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SYMBOLS 

a = 1,339 = a dimensionless constant 

e l  .i, e2,i = two unit vectors 

3 
E(v) = 4nv- - 1 /2 aii (v l ,  v2, v3) 

f = loiigitudinal isotropic correlation coeffii a t  

g = transverse isotropic correlation coefficient 

H(v), H(vl , vg, v3) = one- and three-dimensional filter functions 
A 

Kv(x) = the modified Bessel function o f  the second kind of order v 

L = longitudinal integral length scale of  turbulence 

N 1 ,  N2 = first and second components of dimensionless spatial frequency 

Ne = dimensionless frequency 

ri = ith component of separation distance 

' 2.112 r = (r12 + r2- + r3 , 
R.- = cross correlation tensor 

U 

t = time 

T = ambient temperature 

ui(x,y,z,t) = three component simulated gusts 

Ui(x,y,z,t) = interpolated JAWS winds 

V = aircraft airspeed 

wi(x,y,z) = three-dimensional block of Monte Carlo simulated turbulence 

Xn +n2 ,n3 = discrete space function of three valiables 

Xkl  k k = Discrete Fourier Transform (DFT) of x 
2. 3 " 1 ,n2?3 

a(v) = phase of one-dimensional filter function 

0 = volumetric expansion coefficient 



tiij = Kronecker deita 

6(t) = Dirac delta function 

Ar2 = lateral gust probe separation in cross-spectra calculations or  measurements 

AT = parcel temperature difference from surroundings 

E = turbulent kinetic energy dissipation 

8 = Vt/L = dimensionless time 

@-(vl ) = one-dimensional spectrum function U 

peff = effective turbulent viscosity 

vi = spatial frequencies 

v = spatial sampling frequencies 
'i 

7 
v = (vl- + v,? - + v3?)l12 

= cross-spectra 

@.(v ,vg,v3) = three-dimensional spectrum tensor 1J 1 - 
9- (v l  ,v2) = twodimensional spectrum tensor 

1J 

p = (v12 + v2?)lI2 or  fluid density. The meaning is obvious from the usage. 

oi(x,y,z,t) = gust standard deviation 

vii 



CHAPTER I. INTRODUCTION 

Approxi:!lately every two years in the United States a major wind shear related 

airliner accident occurs killing tens of people. 'The most recent of these (as of this 

writing) was the July, 1982 crash of Pan Am Flight 7.29 during takeoff a i  New Orleans 

International Airport, 156 died aboard the plane and eight otheis were killed on the 

ground as the plane crashed into a subdivision. 

This crash and others like it were caused by wind shear associated with a small 

scale atmospheric phenomenon known as a microburst. 11. the past few years two field 

pyograms were funded to  study the niicroburst. The programs were the Northern 

Illinois Meteorological Research on Downburst (NIMROD) Project and the Joint Airport 

Weather Studies (JAWS) Project. The JAWS Project measured some 70 microburst events 

witn Doppler radar dumig May through August, 1983. Aside from scientific interest, 

several wind shear data sets were subjected to  detailed analysis and put into a form for 

use in flight simulator research. These data sets constitute the best wind shear measure- 

ments ever made. 

The JAWS data are presented on a three-dimensional Cartesian grid with grid 

spacings which vary from one case to another but are approximately 200 meters. Hence, 

the JAWS data contain no information on turbulence with length scales shorter than 400 

meters. For nominal landing speeds, some frequencies of importance to aircraft response 

are not contained in the JAWS data. These small scales o f  turbulence must be added for 

realistic flight simulations. 

During September, 1983 a workshop spons~red  jointly by the FAA, NCAR, and 

NASA was held in Boulder, Colorado. The workshop brought together researchers 

directly involved in the JAWS program and potential users of the JAWS data. The users 



were offered a selected JAWS microburst case and asked what additional information 

they required. From thus exchange, several facts emerged. Turbulence was high on their 

list of priorities. Users from private iridustry look t o  public agencies such as NASA t o  

tell them how to add turbulence to the JAWS data. In the present economic climate, the 

airlines have no money to  fund basic turbulence simulation research, nor can they sub- 

sidize the simulator manufacturers t o  do it. Of the agencies involved, NASA is probably 

best equipped to  d o  the job. 

This document presents an approach to  wind simulation which is a significant 

advance in the state-of-the-art. The technique involves the addition of three-dimensional 

Monte-Carlo simulated turbulence t o  the JAWS data sets. Using this approach, all aero- 

dynamic loads and moments (including roll and yaw) may be calculated from the winds 

simulated over the body of the aircraft. This level of info-mation was previously unavail- 

able from wind silnuiation models. The spatial model concept. in part, provides the 

answers to  the question of how to  add turbulence to the JAWS data sets. It also serves 

to direct future measurement programs and microcurst research t o  obt n required turbu- 

lence information. 

In addition, an extension of a previous cross-spectral model based on the von Kzrnman 

tr~rbulence model is presented. Results of  the theory arc compared with measurements. 

The cross-spectra are a natural part of a three-dimensional simulation. 

A complete explanation of the generation of turbulence, and addition to  the 

JAWS data are presented along with FORTRAN computer codes. Background informa- 

tion on turbulence, microbursts, the JAWS data, and Monte-Carlo turbulence simulation 

are also presented. The background material is necessary for a thorough understanding 

of the spatial model. The procedure for generating the turbulence is rather complex and 

an attempt was made to  present the material in an intuitive fashion with illustrations and 

geometric interpretations while complex derivations were relegated to  the Appendices. 



CHAPTER 11. ATMOSPHERIC WIND SHEAR AND TURBULENCE 

Wind shear, or  more precisely wind gradients caulax is a wind dilation) have been 

recognized as a cause of aircraft crashes for some time. What was not recognized until 

1976 was the small areal extent of the crash-causing phenomenon. The small scale wind 

shear events were culled microbursts by Fujita [ 1 I .  After the recognition of micro- 

bursts, field programs to  study them were done, most notably NIMROD and JAWS. 

One of the achievements of JAWS was the development of microburst data sets for use 

in flight simulation. These data sets are on a relatively coarse grid and therefore do not 

contain information on fine scale turbulence. 

In order t o  understand the nature of  the proposed wind shear model, a descrip 

tion of n~icrobursts is necessary. The necessary description and the characteristics of the 

JAWS data sets are included in this chapter. These descriptions contain a discussion of 

some microburst models. In anticipation of the need for adding turbulence to  the JAWS 

data for the purpose of flight simulation, relevant aspects of turbulence theory are 

presented. 

A. Microbursts 

Fujita defines a downburst as, "a strong downdraft which induces an outburst of  

damaging winds at  the surface." A microburst is delined by Fujita [ 1 ] as a downburst 

of horizontal dimension less than 4 kilometers. A more useful definition is given by 

Wilson and Roberts [ 2 ]  who define the microburst as a downburst having a differential 

surface velocity greater than 10 meterslsec with the distance over which the velocity 

difference occurs being between 0.4 and 4 km. 

Figure 1 shows the life cycle of a microburst as idealized by Fujita [ 3 ] .  In the 

figure, descending air meets the ground and spreads out creating strongly diverging 

3 
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Figure 1 ,  Life cycle of a microbuwt [ 3  I .  



surface winds. Microbursts may or may not be associated with rainfall a t  the surface and 

are accordingly classified as wei or  dry. The microburst cases studied during the JAWS 

program show no correlation between surface rain rate and microburst intensity [ 2 I . 

The nlost intense JAWS microburst had a velocity differential of 48 m/sec (96 kts) and 

was associated with moderate rainfall at the surface [21. The non-correlation of micro- 

burst intensity with rainfall intensity increases their hazard because they can occur in 

apparently benign conditions. 

The final stage of the microburst is called the cushion stage by Fujita. During 

this period surface winds decay and the outflow no longer ponctrates to the surface. 

The entire life cycle of the microburst from contact to decay is typically 10 minutes. 

During the mature stage, the maximum wind will occur 50 to  100 meters above the 

surface while the depth of the outflow is typically 600 meters. 

The short duration, high energy, and small length scale of the phenomenon create 

problems for those who would predict, detect, o r  fly through microbursts. For predic- 

tion, the short duration and random nature of the microburst make forecasting of 

specific events impossible. The best that can 0.. done is to  forecast cocditions conducive 

for the occurrence of microbursts. 

For detection, the small size creates problen~s. For years at major U.S. airports 

the FAA has operated Low Level Wind Shear Alert Systems (LLWSAS). LLWSAS 

consists of several wind monitoring stations located around the periphery of the airport 

and one center field station. If vector differences of wind velocity between the center 

field detector and any of the other stations exceed a certain level, a wind shear alert is 

issued. Unfortunately, fatal wind shear related crashes have occurred at airports with 

operating LLWSAS, the latest being the crash of Pan Am 759 at New Orleans. One 

problem is that LLWSAS station spacing is larger than the average microburst. The only 

system offering hope of reliable detection in the near future is Doppler radar, but the 

cost of the required system may be prohibitive. Wilson and Roberts [21 have studied 

the requirements of such a system. 
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People encountering microbursts at low levels during takeoff o r  approach 

frehuentiy find it a once-in-a-lifetime experience. Airliner approach a i ~ p e e d s  are 

typically 75 to 80 mlsec while stall speedc in landing configuration are roughly 60 m/sec. 

With measured airspeed differences of as much as 48 m/sec, microbursts obviously have a 

drastic effect on aircraft performance during takeoff and landing. Figure 2 depicts the 

situation. On approach the aircraft encounters an increasing headwind and begins to  rise 

above the glide slope. Pilots have a tendency t o  throt. . back in an attempt to  return 

t o  the glide slope. Passing through the center of  the microburst, the plane encounters a 

strong downdraft and an increasing tail wind. A subsequent loss in lift occurs and the 

engines cannot respond quickly enough to  savc the aircraft. Engines of large air transport 

planes generally require about seven seconds to  spool up because of their large inertia. 

Figure 2 .  Landing aircraft microburst encounter. 

Microburst hlodels 

The preceding paragraphs ccntained a brief summary of microburst chzracteristics 

and effects on aircraft. In the Wind Shear Simulation Workshop in Boulder (Sept. 7-8, 

1993), simulator users and manufacturers expressed need for generic microburst models. 



Because of storage limitations in current simulators, a microburst described by algebraic 

equations is needed. We now proceed t o  a more detailed consideration of ~nicrobursts 

with discussior?~ of both conceptual models and simple algebraic models. 

Examination of Figure 1 suggests s pair of  microburst models. The first is that 

the microburst is a turbulent jet impinging on a surface. The general vertical velozity 

profile through the outflow has much the same appearance as the circular wall jet. 

Because of the transient nature of the microburst, the steady state circular wall jet is 

not 3 totally satisfactory :.-ndel. In addition, certain turbulence characteristics of a wall 

jet do  not seem t o  agree with measurements [4] .  

A second model requires the occurrence of a source of cooling at cloud base. 

The region of cooling is in effect a momentum source. One mechanism for cooling is the 

evaporation of falling rain. As water droplets evaporate and absorb latent heat, the 

surrounding air is cooled. Figure 1 depicts Fujita's microburst life cycle. The cool 

parcel intermtat ion is clear for ihe contact and outburst stages of the microburst. The 

cushion stage requires some explanation. During the decaying stage of the microburst the 

momentum source at cloud base would be dying. The result is that the falling air would 

be warmer than the air below it so that a stzble layer forms near the ground. Because 

the descending air is warmer than air already a t  the surface, deceleration and spreading 

of the downdraft begin at a higher altitude. 

A third model was devised by Caracena [ 5 ]  to explain some narrow damage 

swat!ls observed 5y F1~jita and Wakinioto (61. Caracena feels that if the jet model is 

accepted a more diffuse damage swath would result. He 1ooke.l for a mechanism capable 

of maintaining its integrity while transferring momentum over long distances. An obvious 

candidate is the vortex ring. Supporting the vortex ring model are some microburst 

photographs which have a vortex ring appearance. A vortex ring approaching a friction- 

less surface expands and decays similar to observed behavior of rnicrobursts. To  illustrate 

his hypothesis Caracei~a constructed a simple vortex ring generator. If a ring is generated 



obliquely to a grassy surface, the motion of the grass outlines a narrow "damage swath." 

Caracena's arguments concerning jet diffusion are not altogether compelling, however. 

A similar "damage swath" can be created with a hair dryer. 

A question concerning Caracena's model is the source of  the vortex ring which 

requires an impulsive force for generation. One possible source identified by Caracena 

is the collapse of overshooting tops above the anvil of large convective storms. Indeed, 

Ftjita and Wakimoto [hj  l~aveshown some apparent correlaiion in time between the 

collapse of  overshooting tops and the occr.rrence of  microbursts. 

Jet, cool parcel (momenti~m source), and vortex ring models of microbursts are 

conceptual models and full quantitative ramifications of  these ideas are not yet developed. 

Two models arc developed t o  the point of algebraic equations, however. These are not 

scientific models, but are intended for use in flight simulators. The equations were 

devised without reference to  the equations of flow in one case and with referencp to  

continaity only in the other case. 

Bray proposed an extremely simple model for use on Ames Research Center 

simulators. This model is described and critiqued by Elmore [ 7 ] .  The Bray model has 

several shortcomings criticized by Elmore including uniform downdraft source and failure 

to satisfy continuity. Elrnore also states that the downdraft diameter is too large for the 

amount of outtlow produced. Elmore offers sugestions to make the Bray model more 

realistic. These suggestions include modification of the source terms and alteration to 

satisfy continuit) 

A more sophisticated model was proposed by Zhu and Etkin, 1983 [8 ]  which is 

an ideal fluid model. It involves the flow induced by a doublet disc of variable strength 

together with its image. With this model, Zhu and Etkin were able to demonstrate the 

excitation of aircraft phugoid frequencies by microbursts. 

The Bray model, though admittedly crude, does provide a reasonable simulation. 

With the addition of  Elmore's suggestions, simulations should be improved. Of the three 



models described, Zhu's and Etkin's model is probably the best. Neither the Bray nor 

the Elnlore model were intended as scientifically accurate pictures of microbursts and as 

a result some of the physics not c~nsidered essential for simulation are neglected. 

Neither of the three show a microburst front and consequent abrupt shear at the leading 

edge. Thc equations which can be made functions of tirne as well as space are assumed 

separable, i.e., f(x.t) = X(x) T(t). Ths is not a realistic picture since it implies :hat the 

microburst intensifies and decays uniformly at every point. 

The preceding discussions have dealt with conceptual ar,d algebraic pictures of 

rnicrobursts. In the next subsection, characteristics of  real JAWS measurements are 

described. 

JAWS Datr; Sets 

At the present time three of the JAWS data cases have undergone multiplc 

Doppler analysis to  determine three component winds. These three cases are summarized 

in Table 1 .  

Table 1. JAWS Dual Doppler Cases 

Number of 
x x y x z  

Date A m Ay2 (m) A r n  4Vmax (mlsec) grid points -- 

June 29, 1982 3 00 300 250 2 5 60 x 60  x 9 

July 14. 1982 200 200 150 3 0 6 0 x 6 0 ~  11 

August 5, 1982 150 150 250 3 0 81 x 8 1  x 9  

1. Ax is the east-west grid spacing. 

2. Ay is the north-south grid spxing. 

3. Az is the vertical grid spacing. 



The August 5 case was selected for release to selected companies because o f  its 

iugh resolution and intensity. The data were summarized in a document [9] which con- 

tains a plot of low level winds showing a sinuous jet emitted from the northeast quadrant 

o f  the microburst. This feature also appears in the winds in the next level up but 

gradually disappears at higher levels. The jet seems to  be a real phenonlenon and if so  

it rzises some questions. The main question is, "Why is it there?" Is this a reflection of  

a convoluted source up at cloud base'! Thi.. idea seems highly unlikely since diffusion 

tends to  reduce source convolution in nature. The alternative is that something is 

happening at the surface. In other words the jet may be a result of topography or  of 

some surface roughness anomaly. Reference to  a Denver map shows that the jet occurs 

in thc near vicinity of the South Platte River basin and thc jet flow is in the same 

general direction as the river. The implication is that the cold stable air is being 

channeled along the river basin. 

Thc JAWS data is generally displaced freely relative to  airports in simulations. 

If the jet is a surface effect, freely moving the data to  flat areas surrounding airports 

may not be a reasonable procedurc. 

Figure 3 is a vertical sectior! through the July 14 case which is a typical asym- 

metric microburst embedded in a wind field. The center of the section shows a strong 

downdraft. On the right side of the downdraft is a slight updraft. The width of the 

downdraft is roughly 1 km. This downdraft is just off center of a moderate to heavy 

rainshaft and this microburst would be classified as wet. 

Microbursts weren't identified until 197b and many questions concerning their 

nature remain unanswered. What is the best model of a microburst (jet, momentum 

source, vortex ring, etc.). What is the effect of source size and strength on outflow 

intensity? What effect does source height have on the microburst? What effect does 

surface topography and/or roughness have on the outflow pattern and damage swath? 

What degree of kinematic organization exists in a microburst (vortex ring)? How do 
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turbulence characteristics (length scale and intensity) vary through a microburst? This 

latter question is crucial for turbulence simulation. JAWS has provided partial answers 

to  some of the above questions. Most require additional nleasurements preferably in the 

controlled environment of a laboratory. Appendix A is devoted to  laboratory approaches 

for obtaining hesc answers. 

B. Isotropic Turbulence 

Atmospheric turbulence is neither isotropic. homogeneous, nor Gaussian. Despite 

this fact at the higher frequencies and shorter length scales, turbulence tends toward 

isotropy. Isotropic turbulence is the simplest form of turbulence. In the discussion of 

the spatial wind model, a means for separating the longer wavelengths and non- 

homogeneities will be discussed. The need for the separation arises from the difficulty 

of generating nonisotropic turbulence with Monte-Carlo techniques. In anticipation of 

a later need, some useful properties of isotropic turbulence are presented in this subsec- 

tion. 

The description of the kinematics of homogeneous isotropic turbulence begins 

with the definition of two functions, the longitudinal and transverse correlation 

functions. These two functions, defined in Figure 4, are functions of separation r, and 

time. A similarity form which 1s a function of r/L only is assumed. Time dependence is 

contained in L = L(t). The best known mode!s of f and g are the von Karinan and 

Dryden models, both of which can be written as functions of r/L only. By virtue of 

continuity a relation exists between f and g. 

