FINITE ELEMENT ANALYSIS OF WRINKLING MEMBRANES

Richard K. Miller, John M. Hedgepeth, Victor I. Weingarten, Prasanta Das, and Shahrzad Kahyai

UNIVERSITY OF SOUTHERN CALIFORNIA
Los Angeles, California 90089

Grant NAG1-235
April 1984

LIBRARY COPY
MAY 1 1 1984

LANELEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

NASA
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Axisymmetric Deformation of a Shallow Membrane</td>
<td>7</td>
</tr>
<tr>
<td>2.1 General Analysis</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Unwrinkled Region</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Wrinkled Region</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Pure Load</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Pure Torque</td>
<td>19</td>
</tr>
<tr>
<td>2.6 Numerical Results</td>
<td>21</td>
</tr>
<tr>
<td>III. Implementation of a Finite Element Algorithm for a Flat Membrane</td>
<td>22</td>
</tr>
<tr>
<td>3.1 Finite Element Algorithm</td>
<td>22</td>
</tr>
<tr>
<td>3.2 Computer Implementation on the SAP 7 Code at USC</td>
<td>25</td>
</tr>
<tr>
<td>IV. Pure Bending of a Flat Rectangular Membrane (Finite Element</td>
<td>27</td>
</tr>
<tr>
<td>Verification Example No. 1</td>
<td></td>
</tr>
<tr>
<td>4.1 Problem Description</td>
<td>27</td>
</tr>
<tr>
<td>4.2 Analytical Solution</td>
<td>27</td>
</tr>
<tr>
<td>4.3 Finite Element Modeling Assumptions</td>
<td>29</td>
</tr>
<tr>
<td>4.4 Comparison of Finite Element and Analytical Results</td>
<td>31</td>
</tr>
<tr>
<td>V. Pure Rotation of a Hub Attached to a Flat Stretched Membrane (</td>
<td>34</td>
</tr>
<tr>
<td>Finite Element Verification Example No. 2)</td>
<td></td>
</tr>
<tr>
<td>5.1 Problem Description</td>
<td>34</td>
</tr>
<tr>
<td>5.2 Analytical Solution</td>
<td>34</td>
</tr>
<tr>
<td>5.3 Finite Element Modeling Assumptions</td>
<td>37</td>
</tr>
<tr>
<td>5.4 Comparison of Finite Element and Analytical Results</td>
<td>39</td>
</tr>
<tr>
<td>VI. Acknowledgements</td>
<td>41</td>
</tr>
<tr>
<td>VII. References</td>
<td>42</td>
</tr>
<tr>
<td>VIII. Tables</td>
<td></td>
</tr>
<tr>
<td>Table 1 - Parameter Combination for Partial Wrinkling with Pure</td>
<td>45</td>
</tr>
<tr>
<td>Torque</td>
<td></td>
</tr>
<tr>
<td>Table 2 - Analytical Solutions for Stresses and Displacements in the</td>
<td>46</td>
</tr>
<tr>
<td>Hub Rotation Example No. 2 of Figure 10</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Cont.)

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX. Figures</td>
<td></td>
</tr>
<tr>
<td>Figure 1 - Applied Torque vs. Angle of Twist for Axisymmetric</td>
<td>47</td>
</tr>
<tr>
<td>Shallow Membrane Problem</td>
<td></td>
</tr>
<tr>
<td>Figure 2 - Applied Load vs. Vertical Displacement for Axisymmetric</td>
<td>48</td>
</tr>
<tr>
<td>Shallow Membrane Problem</td>
<td></td>
</tr>
<tr>
<td>Figure 3 - Flat Stretched Membrane Subjected to Pure Bending Moment</td>
<td>49</td>
</tr>
<tr>
<td>Figure 4 - Finite Element Model for the Membrane in Fig. 3</td>
<td>49</td>
</tr>
<tr>
<td>Figure 5 - Qualitative Plot of Edge Displacements from Numerical</td>
<td>50</td>
</tr>
<tr>
<td>Solution for Pure Bending of Rectangular Sheet (Displacements not to</td>
<td></td>
</tr>
<tr>
<td>scale)</td>
<td></td>
</tr>
<tr>
<td>Figure 6 - Qualitative Plot of Principal Stresses from Numerical</td>
<td>50</td>
</tr>
<tr>
<td>Solution for Pure Bending of Rectangular Sheet (Advanced Loading State)</td>
<td></td>
</tr>
<tr>
<td>Figure 7 - Moment-Curvature Relation for Pure Bending of Rectangular</td>
<td>51</td>
</tr>
<tr>
<td>Sheet</td>
<td></td>
</tr>
<tr>
<td>Figure 8 - Wrinkle Height vs. Bending Moment for Pure Bending of a</td>
<td>52</td>
</tr>
<tr>
<td>Rectangular Sheet</td>
<td></td>
</tr>
<tr>
<td>Figure 9 - Maximum Principal Stress (σ_M) vs. Vertical Position (y)</td>
<td>52</td>
</tr>
<tr>
<td>for Pure Bending of a Rectangular Sheet</td>
<td></td>
</tr>
<tr>
<td>Figure 10 - Flat Stretched Infinite Membrane Subjected to a Pure</td>
<td>53</td>
</tr>
<tr>
<td>Twist M Through an Attached Rigid Hub</td>
<td></td>
</tr>
<tr>
<td>Figure 11 - Element and Node Configuration for Finite Element Model</td>
<td>54</td>
</tr>
<tr>
<td>of Hub Rotation Interior Problem</td>
<td></td>
</tr>
<tr>
<td>Figure 12 - Qualitative Nodal Displacements from Numerical Solution</td>
<td>54</td>
</tr>
<tr>
<td>of Hub Rotation Interior Problem (Displacements not to scale.)</td>
<td></td>
</tr>
<tr>
<td>Figure 13 - Maximum Principal Stress vs. Radial Position for Four</td>
<td>55</td>
</tr>
<tr>
<td>Load Cases (Hub Rotation Interior Problem)</td>
<td></td>
</tr>
<tr>
<td>Figure 14 - Minimum Principal Stress vs. Radial Position for Four</td>
<td>56</td>
</tr>
<tr>
<td>Load Cases (Hub Rotation Interior Problem)</td>
<td></td>
</tr>
<tr>
<td>Figure 15 - Wrinkle Radius R vs. Applied Torque M for Hub Rotation</td>
<td>57</td>
</tr>
<tr>
<td>Interior Problem</td>
<td></td>
</tr>
<tr>
<td>Figure 16 - Nondimensional Angle of Twist β vs. Applied Torque M for</td>
<td>58</td>
</tr>
<tr>
<td>Hub Rotation Composite Problem</td>
<td></td>
</tr>
<tr>
<td>APPENDIX A - Formulation and Solution of Nonlinear Structural</td>
<td>59</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B - SAP 7 Subroutine ELPAL</td>
<td>68</td>
</tr>
<tr>
<td>APPENDIX C - SAP 7 Input Listing for Verification Example No. 1</td>
<td>77</td>
</tr>
<tr>
<td>APPENDIX D - SAP 7 Input Listing for Verification Example No. 2</td>
<td>80</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Many structural concepts for large spacecraft applications involve a tensioned membrane surface. Since much of the structural weight in such spacecraft is associated with compression members necessary to equilibrate the membrane tension, a high premium is placed on designing structures with extremely small membrane tension. As a result, the elastic strains in the membrane may well be much smaller than anticipated thermal strains, so that a high likelihood exists for the development of wrinkled and slack regions within an otherwise taut membrane surface. The existence and severity of such wrinkled regions may have an adverse effect on the overall elastic stability of the spacecraft, as well as on the intended spacecraft performance if the membrane surface acts as a reflector with stringent requirements for geometrical accuracy of the surface. Thus, the problem of predicting the stresses and displacements within a partly wrinkled membrane surface is one of some current technological interest in the aerospace industry.

In spite of the importance of the mechanics of wrinkling behavior of membranes the field remains largely unexplored. Apparently the earliest investigation in the field was reported more than 50 years ago by Wagner [1] who conceived "tension field theory" in order to explain the behavior of thin metal webs in beams and spars carrying a shear load well in excess of the initial buckling value. Wagner's method of analysis was based on lengthy geometrical considerations. Reissner [2] and independently Kondo [3] developed a simpler analysis based on straight-forward calculus, and presented the first exact solutions to problems involving a non-repetitive pattern of tension rays. Iai [4] developed an analysis procedure based on a principle of maximum strain energy under given boundary displacements.
This, and subsequent Japanese work on tension fields is well documented in a review paper (in English) by Kondo, Iai, Moriguti and Murasaki [5].

In a series of more recent papers, Mansfield [6-9] developed an analysis procedure which combines the "tension ray" concepts of Reissner and Kondo and a principle of Maximum "tension" strain energy similar to that of Iai. The first of his papers [6] developed an analogy with inextensional plate deformation theory, and worked example problems involving shearing and lateral contraction of membrane strips, and torsion of an annular membrane. Later [7], this work was extended to consider problems of load transfer from an elastic rod bonded to a flat membrane strip. Experiments were also reported which confirm predictions of the theory. Next [8], the analysis was generalized to include anisotropic and nonlinear membrane behavior typical of woven and fiberous materials. It was shown that such nonlinearities tend to amplify stress concentrations at corners and at the ends of a cut. Finally [9], the curved wrinkle patterns within hanging slack membranes was analyzed for various shapes of membranes and various support conditions. The curved wrinkles were shown to be governed by a one-dimensional diffusion equation and an analogy with heat conduction in a slab was noted.

All the published work just cited considers static stresses and small deformations within fully-wrinkled flat membranes. A generalization to arbitrarily large deformations, with particular concern for the behavior of stretching skin, was recently presented by Danielson and Natarajan [10]. More recently, Wu [11] considered membrane wrinkling in the neighborhood of a sutured hole. Then Wu and Canfield [12] presented a general finite plane-stress analysis for wrinkling of flat membranes.
However, for applications in space structures, a particularly important class of problems is that of partly wrinkled membranes. Such membranes contain both wrinkled and taut regions. A general theory for partly wrinkled membranes was developed by Stein and Hedgepeth [13] some 20 years ago. Their approach is based on experimental observations which show that when wrinkles develop within a membrane parallel to, say, the x-direction, the associated overall contraction in the y-direction exceeds that predicted by the Poisson's ratio effect. The additional average normal strain in the y-direction may be regarded as an "average wrinkle strain". For purposes of simplified analysis, these geometric features of wrinkling were incorporated in Ref. 13 into a Hookean material model by appropriately increasing the local effective value of Poisson's ratio in wrinkled regions. This effective value of Poisson's ratio may be determined by imposing the approximation that the local state of stress in a wrinkled region is one of uniaxial tension. The resulting theory retains the simplicity of form of the linear governing equations of elasticity, with the additional feature that the material parameters are dependent upon the local state of strain. Comparisons between the predictions of this theory and experimental results for some simple configurations [13,14,15] show that very satisfactory results may be obtained. Furthermore, of the available theories for wrinkling of membranes, the Stein-Hedgepeth theory appears particularly promising for finite element implementation. Recently [16], the approach was used to construct an algorithm for finite element analysis of flat membranes which contain taut, wrinkled, and slack regions.
With regard to curved membranes containing wrinkled regions, apparently the earliest work was done by Taylor [17] more than 60 years ago, in an analysis of parachute shapes. Taylor analyzed the geometry and stresses within a parachute formed from an initially flat circular membrane by imposing the condition of zero hoop stress, and ignoring the stretching of the membrane near the crown. An extension of Taylor's work was presented more recently for isotensoid surfaces by Houtz [18] and Mikulas and Bohon [19].

An analysis of axisymmetric doubly curved membranes which are formed from an initially flat membrane was presented by Mikulas [20]. The analysis allows stretching of the membrane surface near the crown to remove wrinkles, and includes a wrinkled region near the outer edge. The taut region near the crown is analyzed by a nonlinear membrane theory [21] based on Sander's theory of thin shells [22] with the omission of the bending terms. The wrinkled region near the outer edge is analyzed by imposing the zero hoop stress condition introduced by Taylor. Application is made to three example problems, including the pressurization of a pleated flat circular membrane attached to a rigid circular rim, the stretching of an initially flat circular membrane over a doubly curved, axisymmetric rigid mandrel, and the very large deformation behavior of a pressurized membrane cylinder subjected to a radial line load.

