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SYMBOLS
a = 1,339 = a dimensionless constant
€1 €2~ two unit vectors
E@) = 4mv? - 1/2 o vy, v, ¥3)
tf = longitudinal isotropic correlation coeffic .nt
g = transverse isotropic correlation coefficient
H(»), H(v{. vy, v3) = one- and three-dimensional filter functions
K, (x) = the modified Bessel function of the second kind of order v
L = longitudinal integral length scale of turbulence
Ny, N5 = first and second components of dimensionless spatial frequency
Ng = dimensionless frequency
L= ith component of separation distance
r= (r12 + r22 + r32)1/2

Rij = cross correlation tensor

t = time }
T = ambient temperature

ui(x,y,z,t) = three component simulated gusts
Ui(x,y,z,t) = interpolated JAWS winds i
V = aircraft airspeed

w;(x,y,z) = three-dimensional block of Monte Carlo simulated turbulence

xn1~"2’"3 = discrete space function of three variables
Xkl’k2’k3 = Discrete Fourier Transform (DIFT) of xnl,nz,n3

o(v) = phase of one-dimensional filter function

B = volumetric expansion coefficient
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5ij = Kronecker deita

4(t) = Dirac delta function

Ary = lateral gust probe separation in cross-spectra calculations or measurements
AT = parcel temperature difference from surroundings

€ = turbulent kinetic energy dissipation

0 = Vt/L = dimensionless time

Gij("l) = one-dimensional spectrum function

uegp = effective turbulent viscosity

v; = spatial frequencies

VSi = spatial sampling frequencies

v= (vl:2 + v:z + 1132)1/2

;i (Ng, Ar/L) = cross-spectra

¢ij(vl,v2,v3) = three-dimensional spectrum tensor

\Ilij(vl,v?_ ) = two-dimensional spectrum tensor

p= (vl2 + 1122)]/2 or fluid density. The meaning is obvious from the usage.

0;(x,y,z,t) = gust standard deviation
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CHAPTER 1. INTRODUCTION

Approximately every two years in the United States a major wind shear related
airliner accident occurs Killing tens of people. The most recent of these (as of this
writing) was the July, 1982 crash of Pan Am Flight 759 during takeoff ai New Orleans
International Airport, 156 died aboard the plane and eight othets were killed on the
ground as the plane crashed into a subdivision,

This crash and others like it were caused by wind shear associated with a small
scale atmospheric phenomenon known as a microburst. Ir the past few years two field
programs were funded to study the microburst. The programs were the Northern
Illinois Meteorological Research on Downburst (NIMROD) Project and the Joint Airport
Weather Studies (JAWS) Project. The JAWS Project measured some 70 microburst events
with Doppler radar during May through August, 1982, Aside from scientific interest,
several wind shear data sets were subjected to detailed analysis and put into a form for
use in flight simulator research. These data sets constitute the best wind shear measure-
ments ever made.

The JAWS data are presented on a three-dimensional Cartesian grid with grid
spacings which vary from one case to another but are approximately 200 meters. Hence,
the JAWS data contain no information on turbulence with length scales shorter than 400
meters. For nominal landing speeds, some frequencies of importance to aircraft response
are not contained in the JAWS data. These small scales of turbulence must be added for
realistic flight simulations.

During September, 1983 a workshop sponscred jointly by the FAA, NCAR, and
NASA was held in Boulder, Colorado. The workshop brought together researchers

directly involved in the JAWS program and potential users of the JAWS data. The users
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were offered a selected JAWS microburst case and asked what additional information
they required. From this exchange, several facts emerged. Turbulence was high on their
list of priorities. Users from private industry look to public agencies such as NASA to
tell them how to add turbulence to the JAWS data. In the present economic climate, the
airlines have no money to fund basic turbulence simulation research, nor can they sub-
sidize the simulator manufacturers to do it. Of the agencies involved, NASA is probably
best equipped to do the job.

This document presents an approach to wind simulation which is a significant
advance in the state-of-the-art. The technique involves the addition of three-dimensional
Monte-Carlo simulated turbulence to the JAWS data sets. Using this approach, all aero-
dynamic loads and moments (including roll and yaw) may be calculated from the winds
simulated over the body of the aircraft. This level of information was previously unavail-
able from wind simuiation models. The spatial model concept, in part, provides the
answers to the question of how to add turbulence to the JAWS data sets. It also serves
to direct future measurement programs and microcurst research to obt n required turbu-
lence information.

In addition, an extension of a previous cross-spectral model based on the von Karman
turbulence model is presented. Results of the theory are compared with measurements.
The cross-spectra are a natural part of a three-dimensional simulation.

A complete explanation of the generation of turbulence, and addition to the
JAWS data are presented along with FORTRAN computer codes. Background informa-
tion on turbulence, microbursts, the JAWS data, and Monte-Carlo turbulence simulation
are also presented, The background material is necessary for a thorough understanding
of the spatial model. The procedure for generating the turbulence is rather complex and
an attempt was made to present the material in an intuitive fashion with illustrations and

geometric interpretations while complex derivations were relegated to the Appendices.
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CHAPTER II. ATMOSPHERIC WIND SHEAR AND TURBULENCE

Wind shear, or more precisely wind gradients (du/9x is a wind dilation) have been
recognized as a cause of aircraft crashes for some time. What was not recognized until
1976 was the small areal extent of the crash-causing phenomenon. The small scale wind
shear events were called microbursts by Fujita [1]. After the recognition of micro-
buists, field programs to study them were done, most notably NIMROD and JAWS,

One of the achievements of JAWS was the development of microburst data sets for use
in flight simulation. These data sets are on a relatively coarse grid and therefore do not
contain information on fine scale turbulence,

In order to understand the nature of the proposed wind shear model, a descrip-
tion of microbursts is necessary. The necessary description and the characteristics of the
JAWS data sets are included in this chapter. These descriptions contain a discussion of
some microburst models. In anticipation of the need for adding turbulence to the JAWS
data for the purpose of flight simulation, relevant aspects of turbulence theory are

presented.

