation (116), equation (118) becomes

N,R
d_ wl
sin __d_.
qi(z) N 2v1(z) -1wt‘(z)
2 = 1ur[r2 (2) - rl (z)] Wy ¢
j,out i,in v.(2)
P =1 !
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r1.out(z)

X Oz(r,z) 2wr dr dz (119)
Fy,1n(2)
The integration in r can be shown to be
(-]
r (z)
r1,out(z) '1Bmz i,out
0,(r.2) 1 dr = rcmi‘(:m:)ea)
1,1in ry s (2)
ms= -o » 10
(120)
We define S(r,z) as follows:
C I.(y r)e-iﬁmz
_ 1 mi1:'m
S(ra2) = ok 2 Oy al_(v.3) G2
m= -»

Equation (120) becomes

r1,out(z)
Qz(r,z) rdr = a r1.°ut(z) S(r1.out(z).z)
"1,1n(2)
- a r1'1n(z) S(r1'1n(z),z) (122)
With the aid of equation (122), equation (119) becomes
L
2
av, = 6,(2)dz (123)
Z=—%
where Gp(z) is given by
N .R
d wd
sin ___g__
7 1 q,(z) 2v1(z) -1wt1(Z)
6(2) = 42 T [2 2 | — ot €
w|r (z) - r (z)] d
i,out i,in 2v1(z)
1 =1
(124)

X 2'a[r1,out(z) S(r1,out(z)'z) - r1.1n(z) S(r1'1n(z).z)]
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Similarly, aVg¢ 1is given by

AVf = ) Gf(z) dz (125)
Z= - E
where Gg(z) is given by
N,R
d w9.d
. a,(2) (D ety (2)
6e(2) = 42 T T2 2 2 e
"[’1 out{?) - T 1n(’)] _d
' i 2v1(z)
i =1
X 2«a[r1'out(z) S*(r1'°ut(z).z) - ri,in(z) S*(r1’1n(z),z)] (126)

In equations (123) to (126), the integration variable z 1is the axial position
relative to the center of cavity k. To avoid excessively cumbersome notation,
the subscript k has been omitted from these equations. The integrals in
equations (123) and (125) are evaluated with the use of Simpson's rule with end
corrections. The end corrections were derived with the assumption that the
number of nodes per cavity N, is a multiple of four. Equations (123) and
(125), with the subscript k restored, now become

N
Y4
&V, = Az, ZE: 8,Ge(Z,) (127
n=1
N
z
BV, = 8z, Z 8.6, (Z,,) (128)
n =1

where, from Simpson's rule with end corrections, the &, are

1. 12 _2 )
T 8, = 3 4<n< Nz -2, if n 1s odd
4 1 4
8, =3 - 52 §, =3 4<n<N -2, if n is even
2,2 1.9 > (129)
$3=3%*2 6Nz-1 =3*'%
27
6 — —
N, = 24 )
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From equations (124) and (126), the evaluation of Gf(zpk) and Gp(zpk) re-
quires the evaluation of Sp(ry out(zpk).Zpk) and  Sp(ry 1n(znk)'1nk9 for

¥ =1, ..., NgR. The Sy(r,z) function is calculated and stored in a table in
the same manner and with the same features as the Rzk(r,z), Reg(r,z), Qzk(r,2)
and Qpk(r,z) tables. The evaluation of Sk(r,z) in equations (124) and (126)
is done by linearly interpolating the table in the r variable.

Calculating the effects of the backward wave requires an iterative proce-
dure. In the first pass through the tube, the AVpk are calculated and stored
for each cavity k. From the AVpk, the backward voltages for a cavity chain
from cavity k1 to cavity k2 are obtained from

vb,k? = Avb,k2 (130)

Zk —(aL)bk e—‘I(B]L)k

Vi, =4V, +V T/ e
bk bk b,k+1 Zk+1

k =k2 -1, ..., k1 (131)

By a cavity chain, we mean a sequence of consecutive cavities whose backward
voltages are to be calculated. After Vpx are known for the desired cavities,
a second pass is made through the tube. The second pass yields a new set of
8Vhk that can be used for calculating a set of Vp for a third pass. The
process continues until convergence is obtained. In many applications the
iterative procedure will converge faster if the iteration is done on one cavity
chain at a time. This would be true, for example, for a tube having severs.
The program has the capability of performing the iterative procedure for an
arbitrary set of cavity chains.

The computational procedure in the beam-wave interaction process is as
follows:

(1) When cavity k 1is entered, calculate and store the Sk(r,z) table
given by equation (121). 1If cavity k has the same Lk, Rk, Bk, vk as
cavity k-1, then Sy _y(r,z) = Sk(r,z) and a new table does not have to be
calculated. '

(2) Obtain a first approximation to AVgp by assuming that the rings
have constant axial and radial velocities in cavity k. Thus

dt(z,,)
tilzg) = Yz + 57 (7 - 7))
n=1, ..., N (132)
dr(z1k)
Pz Tar o (Zg - 7))

ri(znk)

Knowing ry(z,c), we can readily calculate ri,out(Znk) and ry 4p(Zpy).
Knowing ty(zpk), ry out(Znk) @and ry yn(zpk). we can calculate’the first ap-
proximation to AVg from equations (126), (127) and (129).

(3) Let the forward voltage for cavity k be

z -(al) -1(B,L)
‘/ k F,k-1 1Mk
ik = Y7 Vekar @ e + BV
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If there is a backward voltage, we assume it is known from equation (131) using
the set of AVpx obtained from the previous pass through the tube.

(4) Proceed with numerical integration of the equations of motion to ob-
tain trajectory data at each node and antinode in the cavity.

(5) At the nth node in the cavity, after tj(zpyk) and ry(zpk) have
been obtained, calculate and store &, Gf(zpk) and & Gh(zpk). These quanti-
ties are the nth terms in the summations of equations (127) and (128).

(6) When the last integration step in cavity k has been done, calculate
a better approximation to aVgr from equation (127). The AVgx so obtained
replaces the old AVg calculated in step 2. Also, calculate AVp from
equation (128). The AVpg are stored for use in the next pass through the
tube.

: (7) If additional accuracy is required, make another pass through the
cavity, repeating steps 3 to 6.

(8) Repeat steps 1 to 7 for cavity k + 1.

(9) When the last cavity is done and the effects of the backward wave
have to be determined, make a second pass through the tube. The backward volt-
ages for the second pass are determined from the AVpy of the first pass.

(10) Make as many passes through the tube as are required to obtain
convergence.

Summary of Program Steps

The entire computational procedure is given in flow chart form in figure
11. The procedure is summarized by the following steps:

(1) Read input data.

(2) Calculate the tables for space charge forces.

(3) Begin numerical integration of equations of motion with =z as the
independent variable.

(4) When a new cavity is entered, let us say the kth cavity, print
data for cavity k - 1. If the parameters of cavity k are different from
those of cavity k - 1, calculate the tables that are required for evaluation
of rf forces, voltage-jump forces, magnetic forces, and induced voltages.
Obtain a first approximation to AVgx by assuming that the rings have con-
stant velocity throughout cavity k. Attenuate and phase shift V¢ 7 and
vectorially add the result to aVg to obtain the forward voltage for
cavity k.

(5) When the last integration step in cavity k has been done, calculate
a better approximation to AVgy, and use the new approximation in place of the
old. Also, calculate and store AVpy.

(6) If additional accuracy is required, make a second pass through
cavity k.

(7) Repeat from step 4 for cavity k + 1.

(8) If the effects of the backward wave are to be determined, make a
second pass through the tube.

(9) Make as many passes through the tube as are required to obtain
convergence.

DESCRIPTION OF INPUT DATA

The following data are required by the program. In the following defini-
tions, a “magnetic section® is defined to be one-half of the magnetic period
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for single-period PPM focusing and is defined to be one-fourth of the magnetic
period for double-period PPM focusing.

Name Symbol Description

ACM - a Tunnel radius, cm

ALPHL(K) (al)fx Voltage attenuation of forward wave in going from cavity K
to cavity K + 1, dB per cavity; K = 1, LASTCV

ALPHLR(K) (al)pk Voltage attenuation of backward wave in going from cavity
K+ 1 to cavity K, dB per cavity; K = 1, LASTCV. (ALPHLR
needs to be loaded only if KLOSS = 1.)