Although it is not the primary focus of the reported research, the work of Zak on wave propagation within and vibration of partly wrinkled membranes is noteworthy. In a series of papers [23-30] Zak considers the stress conditions for local buckling within a thin membrane, and develops a continuum model for the propagation of shock waves, and "snaps" within thin membrane surfaces. His continuum theory for in-plane motion ignores the kinetic energy of the out-of-plane motion in wrinkled regions, and results in an in-plane equation of motion which displays variable mass characteristics. As a result, his
theory predicts a "damping" out of in-plane vibrations as the kinetic energy of the in-plane motion is converted into out-of-plane motion through shocks. Examples include a proof that static wrinkle patterns in fully wrinkled flat sheets loaded only along their edges must be straight lines. Also, one dimensional examples involving shock wave propagation in a freely hanging string, and vibrations of a single-degree-of-freedom oscillator constrained by an inextensible string are presented.

Presented in this report are the results of one year of research supported by the National Aeronautics and Space Administration under Grant Number NAG-1-235 regarding the finite element analysis of wrinkling membranes. The research was performed at the University of Southern California (USC) in the Department of Civil Engineering, with technical assistance from Dr. John M. Hedgepeth of Astro Research Corporation of Carpinteria, California.

Chapter two of this report presents the results of an analysis and exact solution for a problem involving axisymmetric deformations of a shallow curved membrane. The problem was considered in order to provide an exact solution and "benchmark" for calibration of future numerical examples.

Chapter three describes the implementation of the numerical algorithm recently developed by Miller and Hedgepeth [16] on the SAP VII finite element code at USC. Chapters four and five then present an evaluation of this algorithm. The evaluation is based on a comparison of analytical and numerical results for stresses and displacements in two benchmark problems involving a partly wrinkled flat membrane. These comparisons
reveal a high degree of accuracy for the finite element algorithm. Furthermore, convergence of the required iterative procedure in this nonlinear problem was achieved without excessive computation.
II. AXISYMMETRIC DEFORMATION OF SHALLOW MEMBRANE

2.1 General Analysis

Consider a shallow pressurized membrane of spherical radius a. For axisymmetric loading, the equilibrium equations are

$$
\begin{align*}
\frac{d}{dr} (rN_r) &= N_\theta \\
\frac{d}{dr} \left(r^2 N_{r\theta} \right) &= 0 \\
N_r \left(\frac{r}{a} - \frac{dw}{dr} \right) &= \frac{p}{2\pi r} + \frac{Pr}{2}
\end{align*}
$$

(1)

where N_r, N_θ, and $N_{r\theta}$ are the usual stress resultants, r is the radial dimension, p is the internal pressure, and P is an added center vertical load.

The strain-displacement relations are

$$
\begin{align*}
\varepsilon_r &= \frac{du}{dr} + \frac{w}{a} + \frac{1}{2} \left(\frac{dw}{dr} \right)^2 \\
\varepsilon_\theta &= \frac{u}{r} + \frac{w}{a} \\
\gamma_{r\theta} &= r \frac{r}{dr} \left(\frac{v}{r} \right)
\end{align*}
$$

(2)
where u and v are the radial and circumferential tangential displacements, and w is the normal displacement. We have assumed small strains and small slopes in comparison to unity except for the second-order term in the expression for ϵ_r; this is necessary to be consistent with the displacement-dependent term in the third of Eqs. (1). Also, Eqs. (1) and (2) are valid only for $r<<a$ inasmuch as they apply to "shallow" configurations.

We are interested in solving the equations for an inextensional membrane both wrinkled and unwrinkled. In an unwrinkled region, then

$$\epsilon_r = \epsilon_\theta = \gamma_{r\theta} = 0$$

In addition, in order that the principal stresses be non-negative, the stresses must obey the inequality

$$N_r N_\theta > N_{r\theta}^2$$

On the other hand, in a wrinkled region,

$$N_r N_\theta = N_{r\theta}^2$$

and

$$\frac{\epsilon_r}{\epsilon_\theta} = \frac{N_\theta}{N_r}$$

The latter condition arises from the facts that the principal tension is parallel to the wrinkles, and the principal strain is perpendicular to them.
Consider the annular region between \(r = r_0 \) and \(r = r_1 \). Let \(w = u = v = 0 \) at \(r = r_1 \), and let the load \(P \) and moment \(Q \) be applied to the "rigid" plug occupying the center. For small \(P \) and \(Q \), there will be no wrinkles; for large \(P \) and \(Q \), the entire annulus will be wrinkled. For intermediate values, the inner part of the annulus will be wrinkled, and the outer portion will be unwrinkled.

In all cases, the second of Eqs. (1) can be integrated to yield

\[
N r \theta = \frac{Q}{2\pi r^2}
\]

\[
= \left(\frac{r_0}{r}\right)^2 N r \theta_0
\]

(4)

where

\[
N r \theta_0 = \frac{Q}{2\pi r_0^2}
\]

is the shear stress at the inner boundary.

2.2 Unwrinkled Region

For the unwrinkled region, the displacements must represent rigid-body motion. Thus,

\[
u = v = w = 0
\]
Solving the third of Eqs. (1) gives

\[N_r = 1 + \frac{P}{\rho^2} \] \hspace{1cm} (6)

The first of Eq. (1) then yields

\[N_\theta = 1 - \frac{P}{\rho^2} \] \hspace{1cm} (7)

where the various quantities have been nondimensionalized as follows:

\[\tilde{N}_{r,\theta} = \frac{2}{pa} N_{r,\theta} \]
\[\tilde{p} = p/\rho \]
\[\tilde{Q} = Q/\rho \]
\[\rho = r/r_0 \]

In order that the membrane be unwrinkled

\[\tilde{N}_r \tilde{N}_\theta > \tilde{N}^2_{r\theta} \]

or

\[\rho^4 > \tilde{p}^2 + \tilde{Q}^2 \] \hspace{1cm} (8)

Clearly, if the right-hand side is less than unity, then there are no wrinkles. If it is greater than \((r_1/r_0)^4\), then the entire annulus is wrinkled.
2.3 Wrinkled Region

Since

\[N_0 = \frac{N_{r0}}{N_r} \]

we have

\[\frac{d}{d\rho} \left(\rho N_r \right) = \frac{Q}{\rho^4 N_r} \] \hspace{1cm} (9)

Integrating gives

\[N_r^2 = \frac{1}{\rho^4} \left[\left(\frac{N_{r0}^2}{Q^2} + \frac{Q^2}{\rho^2} \right) \rho^2 - Q^2 \right] \] \hspace{1cm} (10)

where \(N_{r0} \) is the radial stress resultant at the center plug.

The third of Eq. (1) is nondimensionalized to give

\[\frac{d\bar{w}}{d\rho} = \rho - \frac{\rho^2 + P}{\rho N_r} \] \hspace{1cm} (11)

where

\[\bar{w} = \left(\frac{a}{r_0} \right)^2 \frac{w}{\bar{a}} \]
Substituting for \bar{N}_r from Eq. (10) and integrating gives

$$\bar{w} = \bar{w}_0 + \frac{\rho^2 - 1}{2} - \frac{\sqrt{\frac{-2}{\bar{N}_{r0} + \bar{Q}^2}} \rho^2 - \bar{Q}^2}{3\left(\frac{-2}{\bar{N}_{r0} + \bar{Q}^2}\right)^{3/2}}$$

$$\times \left[\left(\frac{-2}{\bar{N}_{r0} + \bar{Q}^2}\right) \rho^2 + 3\bar{N}_{r0} \bar{P} + (2 + 3\bar{P} \bar{Q}^2)\right] + \frac{\bar{N}_{r0}}{3\left(\frac{-2}{\bar{N}_{r0} + \bar{Q}^2}\right)^{3/2}}$$

$$\times \left[(1 + 3\bar{P})\bar{N}_{r0}^2 + (3 + 3\bar{P})\bar{Q}^2\right]$$

where \bar{w}_0 is the vertical displacement of the central plug.

The first two of Eqs. (2) in dimensionless form are

$$\bar{\varepsilon}_r = \frac{d\bar{u}}{d\rho} + \bar{w} + \frac{1}{2} \left(\frac{d\bar{w}}{d\rho}\right)^2$$

$$\bar{\varepsilon}_\theta = \frac{\bar{u}}{\rho} + \bar{w}$$

where

$$\bar{u} = \left(\frac{a}{r_0}\right)^2 \frac{u}{r_0}$$
and
\[\varepsilon_{r,\theta} = \left(\frac{a}{r_0} \right)^2 \varepsilon_{r,\theta} \]

As previously mentioned, the stress and strain relations must be related in a wrinkled region by
\[\varepsilon_{\theta N_{\theta}} = \varepsilon_{r N_r} \]

Substituting and multiplying by an integrating factor gives
\[
\frac{d}{dp} \left(\frac{u}{\rho N_r} \right) = - \omega \frac{d}{dp} \left(\frac{1}{N_r} \right) - \frac{1}{2 \rho N_r} \left(\frac{dw}{dp} \right)^2
\]

\[
= - \frac{d}{dp} \left(\frac{w}{N_r} \right) + \frac{1}{N_r} \frac{dw}{dp} - \frac{1}{2 \rho N_r} \left(\frac{dw}{dp} \right)^2
\]

This can be expressed as
\[
\frac{d}{dp} \left(\frac{\varepsilon_{\theta}}{N_r} \right) = \frac{1}{N_r} \frac{dw}{dp} - \frac{1}{2 \rho N_r} \left(\frac{dw}{dp} \right)^2
\]
Substituting from Eq. (11) gives

\[
\frac{d}{dp} \left(\frac{\varepsilon_0}{N_r} \right) = \frac{\rho}{2N_r} \left[1 - \frac{(\rho^2 + \overline{P})^2}{\rho^4N_r^2} \right]
\] \hspace{1cm} (14)

Going back to Eq. (13) gives

\[
\overline{\varepsilon}_r = \frac{d}{dp} (\rho \varepsilon_\theta) - \rho \frac{d}{dp} \overline{w} + \frac{1}{2} \left(\frac{d}{dp} \overline{w} \right)^2
\]

\[
= \frac{\varepsilon_\theta}{N_r} \frac{d}{dp} (\rho \overline{N}_r)
\]

In order that one of the principal strains be zero, the shear strain must be related to the direct strains as follows:

\[
\frac{\gamma^2}{\gamma_{r\theta}} = 4 \overline{\varepsilon}_r \varepsilon_\theta
\]

Therefore, from the dimensionless form of the third of Eq. (2)

\[
\frac{d}{dp} \left(\frac{\overline{v}}{\rho} \right) = \frac{2}{\rho} \varepsilon_\theta \sqrt{\frac{1}{N_r} \frac{d}{dp} (\rho \overline{N}_r)}
\]

or

\[
\frac{d}{dp} \left(\frac{\overline{v}}{\rho} \right) = \frac{2\Omega}{\rho^3 N_r} \frac{\varepsilon_\theta}{N_r}
\]

in which

\[
\overline{v} = \left(\frac{a}{r_0} \right)^2 \frac{v}{r_0}
\] \hspace{1cm} (15)
Define

\[
\begin{align*}
\bar{N}^2 &= \bar{N}^2_{\rho_0} + \bar{Q}^2 \\
\bar{M} &= \frac{\bar{Q}^2}{\bar{N}^2}
\end{align*}
\]

(16)

Then

\[
\bar{N}_r = \frac{\bar{N}}{\rho^2} \sqrt{\rho^2 - \bar{M}}
\]

\[
\frac{d}{d\rho} \left(\frac{\bar{\epsilon}_\theta}{\bar{N}_r} \right) = \frac{\rho^3}{2N\sqrt{\rho^2 - \bar{M}}} \left[1 - \frac{(\rho^2 + \bar{P})^2}{\bar{N}^2(\rho^2 - \bar{M})} \right]
\]

Integrating gives

\[
\frac{\bar{\epsilon}_\theta}{\bar{N}_r} = -\frac{1}{N^3} \left\{ \bar{N}^2 \left[F(\rho_e) - F(\rho) \right] - \left[G(\rho_e) - G(\rho) \right] \right\}
\]

(17)

where

\[
F(\rho) = \frac{1}{3} \left(\rho^2 - \bar{M} \right)^{3/2} + \bar{M} \left(\rho^2 - \bar{M} \right)^{1/2}
\]

\[
G(\rho) = \frac{1}{5} \left(\rho^2 - \bar{M} \right)^{5/2} + \frac{2\bar{P} + 3\bar{M}}{3} \left(\rho^2 - \bar{M} \right)^{3/2}
\]

\[
+ \left(\bar{P} + \bar{M} \right) \left(\bar{P} + 3\bar{M} \right) \left(\rho^2 - \bar{M} \right)^{1/2} - \bar{M} \left(\bar{P} + \bar{M} \right)^2 \left(\rho^2 - \bar{M} \right)^{-1/2}
\]

(18)
Note that we have used the boundary condition that the circumferential strain must be zero at the outer edge of the wrinkled region, \(\rho = \rho_e \). The circumferential strain must also be equal to zero at the central boundary.