A. Microbursts

Fujita defines a downburst as, “a strong downdraft which induces an outburst of
damaging winds at the surface.” A microburst is defined by Fujita [1] as a downburst
of horizontal dimension less than 4 kilometers. A more useful definition is given by
Wilson and Roberts [2] who define the microburst as a downburst having a differential
surface velocity greater than 10 meters/sec with the distance over which the velocity
difference occurs being between 0.4 and 4 km.

Figure | shows the life cycle of a microburst as idealized by Fujita [3]. In the
figure, descending air meets the ground and spreads out creating strongly diverging

3
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EXTREME WIND
OUTBURST STAGE

CUSHION STAGE
EXTREME WIND

N

COLD AIR CUSHION —

Figure 1. Life cycle of a microburst [3].
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surface winds. Microbursts may or may not be associated with rainfall at the surface and
are accordingly classified as wei or dry. The microburst cases studied during the JAWS
program show no correlation between surface rain rate and microburst intensity [2].

The most intense JAWS microburst had a velocity differential of 48 m/sec (96 kts) and
was associated with moderate rainfall at the surface [2]. The non-correlation of micro-
burst intensity with rainfall intensity increases their hazard because they can occur in
apparently benign conditions.

The final stage of the microburst is called the cushion stage by Fujita. During
this period surface winds decay and the outflow no longer p2netrates to the surface.

The entire life cycle of the microburst from contact to decay is typically 10 minutes,
During the mature stage, the maximum wind will occur 50 to 100 meters above the
surface while the depth of the outflow is typically 600 meters.

The short duration, high energy, and small length scale of the phenomenon create
problems for those who would predict, detect, or fly through microbursts. For predic-
tion, the short duration and random nature of the microburst make forecasting of
specific events impossible. The best that can b~ done is to forecast conditions conducive
for the occurrence of microbursts,

For detection, the small size creates problems. For years at major U.S. airports

the FAA has operated Low Level Wind Shear Alert Systems (LLWSAS). LLWSAS }

consists of several wind monitoring stations located around the perdphery of the airport
and one center field station. If vector differences of wind velocity between the center
field detector and any of the other stations exceed a certain level, a wind shear alert is
issued. Unfortunately, fatal wind shear related crashes have occurred at airports with
operating LLWSAS, the latest being the crash of Pan Am 759 at New Orleans. One
problem is that LLWSAS station spacing is larger than the average microburst. The only
system offering hope of reliable detection in the near future is Doppler radar, but the
cost of the required system may be prohibitive. Wilson and Roberts [2] have studied

the requirements of such a system.
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People encountering microbursts at low levels during takeoff or approach
frequently find it a once-in-a-lifetime experience. Airliner approach airspeeds are
typically 75 to 80 m/sec while stall speeds in landing configuration are roughkly 60 m/scc.
With measured airspeed differences of as much as 48 m/sec, microbursts obviously have a
drastic effect on aircraft performance during takeoff and landing. Figure 2 depicts the
situation. On approach the aircraft encounters an increasing headwind and begins to risc
above the glide slope. Pilots have a tendency to throt. - back in an attempt to return
to the glide slupe. Passing through the center of the microburst, the plane encounters a
strong downdraft and an increasing tail wind. A subsequent loss in lift occurs and the
engines cannot respond quickly enough to save the aircraft. Engines of large air transport

planes generally require about seven seconds to spool up because of their large inertia.

RUNWAY

Figure 2. Landing aircraft microburst encounter.

Microburst Models

The preceding paragraphs ccntained a brief summary of microburst characteristics
and effects on aircraft. In the Wind Shear Simulation Workshop in Boulder (Sept. 7-8,

19%3), simulator users and manufacturers expressed a need for generic microourst models.
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Because of storage limitations in current simulators, a microburst described by algebraic
equations is needed. We now proceed to a more detailed consideration of microbursts
with discussions ot both conceptual models and simple algebraic models.

Examination of Figure 1 suggests 5 pair of microburst models. The first is that
the microburst is a turbulent jet impinging on a surface. The general vertical velozity
profile through the outflow has much the same appearance as the circular wall jet.
Because of the transient nature of the microburst, the steady state circular wall jet is
not a totally satisfactory ndel. In addition, certain turbulence characteristics of a wall
jet do not seem to agree with mcasurements [4].

A second model requires the occurrence of a source of cooling at cloud base.

The region of cooling is in effect a momentum source. One mechanism for cooling is the
evaporation of falling rain. As water droplets evaporate and absorb latent heat, the
surrounding air is cooled. Figure 1 depicts Fujita’s microburst life cycle. The cool

parcel interpretation is clear for the contact and outburst stages of the microburst. The
cushion stage requires some explanation. During the decaying stage of the microburst the
momentum source at cloud base would be dying. The result is that the falling air would
be warmer than the air below it so that a stable layer forms near the ground. Because
the descending air is warmer than air already at the surface, de.cleration and spreading

of the downdraft begin at a higher altitude.

