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Summary/Overvlew

This final report to Contract NASI-16468 presents our present

understanding of the Earth Flux Sensors aboard the Nimbus ERB

instrument. The summary of most of the findings of the study are

shown In the main body of the report which closely parallels an

article accepted for publication in the Journal of Geophysical

Research (Special Nimbus Issue). This deals very effectively with

several important instrument characteristics useful for a more

accurate understanding of the orbital measurements. The most

difficult to qualify effect, that of direct and reflected solar

radiation impinging on the instrument housing (and other parts

such as the shutter), has continued to receive study. The results

of thls most recent effort is summarized below and reported in

detail in Appendices I, II, and III of thls report. Appendix I

is mainly the result of effort performed by Campbell/Vonder Haar

incorporated under subcontract. Apendlx III reflects the most

recent thinking and has led directly rioconstruction of a model

which uses key instrument temperatures to predict offsets in themost troublesome earth flux channel. It Is expected that very

similar models can be constructed for the other channels. The

other two appendices are included for historical purposes.

I The modeling procedure is being carried out by Md.
RDS Lanham

under the direction of Dr. Lee Kyle of GSFC and thls author and

uses a multiple linear regression statistical analysis computer

which maximizes the explained variance program. The program

i determines appropriate coefficients for the key temperatures andtemperature differences to predict offsets of the wide field of

vlew (WFOV) Channel 13 at night. The coefficients are optimized

to minimize the difference between the actual observed offsets and

the model. Any signal other than zero Is erroneous for short wave

I sensors at night and Is known not to be offan electronic origin

I
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l from a large body of test data. The model as of thls date derived

from all nlghtlme data for one day per month over a full year is

l as follows:

I = 24.8 - 1.642xT - 1.12AT + 0.1971ATI

!
Where I = Irradiance W/M 2

T = Earth Flux Assy Temp in C°
T = Chan 13 Module Temp-Chan 12 FOV Stop Temp

I, It has been found that the Chan 12 FOV Stop temperature is an even

better indicator than the Chan 12 shutter temperature which Ismentioned in Appendix 3. The former is physically closest to Chan

13. The above model derived using day 2 of the ERB 3 day cycle

l than 90% of the variance with of
explains greater an rms error

0.86 W/M 2. Some problems are encountered when this model is

l applied directly to day i of the cycle. Additional warm-up type
terms will most likely be needed based on temperatures deep inside

the instrument.

Using this model at the seasonal extremes yields an offset dlf-

ference of about 6 W/M 2 for most of orbital day. This is in the
sense that in southern hemisphere winter the flux is underestl-

mated and in summer it is overestimated unless the offset correc-
tlon is made. This greatly improves agreement between the WFOV

Channel 13 data and independent data used for truth such as thePacific Ocean CAT.

Although there is little reason to doubt that the model derived at

night is not applicable in the daytime, a special test is belng

l planned to increase confidence in the model (NASA GSFC Contract
#NAS528146). This test is planned as a partial orbit simulation

i using a solar simulator impinging on a spare Earth Flux Assembly.

l
2
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I The Assembly Is to be rotated at an orbital rate so the solar

insolation and earth short wave scene signatures can be dupll-

i cated. An essential aspect of the test is the ability to shutterthe simulator at any time to establish offset. It is expected

that since the sensors are basically thermal devices, offsetsshould be related to temperatures and temperature gradlents

regardless of what drives them. The test differs from any discus-

I sed in this report in that the assembly is in near flight con-
figuration with all shutters In place. The tests reported here

I were all done on individual sensors. J. Hickey of Eppley
Laboratory is responsible for performing the tests on the entire

I assembly.

I
I

I
I
I
!
i
!
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I SENSOR CHARACTERIZATIONS

I ABSTRACT

I Detailed characterizations of flight spare earth flux sensors from

the Nimbus Earth Radiation Budget (ERB) program have been per-

I formed which, when coupled with a more careful accounting of the

orbital instrument environment, provide the potential for improved

I accuracy in the final data products. The characterizations
included detailed FOV mappings, responses to transient long and

I short wavelength radiation, and response to sensor temperature
changes. These sensor and environment characterizations, along

i with the outstanding low noise and stability properties of the ERBinstrument signal processing system, promise improvement of the

data accuracy to levels sufficient for long term budget and

I climatological The combined data sets 6
purposes. from Nimbus and

7 are expected to span a period in excess of i0 years. The

I improvements in data accuracy are particularly significant over
zonal latitude bands because the corrections are strongly latl-

I tude-dependent.

1.0 INTRODUCTION

!
Characterization studies of residual wldefleld of view

I (WFOV) earth flux sensors built for the ERB Nimbus program
have recently been performed. As a result of these studies

i and a critical re-examlnatlon of raw flight data, a muchmore complete understanding of Nimbus ERB earth flux data

has been developed. Prior to these studies no satisfactory

I mechanisms were available to explain anomalous transients

around satellite sunrise and sunset times nor could the

I non-zero outputy of the shortwave channels during satellite

!
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night be totally explained. The purpose of this paper is
to report the necessary correction approaches, and how they

I relate to the physical situation, and how they werederived.

I The ERB instrument is described by Jacobowltz (1983) In the

Journal of Geophysical Research Special Nimbus, special

I issue. Two nearly were placed
identical ERB radiometers in

orbit, one on Nimbus 6 and one on Nimbus 7. This paper

I deals only with the four WFOV earth flux sensors designated
Channels ii through 14 (See Figure i). These sensors all

I employ identical flatplate thermopile detectors baffeled tolimit their unencumbered field of view to 121 degrees.

Channels ii and 12 are called total or long wavelength

I channels since they have no limiting spectral filters.
Channels ll and 12 are identical channels on Nimbus 6, with

I channel ii used as a reference and kept shuttered for
protection. On Nimbus 7, channel ll's baffels are painted

I black to reduce internal reflections and spurious reponsewings. Channels 13 and 14 use the same type of thermopile

detectors but they employ filters to limit the sensor

I spectral response. Channel 13 has two quartz dome filters

and Channel 14 has an added RG 695 red glass dome filter.

I These are referred to as the short wavelength channels.

I The Nimbus ERB Science Team and Project Scientists spentconsiderable effort In interpreting and validating the WFOV

Earth Flux data. While most aspects of the data and

I sensors submitted to reasonable explanations there remained

some questions and apparent contradictions at the time this

I work was performed, significant are
The most summarized

on the following pages:

!
!
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i. It was concluded on the basis of nightlme inter-

comparisons between the integrated long wavelength

scanner data and Channel 12 data that an offset

existed in the Channel 12 data caused by radiative

losses to deep space. The magnitude was such that it

could not be explained by the small ring of deep space

falling within the prescribed FOV. Tests performed at

Eppley showed that there were leaks beyond that pre-

scribed by the FOB llmlter geometry. This led to the

painting of the baffles of Channel Ii of the Nimbus 7

ERB which, when in orbit produced data which showed

that the leak was largely eliminated. Channel 12,

which is the working sensor on both Nimbus 6 and 7,

was left unpainted on Nimbus 7 so that Nimbus 6 data

could be compared directly. The details of the F0V

for the unpainted sensor were still required for best

understanding of the data.

2. The behavior of the signals from the short wave-

length channels, in particular Channel 13, after

sunset was not consistent with known facts. Simple

geometry showed that the sun entered the FOV for brief

periods at satellite sunrise and sunset causing the so

called "sun blips." However, recovery from this

disturbance appeared to take too long to be explained

by the filter domes cooling off. In addition, the

component of the solar Irradlance known to be absorbed

by the quartz could not account for the necessary dome

temperature increase to cause the 10W/M 2 offset ob-

served. Tests performed at Eppley Laboratories showed

that there was no evidence of bulk absorption by the

domes of short wavelength solar flux. A quantitative

response of the sensor module to dynamic scenes was

also lacking.
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I 3. The large negative bias (-20 to of chan-

-3 0N/M 2 )

nel 13 at night required inner dome temperatures to be

I 5 degrees C or more below that of the thermopile
sensor receiver. No such gradients or offsets were

i ever produced during pre-launch thermal vacuum test-Ing. From electrical calibrations performed on the

sensor amplifier the source of the offset was known

I not to be electronic. The possibility of temperature

gradients as a cause was considered but the basic

I resolution of the measurement system of 0.i degree C
seemed inadequate to be of any help. An explanation

I of the mechanism was clearly needed.

Based on the questions raised in attempting to explain the

I above problems, a serles of tests were performed uslng

sensors identical to the sensors in ERB. The objectives

I were to determine the mechanisms responsible for their
unexpected behavior and to ellm_nate conflicting theories.