Setting \(\varepsilon_\theta (1) = 0 \) and solving for \(\bar{N} \) gives

\[
\bar{N} = \sqrt{\frac{\mathcal{G}(\rho_e) - \mathcal{G}(1)}{\mathcal{F}(\rho_e) - \mathcal{F}(1)}}
\]

(19a)

If the annulus is fully wrinkled then \(\rho_e = \rho_1 \). Then \(\bar{N} \) can be easily calculated as a function of \(\bar{M} \) and \(\bar{P} \). Eq. (16) can be applied to determine \(\bar{Q} \) and \(\bar{N}_r_0 \).

If, on the other hand, the membrane is only partly wrinkled, then continuity of the radial stress resultant at \(\rho = \rho_e \) requires that

\[
\bar{N} = \frac{\rho_e^2 + \bar{P}}{\sqrt{\rho_e^2 - \bar{M}}}
\]

(19b)

Setting the two expressions for \(N \) equal to each other allows the determination of acceptable combinations of \(\rho_e, \bar{M}, \) and \(\bar{P} \). Then \(\bar{N} \) and finally the accompanying values of \(\bar{Q} \) and \(\bar{N}_r_0 \) can be determined.

For simplicity, the following analysis applies to pure force and pure torque.
2.4 Pure Load

For $Q = 0$, we set $\bar{N} = \bar{N}_0$, and $\bar{M} = 0$. The expressions for the various quantities in the wrinkled region become

\[
\begin{align*}
\bar{N}_r &= \bar{N} \\
\bar{w} &= \bar{w}_0 + \frac{\rho^2 - 1}{2} - \frac{\rho^3 - 1}{3N} - \frac{\bar{P}}{\bar{N}} (\rho - 1) \\
\bar{\varepsilon}_\theta &= -\frac{1}{2N^2\rho} \left[\frac{\rho^5 - 1}{5} + (2\bar{P} - \bar{N}^2) \frac{\rho^3 - 1}{3} + \bar{P}^2 (\rho - 1) \right]
\end{align*}
\]

(20)

At the interface, $\varepsilon_\theta = 0$, $\rho = \rho_e$, and

\[
\bar{N} = \rho_e + \frac{\bar{P}}{\rho_e}
\]

(21)

Solving for \bar{N}, substituting into the last of Eq. (20), and solving for \bar{P} gives

\[
\bar{P} = \rho_e \sqrt{\frac{2\rho_e^3 + 4\rho_e^2 + 6\rho_e + 3}{5(2\rho_e + 1)}}
\]

(22)

The deflection \bar{w} must also be zero at $\rho = \rho_e$. Therefore,

\[
\bar{w}_0 = (\rho_e - 1) \left[\frac{\bar{P}}{\bar{N}} + \frac{\rho_e^2 + \rho_e + 1}{3N} - \frac{\rho_e + 1}{2} \right]
\]

(23)
Substituting for \bar{P} from Eq. (21) gives

\[
\bar{w}_0 = \frac{(\rho_e - 1)^2}{2} \left(1 - \frac{2}{3} \frac{2\rho_e + 1}{\bar{N}} \right)
\]

Equations (22) through (24) enable the determination of the manner in which \bar{w}_0 and \bar{N} and the extent of the wrinkled area change as \bar{P} is increased above unity. When the entire surface becomes wrinkled ($\rho_e = \rho$), then the following results are obtained.

\[
\bar{P} > \rho_1 \sqrt{2\rho_1^3 + 4\rho_1^2 + 6\rho_1 + 3} \quad \frac{5(2\rho_1 + 1)}{}
\]

\[
\bar{N} = \frac{15\bar{P}^2 + 10(\rho_1^2 + \rho_1 + 1)\bar{P} + 3(\rho_1^4 + \rho_1^3 + \rho_1^2 + \rho + 1)}{5(\rho^2 + \rho + 1)}
\]

\[
\bar{w}_0 = \left(\frac{3\bar{P} + \rho_1^2 + \rho_1 + 1}{3\bar{N}} - \frac{\rho_1 + 1}{2} \right)(\rho_1 - 1)
\]

Equations (22) to (26) can also be used for negative values of \bar{P} less than minus one by changing the sign of the right-hand side of Eq. (22).
2.5 Pure Torque

For F equal zero, the expressions for F and G in Eq. (18) become

\[
F(p) = \frac{\sqrt{\rho^2 - \bar{M}}}{3} (\rho^2 + 2\bar{M})
\]

\[
G(p) = \frac{\rho^6 + 2\bar{M}\rho^4 + 8\bar{M}^2\rho^2 - 16\bar{M}^3}{5\sqrt{\rho^2 - \bar{M}}}
\]

(27)

Then, Eq. (19a) becomes

\[
-\frac{\bar{N}^2}{N^2} = \frac{3}{5} \left(\frac{\rho_e^6 + 2\bar{M}\rho_e^4 + 8\bar{M}^2\rho_e^2 - 16\bar{M}^3}{\rho_e^4 + \bar{M}\rho_e^2 - 2\bar{M}^2} \right) \frac{1 - \bar{M}}{1 - \bar{M} - (1 + \bar{M} - 2\bar{M}^2)\sqrt{\rho_e^2 - \bar{M}}} - \frac{(1 + 2\bar{M} + 8\bar{M} - 16\bar{M}^3)\sqrt{\rho_e^2 - \bar{M}}}{\rho_e^4 + \bar{M}\rho_e^2 - 2\bar{M}^2}
\]

(28)

If ρ_e is on the outer edge, the quantity \bar{N} can be calculated as a function of \bar{M}. Then \bar{Q} and \bar{N}_{r_0} can be determined from

\[
\bar{Q} = \bar{N} \sqrt{\bar{M}}
\]

\[
\bar{N}_{r_0} = \bar{N} \sqrt{1 - \bar{M}}
\]

(29)

For values of \bar{Q} slightly greater than one, the region is only partly wrinkled. Then, using Eq. (19b) and solving for \bar{M} gives

\[
\bar{M} = \rho_e^2 \left(1 - \frac{\rho_e^2}{\bar{N}^2} \right)
\]

(30)
Substituting from Eq. (28) yields the allowable combinations of \(\rho_e \) and \(\bar{M} \) for partial wrinkling presented in Table 1. Also given are the associated values of \(\bar{Q} \) and \(\bar{N}_{r_0} \) found from Eq. (29).

The torsional motion of the hub is of interest. The angle of rotation is equal to

\[
\Omega = \frac{v(r_0)}{r_0}
\]

Or, by using Eq. (15)

\[
\bar{\Omega} = 2Q \int_0^1 \frac{e_\theta}{\rho_e \rho^2 N_r} \, d\rho
\]

(31)

where, as for the strains,

\[
\bar{\Omega} = \left(\frac{a}{r_0} \right)^2 \Omega
\]

Substituting from Eq. (17) and judiciously using Eq. (28) and integrating yields

\[
\bar{\Omega} = \frac{Q}{3N^3} \left[-\frac{-3N^2}{\sqrt{\rho_e^2 - M - \sqrt{1 - M}}} + \frac{\rho_e^4 + 4\rho_e^2 - 8M^2}{\sqrt{\rho_e^2 - M}} \right]
\]

(32)

\[
\times \frac{1 + 4M - 8M^2}{\sqrt{1 - M}}
\]

The values for \(\bar{\Omega} \) for the partly wrinkled case are given in Table 1.
2.6 Numerical Results

The load-displacement relations are shown in Figure 1 for pure load. The partly wrinkled membrane exhibits a softening behavior as the load is increased. When the wrinkling reaches the rim, the resulting fully wrinkled membrane stiffens with the application of increased load.

The same behavior is exhibited for pure torsion as seen from Figure 2. It is interesting to note that, although deflections of the membrane begin when the loading parameter (\bar{P} or \bar{Q}) exceeds unity, significant movement starts occurring at a value of about two. This phenomenon is similar to that observed for cylinders in bending and is especially pronounced for the torqued dish.
III. IMPLEMENTATION OF A FINITE ELEMENT ALGORITHM FOR A FLAT MEMBRANE

3.1 Finite Element Algorithm

Stresses and deformations in flat membranes may be described within the context of plane stress theory. For the class of problems under consideration, three regimes of structural behavior are possible. First, the membrane may behave in a fully taut manner, in which both principal stresses are positive. In general, this will occur whenever

$$\varepsilon_1 > 0 \text{ and } \varepsilon_2 \geq -\nu \varepsilon_1$$

where

$$\varepsilon_1 = \frac{1}{2} \left[(\varepsilon_x + \varepsilon_y) + \sqrt{(\varepsilon_x - \varepsilon_y)^2 + 2\gamma_{xy}} \right]$$

$$\varepsilon_2 = \frac{1}{2} \left[(\varepsilon_x - \varepsilon_y) - \sqrt{(\varepsilon_x - \varepsilon_y)^2 + 2\gamma_{xy}} \right]$$

In Eqs. (31) and (32), ε_1 and ε_2 represent the local principal strains which are determined from the load-dependent strains ε_x, ε_y, and γ_{xy}.

In regions where Eqs. (33) hold, the stresses in the membrane may be determined from the well known plane stress elasticity relations.

$$\sigma = D_T \varepsilon$$

(35)
where
\[\sigma = (\sigma_x, \sigma_y, \tau_{xy})^T \]
\[\varepsilon = (\varepsilon_x, \varepsilon_y, \gamma_{xy})^T \] (36)

and
\[D_T = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & (1-\nu)/2 \end{bmatrix} \] (37)

where \(E \) and \(\nu \) are the modulus of elasticity and Poisson's ratio of the membrane material, respectively.

In other regions the membrane may behave in a fully slack manner. In general, this will occur whenever
\[\varepsilon_2 \leq \varepsilon_1 \leq 0. \] (38)

In such regions it is clear that the corresponding elastic principal stresses would both be compressive. However, since the membrane cannot support compressive stresses, the membrane is actually stress-free in such regions. Mathematically, this may be expressed as
\[\sigma = D_s \varepsilon \] (39)

where
\[D_s = 0. \] (40)
Finally, it is possible for the membrane to develop wrinkles. In this case the stress state is regarded as uniaxial, with the tensile stress aligned along the direction of the wrinkles. Wrinkled behavior will occur whenever

\[\varepsilon_1 > 0 \text{ and } \varepsilon_2 < -\nu \varepsilon_1. \]

(41)

In such cases, the material supports a tensile stress parallel to the principal direction associated with \(\varepsilon_1 \), but is stress-free in a direction orthogonal to \(\varepsilon_1 \). Mathematically, the stresses may be expressed as

\[\sigma = D_w \varepsilon \]

(42)

where

\[D_w = \frac{E}{4} \begin{bmatrix} 2(1+P) & 0 & Q \\ 0 & 2(1-P) & Q \\ Q & Q & 1 \end{bmatrix} \]

(43)

and where

\[p = \frac{(\varepsilon_x - \varepsilon_y)}{(\varepsilon_1 - \varepsilon_2)} ; \quad Q = \frac{\gamma_{xy}}{(\varepsilon_1 - \varepsilon_2)} \]

(44)

Further discussion of the description of stress-strain behavior within a wrinkled region, and the Stein-Hedgepeth constitutive model which forms the basis for the formulation presented herein, may be obtained from Ref. 16.
It should be pointed out that the choice of a D_w matrix consistent with the Stein-Hedgepeth wrinkle model may not be unique. There may, in fact, be an infinite number of elasticity matrices capable of producing the correct stress-strain relations in a wrinkled element. However, the matrix of Eqn. (43) provides a bounded and symmetric matrix which has been successfully implemented and tested as reported herein and in Ref. 16.