A third model was devised by Caracena [S] to explain some narrow damage
swaths observed by Fujita and Wakimoto [6]. Caracena feels that if the jet model is
accepted a more diffuse damage swath would result. He looked for a mechanism capable
of maintaining its integrity while transferring momentum over long distances. An obvious
candidate is the vortex ring. Supporting the vortex ring model are some microburst
photographs which have a vortex ring appearance. A vortex ring approaching a friction-
less surface expands and decays similar to observed behavior of microbursts. To illustrate

his hypothesis Caracena constructed a simple vortex ring generator. If a ring is generated
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obliquely to a grassy surface, the motion of the grass outlines a narrow “damage swath.”
Caracena’s arguments concerning jet diffusion are not altogether compelling, however.
A similar “damage swath” can be created with a hair dryer.

A question concerning Caracena’s model is the source of the vortex ring which
requires an impulsive force for generation. One possible source identified by Caracena
is the collapse ot overshooting tops above the anvil of large convective storms. Indeed,
Fujita and Wakimoto [6] have shown some apparent correlacion in time between the
collapse of overshooting tops and the occi.rrence of microbursts.

Jet, cool parcel (momentum source), and vortex ring models of microbursts are
conceptual models and full quantitative ramifications of these ideas are not yet developed.
Two models are developed to the point of algebraic equations, however. These are not
scientific models, but are intended for use in flight simulators. The equations were
devised without reference to the equations of flow in one case and with reference to
continuity only in the other case.

Bray proposed an extremely simple model for use on Ames Research Center
simulators. This model is described and critiqued by Elmore [7]. The Bray model has

several shortcomings criticized by Elmore including uniform downdraft source and failure

to satisfy continuity. Elimore also states that the downdraft diameter is too large for the
amount of outflow produced. Elmore offers suggestions to make the Bray model more
realistic. These suggestions include modification of the source terms and alteration to »
satisfy continuity !

A more sophisticated model was proposed by Zhu and Etkin, 1983 [8] which is
an ideal fluid model. It involves the flow induced by a doublet disc of variable strength
together with its image. With this model, Zhu and Etkin were able to demonstrate the
excitation of aircraft phugoid frequencies by microbursts.

The Bray model, though admittedly crude, does provide a reasonanle simulation.

With the addition of Elmore’s suggestions, simulations should be improved. Of the three

O R il . ) e o
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models described, Zhu’s and Etkin's model is probably the best. Neither the Bray nor
the Elmore model were intended as scientifically accurate pictures of microbursts and as
a result some of the physics not considered essential for simulation are neglected.
Neither of the three show a microburst front and consequent abrupt shear at the leading
edge. The equations which can be made functions of time as well as space are assumed
separable, i.e., f(x.t) = X(x) T(t). This is not a realistic picture since it implies that the
microburst intensifies and decays uniformly at every point.

The preceding discussions have dealt with conceptual and algebraic pictures of
microbursts. In the next subsection, characteristics of real JAWS measurements are

described.

JAWS Data Sets

At the present time three of the JAWS data cases have undergone multiple

Doppler analysis to determine three component winds. These three cascs are summarized

in Table 1.

Table 1. JAWS Dual Doppler Cases

Number of
| \ XXYX2Z
Date Ax' (m) Ay~ (m) Az3 (m) Avmax {m/sec) grid points ,
June 29, 1982 300 300 250 25 60 x 60 x9 :
July 14, 1982 200 200 150 30 60x60x11
August 5, 1982 150 150 250 30 81 x81x9

1. Ax is the east-west grid spacing.
2. Ay is the north-south grid spacing.

3. Azis the vertical grid spacing.

'
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The August 5 case was selected for release to selected companies because of its
high resolution and intensity. The data were summarized in a document [9] which con-
tains a plot of low level winds showing a sinuous jet emitted from the northeast quadrant
of the microburst. This feature also appears in the winds in the next level up but
gradually disappears at higher levels. The jet seems to be a real phenomenon and if so
it raises some questions. The main question is, “Why is it there?’ Is this a reflection of
a convoluted source up at cloud base? This idea seems highly unlikely since diffusion
tends to reduce source convolution in nature., The alternative is that something is
happening at the surface. In other words the jet may be a result of topography or of
some surface roughness anomaly, Reference to a Denver map shows that the jet occurs
in the near vicinity of the South Platte River basin and the jet flow is in the same
general direction as the river. The implication is that the cold stable air is being
channeled along the river basin.

The JAWS data is generally displaced freely relative to airports in simulations.

If the jet is a surface effect, freely moving the data to tlat areas surrounding airports
may not be a reasonable procedure.

Figure 3 is a vertical section through the July 14 case which is a typical asym-
metric microburst embedded in a wind field. The center of the section shows a strong
downdraft. On the right side of the downdraft is a slight updraft. The width of the
downdraft is roughly 1 km. This downdraft is just off center of a moderate to heavy
rainshaft and this microburst would be classified as wet.

Microbursts weren't identified until 1976 and many questions concerning their
nature remain unanswered, What is the best model of a microburst (jet. momentum
source, vortex ring, etc.). What is the effect of source size and strength on outflow
intensity? What effect does source height have on the microburst? What effect does
surface topography and/or roughness have on the outflow pattern and damage swath?

