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ABSTRACT

Results are obtained which determine the postbuck]ing behavior of long
rectangu]ar isotropic and orthotropic plates. By assuming trigonometric functions
in one diréctibn, the non]inear partial differential equations of von Karman large
deflecfion plate theory are converted'into nonlinear ordinary differential equations.
Thehprdinaky différentia]'equations are solved numerically using an available bound-
ary valﬁevproblem so]vertwhich makes use of Newton's method. Results for longitu-
dinal éompression show different postbuckling behavior between isotropic and
orthotropic.plates. .Resu]ts for shear show that change in inplane edge constraints

can cause large change in postbuckling stiffness.



INTRODUCTION

The rectangular plate supported at its edges is one of the basic elements in a
structure. The structural behavior of plates must be understood for a variety of
loadings and structural configurations. With thé recent uses of laminated fila-
mentary composite plates in aircraft construction, technology is needed for
orthotropic plates as well as isotropic plates (including quési-isotropic layups of
filamentary composite). Buckling loads for orthotropic and isotropic plates in
compression and in shear have been obtained, and they are reviewed in reference 1.
Although the level of loading that causes buckling is important, supported plates
may be able to carry considerable load beyond buckling. Also, various constraints
applied to a test specimen in the laboratory or to a plate that is part of a panel
in an actual structure may result in the same or nearly the same buckling behavior,
but quite different postbuckling behavior.

In reference 2 postbuckling behavior has been determined for specially ortho-
tropic long plates loaded in longitudinal compression., The edges are simply
supported or clamped. The edges are held straight with zero average transverse load,
but they can displace in the longitudinal direction locally so that the shear load
at the edge is zero. In reference 3 postbuckling behavior has been determined for
long isotropic and +45° laminated plates loaded in longitudinal compression, in shear,
and in combined compression and shear. For the plates of reference 3 the edges are
simply supported and held straight with zero average transverse load, but the edges
cannot displace locally and the overall shear displacement at the edges is
prescribed.

The purpose of this paper is to present the method of analysis and postbuckling
results for long plates loaded in compression and in shear with constraints at the
edges of the plate that might be an upper limit to the constraints expected in

experiments and in actual structures. The constraint considered for both compression



and shear is the requirement that.thé edges remain straight and do not move tbward
each other. Another constraint is considered for shear in which the edges are
required to remain straight and to move towarq each other in the manner expected for
a plate attached to a rigid frame pinned at the corners. Results for plates with
these constraints are compared to results for which the average stress across the
width of the plate is zero. Both simply supported and clamped edges are treated.

An extension of the mefhod»of references 2 and 3 is used to obtain the results
in this paper. In this method, the equations of von Karman, which are nonlinear
partial differential equations, are converted into nonlinear ordinary differential
equations by assuming trigonometrié functions in one direction. These equations are
then solved numerically using the method of reference 4 in a special purpose computer
program which is much more efficient than available general purpose computer programs
for similar ca]cu]atfons. The effects 6f change in buckle pattern are included in

the calculations.

ANALYSIS ‘

Consider the analysis of a long orthotropic simply supportéd or clampéd plafe
loaded in compression and in shear with theiiong edges Hé]d straight and fixéd SO
that they cannot move toward each other. Also consider the same conditions for éhear
]oadihg except that the edges move toward each other in the manner'expected for a
rigid frame pinned at the corners, Reference 3 has presented a method of ana]yéis
and a solution technique for these problems when the long edges‘are free to move
toward each other, To'study these problems with the analysis of reference 3 requires
the addition of two unknowns (and two equations) to the set of simultaneous equations
and changes in the boundary conditions. The derivation of reference 3 is presented

here including the changes required for application to the present problem.



- A sketch of the bucE}ed plate loaded in compression is shown below
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A sketch of the buckied plate loaded in shear is shown below
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The plates have a width b and a half wavelength X in the y and x directions,

respectively. For the compression loading displacements Gcn/z are applied at the
~ends. For the shear loading, shear displacements ﬁsh/z are applied at the long
edges y = 0, b. The out of plate deflection w 1is zero at the nodes of the buckle
pattern (every half-wavelength) and is zero at the edges y = 0, b.