I The tests were, in general, performed _n vacuum. Theyincluded measurements of the field of v_ew, response to

long (greater than 2.7 mlcrometers) and short (less than

I 2.7 micrometers) wavelength radiation. After the tests

were completed, orbital data averaged over selected time

I _ntervals became available. Th_s provided the data base
necessary to verify that the laboratory tests adequately

I described the sensor behavior in space and to corroboratethe test results.

!
2.0 FOV CHARACTERISTICS

!
All the WFOV sensors were designed with a field of v_ew

I such that the earth, as seen from the Nimbus orbit, would

!
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I Just underflll it. A small of
ring deep space is therefore

included in the sensor FOV. This adds a negative offset to

I the output of Channels II and 12. At spacecraft sunrise
and sunset, when the sun Is in that narrow ring, it causes

i large outputs (which have been named "sun blips") from WFOVsensors. If the sensors had ideal FOVs these two effects

might be the only sources of error. Unfortunately, llke

I most instruments, these depart from ideal. The ideal FOV
is a cosine response over the unencumbered field and no

I response outside the field. The laboratory measurements of
F0V indicate that the only channel approaching ideal is the

I Nimbus 7 Channel Ii with its black painted baffles. Fig. 2shows the results of the lab FOV tests plotted as deviation

from ideal and normalized to the on axis response. In the

I unencumbered field the response of all channels except

Channel ll Is 2% to 4% below cosine. At 70 degrees, out of

I the FOV, all other channels show a response of about 3%
which decreases to zero at 90 degrees. One other anomaly

I is also apparent. Channel 12 has an enhanced responsewhich reaches a maximum of about 6% greater than cosine at

55 degrees. This enhancement, plus response beyond 70

I degrees is due to reflections from the baffles. This

increased view of space over that expected largely explains

I the negative bias on Channel 12.

I The total wavelength channels require two corrections to
remove the errors introduced by the FOV problems. The most

I important one is to remove the solar contribution to signalwhen the sun is in the region between 60 degrees and 90

degrees from the normal to the detector. Removal of the

I "sun blips" themselves, while possible in principle is
probably of little value because the signal is near zero

I anyway. The offset introduced by the ring of deep space _s

!
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I magnitude can be established by
a constant correction whose

comparison with the painted channel ll on Nimbus 7. This,

I of course, also corrects for the departure from ideal
response. Such an Infllght correction technique is not

i possible with the short wavelength channels since they haveno comparable reference channel. Fortunatelythe out of

field responses described above have no effect on the data

I from the short wavelength channels except near spacecraft
sunrise and sunset when the sun can contaminate the sensor

I output. Thus two corrections need to be made to the short
wavelength channel data. The first is the removal of the

I solar contamination, both the out-of-fleld response and theIn-fleld or "sun blips." The second is the correction of

the measured earth flux required by the departure from the

I ideal cosine response. The negative offset of the short

wavelength chaannels is discussed in sections 3.0 and 4.0.

! ,
3.0 LONG WAVELENGTH SENSITIVITY OF SHORT WAVELENGTH DETECTORS

I The ERB short wavelength sensors, Channels 13 and 14, were

intended to be insensitive to long wavelength radiation.

I Fig. 3 shows a drawing of the Channel 13 module. The two

quartz domes were intended to filter out all long wave-

I length radiation with the inner dome shielding the thermo-
pile from heating of the outer dome caused by long wave

I absorption.

I 3.1 Short Wavelength Data Anomalies

Raw orbital data showed several anomalies which appeared to

I be related to long wavelength radiative interchange. The

first was a nlghtlme dc offset. The second was a fluctua-

I tlon in this offset during nlghtlme which appeared to be

!
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I coupled to the long wavelenght radiation from the earth.

The third was an exponential decay in the offset level from

I the beginning of night to a more or less constant level

equivalent to a change of flux of l0 W/M 2.

!
3.2 Laboratory Tests Of Long Wavelength Sensitivity

I The sensitivity of the short wavelength channels to long

I wavelength radiation was obtained in the laboratory testsusing an impulse forcing function and observing the

response. Once the impulse response is known the response

I to an arbitrary forcing function can be determined. In

this test a heated shutter was rapidly placed in front of

I the module for short periods of time. The shape of the
response for a single dome was found to fit a simple expo-

I nentlal quite well. The double and triple domes ofChannels 13 and 14 were then shown to be convolutions of

their respective single dome responsee. The outer dome

I absorbs the long wavelength radiation and heats up. It

then reradiates to the inner dome, heating it up. Figure 4

I shows the measured thermal impulse of Channel 13
response

and a calculated response which is simply the convolution

i of two exponentials with amplitude normalized to the mea-sured response. A similar results was obtained for the

three domes of Channel 14. The nlghtime dc offset was

I partly caused by the radiative interchange between the

domes and deep space which cooled the domes below the

I thermopile, additional cause of the
temperature of the An

dc offset is discussed in section 4.0.

!
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I 3.3 Corroboration Of Long Wavelength Sensitivity From Orbital
Data

I With the long wavelength impulse response known, orbital

i data was re-examlned to verify that the flight sensor wasnot significantly different from the sensor module tested

In the laboratory. It was also hoped that a simple cor-

I rectlon algorithm could be verified to ease data reduction

computational burdens. For this verification, the varla-

I tlon in Channel 13 output due to
long wavelength radiation

from the earth had to be isolated from all other factors

I which effect Channel 13, such as spacecraft temperature
excursions and exposure to sunlight. Since the spacecraft

I environment is reasonably stable with time and the longwavelength earth radiation varies with the season, the

difference between data taken several months apart empha-

I long wavelength and supresses
sIses the contribution

others.

I In selecting a data set to minimize changes In spacecraft

i environment, days were chosen in which the spacecrafttemperature was nearly equal. The day chosen also had to

have full earth coverage for the entire day since the data

I had to be averaged for a full day to remove local varla-

tlons in the earth long wavelength signature. The data

I chosen for reduction was from 18, June and 29, September
1979. Figure 5 shows the results of thls verification in

I which all data are the difference between the June dailyaverage and the September daily average. The upper curve

shows the Channel 13 output for the nlghtlme portion of the

I actual difference over the two days. The forcing function

curve is the long wavelength scene for those two days. The

I simulated response is the convolution of the
laboratory

!
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I impulse response with the forcing function. The
determined

shapes of the actual and simulated responses agree very

well.

3.4 Data Correction Algorithm For Long Wavelength Sensitivity

These results suggest a simple correction to Channel 13

data. Figure 6 shows the result of multiplying the long

wavelength scene variations by 4%. A shift equivalent to

20 degrees In earth latitude makes the curves almost coin-
cide. Thus a simple correction to Channel 13 and Channel

14 consists of scaling the long wavelength data, delayingIt In time and subtracting It from the short wavelength

channel. Kyle (1983) has subsequently shown that this

procedure produces good results over a wide range of scenes

and conditions. A set of regressions over 8 three-day data

sets yielded a delay of 336 seconds and
an amplitude

coefficient of 0.04 for maximum correlation of the long

wavelength scene to anomalous Channel 13 responses atnight.

4.0 SHORT WAVELENGTH HEATING AND OTHER THERMAL EFFECTS

long wavelength radiation alone is not
Sens_tlvity to

adequate to explaln the amplitude of exponential decay

observed In the data from Channels 13 and 14 immediately
after satellite sunset. The presence of a delayed response

to short wavelength irradlance was observed during labora-tory testing. A typical result shown In Figure 7 shows a

response Immed_ately after removal of short wavelength

irradlance which decays to zero in about 8 to i0 minutes.

The laboratory tests do not directly reveal the physical

cause of the response, however the changes in the thermo-

I
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I pile base temperature suggested that the cause was related
to the change in temperature of the base structure.

I 4.1 Orbital Temperature Data

I A detailed investigation of sensor temperatures versus time

was undertaken. The temperature monitoring points availa-

I ble relative to WFOV sensor performance included ther-

mistors in the thermopile body of each channel and in the

I module floors of Channels 13 and 14. The module floors of
Channels ii and 12 contain platinum resistance thermo-

I meters. In addition there are two thermistors on theberyllum block which forms the mount and heatslnk for all

channels. As shown in Figure 8 one of these is on the

I earth or scene side, the other is on the inside or instru-

ment side. The absolute accuracy of thermistor temperature

I sensors is only about 1 but their
degree repeatability

appears to be good to the millidegree level. The measure-

I ment resolution of the bulk of the ERB temperature monlto-
ring system is about 0.i degree C. It was therefore

i necessary to average data from sucessive orbits to revealdifferences at the millldegree level. The temperature data

was averaged over all orbits for l0 nearly consecutive

I days. The results are given in figure 9. Over this aver-
age orbit, the peak to peak variation is less than 2 de-

I grees for all sensing points. However, the difference
between the thermopile and module go from near zero to 0.i

i degrees depending on orbit position.

!
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I Heating Results

I Cleary, the gross orbital variations of temperature are
caused by the day-nlght differences in short wavelength

radiation environment. One of the main results of the

I detailed temperature studies was to show that contrary to

early suppositions, the earth flux assembly and sensors are

I driven significantly the short wavelength radiationby

impinging on the earth side of the instrument. Proof of

I this comes from two pieces of information from the curves
In Figure 9. First, the orbital peak to peak variation on

i the "instrument" slde of the earth flux block assembly Isless than the "scene" side by about 0.2 degrees. Second,

the detailed signatures around satellite sunrise show that

I the "scene" side sensors, which include the modules them-

selves, reverse trend earlier than the "instrument" slde

I assembly temperatures. What Is claimed here is that,
u

although the short wavelength flux obviously affects the

I instrument as a whole, the effect on the earth fluxassembly dominates.

I The source of this heating relates to the delayed short

wavelength response mentioned earlier and shown in Figure

I 7. Thls test was performed with collimated light which
showed that this type of response occurred well beyond 60

I degrees off normal. At angles beyond 60 degrees light doesnot strike the detector patch directly, therefore the

structure of the modules including the FOV baffles must be

I the absorbers. Mylar spacers used to cushion the filter

domes under the dome hold-down rings were eliminated as the

I potential absorbers, removed, Figure 7
When the results of

were duplicated.

!
!
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All other surfaces of the sensor other than the domes that
are illuminated are polished aluminum lncludlng the baf-

fles. The exact absorptivity of this polished aluminum Is
not known but Is estimated to be in the range of 2% to 5%,

therefore significant heating of the module must be ex-pected, especially the exposed front (earth) side of when

hit by direct sunlight. This type of surface extends

beyond the FOV aperture producing a heating effect corres-

pondingly greater. Superimposed on the gross orbital

temperature variations is fine detail of significant ampli-
tude caused by periods of dlrectsunllght hitting the

sensors around sunrise and sunset.

The result of these detailed temperature and temperature

I gradient disturbances Is a temporary decrease in the large

negative offset for a large portion of the first half of

I satellite A then be made that the
night. good argument can

amplitude of the disturbance at sunrise should be similar

I to that at sunset and of similar duration. From the chan-
nel 13 output following sunset this is seen to be a quasi-

exponential decaying disturbance of i0 W/M 2 peak and a l0

I minute I/e time. Figure l0 depicts daily average long and

short wavelength records for day 334, 1978 and shows the

I applicable regions. Support for the contention that
sunrise and sunset effects are equal is derived from

I observing the minima in the short wavelength responses.
The one associated with sunrise is about i0 W/M2- higher

I than the sunset one. Maximum solar heating preceeds theone at sunrise and follows the minimums at sunset.

!
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I 4.3 ERB On-Off Duty Cycle Temperature Variations

I An additional significant effect relating to module temp-
eratures and offsets Is the primary ERB duty cycle of three

i days on and one day off. This has the effect of varyingthe flow, of heat through the earth flux assembly and mod-

ules to space (and to a lesser extent the earth since It is

I at about the temperature of the instrument). Heat flow is

always out of the modules as demonstrated by the fact that

I they are the coldest part of the instrument. The amount of
flow varies with the amount of heat internally generated by

i the electronics and also with the amount of radiant heat
absorbed by the module. These varying inputs cause a large

variation in the output offsets of Channels 13 and 14. The

I offset is negative when the instrument is off and becomes

more negative when the instrument warms. Examination of

I long wavelength scene corrections
offsets at night, after

have been made, reveal offsets ranging from -20 W/M2 to

I -35W/M 2 over the time period from the first orbit after
turn-on till the end of the second day. Figure ll shows a

i typical three-day temperature signal for Channel 13 begin-nlng at 15.5 degrees C, coming to a peak at the end of the

second day at 22.5 degrees C; note that on the third day

I scanner Is typically turned off. The short wave-
the ERB

length heating disturbances can be seen to follow thls

I temperature curve. These instrument effects are in concert
with an early recommendation by the author which has been

i made part of the data processing routine. The correctionconsists of forcing the offset In the channel output data

to zero at satellite midnight, which along with a linear

I interpolation between these points drives the duty cycle

effects to a very small level. This constitutes a slgnlfl-

I cant improvement over the initial data correction
approach

which used a constant offset correction of 22 W/M 2.

!
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l 5.0 CONCLUSION - APPLYING THE CORRECTIONS

I The test results and the data corrections produced by thisinstrument characterization effort have been input to the

orbital data reduction team as the results became avail-

I able. This is reflected in the paper by Kyle et. al.

(1983) which describes in detail the data processing

I algorithms that have or will be applied to specific raw
data sets.

!
It should be noted that the errors in the raw data are

I orbital position and therefore latitude dependent. Withoutcorrection this could lead to especially serious errors

regarding global circulation studies. The effort reported

l in this report has provided a substantial improvement of
understanding and implementing corrections to the raw

I orbital data. Figure 12 summarizes the various corrections
that need to be made and over which latitudes they are most

l important. The figure shows a daily average of the shortand long wavelength WFOV data for day 176, 1979 (which is

typical) as produced by the early Nimbus 7 algorithms. It

i can be noted that the high latitude regions require the

most correction since these regions suffer the most contam-

I Inatlon.

l This record is taken from the initial processing of thefirst 19 months of ERB Nimbus 7 data. The offset correc-

tion applied to the short wavelength raw data, namely a

l constant -22 W/M2, does not result in a zero nlghtlme

offset. The deviation from zero is caused by a combination

I of long wavelength heating effects and instrument warmup or
duty cycle effects. When these corrections are applied,

I the offsets from satellite midnight to sunrise come very

!
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I close to zero. The non-zero output during the first half

of the night record is due to the sunset short wavelength

I heating transient. The data Is of no value during this
period (except for understanding the instrument) so does

i not need to be corrected. Additional corrections for theFOV effects need to be applied at hlgh latitudes especially

when the output Is a zonal product. The short wavelength

I signal itself becomes smaller as the dark earth fills more

and more of the FOV. The quantity which must be removed

I from the data Is the product of solar Irradlance and the
angle response functions as shown In Figure 2 and the basic

i sensitivity. In addition, another factor discussed Indetail by Kyle et. al., that of dome contamination, also

becomes more of a factor at these latitudes. Nevertheless,

I seasonal and longitudinal variations can be more effective-

ly studied when the FOV effects are either removed directly

I or are in effect removed by assuming them constant from
orbit to orbit except for Earth-Sun distance corrections.

!
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I Figure 1
The Nimbus ERB subsystem. The wide field of view earth flux

I channels are at top right. Channel ii is shown as in normaloperations.
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Figure 2

I Results of detailed FOV measurements of the wide angle earth
flux sensors. Multiple bounces off the baffles cause the out of
field responses indicated as a percentage of normal incidence

i full scale.
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I Figure 3
Geometry of short wavelength sensor Channel 13 with its quartz
filter domes. Channel 14 has an additional dome of RG 695 Short

i glass between the two shown.

I 22



I ".04

i

I i I
:" !CALCULATEDRESPONSE

| .:o3

...._.

• U

I _ .02

m
i i.o_
I
i I .....1 " 1 " I ! I ! .....

O, 2 4 6. 8 10 12 14

I iTIME.min

I
I

Figure 4

l' Response of short wavelength sensor Channel 13 to an impulse of
long wavelength radiation. The outer dome first absorbs the

i radiation which reradiates to the inner dome causing a second-
order effect.
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I Figure 5
Differences in the longwave scene between September and June
produce a difference in Channel 13's nighttime signature. The

I simulated responses is the convolution of the impulse responseshown in Figure 4 with the longwave scene. It has a shape very
similar to the nighttime offset differences shown in the upper

i curve.
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J , .

J Figure 6Raw computer output, which shows that the response generated by
convolution of the long wave scene with the Figure 4 impulse

i response can be well approximated by a simple shift in time.
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I

I Figure 7A spurious delayed response is clearly indicated for Channel 13
after a burst of short wavelength radiation. Evidently, front

I to back receiver gradients occur during the cooling process.
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I Figure 8
Earth flux channel assembly with insulating shroud removed
showing location of temperature sensors. The channels are

I numbered 11-14, right to left.
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I Figure 9Typical orbital temperature signatures for the sensors identi-
fied in Figure 8. Note differences in the short-term transients

i near the sunset and sunrise sun blip periods.
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i Figure I0Shortwave (Channel 13, plus) and longwave (Channels 12 and 13,

cross) outputs averaged over the orbits of day 334 (1978)• No
corrections have been made to Channel 13 for out of field

I response of longwave heating• The maximum potential usefuldaytime data falls between the polar minima (Points 3 and 4).
i, Sunrise sun blip; 2, Sunset sun blip; 3, Minimum after sun-

i rise; 4, Minimum before sunset; 5, Transient decay after sunset•
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FigureIi

I A long stabilizing period is indicated when the operationalconfigurationof the NIMBUS observatory is changed. Channel
13's offset is lowest when the instrument is losing the smallest

I amount of heat.
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Figure 12

I Outputs for day 176 (1979) showing what types of disturbancesare applicable as a function of satellite orbital position. The
need for corrections is greatest at high latitudes. Note the

I differences in the nighttime signature here with day 334 inFigure 10. The continuing decrease throughout the night here is
caused by wintertime Antarctica cooling the dome. Channel 13,
plus; Channel 12-13, cross, i, Sunrise sun blip; 2, Sunset sun

I blip; 3, Regions contaminated by sun in FOV (A,
severe; B,

mild); 4, Regions contaminated by shortwave heating due to

direct sun; 5, Transient decay after sunset; 6, Range or usable

I data when only longwave heating corrections are applied, 140 ;7, Range of usable data when all corrections are made, 180°
latitude.
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I APPENDIX IWIDE FIELD OF VIEW

i NARROW FIELD OF VIEW INTERCOMPARISONS

by

!
G.G. Campbell

I T.H. Vonder Haar

I December 15, 198B

BACKGROUND

!
From the tlme of launch of the Nlmbus-6 Instrument in June,

I 1975, and continuing with the Nimbus-7 instrument, it was appar-ent that the wlde fleld-of-vlew (WFOV) Instruments were not

i responding to the incident radiation precisely as expected.This is most obvious in the large negative radiance analyzed

from the reflected solar energy Channel 13 readouts during the

I night. This report is a contribution to the effort to review
thls and other Instrumental features by detailed comparisons

I between an integration of the scan channels data and the WFOV
data. We were looking particularly for estimates of offsets and

i apparent sensitivity differences from the preflight predictionsof the response. Our approach Is designed to be combined wlth

the work by Gulton and others to better characterize the Instr-

ument in orbit. Together bhls should improve the scientific

value of the Nimbus data and Identify improvements for future

I earth radiation budget sensors.

I I-i
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I Wide- $ rCe,#)dcos2o Cl)
• 2

I r = radiancefrom scanner

I includedthe small scale variationsin angularresponsemeasuredby

' Maschhoff(1983). For numericalpurposesthe dcosa_.____eterm was brokeninto

' twentybins. All scannerdata irrespectiveof _ were collectedinto these

I bins for sixteensecondintervalsor a major frame,32 radiancesfrom each
@

i_ sensor. The WFOV data was averagedinto 16 secondmajor frames,4 radian-
ces fromeach sensor.@

I_ Finally,for comparingto any individualWFOV observation,the scanner

' binned data was averaged from 112 seconds before and 96 seconds after the

Ii WFOV. Thisperiodis the timerequiredto completeone scan mode 5 sweep
,

_ of the earth. Each _FOV observationin time is not statisticallyindepen-
, dent of its neighborsbecausethere is a very largeoverlapin the earth

:, regionthey look at. Similarly,the integratedscan datahas this large

' overlapbecausethe integrationis approximatelya runningmean for 208

I' seconds.

!

I_ DATA SOURCE

I We have used data from the MasterArchiveTapes (M_T) from the NIMBUS
project. Only days with scan mode 5 were used becauseit providesthe

1, widestangularsampling. We have dependedupon the NIMBUSProject

, ephemerisfor derivingsatellitepositionand viewinggeometry.Days 320 of

I 1978and 159,217 and 245 of 1979were examined. Ideally,data in early

, 1979wouldhave been used, but no scan mode 5 was collectedfor that
5-monthinterval.

I" -2-
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I

If The firstorder analysisschemeradiancevaluesare used as read fromthe M_T. We have not goneback to the raw voltageand temperaturedata

I fromwhich the radianceswere derived. There is a generalconsensusof the

I! NIMBUS-7team that the longwavescan data is slightlylow becausethefilteris not as wide in frequencyresponseas ideallyrequiredto measure

I in the earth infraredflux. Thisis about a two percenteffectnot included

' in analysis. Finally,channel18, a shortwavescan channel,was not

I includedin the integralbecauseof instrumentnoise.

The orbitto orbit variationin channel13 midnightradiancewas

I
subtractedduringour processingbeforeanalysis. This removesthe gross

i negativeoffsetin channel13 data seen since 1975and also removesthe

: day-to-daychangesin this offsetidentifiedby Maschhoffet al. (1983).

Ii In addition,to adjustfor iongwaveheatingof the channel(Maschhofft

I al, 1983)we subtracteda smell frsctionof channel12 laggedin time,

,- Equation2.

I _(t) = 13FI_T- 13MIDNIGHT-0-04(12-13)t-320sec (2)
!

: TIME SERIESAND COMPOSITES
ORBIT

I

_ Severalqualitativeresultscan be seen by lookingat the basic date
I from MqT. Figure i showsa sampleof many of the orbitaldata sets we have

iI studied. First,one sees severalgaps in the data becausein these plots
!

we have excludedthe timeswhen the VfOV sensorsreceiveradiationdirectly

I from the sun. Next one sees the time variationin channel13 at night,a

i transientalso causedby illuminationby the sun near the sunsetpoint.
One of our originalgoals was to measurethls transientin the daytime.

I'
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i INTEGRATION METHOD

Since the long wave scan channel has an internal black body for

I periodic calibration, it will be used as a reference for com-

parison with the other observations. To compare with the WFOV

I the scan data must be integrated numerically to simulate the
angular response of the WFOV channels. If the scan data were

I just averaged independent of angle the average would greatlyover weight the limb because of the sampling scheme used in

recording the scan data.

!
Using the satellite-nadir line as a reference, Equation i

I represents the angular weighting response of a flat plate
detector. We have not included the small scale variations in

i angular response measured by Maschhoff (1983).

Wide = fr(e,_) dcos 2 8d_ (I)

I r = radiance from scanner

I For numerical purposes the dcos% term was broken into twenty2

bins. All scanner data irrespective of # were collected into

I these bins for sexteen second intervals or a major frame, 32

radiances from each sensor. The WFOV data was averaged into 16

I second major frames, 4 radiances from each sensor.

I Finally, for comparing to any individual WFOV observation, the
scanner binned data was averaged from 112 seconds before and 96

i seconds after the WFOV. This period is the time required tocomplete one scan mode 5 sweep of the earth. Each WFOV

observation in time is not statistically independent of its

I,
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l neighbors because there is a very large overlap in the earthregion they look at. Similarly, the integrated scan data has

this large overlap because the integration is approximately a

l running mean for 208 seconds.

i DATA SOURCE

I We have used data from the Master Archive Tapes (MAT) from the
Nimbus Project. Only days with scan mode 5 were used because it

i provides the widest angular sampling. We have depended upon theNimbus Project ephemeris for deriving satellite position and

viewing geometry. Days 320 of 1978 and 159, 217 and 245 of 1979

i were examined. Ideally, data in early 1979 would have been
used, but no scan mode 5 was collected for that 5-month

I interval.

i The first order analysis scheme radiance values are used as readfrom the MAT. We have not gone back to the raw voltage and

temperature data from which the radiances were derived. There

I is a general consensus of the Nimbus-T team that the longwave
scan data is slightly low because the filter is not as wide in

I frequency response as ideally required to measure in the earth
infrared flux. This is about a two percent effect not included

i in analysis. Finally, Channel 18, a shortwave scan channel, wasnot included in the integral because of instrument noise.

I The orbit to orbit variation in Channel 13 midnight radiance was

subtracted during our processing before analysis. This removes

i gross 13 seen since 1975 and
the negative offset in Channel data

also removes the day-to-day changes In this offset identified by

l Maschhoff et al. (1983). In addition, to adjust for longwave
heating of the channel (Maschhoff e__ttal, 1983) we subtracted a

i small fraction of Channel 12 lagged in time, Equation 2.

l I-3
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!
l 13(t) = 13MAT - 13 MIDNIGHT - 0"04(12-13)t-320 sec (2)

ORBIT TIME SERIES AND COMPOSITES

!
Several qualitative results can be seen by looking at the basic

I data from MAT. Figure 1 shows a sample of many of the orbital
data sets we have studied. First, one sees several gaps in the

l data because in these plots we have excluded the times when theWFOV sensors receive radiation directly from the sun. Next one

sees the time variation in Channel 13 at night, a transient also

l caused by illumination by the sun near the sunset point. One of

our original goals was to measure this transient in the daytime.

!
During the night it is difficult to distinguish in Figure 1

I between Channel 12 observations and the longwave scanner (LWSC)because, in fact, they are very close together. During the day,

the shortwave scan (SWSC) data shows ripples which appear to be

f about 200 seconds long. This is because the scanning in mode 5

is not a perfect simulation of the smoothing done by WFOV. The

I SWSC line is, however, substantially higher than 13.

I To examine the major questions in more detail, all orbits for a
day were composited using the day/night sun blip to synchronize

l the orbits. Figures 2 and 3 show composites for the 4 days weanalyzed. The ripples remain in the SWSC because the scan

period is an exact multiple of an orbital period, so a small

l excursion from a smooth line occurs at the same point in every
orbit. All data have been composited and plotted, but as noted

i only part of the data are useful for comparison because of sun
contamination. One still sees the large excursions which occure

I near the sun blip.

i I-4
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I
i During the night there is an apparent offset between Channel 12and the LWSC. This could be a scaling (sensitivity) difference

or a combination of an offset and a sensitivity difference.

I elow we present correlation fits to estimate this
quantitatively.

I
During the day, several pairs of lines are similar. There is a

I substantial shift between the SWSC and Channel 13 which shouldbe measuring the same energy. Similarly, there is a shift

between Channel 12 and (SWSC plus LWSC) both of which should be

I the total outgoing radiation. To add to the confusion, Channel
12-13 is very close to LWSC. One would now like to decide which

I f the three channels, SWSC, 12 and/or 13 need to be adjusted to
match up with LWSC, which we have chosen as a reference. Recall

i hat one of our goals is to use a corrected version of SWSC tocompare the detailed daytime variations in Channel 13 offset.

I CORRELATIONS

I Our first to quantify and understand the differences
attempt

noted above was to calculate linear regressions between pairs of

I observations which should have been nearly the same. Table 1
shows the slopes and intercepts. First, a few words about the

i fit method are necessary. The standard least squares fitminimizes the standard deviation between Y and aX+b by solving

for a and b. This assumes that Y has no measurement error and

I is "correct." One could equally justify minimizing in the X
direction because we are uncertain which channel is correct and

I especially because of the integration will produce random error
in observations from the scanner. We have chosen to present the

I results of a total least squares fit, which selects the linewhich minimizes the distance between the line and the point at

(X,Y). This also produces a line between the fit lines forI
m I-5
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!
minimum dX and minimum dY. Also listed are the standard

I deviation of the fit parameters.

I The purest test should be the comparison between Channel 12 and
LWSC at night. The results definitely indicate an offset exists

I in the data as well as a sensitivity shift from that used In the
MAT processing. Some physical arguments are under study by

i Maschhoff to explain this offset. He believes that heat isflowing out of the instrument and produces an obvious offset in

Channel 13 at night. The comparison presented here shows a

I similar offset in Channel 12 but about half the magnitude of the
Channel 13 night offset which is about 20W/M2. Figure 4 shows

I scatter diagrams of the pairs of observations for the 4 days and
a solid llne representing the best fit. Even an eyeball fit

I indicates an offset exists but its magnitude Is less certainthan the table standard deviations indicate. We have performed

several flts excluding different amounts of lower quality data

I producing several values for the slope and intercept. Before

attempting a conclusion, let us discuss the other comparisons.

!
Comparing Channel 13 to SWSC shows substantially more scatter in

I the parameters (Figure 5). There is, however, a clearindication of an offset between them as well as an uncertain

slope. The difference between the composite fit and the

I individual data orbital flt for day 245 shows in Table 1 the

substantial uncertainty In the method, wlth the disagreement In

I slope.

I Comparing (Channel 12-LWSC) which should be the reflected flux
and Channel 13 show very close correspondence, Figure 6. This,

i In fact, shows the closest match of all the comparisons brled.One can interpret this in two ways: (i) Both Channels 12 and 13

readings are correct during the day as shown by this good flt.

!
m I-6



1
Maybe there is a small offset in Channel 12 or 13; (2) BothChannels 12 and 13 have big offsets from reality but the

magnitude of the offset is nearly the same so the difference is

near zero.

Finally, we compared (Channel 12-LWSC) to SWSC which showed a
large offset, Figure 7. Except for day 320, the slopes are

close to 1.0, and the offset is a large negative value between12 and 34W/M 2. This agrees to some extent with results from the

NIMBUS-7 NET since we had thought SWSC returned very high

readings. Based on earlier comparisons an adjustment was made

to force the offset (b) to zero and made the slope (a)

approximately 0.9 in converting SWSC to albedoes written onto
the output (MATRIX) tapes for users. Our results indicate a

need to reconsider that decision.

DIFFERENCES

I
To detect changes in Channel 13 behavior during the day (e.g.,

offset changes) one can use SWSC or Channel 12-LWSC as a
proxy

of reflected flux and then look at the difference. The SWSC

data must be adjusted by using the fit parameters to bring thetwo numbers close together. Figures 8 and 9 show the result of

this subtraction. The SWSC comparison shows behavior after thenight to day sun bllp an Channel 13 alone from after day to

night sun bllp, from after day to night, but this is only

qualitative because the ripple from the integration masks the
effect. The Channel 12-LWSC difference shows small changes in

the day part of the orbit, but perhaps the changes in Channel 13
response are exactly balanced by changes in Channel 12. We do

not see an obvious scene-dependent offset in Channel 13 duringdaytime, but scan pattern integrations add noise to our

comparison.

I
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I TEMPERATURES

To get some information about the physical mechanism for the

I offset, we looked at composite temperature traces for various
sensors on the ERB instrument. Figures i0 and II show a sample.

I Of interest is the large variation in temperature of the Channel
12 shutter. This Is weakly coupled to the module and so

i undersoes large swings in temperature. It is very close to theChannels 13 and 13 detectors and thus could be feeding energy in

and out of the detector. No quantitative results are evident in

I the analysis thus far.

I CONCLUSIONS

I Strong evidence has been found for an offset in channel 12 atnight, about one-half the channel 13 night offset 20W/m2. (See

also Jacobowltz et al, 1983.) It Is not posslble to separate

I channel 12 and 13 behavior in the day. In retrospect, we should

have attempted a three parameter flt during the day (LWSC = al2

I +b13 + c or LWSC = a12 + BSWSC + c). This have allowed
might

better consistency In the parameters, but it can not resolve the

I offset in channel 12 separate from the channel 13 offset during
the day. Some external assumption must be applied to decide the

i offset information relative to the SWSC understudy. It wouldalso have been helpful to process much more data to look for

time variations in slope and offset and thls to understand if

I changes day to day are real or noise.
their from
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I
I Figure 2a Orbital composites of 12 and LWSC+SWSC, 320
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I
I Figure 2b Orbital composites of 12 and LWSC+SWSC, 159
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I
I Figure 2c Orbital composites of 12 and LWSC+SWSC, 217
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I Figure 2d Orbital oomposites of 12 and LWSC+SWSC, 245
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I Figure 3a. Orbital oomposites for day 320

I 8

300.00Ci i i _ i

I

I
I

!
!
Ii Z -° 2 NIDE

.4a_u

I ,,"

I
!

I
1-14

i



i Figure 3b. Orbital oompesites for day 159
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i Figure 3e. Orbital composites for day 217
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I Figure 3d. Orbital oomposites for day 245
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I Figure 4 Scatter plots of 12 vs LWSC at night.
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I Figure 5 Scatter plots of 13 vs SWSC during day.
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F i g u r e  6 S c a t t e r  p l o t s  o f  12-13 v s  LWSC d u r i n g  day .  



I Figure 7 Scatter plots of 12-SWSC vs LWSC during day.
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Figure 8 Composite d i f f e r ences :  13 - f(SWSC) 
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I Figure 9 Composite differences: 13 - f(12-LWSC)
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FiKure 10 Composite temperature variations of shutters.
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I Figure 11 Composite temperature variations of varioustemperatures.

I 23.960

I

_ ZARTH 5INK

_OLAR BOTH

I

I
I , , , 18.600

' ' ' UHI 21'I ' qO0.OOO

I 23.960 I

I 18.600

qo0.o00

I
1-25

!



1

l Table 1 TOTAL LEAST SQUARES FITS

b in W/m 2

Indlvldaul Orbits Composl te Oate

LWSC= a (12) +b Night
a b a b

.946 (.027) 12.57 (.95) .935 (.27) 14.54(1.4) 320•952 (.011) 14.82(.16) .9?5(.023) ii.00(i.i) 159
•939 (.011) 16.04 (.27) .963 (.028) 11.74 (1.3) 217
•955 (.011) 13.22 (.15) .945 (.030) 14.87 (1.5) 245

(12-LWSC = a (SWSC) + b day
a b a b

l .922 (.021)-12.77(.65) .941 (.023) -17.27(I.I) 320•979 (.006) -24.39 (.09) .989 (.014) -26.50 (0.6) 159
•974 (.008) -22.71 (.09) .999 (.014) -27.77 (0.7) 217
•961 (.011) -19.70 (.12) 1.004 (.017) -34.29 (0.7) 245

SWSC = a (13) + b day
a b a b

l 1.100 (.022) 10.06 (.62) 1.082 (.024) 13.80 (i.0) 3201.048 (.006) 23.57 (.08) 1.044 (.011) 24.26 (0.5) 159
1.052 (.007) 22.00 (.09) 1.042 (.012) 23.71 (0.6) 217
1.070 (.011) 17.54 (.ll) 1.006 (.013) 28.05 (0.5) 245

(12 - LWSC) = a 13 + b day
a b a b

l 1.012 (.012) -8.46 (.45) 1.018 (.05) -4.26 (.22) 3201.026 (.003) -1.28 (.03) 1.032 (.006) -2.51 (.24) 159
1.024 (.003) -1.26 (.04) 1.041 (.008) -4.08 (.29) 217

1.027 (.004) -2.69 (.04) 1.042 (.011) -5.18 (.28) 245

(LWSG = a (12-13) + b day

l a b a b1.007 (.016) -0.65 (.32) 1.006 (.18) -0.34 (.60) 320
.888 (.008) 16.85 (.10) .889 (.03) 16.82 (.77) 159

.907 (.008) 14.05 (.08) .921 (.02) 11.52 (.75) 217•967 (.007) 4.08 (.07) .973 (.02) 3.05 (.57) 245

The numbers in parenthesis are one sigma errors. There are many

more points in the orbital data than in the composite so the fiterrors are smaller.
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l APPENDIX II

FURTHER ANALYSIS OF DATA PRESENTED IN
G.G. CAMPBELL AND T.H. VONDER HAAR REPORT

- THE SHUTTER TEMPERATURE CONNECTION

The purpose of the Campbell/Yonder Haar study (see Appendix I)

was to improve our understanding of the offset of the ERB WFOVchannels, and the short wave WFOV Channel 13 in particular,

during the day as a result of shortwave solar and/or earth flux

heating. The tools were the scanner data
integrated over

equivalent fields of view, various temperatures and temperature

gradients, and ground truth suggestions. One key assumption wasthat the long wave scanner data could be depended on due to it

being a chopped radiometer and also because it has In-fllght

calibration provisions. It was hoped that Channel 12 data was

well enough understood that It could be of use in analyzing

l Channel 13 data. These items re-examlned the data in the
are aS

report Is analyzed and discussed.

l Some general observations are in order before detailed analysis

Is considered. All of the wide field of vlew sensors (WFOV)should be suspected of having offsets. Further, these offsets

may be different day to night and at the next level not constant

l during either day or night. On top of that, the differences day

to night are not constant with the seasons or tlme of year.

1 "
One of the objectives of this effort has been to establish

limits and/or definitions of these variations. Until fairly
recently the offset problem was primarily associated with

l Channel 13. In actuality there is no basis for assuming that
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i the total channels, i.e., ii and 12, have no offset. In factthere is a body of data which demands a different than zero

offset assumption. Inter-comparlson of ll and 12 over a two-

l year period compiled by Fromm of RDS shows that, not only is
there an offset difference between the two, but further the

I difference changes day to night. (See Figure i.) To assume
that Channel 12 has no offset and that ii, with its black

l painted baffles, in fact exhibits the offsets, at this point isrisky.

I Based on intercomparlsons between Channel 12 and the integrated

LW scanner (Table i) at night, an average offset of -12.5 W/M 2

I is indicated. The source of this offset may be: unaccounted
for space loading, conversion from filtered to unfiltered ra-

l diance in the LW scanner data, or the temperature gradient inthe earth flux assembly block or modules, or some combination of

the above, one can argue that if it is due to anything but

l thermal gradients there should be no seasonal or varying com

portent. If it is thermally induced, then one can expect varl-

l ations in offset due to the various heating inputs on an orbital
or seasonal scale. One can further argue that if it is all

I thermally induced then its magnitude is about half of the Chan-
nel 13 effect (based on the nlghtlme Intercomparlson) and thus

its day to night differences might have half the magnitude off

I Channel13.

l The plan is to test various assumptions as to what Channel 12 is
doing offset-wlse and see what fits. Below we start out by

i assuming that, if Channel 12 has an offset, we assume it to be
constant and get at least a first order look at what Channel 13

I might be doing since its day to night offset is strongly sus-pect.

!
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l
It turns out to be very instructive to study Channel 13 behaviorby comparing it to (Channel 12-1w scanner). Figure 9 of

Appendix (1) the attached report presents this as a difference

vs. tlme for the 4 days analyzed, we need to keep mlnd
in that

the Channel 13 processing applicable to this data involves

forcing Channel 13 to zero at midnight and applying a delayed 4%
long wave scene correction. The raw offset before correction

runs in the 22W/M 2 to 25W/M 2 range at night. A scanner plot ofthe same data Is shown In Figure 7 of Appendix I for days 30 and

217. We concentrate on the difference vs. time plots. The

night portion of the data is the left i/3 of the plot. Shown in

dashed lines are smoothed versions of thls data revealing the

l well known Channel 13 decay after sunset of about i0 W/M 2. This
says that most likely Channel 12 and the scanner do not exhibit

a decay after the sun bllp llke 13, giving us the hope thattransient effects on Channel 12 during the day may not be slg-

nlflcant.

I ,
For day 320 the Channel 13 offset during the daytime period are i

on about 3 to 4 W/M 2 less negative than at satellte i
average

midnight, this says, for example, that during southern heml-

sphere summer we are overestimating the short wave flux by that
amount; again if one assumes that Channel 12's offset is con-

stant.

The other 3 days exhibit varying amounts of offset during the

daytime more negative than at satellite midnight. Day 159 goes

more negative by about 6 W/M 2 over the southern latitudes. This

means that without a more sophisticated offset correction tech-
nlque we are underestimating short wave flux over southern

l latitudes by 6 W/M 2. Note, this Is winter in the southernhemisphere and the earth flux assembly has much opportunity to

lose heat near the South Pole. As we progress away from thls

1
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l
winter extreme through days 217 and 245, it is seen that thiseffect decreases. By day 245 the South Pacific underestimation

would be only about 3 W/M 2 and the average over the day nearly

l zero. Thls suggests as we approach Southern Hemisphere summer
and an illuminated antarctica that the earth flux assembly

doesn't lose as much heat (i.e., reduced heat flux and thermal
gradients) reducing the offset. We note that the offset varl-

ations we are talking about are in addition to the long wavedome heating corrections already being made.

We asked ourselves the question, "Is there any other manifest-
atlon of changes In this heat flow?" Careful examination of

temperature data from the modules and earth flux assembly
revealed no direct clues. However, one obtuse fact stuck out.

The earth flux assembly temperature gave evidence of a rapidtrend reversal when the satellite entered its day. Why? One

could expect it to lag the actual modules due to their more

direct exposure to the scene. Specifically the earth or scene

side of the beryllum block responds much earlier than the inside

of the block which also to that
serves prove the heating does

not come from the instrument side of the earth block. See

Figure i of thls Appendix.

Examination of the physical arrangement suggested that theshutter system for Channel 12 might somehow be involved. It was

noted that the super-lnsulatlon covering the earth flux assembly

has a break or void around the shutter motors allowing for
rather direct thermal coupling with surfaces heated by the sun.

As a consequence, the shutter temperatures were looked at care-
fully. Figure i0 of Appendix I shows Channel ii and Channel 12

shutter temperatures. The temperatures of the FOV limitingshutter for Channel 12 was not being monitored at this time. We

note that the Channel 12 shutter, which is open, swings much

1
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l
more widely in temperature than the Channel ii, one which ismore closely coupled to the Channel ll module since it Is closed

during the days in question. Effort was made during the design

to decouple the shutters from the earth flux assembly heat sink
by use of a vespel mounting block (vespel is a dimensionally

stable low thermally conductive material). A wide swing in
temperature is therefore not surprising. A loose thermal cou-

piing fortunately served to accentuate differences In heatingdue to the sun and scene at different seasons. Note the con-

siderably different signatures between day 320 and day 159

representing roughly winter and summer extremes.

It turns out that the pattern of Channel 13 - (12 LW scan)
differences bears a remarkable resemblance to the Channel 12

shutter temperature. The dashed llne represents the attempt atan overlay. What appears to come out Is that a high correlation

exists for about the first half of the day. Clearly, the

shutter, which has a finish design, with a short wave absorp-

tlvlty of 0.3, and long wave emissivity of 0.9 Is strongly

influenced by the sun as well as Antarctica. For our
purposes,

it Is acting llke a front surface radiometer which seems to

predict to a large extent the offset variations of Channel 13 as
the radiation environment changes the heat flows and offsets.

The correlation decreases as the day goes on and can be qual-

Itatlvely explained as the whole earth flux assembly finally

warming up and stabilizing the gradient through the sensors.
The earth flux assembly temperature profile for day 217 Is

sketched In. In general, the data shows that the Channel 13
offset for the second half of the day Is near the midnight value

which presumably is forced to zero.
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We now explore what happens if we allow Channel 12's offset to

I vary from night to day. If Its variations are small compared to

13, then the numbers put forth in the previous discussion are

I probably good. If Channel 12 has similar variations to 13 but
half the amplitude, then the real variations in channel 13

l offset would be twice those indicated. An even worse pos-
sibility exists; that of Channel 12's offsets operating in

I opposition to those of Channel 13. This possibility must atleast be considered although It Is not likely that opposite

behavior would operate over the same time scale.

!
There are at least three pieces of evidence that indicate

I Channels 12 and 13 do not track on a transient basis. First, as
has already been mentioned, the transient exhibited by Channel

l 13 after sunset Is not evident. Second, the 3-day signature InIrradlence levels so evident In Channel 13 data Is not evident

in Channel 12 data per studles by RDS (Ardunay). Most of the

l 3-day signature effect Is explained by the 3-day on and 1-day

off ERB duty cycle. Finally, during the SW heating tests per-

I formed by J. Swedberg It was clearly demonstrated that when the
domes were removed from Channel 13, Its transient behavior

l changed dramatically. In fact, Its response in that state
compared well wlth a Channel 12 module. We draw a tentative

conclusion that the day to night variations of Channel 12's

i offset are insignificant.

I An attempt to remove Channel 12 from the loop by comparing the

integrated short wave scanner wlth Channel 13 yielded somewhat

I inconclusive results. The study dld reveal that the short wave
scan channels exhibit about a 25 W/M 2 positive offset. Thls

I offset exists relative to Channel 13 after Channel 13 has beenmidnight offset and LW scene corrected. The channel 13 errors

over southern latitudes already mentioned might change thls a

!
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l
l little but not much. The effect of this offset has been erro-neously interpreted as approximately a 10% increase in

sensitivity of the SW scan channels from pre-launch. While

l no known mechanism for a change wave scan
there is in short

channel sensitivity (given that the long wave channels which use

l the same kind of detectors are rock solid) there is an offset
producing mechanism, that of scattered light. While it remains

l to be proven, it is evident that the effect of even a smallout-of-fleld response would create an offset effect when much of

the out of field scene is bright earth.

I
In any case, over the data set studied, there was too much

l structure remaining in the integrated scanner data to draw more
then guarded conclusions. There is much more structure in the

short wave scene than in the long wave scene so that identicalintegration techniques yield more noisy results in the short

wave case. The only safe observation that can be made from the

time plots of the difference is that indeed there is an offset

of about +25 W/M 2 with an uncertainty of + 5 W/M 2. A much

l larger body of SW scan data needs to be considered before
more

definite conclusions can be reached.

The impact on angular models is the obvious area of possible

concern by not accounting for the offset effect. Low lightscene levels will be overestimated if the adjustment to SW

scanner sensitivity is made.

I
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l
Conclusions (Preliminary)

I
What Is claimed as a result of the body of work represented by

the Campbell/Vonder Haar Study effort is that a mechanism for
variations in Channel 13 offset due to the scene has been

l identified which operates in addition to long wave dome heating.
At thls polnt, the seasonal effect over southern latitudes is

l the most pronounced. Orbit to orbit var_atlons over the samelatitudes are expected to be smaller due to the large ocean

areas In the southern hemisphere. The data set used to date Is

too limited to make other than good estimates as to the range of
the offset variations. Just being able to say that we are

l talking about a range of error for part of the daytime orbit In
the 5W/M2 range Is somewhat comforting. A larger data base wlll

clearly not hurt. What this involves is using scan data takenin routines 3 and 4 employed on alternate days. A new

integration routine Is required.

I
I

I
I
!
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i APPENDIX III

SUMMARY OF ACTIVITIES AND FINDINGS

l RELATIVE TO NIMBUS ERB DATA
As Presented at the ERB NET Meeting, Feb. 14, 1984

l
l BACKGROUND

At present it is felt that the physical explanation for varying

I in the WFOV channels is a variation in the heat flow out
offsets

of the earth flux assembly. These variations in heat flow are

l modulations on a dominant outflow of heat as evidenced by the
fact that the extremities of the earth flux assembly are always

the coldest part of the ERB observatory. The sensors weredesigned to minimize responses to thermal transients injected

into the mounting points of the thermopiles by virtue of

I symmetrical front and back receivers. Since the surrounding
aluminum body does not have infinite conductivity, a net heat

1 flow out of or through the front of the module must in principle
1

create a front to back recelver temperature difference.

i Therefore, even if the sensors are balanced in respect totransients, steady _radlent induced offsets are still possible.

It takes only a I0 milledegree back to front receiver

temperature difference to produce a 20 W/M 2 equivalent offset in
Oh 13.

l
It has been demonstrated that a great improvement In data con-

1 slstency results when the effects of variations in heat flow due

to the ERB operating duty cycle are removed. The simple

expedient of forcing the offset of Ch 13 to zero at satellite

l midnight and interpolation between removes the 3 day duty cycle

effect previously noted in Ch 13 data. It was recognized at the

I
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l outset of this procedure that if there was a significantmodulation of heat flow through the earth flux assembly due to

scene and sun heating, additional errors would probably exist.

1 The problem of quantifying the effect had to be solved before

any correction algorithm could be considered. The first

l suggestion that such an effect most likely existed was a• seasonal variation in the difference between Ch 13 data and

l the"Paclflc Ocean" calibration target area. Later it was shownthat using the whole earth as a "reference target" a seasonal

variation still exists. The conclusion was that even though not

i variations could be conclusively shown to be instrumental
all

rather than real, most of it was probably instrumental.

l INVESTIGATIONS

i. The possibility of variations in the temperature gradient

across the earth flux assembly block, if present, might be

i used for offset correction was investigated. The gradient

would hopefully be function of heat flow through the earth

l flux assembly. It was known at the outset of the Investl-
gatlon that any gradient across the block, which is made of

l high thermally conductive beryllum, would be small. Nosignificant signature could be detected that correlated

with known offset variations of Ch 13 at night for example.

It was concluded that i_ may be possible to extract such

information by averaging temperature from perhaps as many

l as i000 orbits. This is
computatlonally difficult at thls

stage. AS it was, using da_ly averages of 12 or 13 orbits,

no clear indications of structure were found. One factthat suggests that information is there comes from the

8 observation that the day to night gradient across the block

| varies by at least 0.1°C. Refer to Fig.1. It is appropri-

ate to point out that there is little confidence in the T

!
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l amplitude of about I°C. The thermistor absolute calibra-tion Is not that dependable. Thls does not detract from

the ability to detect change.

!
2. An empirical comparison of Ch 13 data with integrated SW

l scanner data was made to possibly reveal an orbital pattern
of difference which could possibly relate to variations In

heat flow over the orbit. The data for this comparison wascompiled by Dr. Campbell of Metsat, Inc. and is reported in

detail by him (see Appendix I).

|
It was concluded that the data base was not sufficiently

large to do effective smoothing of the spatial and time
sampling involved in integrating the Mode 5 scan data.

0nly days in which the scanner was In Mode 5 were used. Amore direct method suggested itself almost concurrently as

described below.

I
3. Comparison of Ch 13 data with Ch 12 minus the integrated LW

1 scanner as truth (instead of using the integrated SW
1

scanner as above) yielded more indicative results. The

i form of the results Is shown in Figure 2 for the four daysinitially studied and detail. The feature that attracted

attention is that distinct orbital signature exist whichvary In detail over the 4 days suggesting seasonal effects.