The stress-strain matrices presented above are strain-dependent and must be updated after each load increment. However, all other aspects of the problem formulation are identical to the approach used to solve any nonlinear stress/deformation problem where load increments and iteration for equilibrium are required. Consequently, the algorithm described above may be installed with relatively little effort in a variety of general purpose finite element computer programs which are capable of nonlinear analysis.

3.2 Computer Implementation on the SAP 7 Code at USC

The algorithm presented in Section 3.1 was installed in the SAP 7 computer code at USC where it now resides among the library of available material behavior for plane stress analysis.

A description of the theoretical approach based on the principle of virtual work which is used to formulate the governing equations in the SAP7 code, and the programmed methods for solving the resulting nonlinear equations is presented in Appendix A.
Most of the required modifications in the rather large SAP 7 code occurred in the subroutine ELPAL. A listing of the revised ELPAL routine which incorporates the wrinkle algorithm is presented in Appendix B.

A listing of the input data used to generate the numerical results for verification examples 1 and 2 (discussed later) are presented in Appendices C and D.
IV. PURE BENDING OF A STRETCHED RECTANGULAR MEMBRANE
(FINITE ELEMENT VERIFICATION EXAMPLE NO. 1)

4.1 Problem Description

As a first example of a partly-wrinkled flat membrane, consider a rectangular membrane which is uniformly pretensioned with normal stress \(\sigma_0 \) in the y-direction and with axial load \(P = \sigma_0 t h \) in the x-direction, as shown in Fig. 3. Note that \(h \) is the length of the sides subjected to force \(P \), and \(t \) is the thickness of the membrane. After pretensioning, an in-plane bending moment \(M \) is applied along the edges shown. As \(M \) is increased, eventually a band of vertical wrinkles of length \(b \) forms along the lower edge of the membrane as the normal strain \(\varepsilon_X \) in this region becomes compressive.

The solution for the stress and displacement fields within the resulting partly-wrinkled membrane is not trivial. For example, the extent of the wrinkled region is not related in any simple way to the extent of the compression region within a similarly loaded flat plate.

4.2 Analytical Solution

A complete analysis of the problem just described is presented in Ref. [13]. It is shown in this reference that the extent of the wrinkled region may be determined by

\[
\frac{b}{h} = \frac{3M}{Ph} - \frac{1}{2} .
\]

(45)
Furthermore, the overall moment-curvature relation for the membrane is given by

\[
\frac{2M}{Ph} = \begin{cases}
\frac{1}{3} \frac{Eh^2}{2P} \kappa & ; \frac{Eh^2}{2P} \kappa \leq 1 \\
1 - \frac{2}{3} \frac{2P}{Eh^2} \frac{1}{\kappa} & ; \frac{Eh^2}{2P} \kappa > 1
\end{cases} \tag{46}
\]

and the stress field within the membrane is given by

\[
\frac{\sigma_x}{\sigma_0} = \begin{cases}
\frac{2 \left(\frac{y}{h} - \frac{b}{h} \right)}{(1 - \frac{b}{h})^2} & ; \frac{b}{h} \leq \frac{y}{h} \leq 1 \\
0 & ; 0 \leq \frac{y}{h} \leq \frac{b}{h}
\end{cases} \tag{47}
\]

\[
\frac{\sigma_y}{\sigma_0} = 1 \tag{48}
\]

\[
\frac{\tau_{xy}}{\sigma_0} = 0 \tag{49}
\]

These analytical results are used to evaluate the accuracy of the numerical solution generated by the finite element model discussed in the next paragraph.
4.3 Finite Element Modeling Assumptions

A finite element model of the problem described above was created using the rectangular grid shown in Fig. 4. The model consists of fifty isoparametric quadrilateral elements, each of which contains four internal integration points at which stresses are determined. Displacements at the four corners and midpoints of each side of each element are also determined. The grid contains a total of 181 of such nodal points. The number of unconstrained degrees of freedom in this model is 362.

The problem shown in Fig. 3 is essentially one of specified loading conditions around the perimeter of the membrane. The specification is not complete, however, since only the resultants P and M of the stress distribution along the left and right edges of the membrane are specified, and not the detailed stress distribution itself. This situation is also unsatisfactory from the numerical modeling viewpoint because the model is not restrained from rigid body motion and, the resulting global stiffness matrix would be singular. Therefore, some external constraints on the displacement of at least two nodes is necessary in order to develop a satisfactory finite element model. It is important to note that such constraints will generally lead to local deviations in the stress and displacement fields from those predicted by the analytical solution.

After investigating several edge constraints and loading conditions, a model was adopted which consists of the constraints \(u_x = 0 \) at each of the eleven nodes along the left edge of the membrane, where \(u_x \) is the nodal displacement in the \(x \)-direction. All nodal points along this
edge are free to move in the y-direction except the node at the center of this edge, which is constrained such that $u_y = 0$.

Along the upper and lower edges of the membrane, the loading conditions used in the finite element model consist of vertical tensile loads applied at each node. The magnitude of these nodal forces is determined such that they are equivalent to a uniform tensile normal stress of σ_0 along each edge.

In order to apply the resultant tension force P in the x-direction and bending moment M, the nodes along the right edge of the membrane model were attached to a finite element model of a very stiff beam upon which external forces were applied. The attachment between the membrane and beam models was accomplished by requiring continuity of displacements in the x-direction at each node. However, displacements in the y-direction for nodes belonging to the membrane were not required to be the same as those for nodes belonging to the beam, except at the node in the center of the edge. In addition, nodal forces were applied to the beam in such manner that the resultant force was P and the resultant bending moment was M.

Numerical results were generated by first applying the pretensioning forces. These forces correspond to P along the right edge and σ_0 along the upper and lower edges. After the equilibrium configuration of the pretensioned membrane was obtained, a bending moment M was applied in small increments to the stiff beam along the right edge of the membrane. An iterative solution for equilibrium displacements was generally required after each increment of bending moment.
4.4 Comparison of Finite Element and Analytical Results

The qualitative nature of the results of the finite element simulation are shown in Figs. 5 and 6. Shown in Fig. 5 are the directions of the edge displacements along the right edge of the membrane. (The displacements are not to scale.) This displacement pattern reveals the downward translation and clockwise rigid rotation which are expected for the edge displacements of a cantilevered beam subjected to a pure clockwise bending moment.

Shown in Fig. 6 is a plot of the directions of the principal stresses within every element for the case of an advanced loading state. In this state the applied bending moment is so large that about 75% of the membrane surface is wrinkled. The principal stresses are shown centered on each internal integration point as orthogonally directed line segments. The line segments define the orientation of the principal axes of stress. Wrinkled regions are indicated by a single line segment in a direction parallel to the wrinkles. The length of the arrows is not proportional to the magnitude of the principal stress, and in this sense the figure is not to scale. The results indicate that the principal axes of stress are all aligned along the x and y coordinate axes, as expected.

A comparison of the overall moment-curvature behavior of the membrane, as determined by the finite element model and by Eq. (46) is shown in Fig. 7. Note that the numerical results, even for very large curvatures, are very accurate. In fact, the errors are so small as to be nearly imperceptible at this scale.
Shown in Fig. 8 is a comparison of analytical (Eq. (45)) and numerical results for the wrinkle band width, \((b/h) \). Since this band width is not directly available from the finite element code, it was necessary to estimate the location of the boundary between wrinkled and taut regions by linear extrapolation of numerical results for \(\sigma_x \). This was accomplished by plotting numerical values for \(\sigma_x \) vs. \(y \) (as in Fig. 9), then fitting a curve through these points and extrapolating to \(\sigma_x = 0 \) in order to identify the corresponding value of \(y = b \). Repeating this process for three different stress states corresponding to three different levels of bending moment, the data were obtained for Fig. 8. Again it is seen that the errors in the numerical results are less than two percent.

Shown in Fig. 9 are curves for \(\sigma_x \) vs. \(y \) for three different levels of bending moment. The analytical results were generated from Eq. (47), and the numerical results were obtained directly from the SAP 7 output files. Although they are not plotted, the numerical and analytical results for \(\tau_{xy} \) agreed on the value of zero in every element, and \(\sigma_y \) was observed both numerically and analytically to be \(\sigma_0 \) in every element.

The numerical results shown in Fig. 9 correspond to the \(\sigma_x \) stresses at each internal integration point within the vertical strip of five elements located just left of the center of the membrane model shown in Fig. 4. Results for an element strip along the extreme left or right edges of the membrane vary slightly from the plotted results due to imperfect boundary conditions in the model, as previously discussed.

The accuracy of the numerically determined values for \(\sigma_x \) is again found to be very high at every location except for the special case
when the integration point happened to be located very near the boundary \(y=b \). Since no efforts were made to devise an advanced algorithm for such boundary points, the discrepancy in this special case is not surprising. However, the principal observation from Fig. 9 is that the finite element model is capable of providing very accurate results for the detailed stress distribution within the membrane, at almost every point.
V. PURE ROTATION OF A HUB ATTACHED TO A FLAT STRETCHED MEMBRANE (FINITE ELEMENT VERIFICATION EXAMPLE NO. 2)

5.1 Problem Description

As a second example of a partly-wrinkled flat membrane, consider a rigid circular hub of radius \(a\) attached to a flat stretched membrane as shown in Fig. 10. The membrane forms an infinite flat sheet and extends indefinitely in all directions. Let the rigid hub be perfectly bonded to the membrane before pretensioning. After the hub is attached, let the membrane be subjected to a uniform edge tension at infinity, so that the stress state in the membrane far from the hub is isotropic with principal stress \(\sigma_0\). After pretensioning, the hub is subjected to a pure twisting moment \(M_t\), as shown. For sufficiently large \(M_t\) the membrane stress state consists of an exterior taut region and an annular interior region which is wrinkled. The extent of the wrinkled region is measured by the wrinkle radius \(R\).

5.2 Analytical Solution

A detailed analysis of a class of problems very similar to the one just described is contained in Ref. [14]. In particular, from Appendix B, of Ref. [14] in the limiting case of an infinite membrane \((b \to \infty)\), the wrinkle radius \(R\) corresponding to a prescribed twisting moment \(M_t\) is governed by

\[
\frac{1}{A} + \frac{1}{B} - \ln \left(\frac{B}{A}\right) - \frac{2}{3} = 0
\] (50)
where

\[A = \frac{C_4}{M^2} - 1 \quad ; \quad B = R^2 \frac{C_4}{M^2} - 1 \] (51)

\[C_4 = \left[R + \sqrt{R^2 - \left(\frac{M}{R} \right)^2} \right]^2 + \left(\frac{M}{R} \right)^2 \] (52)

and where

\[\bar{M} = \frac{M_t}{2\pi a^2 \sigma_0} \quad ; \quad \bar{R} = \frac{R}{a} \] (53)

In deriving Eqs. (50) through (53) it was assumed that the value of Poisson's ratio for the membrane material is \(\nu = \frac{1}{3} \), and that the thickness of the membrane is \(t \).

Furthermore, after correction of a typographical error in Eq. (37) of Ref. [14], the induced angle of twist \(\phi \) of the rigid hub is found to be governed by

\[\bar{\phi} = \frac{3\bar{M}}{B} \left[\frac{(1/R^2) - 1}{B} + \frac{1}{B} \left(\frac{B}{A} \right) \left(1/R^2 \right) + \frac{5}{3} \right] \] (54)

where \(\bar{\phi} = 2G\phi/\sigma_0 \) and \(G \) is the shear modulus of the membrane.

The simultaneous solution of Eqs. (50), (51), and (52) requires an iterative numerical approach. However, it can be shown that the response is linear (i.e., no wrinkles occur) for \(\bar{M} \leq \sqrt{3/2} \). In this regime, one finds that \(\bar{M} = \bar{\phi} \), and \(\bar{R} \) is not meaningful. The onset of wrinkling occurs at \(\bar{M} = \sqrt{3/2} \) at which \(\bar{R} = 1 \). For \(\bar{M} > \sqrt{3/2} \), the corresponding nonlinear solutions are presented in Table 2.
Furthermore, the principal stresses in the membrane may be shown to be

\[
\frac{\sigma_1}{\sigma_0} = \begin{cases}
\frac{(C_4/F)}{(C_4 - (M/F)^2)} ; & 1 \leq F \leq \bar{R} \\
1 + (\bar{R}/F)^2 ; & \bar{R} \leq F
\end{cases}
\]

(55)

\[
\frac{\sigma_2}{\sigma_0} = \begin{cases}
0 ; & 1 \leq \bar{F} \leq \bar{R} \\
1 - (\bar{R}/F)^2 ; & \bar{R} \leq \bar{F}
\end{cases}
\]

(56)

where

\[\bar{F} = r/a\]

(57)

and \(r\) is the radial distance from the center of the hub.

