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Abstract

An analytical model for investigating vibra-
tion and flutter of mistuned bladed disk assemblies
is presented. This model accounts for elastic,
inertial and aerodynamic coupling between bending
and torsional motions of each individual blade,
elastic and inertial couplings between the blades
and the disk, and aerodynamic coupling among the
blades. The disk is modeled as a circular plate
with constant thickness and each blade is repre-
sented by a twisted, slender, straight, nonuniform,
elastic beam with a symmetric cross section. The
elastic axis, inertia axis, and the tension axis
are taken to be noncoincident and the structural
warping of•the section is explicitly considered.
The blade aerodynamic loading in the subsonic and
supersonic flow regimes is obtained from two-
dimensional unsteady, cascade theories. All the
possible standing wave modes of the disk and
traveling wave modes 6'f the blades are included.
The equations of motion are derived by using the
energy method in conjunction with the assumed mode
shapes for the disk and the blades. Continuities
of displacement and slope at the blade-disk junc-
tion are maintained. The equations are solved to
investigate the effects of blade-disk coupling and
blade frequency mistuning on vibration and flutter.
Results show that the flexibility of practical
disks such as those used for current generation
turbo.fans does-not have a significant influence on •
either the tuned or mistuned flutter characteris-
tics. However, the disk flexibility may have a
strong influence on some of the system frequencies
and on forced response.

Nomenclature

[A]

.b,

c
D

Ed'Em

[E],[ED]

torsional mode shape

(j = 1, 2, ...)
aerodynamic matrix

elastic axis location

speed of sound

blade section constants

semichord and reference semichord
warping coefficients

blade chord
flexural rigidity'of the disk

Young's modulus of disk and blade

materials . . •

transformation matrices

e

F'1'2

9sj,'hsj

Mr'Meff

mass and elastic axis offset

• quantities defined in Eq.(13)

function defined in Eqs. (9)
shear modulus of elasticity of

blade material

complex amplitudes of generalized

coordinates out of and in the
plane of rotation of the r

interblade phase angle mode . .

complex amplitudes of generalized

coordinates out of and in the
plane of rotation of the s

blade

blade bending moment of inertia

about the centroidal major and
minor axes
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torsional constant

reduced frequency, w b/V ,, =

Uob/Meffao
quantities defined in Eq. (13)

polar mass radius of gyration
about elastic axis

mass radii of gyration about x

and z axes

polar radius of gyration about

elastic axis
blade length, (Ry - RH)

lift per unit blade span

lift coefficients due to plunging

and pitching motions in the r

cascade mode

moment coefficients due to

plunging and pitching motions

iri the r cascade mode

coefficients defined in Eq. (17)

aerodynamic moment per unit blade

span

relative and effective Mach

numbers



Mg'Mh'Ma

[M]

m

N,NO

[P]
pj
[Q]

RH'RT

T'Td«Tt

u,ud,ut

UF
u,v,w

V"d
udacO'udacN/2

U. .u".dacn dasn
udar'"dar

'eff

{ X s > , { X }

sj

number of modes retained, in

bending motions put of and in
the plane of. rotation and in
torsion

inertia matrix
mass per unit blade length
number of blades in cascade and .

number of. nodal diameters of
the disk

integer specifying disk nodal
diameter (=1, 2, , ND)

stiffness matrix of the system
quantity defined in Eq. (11)
matrix defined in Eq. (29)
mode shape function of the disk

disk and' blade radii
radial coordinate and also

integer specifying cascade mode
(= 0, 1, 2, ..., N-l)

integer specifying blade
(= 0, 1, 2, .... N-l)

:kinetic energy of blade, disk and

system
time, thickness of blade and disk
strain energy of blade, disk and

system
blade foreshortening

deformations of elastic axis
disk deflection, TL = u./Rud d H

amplitude of disk deflection in
zero, N/2, and nth nodal
diameter cosine and sine modes

amplitude of disk deflection in
the r traveling mode of the

disk, u"dar =
axial velocity

Jdar/RH

effective velocity,"

cos [90 - 5 - tan"
:bending-mode shape, j

Va/or-]

= 1, 2,

column matrices
column matrices .

twisting deformation positive

about the (-y) axis

complex amplitude of generalized

coordinate in torsion of the

sth blade (j = 1,2,...)