We first observe that the nighttime pattern follows the

I after sunset Just as seen from Ch 13
decay characteristics

alone. This suggests that Ch 13 Is erroneous rather then

l the LW scanner or Ch 12 at least at night.

l While there was some indication of a similar transient Justafter sunrise, the temperatures being closely monitored dld

not appear to yield a relationship. The temperatures here

to were and earth flux assembly tempera-
referred module

tures.

l III-3
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i 4. A very strong characteristic or orbltally related structurewas observed in heretofore ignored shutter temperatures and

shutter to earth flux assembly temperature differences. It

I would appear fortunate that the shutters were thermally
isolated from the rest of the assembly emphasizing any

I variations in the radiant environment on the front of the
earth flux assembly. Simply noting the peak to peak

i variations in the shutter temperatures is quite a revela-tion (refer to Fig. 3). Over the course of the orbit the

temperature of the shutter Is both hotter and colder than

i the sensor modules. Further, it Is evident that the sun

impinging on the shutter around the times of the sun bllp

I causes a rapid temperature rise. The finish of the shutter
as well as the surrounding shroud or shield around the

i, openings of the earth flux sensors Is a paint designatedD4D. It was selected to have a rather low absorptance In

the visible; i.e., 0.3, and a high emissivity in the

I infrared; i.e., 0.9. This was intended to keep surfaces

exposed to the sun from overheating, but for low mass items

I llke the shutters and fiberglass shields around the earth
flux assembly an absorptance of 0.3 results in rapid rise

I in temperature when 13TOW/M 2 impinges on it. The sugges-tion is certainly that disturbances in the temperature

i gradients is substantial around the shutters. Since theyare in close proximity to the modules, although fairly well

isolated conductlvely, the temperature gradients in the

appears to be altered to some extent. The question
modules

is to what extent!

I Whether the shutters can only be considered indicators of

i what might be happening in the earth flux assembly andmodules or whether the shutters act as signlflcant sources

or sinks ls an unanswered question at this point in time.

i,
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-1 The thermal paths from the shutters to the modules Is quite

1 complex and probably involves more radiative coupling than

conductive coupling. It can be argued that attempts at

thermally isolating the shutters unsuccessful becasue
were

of the radiative factor. Because of the low thermal mass

of the shutters they quickly assume temperture differenceswhere radiative coupling is established and the heat

absorbed by the shutters Is transmitted to the earth fluxassembly anyway. At a solar incident angle near the sun

bllp of 60 °, each shutter converts nearly a watt of short

l wave energy to heat, part off which will find its way to the
block. Considering that the total heat Into the block from

l the instrument electronics slde is less than i0 watts, it
is not surprising that sun and scene heating effects

perturb any static offset. A much larger area of D4Dpainted fiberglass covers the sensor block except for the

sensor openings themselves. On the sides of the earth flux

l assembly block, super insulation serves to insulate It _rom

the covers. On the bottom or "scene" surface, however, the

cover can communicate with the block directly by radiation.
With an effective area on the order of 100 cm 2 a peak of

l nearly 5 watts Is absorbed around the sun bllp times. Atemporary reversal of the heat flow in at least part of the

assembly seems at least possible. In any case, there

appears to be a strong relationship between Ch 13 offset

and the shutter to module temperature difference. Flg. 4a,

and 4b are plots of the above
temperature difference VS. Ch

13 output at night, one for Nimbus 6 and one for Nimbus 7.

I A functional relationship is evident for both instruments.
It may be approximated by two linear relationships, one

where the shutter Is colder than the modules and the other

where It Is warmer. It turns out that thls division point

is crossed each nighttime period. A preliminary check on

!
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l
l whether such a relationship holds in the daytime can bemade from Fig. 5. Here the output of Ch 13 Is plotted

against orbit number during an instrument warm-up period.

l The Ch is taken at the same time solar readings
13 reading

are taken each orbit. This is very near the minimum point

i in Ch 13 data after the sun blip. The shutter vs. module
temperature difference is also plotted against orbit

number. Again, a close relationship appears to exist. It

l represents a warm-up condition where Ch 13's offset at

night is known to change.

l
Fig. 6 indicates the relationship vs. seasons that we have

i to work with. Days have been selected from all different
seasons of the year. A large difference in the shutter

i temperature minus module temperature signature exist as 22afunction of season. Comparing the summer and winter cases

6a and 6b first; as referenced in the northern hemisphere,

l we see that the shutter warms up rapidly and stays warm
relative to the module all day due to the high Antarctic

short wave flux. When Antarctica is dark, the shutter
continues to cool very soon after the sun bllp and stays

l colder than the modules for the entire daytime pass. Atthe equinox seasons it is seen there is little difference

in shutter to module temperature. Further, it is seen that

the midnight offset correction will result In about the

right correction only for the equinox cases 6c abd 6d. The

i of test a residual earth flux assembly
importance a on

becomes obvious. An orbital type simulation was never

performed so experimental confirmation of what appears tobe happening in orbit should allow for more accurate

algorithms.

l 111-6
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The most direct evidence that the daytime behavior is

I something llke the nighttime offset behavior comes from

observing the Ch 13 flux minima around the sun bllp. The

l following the sunrise blip is between 5 and 10W/M2
minima

more positive than the one preceeding the sunset sun bllp.

i This is consistent with the temperature difference signa-
tures in this reglonas shown in Fig. 6. The nature of the

i signal minima can be seen in Figs. i0 and 12 of the mainreport while their locations on the temperature curves of

Fig. 6 are denoted with an arrow. The extent to which the

i minimum are contaminated by actual scene variations is the
only thing that clouds this argument quantitatively. It

I remains that the sunrise one is always more positive than
the sunset one.

i We need to be reminded that during thermal-vacuum testing

i and calibration activities of the flight instruments atGulton, no significant offsets were observed. This was in

large part due tothe fact that there was no cold wall or

l plate to simulate space. A little reflection will suggest

that such a cold plate would easily interfere with sensor

I stimulus equipment particularly in a small vacuum chamber.The offset of Ch 13 when not illuminated, for example, was

always within a count or two of zero and was attributed to

l small electronic effects. H_ndslght suggest that more

careful analysis of the offset behavior of Ch 13 as the

i mounting baseplate temperature was varied from
instrument

the nominal 25° over the range of l0° to 40°C might have

revealed the problem.

i No simulation whatever was attempted of the short wavedirect solar and reflected short wave impinging on the body

of the instrument. It should be possible to set up tests

!
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I which even though they don't totally duplicate the environ-ment are sufficiently close to indicate the existence of

the effects. Figs. 6e and 6f are included to show that at

I seasonal extremes there is a difference in the phase of
the

the module heating curve due to the fact that the entire

I assembly heats up faster in southern hemisphere summer.

i 5. Channel 12 Offset RevisitedOn the basis of the comparison of Ch 12 at night with the

integrated LW scanner It is observed that one or the other

l must have an offset. Since the scanner is a chopped

radiometer its offset can be argued to be zero because

i chopping occurs well toward the front of the optical train.
Most importantly it occurs ahead of the spectral filters

i that might assume some temperature different from thedetector due to scene or environment variations. It

follows then that the most likely source of the offset is

i in Ch 12.

I What is the source of the offset? The candidates are:

I i. Thermal gradient through the earth fluxassembly or module.

l 2. Deep space filling the F0V wings.

i 3. A combination of 1 and 2.

i A confounding fact is that Ch ii which has painted baffles
has been shown by F0V measurements to no longer have wings

i beyond 121 ° . But Ch ii still has an offset, albeit on thebasis of comparisons with the integrated LW scanner at

night different than Ch 12. Further, there is a day to

!
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night difference in the Channel (11-12) offset on the basis

i of regression over the first two years of ERB operation as

i perpared by Fromm of RDS, Inc., see Fig. 7.
Another piece of data that must be reconciled is that in

I contrast to Ch 13, Ch 12 appears not to have a 3 day duty
cycle signature. This suggests that variations in earth

flux assembly heat flow do not produce variations in offsetas appears to happen in Ch 13. This must mean either that

there is not much flow out of Ch 12 or that what flow there

I is follows paths which do not produce offset.

I The following explanation Is offered:

i i. Chs ii and 12 have approximately equal offset but

for entirely different reasons.

!
IA. Ch 12's FOV wings account for nearly all of

I the offset required from the Integratred LW
nighttime Intercomparlson. Neither ERB duty

I cycle modulation or scene modulation is _husinvolved.

I lB. Oh ii loses much more heat to the average cool

earth than does Ch 12 because of the black

I painted baffles. Since the scene includes
short wave, this flow is modulated on a

I day-nlght cycle.

I III-9
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2. Ch 13 loses much more heat to deep space and the

I scene than Ch 12 because among other factors the

domes view factor of space is much higher. Further,

I the long wave emissivity of quartz is higher than
polished aluminum.

i It would appear that the FOV wing problem of Ch 12

i was traded for variable heat flow induced offsetswhen Ch ll's baffles were painted.

I As a consequence of this, the data reduction
equations for Ch ii and 12 should be modified to

i allow for the inclusion of these factors.

I
i
i
!
I
I
i
I
I
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