What degree of kinematic organization exists in a microburst (vortex ring)? How do
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turbulence characteristics (length scale and intensity) vary through a microburst? This
latter question is crucial for turbulence simulation. JAWS has provided partial answers
to some of the above questions. Most require additional measurements preferably in the
controlled environment of a laboratory. Appendix A is devoted to laboratory approaches

for obtaining hesc answers.

B. Isotropic Turbulence

Atmospheric turbulence is neither isotropic, homogeneous, nor Gaussian. Despite
this fact at the higher frequencies and shorter length scales, turbulence tends toward
isotropy. Isotropic turbulence .3 the simplest form of turbulence. In the discussion of
the spatial wind model, a means for separating the longer wavelengths and non-
homogeneities will be discussed., The need for the separation arises from the difficulty
of generating nonisotropic turbulence with Monte-Carlo techniques. In anticipation of
a later need, some useful properties of isotropic turbulence are presented in this subsec-
tion.

The description of the kinematics of homogeneous isotropic turbulence begins
with the definition of two functions, the longitudinal and transverse correlation
functions. These two functions, defined in Figure 4, are functions of separation r, and
time. A similarity form which 1s a function of r/L only is assumed. Time dependence is
contained in L = L(t). The best known mode!s of f and g are the von Karman and
Dryden models, both of which can be written as functions of r/L only. By virtue of

continuity a relation exists between f and g.

r df
=f+_.-. 1
g T (1)

Different investigators have used different functions to fit the measured correla-
tions. The two most famous correlation models are by Dryden and von Karman. The

Dryden correlations are given by
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Figure 4. Longitudinal and transverse correlation functions.
f(r) = e“V/L (2)
gr) = (1 - r/20) /L 3)
OO
where L is the longitudinal length scale of turbulence ( f f(r) dr). These equations
0

have the advantages of simplicity and rational spectra. Simplicity is an obvious advan-
tage. but the advantages of rational spectra are related to mechanisms for simulating
turbulence by Monte-Carlo methods. The main disadvantage of the Dryden model is that

it does not fit measured data quite as well as the von Karman model.

The correlation functions of the von Karman model are given by the following }
equations:

‘ 5213 /¢ \1/3 ) i
! f= — K — 4 :
! '(1/3) (aL) 1/3 (aL) “ i
f '
% 22/3 r\ 1/3 T r K r 5
§ = — —_— K — - — —
L {VE) (aL) 1/3 (aL) 2aL 23 ( aL) ®)

where
I'(x) = gamma function
= a constant = 1.339

K, (x) = the modified Bessel function of <he second kind of order v .
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The correlation functions are important because the complete three-dimensional

correlation tensor can be expressed in terms of these two functions.

r

le = g~“ ( _g) — g 1 (6)
Wh‘;le

6.:=1 1i=j Kronecker Delta

=0 i#j

The above result was obtained by direct calculation by von Karman and Howarth [10].
The tensor function can be used to calculate correlations between velocities oriented
along any two unit vectors, say ¢ ; and ¢> J The scalar correlation between these two

velocities is given by
Ri2=Rjepje; (7

In the above equation the Einstein summation convention is in effect.

Figure 5 gives a geometric interpretation of the preceding discussion. Since Rij
is an isotropic tensor, Rjj is invariant with respect to rotation, i.e., if the three vectors
Vi, V2. and r are rotated in any manner through the isotropic, homogeneous turbulence
so that they maintain the same orientation with respect to each other (rigid body rota-
tion) then R12 is unchanged.

The correlation tensor has an equivalent representation in frequency space.

o0 o0 on

=i2m(ryv1trovy+rava)
Pjj(vv2w3) = Jf f fRij(l'lJng,)e IP1772727373 dry dry drj

—-00 =00 =00

_E®)
At

., (v2 aij -y vj) (8)

:-*" .
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where vy, V5, and v3 are the three spatial frequency components
1/2
v = (V12 + sz + v32) /
and E(v) = 4m® 1/2 &;(vy, vy, v3) and the Einstein simulation convention applies.
M l’3
4
—» 12
r
Figure 5. Geometry of the cross-correlation tensor.
N As in the case of correlation, q’ij is a tensor function and a scalar function is
= obtained as before.
- ¢12(V1,V2,V3) = (bll el,i CZJ 9)
In the above expression ey ; and ey jare the same unit vectors which correspond
to vy and 72 in Figure 5, and ¢, is the scalar cross-spectrum corresponding to Vi
and V2.
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E(v) has representations corresponding to the Dryden and von Karman models.
For the Dryden model the equation is

2rLny?
Ew) =16 62 L _._.(_Tr__ﬂ_

(10)
(1 + (27Llv)?)3

The corresponding von Karman equation is

110 2raly)?
E(v)=-—9--02L (2naly)

(1 + 2raLy)2)17/6

(11}

From these two equations q’ij for the two models can be calculated. For the Dryden
model the result for the auto-spectra is

64 o2 L 13 (o2 - »2)
¢ii(V1,V2,V3) =

(12)
[1+ QrL))3

In this equation and the next, the Einstein summation convention is suspended.