r
6W

V

5

Vpd'pa

T

a

s

th

complex amplitude of generalized

coordinate in torsion of the
r interblade phase angle
mode of tuned cascade

interblade phase angle in the r

mode
nondimensional eigenvalue, (w/u )

virtual work by aerodynamic
loading

strain components, Eq. (20)

blade and disk coordinates, .

n = r - R^J, nd = r, Tf = n/L,

"d = nd/RH
warping function
real part of. eigenvalue . :
Poisson's ratio of blade and disk

materials :
imaginary part of eigenvalue "
pretwist angle • . ' •
densities of blade and. disk . '.

materials and air
stress components, Eq.' (20)

nondimensional time, w t
rotational speed '.

frequency and reference frequency
angular coordinate of disk and'of
the sth blade.

Introduction

Vibration, aeroelastic stability and response
of bladed-disk assemblies employed in modern air-
craft turbofan engines have been among the most
difficult analysis problems encountered. The
blades are thin, and can have a considerable amount
of built-in pretwist. As a consequence of pretwist
and rotation, the blade natural modes involve coup—
ling between the in-plane (the plane of rotation)
and out-of-plane bending and the torsional motions.
Another consequence o_f .rotation is.that the blades..
experience steady-state equilibrium loads which in
turn require either an explicit or implicit con-
sideration of geometric nonlinear theory of elas-
ticity to adequately model the blade behavior.

Additionally, the individual blades are struc-
turally coupled through the disk and often through
a variety of other connecting parts such as
shrouds, dampers, and lacing wires. These problems
are further compounded by the presence of small
differences between the individual blades, known
as structural mistuning.



Unlike the case of a fixed-wing, the flow Mach
number varies along the blade span and involves
unsteady subsonic, transonic, and supersonic flow
regimes. The flow field is three-dimensional and
also involves aerodynamic interference between
adjacent blades within a stage as well as from
upstream and downstream stators and rotors.
Furthermore, there may be small differences in the
flow between the individual blades, known as aero-
dynamic mistuning.

Because of the complexities mentioned above,
the research work in the subject area has been
proceeding with simple but progressively refined
mathematical models. Vibration of the bladed-disk
assemblies with structural coupling have been
studied in many publications, for example Refs. 1
to 4. Flutter and response using single degree-of-
freedom blade models without structural coupling
between blades, including mistuning, are addressed
in Refs. 5 to 8. Refs. 9 to 14 have considered
flutter of tuned assemblies with rigid disks. A
finite element formulation was presented in Ref.
15 to study flutter of bladed-disk systems.
Refs. 16 and 17 investigated the effects of mis-
tuning on cascade flutter and response in incom-
pressible, subsonic and supersonic flow regimes
with a rigid disk and a typical section model in
which each blade has two degrees-of-freedom, one
bending and one torsion. Effects of blade mis-
tuning on flutter were also investigated in Refs.
18 to 19. Furthermore, the single degree-of-
freedom typical section model used in Ref. 5 was
modified in Ref. 20 to include disk flexibility
and a sub- sonic aerodynamic theory was used to
investigate flutter. The two degree-of-freedom
typical sec- tion model used in Refs. 16 and 17
was refined in Ref. 21 to include disk flexibility
and to study flutter and response.

.The typical section model used in Refs. 16,
17 and 21 was found to be adequate to elicit phys-
ical understanding of mistuning effects. Paramet-
ric studies indicated that structural mistuning
has the potential to significantly raise the flut-
ter speed of an advanced turbofan. This potential
may be utilized to eliminate the shrouds which
have an adverse effect on aerodynamic performance.
To obtain more accurate flutter boundaries, includ-
ing the effects of mistuning, the typical section
model was replaced by a beam model with a rigid
disk in Ref. 22. The beam model was further ex-
tended in Ref. 23 to include blade sweep in order
to investigate the possibility of classical flutter
in advanced turboprops.

A logical extension to the present state of
the literature is to refine the structural model
used in Ref. 22 to include disk flexibility by
treating the disk as a circular plate. The purpose
of the research in the present paper is to combine
such a structural model for the disk with a beam
'model for each blade in order to study the effects
of coupling between disk and blade modes and of
blade frequency mistuning on vibration and flutter..