Also shown in Table 2 are numerical values for

\[
k = \frac{16 \tau_r (\bar{F} = 4)}{\sigma_r (\bar{F} = 4)} = \frac{\bar{M}}{1 + \frac{\bar{R}}{16} \sqrt{\bar{R}^2 - \frac{M^2}{\bar{R}}}}
\]

(58)

The values for \(k\) are used later in determining an equivalent value of \(\bar{M}\) in the finite element model for this problem. After the appropriate \(\bar{M}\) has been identified, the analytical values for \(\bar{R}, \phi, (\sigma_1/\sigma_0)\) and \((\sigma_2/\sigma_0)\) are compared with the corresponding results from the finite element model, which is described in the next paragraph.
5.3 Finite Element Modeling Assumptions

The creation of a finite element model for this infinite membrane was accomplished by first imagining the problem as being the superposition of an interior problem and an exterior problem which are pieced together at a common interface. Let the interface be a circle of arbitrarily chosen radius \(r=4a \) in Fig. 10. Then the exterior problem \((r>4a)\) contains no wrinkled region and may be solved analytically by simple two-dimensional elasticity theory. The interior region so created \((r<4a)\) is a finite dimensional annulus which contains a wrinkled region.

The appropriate interface conditions at \(r=4a \) are continuity of \(\sigma_r \) and \(\tau_{r\theta} \), and of displacements \(u_r \) and \(u_\theta \). The approach employed consisted of applying prescribed \(\sigma_r \) and \(\tau_{r\theta} \) along \(r=4a \) for both problems. The hub in the interior problem was then regarded as fixed against displacement, as was the outer edge in the exterior problem. The angle of twist in the corresponding composite problem was obtained by adding the angle of rotation between the rim \(r=4a \) and fixed hub in the interior problem, and the angle of rotation between the rim \(r=4a \) and the fixed boundary at infinity in the exterior problem.

The appropriate values of \(M_t \) and \(\sigma_0 \) were obtained from the known values of \(\sigma_r \) and \(\tau_{r\theta} \) applied at \(r=4a \). This was accomplished for given applied stresses \(\sigma_r \) and \(\tau_{r\theta} \) at \(r=4a \) (which are sufficiently small that \(R<4a \)) by first computing \(k \) from Eq. (58). For a given value of \(k \), the corresponding value of \(M \) may be obtained from Table 2 or from Eqs. (50), (51), (52), and (58) by an iterative solution. \(\sigma_0 \) may then be found from the equilibrium relation

\[
\sigma_0 = 16 \frac{\tau_{r\theta}}{M}
\]

(59)
where $\tau_{r\theta}$ is known. Once \bar{M} is determined for a given loading case in the
finite element model, M_t is determined as well as σ_o, and the nondimensional
stresses and displacements may be compared with the analytical values previously
discussed.

The finite element model of the interior problem was created using
the quasi-circular grid shown in Fig. 11. The model consists of 36 isopara-
metric quadrilateral elements, each of which contains four internal integration
points at which stresses are determined. Displacements at the four corners
and midpoints of each side of each element are also determined. The grid
contains a total of 132 of such nodal points. The number of unconstraining
degrees of freedom in this model is 264.

The nodes along the hub-membrane interface were considered fixed against
displacement. That is, $u_r = u_\theta = 0$ along $r=a$. Along the outer edge $r=4a$, σ_r
and $\tau_{r\theta}$ are prescribed independently, but are applied such that $\tau_{r\theta}=0$ initially
while σ_r is increased to a constant pretension value. After the pretension
in σ_r has been achieved, then $\tau_{r\theta}$ is increased in steps. As a result wrinkles
are eventually initiated, and the wrinkle radius R increases with increasing
$\tau_{r\theta}$.

The principal stresses σ_1 and σ_2 at each integration point within each
element are determined by the SAP finite element program, and may be read
directly from the output files. The same is true of the nodal displacements
u_r and u_θ. The angle of twist ϕ_1 for this interior problem may be computed
from

$$\phi_1 = \frac{u_\theta (\bar{r} = 4)}{4a}$$

(60)
where $u_0(\bar{r}=4)$ represents the average tangential displacements around the outer perimeter $r=4a$ of the finite element model, as read directly from the computer printout.

The angle of twist ϕ_E for the corresponding exterior problem may be derived from two-dimensional linear elasticity theory. The appropriate boundary conditions for the exterior problem are (1) σ_r and $\tau_{r\theta}$ are prescribed at $r=4a$ (2) $\sigma_\theta \to \sigma_0$ and $u_\theta \to 0$ as $r \to \infty$. The solution for ϕ_E may be obtained as

$$\phi_E = \frac{2G2E}{\sigma_0} = \frac{M}{16}. \quad (61)$$

The total angle of twist for the numerical model is then defined as

$$\phi = \phi_E + \phi_I \quad (62)$$

5.4 Comparison of Finite Element and Analytical Results

The qualitative nature of the numerical results for the interior problem are shown in Fig. 12. The directions of nodal displacements (not to scale) are shown for a typical one-quarter sector of the annular interior region. The displacements are seen to be primarily clockwise rotation, with a inward radial component noticeable near the hub.

Shown in Fig. 13 is a comparison of analytical (eq. (55)) and numerical values for the maximum principal stress (σ_a/σ_0) as a function of radial position (r/a) for four different load cases. The numerical values for σ_1 were obtained directly from the SAP 7 output files for a typical group of these elements which form a sector of the grid in this axisymmetric problem.
The accuracy of the numerically determined values of σ_1 is seen to be very high in all cases.

A comparison of analytical (Eq. (56)) and numerical values for the minimum principal stress (σ_2/σ_0) as a function of radial position (r/a) is shown in Fig. 14, for four different load cases. Again the numerical values for σ_2 were read directly from the SAP 7 output files for elements in a typical sector of the grid. The accuracy of these minimum principal stresses is seen to be considerably less than that of the maximum principal stresses shown in Fig. 13, but nevertheless the numerical values may still be quite adequate for many engineering purposes.

Shown in Fig. 15 is a comparison of the analytical (Eq. (50)) and numerical values for the wrinkle radius (R/a) as a function of the applied torque \bar{M}. Since R is not directly available from the SAP 7 output files, it was necessary to estimate R by curve fitting the results for (σ_2/σ_0) vs. (R/a), and then extrapolating to the case $(\sigma_2/\sigma_0) = 0$. This process was repeated for each load case to obtain the data plotted as numerical values in Fig. 15. The accuracy of the numerical values so obtained is found to be adequate for many engineering purposes.

A comparison of the analytical (Eq. (54)) and numerical values for the overall angle of twist $\bar{\phi}$ as a function of the total applied torque \bar{M} is shown in Fig. 16. The numerical values for $\bar{\phi}$ were obtained from Eqs. (60), (61), and (62) as previously described. As shown in the figure, the finite element model produces results of acceptable accuracy for small torques, but the errors increase as the torque levels increase to a maximum of about five percent at $\bar{M} = 5$. As expected, the errors indicate that the finite element model, which in this example involves only three elements in the radial direction, is too stiff in an overall sense. It is expected that a
finite element model with more elements would result in more flexible behavior, and a reduced error in Fig. 16.

VI. ACKNOWLEDGEMENTS

This research was supported in part by Grant No. NAG-1-235 from the National Aeronautics and Space Administration.
VII. REFERENCES

TABLE 1. PARAMETER COMBINATION FOR PARTIAL WRINKLING WITH PURE TORQUE

<table>
<thead>
<tr>
<th>ρ_e</th>
<th>\bar{M}</th>
<th>N</th>
<th>\bar{Q}</th>
<th>N_{r0}</th>
<th>$\bar{\Omega}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.7071</td>
<td>1.4142</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6320</td>
<td>1.6020</td>
<td>1.2375</td>
<td>0.9718</td>
<td>0.0004</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7548</td>
<td>1.7854</td>
<td>1.5516</td>
<td>0.8841</td>
<td>0.0057</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8570</td>
<td>1.9617</td>
<td>1.8161</td>
<td>0.7418</td>
<td>0.0299</td>
</tr>
<tr>
<td>1.8</td>
<td>0.9284</td>
<td>2.1310</td>
<td>2.0533</td>
<td>0.5703</td>
<td>0.0968</td>
</tr>
<tr>
<td>2.0</td>
<td>0.9681</td>
<td>2.2972</td>
<td>2.2603</td>
<td>0.4102</td>
<td>0.2325</td>
</tr>
<tr>
<td>2.5</td>
<td>0.9959</td>
<td>2.7267</td>
<td>2.7211</td>
<td>0.1738</td>
<td>0.9413</td>
</tr>
<tr>
<td>3.0</td>
<td>0.9993</td>
<td>3.1818</td>
<td>3.1807</td>
<td>0.0839</td>
<td>2.2019</td>
</tr>
<tr>
<td>3.5</td>
<td>0.9998</td>
<td>3.6522</td>
<td>3.6519</td>
<td>0.0456</td>
<td>4.0771</td>
</tr>
<tr>
<td>4.0</td>
<td>1.0000</td>
<td>4.1312</td>
<td>4.1311</td>
<td>0.0270</td>
<td>6.6473</td>
</tr>
<tr>
<td>4.5</td>
<td>1.0000</td>
<td>4.6154</td>
<td>4.6154</td>
<td>0.0171</td>
<td>10.0394</td>
</tr>
<tr>
<td>5.0</td>
<td>1.0000</td>
<td>5.1031</td>
<td>5.1031</td>
<td>0.0113</td>
<td>14.3224</td>
</tr>
<tr>
<td>5.5</td>
<td>1.0000</td>
<td>4.4932</td>
<td>5.5932</td>
<td>0.0078</td>
<td>19.6060</td>
</tr>
<tr>
<td>6.0</td>
<td>1.0000</td>
<td>6.0851</td>
<td>6.0851</td>
<td>0.0055</td>
<td>24.9899</td>
</tr>
</tbody>
</table>
TABLE 2

Analytical Solutions for Stresses and Displacements in the Hub Rotation Example of Figure 10