The von Karman model is

440 7r3 02 a4 L5 (v2 - viz)
¢H(V1,V2,V3) =

: (13) B
9 (1 + (21raLv)2] 17/6

The spectra for the vertical velocity component, equations (12) and (13), can be

rewritten for the Dryden and von Karman models, respectively, as follows:

Dryden Model

64 o2 L5 3 (ul2 + V22)
D330 10203) =

(14)
{1+ (21rL)2 (vl2 + 1)22 + 1/32)]3

[
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von Karman model

’ )
(Vl" + V:")

440 73
LU BN

‘1’33(1)1,112,113) = (]5)

[1+ Qral)? ()2 + 052 + 03351 17/6
Equations (14) and (15) show rotational symmetry about the v3 axis, i.e., they
are functions of p2 = ulz + V22 and v3. Working with the von Karman spectrum,

Equation (15), we can solve for v3 = v3(P33,0). The result is

c, 02 \6/17

2
S [ , (16
P33 Cy g ‘

=4

Y3

where Cy and C, are functions of ¢ and L.

Equation (16) is an equation for a surface of constant 4)33 in wavenumber
space. Vaiues of Cy and C, for the corresponding spatial frequency spectrum are
developed in Appendix B.

Equation (16) is the equation of a toroid. ( oss sections of it are plotted in
Figure 6 and a perspective of the surface is depicted in Figure 7. Surfaces of constant
®33 are found if the curves of Figure 6 arce rotated about the v3 axis. A result similar
to (16) can be obtained for ¢ and &5, with rotational symmetry about the »j and v,
axes, respectively,

Figure 6 sceins to imply that &34 is singular, ie., it approaches infinity near
the origin. In fact ®33 does have a finite maximum value,

Three-dimensional correlations and cross-spectral tensors are extremely difficult
to measure. Actually, one-dimensional correlations are measured and corresponding

one-dimensional spectra calculated from the correlations, i.e.
(=] [+ o0

-j2my
Ri(ry,0,0) = f f f ®jj(v.v9,03) dvy dvy e ST dv;

~00 -00 =00
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Figure 6. Sections of surfaces of constant ¢33 for the von Karman model.
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Which implies that the one-dimensional spectra are given by

oo oo
("_‘]’-j{l" ) = f f ‘I‘UH-‘! r.V3) dV: til—"} ; (17)
-0 =00

By similar means, two-dimensional spectra can be deduced
oo

VIJI.VI.UEJ = f ‘I’ij(fr’l.l":.l-'_}l le“; . (18)

—00

One- and two-dimensional von Karman wave number spectra are given by Etkin

[11]. When converted to spatial frequency spectra the results are

5 1 5
1 + tl:rul_vl )= + 5 (2malv4)*

=
2T 3 3
i.'}]lfl-’l.l’:}:—l[!ill_]_ = = " (19)
3 Il +{:HLEL'"H’|:+I’2')I?'3
) 3 9
" [l —{1_ﬂ;iLV|}“ + (2malyy)~
2n A i &~
Jaa(vy Va) = — (0al)~ (2
vy T 7/3 %

[1+ Q2maL) (22 + py?)]
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[1 + (2maLvy)?) 1176

The results from this subsection are used in the next subsection to ilculste a '
theoretical cross-spectral model. In Chapter VI results from the preceding d...ussion are

used to calculate filler functions for generating three-dimensional turbulence.
C. A Theoretical Cross-Spectral Model and Comparison with Measurements

Elements of the previous discussion concerning isotropic turbulence will now be
used to develop a cross-spectral model of turbulence. The assumption of frozen, von
Karman turbulence is made. Previously Houbolt and Sen [12] did a similar analysis to
obtain the cross-spectrum corresponding to the vertical velocity component. An equiva-
lent approach is used to e¢xtend their analysis to the longitudinal and lateral cross-spectra. *
In the analysis that follows it is convenient to non-dimensionalize the spectra.
Withcut non-dimensionalization, annoying conversion constants must be carried along so
that the units arc correct. Equations (19) through (21) are non-dimensionalized using

the transformations Ni =y L.

N; N
1 "2 )
NNy = %‘( =) / a4

Applying this transformation to (19) through (21) yields:

11
L+ @maNp? + = (maNy)?

2n 2
V11 (N{,Nq) = = (0a) (25)
T (1+(2ma)% (N2 + N,2)}7/3
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1+ < QmaNp? + (2maNy)*

2n 9
Wan(N{,Ny) = — (ga)* (20)
3 [1 + (2ma)° (le + N22)17/3

o] s
6413 (0a) (Ny= + Ny7)
W33(Np.Ny) = 9 7 0 .7/3 Q27N
(1 + (21a)” (N}* + Na?))

The frequency transformation, Ni = viL implies a transformation in space, X =
rI/L,Y = rZ/L. Then

[= < BN <]

+H2w(N) X+N-5Y ) .
Ry = [ f g TS VaNp ANy 28)
-0 -~

The object we are trying to achieve is the cross-correlation between the velocity at one
aircraft wing tip at one moment and the velocity at the other wingtip at a later moment.

Assuming frozen turbulence, Figure 8 applies. Making the transformation 8 = Vt/L gives

Ars oo oo " )
Rj (GT) -/ S Ny Ny ITEONARMW a Ny e, 29

-00 =00

Equation (29) is an expression for the desired cross-correlation. To obtain the desired

cross-spectra, the Fourer transform of (29) is taken.

Arz\ ~ . ) -j27Ny0 0
¢ij No, -L—/ = f RU(G’ Ar:,L) [ d
-00

o0 00 oo
22Ny Ary/L [ +270(N{-
=ff ¥ N Ny €02 AT feﬂ mN17ND) 49 an, aN,
-0

—00 -0

The exponential integral with respect to 8 above is the Dirac delta function G(Nl—No),

so the final result is

» LI
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Figure 8. Illustration of cross-correlation distance.
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) ar, Py +2aN~Ar,/L
5 (No.—) = f\PU(Ne,N?_)e AN, (30)
-0

Using Equation (30) along with Equations (25) through (27) gives the final expressions

for the three cross-spectra.