Different investigators have used different functions to  fit the measured correla- 

tions. The two most famous correlation models are by Dryden and von Karman. The 

Dryden correlations are given by 
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Figure 4. Longitudinal and transverse correlation functions. 

where L is the longitudinal length scale of turbulence ( f(r) dr). These equations 4 
have the advantages of simplicity and rational spectra. Simplicity is an obvious advan- 

tage, but the advantages of rational spectra are related t o  mechanisms for simulating 

turbulence by MonteCarlo methods. The main disadvantage of the Dryden model is that 

it does not fit measured data quite as well as the von Karman model. 

The correlation functions of the von Karman model are given by the following 

equations: 

2213 113 r 

'=Em(;) ["I13 (k) - Z x K 2 1 3 ( f ) ]  

where 

r (x )  = gamma function 

a = a constant = 1.339 

Kv(x) = the modified Bessel function of the second kind of order v . 



The correlation functions are important because the complete three-dimensional 

correlation tensor can be expressed in terms of these two functions. 

whcre 

6 = 1 i = j Kronecker Delta 
1J 

= O  i # j  

The above result was obtained b y  direct calculation by von Kamlan and Howarth [ 101. 

The tensor function can bc used to calculate correlations between velocities oriented 

along any two unit vectors, say e l  and e l  . The scalar correlation between these two 
9 - J' 

velocities is given by 

In the above equation the Einstein summation convention is in effect. 

Figure 5 gives a geometric interpretation of the preceding discussion. Since Rij 

is an isotropic tensor, R12 is invariant with respect to rotation, i.e., if the three vectors 

v l ,  vl. and r are rotated in any manner through the isotropic, homogeneous turbulence 

so that they maintain the same orientation with rerpect t o  each other (rigid body rota- 

tion) t h ~ . r ~  R12 is unchanged. 

The correlation tensor has an equivalent representation in frequency space. 
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where v l ,  v2, and v3 are the three spatial frequency components 

9 
and E ( v )  = 4nvr - 112 aii(vl,  v2, v3) and the Einstein simulation convention applies. 

Figure 5. Geometry of the cross-correlation tensor. 

As in the case of correlation, Gij is a tensor function and a scalar function is 

obtained as before. 

In the above expression e l , i  and e 2 j  are the same unit vectors which correspond 
-L - 4 

t o  V ,  and v2 in Figure 5, and 2 is the scalar cross-spectrum corresponding to  v l  
-Z 

and v2. 



16 ORIGINAL PAGE i$  
OF POOR QUALITY 

E(v) has representations corresponding to  the Dryden and von Karman models. 

For the Dryden model the equation is 

The corresponding von Karman equation is 

From these two equations Qij for the two models can be calculated. For the Dryden 

model the result for the auto-spectra is 

In this equation and the next, the Einstein summation convention is suspended. 

The von Karnian model is 

The spectra for the vertical velocity component, equations (12) and (13), can be 

rewritten for the Dryden and von Karman models, respectively, as follows: 

Dryden hlodel 
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von Karman model 

Equations ( 1 4 )  and ( 1 5 )  show rotational symmetry about the v3 axis, i.e., they 

7 '? 
are functions of p'- = v 1 2  + v2-  and v3.  Working with the von Karmaan spectrum. 

Equation (15). we can solve for v3 = v ~ ( @ ~ ~ , P ) .  The result is 

where C1 and C ,  are functions of o and L. - 
Equation ( 1  6 )  is an equation for a surface of constant @33 in wavenumber 

space. Vaiues of C1 and C ,  for the corresponding spatial frequency spectrum are 

developed in Appendix B. 

Equation ( 1  6) is the equation of a toroid. C oss sections of it ate plotted in 

Figure 6 and a perspective of the surface is depicted in Figure 7. Surfaces of constant 

a 3 3  are found if the curves of Figure 6 are rotated about the v3 axis. A result similar 

to  ( 1  6) can be obtained for + l  1 and with rotational symmetry about the vl and v2 
A & 

axes, respectively. 

Figure 6 sccrns to  imply that @33 is singular, i.e., it approaches infinity near 

the origin. In fact +33 does have a finite niaximum value. 

Three-dimensional correlations and cross-spectral tensors are extremely difficult 

to  measure. Actually, one-dimensional correlations are measured and corresponding 

one-dimensional spectra calculated from the correlations, i.e. 
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Figure 6. Sections of surfaces of constant Q33 for the von Karman model. 



Figure 7. Penpcctivc o f  surface o f  constant I'13 for tlie van Kamian modcl. - - 

Wlucli iniplies that  tllc ~nc-dimensional  spectra are given bjs 

By similar means, two-dimensional spectra can be dcduccd. 

One- and two-dirncnsional von Kannan wave number  spectra arc given by Etkin 

[ 1 1 I . When converted t o  s p ~ t i a l  frcqucncy spectra the  rcsults are  



The results from this subsection are used in the next subsection t o  1-~lcul:to a 

theoretical cross-spectral rnodel. In Chapter V1 results from the preceding d.,,ussion are 

used to calculate filler functions for generating three-dimensional turbulence. 

C. A Theoretical Cross-Spectral Model and Comparison with Measurel~ients 

Elements of the previous discussion ~oncerning isotropic turbulence will now be 

used to develop a cross-spectral model of turbulence. The assumption of frozen. von 

Karrnan turbuler~ce is made. Previously Houbolt and Sen [12]  did a similar analysis to 

obtain the cross-spectrum corresponding to  the vertical velocity component. An equiva- 

lent approach is used to extend their analysis to  the longitudinal and lateral cross-spectra. 

I n  the analysis that f o l 1 0 ~ ~  it is convenient to  non-dimensionalize the spectra. 

Withcut non-dimensionalization, annoying conversion constants must be camed along so 

that the units are correct. Equations ( 1  9)  through (2 1) are non-dimensionalized using 

the transformations Ni = vi L. 

Applying this transformation t o  ( 1  9) through (2 1 ) yields: 
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The frequency transformation, Ni = giL implies a transfarmation in space, X = 

r l jL,Y = r7/L. - Then 

The object we are trying to achieve is the cross-correlation between the velocity at one 

aircraft wing tip at one nioment and the velocity at the other wingtip at a later moment. 

Assuming frozen turbulence, Figure 8 applies. Making the transformation 8 = Vt/L gves 

Equation (29) is an expression for the desired cros-correlation. To obtain the desired 

cross-spectra, the Fourier transfornl of (29) is taken. 

The exponential intcgral with respect to B above is the Dirac delta function 6(N1-Ne), 

so the final result is 
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Figure 8. Illustration o f  cross-correlation distance. 

Using Equation (30) along with Equations ( 2 5 )  through (27) gives the final expressions 

for the three cross-spectra. 

cor (2nN2 ArZ!L) 
433(Ne, Ar2/L) = 

9 dN2 . (33) 



In these expressions the evenness of  the intzgmnd was used. The above integrals can be 

evaluated using Filon's method 1 1 1 1. The results are plotted in figures 9 through 1 1. 

Comparison is made with dvta collected during the NASA B-57B Gust Gradient 

Program. The B-57B is instrumented with three component gust probes on each wing 

tip and at the nose. Figures 12 through 14  show comparison with data collected during 

a horizontal flight. Figures 15 through 17 depict a co~nparison for flight on a simulated 

ILS approach (three degree glide slope). Both measurements were taken within the 

planetary boundary layer where turbulence is not really isotropic. 

In some of the figures, the measured spectra fall between the expected 4 r? /L  - 
curve and the Ar?/L - = 0 curve. This result is quite apparent in figure 11. for example. 

A possible explanation concerns the assumption of the stationarity of the correlation 

function. In the real atmosphere. the co~e la t i on  falls off with time as well as with 

space. This increased fall off in space and time corresponds to  a slower falloff in the 

frequency domain as observed in the figure. 

Some of tne measured data show an unexpected foot (flattening out) at the 

hgher frequencies. Possible sources of this error inciude aliasing and the addition oi'the 

white noise to  corresponding velocity components measured at each wing tip. The 

correlations would show a Dirac delta fiinction spike w h c h  in the frequency domzin 

corresponds t o  a small but finite constant. When plottea on log paper the spectra would 

show a characteristic foot. Simultaneous white noise cculd be introduced by terms from 

the INS system used t o  remove the aircraft motions from the data. 

The importance of a cross-spectral model is that moment spectra can be 

calculated from the cross-spectra [ 13) . 
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Figure 9. Dimensionless cross-spectra for a-velocity component. 



ORIL INAL PAGE ES 
OF POOR QUALITY 

Figure 10. Dimensionless cross-spectra tbr the V-velocity component. 



Figure 1 1. Dimensionless cross-spectra for the w-velocity component. 
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A r 2 1 ~  = 0 and 0.01 

FREQUENCY (Hz) 

Figure 12. Comparison of' computed and measured u-component 
cross-spectra for a lcvel flight case. 
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= 0 and 0.0186 

FREQUENCY (Hz) 

Figure 13. Comparison of measured and computed v-component 
cross-spectra for a level flight case. 



9 = 0 and 0.035 

FREQUENCY (Hz) 

Figure 14. Comparison o f  measured and computed w-component 
cross-spectra for a level flight case. 
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a'2 = 0 and 0.04 
L 

FREQUENCY (Hz) 

Figure 15. Comparison of measured and computed u-component 
cross-spectra for the simulated ILS approach case. 
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FREQUENCY (Hz) 

Figure 16. Comparison of measured and computed v-component 
cross-spectra for the simulated ILS approach case. 
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Figure 17. Comparison of  measured and computed w-component 
cross-spectra for the simulated ILS approach case. 



CHAPTER 111. REVIEW O F  MONTE C A R L 0  TURBULENCE SIMULATION 

For the  purposes o f  this study, turbulence simulation will mean Monte Carlo 

turbulence simulatio~i Monte Carlo turbulence simulation s h ~ ~ l ~ l d  not be confused with 

efforts t o  close tile time averaged equations of mction. Monte Carlo turbulence simula- 

tion is defined as a procedure whereby a noise process is filtered by a h e a r  o r  nonlinear, 

analog o r  digital filter t o  obtain an output with certain of the statistical properties of 

turbulence. While Monte Carlo simulation and numerical simulation of turbulence have 

some things in common, the intent of each is quite different In the  case of the former, 

mean velocity profiles are known and turbulencc is tn  be added t o  create a realistic flow 

field. In the  latter case mean velocity profiles are t o  be calculated. Moqtc Carlo simula- 

tion strives t o  put small scale perturbations back into the  flow field while numerical 

simulation attempts t o  remove the small scale details. In this ser~se the two are opposite 

operations. 

Monte Carlo turbulence simulation apparently began in the  mid-fifties. The basic 

idea, which is employed in the present study, is depicted in Figure 18. Gaussian white 

noise, with Dirac delta function autocorrelation and corresponding constant spectral 

densll: ic input to  a linear filter. Thc linear filter has a transfer function H(v) which is 

selected to give the  desired output spectrum. Because the filter is linear, and the input 

Gauss~an, the output is Gaussian. Using the notation o f  Figure 18, the rrutput spectrum is 

In (34). Bw(v) is the  known, desired form of the  output spectrum. and Bw(v) is a con- 

stant for all frequencies. H(v) is the unknown with modulus 



GAUSSIAN GAUSSIAN "(t)  1 "1.1 i ~ ( t )  
WHITE NOISE 

LINEAR 
FILTER TURBULENCE 

Figure 18. Simple Monte Carlo turbulent.: 
simulation. 

From Equation (34) the  redization ot H ( l 1 )  which gives the desired 

output spectrum is nonuniqur. In fact, H(v) has the general foml 

where u(v) is the  phase of Hlv). H(v) has an infinite nurnber ~f realizations correspond- 

ing t o  an irifinite number of choices for tile phasc. One choice of phase is a(v) = 0 for 

all v. The choicc of the phase docs not effect the output spectrum. 

Choice o f  lI(v) is complicated by the fact that no  ,loise source, neither analog 

rlor digital, is conlpletely : :lite. In the digital case, wliich is the concern o f  this report, 

the designated sanlpling frequency detcnnines the cutoff frctquency of the noise. The 

nonwhitencss of the noise source resul',s in a factor wllicll is multiplied by the expression 

for H(v). This aspect of the sinlulation is discussed in inore detail in Chapter V1. 

Not all turbulence simulations involve the ub, of linear filters. Reeves and 11is 

colleagues in a series o f  papers 1 14-16] developed a nonlinear filter model. Figure 19 

depicts the block diagram of one version of the nonlinear filter used by Reeves and 

associate?. In the figure, the parameter R can be changed t o  modify the  kurtosis o f  the 

output turbulence. In effect R changes thc patchiness of the siil~ulated turbulence. The 

functional form. o f  the three filters Ha, t ib ,  arid H, arc clloscn to  give the desired output 

spectrum. 
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Figure 19. Reeves' nonGsussian simulation model. 
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In general, the output for111 of the probability density carmot be detem~iried for 

SIMULATED 
TURBULEhCE 

nonlinear filters. Reeves jivliciously constructed his filter so that the output probability 

GAUSSIAN 

dexi ty  function cou!d be calculated. 

Another advance in turbulence sinlillation arose from the need to iqclude inter- 

level coherence in simulation. Fichtl and Perlmutter [ 17 ] dewloped ~1 multi-filter system 

WHITE 
NOISE 

to incorporate interlevel coherence. In this model a series of white noise sources is 

,- 
nc(t) 

filtered. added together, and the result filtered to  obtain the t i  rbulence. A schematic of 

the method is given in Figure 20. Each of the tilters D- through D are effectively P P 

height dependent phase shifts. The desired coherence is obtained exactly as the number 

SOURCES - . 

9 

nb(t! 

> h 

of filters and noise sources approaches infinity. Ic practice. the desired coherence can be 

H ~ ( L ' )  

Hc(v) 

approximated to any desired accuracy by choosing p large enough. The filter H in Figure 

20 giies the drsircd output spectrum. Since the block diagram of Figure 30 represents a 

linear filter and since the input: are Gaussian. the output will also be Gaussian. 

For tile pLliposes of this stady, one of  the more significant advances in turbulence 

simulation technology was made by Fichtl [18] .  In this report, Fichtl generated non- 

dimensional turbulence. By this approach, one nondirnensional turbulence record could 

, G? 

be generated, its spectrum checked, and then be used for simulation of any flight profile. 

Fichtl's method was based on the Dryden spectral model. A similar approach was used 

by Tatorn, et. al. [ I91 for the von Karman model. 



Figure 30. Interlevel coherence model [ 17) .  

The preceding discussion was a brief history of some turbulence simulation 

approaches which have some relevance to  the current model. For a broader disc~ssion 

of Monte Carlo turbulence simulation, the interested reader is referred to  three papers 

by Dutton, et. al. [3Ol, Fichtl, et. al. [21 I ,  and Wang and Frost [221. The report by 

Dutton, et. al. gives a good historical perspective of turbulence simulation and presents 

an unusual nonlinear approach. The paper by Fichtl, et. a1 is a general survey of simu- 

lation methods up to 1977. The paper by Wang and Frost presents codes and discussions 

for several of the methods discussed previously. 

Before leaving the area of hlonte Carlo turbulence simulation, a brief discussion 

relevant t o  the present model is presented. In Chapter 11, one-dimensional spectra for 

the von Karman and Dryden models were given. Real turbulence shows a v - ~ / ~  rollcff 

as predicted by Kolmogorov and the von Karman model, however, the von Karman 



model lacks the convenience of a rational ( i 2  rc' :,.) Dryden model. For rational 

spectral models, the simulated turbulence can be k-llerated with a difference equation 

of the form 

Equation (37) is a digital simulation model where the i+lst turbulence point generated 

is a function ~f the previous turbulence points and noise source points. For the Dryden 

model (37) can be written as 

where C1, C-, ,  d l ,  and d7  are parameters depending on the sampling rate, airspeed, - - 
turbulent intensity and length scale of turbi~lence. 

Wang and Frost [32] describe a simple rational model which approximates the 

more realistic von Kamlan spectra. T h s  approach can be carried t o  any level of com- 

plexity as long as care is taken so that all poles lie within the unit circle in the Z- 

transfonn plane. This stipulation assures system stability. 

When a recursion relation such as Equations (36) or (37) can be derived, it is much 

superior computationally to  other availabl~ methods. Otherwise the turbulence must be cal- 

culated either with a convolution or with a Discrete Fourier Transform (DFT). When turbu- 

lence in two or  more dimensions is generated, the DFT or co~volut ion must be used because 

Z transform theory is not well deveioped irt more than one dimension. The only time 

it can 5e used is when the function t o  be transfarmed is separable so that the two- 

dimensional Z transform reduces to  the product of two one-dimensional transforms. 

3 
Unfortunately, sprctral models are functions of u = (v12 + v2& + vj2)lI2 which is not 

separable. 

In this chapter a brief review of Monte Carlo turbulence simulations was pre- 

sented. The review was by no  means exhaustive, but was confined to  those approaches 



which are relevant t o  the c u m n t  method. With the exception of tlie paper by Fichtl 

and Perlmutter [ 1 7 ]  none of  the reported studies in any way accounted for variations 

of turbulence in more than one dimension. Fichtl, et. al. 121 I discuss in passing the 

generation of twodimensional turbulence. For truly realistic tilrbulcnce simulation, 

variation of the turbulence in all three dimensions is necessary. The generation of 

three-dimensional turbulence is tlie subject of Chapter VI. 



CHAPTER IV. DESIRABLE FEATURES O F  A SIMULATION O F  
ATMOSPHERIC WINDS AND TURBULENCE 

!vlonte Carlo silrlulation models of atmospheric winds and turbulence have several 

desirable features. Some of these are listed and discussed in the following paragraphs. 

1. Realism: The model should be realistic in the sense that turbulence generated 

by Monte Car10 methods should have as many of the statistical and spectral characteris- 

tics of real turbulence as possible. The turbulence s h o ~ ~ l d  have the right "feel." A 

common complaint of pilots who a o  some of their training on simulators is that the 

generated turbulence is not realistic. This absence of the correct feel has been attributed 

to failure to  simulate turbulent intermittancy o r  patchiness [14] .  Another factor may be 

the failure to sirnillate variation o f  winds across the body of the aircraft. By this failure, 

the main contributor t o  roll and yaw moments are neglected. Six degree of freedom 

motion sinlulators (controlled by hydraulic actuators) exist so that roll, pitch, and yaw 

motions could be simulated if corre,ponding moment information were available. 

Fin~lly,  3 siniulation model should contain all frequencies w h c h  cause a significant 

response in the miin-aircraft system. 

7. Compdtational Speed: The w h d  and turbulence model should be computa- 

tionally efficient so that real time fllght simulations are possible. A computer working 

with a flight simulator must process incoming analog signals, convert digital output 

signals to  analog response, calculate turbulence and aerodynamic loads all in real time. 

Many operational flight simulators are operated by minicomputers and computational 

speed is a must for pilot-in-the-loop simulations. Research simulators may have one or  

more high speed state-of-the-art computers to  run them but even these may not be able 

to  handle a real time turbulence simulation if the rnodel is too complex. 



3. Flexibi!ity: Several types of flexibility are desirable. First the ability t o  

simulate a wide range of atmospheric pheno. .:na is desirable. The ability t o  easily 

implelnent different nlicroburst events from data sets such as JAWS is required. 

Anotlicr type of flexibility involves the freedom of the pilot to perform any 

maneuver desired. Many simulators assume a constant airspeed and commit the pilot 

to  level or  glide slope flight. The ability to  go around in severe shears is denied. In 

microburst tlights, the airspeed changes can be k30  m/sec o r  more. The ability to  go 

around or  to  test various escape strategies is Ilighly desirable. 

The flexibility should extend to  the ability to  apply the wind and gust model 

to  a wide v.?,iety of different aircraft. All frequencies of interest to  ,-ircraft response 

shoi::d be in the model. The ability to do  this for aircraft o f  a wide variety of sizes and 

characteristics implies a nondin~ensional simulation. The concept of nondimensional 

simulation is explained in a later section. 

4. Easy implementation: Easy implen~entation implies code clarity, and 

simplicity, and portability. Portability means the ability to transfer code or  data from 

one computer to  another. If these attributes are missing, the method will not be 

acceptzd by the aviation community. 

While the above list is by no means exhaustive, it does include the major desirable 

attributes of a gust and wind n~oclcl. 

11s own. I n  creating a simulation, the simulator is in effect creating a world of I-' 

This shadow world created for engineering purposes should contain enough spectral 

information so that a!1 factors affecting the phenomenon under study are available. 

The following sections describe the creation of a turbulence arid wind shear "world" 

which varies in space and time in a realistic manner. In the author's opinion, the differ- 

ences in the realism of  the present model and previously used one-dimensional models 

are similar to the differences in the creatures inhabiting our three-dimensional world 

and the one- and two-dimensional inhabitants of Lineland and Flatland [23] .  



Creating realism for the sake of realisni is not the function of  engineering simulation, 

rather the engineering simulation is like a vignette. Relevant features are clear, crisp, 

and mathematically precise, while features not affecting the simulation are not. 

The model described in tlus document has many of the desirable attributes. Its 

greatest strengths are realism and flexibility. In these two areas, no currently available 

wind simulation model can match it. Easy implementation was a goal of this effort. 

Programs are in FORTRAN and data are stored in easily transportable integer formats. 

The one possible weakness of the model is in con~putational speed. The spatial model 

achieves maximum realism and flexibility but pays some price in speed. Nevertheless, 

for systems with enough central memory to store both thc JAWS data and turbulence, 

speed should be sufficient to  d o  real time simulations. Some minicomputers satisfy this 

requirernen t. 



CHAPTER V. OVERVIEW OF THE SPATIAL MODEL 

To this point, the aviation hazard posed by microburst-related wind shear was dis- 

cussed along with the  characteristics of the JAWS data sets. Certain aspectsofhomogeneous 

turbulence theory relevant t o  Monte Carlo turbulence simulation were presented. Previously 

reported turbulence simulation methods and desired characteristics of wind model were dis- 

cussed. In this chapter all of these threads are pulled together t o  weave a fabric of computer 

created reality for the  purposes oCaircraft design and pilot training and ultimately t o  save lives. 

Creating the final tapestry wllich achieves the  ultimate reality as far as the  wind 

environnient is concerned is not a sinlple problem. The currently proposed technique is 

an attempt to combine the best available wind shear data set with three-dimensional 

simulated turbulence. The mixture of reality with simulated reality is the  best that 

can be done within thc current state-of-the-art. 

The need for the addition o f  turbulence is documented in this chapter. A recipe 

for combining measr.~red data and JAWS data is explained, along with the  method of 

implelnentation. The proposed technique is related t o  some similar one-dimensional 

approaches to data analysis and relevant zoacepts from these simpler cases are intro- 

du-ed. Finally, while the JAWS data sets are the best available in the world, they lack 

some information which is necessary for realistic flight simulation. Methods for deriving 

the required parameters from aircraft measurements are presented. 

A typical grid spacing for the JAWS data is 200 m whereas a desired grid spacing 

for the calculation o f  aerodynamic moments is 10 meters. In Figure 21 a comparison 

is made between the JAWS grid size and various aircraft. The box surrounding the 

planes represents vertical plane grid spacing for the  July 14 casc (200 m x 150 m). 

Figure 22 shows a desired grid spacing (10 rn) compared t o  the Bocing 747 aircraft. 
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Figi~rc 23. Desircd grid spacing compared to the Boeing 747 aircraft. 



The spatial sampling frequency vs is 11200 ni-' and the resulting Nyquist spatial 

1 frequency is v~ = vsl? = 11400 m- . For an aircraft traveling at 8 0  m/sec this corre- Y 

sponds t o  a Nyqiist spatial frequency of fNy = 0.2 Hz. Typically, the lrequcncy of 

maximum aircraft response occurs at about L). 1 Hz. According to Etkin [ 1 1 I ,  struc- 

tural response of an aircraft extends over a spatial frequency range from about 10 -4 

5 1 111-I t o  10~' m-l. Short period response occurs over a range from abcrut 10- rn- to  1 o - ~  

n i l ,  Phugoid response cuts off at less than 1 0 ' ~  m-l .  The JAWS data contain Phugoid 

response frequencies, but only part of the short period response frequencies, and even less 

of  the structural response frequency range. With regard t o  frequencies (airspeed = 80 ni/sec), 

the JAWS cutoff frequency was 0.20 Hz while structural response goes up to  near 10 Hz. 

Some ~nodelers include structural bending modes in their siniulators because they feel these 

modes add the correct "fccl" t o  the turbulence. An aircraft structure encountering 

turbulence has a ringing response [24].  The conclusion is that since structural and 

short term response o f  aircraft t o  turbulence are important for realistic simulation, and 

since the  complete frequency range is not contained in the JAWS data. the lligh fre- 

quency turbulence milst be added. 

The obvious question arising from the above discussion is, "how can turbulence 

be realistically added t o  JAWS and other data sets?" The addition c f  these high fre- 

quencies are subject t o  several constraints. First, the model chosen is restricted to  using 

mainly information available from the data set itself. For maximum realism, as little 

o f  the required information as possible should be generated from "rules of thumb" o r  

froni model equations. The available information includes the three velocity components 

(over the low frequency range) and spectral width which can be related t o  a gust 

standard deviation. Based on this available information the model t o  be discussed below 

was developed. The "glue" that holds the model together is the following equation. 



where ui(x,y,z,t) are the simulated winds. i i(x,y,z,t)  are the low frequency 'Lsmoothed" 

winds, oi(x,y,z,t) are the gust standard deviations, and wi(x,y,z) are the zero mean, unit 

standard deviation, frozen turbulent velocities. 

The model defined in the abobe equation is written I I I  ~ t s  most general fomi but 

is specifically tailored for JAWS-type data sets. ui are the three components of low 

f rquency  wind contained in the data sets. oi, while written in vector form, in practice 

is isotropic and a scalar, o. It can be derived from JAWS second moment information. 

Notice that ui and ai  are written ?s functions of three spatial coordinates and time. 

As of this writing, time has not been included in the JAWS data sets. The reason for 

this is that the time variation may not be important for flight simulation because of the 

rapid aircraft transit tinies of wind shear phenoniena. For this reason, the JAWS Project 

has concentrated its resources on other matters. 

The final term in Equation (38) is the frozen turbulence data base; frozen because 

wi is not a function of time. A three-dimensional block of Monte-Carlo simulated tur- 

bulence is created and effectively stacked inside the JAWS data set in order t o  add the 

necessary small length scale phenoniena t o  the coarser gridend JAWS data. In the current 

method the three-dimensional block is assumed t o  be isotropic turbulence. Therc is 

some basis for this assumption, since much of  the anisotropy of  thc winds will be con- 

tained in ii. wi is ass~lnled isotropic for convenience. The Monte Carlo simulation of 

nonisotropic turbulence is not far advanced in the one-dimensional case. In the three- 

dimensional case it is nearly nonexistant. Etkin, in his classic text [23] ,  recommends for 

low altitudes (misotropic turbulence) the t h r e ~  isotropic one-dimensional spectral func- 

tions be used with corresponding gust intensities. Thus is certainly a practical approach 

in the onc-dimensional case, but the correspondi~g three-dimensional spectra-functions 

are not available. At least one group of investigators [ 2 5 ]  have developed axisymmetric 

three-dimensional spectrum functions. These functions may prove useful in the near 

future, but for the present an isotropic model was used. 
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A question arising out o f  this discussion is, "Why use a three-dimensional turbu- 

lence ~nodcl?" The reason is that by generating three-dimensional turbulence, all lateral, 

vertical, and longitudinal correlations arc included in the data. Iniplicitly, wllcn a one- 

dimensional siniulation is done, the assumption is made that the aircraft is a point 

itnmersed in turbulence as is depicted in the left half of Figure 23. Turbulc~~ce  is more 

coniplicated than this simple picture and two-dimensional turbulcncc is depicted in the 

right half of the figure. In fact, the spanwise variation of gusts cdn be quite high and 

gust Jiffcrences rncasurcd ill th r  B-57B Gust Gradiznt Program exceeded 10 m/sec (20 

kts). The R-57B has a 20 meter wing span and its size is compared t o  somc wide-bodied 

transport aircraft in Figure 21. The L3oehig 747 has a wing sillill of 60 ~ncters. The 

impact of spanwise variation of gusts is u n d e ~  study, but intuitively it scerlls that the 

variations have a significant in~pact  on aircraft response. 

Figure 23. Assun~ptions of turbulence simulation. 

In Chapter 11 a cross-spectral liiodel was developed. The block of threc- 

dimcnsionai turbuler~ce contains thc cross-spectral model as a natural subset of its 

properties assunling the three-dimensional von Kam~an  bpectrunl is used t o  gcceratu the 

turbulcncc. 



The niodcl as proposed in Equation (38) was !n part inspired by a series o f  papers 

by Mark, and by  Mark and Fisc*lier [36-301. In  these papers a one-dimcnsi01i3' ) . m u -  

Icncc model defined P!, the  following equation was investigatdd. 

w ( t )  = ws(t)  + w t i t )  = v ,(t) + a f i t )  z ( t )  , (39) 

where ws( t )  is t l i t :  slowly varying part o f  an aircraft-measured vcloc~ty ,  w, i t )  is t he  high 

t'rcqucncy rapidly varying part o f  the  vcloc~ty  trclcc, z ( t )  is a Gaussian unit variance 

process (von Kannan one-dimensional spcctrulii), and ws( t ) ,  o+t) .  and 2,:) are niutually 

independent processes. 

Mark points ou t  that  frequently a sr?:oothcr kncc than cxpcctcd is rieasured in 

atniosplicnc turbu:cncc spectra. l l c  at tr ibutes thts t o  the  effect o f  a slowly varying gust 

i~;tcnsity ofit). Tlic product a$t )z( t )  corresporrds to a convolut~on in the  frequency 

domain 2nd if of is a we]!-hcllavcd function ( n o  s p ~ k c s  in its spectrum).  then tli: 

spcctruni o f  tllc product will be a slnootllcd v c r s i o ~ ~  ~ l '  the  spcctrum o f  z. Tllc result is 

a rounded knee in t h e  spcctrum o f  the  product. 

Mark ( 1  98 1 ) shows rlle a*ffect o n  the  autocorrelation function made up  df  parts 

as ~ndicatcci in Equation (391, and presents data t o  support  lus model 1991. Figures 

2.1 and 1 5  arc drawn from this rcporf. In Figure 14, o is the  standard dcrivrtion of  
s 

t he  slowly varying part. w,(t). Tlic high frequency portion, wf(t) .  contributes a rapidly 

decaying tcrni t o  the  autocorrclation and ws( t )  contributes a slowly decaying tcrnl. In 

Mark's model. w,(t), o14t), and z ( t )  arc ~ T L ' S U I I I C ~  indcpc~lcicnt processes. In Figurc 15 

a corresponding measurcmcnt i4  jlrcsentcd. In the  frequency domain the  role is reversed. 

'The spectrum o f  w,(t) will decay rapidly wllllc the  spec t ru~n  o f  w + t )  d w a y s  slowly. 

Tlic summary of  the  ana!)lscs by Mark and by  Mark and Fischcr was for one- 

dimensional t ~ ~ r h u l e n c c  ~:lcasurements, but  most of  the  results carry over t o  the  threc- 

d in icns ion~l  niodtll of Equation (38). A notable exception concerns the  mutual  indc- 

pendence of ui, oi, and wi. The inutual independence assumption was made by Mark 

t o  facilitate his a~ialysis, but in fact ii and oi sllould be re!ated. We expect thls because 
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Figure 24. Idealized sketch o f  auto-correlation functions of atmospheric 
turbulence and auto-correlation function of its components. 
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Figure 25. Auto-correlation function of vertical velocity record in 
mountain wave condi t io~s  (airspeed 197 mlsec). 

- 
of mechanical prodi~ction terms in Reynold's equatiorls involving gradients in ui. The 

relationships may not show up in linear statistical relationstups, however. In any case, 

the independence assumption 1s not required in the present niodel. 

The terms in Equation (38) were discussed above, and now a discussion concern- 

ing the assembly of the three terms into a wind model is presented. For the JAWS 

July 14 data set the grid consisted of 60 x 60 x 11 points. At each of  these points is a 

measured value of  the three velocity components! and spectral width. This corresponds 

to 158,400 data points. The< po:lnts were measured on a 200 m x 200 m x 150 ni grid. 

A desirable spectral resolution for the turbulence is 10 m x 10 m x !O m. Generation of 

a block of turbulence 12 krn x 12 km x 1.5 km with 10 m resolution corresponds to 

8 6.5 x 10 data points and is not feasible. Instead, a relatively small block of turbulence 

can be generated and effectively stacked t o  fil: the JAWS volume. Stacking is equivalent 

to movlng the block around within the JAWS volume as the plane flies through and 

begins to  leave the turbulence. The situation brings t o  mind a small boy playing with 



a caterpillar. As the caterpillar hangs over the edge of his hand the boy o b u n g l y  offers 

his other hand and the worm's journey of cxp!oration continues. In his travel across 

each hand the caterpillar is unlikely to  retrace the exact path of his previous journey 

because he begins his journey at a slightly different point each time and travels with a 

slightly different heading. The cycle continues as long as the boy desires and the result 

is that the caterpillar has his exercise and the boy has the pleasure of his company. 

The periodic shifting of the data base is equivalent t o  stacking blocks of turbu- 

lence within the block of JAWS data. Two ways of stacking the blocks come to mind. 

As the aircraft of the simulated flight passes out one side of  the block its motion can be 

reflected back into the block of turbulence. This procedure is similar to video games in 

which the electronic ball bounces off the wall (angle of incidence equals angle of reflec- 

tion). This method, through complicated has the advantage that the aircraft encounters 

no abrupt discontinuities in the turbulence field. This approach is equivalent t o  stacking 

two types of blocks in a special pattern (see Figure 26). The two types of blocks are 

reflections of  each other, the same as left and right hands. The blocks are stacked so 

that similar sides touch each other. 

Computationally a simpler approach is t o  stack one type of block on itself with 

the same orientation. Position within the block is calculated using congruence arithmetic. 

XT = X mod (XTmax) 

In this equation, XT is the X-position within the block of turbulence, X is the real X- 

position in space, XTmdx is the maximum extent of the frozen turbulence, and so on. 

This expression means, divide X by XTmaX, determine the remainder which is XT. If 

X = 4500 m and XTmax = 600 m then XT = 500 m. The value of XT always lies 
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Figure 26. Stacking blocks of frozen turbulence. 



between 0 and XTmax. This method is equivalent t o  video games in which the electronic 

"projectile" disappears from one side of the screen and reappears instantaneously on the 

opposite side. An anticipated disadvantage of this technique is a discontinuity in 

the turbulence as the plane passes from one side of  the block to  the other. In practice, 

the discontinuity is small or  nonexistent so the computationally simpler technique of 

Equation (40)  can be used. 

One caution on the use of the above equation should be discussed at  this time. 

The frozen turbulence data base generated for use with JAWS data is nondirnelisional 

in space. Transformation of a complete block of turbulence must be achieved at  one 

time with one length scale of turbulence. At the same time, the turbulence length scale 

should vary through the simulated atmosphere. The most commonly studied variation is 

with height above ground. The presence of microbursts in the planetary boundary layer 

(PBL) also creates a lateral variation of  length scale in the atmosphere. Convective 

storms imbedded in planetary scale flows have been observed to  create an obstruction to  

the larger scale flow and even shed vortices. Apparently convective obstructions affect 

turbulent scale lengths in the atmosphere. There is every reason to  expect that m i c r e  

bursts which are embedded in larger scale Zow in the PBL like chocolate candy kisses 

will similarly affect length scales in the PBL. In order t o  account for desired changes in 

this length scale, the turbulence is generated in dimensionless space. In dimensionless 

space the block size is constant, but in dimensional space the block size changes 

isotropically with the length scale. In the space domain an increasing turbulent length 

scale corresponds to increasing block size, and in the spatial frequency domain a decreas- 

ing block size. The problem with indiscriminant use of Equation (40)  is that the blocks 

are stacked on top of each other and as each contracts o r  expands the whole stack 

similarly contracts o r  expands. If the stack contracts along its lower left hand comer 

the net mction a t  the right side of the stack is multiplied by the number of blocks in 

between. The result is an unreal change in aircraft position relative to the turbulence. 



Care must be taken that stack contraction is about the location of  the aircraft and this 

is easily implemented. The nondimensional generation of turbulence mentioned above 

will be described in detail in the following chapter. 

The preceding discussion brings us t o  the one parameter not available from the 

JAWS data set, i.e., the length scale of turbulence. The distribution of this paraneter 

must be either modeled, or  derived from aircraft experiments o r  from laboratory 

measurements. This desired length scale is not the overall length scale but rather the 

length scale associated with wi(x,y,z) in Equation (38). 

Interestingly, some evidence suggests that the spanwise length scale increases 

through a microburst [31] .  The relevant information is presented in Figure 27. Shown 

are the three velocity components measured at the center boom of the B-57B aircraft 

during a suspected microburst encounter. The encounter occurred about 78 seconds 

into the run when a sudden sharp headwind increase was observed. This increase 

corresponds to the sudden decrease in the longitudinal velocity component, u. During 

this period the B-57B encountered a 15 m/sec headwind increase over a distance of about 

130 m. This drastic windspeed change is believed to  occur as the aircraft crossed a 

microburst front. Aircraft altitude was about 400 m AGL and from Chapter I1 we recall 

that the typical outflow depth is 600 m. The increasing headwind was followed by a 

decreasing headwind and then a tailwind al! over a period of about 20 seconds. The 

feature had an extent on the order of 2 km which is consistent with the microburst 

hypothesis. The horizontal wind vector shifts were associated with a strong (10 m/sec) 

downdraft which reinforces the microburst idea. 

The interesting part of  the figure is the lower three graphs which depict wingtiy 

to wingtip velocity differences. The amplitudes of the velocity difference traces increase 

gradually from the start of the run but then decrease in all three components through 

the suspected microburst. This unexpected result can arise from three possible sources: 

( I )  the gust intensity decreases through the microburst, (2) the lateral length scales 
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Figure 27. Gusts and wingtip to  wingtip gust differences for JAWS Flight 7,  Run 10. 



increase through the microburst, o r  (3) a combination of  ( I )  and (2). From the traces 

at the top of  the figure, it is difficult t o  believe that an intensity decrease is the sole 

source of the velocity difference decrease. The conclusion then would be that a length 

scale increase occurs through the microburst. Some caution must be exercised in drawing 

conclusions from one flight through a microburst, but this type of information is vital 

for modeling distributions of L. 

The problem with obtaining L distribution from aircraft measurements is the 

difficulty of finding microbursts t o  fly through even with Doppler radars t o  guide the 

aircraft. At the same time, more information is required. Laboratory experiments may 

help provide the much needed information. Means of obtaining this information in the 

laboratory are discussed in Appendix A. 

The dearth of knowledge on L distributions is similar to the situation turbulence 

modelers found themselves in prior to the development of two-equation turbule~ce  

models [32].  Mixing length distributions had to be specified based on experience. 

Finally two-equation models were developed which included a partial differential equa- 

wion which effectively specified distributions of the mixirg length. The close analogy 

with the present problem suggests that a similar approach to the present problem might 

be attempted. The most widely utilized two-equation model is the k-E model which 
- - 

7 3 7  
contains transport equations for turbulent kinetic energy k = 112 (u- + v- + w") 

and turbulent kinetic energy dissipation e. The equations for this model are presented 

by Launder and Spalding [33] in the following form. 



2 where peff = Cppk /e and recommended values for curve fit "constants" are 

The length scale of turbulence is defined by 

Here CD is another constant of proportionality. 

Observe that if JAWS estimates of k = 312 o2 based on spectral widths are used 

then Equation (40) need not be solved. If the ni in Equations (41) -.nd (42) are assumed to  

be the JAWS velocities, appropriate difference forms of Equation (42)  can be developed 

and with appropriate boundary conditions for E and with the aid of Equation (43)- a distri- 

bution of L could be calculated. In reality the "constants" in the above equations vary from 

one flow t o  another and would need to  be defined for microburst type flows. The above 

equations were developed by making certain assumptions w h c h  may not be appropriate 

for the JAWS microburst situations. Nevertheless, the above provides an engineering 

approach to a difficult problem. The method can be refined and "tuned" if experimental 

data are available to tie down the parameters in the aLlove equations. 

Flight simulators would use the spatial model as follows. The frozen turbulence 

data base would be giver. to  the particular simulation group on magnetic tape. The data 

on tape would be transferred to  high speed, random access mass storage, e.g., disc storage. 

The size of the data base provided would depend upon the available mass s:?rage for the 

particular computer. For reasons given in the next section, it is desirdble to  generate the 

data base in one large block. The total block may be too large for many simulators, and it 

is not necessary to use the entire data base. The main block can be divided into subblocks 

which will fit into available mass storage. If additional mass storage became available at a 

later time, the9 contiguous blocks of data could be shipped t o  create a larger data base at 

the installation. 



Finally, Figure 28 shows how drastically the JAWS data truncates assumed 

spectra. This last figure in this chapter serves to  reemphasize some points made herein. 

First, for reasstic wind modeling for flight simulation, turbulence must be added to  the 

JAWS data. Secondly, the niodel described by Equation (38) is a model based on 

necessity. It is not a scientifically accurate turbulence model, but it is a realistic 

engineering approach to  a difficult problem. It uses all available information from JAWS 

and requires only turbulence length scale distributions for completeness. While the 

frozen turbulence i.s Gaussian, the winds generated by the model of Equation (38) are 

not, as real atmospheric winds are not. The model contains all three-dimensional 

correlations and spectra as any realistic model should. Finally, the model was specifically 

tailored for use with the JAWS data base, but is not restricted to  it. If oi and ui were 

known for winds on Jupiter, it is anticipated that flight vehicle entry into the Jovian 

atmosphere could be simulated with the proposed model. 
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Figure 28. Cutoff frequencies for the JAWS data sets (von Kamlan spectra). 



CHAPTER V1. FROZEN TURBULENCE GENERATION 

A. The Fast Fourier Transform Approach 

Three-dimensional turbulence generation was achieved using Fast Fourier Trans- 

form (FFT) techniques. Figure 29 is similar t o  Figure 20 but differs in that the filter 

function, input, and output are ftinctions of three independent variables (four if time is 

included). I f  the FFT is used, the Dryden model has no computational advantage over 

the von Karman model. Hence, the von Karman model was used. Generation of turbu- 

lence using the FFT requires some awareness of certain FFT properties. Thsse properties 

are discussed with some derivations given in the appendices. In this chapter all frequen- 

cies, spectra, and filter functions are assumed dimensionless. 

H ( ~ 1 ,  V2, "3) 
ISOTROPIC 

GAUSSIAN NOISE 
TURBULENCE 

- 

Figure 29. Generation of three-dimensional turbulence. 

Since the turbulence is generated digitally, sampling frequencies in the space and 

spatial f requen~y domain play an important role. The relationships are given by the 

following equations 
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where vs. is the sampling frequency corresponding to the ri direction, Mi is the number 
1 

of grid points in tlie ri direction, Avi is the grid spacing in the spatial frequency domain 

corresponding to  the ri direction, and Ari is the ri grid spacing in the spacc rl~itram. 

The FFT is a fast computational implementation of the Discrete Fourier Trans- 

form (DFT). One-, two-, and three-dimensional DFTs and their inverses are defined in 

the following equations. 
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In Equations (46) through (5 1)  n and lower case x refer to  the space domain and k and 

upper case X t o  the frequency domain. In the above six equations, even numbered equa- 

tions, LC., (4h), (48), and (50) are the forward transforms and the odd numbered ones 

are thc inverse transforms. The three different transform pairs are represented becnlls: in 

the discussion t o  follow symmetries associated with the one- and two-dimensional tralcs- 

forms show up in the three-dimensional DFT. These symmetries arc of considerable 

importance to the generation of three-dimensional turbulence. 

The three-dimensional continuous ourier transform and its inverse are given by 

the following equations. Since all DFT implementations in this report are by means of 

the FFT, these two terms will be used interchangably 

By conipari5on of (57)  and (53) with (50)  and ( 5  1 ), approximations for the Fourier 

t r ans fo~~n  and inverse are given by 

X(kIAvI,  k9Av9, - k3Av3) 5 Arl Ar? - Ar3 DFT [x(n lAr l ,  n2Ar2. n3Ar3)] (54) 

x(nl Or l ,  n2Ar2, n3Ar3) MIAvI MZAvZ M3Av3 PFTI [X(klAvl ,  k2Av2, k3Av3)] 

(55) 

Similar expression3 a p ~ l y  for the one- and two-dimensional transforms. 

Figurc 119 seems to  imply that two three-dimensional transforms are necessary ifir 

turbulence generation. First, noise generated in the space domain i s  transformed tu the 

frequency domain, multiplied by a filter and then the inverse transformed back to the space 

domain. Actually, only one transform is required because the noise can be generated in 
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the frequency domain since t ransfoned  noise statistical properties can be calculated. 

Important t o  this discussion are the symmetry properties of transformed real noise for 

the one, two-, and three-dimensional cases. Derivations follow easily from the transform 

definitions. These properties are presented in Table 2. 

Table 2. Symmetry Properties of Transformed One-, Two-. and 
Three-dimensional Digital Functions 

One-Dimensionai Symmetry 

Ex pression Observation 

1. X(M-k) = X*(k) Im[XiM/2)1 = 0 

Two-Dimensional Symmetry 

2. X(Ml-kl,O) = X*(kl ,O) 1, [X(M /2,0 j = 0) 

3. X(O,M?-k?) - = X*(O,k$ I,,[X(0,M2/2) = 01 

4. X(N1-kl ,N,-k - - ,) = X*(kl ,kZ) Im[X(Ml/?-, M21z) = 01 

Three-Dimensional Symmetry 

5. X(M -k ,O,O) = X*(k I ,O,O) 1, [X!Ml /2,0,0)1 = 0 

6. X(0, MZ-k , 0) = X*(0,k2,0) Im[X(0,M21L,0)I = 0 

7. Xt0,0,M3-k3) = X*(0,0,k3) 1, [X(O,O,M3/2)1 = 0 

8. X(M -k ,M2-k2,0) = X*(k ,k2,0) I,[X(M1/2, M2/2, 011 = 0 

9. X(h1 1-k 1, 3, M3-k3) = X*(k ,O,kq) 1, [X(M /2,0,M3/2)1 = 0 

10. X(0, M2-k2, M3-k3) = X*(0,k2,k3) Irn[X(O, M2/2, M3/2)I = @ 

1 1. X(M1-kl, M2-k2, M3-k3) = X*(kl,k2,k3) I,[X(M1/2, M2/2, M3/2) 1 = 0 



The symmetry relatisns expressed in Table 2 seem quite complex, but all can 

be incorporated lnto a simple geometric interpretation. The geometric interpretation is 

reflection about the center point. In the one-dimensional case the reflection is about the 

center point (k = MIL) of the line, in the two-dimensional case, points along the two axes 

are reflected about their respective center points (kl  = M1/2, k2 = 0 ;  k l =  0,  k2 = M2/2) 

and in the grid interior about the center point of the interior (k 1 ,k2 f 0, reflection 

about k = M1 12, k2 = M7/2). In the three-dimensional case one-, two-, and three- - 
dimensional reflections must be made about the three axes, the three planes (kl-k2, 

kl-k3, k2-k3), and about the interior symmetry point (kl.k2,k3) = (M1/2,M2/2,M3/?) 

in the interior of frequency space. The Hermitian s:rmmetries are depicted for the one- 

and two-dimensonal cases by Figures 30 and 31. Showing the symmetries for the three- 

dimensional case is very difficult but the principle is the same. Figure 32 indicates the 

grid points at which the transform of a real function must take real values. If these 

points fall on an axis, Hermitian symmetry exists about the point on the axis. If the real 

point falls on the kl-k2, kl-k3, o r  k2-k3 plane, Hermitian symmetry about the point 

exists in the plane, and similarly for the interior point. Each point other than these 

eight real points possesses Hermitian symmetry with another point in the grid through 

the real point and extended a distance equal to the distance from the original point to 

EXPRESSION 1, TABLE 2 

i 1 

Figure 30. Correspondence of complex conjugate pairs in thc 
one-dimensional transform domain. 



INTERIOR POINTS, EXPRESSION 4 OF TABLE 2 

- -- 

EXPRESSION 2, TABLE 2 

Figure 3 1 .  Correspondence of complex conjugate pairs in the 
two-dimensional transform domain. 



eigure 39 .  Points in the transform domain where the 
transforms  nus st be real. 

the real point. The end of the line segment falls at the corresponding grid point. Values 

of the transform at the original point and the new point will be complex conjugates of 

each other. This fact is a consequence of the requirement for real turbulence, i.e., not 

complex. In one dimension, there are two real points (k = 0, M/2), in two dimensions, 

four real points, three dimensions, eight real points, acd so on. 

Linearity is a well known property of the DFT and DFT'. Since the wide band 

random noise to be transformed is Gaussian, then the transformed noise is al. qaussian. 

This being the case, if the expected value and variance of the transformed nol-. uere 

known, then all the information required for generating noise in the frequency domain 

would be known. The mean and variance of transformed noise for the one- and tluee- 

dirnerisional cases are calculated in Appendix D and summarized in Table 3. With the 

information available in Table 3, generation of three-dimensional transformed noise in 

the frequency domain is possible with a simple Gaussian random number generator. 
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Once generated, the noise must be rearranged according to the Hermitian synlmetries of 

Table 2 so that when transformed back to  the space domain the resulting turbulence 

takes real rather than complex values. 

Table 3. Expected Value and Variance of Transformed One-. and 
three-dimensional noise with zero mean value 

One-Dimensional Case 

(> t.lRrl Nh 1 , 11111 X I  I I = 0 lor dl1 I d n d  k 

Three-Dimensional Case 



B. Derivation of Filter Functions 

A sinlple approach for deriving the one-dimensional filter function is presented 

and then generalized t o  the three-dimensional case. Since the turbulence is generated 

digitally, the frequency cutoff, i.e., the Nyquist frequency, is the sampling frequency 

divided by two (vs/2). The DFT is an approximation t o  the continuous Fourier trans- 

form evaluated over these limits (see Figure 33). The magnitude of the constant 

spectrum was selected as on'/vs so that the following equation was satisfied. 

The expression for the output spectrum for a linear filter in terms of the input 

spectrum is 

The output spectrum is the desired spectrum and is known while the input spectrum is 

as shown in Figure 33. The solution for H(v) is 

where a(v) is any arbitrary phase function. For this study, a(v) = 0 was selected. 

The one-dimersional case can be generalized t o  any number of dimensions. For 

the three-dimensional case the analog to Equation (5 6 j is 
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7 This equation implies a value of @, of on-/(vsl vs2 vs3). Equation (57) still applies 

with each term being a function of these variables. Thc new filter function is given by 

Figure 33. Input noise spectrum. 

This equation is the general form of the filter function. @, for this study is the 

three-dimensional von Karman spectral function for either the u, v, or w velocity com- 

ponent. In Chapter I1 the dimensional forms of the von Karman spectra were presented. 

In Chapter V the need for nondimensional spectra was described. The dimensional 
A 4 

spectra are transformed by vi = viL where vsi is the dimensional wave number. Then the 
A 

dimensionless spectrum 6, is given in terms of tile dimensional spectrum aw by the 

following relation: 

With this transformation, the nondimensional spectra given in Equation ( 1  3) become 



With Equations (60) and (62) and the results of Tables 2 and 3 all the tools are available 

for generation of noise in the frequency domain. The sequence is as follows. Generate 

three-dimensional noise over half of three-dimensional space then fill the rest of the space 

using the Hermitian symmetry properties of Table 2. Make sure the noise variances 

satisfy the restrictions of Table 3. Multiply the transforme8 noise point by point by a 

sampled version of the dimensionless filter function derived from Equations (60) and (62) 

above. Apply the inverse FFT and the result in the space domain is three-dimensional 

dimensionless turbulence which can be added to  mean wind data sets. Codes for per- 

forming each of these steps are described and listed in the appendices. 

The generated turbulence contains all the correlations with lags in each of  the 

three space directions. This being the case, if a line of turbulence, say in the r l  direction 

is selected and the one-dimensional spectrum calculated with an FFT the result should be 

an approximation to the one-dimensional continuous spectrum. To c h x k  this, consider 

the generated turbulence given by 

Then w(n1,n7,n3) is transformed with the following equation. - 

If Equation (63) is substituted into (64), and algebra performed as in Appendix E, the 

final result is 



This is the digital analog to Equation (17). The factor l/Avl must be present because 

O w  is an energy density, i.e., the turbulence energy between frequencies v l  and vl + dvl 

is given by Ow(vl ) dvl . Equation (65 )  is consistent with previous derivations. 

A description of the means for turbulence generation was presented in this 

chapter. The technique is a three step procedure, namely (1) generation of  three- 

dimensional noise, (2) multiplication by the sbrnpled spectral function, and (3) inverse 

transformation by FFT t o  the space domain. An attempt was made to  help the reader 

understand the important aspects of  the problem by presenting geometrical interpreta- 

tions of the procedure. A clear understanding of these interpretations helps in under- 

standing the codes used for the turbulence generation. Two FORTRAN programs were 

written, one for the first two steps above, and another for the final step. These pro- 

grams are described in Appendices F and G ,  respectively. 



CHAPTER VII. USE O F  WINDSHEAR DATA SETS WITH 
SIMULATED TURBULENCE 

A description of  the addition of turbulence to  a JAWS data set is presented. The 

JAWS July 14 case was selected because some aircraft data from the same day were 

available for estimating gust intensities and length scales of turbulence. While these 

aircraft data were not from the Doppler radar measurement region, the results should be 

applicable in a general way to the aircraft measurements. This conclusion was based on 

the fact that July 14 was a day when many microbursts occurred over a large area. 

Any gross variation in turbulence characteristics from one micloburst group to another 

on this day seems unlikely. 

The JAWS data set characteristics were described in Chapter I1 and Table 1 

indicates that grid spacing on the July 14  case was 200 m by 200 m by 150 m. For 

simulated flights using this data, interpolation of the JAWS winds was required. The 

interpolation procedure was based on bilinear Lagrange polynomial basis frtnciio~ls. A 

good description of  two-dimensional interpolation is presented by Prenter, 1975 (341. 

The twodimensional method is easily generalized to  three o r  n dimensions. For three 

dimensions, the general interpolation form is 

where U(X,~ ,Z)  is the interpolated quantity, unl ,n2,n3 is the value of  the quantity at 

the grid points and P n 1 ,n2,"3 (x,y,z) is a group of basis functions, one for each grid 



point. l 'he simplest set of basis functions for our need is the set of bilinear Lagrange 

polynorl~ials. Each of these basis functions is continuous so any finite sum of the 

functions is also continuous. Therefore, continuity of the interpolated quvntity U(x,y.z) 

is assured. 

The Lagrange basis functions Pnl ,n2,n3 art: defined at edch grid point so that 

Pnl ,n2,n3 y ~ n 2 9 z r ~ 3  ) = 1. x ,yn,,, and z are x, y, and z coordinates of grid 
"1 - "3 

point (n ,n2,n3). At all surrounding grid points P n 1 ,n2,n3(xn 3yn2'zn3) = O. In 

practice the summation of Equation (66) is only over the surrounding eight grid points. 

In equation form the basis functions associated with a particular cell are defined by 

P2(xc,yC,zc) = xC(Ay-yc) (Az-z,)l(Ax Ay Az) (68) 

where xc,yc,zc are the coordinates within the cell as defined in Figure 34; Ax,Ay,Az are 

the x, y, and z grid spacing, resjtectively; and Pi is the basis function corresponding t o  

grid point i as defined in Figure 34. 

Notice that gridpoint one lies at (xc.yc,zc) = (0,0,0), grid point two at (xc,yc,zc) = 

(Ax,O,O), stc. Notice also that Pi is equal t o  1 a t  grid point i, is always nonnegative, and 



Figure 34. Definition of interpolation variables. 

is zero s t  surrourlding grid points. Outside of  the cell shown in Figure 34, each of the 

eight basis fi~nctions have different definitions, but these alternate definitions are of no  

concern to the interpolation of within the cell. 

Interpolation within the grid of Figure 34  is achieved with the following equation. 

whrre ui is the value of u as the ith grid point. 

The material in this chapter was implemented for the most part by the computer 

program listed in Appendix G. This program was written on a minicomputer with 

limited central memory. As a result, data was swa~.,ed from central memory to  disc 

files and back. Three-dimensional arrays r,ould not be conveniently stored on disc. The 

arrsys had to  be stored in linear records. For this reason, the JAWS data was stored 

cell by cell on disc. In other words, the eight values of U at each of the eight grid 

points of Figure 34  were stored contiguously. An adjacent cell would have four of the 



same va111es stored so that memory-wise, this procedure is inefficient. Comp~ia t ion-  

wise it is efficient because accessing the grid val~les of the cell requires only one READ 

statement as opposed to  four required by another procedure. More of these details are 

described in Appendix G. 

The addition of turbulence to  the JAWS data required information on the varia- 

tion of gust intensity and turbulent length scale. At the time of writing, JAWS second 

moment information was not available. An equation for the distribution of  gust intensity 

was necessary for simulation. As a guide, consider Figure 27. This figure shows veloci- 

ties measured by NASA's B-57B aircraft during flight through an apparent microburst 

on the day after the July 14 JAWS case. An interpretation of Figure 27 was presented 

in Chapter V. Evidence of decreased gust intensity and increased turbulent length scale 

were described. For the purposes of demonstration a combination of both was assumed. 

An zxponential type decrease through thc JAWS microburst was assumed. Lateral 

variation was written in terms of  distance r from the microburst. Moving away from the 

microburst center, gust intensity increased to  a maxin~um and then decrrascd to  zero 

exponentially dt great distances. A vertical exponential factor was added t o  make 

intensity a maximum a t  300 m AGL. The functional form is given by 

where r is horizontal distance froin tllc microburst center in krn and z is the altitude in 

meters. 

A simple vertical relation for turbulent length scale was selected from Rcference 

35. The functional form is 

Turbulence generated for use with the JAWS data consisted of a 64 x 64 x 64 

array generated at dimensionless frequencies o f  v = 50, v = 50, v = 50. One concern 
1 S3 



was the accumulation of error in the calculation of an FFT this large. The three- 

dimensional FFT does not have an error problem, at least for arrays of this s i ~ e .  Test 

cases were done and error was on the ordcr of lom6 which is the same as the word 

precision (32 bits per word, 24 bits f%r the mantissa). 

Interpolation of the turbulence between grid points was required. Tatom and 

Smith, '982 [36] offer some guidance on this point. They show that zeroth order 

interpolation (stair step turbulence) causes aliasing to  exactly cancel the effect of  digi- 

tization of the data as long as the turbulence is sampled at frequencies the same as or  

lower than generation frequencies. This procedure was followed. 

To illustrate model perfonnanccs, a point "airplane" was flown at constai~t 

ground speed through the data. ?'he pro:ram in Appendix G that implements this model 

has a pair of "knobs", one of which turns the turbulence up or  down, and the other 

turns the wind shear on or off. Hence, the JAWS data without turbulence, the turbu- 

lence generated without JAWS data, or  JAWS data with turbulence can be examined. 

The point "airpla.rle" path was select~2 'o begin at a point so that a true heading 

of 35" carried the plane througli the microburst center. .r? simulated ILS approach wlth 

three degree glide slope was flown beginning at an altitude of 350 meters. 

Figure 35 shows the east-west velocity component encountered in flight without 

added turbulence. Figure 36 is the same flight path with turbulence added. Noticz 

that the length scales are decreasing toward the end of the flqght as the plane approaches 

the ground. Thc t~~rbulcnce in this figure appeas quite realistic (compare with Figure 

27). 

The traces of tuioulence only are plotted in Figure 37. The data was sa l~~pled  

at a very high rate so that each data point was shown. Input parameters wsre arranged 

for horizontal flight through the block in the east-west direction. The middle curve is a 

plot of the points ix = 1-64, iy = 1, iz = 1 ,  the upper curve ix = 1-64, iy = 2, iz = 1, and 

the lower curve, ix = 1-64, iy = 32, iz = 32. The first two adjacent curves are highly 
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Figure 35. List-west JAWS velocity on a simulated ILS 
approach (three degrct? glide slope). 

-10. I. 1 I 
0. 50. 100. 

Time (SIX) 
Figure 36. East-west JAWS velocity component plus turbulence on 

a simulated ILS approach (three degree glide slope). 
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Figure 37. Comparison of lines of turl?ulence from the simulated turbulence. 

correlated. The third curve shows only slight correlation with the first two, as was 

expected. These three traces show the kind of transverse (lateral and vertical) three- 

d~mensional correlation which was missing from previous one-dimensional turbulence 

simulations. 

The storage requirements for this realistic three-dimensional simulation are not 

as large as one might think. The July 14 JAWS case was provided on a 61 x 61 x 1 1 

grid. For  three velocity componen!s and one second moment, the number of  words is 

163,724. The twbulence was stored on  a 64 x 6 4  x 64 grid and with three components 

the number of words is 262,144. The JAWS and the turbulel~ce data were stored in 

integer form in only two bytes. The total storage requirement is only slightly greater 

than 850 kilobytes. The Perkin-Elmer 3250 minicomputer can be outfitted with 32 

megabytes of celltral core storage most of which is available t o  the user. The conclu- 

sion is that very sophisticated simlllations can bc performed on small computers. 



CHAPTER VIII. SUMM -.Y AND CONCLUSION 

The characteristics of the spatial model can be summarized as follows: 

1. The spatial model contcins three components of real wind shear varying over 

space with corresponding c+?:lponents of simr-lated turbulence also varying over the 

three space dimensions. Bec ~se wind and gust variation over the 5ody of an aircraft 

are available, all aerodynamic ioads and monients can be caiculated. 

2. The simulated turbulence is nonlinear, non-Gaussian, and conforms to  the 

von Karman three-dimensional spectral model. 

3. Because of the conformance to  the three-dimensional spectr*, the model 

contains cross-spectral information for each component. 

4. By virtue of its three dimensionality, the splitial model permits flight simula- 

tions of  any maneuver without diminishing the validity of the simulation. 

5. The model is highly flexible. Any flow field about which ensemble average 

velocities, gust intensities, and turbulent length scales are known can be simulated. 

The spatial nlodel was implemented on a Hewlett-Packard F series minicomputer. 

The three-dimensional turbulence was generated in a 64 x 64 x 64 b!ock and showed the 

threedin1ensional correlation expected of it. The resulting turbulence when added to 

the JAWS data resulted in a simulated wind trace virtually indistinguishable t o  the eye 

from real data measured with the B-57B aircraft. 

An extension of the Houbolt-Sen cross-spectral model was presented and com- 

pared with data from the Gust Gradient Program. The theoretical curves showed some 

variation from the measured data. This variation is believed to  be a probe effect, aliasing, an 

effect of the nonfrozen nature of the turbulence, o r  a combination of the three factors. 



The spatial model requires one statistic not available from the JAWS data; the length 

scale of turbulence, L. The effect of microbursts on distributions of L should be a subject 

for future research. This research should include flight and laboratory measurements. 

Flight measurements are required because of the inability to  model atmospheric scale 

Reynolds number in the laboratory. Laboratory measurements are required because of the 

difficulty of locating and flying thnugh a microburst. Although laboratory measurements 

cannot provide quantitative results, they should provide trends. 

Laboratory measurements can contribute significantly to  the understanding of the 

effect of topography on microbursts. The primary coctrolling parameter for microburst 

shape is the Froude number which can be modeled very well in the laboratory. Topographic 

effects in the JAWS data should be identified and caref~lly considered where the data are 

used with the spatial model. 
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APPENDIX A. MICROBURST RESEARCH IN THE LABOR4TORY 

I'he dimensionless parameters gcverning microburst-type flows are the Reynolds and 

Froude numbers (Re = VD/v, Fr = v/Jg-, where is the volumetric expansion 

coefficient. For real-atmosphere microbursts typicai velocity and length scales are 10 m/sec 

(downdraft) and 600 m (depth of out-flow). The atmospheric Reynolds number is then on 

the order of 4 x io8. A typical microburst AT is 3 deg C which implies $AT 1; 10 cm/sec2 

= 0.1 m/sec2. The atmospheric Froude number is then on the order of  1.3. The Froude 

number exerts a strong influence on microburst shape while the Reynolds number affects 

turbulent details of the flow. In the laboratory, the Froude number can be rnodeled quite 

2 well, but the Reynolds number cannot. Let VLAB = 100 cm/sec, @AT = 100 cm/sec , 

2 v = 0.01 cm /se:, and D = 0.5 cm. Then F r  = 14, and Re = 5000. Hence very high Froude 

numbers, or  any smaller value can be achieved so that the shape of the microburst can 

be accurately simulated in the laboratory. Turbulence in the flow will not correspond 

quantitatively to that in the atmosphere but trends should be observable. 

Intuitively, the higher the Froude number, the shallower the outflow depth. 

The shallower otitflow depth corresponds to an increased outflow velocity. The increased 

or~tflow velocity and decreased dzpth creates a zone of intense shear which results in 

increased turbulence production. Hence the Froude number has a secondary influence on 

tuybulence. The Keyliolds number affects turbulence and therefore turbulent mixing and 

thus the momentum diffusivity. Higher values of momentum diffusivity result in 

smoother velocity profiles (except near surfaces where viscous effects predominate) and 

thus the Reynolds number has a secondary effect on microburst shape. 

Figure 38 depicts a laboratory apparatus for studyiqg microbursts. Saline solu- 

tions with densities 19% greater than fresh water can be achieved at 20°C. A reasonable 
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Figure 38. Laboratory "microburst" apparatus. 

working value for PAT would be 10%. For normal laboratory work. one meter head 

seems reaso~lable. This gives a maximum velocity of V = m= 4 mlsec. If the 

injector is construsted with a contraction, higher values of velocity can be achieved. The 

valve controls the strength of the momentum source. The apparatus of Figure 38 can be 

of any size and complexity depending on resources. The valve could be microprocessor 

controlled with flowmeter feedback, for example. Velocity measurel.lents could be made 

with hot wire or  split film, laser Doppler velocimeter, or  by particle photography 

methods. Flow visualization could be achieved by neans by Schlieren, shadowgraph, 

interferometer, particle photography, hydrogen bubbles, or dye. 



Many of the questions posed previously could be studied with the apparatus of 

Figure 4. The effect of topography on microburst spreading should be modeled quite 

well with the apparatus since Froude number scaling can be achieved. Some idea of the 

effect of surface roughness can be accomplished also. Surface roughness affects the * 
1 

surface layer in~mediately but eventually could affect higi,.j layers. Consider for the 

moment Figure 39. The laboratory microburst center is at thc center of i k ~  r-kcle. 

The microburst front after a time is retarded by the increased roughness in the rough 

sector. The retardation creates shear layers in the transition area between the rough and 

sr,~ooth surfaces. If the effect is marked enough, Kelvin-Helmholz instabilities could 

be created. Variations of vorticity are observed in blowing dust associated with micro- 

bilk ts. 

'+ MICROBURST FRONT 

Figure 39. Effects of surface roughness on microburst spreading. 

By increasir.: head and hence velocitieh, variation of Reynold's number can be 

achieved in the laboratory model. The effect on turbulence characteristics could be 

observed for changing Reynoiej number. The turbVllence variations, i.e., length scales 

and intensities have crucial relevance to the wind simulation model. While differences 



will be observed between the laboratory turbulence and atmospheric turbulence, the 

trends should be there. The importance of the trends or functional forms was 

explained in Chapter V. 
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APPENDIX B. THE THREE-DIMENSIONAL CHARACTER OF THE 
VON KARMAN SPECTRA 

As an example, considei. the three-dimensional von Karman spectrum for the 

vertical velocity component. 

where 

440r3 
CI =g $2 24 LS 

and 

2 C2 = (2naL) , 

Defining p2 = v12 + vZ2, subsiituting into (78) and solving for vj giver the following 

result. 

Equation (79) is the equation for surfac:es of constant $33. 

If Equation (79) is differentiated with respect t o  p ,  set to zero, and solved for p 

the result is 



For this value of  p for a given value of @33,  v3 achieves its maximum value. 

The maximum va:ue of @33 can also be determined for given C1 and C2. By 

inspection of (78), the maximum value of 4 3 3  occurs at v3 = 0, since f3 is a moni- 

tonically decreasing function of  Q33, The problem of finuing a maximum for q 3 3  is 

reduced to  finding the maximum value of @33 defrned by 

Differentiating (819 with respect tu p equating the result to  zcio, and ~olving for p givcs 

7 

Substituting this into the expression for 4 ~ 3 ~  gives 

Using o = 1 m/sec, L = 500 m in Equations (82) and ( 8 3 )  gives 

9 5 p = 1.76 x l v 4 m - l  and S j 3  = 1.37 x 10 m !sec2 

The maximum value of  @33 o c c u s  at a smal! but nonzero value of  p and has a large 

but not infinite value. 



APPENDIX C. SUM OF COMPLEX EXPONENTIAL SERIES 

In this study the following sum occurs frequently in derivations. 

The above summation is recog~lized immediately as a partial sum of the geometric series. 

Equation (84) can 1 e rewritten in the following form. 

Equation (85) is true if the infinilc series converges. From complex va,~iab!e theory it is 

known that the geometric series below converges if lzl -'. 1 .  

In actual fact (86) converges everywhere in the :loseJ legion lzl < 1 except a t  z -- J: i .  

Hence 

By direct substituiion into (84) S can be calculated a t  0 = 0, and n. 

90 



S = N  8 = 0  

S = O  8  = 0, N even 
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APPENDIX D. DERIVATION O F  PROPERTIES O F  TRANSFORMED NOISE 

The purpose of this appendix is the derivation of the lxpressions summarized in 

Table 3. In these derivations, xn and X n 1 ,n2 ,n3 are assumed to  be real white noise 

2 such that E [ x n ]  - 0 ,  E [ r n  1 = o ' 2 xn 9 E[d(nxmI = oXn E[ X n l  p2,n31 = 0,  

The operator E[.] means the expected valut~ of the variable in the parentheses and hmn 

is the Kronecker delta, i.e., 6,, = 0 for m # n, and 6,, = 1 if m = n. 

Expression 1. 

E[Xk] = O  

Expression 2. 



Expression 3. 

- - 
Re2 [Xk 1 = xn cos (2nn 1 kIM) x cos (2nn2 k / ~ )  (Ar12 

2 
n1'0 n2 =O 

E [ R ~ ~  [Xk]  ] = E[xnl x 1 cos (2nnl k/M) cos (2nn2k/M) ( ~ r ) '  
nl=O n2=0 "2 
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Expression 5. 

M- I 
1 cos (4xnklM) 

= a Xk (: - ) 
n=O 

Expression 6. 

M-1 M-1 

EIRe[Xk]Im[Xl] ] = E[xn,xn2] COS (2nnlk/M) sin (2nn21/M) ( ~ r ) ~  

nl=O n2=0 

a cos (2xnlk/M) sin (2nn21/M) (Ar)' = C C xn 

M- 1 

= o * (AI-l2 cos (2anklM) sin (2nnl/M) = 0 
xn 

n=O 

By the orthogonality property of the sine and cosine functions. 

Expression 7. 
MI-1 M2-I M3-1 "$1 n2k2 n3k3 

E[Xkl,k2,k31 = C C C E[xn1,n2,n31 
k "0 k2=0 k3=0 

x Ar] Ar2 Ar3 

= 0 
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Expression 8 : 

Expression 9: 
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Expression 1 0: 

Expression 1 1 : 



Expression 1 2 : 
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APPENDIX E. ESTIMATE O F  THE ONE-DIMENSIONAL SPECTRUM FROM 
THREE-DIMENSIONAL SIMULATED TURBULENCE 

This Appendix derives the result presented in Equation (65). The notation A3v = 

Avl Av2 Av3 is used and the conven t ionz i s  accepted t o  mean 
ki f ki"O -I 

In the above expression N(kl,k2,k3) is the transformed noise and H(kl,k2,k3) is the 

filter function corresponding to  the desired output spectrum. 

Define W as follows. 

Substituting Equation (89) into Equation (90) and rearranging gives 

h 

With this result the variance of W becomes 



where ok is the variance of the transformed noise and is given in Table 3 as 

The filter function is given in Equation (60) and is repeated here for convenience in 

digital form. 

Here H(ll ,k2,k3) and @,(ll ,k2,k3) are taken to  mean H(lI Avl ,k2Av2,k3Av3) and 

@,(I1 Avl ,k2Av2,k3Av3) respectively. 

Using Equations (92) and (93) in Equation (91) along with relations between sampl- 

ing frequencies and grid spacing yields the following desired result. 



APPENDIX F. FROZEN TURBULENCE GENERATION IN THE 
FREQUENCY DOMAIN 

FTURB generates a three-dimensional block of  turbulent velocities for either the 

u(II=l), v(II=2). o r  w(II=3) components. Dimensionless sampling frequencies are 

selected for each coordinate direction. v = FSl ,  v = FS2, and v = FS3 in the pro- 
s 1 S2 s3 

gram. A typical value for these parameters is 50. The f m t  executable statement in 

FTURB is a call t o  a library routine LGBUF. The HP computer system this program was 

run on has a limited I/O buffer and a call t o  LGBUF creates a buffer LBUF 128 - 16 

bit words long so that records of this length car. be read by the system. For other 

systems without buffer problems the call t o  LGBUF can be removed along with the 

dimensional array LBUF(128). 

The file o f  transformed turbulence is created in a direct access disc file in records 

128 - 16 bit words. The array being created is complex, and each complex number is 

made up of  four words, so each block contains 32 complex numbers. Storage can be 

visualized as a one-dimensional array with index IX changing ',.:stest, IY, next fastest, and 

IZ slowest. Figure 40 depicts stwage for a small block. In the block, each cell corres- 

sponds to  a storage location (logically) for one complex number. The 128 words are 

stored physically in 4 - 32 complex word records. 

Generation of the turbulence in the frequency domain requires access t o  lines of  

the block of logical turbulence. For example, in the figure, say we want t o  get a line of 

turbulence in the Z direction, say IX = 3, IY = 2, and IZ = 1 to  4. These indices corre- 

spond to  words 11, 43, 75, and 107. Routine FCHRP handles this chore. 

Within the main program, the turbulence is generated according t o  the symmetry 

relations of Table 2. Variances of the transformed turbulence real and imaginary parts 

come from expressions 10 and 11 in Table 3. The (F1,0,0) loop corresponds to  

100 
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symmetry relation 5 in Table 3. The (O,FZ,O) loop corresponds to relation 6, the 

(0,O,F3) loop to 7, the (Fl,F2,0) loop to 8, the (Fl,O,F3) to 9, the (O,F2,F3) loop to 

10, and the (F1 ,F2,F3) loop to expression 1 1 .  

LOGICAL STORAGE 

RECORD 1 . .  .130131(32 
RECORD 2 

331341351. . .  . . ,162163164 
RECORD 3 . .  . .  651881671. . 1 ~ 1 9 5 1 ~  

RECORD 4 . .  971981991. . .  .I126l1271128 

PHYSICAL STORAGE 

Figure 40. Example o f  logical and physical storage: for program FTURB. 
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3 T - Q Q O ~ ~  18 O)I ~ ~ 0 0 0 1 1  USIMP ma~q* m ~ u m  a-romo 

FTN4W,L 
$FILES( O,2) 

PROGRAM FTURB 
C 
c------------------.-------------------------------------------------- 
C PROGRAM FTURB; THIS PROGRAM CREhTES TRANSFORRED 3-0 TURBULENCE BASED 
C ON THE YON KARHAN SPECTRAL MODEL. I T S  PURPOSE I S  TO CREfiTE THE FkO2- 
C EN TURBULENCE DATA BASE FOR THE TURBULENCE 8IVULATION MODEL 
C 
C VARIABLE DEFINITIONI 
C HIMAX - MAXIMUW NUMBER OF F1  FREQUENCIES 
C N2HAX - HAXIMUH NUMBER OF F 2  FREQUENCIES 
C N3MAX = M&XfMUN NUMBER OF F3 FREQUENCIES 
C FS1 - F l  DIRECTION SAMPLING RATE <DIMENSIONLESS) 
C FS2 - F 2  DIRECTION SAMPLING RATE <DINENSIONLESS) 
C FS3 = F 3  DIRECTION SAMPLING RATE (DIMENSIONLESS) 
C ICART - LOGICAL UNI t NUtlBER OF THE DISC D R I V E  
C I 1  = VELOCITY COMPONENT (1-U, 2-V, 3-U> 
c--------------------------------------------------------------------- 
C 

DIMENSION LhBL<lO>,LBUF< 126)  
COMPLEX %(StP) ,Y<StZ)  
COMHON NlH,NZn,H3M,INPUT,ICARt 
IHTECER.4 NlM,N2MIN3M 

C 
C THIS HP LIBRARY ROUTINE I S  NECESSARY TO INCREASE 1 /0  BUFFER SIZE.  
C 

CALL LCBUFC LBUF, 126  ) 
INPUT = 1 
ICART = 3 4  
ROOT2 = SQkT( 2 .  > 
URITE< INPUT, 9999  > 

9999 FORHAT<tlHOUTPUT LU-?) 
READ( INPUT, 9 9 9 8  ) LUOUT 

9998 FORMAT ( 14  ) 
URI TE< INPUT, 9997  > 

9997 FPPMAT< f HH 1 MAX-? > 
READ<INPUT,9999> NlnAX 
URI TE< INPUT, 9996 ) 

9996 FORMAT < 7HNYHAX-3 ) 
READ< INPUT, 9 9 9 8  ) NOMAN 
URl  TE< IMPUT, 9995  ) 

9995  FORMAT ( 7HN3MAX=? > 
READ< INPUT, 9 9 9 8  ) N3HhX 
URlTE< INPUT,9994) 

9994 FORMAT( SHFSl =? ) 
READ< INPUT, 9 9 9 3  ) FS t 

9993 FORHATC F 1 0 , 0  ) 
URlTE( IUPUT, 9 9 9 2 )  

9992 FORMAT ( SHFS2-? ) 
READS INPUT, 9993 ) FS2 
URlTE( INPUT ,9991 ) 

9 9 9  1 FORMAT< SHF63-3 ) 
READ< I HPUT, 9993 ) FS3 
URlTE( lNPUT.9986) 

9936  FORHAT< 3BH ENTER VELOCITY COMPONENT < 1 , 2, OR 3 ) > 
READ< 1 ,9965 > I I 

9985 FORHAT< 11 > 
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N ~ H  = nimx 
H2H N2HAX 
N3H N3MAX 
HREC = UlMAX*MOHAX*N3HAX/32 
HREC = MlM*NZH*N3n/32 
URlT E( l ,0887 ) NREC 

8807 FORMAT<?HMAXRTC-,17,2SH ENTER F I L E  TO BE OPENED) 
READ<l,OOB6) <LABL<I ) , I -1 , lO)  

8886 FORMAT( 1 OA2) 
OPEN<ICART,FILE-LflBL~IOSTAT=IOSDSTATUS='NEU',ERR-99,RECL=256, * FORM-'UNFORMATTED',ACCESS-*DIRO,nAKREC=HREC) 
OF I FSI  /FLOAT( N l HAX ) 
DF2 - F82/FLOAT< NPHAX ) 
DF3 - FS3/FLOAT( N3MAK ) 
N1D2 * N1HAX/2 
N2D2 = N2H&X/2 
N302 - NJHAK/2 
ODDF DFl*DF2+DF3 
X I  HAK - FLOAT( NlNAX > 
X2RAX - FLOAT< N2HRX ) 
X3HAK = FLOAT(N3HflX) 
FFF - FSt*FSS*FS3 
SICXK - SQRT<XlHfiX*X2HAX*X3MAn/P.)/FFF 
P - PH1U!O,,O,,O,,lI) 
SUM = P 
H - SQRT<FFF*P) 
X( t ) - SICXK*ROOT2*H*CHPLXC CRAN( ), 0 , )  

C 
C (Ft ,0 ,0)  LOOP 
C 

DO 2 5  K1 2,NlD2 
F1 - (FLWT(K I  )-I. WDF1 
P = PHIU<Fl,O,,O,, l l )  
SUM SUM +2.*P 
H - SQRT<FFF*P) 
X( KI ) = SIGXK+H*CHPLX< CRAN( ), CRC)N< )) 
X(N1HC)K-K1+2) = CONJC<X<KI y )  

25 CON1 INUE 
F 1  - F1 + DFl  
P PHlU(F1, O.,  O . ,  11) 
SUH = SUM + P 
H - SQRT<FFF+P) 
X< N1 D2+1 ) - 81CXK*ROOT2*Ii*CMPLX( CRAN( >, 0 .  ) 
CALL FCIPP<2,1,NlHAX,l,l,l,lrX) 

C 
C (O,F2,0) LOOP 
C 

DO 30 K2 2,NPDZ 
F2 = (FLOAT< K2)-1 . )*DF2 
P = PHIU(O,,F2,0.,11) 
sun = SUH + 2,ap 
H - SQRt<FFF*P) 
X< K2 ) m 8 1  CXK*H*CMPL%< CRAN< > 0 CRAN( ) ) 

X( NPHAX-K2+2 ) m Cot4 JC< X< K 2  ) ) 
30  CONTINUE 

F2 - F2 + DF2 
P - PHIU( 0,  , F 2 ,  O , ,  X I )  
SUM - SUM + P 
n SQRT(FFF*P) 
X< N202+f > = SlCXK*ROOT2*H*CHPLM(cRAN( >, 0 . 1  
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CALL FCHRP<2,1,1,2,N2MAX~l,l~X(2)) 
C 
C < 0,01F3) LOOP 
C 

00 3 5  Y3=2,N3D2 
F 3  = <FLOAT( K3  >- 1 . MDF3 
P PHIU< O., 0. ,F3,11) 
SUM = SUM + 2.*P 
H = SORT<FFF*P) 
X( K3  ) = SICXK*H*CWPLX< CRAN< >, CRAN< ) ) 
X< N3NAM-K3+2 ) = CON JC< X< K 3  ) ) 

35 C.ONTINUE 
F3 = F 3  + DF3 
P = PHIUC O., 0. ,FS, 11) 
H - SQRT(FFF*P) 
X< N3DZ+1) = SICXK*ROOT2*H*CHPLX( CRhN( >, 0, ) 
CALL FCHRP<2,1,! 1,1,2,N73fiXlX<2)) 

C 
C <Fl ,F2,0)  LOOP 
C 

DO 45 Kl=2,NlD2 
F1  = <FLOAT<Kl > - I .  )*DF1 
3 0  40 K 2  = 2,NPMAX 

F 2  a <FLOAT( K2 I- 1 . MDF2 
P = PHIU(F1 ,F2,O., 11) 
sun = sun + 2 . e ~  
H = SORT<FFF*P) 
X< K2 ) = SICXK*H*CWPLX< CRAN ), CRAN< > 
Y< N2HAX-K2+2 > - CON JC< X< K2 > > 

4 0 CONTINUE 
C&LL FCHRP<2,K1,Kt,2,N2MAX,lll,X<2>> 
CALL FCHRP(2,NlMAX-Kl+P,NlMfiX-Kt i212,H2MAX,1,1,Y<2)) 

45 CONTINUt 
F1  = F l  + DFI 
DO 47 K2=2,N202 

F2 = t FLOAT( K 2  )- t . )*DF2 
P = PHIU<Fl,FZ,O., 1 1 )  
sun = sun + 2 . a ~  
H 3 SQRTC FFF*P I 
X( K2  ) = SICXK*H*CHPLX( WAN< >, CRAM< > ) 
X( N2MhX-K2+2 > - COH JCC X< KZ ) ) 

47 CONTINUE 
FZ = F2 + OF2 
P = PHIU(F1 ,FZ, O., 11) 
sun = sun + P 
H = SORT<FFF*P) 
X< NZD2+1) = S ICXK*ROOT2*H*CHPLX< CRANC ), 0 .  > 
CALL FCHRP(2 ,N102+1~NlD2+1 ,2 ,N2MAX,1 , l ,XO)  

C 
C <Fl,O,F3) LOOP 
C 

DO 55 K1=2,NlD2 
F1  = <FLOAT< K 1 )-I. )*DF1 
DO 50 K3=2,N3MAX 

F 3  m < FLOAT( K3 >-I, )*DF3 
P = PHIU<Fl,O.,F3,11) 
sun - sun + 2.*P 
H = SQRT<FFF*P > 
X( K3  ) m SIGXK*H*CHPLX< CRAM( ), GRAN( ) ) 
Y (  N3tlRX-K3+2 ) = CON JC< X< K 3  > ) 



50 CON1 IWUE 
CALL FCHRP(2,Kt ,K1,1,1,2,N3nAXDX(2>) 
CALL FCHRP<2,NlHAX-Kt+2,NtUAX-Kt+2D 1,tD2,NJHAX,Y(2)> 

59 CONTINUE 
F i  = F i  + DFt 
DO 57 K 3  = 2,N3D2 

F 3  = < FLOeT< K3 )- 1 . )+DF3 
P P H I U ( F l D O , , F 3 , I 1 )  
sun = sun + 2 . e ~  
H ~ ~ ~ T ( F F F + P )  
X< K 3  ) = SICXK*H*CHPLX< CRAN< ),CRAH( ) 

X< N3HAX-K3+2 ) = CON JG< X( K3  > > 
57 CONTINUE 

F3 - 13 + OF3 
P = PHIU(F1,O.,F3, 11) 
sun = sun + P 
H = SQR?(FFF*P ) 
X< N3D2+ 1 > = SICXK+ROOT 2*H*CNPLX( GRAM( >, 0.  > 
CALL FCHRP<2,HtD2+1,N1D2+1,tD1D2DN3MAXlXi2)~ 

C 
C <O,F2,F3) LOOP 
C 

DO 65 K2=2,N2D2 
F 2  ( FLOhTC K 2  )- 1 . )*DF2 
DO 60 K3=2,N3HfiX 

F 3  = (FLOAT(K3)- t . MDF3 
P = PHIUC 0 .  ,FPDF3,1 I )  
sun = sun + 2 . a ~  
H - SQRT<FFF*P > 
X( K 3  ) = SI GXK*H*CHPLX< CRANC ), CRAW ) ) 
Y(  N3HhX-K3+2 = CON JC( X( K3 > )  

6 0 CONTINUE 
ChLL FCHRP~2,1,1,K2,K2,PDN3RAX,X(2)> 
CALL FCHRP<2,1,1,N2MhX-K2+2DN2MAX-K2+2,2DN3HRXDY<2)) 

65 CONTINUE 
F2 = F 2  + OF2 
DO 67 K3=2,N3D2 

F 3  <FLOAT( K 3  >- 1 . >*OF3 
P - PHIU<O.,F2,F3,I I )  
sun = sun + 2 . a ~  
H = SQRT<FFF*P > 
X( K 3  ) = SICXK*H*CRPLX< CRAN( ), CRANt > ) 
X( N3UAX-K3+2 ) - CON JC< X< K 3  ) ) 

67 CONTINUE 
F3 = F 3  + DF3 
P = PHIU( 0.  , F 2 , F 3 , I I )  
sun = SlfM + P 
X< N3D2+1) = SICXK*H*ROOT2*CHPLX( CRAN( 1, 0 . > 
CALL FCHRP(2,tD1,N2D2+t,N202+1,2,N3MAX,X(2)) 

C 
C (Ff,FP,FJ) LOOP 
C 

DO 300 Kt-2,NtDZ 
F t  - <FLOAf(Kl  )-I. )*DF1 
DO 200 K2=2,N2NAX 

F2 = <FLOAT( K 2  )-I . WDF2 
DO 1 0 0  K3=2,N3NAX 

F 3  (FLOAT( K 3  )- t , )*DF3 
P - PHIU(F1 ,F2 ,F3 , I I )  
SUM SUM + 2.*P 
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C F1,FZ,F3 ARE THE 3 COMPONENTS OF SPATIAL FREQUENCY 
C TLS I S  THE TURBULENT LENGTH SCALE c--------------------------------------------------.-------.---------- 
C 

FUNCTION PHIU< FI  ,F2,F3, I 1  ) 
A = 1,339 
A4 = Ae.4 
P I  = 4.*&T&N< 1. > 
FSQ = F l + F l  + F2+F2 + F3*F3 
ARC = FSQ*< 2. *PI+A >**2 
DENOH = ( 1 .  + ARG)**<17./6.) 
I F < I I  .EQ. 1 )  THEN 

FF = F1 
ELSE 

I F C I I  .EQ. 2 )  THEN 
FF = F2 

ELSE 
FF = F3 

ENDIF 
ENDIF 
PHIU = ( 440. /9. )*P1+*3*h4*( FSQ-FF**2)/DENOM 
RETURN 
END 

C c--------------------------------------------------------------------- 
C SUBROUTINE: FCHRP (FETCH REPLACE) THIS ROUTINE READS OR URITES 
C THE FOLLOW INC (X(N1 ,N2,N3~,Nl=NlHIN,NlnAX) 
C OR (X<Nl,N2,N3>,N2=N2Il IN,N2MAX~ 
C OR <X<N1,N2,N3),N3=N3MININ3WAX) 
C FROH A RhNDOH ACCESS DISC FILE,  

SUBROUTINE FCHRP<IFOR,NtLINIH,N2L,N2H,NJL~N3H,T) 
COMMON NlMIN2M,N3M,1NPUT,ICARf 
COMPLEX T( 1 ), ZBUFF( 32 ) 
INTECER*4 IL,IH,NlM,N2M,N3R 
INTEGER DIDN 

NRECL - < 1L-1>/32 + 1 
NRECH = < 1H- 1 )/32 + 1 

I B L  = I L  - < NRECL-1)*32 

DIDN = 0 
I F < N l L  ,HE. N1H) DIDN = I 
IF<N2L .HE. NZH> DIDN = N1H 
IF(N3L .NE. N3H) DIDN = N1M*N2N 
IFCDIDN ,ME. 0 )  GO TO 25 

URITEC INPUT, 9999 > 
FORMAT(13HERROR FETCH 1 )  
STOP 

I S  = 1 
18 = I B L  
NSTEP - DIDN/32 
IF<NSTEP .CT , 1 ) NSTEP = 1 
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DO 100 IREC NRECL,NRECH,NSTEP 
READ< ICART, REC- IREC, IOSTAT~IOSI  ERR-99) < ZBUFF< 1 ), 1- i ,32 ) 

5 0 IF(1FOR .EO, 1 )  T < l S >  = ZBUFF<IB) 
I F (  IFOR .EO. 2)  ZBUFFC 1 0  ) = T< I S )  
I S  = IS + 1 
I B  = 10 + DIDN 
I F < I B  ,LE. S2)  GO TO 5 0  
1% - tlOD<IB,32) 
I F < I B  .EQ, 0 )  I B  = 32 
IF< IFOR .EQ.  2 )  YRITE<ICART,REC-IREC,IOSTAT-IOSIERR=99> * <ZBUFF<I> , I -1 .32 )  

1 0 0  CONTINUE 
RETURN 

99 WRITE< INPUT, 9998  ) IOS 
9998  FORMAT( 19HFETCH I OSTAT ERROR , I 3  ) 

STOP 
END 
ENDS 
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APPENDIX G. TRANSFORMATION O F  FREQUENCY DOMAIN 
"TURBULENCE" TO THE SPACE DOMAIN 

Program FFT3D transforms the file created by FTURB to  the space domain via 

the inverse FFT. FFT3D contains a call t o  library routine LGBUF which was explained 

in Appendix F. The transform is calculated by operating on small lines (one-dimensional) 

from the data in the previously created file. This program is extremely memory efficient 

but time inefficient. Core storage is minimal but numerous disc file reads and writes 

are required. 

The three-dimensional FFT is calculated using a simple one-dimensional FFT 

routine. The three-dimensional inverse FFT is defined by L 

This equation is broken up  into three groups of one-dimensional transforms as follows 

The above procedure must be performed MI x M, times and is implemented in the K3  

loop of the main program. The next operation is given in the following equation 

This transform is performed M1 x M3 times. The third operation is given by 
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and is performed M2 x M3 times in K1 loop. For a 64  x 64 x 64 array only 64 complex 

words must be in memory at a given time. 
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30 T-00004 I 8  O(I CROO033 USING 00637 BLUS R-0000 

FTN4X, L 
*FILES( O,2) 

PROGRAM FFT3D 
C 
c--------------------------------------------------------------------- 
C PROGRAM F F T ~ D I  THIS PROGRAM CALCULATES A THREE DlMENSIOHAL FFT I N  
C PLACE FOR OAT6 RESIDING I N  MASS STORAGE <TYPE 1 DIRECT ACCESS F I L E )  
c--------------------------------------------------------------------- 
C 

DIMENSION LABL< 1 O ) ,  LBUF( 128) 
COMPLEX X< 51 2 ) 
COMMON N1MAX,N2MAX,N3MAX81NPUT,ICART,Kl,K2,K3 
INTEGERe4 N1HAXJN2MAX,N3MAX 
CALL LGBUF< LBUF, 128 ) 
INPUT = 1 
K A R T  = 34  
ROOT2 = SQRTt 2. ) 
URITE< INPUT r 9999 > 

9999 FORHAT€ t 1 WOUTPUT LU=? ) 
READ< INPUT, 9998 ) LUOUT 

9998 FORHAT( 14  ) 
URI TE< INPUT, 9997 ) 

9997 FORMAT< 7HN 1 HAX-? ) 
READ< INPUT, 9998 ) N l MAX 
URITE( INPUT, 9996 ) 

9996 FORMAT( 7HNWAX=? ) 
READ< 1 NPUT, 9998 ) NPMAX 
UR I TE( INPUT, 9995 ) 

9995 FORHAT( 7HN3MAX=? > 
READ< INPUT, 9998 ) N3WAX 
URITEC INPUT, 9994 ) 

9994 FORHAT€ SHFS 1 =? ) 
READ< INPUT, 9993 > FS l  

9993 FORHAT( F10.0  ) 
URI TE< INPUT, 9992 ) 

9992 FORMAT< SHFS2=3 ) 
READ< INPUT, 9943 ) FS2 
URITEC INPUT,9991 ) 

999 1 FORMAT< SHFS3-? ) 
READ< INPUT, 9993 ) FS3 
MREC = NlHAX*N2HAX*NJMAX/32 
UR I TE< 1 , 0887 > HREC 

8887 FORWAT(7HHflXREC-,17,?5H ENTER F ILE  TO BE OPENED) 
READ<1,0886) < L A B L ( I ) , l ~ l , 1 0 )  

8886 FORMAT< 1 Oh2 ) 
OPEN<ICART,F1LE=LABL,IOSTAT=IOS,STATUS='OL~',ERR=99,R€CL=256, * FORll='UNFORMATTED',ACCESS**OIR',MAXREC*MREC) 
X 1 MAX = FLOAT< N l  MAX > 
XPHAX FLOAT( N2MAX T 
X3MAX = FLOAT( N3HAX ) 
DFI = FSl/XlRAX 
DF2 = FSP/XPHAX 
DF3 = FS3/X3MAX 
N1D2 = NlMAX/2 
N2D2 = H2HAX/2 
H3DZ = N3HAX/2 
DDDF = DFl*DF2*DF3 
FFF = FSl*FSP*FS3 
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N f U  = NfUllK 
N2U = N2MAX 
N3U = N3llAX 
URI TEt l r 6999 ) 

6999 FORHAT('BEC1N K3 LOOPU) 
C 
C K3 LOOP 
C 

DO 2 0 0  Kl= l ,N lMAX 
DO 100  K2=l,N2HAX 

WRITE< 1,6990) K1 ,K2 
6998 FORUATC" K t - "13"  K2="13"5Aa)  

CALL FCHRPtl,Kl,Kl,KZ,KZ,l~N3W,W) 
CbLL FFT ( X, N3HAX, 1 ) 
CALL FCHRP<2,Kl0K1,K2,K2,1,N3M,X) 

100  CON1 1 HUE 
200 CONTINUE 
C 
C K2 LOOP 
C 

URIT E( 1,6997) 
6997  fORMAT<'BEGIN K 2  LOOPU) 

DO 4 0 0  K1-1 DNlHAX 
DO 3 0 0  K3=1,N3HAX 

URITE( 1,6996) K1 ,K3 
6996 FORHfiTCnK1="13" K3=" I3 '&AH)  

CALL FCHRP(1 ,K1 ,K1 ,1 ,N2H,K3 ,K3 ,K3DX~ 
CALL FFT( X , NPMAX 1 ) 
CALL FCHRP<2,KlDK1,1,H2N,K3,K3,X) 

3 0 0  CON1 I NUE 
400 CONTINUE 
C 
C K1 LOOP 
C 

URIT€( 1,6995) 
6995 FORMAT< "BEGIN K1 LOOPU ) 

DO 6 0 0  K2=l,N2MAX 
DO 5 0 0  K3=lDN3NAX 
URITEC 1,6994) K2,K3 

6994 FORHATC*K2=m13u K3-"13uCA") 
CALL FCWRP(l,l ,NlM,KZ,K2,K3rK3,K3~X) 
CALL FFT(X,NlHAX,l)  
CQLL FCHRP~2, l4N1t l ,K2,K2,K3,K3,X)  

5 0 0  COHT I NU€ 
600 CONTINUE 
C 
C MULTIPLY BY CONSThNT 
C 

URITEC 1,6993) 
6993  FORMAT<"UULTIPLY BY CONSTANT") 

CONST * FFF 
URITE( 1,5554) CONST 

5554  FORHAt tnCONST~&*E12~5)  
DO 9 5 0  K3-lrN3NAX 

DO 900 UP-1,NPHAX 
CALL FCHRP<l ,1 ,NlM,K2,K2,K3,K3,K3DX)  
DO 8 0 0  J-1,NlMAX 

X <  J ) = X (  J )*CONST 
000  CONTI HUE 

CALL FCHRP(2,l,NlH0K2,K2,K3,K3,X) 
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9 0 0  CONT I HUE 
950 CONTINUE 

CLOSE< ICART, ST ATUS- 'KEEP ' I I OSTAT~IOSI ERR-99) 
STOP 

99 URITE(1,5555) 108 
5555 FORHAT< 17HIOSTAT ERROR NO r I 4  ) 

STOP 
END 

C c--------------------------------------------------------------------- 
C SUBROUTINE: FCHRP (FETCH REPLACE) THIS ROUTINE READS OR URITES 
C THE FOLLOWING (X(N1 ,N2,N3jIN1=l,NlHflX) 
C OR < X < N l  ,N2,N3),N2=1 ,N2HhX) 
C OR < X < N l  ,NP,N3),N3=1 ,NJnAX) 
C FROM h RANDOM ACCESS DISC F I L E .  c---------------------------------------.------------------------------ 
C 
C 

SUBROUTINE FCHRP~IFOR,NlL,NlH,N2LIN2H,N3LBN3HBT) 
COMMON Nl l lAX,N2HAX,N3MAX,1NPUT, ICARTIK2,K3 
INTECER*4 N1HAX,N2MAX,N3HAX,ILIIH 
CONPLEX T< 1 ), ZBUFF< 3 2  ) 
INTEGER DIDN 

C 
IL = N1 L+< N2L-1 )*Nl MAX+< N3L- 1 )*N2MAX*N 1 HAX 
I H N 1 H+< N2H- 1 )*N 1 MAX+< N3H- 1 )*N2UAX*N 1 MAX 

C 
NRECL = < I L - 1 V 3 2  + 1 
NRECH - ( IH-1) /32 + 1 

C 
I B L  = I L  - C NRECL-1)*32 

C 
DIDN = 0 
I F < N l L  .NE. N1H) DIDN = 1 
IF<N2L .HE. N2H) DIDN - N1MAX 
IF (N3L  .NE, N3H) DIDN * NlNAX*N2UAX 
I F < D I D N  .NE. Or GO TO 25 

URITE< INPUT, 9999 ) 
9999  FORHAT<l3HERROR FETCH 1 )  

STOP 
C 
25 I S  = 1 

18 = I B L  
NSTEP - DIDN/32 
IF( NST EP ,LT , 1 ) NSTEP = 1 
DO 1 0 0  IREC - NRECL,NRECH,NSTEP 

READ< fCART,REC-IREC, IOSTAT-IOS,ERR-99) <ZBUFF< I ), I*1 ,32)  
5 0 IF< IFOR .EO. 1 )  T(1S)  = ZBUFF<IB) 

IF< IFOR .EO, 2 )  ZBUFF<IB) = T< I S )  
I F <  IB,CT .32) GO TO 5 0 0  
I F ( I B , L T , l )  GO TO 5 0 0  
l F < I S , L T . l )  GO TO 5 0 0  
I F ( I S . C T . 5 1 2 )  GO TO 5 0 0  
IF<CA86<T<IS)) .GT.  1 .ES) GO TO 500 
IF<CA8S~ZBUFF<IB)) .GT . I  ,ES)  GO TO 5 0 0  
GO TO 6 0 0  

500  URITEt 1,7998) K1 ,K2,K3 
URITE<6,7990) K l , K l , K 3  
URITEt1,7999) IBIZBUFF<IB), ISIT(IS) 
URITE<6,7999) IB,ZBUFF< I B ) ,  IS,T< I S )  
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7999 FORUATiu ZBUFFt " I S "  )="2(XDE12,S>" T( nISt~>-*O(W,E12,S>> 
7 998 FORMAT(" K 1 - * I S *  K2- " ISH K3-"15)  
600 IS - I S  + 1 

I 0  = 18 + DIDN 
I F < I B  , L E G  3 2 )  GO TO 5 0  
I B  - MOD( IB ,32>  
I F t I B  ,EQ. 0 )  18 - 32 
IF< IFOR ,EQ, 2 )  UR1TE< ICART,REC~ IREC, IOSTrST- I08 ,ERR~99 )  

#I (ZBUFFC I ), Im1,32) 
100  CONTINUE 

RETURN 
9 9  YRITE< INPUT, 9998) IOS 
9998  FORNAT(t9HFETCH IOSTAT ERROR , I 3 )  

STOP 
END 

C 
c-------------------------------------------------------------------- 
C SUBROUTINEI FFT 
C J I N  COOLEY'S SIMPLE FFT PROGRAM--USES DECIMATION I N  TINE ALGORITHM 
C X I S  AN N-2**H POINT COMPLEX URRQY tHAT I N I T I A L L Y  CONTAINS THE INPUT 
C AND ON OUTPUT CONTfiIHS THE TRhNSFORM 
C THE PARAHETER INV SPECIFIED DIRECT TRANSFORM I F  0 fiND INVERSE I F  1 

C 
SUBROUTINE FFTCX, N, INV)  
COMPLEX X< 1 ) 
CORPLEX U, U, T D  CMPLX 
INTECER*4 N 

C 
C X - COMPLEX RRRAV OF S IZE N--ON INPUT X CONTAINS 
C THE SEQUENCE TO BE TRANSFORMED 
C ON OUTPUT X CONTAINS THE OFT OF THE INPUT 
C N S IZE OF THE FFT To BE COHPUTED--N=Z**N FOR l . L E . H , L E , l S  
C INV - PARAMETER TO DETERHINE UHETHER TO DO A DIRECT TRANSFORM <fNV*O) 
C OR AN INVERSE TRANSFORM ( I N V = l ,  
C 

M ALOC< FLOAT( N ) )/ALOC( 2. ) + , 1  
NV2 - N/2 
Nt l l  - N - 1 
J - 1  
DO 4 0  I-l,Ml 

I F  ( I . C E , J )  GO TO 10  
T - X ( J )  
X < J >  - %(I) 
%<I) T 

1 0  K = NV2 
2 0 I F  (K,CE.J)  GO TO 3 0  

J - J - K  
K = K / 2  
GO TO 2 0  

3 0 J - J + K  
4 0 CONTINUE 

P I  - 4.*ATAN(l . )  
DO 70 L-1,H 

LE - 2**L 
1,El - LEY2 
U = < 1 # 0 # 0 # 0 )  
V = CRPLX(COS(PI/FLOAT(LEl ) ) D - S I N ~ P I Y F L O ~ T < L E l  ) ) )  
I F  (1NV.NE.O) U - CONJCCU) 
DO 60 J=I,LE1 
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IP = 1 + ~ € 1  
1 = X( I P ) * U  
X < I P )  = X < I )  - T 
X < I )  = X < I )  + T 

5 0 CONT I HUE 
U = U+W 

6 0 CONTINUE 
7 0 CONTINUE 

IF<  1HV.EQ.O) RETURN 
DO 8 0  I=l,N 

X< I > = X< I )/CHPLX< FLOAT( N ), 0 ,  ) 
8 0 CONTINUE 

RETURN 
END 
END8 



APPENDIX H. FLIGHT O F  A POINT "AIRPLANE" THROUGH 
WINDSHEAR AND TURBULENCE 

Program JAWS2 moves a point through the JAWS wind shear and generated 

turbulence at a constant selectable ground speed. The "airplane" can fly s straight 

horizontal, three degree glide slope approach, o r  three degree glide slope departure f .; .. ,  

path. Initial positions within both the JAWS data and the turbulence are selectable 

through flight mode variables MODEF. Two real variable "knobs", JCON and TCON 

permit an increase in turbulence or turning on or  off of the wind shear so that separate 

components can be examined separately. 

Interpolation procedures for this program were described in Chapter VII. The 

interpolation for the JAWS data is handled by subroutine NTERP. Functions for the 

calculation of turbulent length scales and gust intensity are handled by functions TLS 

and SIGX, respectively. The demonstration functional forms of TLS and SIGX are also 

described in Chapter VII. 

Storage for the JAWS data is in cell form as described in Chapter VII. The 

turbulence is stored in 16 bit integers and are converted to  real numbers by dividing 

by 10000. Storage of  the JAWS data is on disc unit 34 and the turbulence on disc 

unit 37. 
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2 T-00004 18 ON CROOO33 USING 00058 BLKS R=OOOO 

FTN4X,L 
*FILES< 0,2) 

PROGRAM JOYS2 
c---------------------------------.----------------------------- 
C PROGRAM Jf iY921 THIS PROGRAM CALCULATES YINDS FOR A PLANE 
C ROVING THROUGH THE JAUS DATA 3ET. 
C 
C PROCROHNERt YARREN CAMPBELL 
L; 

C VARIABLE DEFINITION: 
C 
C NBLPF - NUMBER OF BLOCKS PER F IELD 
C NBLPL - NUMBER OF BLOCKS PER L I N E  
C JL INE = L I N E  NUMBER OF CURRENT CELL 
C 1BL3K = PRESENT BLOCK NUMBER 
C NX1 - NUHBER OF CELLS I N  THE X DIRECTION 
C NYt = HUHBER OF CELLS I N  THE Y DIRECTION 
C HZ1 = NUMBER OF CELLS I N  THE Z DIRECTION 
C XHlN - HIN l t lU l l  VALUE OF X (KH) 
C XMAX - MAXIMUM VALUE OF X (KM)  
C YHIN - HINIMUH VALUE OF Y <KN) 
C YWAX = MAXIMUH VALUE OF Y <KH> 
C ZMIN = MINIMUM VALUE OF Z <M> 
C ZMAX - HAXIHUH VALUE OF z < M )  
C DELX = X GRID SPACING ( H )  
C DELV = Y GRID SPACING t H >  
C DELZ Z GRID SPACING < H )  
C DELT = T I  ME STEP < SEC) 
C 1% = X INDEH OF CURRENT CELL 
C I Y  - Y INDEX OF CURRENT CELL 
C 1 2  - Z INDEX OF CURRENT CELL 
C I X T  = X TURBULENCE INDEX 
C I Y T  = Y TURBULENCE INDEN 
C I Z T  = 2 TURBULENCE INDEX 
C I t P T  = NUHBER OF CURRENT TURBULENCE POINT 
C KT DIMENSIONLESS TURBULENCE X LOCATION 
C YT = DIMENSIONLESS TURBULENCE Y LOCATIGN 
C ZT n DIHEHSIOHLESS TURBULENCE Z LOCATION 
C NlHRX - HA% NUP!BER OF TURBULENCE POINTS I N  X DIRECTION 
C NZHHX = MAX NUMBER OF TURBULENCE POINTS I N  Y DIRECTION 
C N3MHX = MRX NUMBER OF TURBULENCE POINTS I N  Z DIRECTION 
C F S l  = DIMENSIONLESS SAMPLING FREQUENCY I N  F l  DIRECTION 
C FS2 n DIHENSIONLESS SAHPLINC FREQUENCY I N  F 2  DIRECTION 
C FS3 = DIHENSIONLESS SAHPLINC FREQUENCY I N  F 3  DIRECTION 
C TCON = TURBULEHCE CONSTfiNT. LARGE VRLUE ELIHINRTES TURBULENCE. 
C JCON = JAYS CONSTANT. 1 .  FOR UIND SHEkR + TURBULENCE 
C 0 ,  FOR TURBULENCE ONLY 
C X CURRENT X LOCATION (KH) 
C Y = CURRENT Y LOCATION <KH) 
C Z = CURRENl 2 LOCRTION <M > 
C VX = EAST-UEST INERTIAL VELOCITY (POSITIVE EGST I N  M SEC) 
c VY = NORTH-SOUTH INERTIAL VELOCITY (POSITIVE NORTH IN H s E c r  
C VZ - VERTICAL VELOCITY (POSITIVE UP I N  H/SEC) 
C KO - I N I T I A L  X VALUE <KN) 
C YO - I N I T I A L  Y VALUE (KM) 
C ZO - I N I T I A L  Z VRLUE ( W )  
C HDC = HEADING (DEGREES ) 
C VCRs = GROUND SPEED <M/SEC) 
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UYINO - EAST-UEST UIND SPEED <POSITIVE EAST I N  N/SEC) 
N I N D  - NORTH-SOUTH UIND SPEED (POSITIVE NORTH I N  H/SEC) 
UUIND - VERTICAL UIND SPEED <POSITIVE UP I N  NHSZC) 
HODEF = FLICHT MODE 

1 - HORlZONTAL FLICHT 
2 - I L S  APPROACH < 3  DEGREE GLIDE SLOPE) 
3 = TAKEOFF ( 3  DECREE GLIDE SLOPE) 

CELL - ARRAY CONTAINING CORNER POINTS FOR PRESENT FIELD I N  
PRESENT CELL 

ICELL = CURRENT CELL NUMBER 
ICUBL = CURRENT CELL NUHBER UITHIN BLOCK (1-16)  
ICB r BEGIHING INDEX OF CELL YITHIN BLOCK (1,9,17,ETC.) 
ICE = ENDING VALUE OF CELL UITHIN BLOCK - ICB+7 
XC = X VALUE UITHIN CELL (0-DELX) 
YC = Y VhLUE YITHIN CELL <O-DELY) 
ZC = Z VALUE YITHIN CELL <O-DELZ> 
T = TIWE 
NPTS = RAKIHUM NUMBER OF POINTS TO BE CALCULATED. THIS I S  A 

HEAHS OF TERHINRTING THE PROGRAM EARLY FOR DEBUGGING 
PURPOSES. 

I P T  - MUMBER OF THE PRESENT POINT BEING CALCULATED 
SICRX = HAXIWUW VALUE OF GUST INTENSITY 

Y 
- - 

DINENSION LBUFFC 128>,IA< 128),NAME< lO~,LABEL(4O),CELLC8), ITT< 128) 
CONNON DELX,DELY,DELZ,D3,SIGHX 
REAL JCON 
INTEGER*4 ICELL,ITPT,NlHAX,NPHAX,N3UCIX 
CALL LGBUF<LBUFF,l28> 
P I  = 4.*ATAN(l.) 
UR ITE< 1 ,9999 ) 

9999 FORMAT( "ENTER F ILE  TO BE OPENED&") 
READ(1.9998) iNAUECl),1=1,10) 

9998 FORRAT< 4 0A2 ) 
URITE< 1,9997) 

9997 FORNAT<mENTER FLICHT NODE&'/ 
* l 1 = YORIZONTAL FLIGHTw/ 

' 2 = I L S  RPPROACH < 3  DECREE GLIDE SLOPE)"/ 
' 3 = TAKEOFF ( 3  DECREE GLIDE SLOPE)") 

READ< 1, ) MDEF 
UR I TE< 1 ,9996 ) 

9996 FORMATC'ENTER CONSTANT GROUND SPEEDaN) 
READ< 1 , ) VGRS 
URITE< 1,9995) 

9995 FORHhTC'ENTER TRUE HEADING I N  DEGREESaU) 
READ< 1, ) HDC 
WRITE( 1,9994) 

9994 FORHATCWENTER I N I T I A L  POSITION (XO,YO,ZO) I N  <KH,KFI,H)&") 
READCl,.) XO,YO,ZO 
URITEt 1,9988) 

9988 FORMAT('ENTER DELTh T I N  SECONDSa') 
READ< 1 , * ) OELT 
YRITEC 1,9993) 

9993 FORH&T( 'ENTER TAPE HEADER < 40A2 )a" 
RECID<1,9998) (LhBEL( I ) , l= l ,40)  
UR ITE< 1 ,9979 ) 

9979 FORHhT<"ENTER HAXIflUH NUHBER OF POINTS4") 
READ< 1, ) NPTS 
URITE( 1,0999) 

0999 FORHATC "EN1 ER JCON, TCON&" ) 
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READ< 1 ) JCON, TCON 
URlTE< 1,8998 > 

8998 TORMAT<"ENTER NlMAXIH2MAX,N3MAXa"> 
READ< 1 , * ) N l  HAM, NPHAX, N3UAX 
WRITE< 1,8997 > 

8997 FORMAT("ENTER FS1,FS2,FS3aa) 
READ<l,*> FSt,FS2,FS3 
MTMAX - NlMAX/FSt 
YTMAX = N2MAX/FS2 
ZTMAX = N3UAX/FS3 
URITEC 1,8995) 

8995 FORHAT< "ENTER XTU, YTO, ZT04" ) 
READ< 1 ,*> XTOIYTO,ZTO 
URITEt 1,7777) 

7777 FORMATCmENTER SICMX&") 
READ< 1 , * ) $1 CNX 
URITE<8,9990) <LIIBEL< I I = l D 4 0 )  
UR I TE< 8,9992 > UODEF 

9992 FORMAT<' FLIGHT UODE = ' I2> 
UR ITE< 8,9991 ) HOG 

9991 FORHAT<* TRUE HEADING = "F6.1" DECREES") 
URITE<8,9990) VGRS 

9990 FORMAT<= INERTIAL HORIZONTAL VELOCITY=*FB.OY H/SECY> 
URITE(8,9989> XO,YO,ZO 

9989 FORMAT(* I N I T I A L  POSITION: XO="F0.2" kH YO=*F8.2* KM ZO=* 
+ F 6 . 0 m U * )  

URIfE< 8,8994) XTO, YT0,ZTO 
8994 FORMAT(* XTO=*F8.3" YTO=*F8.3* ZTO=*F8.3> 

YRITE< 8 ,  9987 ) DELT, TCON 
9987 FORHAT<* TIHE INCREMENT = *F8 .3"  SECONDS TCON=*Et2.4) 

OPEN(34, FILE-NAME, STATUS- 'OLD ' , IOSTAT=IOSl ERR-99 
* ,ACCESS-'DIR',RECL=PS6,Mf,XREC=7201> 

URITEC 1,8996) 
8996 FORHAT<"ENTER TURBULENCE F I L E  NRMEbY> 

READ<1,9998) <NAME<I ) , I = l , tO )  
OPENt37,FILE=NAME,STATUS='OLD',IOSTAT=IOS,ERR=99 

+ , ACCESS- 'DIR , RECL=2S6 , MAXREC12048 > 
RFAD<34,REC=l,IOSTSIT=IOS,ERR=99> < I A < I ) , I = l ,  16 )  
NK1 t I A ( 1 )  - I 
NY1 = I A < 2 )  - 1 
NZ1 = I A ( 3 )  - 1 
XMIN = I A t 7 ) / 1 0 0 .  
XHAX = IA<8 ) /100 .  
DELX = fA< 9 )  
YMIN = IA<  10)/100. 
YNAX = IA<11>/100 .  
DELY = IA< 12 > 
ZMIN = I A < 1 3 )  
znhx = IA< 14 1 
DE1.Z = IA<  15) 
D3 = DELX*DELY*DELZ 
URITE(8,9986) XtlIN,XMAX 

9986 FORRAT( Xil lN=mFR. 2' KR XMAX="F8,2" KH' ) 

URI TE( 8,9985) YMIN, YMAX 
9985 FORMAT(" YMIN="F8.2" KM YNAX="F8.2n KHM) 

URITE<B,9984) ZHINDZMAX 
9904 FORMAT<" ZHIN="F8.2* KH ZMA%-YF8,2* KM") 

URlTE< 8,9983 ) DELW ,DELY1 DEL2 
9983 FORMAT< * DELX=*F6.0m M DELYsmF6. O n  M DELZ="F6.0" HI1 ) 

URITE(8,9960) NPT5 
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C*********** CALCULATE # OF BLKS PER L I N E  AND B ELKS PER F IELD ***a*** 
IF<H00<NXl I16 )  .EQ.  0 )  THEN 

NBLPL = NX1/16 
ELSE 

NBLPL = NX1/16 + 1 
END I F  
NBLPF = NBLPL*NYt*NZl 

C******** CALCULATE VX,VY,VZ ID******** 
THETfi = PI*HDG/180. 
VX = VCRS*SIN< THETA I 
VY = VCRS*COS< THETA ) 
I F <  UODEF , EQ. 1 THEN 

VZ = 0 ,  
ELSE 

IF<WODEF .EQ. 2 )  THEN 
V2 = -VCRS*TAN(3.*PI/l80.) 

ELSE 
VZ = VCRS*TAN(3.*PI/leO. ) 

ENDIF 
END l F 

C****** I N I T I A L I Z E  POSITION AND TIME +******* 
X = xo 
Y = YO 
z = 2 0  
T = 0 ,  
I P T  = 1 
XT = XTO 
YT YTO 
ZT = ZTO 

Cam**** CALCULfiTE CURRENT CELL INDICES, IK ,  I Y ,  12, IXT, ETC. ***** 
50 I X = 1 0 0 0 . * < X - X H I N ) / D E L X +  1 

I Y  = 1000.*(Y - YRINVDELY + 1 
I Z  - < Z  - ZMIN)/DELZ + 1 
IFCXT ,CT. XTMAH 1 XT = XT - XTHAX 
I F < Y T  .CT. YTWAX) YT YT - YTHAX 
I F < Z T  .CT. ZTWAX) ZT = ZT - ZTMW 
IF( XT .LT. 0 ,  ) XT = XT + xrnax 
IFCYT . L T .  0 . )  YT = YT + YTNAX 
I F < Z T  .LT. 0 , )  ZT = ZT + ZTHAX 
I X T  = I F I X < X T * F S l )  + 1 
I Y t  = IF IX<YT*FSZ)  + 1 
I Z T  = IFIK<ZT*FS32 + t 

D URITE<6,50001 I X T ,  IYT, I Z T  
5000  FORMAT(. I X T = " I S n  I Y T - " I S *  I Z T - " I S )  
D URITE<6,5001) KT,YT,ZT 
SO01 FORMAT(" XT="F8,3* YT=*FB,3* ZT=YF8.3)  

I T  PT 9 I X T  + < IYT-  1 )*N1 RAX + ( I Z T -  1 )*N2MAX*NJMAX 
!F< HOD< ITPT, 120  ) .EO 0 ) THEN 

ITBLK = ITPT/128 
ELSE 

I t B L K  - I T P T / f 2 8  + 1 
END I F  
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D YRIlE<6,S005> ITPT,ITBLK 
5005 FORUATCm ITPT-'lBa ITBLK='IS) 

Ca**** CALCULATE UUlND *a** 
ICELL 1% + NXl*<IY-1)  + (12-1 )*NXl*NYl 
I L I N E  = I Y  + < 12-1 )*NV1 
I F < M O D < f X , t ~ )  *EO.  0 )  THEN 

ICUB - 16 
IBLOK - <IL INE-1  )*NBLPL + I X l l 6  + 1 

ELSE 
ICUB - MOD( IX, 16 )  
18LOK = < IL INE-1 )*NBLPL + IX/16 + 2 

ENDIF 
READ<34,REC=IBLOK,IOSTAT=IOS,ERR-99) ( I A ( I ) , l = I , f 2 8 )  
ICB = ( ICUB-1 )*a + 1 
ICE - ICB + 7 
I C  = 1 
DO 100 IB=ICB,ICE 

CELL<IC> = I A i I B ) / 1 0 O 8  
I C  = IC + 1 

100 CONTINUE 
READ< 37, REC-ITBLK, IOST AT-I OS, ERR-99) < ITTC I ), I-1,120) 
IF(JC0N .LT. 0.001)  THEN 

UTRB = ITT< 1PUB >/< 1 0000. *TCON ) 
ELSE 

UYRB = I f f< IPUB)*SICX<X,Y,Z)/( 1000OO*TCON) 
ENDIF 
XC = 1000. *< X-XMlN) - < IX-1 )*@ELK 
YC 6 1000.*tY-YttIN) - i I Y - 1  )*OELY 
ZC 5 Z - ZRIN - (12-1 )*DELt 
CALL NfERP<CELL,XC,YC,ZC,UUIND> 
UWlND - JCON*UUIND + UTRB 

0 URITE<6,5003> SICXiX,Y,Z>,UfRB 
5003 FORMAT<" SICX**F0.3* UTRB-"FB.3) 

C***** CALCULATE VUIND ***** 
IBLOK = 18LOK + NBLPF 
READ(34,REC=IBLOK, IOSTAT=lOS,ERR=99) < I C ) (  I ), 1=1,128) 
I C  - 1 
DO 125 IBmICB,ICE 

CELLt IC)  = fA( lB) /100 .  
I C  = I C  + 1 

125 COHT INUE 
CALL NTERP( CELL, XC, Y C ,  ZC, VUIND > 

C***** CALCULATE U ***** 
IBLOK - IBLOK + NBLPF 
READ<34,REC=IBtOK, IOSYAT-109,ERR-99) < l A <  I ), I= f , 128 )  
I C  3 1 
DO I 5 0  I B ~ I C B r I C E  

CELL(fC> - IA( IB) / lOO.  
I C  = fC + 9 

150 CONTINUE 
CALL NTERP<CELL,XC,YC,ZC,YWIND> 

C***** CALCULdTE AIRSPEED ***** 
VAIRS VGRS - UUIND*SIN< THETA) - VWIND*COS( THETA) 

C***** URITE RESULTS ***** 



122 ORIGINAL PAGE ig 
OF POOR QUALITY 

C***** INCRERENT TIME AND POSITION ***** 
T = T + DECT 
X = x + VX*OELT/1000. 
Y = Y + VY*DEiT/1000. 
Z = Z + VZ*DELT 
XT = XT + VX*DELT/TLS<X, Y, 2 )  
YT = YT + VY*DELT/TLS<X,.Y,Z) 
ZT = 2 1  + VZ*DELT/TLS<X, Y,Z> 

I F <  I P T  .LT. NPTS) THEN 
I P T  - I P T  + 1 
GO TO 250 

ELSE 
YNOFILE 8 
CLOSE< 34, STATUS= 'KEEP * IOSTAT=!OS, E R R 4 9  > 
CLOSEC37,STATUS='KEEP',IOSTAT=ICS,ERR=99~ 
STOP 

END I F  

2 5 0  I F < < X . G f  .XHIN .AND. X.LT.XHAX) .AND. 
* < Y .GT.  YRIN .&NO. Y . L f  .YNhX) .RND. 
* CZ.GT.ZMIN .AND. Z.LT.ZWAX)) THEN 

GO TO 5 0  
ELSE 

EHDFILE 8 
CLOSE<34,STATUS='KEEP*,I0STAT=1OSJERR=99> 
CLOSE(37,STATUS='KEEP',IOSTAT=IOS,ERR=99~ 

ENDIF 
STOP 

99 UkITE(1,9980> IOS 
9 9 8 0  FORMAT< . IOSTAT ERROR 88" I 4  ) 

END 

FUNCTION TLS(X,Y,Zj 

C FUNCTION TLSr TURBULENT LENGTH SCALE FUNCTION. FUNCTIONAL VALUE 
C I S  FkOH ED41 TERRESTRIAL ENVIRONHENT DOCUUENT. 
C-------------------------------------------------------------------- 

TLS = 31.5*(2 /18.3)**0,64 
RETURN 
END 

FUNCTION SICX<X,Y,Z) 

c FUNCTION SlGX r THIS ROUTINE CALCULfiTES THE U TURBULENCE 
C STbNDARD DEVIATION FOR THE JAUS JULY 14,1982 CASE. 
c------------------------------------------------------------- 

COMMON DELX,DELY8DELZ,D3,SIcnX 

C************************************************************* 
C (XCTR,YCTR) ARE THE COORDINATES OF THE HICROBURST CENTER 
C I N  KILOMETERS, 
C************************************************************* 

XCTR = 1 4 . 2  
YCTR = -1 .5  
R SQRTC < X-XCTR )**2 . < Y-YCT R )**2 ) 
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C***************************************************a************ 
C CALCULATE THE XY FACTOR, THIS I S  BASED ON B-578 MEASUREMNTS 
C FROM THE SAME DATE. THE 57 ENCOUNTERED THE UPPER PART O F  A 
C MICROBURST AN0 EXPERIENCED A DECREfiSE I N  TURBULENCE AS I T  PASSED 
C THROUGH THE DOUNDRAFT. FOR THE SANE RUN THE AVERME OF SIGX,SICY, 
C AND SIC2 YA8 ABOGT 6 M/SEC. FXY CAUSES A DECREASE I N  SICX OF 
C ABOUT 6 W A Y  FROM THE OUTFLOW CENTER, AND 3 I N  THE CENTER. ANOTHER 
C TERM I N  FXY CWSES SICX YO DECREASE TO EXP(-.5) AT A DISTANCE OF 
C 5 KM. THIS I S  I N  KEEPING UITH A DECREASE I N  TURBULENCE AUAY FROM 
C UIND SHEAR. 
C****************************************************************** 

FXY = < SICMX - . S*SICHX*EXP< -R*R/< .75**2*2. > ) )*EXP( -R*R/50. ) 
I F < Z  .CT. 300. ) THEN 

FZ = ExPC< 2-300. )/200. > 
ELSE 

FZ = 1. 
ENDIC 
SICX - FXY*FZ 
RE1 URN 
END 

SUBROUTINE NTERP<CELL,XC,YCaZC,V) 
c------------------------------------------------------ 
C INTERPOLITION ROUTINE 
c------------------------------------------------------ 

DIMENSION CELL< 1 ) 
COhMON OELX,DELY,DELZ,D3,SlCllX 
PHI 1 - < DELX-XC )*< DELY-YC >*< DELZ-ZC >/D3 
PHI2 XC*C DELY-YC )*( DELZ-ZC )YO3 
PHI3  = XC*YC*( DELZ-ZC >/D3 
PHI4 = CDELX-XC )+YC*< DELZ-2C )/DJ 
PHIS = CDELX-XC )*( DELY-YC )*ZC/D3 
PHI6 = XC*< DELY-YC >*ZC/D3 
PHI7  = XCrYC*ZC/D3 
PHIS - C DELX-XC )*YC*ZC/D3 
V - PHIl*CELL< 1 > + PHIZ*CELL<P) + PHI3*CELLC3) + PHI4*CELL<4) 

* + PHIS*CELL(S) + PHI6*CELL<6> + PHI i*CELL<?) + PHIb*CELL<8> 
RETURN 
END 
Et4D1 
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