<table>
<thead>
<tr>
<th>\bar{M}</th>
<th>\bar{R}</th>
<th>\bar{F}</th>
<th>\bar{C}_4</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{3/2}$</td>
<td>1</td>
<td>$\sqrt{3/2}$</td>
<td>3</td>
<td>0.8398</td>
</tr>
<tr>
<td>0.8683</td>
<td>1.001</td>
<td>0.8683</td>
<td>3.0040</td>
<td>0.8420</td>
</tr>
<tr>
<td>0.8776</td>
<td>1.0050</td>
<td>0.8776</td>
<td>3.0201</td>
<td>0.8510</td>
</tr>
<tr>
<td>0.8891</td>
<td>1.0100</td>
<td>0.8892</td>
<td>3.0403</td>
<td>0.8622</td>
</tr>
<tr>
<td>0.9816</td>
<td>1.0500</td>
<td>0.9849</td>
<td>3.2090</td>
<td>0.9517</td>
</tr>
<tr>
<td>1.0976</td>
<td>1.1000</td>
<td>1.1123</td>
<td>3.4387</td>
<td>1.0637</td>
</tr>
<tr>
<td>1.3311</td>
<td>1.2000</td>
<td>1.4019</td>
<td>3.9786</td>
<td>1.2869</td>
</tr>
<tr>
<td>1.5656</td>
<td>1.3000</td>
<td>1.7454</td>
<td>4.6529</td>
<td>1.5057</td>
</tr>
<tr>
<td>1.7987</td>
<td>1.4000</td>
<td>2.1403</td>
<td>5.4774</td>
<td>1.7152</td>
</tr>
<tr>
<td>2.0286</td>
<td>1.5000</td>
<td>2.5753</td>
<td>6.4467</td>
<td>1.9122</td>
</tr>
<tr>
<td>2.2545</td>
<td>1.6000</td>
<td>3.0386</td>
<td>7.5455</td>
<td>2.0957</td>
</tr>
<tr>
<td>2.4765</td>
<td>1.7000</td>
<td>3.5216</td>
<td>8.7593</td>
<td>2.2656</td>
</tr>
<tr>
<td>2.6949</td>
<td>1.8000</td>
<td>4.0190</td>
<td>10.0773</td>
<td>2.4225</td>
</tr>
<tr>
<td>2.9101</td>
<td>1.9000</td>
<td>4.5276</td>
<td>11.4924</td>
<td>2.5673</td>
</tr>
<tr>
<td>3.1226</td>
<td>2.0000</td>
<td>5.0455</td>
<td>13.0000</td>
<td>2.7007</td>
</tr>
<tr>
<td>3.9523</td>
<td>2.4000</td>
<td>7.1901</td>
<td>19.9002</td>
<td>3.1321</td>
</tr>
<tr>
<td>4.3585</td>
<td>2.6000</td>
<td>8.2993</td>
<td>23.8547</td>
<td>3.2945</td>
</tr>
<tr>
<td>4.7607</td>
<td>2.8000</td>
<td>9.4301</td>
<td>28.1382</td>
<td>3.4266</td>
</tr>
<tr>
<td>5.1597</td>
<td>3.0000</td>
<td>10.5810</td>
<td>32.7482</td>
<td>3.5319</td>
</tr>
<tr>
<td>5.5563</td>
<td>3.2000</td>
<td>11.7507</td>
<td>37.6829</td>
<td>3.6137</td>
</tr>
<tr>
<td>5.9510</td>
<td>3.4000</td>
<td>12.9385</td>
<td>42.9412</td>
<td>3.6748</td>
</tr>
<tr>
<td>6.7356</td>
<td>3.8000</td>
<td>15.3642</td>
<td>54.4256</td>
<td>3.7456</td>
</tr>
<tr>
<td>7.1262</td>
<td>4.0000</td>
<td>16.6007</td>
<td>60.6508</td>
<td>3.7599</td>
</tr>
<tr>
<td>8.2929</td>
<td>4.5000</td>
<td>20.3968</td>
<td>81.2545</td>
<td>--</td>
</tr>
<tr>
<td>9.0677</td>
<td>5.0000</td>
<td>22.9943</td>
<td>96.5952</td>
<td>--</td>
</tr>
<tr>
<td>10.2268</td>
<td>5.6000</td>
<td>26.9814</td>
<td>122.0112</td>
<td>--</td>
</tr>
<tr>
<td>10.9981</td>
<td>6.0000</td>
<td>29.6953</td>
<td>140.5578</td>
<td>--</td>
</tr>
</tbody>
</table>
Fig. 1 - Applied Torque vs. Angle of Twist for Axisymmetric Shallow Membrane Problem
Fig. 2 - Applied Load vs. Vertical Displacement for Axisymmetric Shallow Membrane Problem
Fig. 3 - Flat Stretched Membrane Subjected to Pure Bending Moment

Fig. 4 - Finite Element Model for the Membrane in Fig. 3
Fig. 5 - Qualitative Plot of Edge Displacements from Numerical Solution for Pure Bending of Rectangular Sheet. (Displacements not to scale.)

Typical Stress Pattern Each Vertical Strip

Fig. 6 - Qualitative Plot of Principal Stresses from Numerical Solution for Pure Bending of Rectangular Sheet (Advanced Loading State.)
Fig. 7 - Moment-Curvature Relation for Pure Bending of Rectangular Sheet
Fig. 8 - Wrinkle Height vs. Bending Moment for Pure Bending of a Rectangular Sheet

Fig. 9 - Maximum Principal Stress (σ_x) vs. Vertical Position (y) for Pure Bending of a Rectangular Sheet
Fig. 10 - Flat Stretched Infinite Membrane Subjected to a Pure Twist M Through an Attached Rigid Hub.
Fig. 11 - Element and Node Configuration for Finite Element Model of Hub Rotation Interior Problem

Fig. 12 - Qualitate Nodal Displacements from Numerical Solution of Hub Rotation Interior Problem. (Displacements not to scale.)
Fig. 13 - Maximum Principal Stress vs. Radial Position for Four Load Cases (Hub Rotation Interior Problem)
Fig. 14 - Minimum Principal Stress vs. Radial Position for Four Load Cases (Hub Rotation Interior Problem)
Fig. 15 - Wrinkle Radius R vs. Applied Torque M
for Hub Rotation Interior Problem

\[\frac{M}{2\pi a^2 \sigma_0} \]
Fig. 16 - Nondimensional Angle of Twist $\bar{\Phi}$ vs. Applied Torque \bar{M} for Hub Rotation Composite Problem
This section will discuss the formulation of the governing equations starting from the principle of virtual displacements and methods for solving the resulting nonlinear equations. The discussion of the formulation of the equations follows references [1] and [2].

FORMULATION

The motion of a general body is shown in Fig. 1. The configuration is known at times 0 and t and the objective is to determine it at time t + Δt. In the following derivation a left superscript indicates the time when the quantity occurs and a left subscript indicates the configuration with respect to which the quantity is measured. In the case of derivatives, a left subscript indicates the time of the coordinate with respect to which the quantity is differentiated. Thus,
All tensors are referred to Cartesian reference frames. The principle of virtual displacements, written for the current configuration (time = \(t + \Delta t \)) is

\[
\int_{(t+\Delta t)\nu} (t+\Delta t)\epsilon_{ij} (t+\Delta t) dV = (t+\Delta t) R
\]

where

\[
t+\Delta t R = \int_{\partial A} (t+\Delta t t_k) \delta u_k (t dA) + \\
\int_{\nu A} (t+\Delta t f_k) \delta u_k (t dV)
\]

The quantities \((t+\Delta t t_{ij})\) are the Cartesian components of the Cauchy (true) stress tensor at time \(t + \Delta t \), and \((t+\Delta t f_k)\) are surface tractions and body force components at time \(t + \Delta t \) but measured with respect to the configuration at time \(t = 0 \). The variation \(\delta u_k \) is an infinitesimal variation in the current displacement component \((t+\Delta t u_{ik})\). The summation convention for repeated indices is used here. The variation in true strain corresponding to the infinitesimal variation in the displacement field is

\[
\delta (t+\Delta t \epsilon_{ij}) = \frac{1}{2} \left(\delta (t+\Delta t u_{ij}) + \delta (t+\Delta t u_{ji}) \right)
\]

In dynamic analysis the body force components include inertial effects.

Since the configuration at the current time \(t + \Delta t \) is unknown, the principle of virtual displacements, Eq. (1), must be expressed in a form in which all variables are referred to a known state. Then the integration will be performed over known volumes and areas. If the static and kinematic variables are referred to the initial state (time = 0), the formulation is known as Total Lagrangian (TL). If they referred to the previous known state (time = \(t \)), the formulation is known as the Updated Lagrangian (UL). The remainder of this derivation will follow the total Lagrangian formulation. References [1] and [2] present details of both the TL and UL formulations.

In the TL formulation the principle of virtual displacements becomes:

\[
\int_{\nu A} (t+\Delta t \epsilon_{ij}) \delta (t+\Delta t \epsilon_{ij}) dV = (t+\Delta t) R
\]
in which \(t^* \Delta \sigma_{ij} \) are the components of the 2nd (symmetric) Piola-Kirchhoff stress tensor and \(t^* \Delta \varepsilon_{ij} \) are the components of the Green-Lagrange strain tensor which is written in terms of the current displacements \(t^* \Delta u_k \):

\[
\delta (t^* \Delta \sigma_{ij}) = \delta \frac{1}{2} (t^* \Delta \sigma_{o,ij} + t^* \Delta \sigma_{o,ji})
\]

\[
+ t^* \Delta \sigma_{o,k,ij} (t^* \Delta u_{k,ij})
\]

(5)

If incremental static and kinematic quantities are defined as

\[
oS_{ij} = t^* \Delta S_{ij} - tS_{ij}
\]

\[
o\varepsilon_{ij} = t^* \Delta \varepsilon_{ij} - t\varepsilon_{ij}
\]

\[
u_i = t^* \Delta u_i - t u_i
\]

(6)

the total Green-Lagrange strain increment can be decomposed into linear and nonlinear parts

\[
o\varepsilon_{ij} = o\varepsilon_{ij} + o\eta_{ij}
\]

(7)

with

\[
o\varepsilon_{ij} = \frac{1}{2} [o u_{ij,1} + o u_{ji,1} + (o u_{k,1}) (o u_{k,1})]
\]

\[
+ (o u_{k,1}) (o u_{k,1})
\]

(8)

\[
o\eta_{ij} = \frac{1}{2} (o u_{k,1}) (o u_{k,1})
\]

In addition, the increments of 2nd Piola-Kirchhoff stress tensor components can be related to the increments of Green-Lagrange strain tensor components by the linear constitutive law

\[
oS_{ij} = oC_{i j r s} (o \varepsilon_{rs})
\]

(9)

which is an approximation, since \(oC_{i j r s} \) changes along the path in the finite increment \(\Delta t \). Furthermore, the variation in the total strain
\[\delta (t^* \Delta t \varepsilon_{ij}) \] is equal to the variation in the total strain increment \(\delta (\varepsilon_{ij}) \). This equivalence and the relations (6), (7), and (9) can be used to express Eq. (4) in the form

\[
\int_{\Omega} \sigma C_{ijrs} (\varepsilon_{rs}) \delta (\varepsilon_{ij}) \, d\Omega + \int_{\Omega} \sigma S_{ij} \delta (\eta_{ij}) \, d\Omega = t^* \Delta t R - \int_{\Omega} \sigma S_{ij} \delta (\varepsilon_{ij}) \, d\Omega
\]

This variational principle represents a nonlinear equation for the incremental displacements \(u_i \). The Updated Lagrangian formulation leads to a completely analogous expression in which the subscripts and superscripts \((0) \) are replaced by \((t) \) and the equivalence of the 2nd Piola-Kirchoff stress tensor \(\sigma S_{ij} \) to the Cauchy (true) stress tensor \(\sigma \tau_{ij} \) is noted. Of course, the constitutive tensor for the U.L. formulation is now \(\sigma C_{ijrs} \), which takes on different values from \(\sigma C_{ijrs} \). The relationship between the two constitutive tensors is given by

\[
\sigma C_{mnpa} = \frac{\sigma}{\sigma} \sigma C_{x_{m},l} \sigma C_{x_{n},l} \sigma C_{ijrs} \sigma C_{x_{p},l} \sigma C_{x_{q},l}
\]

Equation (10) can be transformed into a system of simultaneous nonlinear algebraic equations by division of the volume \(\sigma \Omega \) into an assemblage of finite elements and use of isoparametric interpolation

\[
\sigma x_l = \sum_{k=1}^{N} h_k (\sigma x_{l,k}) ; \quad u_i = \sum_{k=1}^{N} h_k (u_{i,k})
\]

in each element, where \(N \) is the number of nodal points in the isoparametric element and \(h_k \) are appropriate interpolation polynomials. Integration is carried out numerically, usually by Gaussian quadrature. Reference [2] first linearized Eq. (10) by replacing \(\sigma \varepsilon_{rs} \) by \(\sigma \varepsilon_{rs} \), and \(\delta (\varepsilon_{ij}) \) by \(\delta (\varepsilon_{ij}) \)

and then perform modified Newton iterations, setting

\[
\tau^* \Delta t u_i^{(k)} = \tau^* \Delta t u_i^{(k-1)} + \Delta u_i^{(k)}
\]

in which \(k \) is the iteration number and \(\tau^* \Delta t u_i^{(0)} = \tau u_i \).
As given in Reference [3] the substitution of Eq. (13) into Eq. (10) yield
the following matrix equations.