The beam model used in Ref. 22 is similar to the
one used in Ref. 24, but there the effect of warp-
ing was only partially considered in an implicit
manner. In Ref. 25, the present authors found
that the partial inclusion of warping in calculat-
ing uncoupled torsional frequencies and mode shapes
of twisted rotating turbofan blades is not adequate
and, hence, they modified the model to include all

the warping effects. This modified beam model will
be used herein. 'The unsteady, two-dimensional,
cascade, aerodynamic loads are calculated by
Smith's theory*'6' in subsonic flow and Adamczyk
and Goldstein's theory^2 ' in supersonic flow
with subsonic leading edge.'

The equations of motion are derived by using
an energy method in conjunction with assumed mode
shapes for the disk and for each blade. Continuity
of displacements and slopes at the blade-disk junc-
tion is maintained. The resulting equations are'
cast in the form of a standard complex eigenvalue,
problem from which the vibration and aeroelastic
stability characteristics are determined. A com-
puter program is developed to form and to solve
the complex eigenvalue program. In order to have
checks at least for some special cases, the
equations and the computer program developed in
Ref. 22 form special cases of the present ones.

This paper presents an analytical model, the
development of the equations of motion and computer
program, and some selected results for an advanced
fan stage.

The motion of a bladed-disk assembly with or
without mistuning can be expressed in terms of
either a standing or traveling wave form. Since
the stability is independent of the wave represen-
tation, consideration of either of the representa-
tions is adequate to describe the motion. In most
of the published literature^5'16'21'22' dealing
with blade flutter of turbomachines, the travel-ing
wave modes (-also called interblade phase angle
modes) are preferred because the unsteady aero-
dynamic loads are expressed in these modes. This
is in contrast to the conventional flutter analysis
of nonrotating wings and vibration of disks in
which the standing wave modes are used. However,
the present formulation uses both types of modes
because the development includes both the blade
and the disk flexibility and also is based on the
development' in Ref. 22. Hence, it will be neces-
sary to understand both the traveling and standing
wave mode representations and the relation between
them.

To understand the traveling wave modes, con-
sider the vibratory bending motion of each blade
of an N-bladed rotor with.a rigid disk; For illus-
tration purposes, consider only one bending mode
for each blade. Then the cascade has N degrees- of
freedom. The motion of the system can be expressed"
in terms of traveling wave modes each of which is .
characterized by the phase angle Br between
the adjacent blades. The angle is commonly called
the interblade phase angle. The phase angle is
restricted to N discrete values, Br = 2nr/N where'
the wave number index r = 0, 1, 2, ... (N-l). In
each of these modes, all blades move with the same
amplitude and every adjacent pair moves with the
same interblade phase angle.

To understand the standing wave modes and the
relation between the traveling and standing wave
modes, consider the disk bending deflection perpen-
dicular to the plane of the disk in the traveling
wave form as



N-l
ud = -

R<" udare (1)
r=0

Theoretically, the wave numbers for an elastic disk
can have values up to infinity. However, if. N
blades are attached to the disk and if the number
of traveling wave modes are restricted to N, then
the wave number index is also limited to (N-l).
Thus, the disk with the N attached blades can be
characterized by N traveling wave modes. Assum-
ing simple harmonic motion, the real part of
Eq. (1), can be rearranged to give the disk deflec-
tion in the standing wave form as

+ udacN/2 cos 1

<udacn cos n *

Motion of a Tuned Bladed-Disk System

Following common practice in the literature,
the disk motion is expressed in standing wave modes
and the blade motion is expressed, as in Ref. 22,
in traveling wave modes. For the disk, using a
single quadratic deflection shape along the radius
for all the possible nodal diameter modes, the
expression for the motion is given by Eq. (2) with

R(nd) = (3)