BO(K). Bok Value of axial magnetic field By(r,z) at r = a and
z = midpoint of gap in Kt magnetic sectiop; webers per
square meter; K = 1, LASTMG. Note that r = a corresponds
to the boundary value of r, and that a 1is also the tunnel
radius. BO(K) needs to be loaded only if NBZDAT = 0.

BILDP(K) (BlL)k Phase shift of voltage for cavity K; K = 1, LASTCV.

BCM(I) b Ith  beam radius in one-dimensional region, cm; I =1,
NUMB. See NUMB, NB1, NB2 for related inputs. If there is
no one-dimensional region (KAVI3 = INITCV), only BCM(1) 1is
used and BCM(1) is initial beam radius.

*BZDATA(I) Experimentally obtained value of B,(r,z) at r = 0 and
z = 1th axial data point; I = 1, NBZDAT + 1. I = ]
corresponds to the beginning of a magnetic section and
I = NBZDAT + 1 corresponds to the end of a magnetic
section. The axial data points must be equally spaced.
BZDATA(I) needs to be loaded only if NBZDAT ¢ 0.

DRDZ(I)  dr Initial value of dr/dz for Ith ring; 1 = 1, NRINGS.
dz I =1 corresponds to an innermost ring. I ='NRINGS corre-
sponds to an outermost ring.
FREQGH f Frequency, GHz
I0BMA Ig Beam current at tube entrance, mA
INITCV Number of first cavity considered in the presept case
ISAVE ISAVE = I1 + I2 + I3, where I1, I2, and I3 are defined as
follows:
I1 = 0: No action.
IN = 1: Initial state of the present case will be stored
in COMMON/STATE/for use in a future case.
I2 = 0: No action
I2 = 2: 1Initial state of the present case will be stored
in a specified data set.
I3 = 0: No action.
I3 = 4: Final state of the present case will be stored

in a specified data set.
ISTATE Used only when INITCV # 1:

ISTATE = 1: Initial state of present case is equal to
initial state of previous case.

ISTATE = 2: Initial state of present case is equal to
final state of previous case.

ISTATE = 3: Initial state of present case is equal to
initial state of the last case for which Il (see ISAVE)
was equal to 1.

ISTATE = 4: Initial state of present case is equal to the
state stored in a specified data set.
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JSCF
KAV13
KIMP
KLMAG

KLOSS
KPLOT
KPPM
KPRINT
KREL
KSMSIG
KSPACE
KSOLEN
KVEL(I)
KWRITM

KWRITV

LASTCV

LASTMG

LCIRCM(K)
LGAPCM(K)
LMAGCM(K)

MSHAPE (K)

Initially, space charge forces are evaluated once every
JSCF steps.

Number of the first cavity in the three-dimensional region

KIMP = 0: Pierce impedance 1s entered as input.

KIMP = 1: Total impedance is entered as input. (See ZIMP
for related input.)

KLMAG = 0: Cavity lengths and magnetic sections coincide.

KLMAG # 0: Cavity lengths and magnetic sections do not
coincide.

KLOSS = 0: ALPHLR(K) will be set equal to ALPHL(K); thus,
ALPHLR(K) does not need to be loaded.

KPLOT = 0: Plots are desired.

KPLOT # 0: Plots are not desired.

KPPM = 1: Single period PPM focusing is to be used.
KPPM = 2: Double period PPM focusing is to be used.
KPRINT = 0: Print input data.

KPRINT # 0: Do not print input data.

KREL = 0: Use relativistic equations of motion.
KREL # 0: Use nonrelativistic equations of motion.
KSMSIG = 0: Print small-signal parameters.

KSMSIG # 0: Do not print small-signal parameters.
KSPACE = 0: Calculate space charge forces.

KSPACE # 0: Set space charge forces equal to zero.
KSOLEN = 0: Use PPM focusing.

KSOLEN # 0: Use solenoidal focusing; B, = BO, B, = 0.

Number of cavity for the Ith printout of normalized axial
velocities of rings; I = 1, NVEL

KWRITM = 0: Do not print normalized masses of rings.

KWRITM # 0: Print normalized masses of rings whenever
normalized axial velocities of rings are printed.

KWRITV = 0: Do not print normalized radial velocities of
rings.

KWRITV # O0: Print normaiized radial velocities of rings,
Vr/ug, whenever normalized axial velocities of rings are
printed.

Number of last cavity considered in the present case
(LASTCV < 70)

Number of magnet1c sections (LASTMG < 70)

Length of cavity, e¢m; K = 1, LASTCV.

Length of gag in kth cavity, cm; K = 1, LASTCV.

Length of magnetic section, cm; K = 1, LASTMG.
LMAGCM(K) needs to be loaded only if KLMAG ﬁ 0.

Used in defining electric field shape for kt cavity,
inverse meters; K = 1, LASTCV;

Ez(a,z) at gap edge

Ez(a.Z) at gap center ~ cosh (mR)

where m = MSHAPE(K) and & = half-length in meters of
kth gap.
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MU(K)

NB1

NB2

NBWM

NBZDAT

NCAVSS
NDISKS
NMAX

NPGRID

NPSC

NRINGS
NUMB

NVEL
NXGRD1

NXGRD3

NXMAG

h

Nsc,r

Used in defining magnetic field shape for Kkth magnetic
section, inverse meters; K = 1, LASTMG;

Bz(a,z) at gap edge

B,(a,z) at gap center ~ cosh(ug)

where u = MU(K) and g = half-length in meters of Kth
magnetic gap. MU(K) needs to be loaded only if
NBZDAT = 0.

Used only when there is a one-dimensional region
(KAVI3 > INITCV). Beam radius changes from first value to
second value at end of NBI1th cavity. (NB1 needs to be
loaded only if NUMB > 1.)

Used only when there is a one-dimensional region
(KAV13 > INITCV). Beam radius changes from second value
to third value at end of NB2th cavity. (NB2 needs to be
loaded only if NUMB = 3.)

NBWM = 0: No backward wave.

NBWM > 0: Number of last cavity considered in calculating
backward wave.

NBZDAT = 0: Magnetic fields are determined by input data
BY and MU.

NBZDAT # 0: Magnetic fields are determined from experi-
mental data. The number of experimental data values for
B,(0,z) s NBZDAT + 1. (NBZDAT < 100)

Number of cavity for which smali-signal parameters are
calculated

Number of disks (NDISKS < 24)

For sums that are stored in tables, excluding space-charge
force tables and magnetic field tables, NMAX is the upper
Timit. (NMAX < 50)

Number of grid points in r direction is NPGRID + 1. r = 0
is first grid point and r = a s last grid point.
Refers only to the grid for calculating forces on rings
due to electric and magnetic fields. (NPGRID < 20)

Number of grid points in r direction 9s NPSC + 1. r = 0 is
first grid point and r = a 1is last grid point. Refers
only to grid for calculating forces on rings due to
space-charge fields. (NPSC < 20)

Number of rings per disk (NRINGS < 4)

Number of discrete values for the beam diameter in the one-
dimensional region. 1 < NUMB < 3

Number of cavities for which ring axial velocities are to be
printed out.

Number of nodes in z-direction per cavity, in one-dimensional
region. (NXGRD1 < 64); NXGRD1 must be a multiple of 4.

Number of nodes in z-direction per cavity, in three-
dimensional region. (NXGRD3 < 64); NXGRD3 must be a
multiple of 4.

Number of grid points in z-direction per magnetic section.
NXMAG must be a multiple of 4. Normally, NXMAG should be
about the same as NXGRD3. NXMAG does not have to be
Toaded if KLMAG = 0. (NXMAG < 64)
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PCDPA yc/¥y Normalized cathode flux: PCDPA = gc/¢a- where ¢ 1Is
cathode flux at r = a. 3 = wa<By, where a 1s tunnel
radius and By = BO(1). .

PINDBM Input power, dBm

TOLDV Error criterion for determining whether an additional pass
through a cavity is required. If

av - av

f,new f,old

v > TOLDV
f,new

then an additional pass 1s made.