TABLE 1 FINITE ELEMENT MATRICES

<table>
<thead>
<tr>
<th>ANALYSIS TYPE</th>
<th>INTEGRAL</th>
<th>MATRIX EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN ALL ANALYSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\int_{0}^{t} \rho \cdot t + \Delta t u_k \cdot \delta u_k , dv$</td>
<td>$M \cdot t + \Delta t \cdot \delta u = \int_{H}^{T} H \cdot 0 , dv$</td>
</tr>
<tr>
<td></td>
<td>$\int_{0}^{t} \rho \cdot t + \Delta t u_k \cdot \delta u_k , dv$</td>
<td>$t + \Delta t = \int_{H}^{T} H \cdot 0 , dv$</td>
</tr>
<tr>
<td></td>
<td>$t + \Delta t_R = \int_{0}^{t} \rho \cdot t + \Delta t \cdot \delta u_k , da$</td>
<td>$t + \Delta t_R = \int_{H}^{T} H \cdot 0 , da$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+ \int_{0}^{t} \rho \cdot t + \Delta t \cdot \delta u_k , dv$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+ \int_{0}^{t} \rho \cdot t + \Delta t \cdot \delta u_k , dv$</td>
</tr>
<tr>
<td>A. LINEAR ANALYSIS</td>
<td>$\int_{C_{ijrs}} t + \Delta t \cdot \delta e_{ij} , dv$</td>
<td>$k \cdot t + \Delta t u = \int_{B}^{T} C \cdot B , dv$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k \cdot t + \Delta t u = \int_{B}^{T} C \cdot B , dv$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANALYSIS TYPE</th>
<th>INTEGRAL</th>
<th>MATRIX EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. MATERIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONLINEARITY ONLY</td>
<td>$\int_{0V}^{C_{ijrs}} e_{rs} \delta e_{ij} 0_{dv}$</td>
<td>$t_K \ u = \left(\int_{0V}^{B_{L}} C_{BL} 0_{dv} \right) u$</td>
</tr>
<tr>
<td></td>
<td>$\int_{0V}^{t_{ij}} \sigma_{ij} \delta e_{ij} 0_{dv}$</td>
<td>$t_F = \int_{0V}^{B_{L}} t_{\Sigma} 0_{dv}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. TOTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAGRANGIAN FORMULATION</td>
<td>$\int_{0V}^{0_{C_{ijrs}} e_{rs} \delta 0_{eij} 0_{dv}}$</td>
<td>$t_K \ u = \left(\int_{0V}^{B_{NL}} 0_{C} 0_{B_{L}} 0_{dv} \right) u$</td>
</tr>
<tr>
<td></td>
<td>$\int_{0V}^{t_{S_{ij}} \delta 0_{\eta_{ij}} 0_{dv}}$</td>
<td>$t_{K_{NL}} u = \left(\int_{0V}^{B_{NL}} t_{S} 0_{B_{NL}} 0_{dv} \right) u$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\int_{0V}^{t_{S_{ij}} \delta 0_{eij} 0_{dv}}$</td>
<td>$t_F = \int_{0V}^{B_{L}} t_{S} 0_{S} 0_{dv}$</td>
</tr>
<tr>
<td>ANALYSIS TYPE</td>
<td>INTEGRAL</td>
<td>MATRIX EVALUATION</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>D. UPDATED LAGRANGIAN FORMULATION</td>
<td>$\int_{t_V}^{t_i} C_{ijrs} t^0_{rs} \delta_{t e_{ij}} t_{dv}$</td>
<td>$t_K^{L} u = \left(\int_{t_V}^{t_B} t^T_{B} t^C_{t_B} t^L_{B} t_{dv} \right) u$</td>
</tr>
<tr>
<td></td>
<td>$\int_{t_V}^{t_i} T_{ij} \delta_{t e_{ij}} t_{dv}$</td>
<td>$t_K^{NL} u = \left(\int_{t_V}^{t_B^{NL}} t^T_{B^{NL}} t^T_{t_B^{NL}} t^L_{B^{NL}} t_{dv} \right) u$</td>
</tr>
<tr>
<td></td>
<td>$\int_{t_V}^{t_i} T_{ij} \delta_{t e_{ij}} t_{dv}$</td>
<td>$t_F^{L} = \int_{t_V}^{t_B^{L}} t^T_{t_B^{L}} t^L_{t_B^{L}} t_{dv}$</td>
</tr>
</tbody>
</table>
Numerical Time Integration

The incremental equilibrium equations must be solved at each time step using a numerical integration scheme. In SAP7 the Wilson θ-method and Newmark method are used. This section follows the formulation given in Reference [3].

In the Wilson θ-method a linear variation of acceleration is assumed over the time increment $\tau = \theta \Delta t$, where (for unconditional stability in the analysis of linear systems) $\theta \geq 1.37$, and the equilibrium equations are considered at time $t + \tau$,

$$M \frac{t+\tau}{\ddot{u}} + C \frac{t+\tau}{\dot{u}} + K u = t+\tau - t_F$$ \hspace{1cm} (1)

where $t+\tau = \tau = \theta (t+\Delta t - t_R)$, and u is the change in displacement vector during the time interval t to $t + \tau$, i.e. $u = t+\tau u - t u$. Using the linear acceleration assumption it follows that

$$t+\tau \ddot{u} = \ddot{u} + \frac{\tau}{2} (t+\tau \dddot{u} + t \dddot{u}) \hspace{1cm} (2)$$

$$t+\tau u = t_u + \tau t \dddot{u} + \frac{\tau^2}{6} (t+\tau \dddot{u} + 2t \dddot{u}) \hspace{1cm} (3)$$

which gives

$$t+\tau \dddot{u} = \frac{6}{\tau^2} u - \frac{6}{\tau} t \dddot{u} - 2t \dddot{u} \hspace{1cm} (4)$$

and

$$t+\tau \ddot{u} = \frac{3}{\tau} u - 2t \dddot{u} - \frac{\tau}{2} t \dddot{u} \hspace{1cm} (5)$$

Substituting the relations (4) and (5) into Eq. (1), an equation with u as the only unknown is obtained. Solving for u and using the linear acceleration assumption, the required displacement, velocity and acceleration vectors are obtained,
\[t + \Delta t \ddot{u} = (1 - \frac{1}{6}) \ t \dddot{u} + \frac{1}{6} \ t + \tau \ddot{u} \quad (6) \]

\[t + \Delta t \ddot{u} = t \ddot{u} + \frac{\Delta t}{2} \ (t \dddot{u} + t + \Delta t \ddot{u}) \quad (7) \]

\[t + \Delta t \ddot{u} = t \ddot{u} + \Delta t \ t \dddot{u} + \frac{\Delta t^2}{6} \ (t + \Delta t \ddot{u} + 2 t \dddot{u}) \quad (8) \]

EQUILIBRIUM ITERATION

In order to avoid large integration errors we may choose to iterate in each load step until the equilibrium equations are satisfied within a given tolerance. For a single finite element, in the TL formulation the equation used for iteration is given as,

\[(t_{KL}^{K} + t_{NL}^{K}) \Delta u^{(1)} = t + \Delta t R - t + \Delta t \tau^{(i-1)} - M t + \Delta t \ddot{u}^{(i)} \quad (9) \]

\[i = 1, 2, 3 \ldots \]

where

\[t + \Delta t \ddot{u}^{(1)} = t + \Delta t \ddot{u}^{(i-1)} + \Delta u^{(i)} . \]

A more detailed description of the equilibrium iteration equations can be found in Reference [3].
APPENDIX B

SAP 7 SUBROUTINE ELPAL
SUBROUTINE IPAL (PROP,SIG,EPS,YIELD,IPFL)
IMPLICIT P=3L=8(A-H,0-1)

* THIS PROGRAM CAN BE USED IN SINGLE PRECISION ON CDC COMPUTERS *
AND DOUBLE PRECISION ON IBM, UNIVAC, DEC VAX 780/11 AND PRIME
COMPUTERS. ACTIVATE, DEACTIVATE OR ADJUST THE ABOVE CARD FOR
SINGLE OR DOUBLE PRECISION ARITHMETIC.

IST NUMBER OF STRESS COMPONENTS
ISR NUMBER OF STRAIN COMPONENTS
EPS STRAINS AT THE END OF THE PREVIOUS UPDATE
RATIO PART OF STRAIN INCREMENT TAKEN ELASTICALLY
DELEPS INCREMENT IN STRAINS
DELSIG INCREMENT IN STRESSES, ASSUMING ELASTIC BEHAVIOR

PROP(1) YOUNG'S MODULUS
PROP(2) POISSON'S RATIO
PROP(3) INITIAL YIELD STRESS IN SIMPLE TENSION
PROP(4) STRAIN HARDENING MODULUS

IPFL = 1, MATERIAL ELASTIC
= 2, MATERIAL PLASTIC

COMMON /EL/ IND, COUNT, NPAR(20), NUME, NEGL, NEGNL, IMASS, IDAMP, ISTA
1, NDIR, KLIN, IFIG, IMASS, IDAMP
COMMON /VA/ /NS, KPRI, M3DEX, KSTEP, ITE,ITEMAX, IREF, IFQREF, INDCMD
1, INDCMD
COMMON /VMISES/ A1, B1, C1, D1, A2, P2, C2, D2, YLD, BM, ISR, IST
COMMON /MATMOD/ STRESS(4), STRAIN(4), C1(4,4), THESTR(4), TEMP, IPT, NEL
COMMON /SIS23/ DISO(9)
COMMON /PLOT/TIME, IPT, IPLT, IPTEL, IPLTDF, IPLTND(2,8)
=NU4FL, NPAR, IPS, IPES
COMMON /WINK/JNR

DIMENSION PROP(4), SIG(4), EPS(4)
DIMENSION TAU(4), DELSIG(4), DELEPS(4), DEPS(4), STATE(2)

EQUIVALENCE (NPAR(3), INDNL), (NPAR(5), ITYP2D), (DELEPS, DEPS)
DATA NGLAST/1000/, STATE/1HE, IHP/

SORT(2)=DSORT(2)

* THIS PROGRAM CAN BE USED IN SINGLE PRECISION ON CDC COMPUTERS *
AND DOUBLE PRECISION ON IBM, UNIVAC, DEC VAX 780/11 AND PRIME
COMPUTERS. ACTIVATE, DEACTIVATE OR ADJUST THE ABOVE CARD FOR
SINGLE OR DOUBLE PRECISION ARITHMETIC.

IF (IPT.NE.1) GO TO 110
IST=4
IF (ITY=2.D. EQ. 2) IST=3
IF (ITYP2D. EQ. 0) ISR=4
YM=PROP1(1)
PV=PROP1(2)
D1=PV/(PV - 1.000)
A2=YM/(1.000 + PV)
Z2=(1.000 - PV)/(1.000 - 2.000 - PV)
C2=PV/(1.000 - 2.000 - PV)
D2=YM/PROP(4)/(YM - PROP(4))
C1=Z2/2.000
Z4=Y/YM/1.000

C
IF (ITYP2D. EQ. 2) GO TO 105
C
PLANE STRAIN / AXISYMMETRIC
B1=A2+C2
A1=91+A2
GO TO 110
C
PLANE STRESS
105
A1=YM/(1.000 - PV*PV)
B1=A1*PV
C
YLD. = YIELD
C
1. CALCULATE INCREMENTAL STRAINS
C
DO 120 I=1,ISR
120
DEL_EPS(I) = STRAIN(I) - EPS(I)
C
CHECK FOR WRINKLING BEHAVIOR
C
JP=1
C
IF (JWR.EQ.0) GO TO 30
EPS=1.0 - 9
A=STRAIN(I) + STRAIN(2)
B=STRAIN(I) - STRAIN(2)
E12=STRAIN(3)
F=E12 - E12
E1=(A - SORT(3 + R + E))/2
E2=(A - SORT(3 + R + E))/2
T=(E1)*4.20,26
C
JP=2
DO 25 I=1,4
SIG(I)=0.000
25
DELSIG(I)=0.000
GO TO 150
C
EP=PV*E1 + E2
IF (EP + EPSIGZB, 30, 30
JP=3
P9=(F1 - E2)
Q=12/(F1 + E2)
P1=1.0 + P*YM/2.000
P2=1.0 - P*YM/2.000
Q1=2*YM/4.000
2. Calculate the stress increment, assuming elastic behavior

\[\Delta \sigma_i = P_i \Delta \epsilon_{EPS}(1) + Q_i \Delta \epsilon_{EPS}(3) \]

\[\Delta \sigma_1 = P_1 \Delta \epsilon_{EPS}(1) + Q_1 \Delta \epsilon_{EPS}(3) \]

\[\Delta \sigma_2 = P_2 \Delta \epsilon_{EPS}(2) + Q_2 \Delta \epsilon_{EPS}(3) \]

\[\Delta \sigma_3 = P_3 \Delta \epsilon_{EPS}(1) + Q_3 \Delta \epsilon_{EPS}(3) \]

\[\Delta \sigma_4 = Q_4 \Delta \epsilon_{EPS}(2) + Q_5 \Delta \epsilon_{EPS}(3) \]

\[\sigma_i = \frac{1}{n} \sum \Delta \sigma_i \]