For the blades, assume the number of modes retained
in the plane of rotation, in the plane perpendicu-
lar to the plane of rotation, and in torsion are
Mh. Mg, and Ma, respectively. Then, the
motion of the sth blade can be represented as

w = w/bR =

0=1

udasn sin n (2)

where ND = (N-l)/2 for odd N and ND = (N-2)/2
for even N, and n is the nodal diameter index.
Thus, the disk with the N attached blades can be
characterized by 0,1,2,... ND and N/2 nodal
diameters. The N/2 nodal diameter (second term in
the square bracket of Eq. (2)) is present only for
even N. Comparing Eqs. (1) and (2), it is clear
that the traveling wave mode with the zero inter-

blade phase angle, corresponds to the zero

nodal diameter mode, u£|acQ> that the traveling wave

mode (with the interblade phase angle = ")>' %aN/2'
corresponds to the N/2 nodal diameter mode, and the

traveling wave modes u^ar an(* ^da(N-r) combine to

form two standing wave modes, IL and ". •

Thus, either a traveling or a standing wave mode
approach can be used to describe the motion of a
disk and the same is true of the blade or of the
bladed-disk system (see also the discussion in
Refs. 14, 16, 22 and 28). The above relationship
will be used in deriving the blade aerodynamic
loads due to the disk motion.

Coordinate Systems

Coordinate systems employed in deriving the
equations of motion of the sth blade are shown in
Figs. 1 and 2. The axis system Xo, Yn, Zn
rotates with a constant angular velocity n about
the Xjj-axis. The Yjj-axis coincides with the
undeformed elastic axis of the blade. The prin-
cipal axis, x, of the blade cross section at any
point on the elastic axis is inclined to the
Xn-axis by an angle c, as shown in Fig. 2. The
disk elastic deformation, uj, and the blade defor-
mations, u, v, w, and a, translate and rotate the
xyz system to the xayszs system.

(4)

u/bR =

+ f.

* = s
(5)

341

n d = l

s
(6)



In Eqs. (4) to (6), the complex constants h ., g .,
-> J o J

and a • which are commonly used in fixed wing and
rotary wing aeroelasticity are expressed in terms

and °arj andof the new constants, h ., g,.,
drj or j

interblade phase angle since the aerodynamic loads
are expressed in terms of the new constants. The
total number of degrees of freedom for the bladed
disk system is N times (1 + Mh + M,, + .M ). Then g a
function fc(n) in Eq. (5) is determined by enforc-
ing the continuity of displacement and slope at the
blade-disk junction point

n=0

au RH au

3 IT,

(7)

(8)

nd=l

These two conditions are satisfied if

f (n) =r^ (1 + 2ns-)
- R R. (9)

In Eqs. (4) and (5), the standard nonrotating
orthogonal normal modes in bending for a beam with
fixed-free boundary conditions are given by

W.(n)
J

'cosh (p.TT) - cos (p,n)
J J

(cos p. + cosh p.)
(sin p + sinh p ) tsinh(Pjn) - sin(Pjn)] (10)

vJ J •

where p. is calculated from
J >

cos p. cosh 'p. + 1 = 0
J J (ID

In Eq. (6) the orthogonal nonrotating modes in
torsion for a uniform twisted beam with fixed-free
boundary conditions are obtained from Ref. 25 and
are

,̂-(n) = [(sinh k, n - T— sin k0r>)J L *2 t

sinh k. + k,kp sin

cosh + k cos
(cosh k^n - cos kgn)]

(12)

where

-|l/2

1/2 1/2

p . 4 9

F2 = 12 ̂ij- < R̂ (13)
01 m

The nonrotating frequency, u>^ for each mode is
obtained from

2F COS k2 cosh kl

sin k2 sin hkl = (14)

In calculating the mode shapes and frequencies,
average values of^ctual blade shape are used for
L/C, c/tm and 5 in Eq. (13).

Motion of Mistuned Bladed-Disk System

In the present formulation we consider mis-
tuning only due to nonidentical structural proper-
ties of the blades, since the disk thickness is
assumed to be uniform. Because of the mistuning
there will be coupling between various traveling
wave modes or equivalently between the various
standing wave modes. However,- the general motion
of an arbitrarily mistuned. system can be expressed
as a linear combination of the motions in either
traveling or standing wave modes. The disk motion
in Eq. (2) is already expressed in terms of the
possible nodal diameter modes. The motion of the
sth blade is obtained by simply superposing the
blade deflections (in Eqs. (4) to (6)) in the rth
traveling mode from r = 0 to r = N-l.

Aerodynamic Model '.

For a rigid disk, the motion dependent aero-
dynamic lift and moment per unit blade span are
expressed in Ref. 22 in terms of four coefficients
*hhr> *har> *ahr> and *aar and blade motions
which are written in a traveling form. These co-
efficients were calculated by using Smith's theory
in subsonic flow and Adamczyk and Goldstein's
theory in supersonic flow with a subsonic leading
edge. At any radial station, the relative Mach
number is a function of in-flow conditions and the
rotor speed. Most current fan designs have super-
sonic flow at the blade tip and subsonic flow at
the blade root. Consequently, some region of the
blade encounters transonic flow. Since the above
theories are not valid in the transonic region,
the subsonic theory with Mpff = 0.9 for stations
in the range 0.9 <_ M..̂  < I and the supersonic
theory with Me*f = I.I for stations in the range
1.0 £ Meff £ 1.1 were used.

For a flexible disk, the lift and moment ex-
pressions can be divided conveniently into two
parts: one due to blade motion and the other due
•to disk motion. The first part directly flows



from Ref. 22. The second part can be obtained in
two steps. First, express the lift and moment due
to disk motion in the traveling wave form repre-
sented by Eq. (1) in terms of the four coeffi-
cients, mentioned earlier. Second, by taking the
real part of the resulting expressions, by re-
arranging terms, and by assuming simple harmonic
motion, derive the expressions for lift and moment
per unit span due to disk motion represented by
Eqs. (2) and (3) (see also refs. 14 and 28). Com-
bining these two parts, the lift and moment expres-
sions per unit span of the sth blade can be derived
and are

La = -
u3 2

N-l

£
r=0

Sin

•hhr

3arj

A
cos c Wj(n)Harj

j-l

'arj

+ fc(n) sin c l-g-rl- |tuun uhhO Udac0

N cos 7 *s udac N
7 7

E /
Thhln udacn

n=l

+ 1hh2n udasnj cos n\|i

N

udacn

^ n (*haln udasn

n=l L

udasn sin n*s

0

. (1)
1 T

udacn) cos

'a = 'pauRu

N-l

r=0

; 1
£

+ fc(n) sine - |iahouahodac0

cos " *s "dacN

«hln Udacn
n=l

+ B'oh2n udasnj cosn

udacn + lahln'udasn) sin r

raaln udasn ~ 4oa2n udacn).

1— -T

. "o

cos rh)>

-I t o u. + i i u. \ s i nI aa<in dasn oaln aacnl
(16)

where

lhhln ~ 7 Khn + 1hh(N-n)J

"•hh2n lhh(N-n)>] (17)

dasn udacn' sin n*

1 T

(15) c<2n = ~ 7 Kan + laa(N-n)|

The coefficients lhhr, th r, i hr, and ia(>r
are calculated for each value of r for specified
values of Mach number, reduced frequency, s/c, £,
and a. Then, the corresponding coefficients
*hhln, ihh2n>---> *act2n for each value of the
nodal diameter index n are obtained from
Eq. (17). Note that the subscripts r and n
represent the interblade phase angle and nodal
diameter number, respectively.



Structural Model

The bladed-disk system is idealized as a uni-
form circular disk with constant thickness to which
the blades are rigidly attached. Only the disk out
of plane bending motion is considered. The blade
model is the same as that used in Ref. 22 except
for the fact that the warping of the blade cross
sections is explicitly considered herein. Conti-
nuity and slope at the blade-disk junction is en-
forced as described in the previous section.

Equations of Motion

The strain energy expression for a circular
disk29 is

and are

R.T

r = -rabr J

ud =
0 0

-2 (1-

+ 2

u 3u

32u<<[!!V+i "Si

r dr (18)

where

(19)

The stress components or and a^ are obtained
by solving the following equations

1 -

1 - v'

3U

r=0

r-'
_ N I ' . ' IT n r dr (-20)

rdr

I /

^ J

n

pdRH

3Uj

(21)

The strain energy of the stn blade follows from
Ref. 22 and is

RT . •-
i / I" u<- «2 p «2 p

U=? J Em [Cla '* Txx (u"s1n« + w cos

RH

+ 2 u w sin 5 cos 5) + Izz(u cos 5 + w sin

,2 ,2
- 2 u w sin 5 cos 5) + B,a c

- 2 t̂ a. (u sin 5 + w cos 5)

+ 2 B ' (u cos u - w sin.j;) a 5 I-': GJa ] dr
(22)

The explicit consideration of warping introduces
two additional coefficients GI and Cg and
modifies the expression for J:

' 'C, dx dz •.-..

=//x z dx dz

, . 2 , 2
-Iv) + (x + ̂ -) ] dx dz

(23)

The other coefficients in Eq. (22) are defined in
Ref. 22.

The kinetic energy of the disk is

2r i= \ J J 'dwlr dr d* (24)

0 0

The kinetic energy of the s*n blade also .follows
from Ref. 22 and is. • !



/
T = ^ / m {(fl2 + w2 + k2<i2 - 2eOd sin 5

RuH

2 e wo cos e )

p O I I

a [r - 2rU - 2re (u cos c - w sin

- 2 reo (u sin 5 + w cos

+ *2 + ( - k> »2 cos

+ 2 eow cos 5 - 2ew sin £]} dr (25)

The. Coriolis and the inertial warping terms are
considered to be small and are neglected.

The total strain and kinetic energies of the
system are

N-l

s=0

N-l
(26)

The generalized aerodynamic forces are calculated
from the following virtual work expression

N-l

s=0 RH

RT

j (-ll_a sin e su - Lg cos 5 «w dr

(27)

By substituting Eqs. (26) and (27) into Lagrange's
equation, the equations of motion of the system
are obtained. The final equations are nondimen-
sionalized and cast in a standard eigenvalue form
as

[P] (X) = Y [Q] {X} (28)

where

Y =

[Q] = [M] + [ED] [A] [ED]
-1

(X) = [ED] {Y}

(X) =

_ \
<ud>

<v
{XT ) (Y)

[ED] [1] [0]
[0] [E]

<V

<V

(29)

"V =

Udac0

"dacN
2

"dad

dasl

dasN

"s2

"arl

"ar2

aar2

"arl
"ar2

D

The matrices [P], [M] and [A] are the stiffness,
mass and aerodynamic matrices of the system. The
matrix [E] is defined in Ref. 22.

Results and Discussion

Solution

The flutter boundaries are obtained by solving
the standard complex eigenvalue problem, Eq. (28).
The relation between the frequency a> ̂ and Y is

(30)

Flutter occurs when y > 0. Vibration characteris-
tics are obtained by setting the aerodynamic matrix
[A] to zero.

A computer program was written to assemble and
solve the generalized eigenvalue problem. As
mentioned earlier, the formulation and the program
have very wide scope for investigating the effects
of disk flexibility and blade frequency mistuning
on both vibration and flutter of bladed disk assem-
blies. Because of space limitations, only selected
results are presented.

Vibration

An advanced unshrouded fan stage (aspect
ratio = 3.3) representative of a next-generation
fan was chosen for analysis. This fan was analyzed
in Ref.^22 by treating the disk as rigid. The disk
of this fan consists of a thick hub, a thinner web
and a short thick rim to house the blades. Accord-
ingly, a disk model which consists of three concen-
tric connected nonuniform annuli would be required
for accurate modeling. However, to reduce the
complexity of the model, the disk of the fan is
idealized as a circular disk with uniform thick-
ness. To investigate the effects of disk flexi-
bility on both vibration and flutter, four values
for disk thickness are considered. For descriptive
purposes, the disk with thicknesses 1.891, 0.1891,
0.0946 and 0.0473 m are designated as very rigid,
rigid, flexible, and very flexible disks, respec-
tively. The equivalent thickness for a real prac-
tical fan may lie between the values for the rigid
and flexible disk. The other properties of the



disk are listed in Table 1. The blade properties
are the same as those listed in Ref. 22 and hence
they are not..repeated here. The design speed of
this 28-bladed fan stage is 4267-rev./min.

The vibration analyses are performed by using
six modes for each of the, 28 blades and all pos-.
sible nodal diameter modes .for the disk'.. .The blade
modes consist of two modes each in the plane of
rotation, in the plane perpendicular.,to the'plane
of rotation, and in torsion. The total number of
degrees of freedom is 28 x 6 + 28 = 196;

The blade frequencies with disk thickness
td = 1.891 m are virtually the same as the blade
cantilever frequencies. Thus, the disk with
t(j = 1.891 m behaves virtually like an infinitely
rigid disk. Since the very rigid disk case was
analyzed in'Ref. 22 for vibration and flutter, the
results'.are not repeated herein. The variation of
the frequency ratio with nodal diameter index is
illustrated- in Figs. 3 to 5 for the other three
values of the disk thickness. . The frequency ratio
is obtained by dividing the frequency'by an arbi-
trarily chosen reference value, >a0 = 200 Hz. In
these.figures .the frequency ratios are designated
as F,; C.vT.and D indicating, that the blade flat-
wise, chordwise, torsion and disk motions, respec-
tively,; ane predominant "in the eigenvectors. The
additional numbers 1 and 2 in the designations
denote first and second modes. The blade canti-
lever'ifrequencies .are shown by dark symbols. Based
on these frequency ratios and the corresponding
eigenvectors, which are not.shown because of space
limitations, several interesting observations are
made. (1) For a 28-bladed system, the identifica-
tion of the.predominant motion in the eigenvector
was found to be a tedious,job. This problem was
solved-'by analyzing a system with 4, 8, 12 and 16
blades since the identification of predominant
motion is easier for fewer blades. (2) For each
nodal diameter, except for zero and fourteen, each
eigenvalue represents a pair of. modes and each
mode in the.pair is a linear combination of the
sin rh|)S 'and cos. r>i|)S. 'Furthermore, the
mode's 'in each pair are orthogonal as expected for
a tuned.-system. The eigenvalues-for the zero and
the 14th nodal diameter represent only one mode.
In the zeroth nodal diameter >mode all the blades
move in phase and .in.the 14th nodal diameter mode
the phase difference between one blade and its
neighbor is 180°.. (3) Because of the pretwist'of
the blade, there is a'xoupling between blade flat-
wise- and'chordwise motions and. between blade chord-
wise and disk motions. For the disk with
tH = 0.1891 m, it can be seen from Fig. 3, that
the coupling between blade chordwise and the disk
motions is stronger than-that between blade flat-
wise and disk motions'.. This is because the disk
frequency is- in the vicinity of'the blade second
chordwise frequency. This is contrary to assump-
tions often made in the published literature .deal-
ing with bladed-disk vibrations. (4) Comparing
the results in Figs. 3 to 5, the disk frequency
decreases with a decrease in disk stiffness, as
should be expected. Furthermore, the coupling
between the disk and blade motions and blade to;
blade motions increases as the disk becomes thin-
ner.' Alternatively, one "could say that'more of
the disk modes couple with the blades modes as the
disk flexibility decreases:' ;(5-), For the disk with
tfj = 0.1891 m, it can be seen from-Fig.'3 that
the coupling between the disk and blades for nodal
diameters higher than four is almost negligible.

The effect'of-alternate mi stuping on vibration
is investigated. '-The method used here'to vary the
frequency from blade-to-blade is;simply to vary
either the blade tpr.sional stiffness GJ or the
bending stiffness E^IXX. For alternate mistiming
the torsional stiffness-of the odd numbered blades
is increased by 10-percent and that of the even
numbered,blades is decreased by 10 percent from' .
that, of a tuned ;b.lade system'.' The result is a
frequency variation^of approximately 7 percent.
When this mistuning is'introduced, the; T-l and T-2
modes -in Figs. 3 to 5 are affected. : The frequency
ratios for the T-l mode'alternates'between 1.06
and 1.13 .and .that for the T-2 mode b'etween. 2.75
and 2.93..-The effect of mistuhing in the other
frequencies--is-very small.. " ' " . ' •

Flutter of a. Tuned Bladed-Disk-. . . . . : . .

The advanced fan stage analyzed for vibrations
is again considered to investigate flutter behavior
including disk flexibility. The solution technique
used herein to calculate the flutter boundary is
the same as that described in Ref. 22. The cor-
rectness, of the program was checked by comparing,
the flutter speed for the case with t<j = 1.891 m.,.
with that for the rigid disk case in Ref. 22 in—,
eluding all the warping effects. Next, the"effect
of disk flexibility on flutter 'speed is illustrated
in Fig. 6. The'fan stage'is stable, if the operatf
ing point is to the left of the boundary. For a

! disk with td = 0.1891 m the flutter'boundary
1 coincides with that for the tuned'rigid disk
(t^ = 1.891 m), indicating that.this-amount of
disk'flexibility does not have.any influence.on ".
flutter. For a disk thickness td =:0.0946.m,
the flutter speed is very slightly reduced. .This
reduction in flutter speed is more significant,
when the disk thickness is reduced to 0.0473 m.
This degradation in flutter speed is expected
because the coupling between disk .and-blade becomes
very strong and reduces blade frequencies '('see
fig. 5). Additionally, the flutter mode is changed-
from a predominantly torsional mode for the rigid
disk to a predominantly bending mode for -a very
flexible disk. It should be mentioned.that there
is no blade bending-torsioh coupling inherent in
the blades themselves because the center of gravity
and elastic axis of any blade are coincident.
However, coupling between bending and torsional
motions does, occur because of the disk flexibility.

Furthermore, there is aerodynamic coupling between
bending and torsional motions. Thus, flutter/in-
volving a. predominantly bending mode is not sur-
prising (see also.Ref. 16).

Flutter of a Mistuned Bladed-Disk

Previous publications\^'^^>22) have shown
that the torsional; frequency mistuning..could have a
significant stabilizing effect on flutter. The
effect of mistuning is further'investigated hereiVi
with the'flexible disk model and some selected .
results are presented in Fig. 6. Alternate blade
torsional frequency mistuning of approximately 7
percent has significantly increased the flutter
speed, for the cases with t(j = 0.1891, and 0.0946 m.
This 'finding is in agreement with that in Ref. 22.
Again, .this amounts to saying that the disk flexi-
bility does not have much influence oh the flutter
speed even in the presence of mistuning. Contrary
to these two cases, there is no appreciable im-



provement on flutter speed due to torsional fre-
quency mlstuning for the very flexible disk. This
might be expected because the predominant motion
in the flutter mode is bending rather than torsion.
Next it is natural to ask whether an alternate
bending frequency mistuning has any influence on
flutter speed. To investigate this, the bending
stiffness EIm of the. odd numbered blades was
increased by 10 percent and that of the even num-
bered blades was decreased by 10 percent from that
of a tuned blade. The result is a frequency vari-
ation of approximately 2.6 percent. With this
mistuning the flutter boundaries for the very
flexible disk is shown again in Fig. 6. Evidently,
there is a small increase in flutter speed. How-
ever, this increase in flutter speed is not as
great as that due to alternate torsional mistuning
for the rigid disk. Again, it is concluded that
mistuning has potential to increase the flutter
speed even in the presence of mechanical coupling
between blades introduced by disk flexibility.
Qualitatively, these findings are in agreement
with the corresponding ones in Ref. 21 where a
modified typical section model was used. However,
it should be emphasized that the flexibility of
the disks which are employed for the current gen-
eration of turbofans does not have a significant
effect on flutter speed. Still, the flexibility
effects should be included in calculating forced
response which is sensitive to small changes in
system frequencies.

Concluding Remarks

An analytical model and an associated computer
program to investigate the effects of disk flexi-
bility on vibration and flutter characteristics of
both tuned and mistuned bladed-disk assemblies are
developed. From the parametric studies the follow-
ing conclusions are reached.

(1) The flexibility of the disks which are
employed for the current generation turbofans does
not have much influence on either tuned or mistuned
bladed-disk system flutter characteristics. Still,
its effect may be significant on forced response
which is sensitive to small changes in system
frequencies.

(2) The flexibility of a very thin disk re-
duces flutter speed and changes the predominant
character of the flutter mode from torsion to
bending.

(3) Because of the blade pretwist, chordwise
motion of the blades is more strongly coupled to
the disk motion than is the blade flatwise motion.
This is contrary to assumptions often made jn the
published literature dealing with bladed-disk
vibrations.

(4) A moderate amount of blade frequency
mistuning has significant potential to increase
the flutter speed, even in the presence of the
mechanical coupling between blades that is intro-
duced by disk flexibility.
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TABLE I. - DISK PROPERTIES

Radius, RH, m 0.3876
Thickness, tj varied
Young's Modulus, Ed, N/m2 , 0.1234
Material density, p<j, Kg/rrr 4373
Poisson's ratio, v,j 0.3
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