TOLSC Error criterion for determining whether the frequency of
calculating space charge forces should be doubled. If
for any ring the difference between the calculated space
charge force and the extrapolation of the quadratic curve
fit is greater than the product of TOLSC and the maximum
rf electric field force in the cavity, the frequency of
calculating space charge forces is doubled.

TOLTBL Error criterion used in electric and magnetic field tables
for determining the number of terms to include in infinite
summations. Suggested value: TOLTBL = 0.02.

TWOGCM(K) 29 Length of gap in kth magnetic section, cm; K = 1, LASTMG
vgB Vo Beam voltage, volts

VIUMP(K)  Vyk The dc voltage jump for kth cavity, volts; K = 1, LASTCV
ZIMP(K) Iy If KIMP = 0, ZIMP(K) is the Pierce impedence in ohms for

Kth cavity; K = 1, LASTCV
If KIMP = 1, ZIMP(K) is the total impedance in ohms for
Kth  cavity; K = 1, LASTCV

DESCRIPTION OF OUTPUT DATA

The program output consists of both printed output and plots. The plots
are produced only if the input parameter KPLOT is zero. The printed output
includes three parts: (1) printing of small-signal parameters (only if the
input parameter KSMSIG is zero); (2) a cavity-by-cavity printing of selected
data; (3) printing of data on ring dynamics at selected cavities. The program
can be easily modified to calculate and print other data i1f desired.

First, the input data are printed in NAMELIST format. (The printing of
the input data can be suppressed by letting KPRINT be nonzero.) Then the
small-signal parameters are printed if desired. The small-signal parameters
are as follows:

Name Symbo] Description

uo ug Initial beam velocity, m/sec

BEB Beb Product of beam propagation constant and beam radius
B1B B1b Product of wave propagation constant and beam radius
KP Kp Pierce impedance, ohms

iC A Total impedance, ohms

c c Pierce's C

B b Pierce's b

D d Pierce loss parameter d
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DGAIN
Q0
A1PA2

Asymptotic gain per cavity, dB/cavity

Pierce's space charge parameter, QC/C

0
Ay + Ay Launching loss, dB

The following data are printed for each cavity:

CAV
VMAG
ISMAG
ISPHA

LSGAIN

PouT
AVERHO

RMSANG

RMSVEL

PKE
INTRC
PRF
PBW
PLC

PBAL

SC

Cavity number
Magnitude of gap voltage, volts
Magnitude of normalized induced current
Phase of normalized induced current divided by n
Large-signal gain, dB
Output power divided by IV, NR
-_ 1 = *
Average of the ring radii 5 = i 12_] py (NR = NDISKS*NRPD)
RMS value of the angle that the velocity vectors of the rings
make with the z-axis; in degrees

AR

4o\ 2
RMSANG = 1l z : 1), 180
- NR dg r

i =1

RMS value of the normalized radial velocities of the rings,
where the normalization is with respect to Uy, the
“Initial axial velocity

2 (&
1 at
RMSVEL = NR "

Change in beam kinetic power referred to initial beam kinetic
power, divided by I,V,

Power loss due to beam interception, divided by IoVo

Power in forward wave, divided by I,V,

Power in backward wave, divided by IgV,

Cumulative power loss (except for loss due to beam inter-
ception), divided by IgVo

Power balance equal to

PKE - PJUMP + PRF + PBW + PLC + INTRC
Iv
00

1 +

where PJUMP is the power due to all voltage jumps up to the
current cavity

Integer variable KSCF: space charge forces are evaluated
every KSCF integration steps.
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At selected cavities, the following data are printed:

"Normalized axial velocities" - Axial velocities normalized with respect to
Uy, the initial axial velocity

Radial velocities normalized with respect to
Ug, the initial axial velocity; printed
only if KWRITV # 0

Ring masses normalized with respect to initial
ring mass; printed only if KWRITM # O

Ring radii normalized with respect to a

"Normalized radial velocities"

"Normalized ring masses"

"Ring radius divided by a"

DESCRIPTION OF GLOBAL VARIABLES

Global variables are variables that are used by more than one subroutine
and hence are put into COMMON blocks. In the following descriptions, we ex-
clude input data variables since these have already been described.

Name Symbol Description
DELV(K) AVgk Forward induced voltage for kth cavity,
volts; K = 1, LASTCV
DELVR(K) AVpk Backward induced voltage for kth cavity,
- volts; K = 1, LASTCV
DVTEMP(K) AVek Approximate forward induced voltage for kth

cavity, obtained by assuming rings have
constant axial and radial velocities
throughout cavity, volts; K = 1, LASTCV

DVRTEM(K) AVpk Backward induced voltage of previous case,
for kth cavity, volits; K = 1, LASTCV
VGAP(K) Vk Sum of forward voltage and backward voltage
for kth cavity, volts; K = 1, LASTCV
VGAPF (K) Vek Forward voltage for kth cavity, volts;
K =1, LASTCV
VGAPR(K) Vbk Backward voltage for kth cavity, volts;
K = 1, LASTCV
A a Tunnel radius, meters
ALF1(3J,I) Ratio of inner radius to mean radius of
(3,1)th ring, 1 = 7, NDISKS; J = 1, NRINGS
ALF2(J,I) Ratio of outer radius to mean radius of
(3,1)th ring, 1 = 1, NDISKS; J = 1, NRINGS
ALF]¢(J) Initial ratio of inner radius to mean radius

of a ring, where J =1 1s an innermost
ring and J = NRINGS is an outermost ring

ALF2¢(J) Initial ratio of outer radius to mean radius
of a ring, where J =1 is an innermost
ring and J = NRINGS is an outermost ring

ALPHLB(K) (al)pk Voltage attenuation of backward wave in going
from cavity K + 1 to cavity K, dB per
cavity; K = 1, LASTCV

B(I) b 1th beam radius in one-dimensional region,
meters; I = 1, NUMB
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BSUBR(IR,IZ)

BSUBZ(IR,IZ)

C1(I1)
C2(I)

c3
CAVFLG

CNORM
CONST
CONST2
CONST4
COSY(K)
COSYB(K)

CTHETA
DELP

DELPSC(I)

DELX(I)
DELXSC(I)

DPR
ECHARG

EMASS
EPS§

ERRWT(I,J)

FREQ
198

Br(rir,z1z)

Bz(r1R,217)

c/wa

cos ©
ap

AE

Radial component of focusing magnetic field
at grid point (rir.Z1z), webers per square
meter; IR = 1, NPGRID + 1, IZ = 1, NXMAG.
Calculated in TBL3M and MAGCF.

Axial component of focusing magnetic field
at grid point (rir.2yz), webers per square
meter; IR = 1, NPGRID + 1, IZ = 1, NXMAG.
Calculated in TBL3M and MAGCF.

Speed of 1ight, meters per second

Constant associated with Ith peam diameter;
I =17, NUMB. Calculated in INDAT.

Constant associated with Ith peam diameter;
I =17, NUMB. Calculated in INDAT.

Constant calculated in INDAT.

Flag used by subroutine KSCKC to determine
which of two adjacent cavities 1s to be
selected when positioned at the boundary
between the two cavities

Normalized speed of 1ight

Constant calculated in INDAT

No longer used

Constant calculated in INDAT

Array of cosine values used in TBL3E;

K=1, 2 * NXGRID + 1. Calculated in INDAT.

Array of cosine values used in TBL3M;

K=1, 4 * KPPM * NXMAG + 1. Calculated in
INDAT.

Cosine of normalized time

Normalized distance between two adjacent grid
points in radial direction. Calculated in
INDAT.

1th ‘normalized distance between two adjacent
grid points in radial direction in space
charge tables; I = 1, 2. Calculated in
SCAT3.

Integration step size in 1Ith cavity string;
I =1, NSCAV. Calculated in INDAT.

1th  normalized distance between two adjacent
grid points in axial direction in space
charge tables; I = 1, 2. Calculated in
SCAT3.

Conversion factor from degrees to radians,
DPR = 180/«

Charge of an electron, coulomb; ECHARG is
positive

Mass of an electron, kg

Permittivity of free space, farad/meter

Error weights used in determining the number
of terms to include in the summations
calculated in TBL3E and TBL3M; I = 1, 5;

J =1, NPGRID + 1. Calculated in INDAT.

Frequency, Hz

Beam current at tube entrance, amps
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1PBAVE

INTLS

ISCAV(K)

ITER

KBEGIN

KCAV

KOUNTP

KPDZC(K) Kp/Z

KSCAV

KSCF

KSCFT
KSTOP

KX
KX
KXPRI
KXSC

LAMB A
LCIR(K) Lk
LDISK L4
LDISKN L4/a
LMAG(K)

LSMALL(K) 2

MDISK mg

MLSHML me.
sinh mR

MRINGP

MRING(J,I)

MUA(T)
MU¢ Yo
NB

Beam current at tube entrance, reduced by the
percentage of the beam that has been inter-
cepted, at the present axial position, amps.
Calculated in ACC.

Power loss due to the cumulative beam inter-
ception that has taken place up to the pre-
sent axial position, watts

Number of cavity string in which
is located; K = 1, LASTCV

Present number of iteration of beam rings
traversing cavity

Equals zero at beginning of case and is set
equal to 1 immediately thereafter.

Number of current cavity

Counter for data points to be plotted

Ratio of Pierce impendence to total impedance
for Kth cayity; K = 1, LASTCV

Number of present cavity string. (A cavity
string i1s a string of consecutive cavities
all having the same geometrical and elec-
trical properties.)

Space charge forces are calculated every
KSCF steps.

Used to store a previous value of KSCF.

Equals zero until end of last cavity, when
it is set equal to 1.

Number of current node, counted from first
node of first cavity

Initial node of present case, counted from
first node of first cavity

Number of current node, counted from first
node of current cavity

Number of node, counted from first node of
first cavity, at which the most recent cal-
culation of space charge forces was done

Beam wavelength, meters

Length of K h cavity, meters; K = 1, LASTCV

Axial length of a ring, meters

Normalized axial length of a ring

Length of kth magnetic section, meters;

K = 1, LASTMG

One-half of gap length in kth cavity,
meters; K = 1, LASTCV

Mass of a disk at tube entrance, kg

mL 1is the product of MU and LSMALL for the
current cavity

Mass of a r1ng at tube entrance, kg

Mass of (J,I1)th ring, kg; I = 1, NDISKS;

J = 1, NRINGS

1th  zero of Bessel function Jo: I =1100

Permeability of free space, henry/meter

Number of current beam-diameter region.

(A beam-diameter region i1s a region
throughout which the beam diameter is con-
stant.) Applies only to one-dimensional
region.

kth cavity
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NCAVPS(I)

NCASE
NCUMCS(I)

NPSC1
NR
NRPD
NSCAV
NXGRID
NXISC
POB

PBW(K)

PHIDN(J,I)

PI
PKE(K)
PLC

POBAL
PRF(K)

PRICL

PSI(IR,IZ)

PSIA

PSC1(J,I)
PSC2(J,I)
PSC3(J,I)

PSCA(J,1)
PSCB(J,I)
PSCC(J,1)

QDISK
QRINGO

QRING(J,I)

RELC(J,I)

Po

éj1lm

¥(rig.21z)

ﬂazBo
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Number of cavities in 1Ith cavity string;
I =1, NSCAV

Number of current case

Number of last cavity in 1th cavity string;
I =1, NSCAV

Number of grid points in the first of two
radial grids in space-charge tables

Total number of rings in a beam wavelength
(NDISKS * NRPD)

Number of rings per disk (NRPD = 1 in one-
dimenstonal region.)

Total number of cavity strings

Number of nodes in z-direction per cavity

Number of grid points in the axial grid in
space-charge tables

Iy/ugy, charge density per unit length at
tube entrance, coulomb/m

Power in backward wave in Kth cavity,
watts; K = 1, LASTCV. Calculated in ENBAL.

Normalized angular velocity of (J—I)th ring;
I =1, NDISKS; J = 1, NRINGS. Calculated in
FACC3.

3.141593

Kinetic power at end of kth cavity minus
kinetic power at beginning of tube, watts;
K =1, LASTCV. Calculated in ENBAL.

Cumulative power loss at end of Kth cavity,
watts; K = 1, LASTCV. Calculated in ENBAL.

Power balance. Calculated in ENBAL.

Power in forward wave in K cavity, watts;
K =1, LASTCV. Calculated in ENBAL.

Power in backward wave in present cavity,
watts. Same as PBW(K). Calculated in
ENBAL.

Magnetic flux at grid point (ryg,zyz), webers;
IR =1, NPGRID + 1, IZ = 1, NXMAG.
Calculated in TBL3M and MAGCF.

Normalizing factor. Calculated in INDAT.

Radial space charge force on (J.I)th ring
at each of the latest 3 selected values of
independent variable ¥ wused for quadratic
curve-fitting; J = 1, NRINGS; I = 1, NDISKS.
Calculated in SCFT3.

Coefficients of the quadratic polynomial used
for curve-fitting the radial space charge
force on (J.I)th ring; J = 1, NRINGS;

I =1, NDISKS. Calculated in SCFT3.

Charge of a disk at tube entrance, coulombs

Charge of a ring at tube entrance, coulombs

Charge of (J-I) h ring, coulomb;

I =1, NDISKS; J = 1, NRINGS

Relativistic_correction factor for gJ-I)th
ring; I =1, NDISKS; J = 1, NRINGS.
Calculated in FACC3.
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RHOB(J)

RHOMAX
RHO(J,1)

RHOP(J,1)

RHOPP(J,I)

SBETPA(I)
SCA1(I)
SCA2(1)
SCA3(1)

SCHOLD
SIMPS(I)

SINY(K)

SINYB(K)

SLCIR(I)
SLSMAL(I)
SMSHAP(I)

SRI1MB2

SSGAIN(K)

STHETA
THT(J,I)

THTP(J,I)

Poj

sin
931

de

—

dg

Initial value of normalized mean radius of a
ring, where J =1 is an innermost ring and
J = NRINGS is an outermost ring;
J = 1, NRINGS. Calculated in INDAT.

Normalized outer radius of the outermost ring
at the current value of E. Calculated
in ACC.

Normalized radius of (J—I)th ring;
I =1, NDISKS; J = 1, NRINGS. Calculated
in XINT. ‘

First derivative of pj1 with respect to ¢;

I =1, NDISKS, J = 1, NRINGS. Calculated
in XINT.

Second derivative of p31 with respect to ¢;

I =1, NDISKS, J = 1, NRINGS. Calculated
in ACC.

Value of Bga for cavities in ith cavity
string; I = 1, NSCAV

1th entry in table of space charge forces
for first, second, and third beam diameters;
I =1, NXISC + 1. Calculated in SCATI.
Applies to one-dimensional region only.

No longer used.

1th coefficient for Simpson's rule integra-
tion; I = 1, NXGRID. Calculated in INDAT.

Array of sine values used in TBL3E;
K=1, 2 * NXGRID + 1. Calculated in INDAT.

- Array of sine values used in TBL3M;

K =1, 4 * KPPM*NXMAG + 1. Calculated in
INDAT.

Length of cavities in ith cavity string,
meters; I = 1, NSCAV

One-half of gap length for cavities in ith
cavity string, meters; I = 1, NSCAV

Electric field shaping factor for cavities in
ith cavity string, meters; I = 1, NSCAV

Relativistic correction factor. Calculated
in INDAT.

Small-signal gain at kth cavity, based on
small-signal calculations using geometrical
and electrical properties of cavity number
NCAVSS; K = 1, LASTCV. Calculated in
SMSIG.

Sine of normalized time

Value of normalized time of arrival of
(3-1)th  ring at current axial position
E; I =1, NDISKS; J = 1, NRINGS.

Calculated in XINT.

First derivative of eJ1 with respect to ;
I =1, NDISKS; J = 1% 'NRINGS. Calculated
in XINT.
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THTPP(J,I)

THTPLT(J,I)

TPXR(IR,IZ,L)
TPXI(IR,IZ,L)

TXR(IZ,L)
TXI(IZ,L)

TWOG(K)
TWOPI

ugB
UPNORM
VEBSUM(K)

VGAPTM
VMAX

xg

XICAV(K)
XIMAG(K)
XISCAV(I)
XIMXSC

XISC1
XISC2
XISC3
XPRI

XSC1(J,I)
XSC2(J,I)

2g
2w

Uo/wa

o

Second derivative of eJ with respect to ¥;
I =17, NDISKS: J =1, ARINGS. Calculated
in ACC.

Value of o for (J,I)th ring used in plots;
I =1, NDISKS; J = 1, NRINGS

Real (TPXR) and imaginary (TPXI) components
of the LM table for the data point
(rir.zyz): IR = 1, NPGRID + 1;
IZ =1, NXGRID: L =1, 5 for TPXR: L =1, 3
for TPXI. Calculated in TBL3E.

Real (TXR% and imaginary (TXI) components of
the Lth table for the data point z17:
IZ = 1, NXGRID; L =1, 3 for TXR: L =1, 2
for TXI. Calculated in TABL1. Used for
one-dimensiona] region only.

Gap length of kth magnetic section; meters;
K = 1, LASTMG

2w

Initial axial beam velocity, m/sec

Normaiized initial axial beam velocity

Beam voltage plus sum of all voltage jumps up
to Kth “cavity, volts; K = 1, LASTCV

Voltage across first gap, volts

The maximum |VGAP(K)|, where the maximum is
taken over all values of K up to the pre-
sent cavity; volts. Calculated in BTWNC.

Radian frequency, w = 2xf; rad/sec

Current value of normalized position along
tube axis, measured from beginning of first
cavity

Initial value of normalized position along
tube axis for the present case, measured
from beginning of first cavity

Normalized axial position at end of Kth
cavity; K = 1, LASTCV

Normalized axial position at end of Kth
magnetic section; K = 1, LASTMG

Normalized axial position at end of Ith
cavity string; I = 1, NSCAV

Maximum normalized axial separation distance
in space charge force tables. (If two
rings are separated by a distance greater
than XIMXSC, the space charge force on one
ring due to the other is set to zero.)
Calculated in INDAT.

The three latest values of ¥ at which space
charge forces were calculated

Present value of normalized position along
tube axis, measured from beginning of cur-
rent cavity. Calculated in ACC,

Axial space charge force on (J,I)th ring at
each of the latest 3 selected values of in-
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XSC3(J,I) dependent variable ¥ used for quadratic
curve-fitting; J = 1, NRINGS, I = 1, NDISKS.
Calculated in SCFT3.

XSCA(J,I) Coefficients of the quadratic polynomial used
XSCB(J,I) for curve-fitting the axial space charge
Xscc(Jd,I) force on (J-I1)th" ring; 3 = 1, NRINGS;

I =1, NDISKS. Calculated in SCFT3.
ZC(K) Total impedance for kth cavity, ohms;

K =1, LASTCV
I0TABL(K) Io(xgk) Tables of Bessel functions I, and Iy,
ITTABL(K) I1(xg) starting with x; = 0 and with an incre-

ment of 0.03 in x; K = 1,5667
SCAP(IP1,IP2,IX,II) Tables of radial (SCAP) and axial (SCAX)
SCAX(IP1,IP2,IX,II) space charge forces for three-dimensional

region; IP1 = 1, NPSC + 1; IP2 = 1, NPSC + 1;
IX =1, NXISC +« 1; II = 1, NRINGS. Calcu-
“lated in SCAT3.

DESCRIPTION OF SUBROUTINES

In this section, the COMMON blocks, the main program, and each subroutine
are described. Flow charts are included for the more complex subroutines.

COMMON Blocks

The program has five COMMON blocks. COMMON/INDATA/ contains the input
data. COMMON/MREAL/ contains real and integer global variables. COMMON/MCOMP/
contains complex global variables. COMMON/PLOT/ contains arrays used for
plotting Applegate diagrams. COMMON/STATE/ contains arrays used for storing
initial states and final states. An initial state is a collection of vari-
ables whose values are those at the beginning of the first cavity in the tube
section under consideration. A final state is the same collection of vari-
ables but whose values are those at the end of the last cavity in the tube
section. The variables in this collection are those whose values must be known
in order to start the simulation of a tube section. It is necessary to store
these initial and final states because they may be used in later cases. For
example, in simulating the second tube section, we use the final state of the
first tube section as a startup.

Main Program

The main program reads the first 100 zeros of the Bessel function Jo-
Subroutines STDAT, INDAT, and SMSIG are then called. When the last integration
step has been done, the final state is stored in COMMON/STATE/. Depending on
the value of ISTATE, the final state may also be stored in a data set for
possible use in a future case. The main program calls XINT to integrate one
step and calls BTWNS to check on what action should be taken between steps.
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Subroutine ACC

Subroutine ACC is called by subroutine XINT. Subroutine ACC first checks
to see if a new space-charge calculation is required. A new calculation is
required if the last calculation was KSCF steps ago or if the current value of
t 1s at a boundary between two beam-diameter regions. If a new calculation
is required, then either subroutine SCFT1 or SCFT3 is called. Next, subroutine
ACC calculates the normalized axial and radial accelerations of each ring. In
the one-dimensional mode this calculation is done in the same way as in the
one-dimensional computer program (ref. 4). In the three-dimensional mode, the
accelerations result from the following forces: space-charge forces, rf
electric-field forces, voltage-jump forces, magnetic forces, centripetal forces,
and forces due to relativistic effects. The space-charge forces are calculated
by quadratic curve fits, and the other forces are obtained by a call to sub-
routine FACC3. Subroutine ACC also calculates THTPP(J,I) and RHOPP(J,I), the
second derivatives of the functions 613(5) and p1j(g). respectively.

Subroutine APPLE

Subroutine APPLE is called by the main program at the end of the simula-
tion. Subroutine APPLE manipulates plot data that has been stored in the
course of the simulation and calls the plotting device for plotting r - z
plots and, optionally, t - z plots.

Subroutine BTO0S

Subroutine BTOS is called by subroutine INDAT and by the main program.
When called by INDAT, subroutine BTOS stores in COMMON/STATE/ the collection
of variables making up the initial state. When called by the main program,
subroutine BTOS stores in COMMON/STATE/ the collection of variables making up
the final state.

Subroutine BTWNC

Subroutine BTWNC is called by subroutine BTWNS when the end of a cavity is
reached. Subroutine BTWNC determines whether another pass through the cavity
is required. A second pass is not required if elither of two conditions is met:
(1) a second pass has already been made, or (2) the induced forward voltage 1is
sufficiently close to the approximation of the induced forward voltage obtained
by assuming constant ring velocities throughout the cavity.

If a second pass 1s not required, the subroutine sets up for entrance into
the new cavity. If needed, new tables are calculated by calling the appro-
priate subroutines. Since a second pass through the new cavity may be needed,
1t is necessary to store the state at the beginning of the new cavity. Sub-
routine FSAPP is called to calculate DVTEMP, the approximation to the induced
forward voltage for the new cavity. The new forward voltage is then calcu-
lated by phase shifting and attenuating the old forward voltage and adding
DVTEMP. If the ol1d cavity was the last cavity in the one-dimensional region
and the new cavity is the first cavity in the three-dimensional region, sub-
routine TRN13 9s called.
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Subroutine BTWNS

Subroutine BTWNS is called by MAIN. Subroutine BTWNS determines what
action should be taken between integration steps. First, subroutine INTRC 1is
called to check on beam interception. Next, the subroutine determines whether
the end of a cavity has been reached. If so, subroutine BTWNC is called. If
the end of a magnetic section has been reached, subroutine TBL3M is called.
Finally, the subroutine determines whether subroutine PLOTS should be called.
Subroutine PLOTS is called only in the three-dimensional region.

Subroutine CAVP

Subroutine CAVP is called by subroutine INDAT. Subroutine CAVP calculates
quantities related to cavities and cavity strings. A cavity string is a string
of consecutive cavities all having the same electrical and geometrical proper-
ties. The number of cavities cannot exceed 70, and the number of cavity
strings cannot exceed 35.

Subroutine CKPDZ

Subroutine CKPDZ is calied by subroutine INDAT. Subroutine CKPDZ calcu-
lates KPDZC(K), the ratio of Pierce impedance to total impedance, for the kth
cavity. .

Subroutine CROOT

Subroutine CROOT is called by subroutine SMSIG. Subroutine CROOT calcu-
lates the roots of the quartic polynomial involved in calculating smail-signal
parameters. The subroutine first solves for the roots of the cubic polynomial
using the Newton-Raphson method. Using these roots as the first iterates, the
subroutine then uses the Newton-Raphson method to solve for the roots of the
quartic polynomial.

Subroutine DVSUM

Subroutine DVSUM is called by subroutine XINT. In the three-dimensional
region, DVSUM is also called by subroutine FSAPP. Subroutine DVSUM calculates
one term in the summation for the induced forward voltage, DELV, and one term
in the summation for the induced backward voltage, DELVR. These terms are
-added to the running sums for DELV and DELVR. The summations are those given
in equations (16) and (17).

Subroutine ENBAL

Subroutine ENBAL is called by subroutine BTWNC. Subroutine ENBAL calcu-
lates the power balance at the end of the cavity in question. There are six
terms in the power balance: PKE, PJUMP, PRF, PBW, PLC, and INTLS. PKE 1s the
kinetic power minus the initial kinetic power. PJUMP is the power due to all
voltage jumps up to the cavity in question. PRF 1s the power in the forward
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wave minus the power in the forward wave in the first cavity. PBW is the power
in the backward wave in the first cavity minus the power in the backward wave.
PLC 1s the sum of power losses up to the present cavity. INTLS is the power
loss due to beam interception. Power balance is equal to one plus the sum of
these six terms divided by the initial beam power. :

Subroutine FACC1

Subroutine FACC1 is called by subroutine ACC when the simulation is in
the one-dimensional mode. Subroutine FACC] calculates EXACC, the normalized
acceleration of a ring due to rf electric-field force and voltage-jump force.

Subroutine FACC3

Subroutine FACC3 is called by subroutine ACC when the simulation is in
the three-dimensional mode. Subroutine FACC3 calculates EXACC and EPACC, the
normalized axial and radial accelerations of a ring due to rf electric-field
force and voltage-jump force. The subroutine then calculates MXACC and MPACC,
the normalized axial and radial accelerations due to magnetic focusing force.
The normalized centripetal acceleration, CENTRP, 1s then calculated. Finally,
the subroutine calculates RXACC and RPACC, the normalized axial and radial
accelerations due to relativistic effects.

Subroutine FIELD

Subroutine FIELD is called by subroutine FACC3 when the simulation is in
the three-dimensional mode. Subroutine FIELD calculates EXRO, EXIO, EPRO,
EPIO, BXO, BPO, PSIO, EXDCV, and EPDCV. EXRO and EXIO are the real and
imaginary parts of the shaping factor for the axial electric field. EPRO and
EPIO are the real and imaginary parts of the shaping factor for the radial
electric field. BXO, BPO, and PSIO are the shaping factors for the axial
magnetic field, radial magnetic field, and magnetic flux field, respectively.
EXDCV and EPDCV are the shaping factors for the axial and radial voltage-jump
fields.

Subroutine FSAPP

Subroutine FSAPP 1s called by subroutine BTWNC. Subroutine FSAPP calcu-
lates an approximation, DVTEMP, to the induced forward voltage by assuming
the rings have constant axial and radial velocities in the cavity under
consideration.

Subroutine INDAT

Subroutine INDAT is called by the main program. The subroutine first
reads input data from a prestored data set. It then reads data entered at the
terminal in NAMELIST format. Only input data that differ from those in the
prestored data set need to be entered. The input data are stored in a data
set for possible future use. The subroutine then calculates constants and
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initializes variables. The initial state is obtained in one of three ways:
(1) if the input parameter ISTATE is 4, the initial state is read from a data
set; (2) 1f ISTATE is not 4 and INITCV (initial cavity) is 1, subroutine INIT
is called and the initial state is calculated from input data; (3) if ISTATE
is not 4 and INITCV is not 1, subroutine STOB is called and the inittal state
is obtained from COMMON/STATE/. There is storage allotment for three states
in COMMON/STATE/. MWhich of the three is chosen is determined by ISTATE (see
definition of ISTATE in the section on description of input data).

After the initlal state is obtained, it is stored in COMMON/STATE/ in the
first of the three storage allotments. This is done because the initial state
of the present case may be used as the initial state in the following case,
and thus it must be stored. The initial state is also stored in the third of
the three storage allotments if the input parameter ISAVE is an odd integer.
This is done because the initial state of the present case may also be required
as the initial state in some future case after the following case, and thus it
must be stored.

The input parameter ISAVE is the sum of I1, I2, and I3 (see definition of
ISAVE in the section on description of input data). If I2 is 2, the initial
state of the present case is stored in a specific data set for possible use in
a future case.

If INITCV 1s 1, subroutine INDAT calculates the forward voltage for the
first cavity. If INITCV is not 1, the forward voltage for the cavity previous
to cavity INITCV is required for startup. This voltage will be known either
from the previous case or by reading it from a data set. The backward voltages
are calculated next. Fipally, the induced backward voltages DELVR are stored
in the array DVTREM. This is done because in the equations of motion we must
use the induced backward voltages of the previous case. We cannot use the
DELVR array because this array changes during the simulation as the new induced
backward voltages are calculated. We therefore use the DVRTEM array in the
equations of motion.

Subroutine INIT

Subroutine INIT is called by subroutine INDAT and only when INITCV (ini-
tial cavity) is 1. Subroutine INIT calculates initial values for the collec-
tion of variables making up the initial state.

Subroutine INTRC

At the end of each integration step, subroutine BTWNS calls subroutine
INTRC to check for beam interception. The check is done for each ring. One
of four conditions may occur: (1) both the inner and the outer radius of the
ring are less than a, (2) the outer radius is greater than a and the inner
radius is less than a, (3) both the inner and the outer radius are greater
than a, (4) the ring has already been completely intercepted.

If condition (1) occurs, no action is taken. If condition (2) occurs,

the outer radius is redefined to be a, and the portion of the ring located
beyond r = a 1is assumed to be intercepted. The remaining partial ring, since
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its outer radius has been redefined, has a redefined value of centroid radius
given by

2 2
rin * rout
2

The mass and charge of the ring are reduced by the appropriate amounts. The
power lost due to the interception is calculated and added to the running
total. If condition (3) occurs, the ring is assumed to be completely inter-
cepted. Instead of setting the mass and charge of the ring to zero, it is
more convenient to set these quantities to negligible amounts and keep the
ring in the simulation. If condition (4) occurs, the outer radius of the
intercepted ring is set to a, and the inner radius is set to a quantity
slightly less than a.

Subroutine MAGCF

Subroutine MAGCF is called by subroutine TBL3M. In subroutine TBL3M, the
arrays BSUBZB, BSUBRB, and PSIB are calculated prior to calling subroutine
MAGCF. These arrays correspond to the magnetic quantities B;, Br, and ¢
evaluated at the grid points of the magentic section in question. The axial
grid points are equally spaced over the length of the magnetic section. If
each magnetic section does not coincide with a cavity, these axial grid points
will not coincide with the integration nodes. The program requires that the
axial grid points for the B,, Br, and ¢ tables coincide with the integra-
tion nodes. Subroutine MAGCF calculates these tables by performing linear
interpolations on the BSUBZB, BSUBRB, and PSIB arrays. The results are stored
in the BSUBZ, BSUBR, and PSI arrays.

Subroutine NBEAM

Subroutine NBEAM is called by subroutines BTWNC and SCFTi. When the
simulation 1s in the one-dimensional mode, subroutine NBEAM calculates the
number of the beam-diameter region in which XXX 1s located.

Subroutine OUTPT

Subroutine OUTPT is called by subroutine BTWNC. Subroutine OUTPT calcu-
lates and prints output data. Since the output data have already been de-
scribed in another section, we will not repeat the description here.

Subroutine PLOTS

Subroutine PLOTS is called by subroutine BTWNS at each grid point z for
which plotting information is to be stored. Two types of plots are used: r
as a function of z and t as a function of 2z, for each ring to be plotted.
The latter type of plot, which is similar to the Applegate diagram, is
optional. The values of z, r, and t for the rings in question are stored
in arrays for later usage by the plotting device.
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Subroutine SACC]

Subroutine SACC1 4s called by subroutine SCFT1 (one-dimensional mode
only). Subroutine SACC1 calculates the space-charge acceleration of one ring
due to another by linear interpolation on space-charge force tables. Although
we use the term space-charge force tables, these tables actually evaluate
accelerations rather than forces. If the two rings are in two different beam-
diameter regions, two 1inear interpolations are done and the average is taken.

Subroutine SACC3

Subroutine SACC3 is called by subroutine SCFT3 (three-dimensional mode
only). Subroutine SACC3 calculates the axial and radial space-charge accelera-
tion on one ring due to another by a three-dimensional linear interpolation on
space-charge force tables. Although we use the term space-charge force tables,
these tables actually evaluate accelerations rather than forces.

Subroutine SCATI

Subroutine SCAT1 is called by subroutine INDAT or subroutine INIT. For
each beam diameter IB and for the Ith separation distance X, subroutine
SCAT1 calculates the space-charge acceleration SCATMP(I,IB) of one disk due to
another for the one-dimensional mode. Using EQUIVALENCE statements, we put
SCA1, SCA2, and SCA3 into COMMON/MREAL/ instead of SCATMP. The arrays SCA1,
SCA2, and SCA3 make up the space-charge force tables for the one-dimensional
mode. In this subroutine, X 1is used as the separation distance between disks.
Since X 1s also used as a global variable (current value of E), it is
necessary to save the global variable in XSAVE. At the end of the subroutine,
the value of the global variable is returned to X. 1In addition, subroutine
SCAT1 calculates the ratio of the largest space-charge acceleration to the
smallest. The smallest space-charge acceleration occurs when the separation
distance is largest. Subroutine SCAT! also caiculates the ratio of the beam
wavelength to the maximum separation distance.

Subroutine SCAT3

Subroutine SCAT3 is called by subroutine INDAT or subroutine INIT. For
the three-dimensional mode, subroutine SCAT3 calculates and stores in a table
the axial and radial space-charge accelerations of one reference ring due to
one source ring. The table is three-dimensional since these accelerations are
functions of three variables: (1) ry, the centroid radius of the source ring;
(2) rp, the centroild radius of the reference ring; (3) z, the axial separation
between the rings. This subroutine first calculates the number of z grid
points and the spacing between .z grid points. There are two different grid
spacings for z (DELXSC(I), I =1, 2). Similarly the subroutine calculates
two different grid spacings for the r variables (DELPSC(I), I =1, 2). The
subroutine proceeds to calculate the space-charge accelerations for every grid
point. 1In addition, subroutine SCAT3 calculates the ratio of the largest
space-charge acceleration to the smallest. The smallest space-charge accelera-
tion occurs when the axial separation distance is largest. Subroutine SCAT3
g:s: calculates the ratio of the beam wavelength to the maximum separation

stance.
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Subroutine SCFT1

Subroutine SCFT1 is called by subroutine ACC whenever a new calculation of
space-charge accelerations in the one-dimensional mode is required. Subroutine
SCFT1 first calculates what the space-charge accelerations would be i1f the pre-.
sent curve fits are used. Then for each disk the subroutine calculates the
space-charge acceleration of the disk by summing the accelerations due to all
the other disks. The acceleration of one disk due to another is obtained by
1inear interpolation on the space-charge force tables. The coefficients of
the new quadratic curve fits are then calculated. Finally, the subroutine
determines whether the frequency of the space-charge calculation should be
changed. This is done by comparing the space-charge accelerations based on
the o1d curve fits with those just calculated. If the difference for any disk
is greater than the product of TOLSC and the maximum acceleration due to the
rf electric field in the cavity, the frequency of calculating space-charge
accelerations 1s doubled.

Subroutine SCFT3

Subroutine SCFT3 is called by subroutine ACC and in some cases by sub-
routines INIT and TRN13. Subroutine SCFT3 is called whenever a new calcula-
tion of space-charge accelerations in the three-dimensional mode is required.
This subroutine first calculates what the space-charge accelerations would be
1f the present curve fits are used. Then for each ring the subroutine calcu-
lates the space-charge acceleration of the ring by summing the accelerations
due to all the other rings. The acceleration of one ring due to another 1is
obtained by three-dimensional 1inear interpolation on the space-charge force
tables. The coefficients of the new quadratic curve fits are then calculated.
Finally, the subroutine determines whether the frequency of the space-charge
calculation should be changed. This is done by comparing the space-charge
accelerations based on the old curve fits with those Just calculated. 1If the
difference for any ring is greater than the product of TOLSC and the maximum
acceleration due to the rf electric field in the cavity, the frequency of cal-
culating space-charge accelerations is doubled.

Subroutine SMSIG
Subroutine SMSIG 1s called by the main program. Subroutine SMSIG calcu-
lates small-signal parameters as given in reference 7. This subroutine is
identical to the one in the one-dimensional program described in reference 1.
A detailed description of the subroutine is given in that reference.
Subroutine STDAT
Subroutine STDAT 1s called by the main program. Subroutine STDAT calcu-

lates standard data, that is, constants whose values are independent of input
data.
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Subroutine STO08

Subroutine STOB is called by subroutine INDAT'when the initial cavity
(INITCV) is not one and when the initial state is not read from a dataset.
Subroutine STOB obtains the initial state from COMMON/STATE/.

Subroutine TABL1

o Subroutine TABL] s ca]]ed in the one-dimensional mode by subroutine-:
BTWNC when a new cavity is entered and tables have to be computed for the new
cavity. If the new cavity has the same properties as the old cavity, sub-
routine TABL1 is not called. This subroutine is essentially the same as
subroutine TABLE in the one-dimensional program described in reference 4.

A detailed description of this subroutine is given in that reference.

Subroutine TBL3E

Subroutine TBL3E is called in the three-dimensional mode by subroutine
BTWNC when a new cavity is entered. Subroutine TBL3E computes tables for
electric-field shapes and voltage-jump shapes. Also computed are the tables
needed to calculate induced voltages. If the new cavity has the same proper-
ties as the old cavity, new tables are not required and subroutine TBL3E makes
a return to subroutine BTWNC.

Subroutine TBL3E calculates the following tables:

TPXR(J,n,1) Real and imaginary parts of the table ( (rj.z ) for the shaping
TPXI(j,n,1) factor of the axial electric field. See equat1on (62) for the
o definition of Qz(rj,zyp). :

, TPXR(j.n.3) ' Real and 1maginary parts of the table Qr(rj.z ) for the shaping
TPXI(J,n,3) . factor of the radial electric field. See equation (63) for the
o . definition of Or(rj Zn) . -

TPXR(j.n,Z) - Real and imaginary parts of the table S(r3,z;) used in calcu-
TPXI(j,n,2) lating induced voltages. See equation (12?) for the definition of

S(ry.zp).

TPXR(j,n,4) Table (r »Zp) for the shaping factor of the axial voltage-
Jump fie{ See equation (76) for the definition of Rz(rj,zn).

TPXR(j,n,5) Table R (rj,zn) for the shaping factor of the radial voltage-
Jump field.” See equation (77) for the definition of Rr(rj.zn).

Subroutine TBL3M

Subroutine TBL3M is used in the three-dimensional mode only. This sub-
routine 1s called by subroutine BTWNC when a new cavity is entered and is
called by subroutine BTWNS when a new magnetic section is entered. For single
period PPM focusing, a magnetic section is defined to be one-half of the
magnetic period. For double period PPM focusing, a magnetic section is de-
fined to be one-fourth of the magnetic period.

49



Subroutine TBL3M calculates the following tables:

BSUBZB(J,n)  Axial magnetic field B, at the grid point (rj,zn)
BSUBRB(J,n)  Radial magnetic field B, at the grid point (rj,zn)
PSIB(J,n) Magnetic flux field ¢ at the grid point (ry.zp)

The axial grid points are equally spaced over the length of the magnetic
section. If each magnetic section does not coincide with a cavity, these axial
grid points will not coincide with the integration nodes. Subroutine MAGCF is
called to obtain B,, By, and y at the integration nodes.

Subroutine TRN13

Subroutine TRN13 is called by subroutine BTWNC when the transition from
the one-dimensional mode to the three-dimensional mode is made. Subroutine
TRN13 recalulates all those variables whose values change as a result of this
transition. ‘

Subroutine XINT

subroutine XINT s called by the main program. Subroutine XINT integrates
the equations of motion over one step. The numerical integration method is
described in the section on the dynamics of beam rings. .

CONCLUDING REMARKS

The use of the coupled-cavity traveling wave tube for space communica-
tions had led to an increased interest in improving the efficiency of the
basic interaction process in these devices through velocity resynchronization
and other methods. In order to analyze these methods, we have recently
developed a flexible, three-dimensional, axially-symmetric, large-signal
computer program for use on the IBM 370 time-sharing system. The present
report is a users' manual for this program. The report describes the program
in sufficient detail to allow a user to make modifications in the program if
desired. '
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APPENDIX A

SYMBOLS

tunnel radius

inner dlameter of ring magnet

nth Fourier coefficient in expansion for magnetic field

magnitude of axial magnetic field at

radial component of magnetic field
axial component of magnetic field
initial beam radius

velocity of 1light

half-length of magnetic gap
modified Bessel function of order

S

r

a

and

4

middle of gap

fundamental Fourier component of the beam current density

Bessel function of order s
length of kth
axial thickness of a ring
half-length of kth gap
mass of a ring

number of cavities

cavity

number of disks per beam wavelength
number of nodes per cavity
magnetic period

table for calculation of rf electric field forces
table for calculation of rf electric field forces

charge of a ring
number of rings per disk

table for calculation of voltage-jump forces
table for calculation of voltage-jump forces
centroid radius of a ring at axial location

inner radius of a ring
outer radius of a ring

radial grid spacing for space charge tables

table for calculation of induced voltages

time of arrival of a ring at axial location

reciprocal of frequency
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initial beam velocity

beam voltage
th

gap voltage, k cavity

backward voltage, kth cavity

forward voltage, kth cavity
th

backward induced voltage, k cavity

forward induced voltage, kth cavity

interaction impedance for kth cavity

axial velocity of a ring
axial grid spacing for space charge tables

th cavity

integration step size in k

axial position, relative to beginning of first cavity, of nth node
in kth cavity

loss factor for backward voltage in k

loss factor for forward voltage in kth cavity

propagation factor, defined in equation (60)

phase shift of voltage for kth cavity

permittivity of free space

th cavity

normalized time of arrival of a ring at normalized axial location E
beam wavelength
shaping parameter for electric field

shaping factor for magnetic field

normalized axial position; independent variable for equations of
motion

normalized centroid radius of a ring at normalized axial location ¥

charge density of a ring at axial location z

angular velocity of a ring
magnetic flux
angular frequency

52



APPENDIX B
DERIVATION OF FOURIER COMPONENT OF BEAM CURRENT DENSITY

In a previous section, the fundamental Fourier component of the beam cur-
rent density was defined as

t
3),(r.2) = 1 ,//- J.(r,z,tye et g (B-1)
z T T Y4

We proceed to obtain an expression for J]Z(r,z) which is convenient for
computation. The following analysis is a simple generalization of the one-
dimensional analysis given in appendix B of reference 5. Let tT(z) be the

time of arrival at z of the 1th ring in the mth radiofrequency cycle.

We let m = 0 for the radiofrequency cycle considered in the program. To con-
form with previous notation, we will henceforth omit the 0 subscript when

referring to the cycle considered in the program; that is, t?(z) = t1(z).
Then for any integer m,

tT(z) = t,(2) - T (B-2)

In the following discussion we will use the rectangular function
g(x; xy,x2) defined as

g(x; x,%5) =1, X; S X <X,

(8-3)

g(x; X1.X2) = 0, X < X 0r x> x,

Now consider Jz(r,z,t) as a function of t for some fixed r and z
(see fig. 12). We can visualize this as an observer at (r,z), observing
rings as they pass by. At t = tT(z), the value of Jz(r,z.t) is

o3 (2)V3(D)9(ri Ty 4neTy o
ring, v1z(z) Is the axial velocity of th:h ring, and r1,1n and ri,out
are the inner and outer radius of the ring. Furthermore, Jz(r,z,t) has
this value for a time interval centered about tT(z), where the length of the

interval is ﬁd/v1z(z). We can express this partial contribution to
Jz(r.z,t) as

t)’ where 01(1) is the charge density of the 1th

1th

L L
. - —d _.m —d
2V Ty Ty out) 9| B 1) - Gy () 2viz(z{> (8-4)

The total contribution to J,(r,z,t) s obtained by summing over all rings
and cycles.
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Jz(rozot) = Z Z 01(2)\/12(2)9("'; r1,1n’r1,out)

121 M= -

4
Qa
-

ld )

. 4M m d
X g(t, t1(Z) - 2V1Z(Z)' t1(Z) + 2"12(1)) (B'S)

We the have for Jy,(r,z)
NdR ©
1
halred) =7 3 :E : 42V (29T Ty 4neTy out)
i =1

m= -

t
L L
ot . oM d m d
X / e g(t', ti(z) - -—2\,1 (2)" t1(z) + —2v1 (z))dt‘ (B-6)
t-T z z

By the periodicty of the motion, there will be NdR rings passing the posi-
tion z 1in the time interval from t-T to t. 1In general, the N4R rings
do not all come from the same rf cycle. Let 'my be the cycle number of the
jth ring. From equations (B-2) and (B-6), we obtain

N.R .
3 (r.z) =1 S (2, (2)G(F5 Fy o obe ) v///‘t‘z e 1ot gp (57
12478 =7 3 o2y, ()g(r; 1,407, 0ut’! -
1 =1 11
where tj; and tyo are given by
24
t1] = ti(z) - m1T - EV;;TET (B-8)
Y4
t12 = tj(Z) - m1T + EV;;(;T (B-9)

Evaluating the integral in equation (B-7) yields

N.,R o
d sin —d
: \2v, (@) o[ t,(2)-m,T]
Nre2) = 5 E : o (2)%9(F3 Ty 4neTy out) ot x e

1= 2¥4,(2)

(B-10)
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Since wmyT = 2amy, we have

NdR i m!d
1 2v1z(z) —1mt1(l)
(D) = 7 E : 3 (D249(F3 Ty 40074, out) ot x e
=1 2v4,(2)
(B-11)
The charge density o4(z) is given by
q,(2)
°1(z) = rz r2 . (B-12)
"\"1,0ut ~ "1,1n/%d

where q43(z) 1s the charge of the ith ring. Combining equations (B-11)
and
(B-12) ylelds

N,R ol
i s“‘( i )) ot (2)
l g(r; r1,1n’r1.0ut)q1(1) 2V12 z -iw 1 zZ) ..
hdred) = 7 z : 2 2 oty e (8-13)
v f,out ~ 1,1n> m
1 =1 iz
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~—Without integration over axial thickness
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—With integration over axial
// thickness of reference ring
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Figure 4 - Axial space-charge force on one innermost ring due to another
as afunction of normalized axial separation distance; Lyla=1/3

Comparison of R-tables mode] to Rz-tables mode] of space charge forces,
Consider 3 rings, all at same axial position, and all having their initial
dimensions. Beam radius = 0.7 x tube radius. Innermost ringlis ring
#1, etc, Compare radial space charge forces, Axial thickness is N 2A

Forceon  Dueto  R%tables  R-tables

ring # ring # mode! model

1 1 1L.171 1.184
1 2 -0. 321 -0. 330
1 3 012 -0.133

0.721 072
2 1 1.3465 1274
2 2 0. 504 0.544
2 3 =0.371 -0. 362

.48 1. 56
3 1 0.783 0.766
3 2 1.082 1.056
3 3 0.317 0. 01

2.242 2223

Figure 5. - Typical comparison of Rz-tahles mode! to R-tables model,




L Radial space charge force on reference ring of radius r due to
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Figure 6. - Radial space charge force on a reference ring, due to one source ring, as a function of the reference
ring's centroid radius.
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Figure 11. - Flow chart for computational procedure.
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Figure 12 - Current density Jx(r,z, 1) as a function of t for some fixed r and z.
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