3. Calculate total stresses, assuming elastic behavior

\[\sigma(1) = \sigma(1) + \sigma(1) \]

4. Check whether the state of stress falls outside the loading surface

If \(T \sigma > 0 \), go to 150

If \(\sigma_1 > 0 \), go to 170

C

5. State of stress within loading surface – elastic behavior

\[\text{STRESS}(4) = \text{EPS}(4) + \text{DEL}(\epsilon_{EPS}(1) + \epsilon_{EPS}(2)) \]

\[\text{IF} (\text{EPS}(4) > 0) \text{GO TO 400} \]

C
STATE OF STRESS OUTSIDE LOADING SURFACE - ELASTIC BEHAVIOR

370 IF (IPEL.EQ.1) GO TO 320

...... WAS PLASTIC

IPEL = 2
RATIO = 0.
DO 315 I=1,1ST
315 TAU(I) = SIG(I)
GO TO 370

...... WAS ELASTIC

DETERMINE PART OF STRAIN TAKEN ELASTICLY

320 IPEL = 2
330 IPEL = 2

SM = (SIG(1)+SIG(2)+SIG(3))/3.000
SX = SIG(1) - SM
SY = SIG(2) - SM
SZ = SIG(3) - SM

DM = (DELSIG(1)+DELSIG(2)+DELSIG(3))/3.000
DX = DELSIG(1) - DM
DY = DELSIG(2) - DM
DS = DELSIG(3) - DM

A = DX#DX + DY#DY + 2.000#SZ#SZ + DZ#DZ
B = SX#DX + SY#DY + 2.000#SZ#SZ + SZ#SZ
E = SX#SX + SY#SY + 2.000#SZ#SZ + SZ#SZ - 2.000#YLD#YLD/3.000

RATIO = (-B#RRT(3#B-A#E))/A

350 DO 370 I=1,1ST
370 TAU(I) = SIG(I) + RATIO#DELSIG(I)
IF (ITYP2D.EQ.2) STRAIN(4) = EPS(4) + RATIO#DI*(DELEPS(1) + DELEPS(2))

*TAUS NOW CONTAINS (PREVIOUS STRESSES + STRESSES DUE TO ELASTIC STRAIN INCREMENTS)

5. CALCULATE PLASTIC STRESSES

DETERMINE INCREMENT INTERVAL

370 M=20, DO=SORT(FT)/YLD+1
IF (N.GT.30) M=30
XM = (1.#DO - RATIO)/M

380 DO 380 I=1,1ST
380 DEPS(I) = XM*DELEPS(I)

...... CALCULATION OF ELASTOPLASTIC STRESSES (START)
C=**
WRITE(*,72000)
WRITE(*,697) (DEPS(I),I=1,4)
WRITE(*,697) A, R, E, RATIO
WRITE (5,2071)
FORMAT(2X,3HTAU)
WRITE(*,697) (DEPS(I),I=1,4)

DO 600 IM=14
CALL MIDEPS (TAU,DEPS,C)
DO 560 I=1,1ST
DO 560 J=1,1ST
560 TAU(I) = TAU(I) + C(I,J) * DEPS(J)
CORRECTION
DM = (TAU(1) + TAU(2) + TAU(4))/3.0
DX = TAU(1) - DM
DY = TAU(2) - DM
DS = TAU(3)
DZ = TAU(4) - DM
IF (PROP(4).EQ.0.) GO TO 580
STRAIN-HARDENING MATERIAL - UPDATE YLD
DP15=15.03
YLD=SORT ((DP15*(DX#DX+DY#DY+2*DS#DS+DZ#DZ)))
GO TO 690
PERFECTLY PLASTIC MATERIAL
FTA=.5D9*(DX#DX+DY#DY+DZ#DZ) + DS#DS
FP=SYL(YLD)/3.0
IF (FTP.ED.0.) GO TO 600
IF (ITYPD.ED.0.) GO TO 590
COEF=-1.0
COEF=SOR(T(FTB/FTA)
TAU(1) = TAU(1) + COEF#DX
TAU(2) = TAU(2) + COEF#DY
TAU(3) = TAU(3) + COEF#DS
TAU(4) = TAU(4) + COEF#DZ
GO TO 600
COEF=SOR(T(FTB/FTA)
TAU(1) = TAU(1) # COEF
TAU(2) = TAU(2) # COEF
TAU(3) = TAU(3) # COEF
STRAIN(4) = STRAIN(4) + (COEF - 1.0)*DS/DM
CONTINUE
CALCULATION OF ELASTOPLASTIC STRESSES (END)
STRESS(4) = 0.0
DO 390 I=1,1ST
390 STRESS(I) = TAU(I)
6. UPDATING STRESSES, STRAINS, YIELD, NS

DO 410 I=1,1ST
410 SIG(I) = STRESS(I)
DO 420 I=1,1SR
420 EPS(I) = STRAIN(I)
YIELD = YLD
IF (ITYP2D.EQ.2) EPS(4) = STRAIN(4)
IF (KPRI.EQ.0) GO TO 700

C C
C IF (ICOUNT.EQ.3) RETURN
C
C IF (IPEL.EQ.1) GO TO 450
C
C ELASTO-PLASTIC
CALL MIDEP (TAU,DEPS,C)

C C****
C WRITE(6,3302)
C3302 FORMAT(5X,15HTAU,DEPS,C(I,J))
C C WRITE(6*,9) (TAU(I),I=1,4)
C C WRITE(6*,9) (DEPS(I),I=1,4)
C C****
C RETURN
C
C ELASTIC
DO 460 I=1,1SR
DO 469 J=1,1SR
460 C(I,J)=0.00

C C MODIFICATION OF STRESS-STRAIN MATRIX
C FOR WINKLED BEHAVIOR
C C
C IF(JP.NE.2) GO TO 36
DO 40 I=1,3
DO 40 J=1,3
40 C(I,J)=0.500100
RETURN

36 IF(JP.NE.3)35 TO 35
C(1*1)=1
C(1*2)=0.055
C(1*3)=21
C(3*1)=0.1
C(2*2)=0.2
C(3*2)=0.1
C(3*3)=0.2
RETURN

35 C(1*1)=A1
C(2*1)=B1
C(2*2)=B2
C(3*1)=B1
C(3*2)=B2
C(3*3)=61
RETURN
C
G(3.3)=E1
IE (ITYP=0.VE=0) RETURN
IF (ITYP=0.VE=1) RETURN
G(1.4)=B1
G(2.4)=31
G(4.1)=B1
G(4.4)=A1
C
RETURN
C
470
G(4.1)=Z2
G(4.2)=Z2
G(4.3)=0.00
G(4.4)=A2
C
RETURN
C
PRINTING OF STRESSES
C
700
IF (IPEL.EQ.1) GO TO 705
C
DM=(STRESS(1) + STRESS(2) + STRESS(4))/3.000
DY=STRESS(1) - DM
DY=STRESS(2) - DM
DY=STRESS(4) - DM
FT=500*(DX*DX + DY*DY + D2*2) + DS*DS - YLD*YLD/3.000
C
705
IF (INONLN.EQ.2) GO TO 800
C
IN TOTAL LAGRANGIAN FORMULATION,
CAUCHY STRESSES ARE CALCULATED AND PRINTED
C
CALL CAUCHY
C
800
IF (NG.EQ.NGLAST) GO TO 802
IF (NEL.EQ.NELAST) GO TO 906
IF (IPT-1) 810,808,810
C
502
NGLAST=NG
903
IF (ITYP20) 803,805,803
973
IF (IPS.NE.7)
*WRITE (6,2502)
GO TO 806
805
IF (IPS.NE.0)
*WRITE (6,2003)
C
806
NELAST=NEL
IF (IPS.NE.0)
*WRITE (6,2004) NEL
810
CALL MAXMIN (STRESS,SX,SY,SM)
IF (ITYP20) 813,815,813
C
813
IF (JWR.EQ.1) GO TO 817
IF (IPS.NE.0)
*WRITE (6,2005) IPT,STATE(IPEL),
J(STRESS(I).I=1,3),SX,SY,SM,FT
GO TO 818
IF (IPS .NE. 0) THEN
WRITE(18, 2003) IPT, (STRESS(I), I = 1, 3), SX, SY, SM
RETURN
END

IF (IPS .NE. 0) THEN
WRITE(18, 2010) TIME, NG, NEL, IPT, (STRESS(I), I = 1, 3), SX, SY,
154 .ET, JD
RETURN
END

IF (IPS .NE. 0) THEN
WRITE(18, 2007) IPT, STATE(IPEL), STRESS(4),
1STRESS(I), I = 1, 3), SX, SY, SM, FT
IF (IPS .NE. 0) THEN
WRITE(18, 2010) TIME, NG, NEL, IPT, STRESS(4), (STRESS(I), I = 1, 3),
2STRESS(I), I = 1, 3), SX, SY, SM, FT, JD
RETURN
END

FORMAT(504 ELEMENT STRESS, STRESS-XX, STRESS-YY, STRESS-ZZ, MAX STRESS, MIN STRESS, 21X, 5HYIELD,
25H NUM/IPT STATE, 349H ANGLE, 9X,
4FUNCTION (/)

FORMAT(504 ELEMENT STRESS, STRESS-XX, STRESS-YY, MAX STRESS, MIN STRESS, 21X, 5HYIELD/33H NUM/IPT STATE,
345H ANGLE, 9X, 9FUNCTION/)
APPENDIX C

SAP 7 INPUT LISTING FOR VERIFICATION EXAMPLE NO. 1
****TEST PROBLEM FOR NASA PROJECT
*CONTROL
M1=60, NL=E
N4=0, 321
M5=320, 0.0625, 0.04
*LOADS
63
2, 3
0.0, 0.0, 0.0, 0.04, 26, 0.0, 0.04
L=192, 192, 17, 2, 1, 0.003
L=193, 191, 1, 2, 1, 0.006
L=11, 181, 17, 3, 1, 0.002
L=17, 170, 17, 3, 1, 0.008
L=28, 164, 17, 3, 1, 0.004
L=1, 171, 170, 3, 1, 0.002
L=12, 165, 17, 3, 1, 0.008
L=18, 154, 17, 3, 1, 0.004
L=18, 182, 1, 2, 2, 0.014
L=183, 193, 1, 2, 2, 0.024
L=194, 174, 1, 2, 2, 0.018
L=185, 185, 1, 2, 2, 0.012
L=196, 186, 1, 2, 2, 0.006
L=197, 188, 1, 2, 2, 0.006
L=193, 193, 1, 2, 2, 0.012
L=197, 190, 1, 2, 2, 0.018
L=191, 191, 1, 2, 2, 0.024
L=192, 192, 1, 2, 2, 0.014
*FIN
NL=1
12, 3, 2, 0, 9, 1
1
7.2E+4, 0.333, 1.0E+4
*MATCH
0.11
1
9.0E+6, 0.3, 0.0E+6, 0.0
1.0, 0.0, 0.0, 1.6666E7, 0.0, 933333, 0.0, 933333, 0.156667, 0.166667
*MATCH
FINISH
TEST PROBLEM FOR NASA PROJECT (MODEL INPUT)

ECNP

CC START GENERATION OF NODES

- **NODE**: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- **NODE**: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40

CC START GENERATION OF BOUNDARY CONDITIONS

- **FIX**: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

SAVE NODAL CO-ORDINATES INFORMATIONS

EEWRITE

CC START GENERATION OF 2D ELEMENTS

- **EL**: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

SAVE ELEMENT INFORMATIONS

EEWRITE

CC START GENERATION OF BEAM ELEMENTS

- **EL**: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

SAVE ELEMENT INFORMATIONS

EEWRITE

CC START GENERATION OF CONSTRAINTS ELEMENTS

- **EL**: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

EEWRITE

END
CIRCULAR MEMBRANE (CIRCUMFERENTIAL T AND S) FOR NASA

ECHO

CC GENERATE NODES

NODE, 1.0, 2.0, 3.0, 4.0, 5.0

X = 1.0, 2.0, 3.0, 4.0, 5.0

CC GENERATE ELEMENTS

ELE, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

END
Abstract

The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. Also reported is an exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane.