
N $ 4 - 2 39 22

NASA Technical Memorandum 85766

ANALYTICAL RESULTS FOR POSTBUCKLING BEHAVIOR OF
PLATES IN COMPRESSION AND IN SHEAR

MANUEL STEIN

MARCH 1984

National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665



NASA Technical Memorandum 85766

ANALYTICAL RESULTS FOR POSTBUCKLING BEHAVIOR OF
PLATES IN COMPRESSION AND IN SHEAR

MANUEL STEIN

MARCH 1984

NASA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665



ANALYTICAL RESULTS FOR POSTBUCKLING BEHAVIOR
OF PLATES IN COMPRESSION AND IN SHEAR

Manuel Stein
NASA Langley Research Center

ABSTRACT

Results are obtained which determine the postbuckling behavior of long

rectangular isotropic and orthotropic plates. By assuming trigonometric functions

in one direction, the nonlinear partial differential equations of von Karman large

deflection plate theory are converted into nonlinear ordinary differential equations.

The ordinary differential equations are solved numerically using an available bound-

ary value problem solver which makes use of Newton's method. Results for longitu-

dinal compression show different postbuckling behavior between isotropic and

orthotropic plates. Results for shear show that change in inplane edge constraints

can cause large change in postbuckling stiffness.



INTRODUCTION

The rectangular plate supported at its edges is one of the basic elements in a

structure. The structural behavior of plates must be understood for a variety of

loadings and structural configurations. With the recent uses of laminated fila-

mentary composite plates in aircraft construction, technology is needed for

orthotropic plates as well as isotropic plates (including quasi-isotropic layups of

filamentary composite). Buckling loads for orthotropic and isotropic plates in

compression and in shear have been obtained, and they are reviewed in reference 1.

Although the level of loading that causes buckling is important, supported plates

may be able to carry considerable load beyond buckling. Also, various constraints

applied to a test specimen in the laboratory or to a plate that is part of a panel

in an actual structure may result in the same or nearly the same buckling behavior,

but quite different postbuckling behavior.

In reference 2 postbuckling behavior has been determined for specially ortho-

tropic long plates loaded in longitudinal compression. The edges are simply

supported or clamped. The edges are held straight with zero average transverse load,

but they can displace in the longitudinal direction locally so that the shear load

at the edge is zero. In reference 3 postbuckling behavior has been determined for

long isotropic and ±45° laminated plates loaded in longitudinal compression, in shear,

and in combined compression and shear. For the plates of reference 3 the edges are

simply supported and held straight with zero average transverse load, but the edges

cannot displace locally and the overall shear displacement at the edges is

prescribed.

The purpose of this paper is to present the method of analysis and postbuckling

results for long plates loaded in compression and in shear with constraints at the

edges of the plate that might be an upper limit to the constraints expected in

experiments and in actual structures. The constraint considered for both compression



and shear is the requirement that the edges remain straight and do not move toward

each other. Another constraint is considered for shear in which the edges are

required to remain straight and to move toward each other in the manner expected for

a plate attached to a rigid frame pinned at the corners. Results for plates with

these constraints are compared to results for which the average stress across the

width of the plate is zero. Both simply supported and clamped edges are treated.

An extension of the method of references 2 and 3 is used to obtain the results

in this paper. In this method, the equations of von Karman, which are nonlinear

partial differential equations, are converted into nonlinear ordinary differential

equations by assuming trigonometric functions in one direction. These equations are

then solved numerically using the method of reference 4 in a special purpose computer

program which is much more efficient than available general purpose computer programs

for similar calculations. The effects of change in buckle pattern are included in

the calculations.

ANALYSIS

Consider the analysis of a long orthotropic simply supported or clamped plate

loaded in compression and in shear with the long edges held straight and fixed so

that they cannot move toward each other. Also consider the same conditions for shear

loading except that the edges move toward each other In the manner expected for a

rigid frame pinned at the corners. Reference 3 has presented a method of analysis

and a solution technique for these problems when the long edges are free to move

toward each other. To study these problems with the analysis of reference 3 requires

the addition of two unknowns (and two equations) to the set of simultaneous equations

and changes in the boundary conditions. The derivation of reference 3 is presented

here including the changes required for application to the present problem.



A sketch of the buckled plate loaded in compression is shown below
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A sketch of the buckled plate loaded in shear is shown below
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The plates have a width b and a half wavelength X in the y and x directions,

respectively. For the compression loading displacements U 12. are applied at the
\* 11

ends. For the shear loading, shear displacements lJsn/2 are applied at the long

edges y = 0, b. The out of plate deflection w is zero at the nodes of the buckle

pattern (every half-wavelength) and is zero at the edges y = 0, b.

Displacements.- Nonlinear ordinary differential equations are derived based on a

trigonometric series approximation for the displacements. The terms in the trigon-

ometric series that are chosen are based on the exact terms required for prebuckling

and buckling and a few terms beyond as suggested by a perturbation method (see, for

example, ref. 5). The displacements chosen follow and are appropriate for com-

pression, for shear, and for a combination of compression and shear (see reference

3)- . .,_ 77
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The deflection w, which is exact at buckling, is sinusoidally periodic with half-

wavelength A. The displacements u and v are sinusoidally periodic with half-

wavelength A/2, and u has an extra, linear-in-x, term associated with the constant

urn which is specified. Specifying u identifies the applied longitudinal com-
\* M \f * I

pressive displacement. The applied shearing displacement u . is specified through

boundary conditions on uQ(y).

Derivation of differential equations.- The neutral surface strains and curva-

tures as given by von Karman are

By substitution from equation 1, the strains and curvatures are of the form

i + cxs(y sin



where
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Prime (') indicates derivative with respect to y. From the stress-strain relations

for an orthotropic plate, the stress and moment resultants are
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The form of the stress and moment resultants in terms of the trigonometric terms in

the x-direction with coefficients functions of y is similar to the form of the

strains.

The virtual work of the system is
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Substituting (2) into (5) and integrating over x results in
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Substituting (3) into (6) and integrating by parts leads to
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where, by definition, 7 '0
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Thus, the principle of virtual work requires satisfaction of the following dif-

ferential equations and choice of boundary conditions.

Qs' •'



- 2

( "»£•=•.<>
The boundary conditions assumed for the results presented in this paper are that

the edges are held straight and either simply supported or clamped. The edge at

y = 0 is displaced relative to the edge at y = b to give a specified (applied)

shearing displacement ush. This displacement may be applied through a rigid frame

pinned at the corners of the plate. However, this kind of frame also applies a

compressive displacement across the width equal to b - /b - u^h which is given,

to sufficient accuracy, by ush
2/(2b). The boundary condition that v is equal to

zero at the edges is considered for compression loading and it is also considered for

shear loading instead of the rigid frame condition.

These boundary conditions are expressed as follows:

Simply supported
or clamped at
y = 0,b w$ = WG = 0 and

Mys = Myc = ° or 3s = 3c = °

Straight edges at
y = 0,b us = uc = vs = vc = 0

Applied shearing
displacement at
y = o u0 = - ush/2,

y = b u0 = Gsh/2



In addition, for shear loading, there may be transverse compressive displacements,

due to a rigid frame, at

y - 0 VQ = - ufh/(4b)

y = b UQ = iish/(4b)

or, instead, for both compression and shear loading the edges are constrained so that

they do not move together or apart, at

y = 0, b VQ = 0

The system of first order ordinary differential equations to be solved for this

problem are presented in terms of the 20 unknowns

Equations (9), which were obtained from the virtual work, present eight of the system

of differential equations used. Equations (10), which follow, were obtained from

the stress-strain relations (4) using equations (2), (3), and (8); they present

eight more differential equations

10



Four differential equations result from the definitions (8)

w' -A

A
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The following additional relations are needed, they were also obtained from the

stress-strain relations (4) using equations (2), (3) and (8)

= CD,,- D,
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In summary, nonlinear ordinary differential equations have been derived from

basic relations, by using simplifying assumptions, to replace the nonlinear partial

differential equations of plate theory. The derivation employed the principle of

virtual work in conjunction with the assumption that the displacements are repre-

sented by the first few terms of a Fourier series. Solution of the ordinary dif-

ferential equations, subject to the boundary conditions which arise naturally in the

derivation, is obtained using the algorithm described in the next paragraph.

Solution technique.- An algorithm based on Newton's method has been developed

by Lentini and Pereyra in reference 4 to solve a system of simultaneous first order

nonlinear ordinary differential equations subject to two point boundary conditions.

The system of equations is of the form

7' = "F(x.y)

where y is the vector of dependent variables and x is the independent variable

defined in the interval (a,b). The boundary conditions of the problem are specified

by

<f (7(«). y») = o

This algorithm uses finite differences with deferred corrections, and adaptive mesh

spacings are automatically produced so that mild boundary layers are detected and

resolved.

Appl ications

This paper presents results for a long plate loaded in longitudinal compression

and in inplane shear beyond its buckling load. For given values of the applied

displacements u and u h and for prescribed values of the dimensions, material
L* 1 1 o 1 1

properties, and half -wavelength A, the system of equations may be solved and the

average compressive stress intensity and shear stress intensity may be determined,

where the average stress intensities are

12



The wavelength of interest is the one that corresponds to minimum energy, and the

solution of interest is on the equilibrium path that gives nonzero deflections.

Results are obtained for isotropic and ±45° laminated composite plates with a

balanced and symmetric layup. The isotropic results apply to isotropic metal or

composites with a quasi-isotropic layup. The ±45° laminate results apply to

graphite-epoxy filamentary material with properties given by the dimensionless

quantities

•

For the isotropic plate both of these quantities are unity, and for both the

isotropic and ±45° laminate

^«Ai_ - /
A, PtJ. "

These parameters are discussed in reference 2.

Results and Discussion

Characteristic load-displacement curves for the postbuckling behavior of long

isotropic plates loaded in longitudinal compression are plotted in figure 1. The long

edges are either simply supported or clamped and held straight with either the average

transverse stress intensity equal to zero or the displacement equal to zero normal

to the long edges. The average longitudinal compressive stress intensity coefficient

is plotted as a function of the applied compressive displacement coefficient. The

13



curves for zero average stress and zero displacement edge conditions cross for simply

supported and for clamped edges. The slope of these curves indicate that in the

postbuckling range plates with clamped edges are stiffer than plates with simply

supported edge and that plates with the zero displacement edge condition are stiffer

than corresponding plates with the zero average stress condition. The average

transverse stress intensity for the zero displacement edge condition is presented

in figure 2. This average stress is normalized with respect to the column buckling

stress of a wide plate and this normalized stress is plotted as a function of the

applied displacement normalized with respect to the longitudinal buckling displace-

ment. As the plate is compressed along the length, compressive stresses develop

across the width because the plate is not free to expand until the plate buckles

under combined loading. After buckling these compressive stresses across the width

are relieved and in the postbuckling range tensile stresses appear for the isotropic

plate.

Characteristic load-displacement curves for the postbuckling behavior of long

±45° laminated composite plates loaded in longitudinal compression are plotted in

figure 3, and curves for average transverse stress intensity for this plate are

plotted in figure 4. These results are calculated for the same boundary conditions

as for the isotropic plates. The trends in figure 3 are similar to those of figure 1

and the slopes of curves indicate that the isotropic plate is slightly stiffer than

the ±45° laminate.

The compressive stresses across the width increase after buckling at a slower

rate for the ±45° laminate as shown in figure 4 instead of dropping off and going

into tension as shown in figure 2 for the isotropic plate. The transverse tension

that builds up in the postbuckling range in the isotropic plate is due to a combina-

tion of shallow buckles and the zero transverse inplane deformation condition. For

the ±45° laminate the buckles are deeper, and, therefore, the tension does not build

up.

14



Characteristic load-displacement curves for the postbuckling behavior of lon«j

isotropic plates loaded in shear are plotted in figure 5. The long edges are eii.hr.-r

simply supported or clamped. The long edges are held straight and either (1) the

average transverse stress intensity is zero, (2) the long edges displace toward each

other as required by a rigid frame pinned at the corners, or (3) the transverse

inplane displacement is zero. The average shear stress intensity coefficient is

plotted as a function of the applied shear displacement coefficient. Depending on

the inplane conditions the curves branch at the values of the coefficient that

correspond to buckling loads for simply supported and clamped plates. The slopes of

these curves indicate that in the postbuckling range plates with clamped edges are

stiffer than plates with simply supported edges, and that plates with the zero

displacement edge condition are stiffer than with the rigid frame, and that both of

these are much stiffer than plates with average transverse stress equal to zero.

The average longitudinal stress intensity for long isotropic plates in shear is

presented in figure 6 and the average transverse stress intensity is presented in

figure 7. These stresses are normalized with respect to their buckling values, and

the normalized stresses are plotted as a function of the applied displacement

normalized with respect to the buckling displacement. Nearly independent of boundary

conditions the tensile longitudinal stress increases up to about 4 times its critical

value in the postbuckling range as shown in figure 6 as the shear displacement

increases to 7 times its critical value. The tensile transverse stress increases

up to about 17 times its critical value for the zero displacement-simply supported

edge conditions in the postbuckling range shown in figure 7. These results show that

for plates loaded in shear the longitudinal and transverse stresses can be very large

in the postbuckling range.

Curves for the postbuckling behavior of long ±45° laminated composite plates

loaded in shear are plotted in figures 8, 9, and 10. The slopes in figure 8 show

15



the same trends as shown for the isotropic plates in figure 5 except that they

indicate that the stiffness of the ±45° laminate is less than the isotropic plates

for all cases. The curves for longitudinal stress in figure 9 depend on boundary

conditions whereas for the isotropic plates they did not depend on boundary conditions

The longitudinal stress is lower for the ±45° laminate for the edge condition of zero

average transverse stress. The transverse stresses as given by figure 9 show similar

behavior to that given for the isotropic case. The magnitude of the stresses for

the ±45° laminate is higher for the transverse stresses and lower for the longitu-

dinal stresses as compared to the isotropic plate.

CONCLUDING REMARKS

This paper presents a method of analysis and postbuckling results for long

orthotropic plates loaded in longitudinal compression and in shear. Results are

presented for constraints on plates which are upper limits for the behavior of

experiments and actual structures. The long edges are constrained to be straight

and the inplane displacement normal to the edges is equal to zero for both longitu-

dinal compression and shear loadings. In addition, the long edges are considered

to move in (normal to the edges) as required by a rigid frame pinned at the corners

for shear loading. These results are compared to the case where the edges are

straight but the average transverse stress is zero. All cases are for both simply

supported and clamped edges and for both isotropic plates and a ±45° laminate.

Similar results are obtained for the postbuckling behavior of a plate loaded in

compression for the cases of zero displacement normal to the edge and zero average

transverse stress. For zero displacement normal to the edge, the transverse stress

goes from compression to tension for an isotropic plate; whereas, for a ±45° laminate,

the transverse stress increases in compression.

16



Similar results are obtained for the postbuckling behavior of a plate loaded

in shear with inplane conditions appropriate to displacements normal to the edges

caused by a rigid frame pinned at the corners or to zero displacement normal to the

edges. The shear stiffness of a plate is much larger for the zero displacement con-

dition than for the zero average transverse stress condition. The longitudinal

stress is in tension and is large for all conditions. For an isotropic plate the

average longitudinal stress normalized with respect to the critical longitudinal

stress has about the same value for all boundary conditions but is lower for the zero

average transverse stress condition for a ±45° laminate. The average transverse

stress is very large for the isotropic plate and the ±45° laminate for the zero

inplane displacement condition normal to the edges.

17
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