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I. INTRODUCTION

Many structural concepts for large spacecraft applications involve
a tensioned membrane surface. Since much of the structural weight in such
spacecraft is associated with compression members necessary to equilibrate
the membrane tension, a high premium is placed on designing structures
with extremely small membrane tension. As a result, the elastic strains
in the membrane may well be much smaller than anticipated thermal strains,
so that a high Tikelihood exists for the development of wrinkled and slack
regions within an otherwise taut membrane surface. The existence and
severity of such wrinkled regions may have an adverse effect on the
overall elastic stability of the spacecraft, as well as on the intended
spacecraft performance if the membrane surface acts as a reflector with
stringent requirements for geometrical accuracy of the surface. Thus,
the problem of predicting the stresses and displacements within a partly
wrinkled membrane surface is one of some current technological interest
in the aerospace industry.

In spite of the importance of the mechanics of wrinkling behavior of
membranes the field remains largely unexplored. Apparently the earliest
investigation in the field was reported more than 50 years ago by Wagner
[1] who conceived "tension field theory" in order to explain the behavior
of thin metal webs in beams and spars carrying a shear load well in excess
of the initial buckling value. Wagner's method of analysis was based on
lengthy geometrical considerations. Reissner [2] and independently Kondo
[3] developed a simpler analysis based on straight-forward calculus, and
presented the first exact solutions to problems involving a non-repetitive
pattern of tension rays. Iai [4] developed an analysis procedure based on

a principle of maximum strain energy under given boundary displacements.



This, and subsequent Japanese work on tension fields is well documented in
a review paper (in English) by Kondo, Iai, Moriguti and Murasaki [5].

In a series of more recent papers, Mansfield [6-9] developed an analysis
procedure which combines the "tension ray" concepts of Reissner and Kondo
and a principle of Maximum "tension" strain energy similar to that of Iai.
The first of his papers [6] developed an analogy with inextensional plate
deformation theory, and worked example problems involving shearing and
lateral contraction of membrane strips, and torsion of an annular membrane.
Later [7], this work was extended to consider problems of load transfer from
an elastic rod bonded to a flat membrane strip. Experiments were also
reported which confirm predictions of the theory. Next [8], the analysis
was generalized to include anisotropic and nonlinear membrane behavior typical
of woven and fiberous materials. It was shown that such nonlinearities tend
to amplify stress concentrations at corners and at the ends of a cut. Finally
[9], the curved winkle patterns within hanging slack membranes was analyzed
for various shapes of membranes and various support conditions. The curved
wrinkles were shown to be governed by a one-dimensional diffusion equation
and an analogy with heat conduction in a slab was noted.

A11 the published work just cited considers static stresses and small
deformations within fully-wrinkled flat membranes. A generalization to
arbritrarily large deformations, with particular concern for the behavior of
stretching skin, was recently presented by Danielson and Natarajan [10].

More recently, Wu [11] considered membrane wrinkling in the neighborhood of
a sutured hole. Then Wu and Canfield [12] presented a general finite plane-

onalysis . .
stress for wrinkling of flat membranes.
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However, for applications in space structures, a particularly important
class of problems is that of partly wrinkled membranes. Such membranes
contain both wrinkled and taut regions. A general theory for partly wrinkled
membranes was developed by Stein and Hedgepeth [13] some 20 years ago. Their
approach is based on experimental observations which show that wheﬁ wrinkles
develop within a membrane parallel to, say, the x-direction, the associated
overall contraction in the y-direction exceeds that predicted by the Poisson's
ratio effect. The additional average normal strain in the y-direction may
be regarded as an "average wrinkle strain". For purposes of simplified analysis,
these geometric features of wrinkling were incorporated in Ref. 13 into a
Hookean material model by appropriately increasing the local effective value
of Poisson's ratio in wrinkled regions. This effective value of Poisson's
ratio may be determined by imposing the approximation that the local state
of stress in a wrinkled region is one of uniaxial tension. The resulting
theory retains the simplicity of form of the Tinear governing equations of
elasticity, with the additional feature that the material parameters are dependent
upon the local state of strain. Comparisons between the predictions of this
theory and experimental results for some simple configurations [13,14,15]
show that very satisfactory results may be obtained. Furthermore, of the
available theories for wrinkling of membranes, the Stein-Hedgepeth theory
appears particularly promising for finite element implementation. Recently -
[16], the approach was used to construct an algorithm for finite element analysis

of flat membranes which contain taut, wrinkled, and slack regions.



With regard to curved membranes containing wrinkled regions, apparently
the earliest work was done by Taylor [17] more than 60 years ago, in an analysis
of parachute shapes. Taylor analyzed the geometry and stresses within a para-
chute formed from an initially flat circular membrane by imposing the condition
of zero hoop stress, and ignoring the stretching of the membrane near the
crown. An extension of Taylor's work was presented more recently for isoten-
soid surfaces by Houtz [18] and Mikulas and Bohon [19].

An analysis of axisymmetric doubly curved membranes which are formed
from an intially flat membrane was presented by Mikulas [20]. The analysis
allows stretching of the membrane surface near the crown to remove wrinkles,
and includes a wrinkled region near the outer edge. The taut region near
the crown is analyzed by a nonlinear membrane theory [21] based on Sander's
theory of thin shells [223 with the omission of the bending terms. The wrinkled
region near the outer edge is analyzed by imposing the zero hoop stress condition
introduced by Taylor. Application is made to three example problems, including
the pressurization of a pleated flat circular membrane attached to a rigid
circular rim, the stretching of an initially flat circular membrane over a
doubly curved, axisymmetric rigid mandrel, and the very large deformation
behavior of a pressurized membrane cylinder subjected to a radial 1ine load.

Although it is not the primary focus of the reported research, the work
of Zak on wave propagation within and vibration of partly wrinkled membranes
is noteworthy. In a series of papers [23-30] Zak considers the stress conditions
for local buckling within a thin membrane, and develops a continuum model
for the propagation of shock waves, and "snaps" within thin membrane surfaces.
His continuum theory for in-plane motion ignores the kinetic erergy of the
out-of-plane motion in wrinkled regions, and results in an in-plane equation

of motion which displays variable mass characteristics. As a result, his



theory predicts a "damping" out of in-plane vibrations as the

kinetic energy of the in-plane motion is converted into out-of-plane
motion through shocks. Examples include a proof that static wrinkle
patterns in fully wrinkled flat sheets loaded only along their edges
must be straight lines. Also, one dimensional examples involving shock
wave propagation in a freely hanging string, and vibrations of a single-
degree-of-freedom oscillator constrained by an inextensible string are
presented.

Presented in this report are the results of one year of research
supported by the National Aeronautics and Space Administration under
Grant Number NAG-1-235 regarding the finite element analysis of wrinkling
membranes, The research was performed at the University of Southern
California (USC) in the Department of Civil Engineering, with technical
assistance from Dr. John M. Hedgepeth of Astro Research Corporation
of Carpinteria, California.

Chapter two of this report presents the results of an analysis
and exact solution for a problem involving axisymmetric deformations
of a shallow curved membrane. The problem was considered in order to
provide an exact solution and "benchmark" for calibration of future
numerical examples.

Chapter three describes the implementation of the numerical algorithm
recently developed by Miller and Hedgepeth [16] on the SAP VII finite
element code at USC. Chapters four and five then present an evaluation
of this algorithm. The evaluation is based on a comparison of analytical
and numerical results for stresses and displacements in two benchmark

problems involving a partly wrinkled flat membrane. These comparisons



reveal a high degree of accuracy for the finite element algorithm. Further-
more, convergence of the required iterative procedure in this nonlinear

problem was achieved without excessive computation.



IT. AXISYMMETRIC DEFORMATION OF SHALLOW MEMBRANE

2.1 General Analysis

Consider a shallow pressurized membrane of spherical radius a. For

axisymmetric loading, the equilibrium equations are

d

ar (rNr) = Ne

d 2

dr (r Nr@) =0 (1)
r_g4w)y _ P _pr

Nr(; dr) S 7 T2

where Nr’ Ne, and Nre are the usual stress resultants, r is the radial
dimension, p is the internal pressure, and P is an added center vertical

load.

The strain-displacement relations are

2
du w l [dw
¢ T artat2 (dr)
u W .
€ = T *a (2)



where u and v are the radial and circumferential tangential displacements,
and w is the normal displacement. We have assumed small strains and
small slopes in comparison to unity except for the second-order term
in the expression for €ps this is necessary to be consistent with the
displacement-dependent term in the third of Eqs. (1). Also, Egs. (1)
and (2) are valid only for r<<a inasmuch as they apply to "shallow"
configurations.

We are interested in solving the equations for an inextensional

membrane both wrinkled and unwrinkled. In an unwrinkled region, then

€Er T €5 T Ypg ~ 0

In addition, in order that the principal stresses be non-negative, the

stresses must obey the inequality

2

NrNe g Nre

On the other hand, in a wrinkled region,

NN

1}
=

re  "'re
and

er N

o N:

The latter condition arises from the facts that the principal tension is parallel

to the wrinkles, and the principal strain is perpendicular to them.



Consider the annular region between r = o and r = ry. lLetw=u=v=0
at r = res and let the load P and moment Q be applied to the "rigid" plug
occupying the center. For small P and Q, there will be no wrinkles;
for large P and Q, the entire annulus will be wrinkled. For intermediate
values, the innter part of the annulus will be wrinkled, and the outer
portion will be unwrinkled.

In all cases, the second of Eqs. (1) can be integrated to yield

N e 2
rd 2"r2
r 2
= -—-9— N
(r ) 9, (4)
where
N = 2
8, 2nr§

is the shear stress at the inner boundary.

2.2 Unwrinkled Region

For the unwrinkled region, the displacements must represent rigid-body

motion. Thus,
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Solving the third of Eqs. (1) gives

Nr=1+F (6)
2
o
The first of Eq. (1) then yields
Ne=1-% (7)

where the various quantities have been nondimensionalized as follows:

pa
r,e pa Nr,e

-4
n

P = P/{mr,%p)

Q = Q/(nrozap)

p = r/r0

In order that the membrane be unwrinkled

R =2

g > Npg
or

+ Q° (8)
Clearly, if the right-hand side is less than unity, then there are no

wrinkles. If it is greatér than (rl/ro)4

, then the entire annulus is wrinkled.
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2.3 Wrinkled Region

Since
2
N, = Nre
o N
we have

2
d (xg) = 0 (9)
* (D 4 ("4Nr)

Integrating gives

R - j-Kﬁ0+§§ 3-61

where

(10)
where'ﬁr is the radial stress resultant at the center plug.
0
The third of Eq. (1) is nondimensionalized to give
di Lo, gl+7 (11)
dp pW
r
2
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Substituting for ﬂr from Eq. (10) and integrating gives

N'o +0
Kr
x [(ﬁz + 52)p2 + 3N P+ (2 + 33)'62]+ 0
r r - _~\3/72
0 0 2 2
B(Nr + Q )
0
) - =2
x [(1 +3PN. 4+ (3 4+ 3P)Q:] (12)
0

where \7«0 is the vertical displacement of the central plug.

The first two of Eqs.(2) in dimensionless form are

- —\2
T & Qu _ =1 (dw
er p+w+2(dp) (13)
- ___E -
ee p+w
where
2
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and

- _7a\e
€r,8 (ro) €r,0

As previously mentioned, the stress and strain relations must be

related in a wrinkled region by

This can be expressed as
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Substituting from Eq. (11) gives

€ 2 =2
é_fg)g_e_l_ie_{_zzL (14)
dp N 2N p‘Nr

In order that one of the principal strains be zero, the shear strain

must be related to the direct strains as follows:

or

in which ) (15)
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Define
N = ii + 0
0
— (16)
o= £
=2
N
Then
- N 2 =
N = 3 /6 - M
p
::—p ). o7 1 - f{p_+P)
N/ - N (p? - W)
Integrating gives
€
6 1 {—2[ | (17)
- = - N F(p)-F(p)]-[G( ) - G( )]
N & | e Pe o f
r
where
Flp) = % 02 - m¥? 4 Hp? - W12
Sy = 2 0% - W7 s B 2532
+P+ME+ M - MY -HE + W22 - W Y2

(18)
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Note that we have used the boundary condition that the circumferential

strain must be zero at the outder edge of the wrinkled region, p = Po The
circumferential strain must also be equal to zero at the central boundary.

Setting Ee (1) = 0 and solving for N gives

_ Gp,) - G(1)
N/ ey - Tm (13a)

If the annulus is fully wrinkled then Pe = P1- Then N can be easily

calculated as a function of M and P. Eq. (16) can be applied to determine

Q and Nro.
If, on the other hand, the membrane is only partly wrinkied, then

continuity of the radial stress resultant at p = Pe requires that

N = (19b)

© o N
(V)
:7
=|

Setting the two expressions for N equal to each other allows the determination
of acceptable combinations of pe,'ﬁ, and P. Then N and finally the
accompanying values of § and N}O can be determined.

For simplicity, the following analysis appliies to pure force and

pure torque.
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2.4 Pure Load

For Q = 0, we set N = ﬁ”o’ and M = 0. The expressions for the various

quantities in the wrinkled region become

- N
Nr = )
2 3 -

- —_ pT -1 pT -1 P
w = w + - — -=(p-1)

0 2 N N (20)
= 1 3.1 = =2 g3 -1, =2
ee = - — 9——3—— + (2P - N7) 3 + P (p-1)

28%0

At the interface, €y = 0, p= Pe> and
= P ’
N = p, ¢ P (21)

Solivng for N, substituting into the last of Eq. (20), and solving

for P gives

_ 2p3 + 4p§ + 6p, + 3
P = p 5(2p, + 1) (22)

The deflection w must also be zero at p = Pe- Therefore,

2
P * Pt 1 pgt1l
= 2 (23)

+

€
o
"
°
o
I
Lot
2] vl

3N
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Substituting for P from Eq. (21) gives

2
- . _(&e;i(l_zfpil_l) (24)

Equations (22) through (24) enable the determination of the manner in

which WO and N and the extent of the wrinkled area change as P is increased

above unity. When the entire surfece becomes wrinkled (pe = p), then the

Ttollowing results are obtained.

2pi + 4pi + Spl+ 3
> P 5(20, + 1)

P
_ - 4 3 2
_ 1572 + lO(pi +p  +1)P +3(p; +py +py +p+1) (25)
N =
S5(p2 + p + 1)
33+pi+pl+1 pl+1
Wy = — - s—|py - 1) (26)

Equations (22) to (26) can also be used for negative values of

P less than minus one by changing the sign of the right-hand side of
Eq. (22).
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2.5 Pure Torque

For P equal zero, the expressions for F ang G in Eq. (18) become

2 _x —
F(p) = ..'/Q.3—_M (pz + 2M)

(27)

Then, Eq. (19a) becomes

3 (p: + zﬁb: + eﬁ2p§ - 15§3)/1 - M- (1+2M+8M- 16ﬁ3)/p§ - M

(p: + Ebz - 2§2)/1 -M- (1 +M- zﬁz)/pz -M

'ﬁZ

w|

(28)

If Pe is on the outer edge, the quantity N can be calculated as a function of M.

Then Q and Nr can be determined from
0
G = 5/n
N = NV1-M

Lo

(29)

For values of 6 slightly greater than one, the region is only partly

wrinkled. Then, using Eq. (19b) and solving for M gives

2 .
N o= pz( :5) (30)
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Substituting from Eq. (28) yields the allowable combinations of Pe and
M for partial wrinkling presented in Table 1. Also given are the associated

values of Q and N} found from Eq. (29)
0

The torsional motion of the hub is of interest. The angle of rotation

is equal to

v(r

0)
To

Or, by using Eq. (15)

(31)

©
2|

60&“\H
|
&

where, as for the strains,

Substituting from Eq. (17) and judiciously using Eq. (28) and integrating

yields

4 =2 =2
- — p_+ 4Mp - BM
7. LR R A e

3N . P - M

(32)

- -2
% 61+4M-8M

1-M

The values for @ for the partly wrinkled cise are given in Table 1.
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2.6 Numerical Results

The Toad-displacement relations are shown in Figure 1 for pure load.
The partly wrinkled membrane exhibits a softening behavior as the load is
increased. When the wrinkling reaches the rim, the resulting fully wrinkled
membrane stiffens with the application of increased load.

The same behavior is exhibited for pure torsion as seen from Figure 2.
It is interesting to note that, although deflections of the membrane begin
when the loading parameter (P or Q) exceeds unity, significant movement
starts occurring at a value of about two. This phenomenon is similar to
that observed for cylinders in bending and is especially pronounced for the

torqued dish.
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I1I. IMPLEMENTATION OF A FINITE ELEMENT ALGORITHM
FOR A FLAT MEMBRANE

3.1 Finite Element Algorithm

Stresses and deformations in flat membranes may be described within
the context of plane stress theory. For the class of problems under
consideration, three regimes of structural behavior are possible. First,
the membrane may behave in a fully taut manner, in which both principal

stresses are positive. In general, this will occur whenever

€y > 0 and Ep 2 = VE (33)

where

€1 ° 7 [(ex + ey) + \Rex - ey)2 + Yiy]

1 .
€27 72 [(e:x sy) - VEX - ey)2 + Y:y]

In Eqs. (31) and (32), €q and e, represent the local principal strains

which are determined from the load-dependent strains €y> Eys and vy

y Xy’
In regions where Eqs. (33) hold, the stresses in the membrane may
be determined from the well known plane stress elasticity relations.

g= DT € (35)

-~



P
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where
= T
o= (o, Oy Txy) (36)
_ T
E = (e)(’ €y9 ny)
and
1 v O
_ _E (37)
Dy = g5z |V 1 O |
0 0 (1-v)/2

where E and v are the modulus of elasticity and Poisson's ratio of the

membrane material, respectively.
In other regions the membrane may behave in a fully slack manner.

In general, this will occur whenever

€, 2 8 < 0. (38)

In such regions it is clear that the corresponding elastic principal
stresses would both be compressive. However, since the membrane cannoct
support compressive stresses, the membrane is actually stress-free in

such regions. Mathematically, this may be expressed as

where



24

Finally, it is possible for the membrane to develop wrinkles. In
this case the stress state is regarded as uniaxial, with the tensile
stress aligned along the direction of the wrinkles. Wrinkled behavior

will occur whenever
€ > 0 and €y < =V Ey. (41)
In such cases, the material supports a tensile stress parallel to the

prircipal direction associated with €15 but is stress-free in a direction

orthogonal to €q- Mathematically, the stresses may be expressed as

9=Dy¢ (42)
where
2(14P) O Q
_ E
D, 7 0 2(1-P) Q (43)
Q Q 1
and where
p = EEE_:_EXZ i Q= Ty (44)
(e - &) (e =€)

Further discussion of the description of stress-strain behavior within
a wrinkled region, and the Stein-Hedgepeth constitutive model which
forms the basis for the formulation presented herein, may be obtained

from Ref. 16.
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It should be pointed out that the choice of a Dw matrix consistent
with the Stein-Hedgepeth wrinkle model may not be unique. There may,
in fact, be an infinite number of elasticity matrices capable of producing
the correct stress-strain relations in a wrinkled element. However,
the matrix of Eqn. (43) provides a bounded and symmetric matrix which
has been successfully implemented and tested as reported herein and
in Ref. 16.

The stress-strain matrices presented above are strain-dependent
and must be updated after each load increment. However, all other aspects
of the problem formulation are identical to the approach used to solve
any nonlinear stress/deformation problem where load increments and
iteration for equilibrium are required. Consequently, the algorithm
described above may be installed with relatively little effort in a
variety of general purpose finite element computer programs which are

capable of nonlinear analysis.

3.2 Computer Implementation on the SAP 7 Code at USC

The algorithm presented in Section 3.1 was installed in the SAP 7
computer code at USC where it now resides among the library of available
material behavior for plane stress analysis.

A description of the theoretical approach based on the principle
of virtual work which is used to formulate the governing equations in
the SAP7 code, and the programmed methods for solving the resulting

nonlinear equations is presented in Appendix A.



26

Most of the required modifications in the rather large SAP 7 code
occurred in the subroutine ELPAL. A listing of the revised ELPAL routine
which incorporates the wrinkle algorithm is presented in Appendix B.

A listing of the input data used to generate the numerical results

for verification examples 1 and 2 (discussed later) are presented in

Appendices C and D.
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IV. PURE BENDING OF A STRETCHED RECTANGULAR MEMBRANE
(FINITE ELEMENT VERIFICATION EXAMPLE NO. 1)

4.1 Problem Description

As a first example of a partly-wrinkled flat membrane, consider
a rectangular membrane which is uniformly pretensioned with normal stress
% in the y-direction and with axial load P = ooth in the x-direction,
as shown in Fig. 3. Note that h is the length of the sides subjected
to force P, and f is the thickness of the membrane. After pretensioning,
an in-plane bending moment M is applied along the edges shown. As M
is increased, eventually a band of vertical wrinkles of length b forms
along the lower edge of the membrane as the normal strain €y in this.
region becomes compressive.

The solution for the stress and displacement fields within the
resulting partly-wrinkled membrane is not trival. For example, the

extent of the wrinkled region is not related in any simple way to the

extent of the compression region within a similarly loaded flat plate.

4.2 Analytical Solution

A complete analysis of the problem just described is presented
in Ref. [13]. It is shown in this reference that the extent of the

vrinkled region may be determined by
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Furthermore, the overall moment-curvature relation for the membrane

is given by
1 2 2
(1 Ehe, , Eth?
M _ (46)
Ph ’ \
2P 1 ; Eth
\ =3 e & K >1

Q

o}
% = 1 (48)

These analytical results are used to evaluate the accuracy of the numerical
solution generated by the finite element model discussed in the next,

paragraph.
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4.3 Finite Element Modeling Assumptions

A finite element model of the problem described above was created
using the rectangular grid shown in Fig. 4. The model consists of fifty
isoparametric quadrilateral elements, each of which contains four internal
integration points at which stresses are determined. Displacements
at the four corners and midpoints of each side of each element are also
determined. The grid contains a total of 181 of such nodal points.

The number of unconstrained degrees of freedom in this model is 362.

The problem shown in Fig. 3 is essentially one of specified loading
conditions around the perimeter of the membrane. The specification
is not complete, however, since only the resultants P and M of the stress
distribution along the left and right edges of the membrane are specified,
and not the detailed stress distribution itself. This situation is
also unsatisfactory from the numerical modeling viewpoint because the
model is not restrained from rigid body motion and, the resulting global
stiffness matrix would be singular. Therefore, some external constraints
on the displacement of at least two nodes is necessary in order to develop
a satisfactory finite elment model. It is important to note that such
constraints will generally lead to local deviations in the stress and
displacement fields from those predicted by the analytical solution.

After investigating several edge constraints and loading conditions,
a model was adopted which consists of the constraints u, = 0 at each
of the eleven nodes along the left edge of the membrane, where uy is

the nodal displacement in the x-direction. A1l nodal points along this
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edge are free to move in the y-direction except the node at the center
of this edge, which is constrained such that uy = 0.

Along the upper and lower edges of the membrane, the loading conditions
used in the finite element model consist of vertical tensile loads
applied at each node. The magnitude of these nodal forces is determined
such that they are equivalent to a uniform tensile normal stress of %
along each edge.

In order to apply the resultant tension force P in the x-direction
and bending moment M, the nodes along the right edge of the membrane
model were attached to a finite element model of a very stiff beam upon
which external forces were applied. The attachment between the membrane
and beam models was accomplished by requiring continuity of displacements
in the x-direction at each node. However, displacements in the y-direction
for nodes belonging to the membrane were not required to be the same
as those for nodes belonging to the beam, except at the node in the
center of the edge. In addition, nodal forces were applied to the beam
in such manner that the resultant force was P and the resultant bending
moment was M.

Numerical results were generated by first applying the pretensioning
forces. These forces correspond to P along the right edge and 06 along
the upper and lower edges. After the equilibrium configuration of the
pretensioned membrane was obtained, a bending moment M was applied in
small increments to the stiff beam along the right edge of the membrane.
An iterative solution for equilibrium displacements was generally required

after each increment of bending moment.
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4.4 Comparison of Finite Element and Analytical Results

The qualitative nature of the reults of the finite element simulation
are shown in Figs. 5 and 6. Shown in Fig. 5 are the directions of the
edge displacements along the right edge of the membrane. (The disp1écements
are not to scale.) This displacement pattern reveals the downward translation
and clockwise rigid rotation which are expected for the edge displacements
of a cantilevered beam subjected to a pure clockwise bending moment.

Shown in Fig. 6 is a plot of the directions of the principal stresses
within every element for the case of an advanced loading state. In this
state the applied bending moment is so large that about 75% of the membrane
surface is wrinkled. The principal stresses are shown centered on each
internal integration point as orthogonally directed line segments. The
line segments define the orientation of the principal axes of stress.
Wrinkled regions are indicated by a single 1ine segment in a direction
parallel to the wrinkles. The length of the arrows is not proportional
to the magnitude of the principal stress, and in this sense the figure
is not to scale. The results indicate that the principal axes of stress
are all aligned along the x and y coordinate axes, as expected.

A comparison of the overall moment-curvature behavior of the membrane,
as determined by the finite element model and by Eq. (46) is shown in
Fig. 7. Note that the numerical results, even for very large curvatures,
are very accurate. In fact, the errors are so small as to be nearly

imperceptable at this scale.
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Shown in Fig. 8 is a comparison of analytical (Eq.(45)) and numerical
results for the wrinkle band width, (b/h). Since this band width is
not directly available from the finite element code, it was necessary
to estimate the location of the boundary between wrinkled and taut regions
by 1inear extrapolation of numerical results for Oy This was accomplished
by plotting numerical values for o, Vs. ¥ (as in Fig. 9), then fitting
a curve through these points and extrapolating to oy = 0 in order to identify
the corresponding value of y = b, Repeating this process for three different
stress states corresponding to three different levels of bending moment,
the data were obtained for Fig. 8. Again it is seen that the errors
in the numerical results are less than two percent.
Shown in Fig. 9 are curves for o, VS. Yy for three different levels
of bending moment. The analytical results were generated from Eq. (47),
and the numerical results were obtained directly from the SAP 7 output
files. Although they are not plotted, the numerical and analytical
results for Txy agreed on the value of zero in every element, and oy
was observed both numerically and analytically to be % in every element.
The numerical results shown in Fig. 9 correspond to the Oy stresses
at each internal integration point within the vertical strip of five
elements located just left of the center of the membrane model shown
in Fig. 4. Results for an element strip along the extreme left or right
edges of the membrane vary slightly from the plotted results due to
imperfect boundary conditions in the model, as previously discussed.

The accuracy of the numerically determined values for o, is again

found to be very high at every location except for the special case
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when the integration point happened to be located very near the boundary
y=b. Since no efforts were made to devise an advanced algorithm for

such boundary points, the discrepancy in this special case is not surprising.
However, the principal observation from Fig. 9 is that the finite element
model is capable of providing very accurate results for the detailed

stress distribution within the membrane, at almost every point.
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V. PURE ROTATION OF A HUB ATTACHED TO A FLAT STRETCHED
MEMBRANE (FINITE ELEMENT VERIFICATION EXAMPLE NO. 2)

5.1 Problem Description

As a second example of a partly-wrinkled flat membrane, consider
a rigid circular hub of radius a attached to a flat stretched membrane
as shown in Fig. 10. The membrane forms an infinite flat sheet and
extends indefinitely in all directions. Let the rigid hub be perfectly
bonded to the membrane before pretensioning. After the hub is attached,
let the membrane be subjected to a uniform edge tension at infinity,
so that the stress state in the membrane far from the hub is isotropic
with principal stress 4 After pretensioning, the hub is subjected
to a pure twisting moment Mt’ as shown. For sufficiently large Mt the
membrane stress state consists of an exterior taut region and an annular
interior region which is wrinkled. The extent of the wrinkled region

is measured by the wrinkle radius R.

5.2 Analytical Solution

A detailed analysis of a class of problems very similar to the
one just described is contained in Ref. [14]. 1In particular, from
Appendix B, of Ref. [14] in the limiting case of an infinite membrane
(b +=), the wrinkle radius R corresponding to a prescribed twisting

moment Mt is governed by

Rrg-tn(f)-§-o (50



35

where
C C
A=-2_1 , p=R2A. (51)
M2 LG
— 7 2 _2
T, = R+ ‘R'Z-(% +(% (52)
R R
and where
M
M= ;' ; ﬁs-g- (53)
27na too

In deriving Eqs. (50) through (53) it was assumed that the value of
Poisson's ration for the membrane material is v = %3 and that the thickness
of the membrane is t.

Furthermore, after correction of a typographical error in Eq. (37)
of Ref. [14], the induced angle of twist ¢ of the rigid hub is found

to be governed by
_ =2 -
3= ég. [(llﬂgl:-l + 1n(%)+(1/R2)+-§] (54)

where ¢ = ZG¢/00 and G is the shear modulus of the membrane.

The simultaneous solution of Eqs. (50), (51), and (52) requires
an iterative numerical approach. However, it can be shown that the
response is linear (i.e., no wrinkles occur) for'ﬁ;g\l§75. In this
regime, one finds that M = ¢, and R is not meaningful. The onset of
wrinkling occurs at M =1J§7é at which R = 1. For M >4{3/2, the corres-

ponding nonlinear solutions are presented in Table 2.
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Furthermore, the principal stresses in the membrane may be shown

to be
(Cy/7) _
— l1<r< R
-0_1 . -64 - (M/Y‘)
% (55)
1+ (R/7)? ;  R<F
0 : 1<r<R
Jy r:
22 . (56)
0
1 - (R/P)2 ,  R<r
where
r=r/a (57)
and r is the radial distance from the center of the hub.
Also shown in Table 2 are numerical values for
- 16 Tre(r = 4) _ M (58)

o (r =4) R ’ 2 M2

The values for k are used 1ater in determining an equivalent value of
M in the finite element model for this problem. After the appropriate
M has been identified, the analytical values for R, ¢, (01/00) and (02/00)
are compared with the corresponding results from the finite element model,

which is described in the next paragraph.
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5.3 - Finite Element Modeling Assumptions

The creation of a finite element model for this infinite membrane was
accomplished by first imagining the problem as being the superposition
of an interior problem and an exterior problem which are pieced together
at a common interface. Let the interface be a circle of arbitrarily
chosen radius r=4a in Fig. 10. Then the exterior problem (r>4a) contains
no wfink]ed region and may be solved analytically by simple two-dimensional
elasticity theory. The interior region so created (r<4a) is a finite
dimensional annulus which contains a wrinkled region.

The appropriate interface conditions at r=4a are continuity of 0,
and Tpgs and of displacements u,. and Ug. The approach employed consisted
of applying prescribed o, and Tpg along r=4a for both problems. The
hub in the interior problem was then regarded as fixed against displacement,
as was the outer edge in the exterior problem. The angle of twist in the
corresponding composite problem was obtained by adding the angle of
rotation between the rim r=4a and fixed hub in the interior problem, and
the angle of rotation between the rim r=4a and the fixed boundary at
infinity in the exterior problem.

The appropriate values of Mt and o. were obtained from the known

0
values of o and Tpg applied at r=4a. This was accomplished for given
applied stresses o and Tpg at r=4a (which are sufficiently small that
R<4a) by first computing k from Eq. (58). For a given value of k, the
corresponding value of M may be obtained from Table 2 or from Egqs. (50),
(51), (52), and (58) by an iterative solution. g, may then be found

from the equilibrium relation

T
0, = 16 22 (59)
L
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where Trg is known. Once M is determined for a given loading case in the

finite element model, Mt is determined as well as Tg> and the nondimensional
stresses and displacements may be compared with the analytical values previously
discussed.

The finite element model of the interior problem was created using
the quasi-circular grid shown in Fig. 11. The model consists of 36 isopara-
metric quadrilateral elements, each of which contains four internal integration
points at which stresses are determined. Displacements at the four corners
and midpoints of each side of each element are also determined. The grid
contains a total of 132 of such nodal points. The number of unconstraining
degrees of freedom in this model is 264.

The nodes along the hub-membrane interface were considered fixed against
displacement. That is, u.= u6=0along r=a. Along the outer edge r=4a, o,
and T.g are prescribed independently, but are applied such that Tre=° initially
while o is increased to a constant pretension value. After the pretension

-in o has been achieved, then Teo is increased in steps. As a result wrinkles

are eventually initiated, and the wrinkle radius R increases with increasing
Tg

The principal stresses 0q and o, at each integration point within each
element are determined by the SAP finite element program, and may be read
directly from the output files. The same is true of the nodal displacements
u. and Ug- The angle of twist ¢I for this interior problem may be computed
from

Uy (r = 4)

by = ————— (60)
4a
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where ue(F=4) represents the average tangential displacements around the
outer perimeter r=4a of the finite element model, as read directly from
the computer printout.

The angle of twist ¢E for the corresponding exterior problem may be
derived from two-dimensional linear elasticity theory. The appropriate
boundary conditions for the exterior problem are (1) o, and trgﬂare prescribed
at r=4a (2) Op» Og+3, and ug0 as r+ . The solution for ¢ may be obtained

as

$k - % 16 (61)

The total angle of twist for the numerical model is then defined as

¢ =+ 9 (62)

5.4 Comparison of Finite Element and Analytical Results

The qualitative nature of the numerical results for the interior probiem
are shown in Fig. 12. The directions of nodal displacements (not to scale)
are shown for a typical one-quarter sector of the annular interior region.
The displacements are seen to be primarily clockwise rotation, with a inward
radial component noticeable near the hub.

Shown in Fig. 13 is a comparison of analytical (eq. (55)) and numerical
values for the maximum principal stress (oa/oo) as a function of radial
position (r/a) for four different load cases. The numerical values for
oy were obtained directly from the SAP 7 output files for a typical group

of these elements which form a sector of the grid in this axisymmetric problem.
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The accuracy of the numerically determined values of o; is seen to be very
high in all cases.

A comparison of analytical (Eq. (56)) and numerical values for the
minimum principal stress (02/00) as a function of radial position (r/a)
is shown in Fig. 14, for four different load cases. Again the numerical
values for o, were read directly from the SAP 7 output files for elements
in a typical sector of the grid. The accuracy of these minimum principal
stresses is seen to be considerably less than that of the maximum principal
stresses shown in Fig. 13, but nevertheless the numerical values may still
be quite adequate for many engineering purposes.

Shown in Fig. 15 is a comparison of the analytical (Eq. (50)) and numerical
values for the wrinkle radius (R/a) as a function of the applied torque M.
Since R is not directly available from the SAP 7 output files, it was neces-
sary to estimate R by curve fitting the results for (02/00) vs. (R/a), and
then extrapolating to the case (02/00) = 0. This process was repeated for
each load case to obtain the data plotted as numerical values in Fig. 15.

The accuracy of the numerical values so obtained is found to be adequate
for many engineering purposes.

A comparison of the analytical (Eq. (54)) and numerical values for
the overall angle of twist ¢ as a function of the total applied torque M
is shown in Fig. 16. The numerical values for ¢ were obtained from Eqs. (60),
(61), and (62) as previously described. As shown in the figure, the finite
element model produces results of acceptable accuracy for small torques,
but the errors increase as the torque levels increase to a maximum of about
five percent at M = 5. As expected, the errors indicate that the finite
element model, which in this example involves only three elements in the

radial direction, is too stiff in an overall sense. It is expected that a
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finite element model with more elements would result in more flexible

behavior, and a reduced error in Fig. 16.
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TABLE 1. PARAMETER COMBINATION FOR PARTIAL
WRINKLING WITH PURE TORQUE

Pe M N Q N}O [}

1.0 0.7071 1.4142 1.0000 -1.0000 0.0000
1.2 .6320 | 1.6020 1.2375 0;9718 .0004
1.4 .7548 1.7854 1.5516 .8841 .0057
1.6 .8570 1.9617 1.8161 .7418 .0299
1.8 .9284 2.1310 2.0533 .5703 .0968
2.0 .9681 2.2972 2.2603 .4102 .2325
2.5 .9959 2.7267 2.7211 .1738 .9413
3.0 .9993 3.1818 3.1807 .0839 2.2019
3.5 .9998 3.6522 3.6519 ©.0456 4.0771
4.0 1.0000 4,1312 4,1311 .0270 6.6473
4.5 1.0000 4.6154 4.6154 .0171 10.0394
5.0 1.0000 5.1031 5.1031 .0113 14,3224
5.5 1.0000 4.4932 5.5932 .0078 19.6060
6.0 1.0000 6.0851 6.0851 .0055 24.9899
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TABLE 2

Analytical Solutions for Stresses and Displacements

in the Hub Rotation Example of Figure 10

M R IR 'C'4 k
V3/2 1 V372 3 0.8398
0.8683 1.001 0.8683 3.0040 0.8420
0.8776 | 1.0050 | 0.8776 3.0201 0.8510
0.8891 1.0100 | 0.8892 3.0403 0.8622
0.9816 | 1.0500 | 0.9849 3.2090 0.9517
1.0976 | 1.1000 | 1.1123 3.4387 1.0637
1.3311 1.2000 | 1.4019 3.9786 1.2869
1.5656 | 1.3000 | 1.7454 4.6529 1.5057
1.7987 | 1.4000 | 2.1403 5.4774 1.7152
2.0286 | 1.5000 | 2.5753 6.4467 1.9122
2.2545 | 1.6000 | 3.0386 7.5455 2.0957
2.4765 | 1.7000 | 3.5216 8.7593 2.2656
2.6949 | 1.8000 | 4.0190 | 10.0773 2.4225
2.9101 | 1.9000 | 4.5276 | 11.4924 2.5673
3.1226 | 2.0000 | 5.0455 13.0000 2.7007
3.5409 | 2.2000 | 6.1045 | 16.2792 2.9355
3.9523 | 2.4000 | 7.1901 | 19.9002 3.1321
4.3585 | 2.6000 | 8.2993 | 23.8547 3.2945
4.7607 | 2.8000 | 9.4301 | 28.1382 3.4266
5.1597 | 3.0000 | 10.5810 | 32.7482 3.5319
5.5563 | 3.2000 | 11.7507 | 37.6829 3.6137
5.9510 | 3.4000 | 12.9385 | 42.9412 3.6748
6.3440 | 3.6000 | 14.1432 | 48.5223 3.7179
6.7356 | 3.8000 | 15.3642 | 54.4256 3.7456
7.1262 | 4.0000 | 16.6007 | 60.6508 3.7599
8.2929 | 4.5000 | 20.3968 | 81.2545 --
9.0677 | 5.0000 | 22.9943 | 96.5952 -

10.2268 | 5.6000 | 26.9814 | 122.0112 --
10.9981 | 6.0000 | 29.6953 | 140.5578 --
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Fig. 5 - Qualitative Plot of Edge Displacements
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of Rectangular Sheet. (Displacements
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APPENDIX A

FORMULATION AND SOLUTION OF
NONLINEAR STRUCTURAL PROBLEMS
USING SAP 7

This section will discuss the formulation of the governing equations
starting from the principle of virtual disp]a;gméﬁts and methods for solving
the resulting nonlinear equations. The discussion of the formulation of the
equations follows references [1] and [2].

FORMULATION

The motion of a general body is shown in Fig. 1. The configuration is
known at times O and t and the objective is to determine it at time t + At.
In the following derivation a left superscript indicates the time when the
quantity occurs and a left subscript indicates the configuration with respect
to which the quantity is measured. In the case of derivatives, a left sub-
script indicates the time of the coordinate with respect to which the quantity
is differentiated. Thus,

(]
#o'l' LTy .A.'l F(“A'l ”A'l

1e At
’. ")

P (%, %, °
CONFIGURATION

AT TIME te At
CONFIGURATION
AT TIME 1 tear o, tAAlui
ll.l - 0" . tui 1=1,2,3
CONFIGURATION tert ety e
AT TIME © X 2 1
.."vl”uml'

FIG. 1 MOTION OF BODY IN CARTESIAN COORDINATE
SYSTEM (FROM REFERENCE (1) )
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&

eeaeViy YL (1)
i

A1l tensors are referred to Cartesian reference frames. The principle of
virtual displacements, written for the current configuration (time = t+&t )
is

S/

(nAtv)(“M"ii)a(g+A,¢,7)("°‘dv)= tedt g

where

tebt g o 'L (HA; tk)s"k (°dA_) +
A

(2)

[P (F*Rit,) by, Cav)
o
14

.

The quantities (f*“n) are the Cartesjan copponents of the Cauchy
(true) stress tensor at time t+ar , and 8'*Agf; are surface tractions
and body force components at time t+At but measured with respect to the
configuration at time = 0. The variation 8y, is an infinitesimal variation
in the current displacement component (t+41,) . The summation convention
for repeated indices is used here. The variation in true strain corres-
ponding to the infinitesimal variation in the displacement field is

5(uue”) =5 %(HA:UM_ + ”A'ui',-, (3)

In dynamic analysis the body force components include inertial effects.

Since the configuration at the current time t+4r is unknown, the
principle of virtual displacements, Eq. (1), must be expressed in a form
in which all variables are referred to a known state. Then the integration
will be performed over known volumes and areas. If the static and
kinematic variables are referred to the initial state (time = 0), the
formulation is known as Total Lagrangian (TL). If they referred to the
previous known state (time = t), the formulation is known as the Updated
Lagrangian (UL). The remainder of this derivation will follow the total
Lagrangian formulation. References [1] and [2] present details of both the
TL and UL formulations.

In the TL formulation the principle of virtual displacements becomes:

f('*Aof.sli) . (f"’Ate") OdV - "A'R (4)

(- I/
oy J
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teae
in which oSii are the components of the 2nd (symmetric) Piola-Kirchoff
stress tensor and ** ofij are the components of the Green-Lagrange strain
tensor which is written in terms of the current displacements *4%,

t+ar =8 ) teae t+At
8 (**ope =85 (1 80y  + 00y,
(5)
tede teat
+ Ui Toty)

If incremental static and kinematic quantities are defined as

S;j = 'Y A1s; - §Sij
(6)

t+ At - te..
ofij Oell

°
™
]

t+ At”i - fui

the total Green-Lagrange strain increment can be decomposed into linear and
nonlinear parts

o€ii = o%ij ¥ oMij (7)

with

1
0.‘.'. = -2- louij‘ﬂui.l + GU‘.';’ (,uk.,)
+ (U ) ¢ v

(8)

Wi * '12' (oY1) (ouk,l)

In addition, the increments of 2nd Piola-Kirchoff stress tensor components
can be related to the increments of Green-lLagrange strain tensor components

by the linear constitutive law

(9)

oSij = 0Cijes try)

which is an approximation, since oCin changes along the path in the
finite increment At. Furthermore, the variation in the total strain
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Br*%e€;) is equal to the variation in the total strain increment é(,¢;).
This equivalence and the relations (6), (7), and (9) can be used to express
Eq. (4) in the form

J.OV o ijrs 06”) 6 ( t”)odv *f 0 ,16( ﬂ”)odV

= "AtR j o '16 ( 5”)°dv

(10)

This variational principle represents a nonlinear equation for the incre-
mental displacements v; . The Updated Lagrangian formulation leads to a
completely analogous expression in which the subscripts and superscripts
(o) are replaced by (t) and the equivalence of the 2nd Piola-Kirchoff
stress tensor S to the Caunchy (true) stress tensor ‘Tg is noted. Of
course, the const1tut1ve tensor for the U.L. formulation is now (Cijs ’
which takes on different values from oCis . The relationship between the
two constitutive tensors is given by

°
oCmnpa 'f Cxm. (:“'n.l’ (:Cijrs) (:x p.r) qu’,) (1)

«

! t
mnpg op (' Xm,i) (t xa ' o Cijrs) (: xp,r) (o %a.s) (12)

»~

Equation (10) can be transformed into a system of simultaneous non-
linear algebraic equations by division of the volume ey into an assemblage
of finite elements and use of isoparametric interpolation

o (13)

Ox. = A
X; ‘z hk (°x,-) M u; = z h* M,
-9 ko1

in each element, where N is the number of nodal points in the 1soparametr1c
element and hx are appropriate interpolation polynomials. Integration is
carried out numerically, usually by Gaussian quadrature. Reference [2]
first linearlzed Eq. (10) by replacing o€ by ofrs and 85G€ by 8ley)

and then perform modified Newton iterations, setting

A (k t+Ar, (k-1) k)
trary, ) = u] + b, (14)

in which k is the iteration number and r*AtufO)Efur



As given in Reference [3] the substitution of Eq. (13) into Eq. (10) yield

the following matrix equations.

TABLE 1 FINITE ELEMENT MATRICES

ANALYSIS TYPE INTEGRAL MATRIX EVALUATION

IN ALL /00 CHhtE bu, Cav w 0% = % (/HT H °dv) tbty
SES

ANALY 0, 3,

t+at _ t+At 0
R = [ otk 6"k da

t+At - T t+at 0
R = /Hs ot da

0
OA A
4] t+pt 0 0 T t+At 0
+ [P Ofk 6uk dv + P H of dv
o, ov
A. LINEAR
/cijrs ""“"er!5 e, | Oav [k t*Ot, - ( B:: c B odv) teaty
ANALYSIS
OV ov

€9



TABLE 1 (cont'd)

ANALYSIS TYPE

INTEGRAL

MATRIX EVALUATION

=]

0 t _ T 0
/Cijrs € s 691:]' dv K u —([BL o BL dv)u
B. MATERIAL
Oy Oy
NONLINEARITY
ONLY t 0 t T te O
foij beiJ dv F = /;31, £ “d
0
Oy v
0 t _ t.T t. o
/ocijrs 0%rs %0%13 9V |ofL v < (/031. o ofL d") u
0Oy '°v
C. TOTAL
t 0 t tT t. ot 0
] N K u
LAGRANGIA oS1g SNy dv oKL (fOBNL o5 OBk dv) u
FORMULAT ION o, o,
t 0 t. _ ftT tr 0
0543 ‘foe:lj dv of = fOBL o5 dv

9



TABLE 1 (cont'd)

S9

ANALYSIS TYPE INTEGRAL MATRIX EVALUATION
t t _ t T t ot
ftcijrs t%rs 5¢€yy 9V KL w = (ftBL tC By, d") u
ty ’ ty
D. UPDATED
t t t _ tT t ot t
LAGRANGIAN *r“ étnij dv tKNL u = (ftBNL T tBNL dv) u
FORMULATION t, t,
t t t t T ta t
Tij 6te1J dv tF = [tBL dv
ty ty
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Numerical Time Integration

The incremental equilibrium equations must be solved at each time step
using a numerical integration scheme. In SAP7 the Wilson & - method and
Newmark method are used. This section follows the formulation given in
Reference [3].

In the Wilson 6 - method a linear variation of acceleration is assumed
over the time increment T = © &8t | where ( for unconditional stability
in the analysis of linear systems) o 2 1.37, and the equilbrium equations
are considered at time t + 7,

M t+¢ﬁ + C t+16 + tK u = t+7ﬁ _ tF (1)
where ©*'R = tr= 8 ( tth - tR), and u is the change én displgce-

ment vector during the time interval t tot ++, i.e. u= 7y - t,.
Using the linear acceleration assumption it follows that

t4T, t. T, t+r t
u = - o [ X3
u o+ 2 ( u + u ) (2)
Ty =t t.
LR + e T e 2ty (3)
which gives
t+q,, 6 6
= a—— to
u ] u - P u - ztﬁ' _ (4)
T
and
t'f'l’ﬁ 3 u - 2t|..| - ‘g t{’. (5)

Substituting the relations (4) and (5) into Eq. (1), an equation
with u as the only unknown is obtained. Solving for u and using the
linear acceleration assumption, the required displacement, velocity and
acceleration vectors are obtained,
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(:] ]
t+At. .
A u t + % ( tﬁ' + t‘l‘Atﬁ. ) (7)
t+At 2
e o= Yy ot oo -A—;- ¢ty 2*{;) (8)

EQUILIBRIUM ITERATION

In order to avoid larae integration errors we may choose to iterate
in each load step until the equilibrium equations are satisfied within a
given tolorence. For a single finite element, in the TL formulation the
equation used for iteration is given as,

t t 1) t+At t+pt (4~ "
C oKL * oKy, ) M = tHOt. *Ao,(i 1) |y tedta) (9)

1 = 102'3 eeoe

where

test (1) t+Atu(1-1) + Au(1) .

A more detailed description of the equilibrium iteration equations
can be found in Reference [3].
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APPENDIX B

SAP 7 SUBROUTINE ELPAL
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waqn NS SLDA anp 29 EPSeYIELDSIPEL)
1s PE!?I‘ pzabaghalh o8y 162 EPSHYIELDLIPEL
ST NI PAAGI AN AN SE T UEA T IN S TNELE PRAZIAION AR AL " COMPOTERS®
AND DﬁUBLc PRECISION ON I3M,UNIVACDEC VAX TE0/11 AND PRIME
COMDUTERSe ACTIVATESLDFACTIVATE NR ANDJUST THE A3CVE CARD FOR
SINGLE COR 920U3LS PRECISION ARITHMETIC.
[ AR N E AN ENENEENAE LN EE NN ENNE YR N FERF NN N R NN R R RN RN NN RN RN N RN R NN FRNEN YN XN ]

ISY NUM3IER OF STRESS COAMOCNENTS
18 SRl TR AR b ey s wpnar
spg §TR£§~§‘ AT THE END OF THE PRE 2US UPNAT
2ATID  DOAOT OF STRAIN INC2EMENT TAKEN ELASTICALLY
NELEDS INCREMSNT IN STRAINS
DELSIG INCREMENT IN STRESSESs ASSUMING ELASTIC BEHAVIOR
PRNP(1) YOUNG S MIDULUS
2523‘%’ ?3§§S§? sxsféTgoqscs IN SIMPLE TENSION
baépfag %Taais HXRUENINE'M§DULUS
IPFL = 1y MATERIAL ELASTIC
_ = 29 MATERIAL PLASTIC
L ] L L ] L ] [ ] L J L ] L ] [ ] L ] L J * ® [ J [ ] [ L ] [ J [ ] L J [ ] L J L J [ ] L ] ® L ) L J ® [ ] L J L

COMMIN /EL/ INDsICOUNTeNPAR(2D)9 NUMEGoNEGL oNEGNLe I¥ASS,IDAMPLISTA
1oNDTIEZKL INeTEIGe IMASSNe I DAMPN
CIMMON 7VAD /7 NGyKPRIWMIDEXWKSTEPe ITEWITEMAXyIREFoICQRER, INOCMD

1
ELH“BN FVMISES/ Al9B1eCleN19A29029C29N2¢YLDyBMyT1SRyIST
COMMCN /MATH0OD/ STP‘S°(6)vSTRAIV(4)vC(4v4)9THFSTR(4)oTEMPoIDTvNEL
cnuwov I“IS“B/
MMM/ L"TI I“‘ g eI PTELoIPLTDFGIPLTND(2+8)0
UchvNP 2IPSe1

C"HMDN /IdQIVK/JHQ

DIVENSION PIOP(1),S1 sl
DIMEN?]ON TAULS }9EEL§I}16 DEL%’S(4)00595(4)95TAT?(2)

EQUIVALENCE (NPAR(3)ZINONL)I(NPAR(S)»ITYP2D)y(DELEPS4DEDS)
DATA NGLAST/1000/¢ STATF/1HE,1HP/

SORT(2)=DSAT(Q)

T TAIS T RAGIAA T AR BT OB IR S INGLE T BRECTSION AN EDL " EARPOTERS®
A4D DOUILE PRECISICN ON I13M,UNIVAC,DEC VAX T80/11 AND PRIME
COMPYTEPS. ACTIVATE,DEACTIVATE 0P ADJUST THE ABOVE CARD FOR
STNGLE 0R°COUBLE PRECISION AP ITHMETIC.

IF (IPT.NE.1) GO TC 110
1ST=4
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SODX{SXXSX+SYZSY+S72SZ) + $S&SS - YLDO2YLD/3.00
S

IF (TT) 170+170,300

FT
STAYE OF

EPS5S(4) + DIZ(DELEPS(1) + DELSEPSI(2))

IOV =
nunon=00
TR T IO Tie
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¢ STATE 2F STRESS OUTSIDE LDADING SURFACE =~ v¢LASTIC BEmAViOR
¢ 370 IF (IPEL.FQ.1) GO TO 320
E ...O...wAS DL‘STIC
¢ 135852%- o.
C B0 215 I=1,1ST
£ 315 TAUCIY = SIG(I)
g G0 7O 370
E cecceseWAS SLASTIC
£ DSTERMINE PART OF STRAIN TAKEN ELASTICLY
€ 320 ]°EL=2?
goo IPEL=2
SM = (SIG(1)¢SIG(2)+4SIGI4)) /3,000
SX = SIG(1) - SM
SY = §xg=g; - M
33 2 i3] - sm
c
DM = (DELST3(1)+DELSIG(2)+DELSIG(4))/3.000
DX = DELSIG(1) - DM
DY = AFLSIG(2) - DM
DS = DELSIG(3)
c DZ = DELSIS(4) - DM
A = DXEDX + NYENY 4+ 2.000%0S$27S + D2%N2
3 = SY$DX + SY*DY + 2.0D0%S537S + S22D7
c E= SXESY & SY:SY ¢+ 2,0D00%SS%=SS ¢+ S2%8? = 2.,0C00%=yYLD2YLD/3.0D0
. RATIO=(=B+SIRT(328-A2E)) /A
DY 350 I=1,1IST
350  TAU {§) = SI3(I) + RATIZSDELSIGLT)
IF (ITYP2D.EQe2) STRAIN{4)=EPS(4) + RATIOSDIX(DELEPS(1)
c 1+ DELEP3(2))
¢ #TAUE NOW CINTAINS (PPEVINUS STRESSES +
E STRESSES SUE TO ELASTIC STRAIN INCREMSNTS)
g Se CALZULATE PLASTIC STRESSES
c NFTERMING xucocueut INTERVAL
370 M=20,C)%SHAT(ST)/YLD+]
1€ (MeGT.30) =30
XM = {(1eD3 = WATIOI/M
DO 280 1=1.tsn
80 DEOS(I) = X4&DELEPS(I)

eeeee CALCILATION OF ELASTOPLASTIC STRESSES eeeee (START)

OOOOOW OO0

1
i
44
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20

590
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390

73

~O
—LOP™LD
Ddrs @ DO
Cxw 21N
™
"l e

XNL LN
PR .03
L K TS T s =]
-4 444
mpmim>»n
¢ 0O
1117 ]
* Mmoo
vy
b - T
~te
ot
1]
-
Y
»
-

Jol=le4)

0
3
(
00 600 IM=1.M
CALL MIDEP (TAUDEPS.C)
S
S
{

) ¢+ ClleJ) = DEPS(J)

CORRECTION

(TAU(1)+TAUL2)+TAU( 4)) /3,00

TAUY(1) - DM
oY TAU(Z) - DM

TAU(3)
D7 AU(4¥ - DM
IF (PROP(L).ETeNe) GO TO 530
STRIIN-HAPDINING MATERIAL "= UPDATE YLD

D215=1.507
YL” %0?7 (IPISE(DXXDX+DYEDY+2 4, %DSEOS+D22D2))

v

0X
oY

PERFECTLY PLASTIC MATERIAL
FTA=,500%(DXXDX + DY2DY + DZ%)HZ) 4+ DS=DS

F'°=(YLD*YL))I3 Do

FT=CTA FT3

IF (FT.FQ.O! 63,70 600

IF (ITYP2De=Qe2) GO TO 590
C7%€==1.D0 +SCRT(FTS/FTA)
TAUCL) = TA3(1l) + CCEF=2DX
TAUt2) = TAI(2) + CREF2DY
TAU(2) = TAaJ(3) + COEF=DS
TAUL4)=TAUl4) + CNEF=C2

G0 7O 600
CNES=SNRT(FT3/FTA)
TAUCL)=TAUC1)=COEF
TJAU(2)=TAUL{?)*CNEF
TAU(3)=TAUL3)*COEF
STRATN(4)=STRAIN(4) + (COEF - 1.00)%0M/8M
CONTINUE

ecsece TALCJILATION 0OF ELASTOPLASTIC STRESSES

STRESS(4) = 0.D0
DI 339 1=1,1S7
STRESS(I) = TAULI)

{ END )
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c
o
£ 6« UPDATING STRESSESs STRAINS+ YIELD.
470 DD 410 I=141ST
410 SIG(1) = _STIESS(D)
s20  £9s¢tY Fhldtnen
YIELD = YLD
IF (ITYP20,30,2) EPS{4)=STRAIN(&)
. IF {KPRIGEQ.N) GO TD 700
: IF (ICCUNT.ZQ.3) RETURN
¢ 7. SORM THE MATERIAL LAW
c
c IF I9FL.F2.1) GD TO 450
¢ ELASTO-OLASTIC
Casns CALL MINEP (TAU+DEPS,C)
c TE(£43702)
€3302 F.QNAT EXo ISHTAUIDEPS o ClT4d))
C WOITE(6e%) ITAJ(!)'I 1r4)
£ WYITEC(be%) {DEPS(T)eI=194)
C e NRITE(Ges) (PCtTooreietredet=144)
. RETIRN
¢ ELASTIC
630 V) 4660 1=1,1%R
DA 469 J=1,15R
460 C£(l14J)=0.00
¢
c MPDIFICATINN IF STRESS-STRAIN MATRIX
C FNP. WP INKLED BEHAYIOR
€ 337329329299377322539393233223923323293
IF(JP.NEL2) GD TO 36
D) 40 1=1e43
NV 43 J=1,3
40 C(1,J)=0.200100
2ETURN
35 15(JP.NEL.3)50 TN 35
C(iy13=p1
C(1+21=0.,0D
C(2519=0.039
C(1s3)=721
€(3,1)=01
C(Z,2)=P2
C(243)=01
HHIE
SidndkT
€ 323733333232379729722722233329933
33 Clls1)=A1
C(2y1)=21
Ctls2)=31
Cl242)=A1

NS
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470

F STRESSES

IF (IPEL.EQ.1) GO TO 705
G0 _TO 802

T) GO T2 1906

0
ARE CALCULATEY AND PRINTED

08,810

+ STRESS(2) + STRESS(4))/73.000
GIAN FNRMULATION,
)

GO TO 817

4
DX + DY=DY + DI2DZ) + DS=*DS - YLO%YLLC/3.000

- DM
«2) GO TO 800

=

) 303,805,803
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a E(JP.E AND,IPSeN
;: #¥;l'§:¢sagblizu?§}5§ga§§?fpst),tsrasss«t).1=1.3).sx.sv.sn
“ evoytdi3:26828 B 12 e 10T =1 430 05%0SYoSH
IF (1PSeNEL)eANDLJOLENe3)
SWAITE(5y2003) 1PTe(STRESSII)9I=193)9SXsSYeSM
Te=r1582

813 I (I1PESNE.D)

SWRITE(18¢2010) TIMESNGeNELyIPT o STRESS(T)e1=193)4SXeSY,
1SMeETeJ?

. RETURN

815 IF{IPSeNE.C)

SWIITE (552007) lPToSTATF(IPFL)cSTRESS(A)v
1(STRESS(I)pi=Le309SXeSYe SMyFT
1f (IPESME.0)
“WOITE(1892910) TIMEoNGoNELy 10 Ty STRESS{4) o STRESS(I1)91=143),
253XeSYeSMeFTy 4o
8151 CANTINUS
RETYIN
£
002 FIRMAT(504 SLEMENT STR

2 rhanepiLeda st MAX ETRESS  MIN §Tness.z1x.5HY15L5/ ’
250H NUM/IPT  STATE
3494 ANGLEQQX!
GIHEUNCTION ¢ )

2003 FNRMAY(E04 ELIMENT STRESS STRESS-XX STRESS=YY v
1544 STREGS5=27 STRESS-YZ MAX STRESS MIN  STRESS.
221X/ SHYIELD/33H NUM/IPT “STATE
433y NGL=.9x.3HFUNc¥xeN/)

2004 FORMAT (1&7)

Rt T T T TR el

YA L WL R RS LT Ht R I TS F eI M T AT Fad SE T 1300 S

2002 SOQMAT (SXe12¢2XeTHWRINKLE 1x.3514.6.3x'2r14 693XeFbe2)

2007 FIAMAT (SXeT3v2Xe2L e 6HLASTYC s 1Xe 251405 93Xe 2E140593XeFba293Xe E14

5110 FRMMAT(FIN,S ¢315¢5Y ¢3E16.5/5E14e 692X s12)
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APPENDIX C

SAP 7 INPUT LISTING FOR VERIFICATION EXAMPLE NO. 1
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APPENDIX D

SAP 7 INPUT LISTING FOR VERIFICATION EXAMPLE NO. 2
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