Displacements.- Nonlinear ordinary differential equations are derived based on a

trigonometric series approximation for the displacements. The terms in the trigon-
ometric series that are chosen are based on the exact terms required for prebuckling
and buckling and a few terms beyond as suggested by a perturbation method (see, for
eXamp]e, ref. 5). The displacements chosen follow and are appropriate for com-
pression, for shear, and for a combination of compression and shear (see reference

3). 2%

U= =Uen (£ -1+ Ugly) + Us(y)sinTE + ucly)cos X

V= VO(‘ﬂ + vs(y)sin%\“—"- + VC(V)COS%'-"

W= Wely! sinTX + wely) cos T
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The deflection w, which is exact at buckling, is sinusoidally periodic with half-
wavelength X. The displacements u and v are sinusoidally periodic with half-

wavelength A/2, and u has an extra, linear-in-x, term associated with the constant

acn which is specified. Specifying Gcn jdentifies the applied longitudinal com-

pressive displacement. The applied shearing displacement Gsh is specified through

boundary conditions on u,(y).

Derivation of differential equations.- The neutral surface strains and curva-

tures as given by von Karman are
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By substitution from equation 1, the strains and curvatures are of the form
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where
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Prime (') indicates derivative with respect to y. From the stress-strain relations
for an orthotropic plate, the stress and moment resultants are
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The form of the stress and moment resultants in terms of the trigonometric terms in

the x-direction with coefficients functions of y 1is similar to the form of the

strains,

The virtual work of the system is
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Substituting (2) into 55) and integrating over x results in
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Thus, the principle of virtual work requires satisfaction of the following dif-

ferential equations and choice of boundary conditions.
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The boundary conditions assumed for the results presented in this paper are that
the edges are held stréight'and either simbly supported or clamped. The edge at
y =0 is displaced relative to the edge at y-= b ‘to give a specified (applied)
shearing displacement ash' This displacement may be applied through a rigid frame
pinned at the corners of the plate. However, this kind of frame also applies a
compressive displacement across the width equal to b - /b2 - ﬁgh which is given,
to sufficient accuracy, by Gshzl(Zb). The boundary condition that v is equal to
zero at the edges is considered for compréssion loading and it is also considered for
shear loading instead of the rigid frame conditiqn.

These boundary conditions are expressed as follows:

Simply supported -

or clamped at
y =0,b ' w. =w_ =0 and

Straight edges at -
.y=0’b u. = U = v =y :0

Applied shearing
displacement at
y=20 N u

1
!

[ end
w
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In addition, for shear loading, there may be transverse compressive displacements,

due to a rigid frame, at

t

v = o2

G2,/ (4b)

o

y=>b ug,
or, instead, for both compression and shear loading the edges are constrained so that
they do not move together or apart, at
y=0,b Vg = 0
The system of first order ordinary differential equations to be solved for this

problem are presented in terms of the 20 unknbwns

Uy Us Ue Vo, Vs Vo Ws, e, Bs, B¢
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Equations (9), which were obtained from the virtual work, present eight of the system
of differential equations used. Equations (10), which follow, were obtained from

the stress-strain relations (4) using equﬁtions (2), (3), and (8); they present

eight more differential equations
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Four differential equations result from the definitions (8)
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The following additional relations are needed, they were also obtained from the

stress-strain relations (4) using equations (2), (3) and (8)
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In summary, nonlinear ordinary differential equations have been derived from
basic relations, by using simplifying assumptions, to replace the nonlinear partial
differential equations of plate theory. The derivation employed the principle of
virtual work in conjunction with the assumption fhat the displacements are repre-
sented by the first few terms of a Fourier series. Solution of the ordinary dif-
ferential equations, subject to the boundary conditions which arise naturally in the
derivation, is obtained using the algorithm described in the next paragraph.

Solution technique.- An algorithm based on Newton's method has been developed

by Lentini and Pereyra in reference 4 to solve a system of simultaneous first order
nonlinear ordinary differential equations subject to two point boundary conditions.

The system of equations is of the form

y' = F(x,¥)
where y is the vector of dependent variables and x is the independent variable
defined in the interval (a,b). The boundary conditions of the problem are specified

by
g (y(a), y(b)) =0

This algorithm uses finite differences with deferred corrections, and adaptive mesh
spacings are automatically produced so that mild boundary layers are detected and

resolved.

Applications
This paper presents results for a long plate loaded in longitudinal compression
and in inp]ané shear beyond its buckling ioad. For given values of the applied
displacements Gcn and ﬁsh and for prescribed values of the dimensions, material
properties, and half-wavelength A, the system of equations may be solved and the

average compressive stress intensity and shear stress intensity may be determined,

where the average stress intensities are

12



Nyar = L f" IA Ny dxdy = "-,-,’- L Nyody

22b'0 o
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The wavelength of interest is the one that corresponds to minimum energy, and the
solution of interest is on the equilibrium path that gives nonzero deflections.
Resu]ts are obtained for isotropic and‘t45° laminated composite plates with a
balanced and symmetric layup. The isotropic results apply to isotropic metal or
composites with a quasi-isotropic layup. The #45° laminate results apply to
graphite-epoxy filamentary material with properties given by the dimensionless

quantities

lz;z r_;TF%C -
\(_DHDN. =228
All Azz‘Ar;‘ZAuA{c - _43/

Z'A"(- VAR

For the isotropic plate both of these quantities are unity, and for both the

isotropic and +45° laminate

.fszl-iii. =
A le.

These parameters are discussed in reference 2.

Results and Discussion
Characteristic load-displacement curves for the postbuckling behavior of long
isbtropic plates loaded in longitudinal compression are plotted in ffgure'l. The long
edges are either simply supported or clamped and held straight with either the average
transverse stress intensity equal to zero or the displacement equa] to zero normal
to the long edges. The average longitudinal compressive stress infensity coefficient

js plotted as a function of the applied compressive displacement coefficient. The

13



curves for zero average stress and zero displacement edge conditions cross for simply
supported and for clamped edges. The slope of these curves indicate that in the
postbuckling range plates with clamped edges are‘stiffer than plates with simply
supported edge and that plates with the zero displacement edge condition are stiffer
than corresponding plates with the zero average stress condition. The average
transverse stress intensity for the zero displacement edge condition is presented

in figure 2. This average stress is normalized with respect to the column buckling
stress of a wide plate and this normalized stress is plotted as a function of the
applied displacement normalized with respect to the longitudinal buckling disp]aceQ
ment. As the plate is compressed along the length, compressive stresses develop
across the width because the plate is not free to expand until the plate buckles
under combined lToading. After buckling these compressive stresses across the width
are relieved and in the postbuckling range tensile stresses appear for the isotropic
plate.

Characteristic load-displacement curves for the postbuckling behavior of long
+45° Taminated composite plates loaded in longitudinal compression are plotted in
figure 3, and curves for average transverse stress intensity for this plate are
plotted in figure 4. These results are calculated for the same boundary conditions
as for the isotropic plates. The trends in figure 3 are similar to those of figure 1
and the slopes of curves indicate that the isotropic plate is slightly stiffer than
the +45° laminate.

The compressive stresses across the width increase after buckling at a slower
rate for the +45° laminate as shown in figure 4 instead of dropping off and going
into tension as shown in figure 2 for the isotropic plate. The transverse tension
that builds up in the postbuckling range in the isotropic plate is due to a combina-
tion of shallow buckles and the zero transverse inplane deformation condition. For

the +45° laminate the buckles are deeper, and, therefore, the tension does not build

up.
14



Characteristic load-displacement curves for the postbuckling behavior of fung
jsotropic plates loaded in shear are plotted in figure 5. The long edges are either
simply supported or clamped. The long edges are held straight and either (1) the
average transverse stress intensity is zero, (2) the long edges displace toward each
other as required by a rigid frame pinned at the corners, or (3) the transverse
inplane displacement is zero. The average shear stress intensity coefficient is '
plotted as a function of the applied shear'disp1acement coefficient. Depending on
the inplane conditions the curves branch at the values of the coefficient that
correspond to buckling loads for simply supported and clamped plates. The slopes of
these curves indicate that in the postbuckling range plates with clamped edges are
stiffer than plates with simply supported edges, and that plates with the zero
displacement edge condition are stiffer than with the rigid frame, and that both of
these are much stiffer than plates with average transverse stress equal to zero.

The average longitudinal stress intensity for long isotropic plétes in shear is
presented in figure 6 and the average transverse stress intensity is presented in
figure 7. These stresses are normalized with respect to their buckling values, and
the normalized stresses are plotted as a function of the applied displacement
nOrmalized with respect to the buck]ing displacement. Nearly independent of boundary
conditions the tensile longitudinal stress increases up to about 4 times its critical
value in the pqstbuck]ing range as shown in figure 6 as the shear displacement
incfeases to 7 times its critical value. The tensile transverse stress increases
up to about 17 times its critical value for the zero displacement-simply supported
edge conditions in the postbuckling range shown in figure 7. These results show that
for p]ates loaded in shear the longitudinal and transverse stresses can be very large
in the postbuckling range.

Curves for the postbuckling behavior of long *+45° laminated composite plates

loaded in shear are plotted in figures 8, 9, and 10. The slopes in figure 8 show

15



the same trends as shown for the isotropic plates in figure 5 except that they
indicate that the stiffness of the +45° laminate is less than the isotropic plates
for all cases. The curves for longitudinal stress in figure 9 depend on boundary
conditions whereas for the isotropic plates they aid not depend on boundary conditions.
The Tongitudinal stress is lower for the #45° laminate for the edge condition of zero
average transverse stress. The transverse stresses as given by figure 9 show similar
behavior to that given for the isotropic case. The magnitude of the stresses for
the *45° laminate is higher for the transverse stresses and lower for the longitu-

dinal stresses as compared to the isotropic plate.

CONCLUDING REMARKS
This paper presents a method of analysis and postbuckling results for Tong
orthotropic plates loaded in Tongitudinal compression and in ;hear. Results are
presented for constraints on plates which are upper limits for the behavior of
experiments and actual structures. The long edges are constrained to be straight
~and the inplane displacement normal to the edges is equal to zero for both longitu-

dinal compression and shear loadings. In addition, the long edges are considered

to move in (normal to the edges) as required by a rigid frame pinned at the corners
for shear loading. These results are compared to the case where the edges are
straight but the average transverse stress is zero. All cases are for both simply
supported and clamped edges and for both isotropic plates and a *45° laminate. |
Similar results are obtained for the poétbuck]ing behavior of a plate ]oaded in
compression for the cases of zero displacement normal to the edge and zero average
transverse stress. For zero displacement normal to the edge, the transverse stress
goes from compression to tension for an isotropic plate; whereas, for a x45° laminate,

the transverse stress increases in compression.

16



Similar results are obtained for the postbuckling behavior of a plate loaded
in shear with inplane conditions appropriate to displacements normal to the edges
caused by a rigid frame pinned at the corners or to zero displacement normal to the
edges. The shear stiffness of a plate is much larger for the zero displacement con-
dition than for the zero average transverse stress condition. The longitudinal
stress is in tension and is large for all conditions. For an isotropic plate the
average longitudinal stress normalized with respect to the critical longitudinal
stress has about the same value for all boundary conditions but is lower for the zero
average transverse stress condition for a #45° laminate. The average transverse
stress is very large for the isotropic plate and the #45° laminate for the zero

inplane displacement condition normal to the edges.

17
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