1
dna & [] + I (2maN+)2 + (27raN9)2 A1y
122 2
¢11(Ng,Ary/L) = f cos (‘_’1er ———) dN
3 [1+(2ma)® (Ng= + Ny2)17/3 L 2

(31)

11 2 2
41r32 0 [l + ? (21raN9)“ + (27faN2) ] Arz
$92(Ng, Ary/L) = f cos \TN2 T J I

3 %0 11+ @ray? (Ny2 + Ny2) 713
(32)
© (Ns2 4 Na2
12811’334 (Ne + Nz )} cos (27TN2 Arz,/L)
83309, Ary/L) = —— [ Ny . (33

0 [1+@m)? MNg2+N,273 7
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In these expressions the evenness of the integrand was used. The above integrals can be
evaluated using Filon’s method [11]. The results are plotted in figures 9 through 11.

Comparison is made with data collected during the NASA B-57B Gust Gradient
Program. The B-57R is instrumented with three component gust probes on each wing
tip and at the nose. Figures 12 through 14 show comparison with data collected during
a horizontal flight. Figures 15 through 17 depict a comparison for flight on a simulated
ILS approach (three degree glide slope). Both measurements were taken within the
planetary boundary layer where turbulence is not really isotropic.

Insome of the figures, the measured spectra fall between the expected Ar,/L
curve and the Ar,/L = 0 curve. This result is quite apparent in figure 14, for example.
A possible explanation concerns the assumption of the stationarity of the correlation
function. In the real atmosphere, the correlation falls off with time as well as with
space. This increased fall off in space and time corresponds to a slower falloff in the
frequency domain as observed in the figure.

Some of the measured data show an unexpected foot (flattening out) at the
higher frequencies, Possible sources of this error incjude aliasing and the addition ofi the

white noise to corresponding velocity components measured at each wing tip. The

correlations would show a Dirac delta function spike which in the frequency domzin
corresponds to a small but finite constant. When plottea on log paper the spectra would
show a characteristic foot. Simultaneous white noise cculd be introduced by terms from ?
the INS system used to remove the aircraft motions from the data.

The importance of a cross-spectral model is that moment spectra can be

calculated from the cross-spectra [13].

—tte nf 2. SEw e SN -T t . SN 4



QN

911

24
ORIGINAL PAGE 18
OF POOR QUALITY

101 A MMIEERLLLN T UTYYNIT U T YT T T TITh

\BES Baa

4t _tat}

100

T T 7T77TIT
I L. il

LR RRALLE

102

rrrrrImm

L) 4 st ltit)

- B
- =3
- 3
: :
-

1 02
- -

10'4 L 1.8 3 jeten AL 2 M1)ir I W ET I S W

103 102 101 100 10!
Ng

Figure 9. Dimensionless cross-spectra for u-velocity component,

s, A T n e -



ORILU'NAL PAGE S
OF PUOR QUALITY

: =
r—»
r- %
wli 3
:
922 - E
2
102 L ]
E u
10'3 '5*
.
]
—(
104
10-3 102 10°1 100 10!
Ny

Figure 10. Dimensionless cross-spectra for the V-velocity component.

| A AP~ ™



ORIGINAL
OfF POOR

10}

101

933

103

104
1

Figure 11. Dimensionless cross-spectra for the w-velocity component.

PAGE i€
QUALITY

T 1 717

=
-
-
b
-
N

T T ormmenr

rryyrormn

T I Ty l
9&
/
- » () N
-

T T T VYrovYY

T T vyt

L 1 Liita, A4 __i.a i dail A2 Lt radny

L Lisaig

3 ]
L -
A 2L 41 ks 1 4.4 3 t14an L L 1 4. 21210 L 1 3.4
03 102 1071 100 10!
Ng

P

IS W e A n o



1 CRIGINAL PAGE i3
OF POOR QUALITY

101 : 1 T VT T LR RAAL T 1T TTiTI0Y ] VUTTTAT T T vy
3 3
-
: B
.
\ -4
100 E =
= Arg/L = 0 and 0.01 3
r— o
}- -
-1

0k 3
11 102 :
C ]
- —
03 3
C ]
- =
8 N
10-4 = S“ B
= ‘;, =
= + 3

- ? ¢’
F '2*: ]
10-5 RS A NI N Nt UL ST T RNt

103 102 101 100 10" 102

FREQUENCY (Hz)

Figure 12. Comparison of computed and measured u-component
cross-spectra for a level flight case.

e =l 4 - Swm T diw . . - .



.».aep‘su .

28
ORIGINAL PAGE °2
OF POOR QUALITY
101 : L LB BRALLLS r T P 1rYra | LB LBARAL T T 1T7TIrr 1 1rtT1rIrn
= -
100 | A'2 - 0 and 0.0186 3
= L 3
= 3
- -
10k :
3 3
¢22 10'2 = —
" ]
- g
103E 3
- 3
= —
“0
L }"“' -
-4 .t
10k 2, 3 :
S ' E L
: % 1 !
ad ’ w—
10'5 14 Ly iilll N R AL b il L1 lij L Liitl
103 102 107! 100 101 102

FREQUENCY (Hz)

Figure 13. Comparison of measured and computed v-component
cross-spectra for a level flight case,



N J-

+

29
ORIGHIAN P07 13
CF PUU~ L4 .0Y

101 - L IBRIREERLLE T TT11rm T T T 117N T 1T T 71177 i T 1T TIV]
- n
r -
100 :
42 - 0 and 0.035 3
L o
10'1 = -
3 3
N N
¢33 10°2| 3
C .
- =
=3 -
b -
10'3 = 4
3 3
- + ~
B ﬁﬂ 1
b= *ﬁ -1
N o % ]

*

104 s L )
: 5
- -

10‘5 1 3 Liblikl 1 1 b Llapat 1 s 1 j11hLt 1 L hitd

103 102 10! 100 101 102

FREQUENCY (Hz)

Figure 14. Comparison of measured and computed w-component
cross-spectra for a level flight case.

)
!!
@

P .



-

®

3
0 ORIGINAL PAGE I3
OF POOR QUALITY
101 : LA ARALL T 7T 1TT1TTir T F T rrveg 1 T TT¢iTT I T II'IT_‘
‘|00 = .
3 0 and 0.04 3
b -
10'1 E 3
= -
11 10'2 3 3
N B
103k :
3 N :
- ., .
- X i B
»
4 +
10°E + 3 ;
10'5 J 1 L 1iiit) i b1 iiaial 4 11401l 1 1 0 i1hin 1 L 1111
10-3 102 10! 100 10! 102

FREQUENCY (Hz)

Figure 15. Comparison of measured and computed u-component
cross-spectra for the simulated ILS approach case.



v hepn

$22

10!

10

E N
- .
- «.{,
+
e
10'4 = ‘*"”
= ¥,
- "%#
: s 1,
-
10'5 1 L1 1i1)ll 1 L i 1lill 1 L1 1 tiisl 1 L 11111l
10°3 102 10" 100

- »

3] ORIGIN"L PALE 13
OF PCur Q?JA._H‘Y

-
u

Q’L_2_= 0 and 0.012

IR SLILRALL LI LLL!

|

LR RRRRLL T LILLARRAL 1 T T LA LE TTT||||§

—

I BRI S ST

1 11111k 11 L1184 i1 1i0ii4 i

1

FREQUENCY (Hz)

10! 102

Figure 16, Comparison of measured and computed v-component

cross-spectra for the simulated ILS approach case.



. 32
ORIGINAL FAGE 8
OF POOR QUALITY
101 3 T T 1TTTrTm T rvrrrrmm ¥ T rrrruy I R RRALLE T LILII
. 3
- =
- 4
100 #: 3
F 3
- 3
- 1
o ~
0L -
C N
C ]
- .
¢33 102 4
C 3
- ]
- .J
-3 [ B
10 E 3 '
- .
" ]
104L 4 ;
3 3 L
E N
. i |
10'5 1 1 1 Liiill 4 Ll ik L L i 4 [ | LLLLL d i 1 111t i

103 102 10! 100 101 102 ‘
FREMCUENCY (Hz) ‘

Figure 17. Comparison of measured and computed w-component
cross-spectra for the simulated ILS approach case.

- - - e —



+

CHAPTER I1I. REVIEW OF MONTE CARLO TURBULENCE SIMULATION

For the purposes of this study, turbulence simulation will mean Monte Carlo
turbulence simulation Monte Carlo turbulence simulation shonld not be confused with
efforts to close e time averaged cquations of metion. Monte Carlo turbulence simula-
tion is defined as a procedure whercby a noise process i1s filtered by a linear or nonlinear,
analog or digital filter to obtain an output with certain of the statistical properties of
turbulence. While Monte Carlo simulation and numerical simulation of turbulence have
some things in common, the intent of each is quite different In the case of the former,
mean velocity profiles are known and turbulence is to be added to create a realistic flow
field. In the latter case mean velocity profiles are to be calculated. Monite Carlo simula-
tion strives to put small scale perturbations back into the flow field while numerical
simulation attempts to remove the small scale details. In this sense the two are opposite
operations.

Monte Carlo turbulence simulation apparently began in the mid-fifties. The basic
idea, which is employed in the present study, is depicted in Figure 18. Gaussian white
noise, with Dirac delta function autocorrclation and corresponding constant spectral
densit i< input to a linear filter. The lincar filter has a transfer function H(v) which is
selected to give the desired output spectrum. Because the filter is linear, and the input

Gaussian, the output is Gaussian, Using the notation of Figure 18, the vutput spectrum is

0 () = HX) 0 v) (34)

In (34), @w(u) is the known, desired form of the output spectrum, and @w(v) is a con-

stant for all frequencies. H(») is the unknown with modulus
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Figure 18. Simple Monte Carlo turbulenc=
simulation,

From Equation (34) the realization ot H(1) which gives the desired

output spectrum is nonunique. In fact, H(») has the general form

H(v) = [Hp)| cHa@) (35)

where w(v) is the phase of H(v). H(v) has an infinit¢ number of realizations correspond-
ing to an infinite number of choices for tite phase. One choice of phase is a(v) = 0 for
all v. The choice of the phase does not effect the output spectrum.

Choice of H(v) is complicated by the fact that no .oise source, neither analog
nor digital, is completely + ite. In the digital case, which is the concern of this report,
the designated sampling frequency determines the cutoff frequency of the noise. The
nonwhiteness of the noise source results in a factor which is multiplied by the expression
for H(v). This aspect of the simulation is discussed in more detail in Chapter V1.

Not all turbulence simulations invelve the usc of linear filters. Reeves and nis

- colleagues in a series of papers [14-16] developed a nonlinear filter model. Figure 19
depicts the block diagram of one version of the nonlinear filter used by Reeves and
associates. In the figure, the parameter R can be changed to modify the kurtosis of the
output turbulence. In effect R changes the patchiness of the simulated turbulence. [he
functional forms of the three filters H,. Hy, and H . are chosen to give the desired output

“ spectrum,
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Figure 19. Reeves’ non-Gaussian simulation model.

In general, the output form of the probability density cannot be determined for
nonlinear filters. Reeves judiciously constructed his filter so that the output probability
density function could be calculated.

Another advance in turbulence simulation arosc from the need to include inter-
level coherence in simulation. Fichtl and Perlmutter {17] devcloped a multi-filter system
to incorporate interlevel coherence. In this model a series of white noise sources is
filtered. added together, and the result filtered to obtain the turbulence. A schematic of
the method is given in Figure 20. Each of the filters D_p through Dp are effectively
height dependent phase shifts. The desired coherence is obtained exactly as the number
of filters and noise sources approaches infinity. Ir practice, the desired coherence can be
approximated to any desired accuracy by choosing p large enough. The filter H in Figure
20 gives the desired output spectrum. Since the block diagram of Figure 20 represents a
linear filter and since the inputs are Gaussian. the output will also be Gaussian.

For the purposcs of this study, one of the more significant advances in turbulence
simulation technology was made by Fichtl {18]. In this report, Ficht] generated non-
dimensional turbulence. By this approach, one nondimensional turbulence record could
be generated, its spectrum checked, and then be used for simulation of any flight profile.
Fichtl’'s method was based on the Dryden spectral model. A similar aprroach was used

by Tatom, et. al. [19] for the von Karman model.
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Figure 20. Interlevel coherence model [17].

The preceding discussion was a brief history of some turbuience simulation
approaches which have some relevance to the current model. For a broader discussion
of Monte Carlo turbulence simulation, the interested reader is referred to three papers
by Dutton, et. al. {20}, Fichtl, et. al. {21], and Wang and Frost [22]. The report by }
Dutton, et. al. gives a good historical perspective of turbulence simulation and presents
an unusual nonlinear approach. The paper by Fichtl, et. al is a general survey of simu- i

r~ lation methods up to 1977. The paper by Wang and Frost presents codes and discussions

for several of the methods discussed previously.

) Before leaving the area of Monte Carlo turbulence simulation, a brief discussion
' relevant to the present model is presented. In Chapter 11, one-dimensional spectra for
the von Karman and Dryden models were given. Real turbulence shows a V'5/3 rollc ff
as predicted by Kolmogorov and the von Karman model, however, the von Karman
|
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model lacks the convenience of a rational (V'2 re' 4.) Dryden model. For rational
spectral models, the simulated turbulence can be g.nerated with a difference equation

of the form
Wipl = fcn(wi’ Wisls e e, Mg, . ) (36)

Equation (37) is a digital simulation model where the i+1st turbulence point generated
is a function of the previous turbulence points and noise source points. For the Dryden

model (37) can be written as
Wis] SCp Wit Cowpg +dpnp+domy (7

where Cl , C;,. dl, and d?_ are parameters depending on the sampling rate, airspeed,
turbulent intensity and length scale of turbulence.

Wang and Frost [22] describe a simple rational model which approximates the
more realistic von Karman spectra. This approach can be carried to any level of com-
plexity as long as care is taken so that all poles lie within the unit circle in the Z-
transform plane. This stipulation assures system stability.

When a recursion relation such as Equations (36) or (37) can be derived, it is much
superior computationally to other available methods. Otherwise the turbulence must be cal-
culated either with a convolution or with a Discrete Fourier Transform (DFT). When turbu-
lence in two or more dimensions is generated, the DFT or covolution must be used because
Z transform theory is not well developed in more than one dimension. The only time
it can be used is when the function to be transformed is separable so that the two-
dimensional Z transform reduces to the product of two cne-dimensional transforms.
Unfortunately, spectral models are functions of v = (vl2 + v22 + 1/32)1/2 which is not
separable.

In this chapter a brief review of Monte Carlo turbulence simulations was pre-

sented. The review was by no means exhaustive, but was confined to those approaches
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which are relevant to the current method. With the exception of the paper by Fichtl
and Perlmutter [17] none of the reported studies in any way accounted for variations
of turbulence in more than one dimension. Fichtl, et. al. [21] discuss in passing the
generation of two-dimensional turbulence. For truly realistic turbulence simulation,
variation of the turbulence in all three dimensions is necessary. The generation of

three-dimensional turbulence is the subject of Chapter VI
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CHAPTER IV. DESIRABLE FEATURES OF A SIMULATION OF
ATMOSPHERIC WINDS AND TURBULENCE

Monte Carlo simulation models of atmospheric winds and turbulence have several
desirable features. Some of these are listed and discussed in the following paragraphs.

1. Realism: The model should be realistic in the sense that turbulence generated
by Monte Carlo methods should have as many of the statistical and spectral characteris-
tics of real turbulence as possible. The turbulence should have the right “feel.” A
common complaint of pilots who do some of their training on simulators is that the
generated turbulence is not realistic. This absence of the correct feel has been attributed
to failure to simulate turbulent intermittancy or patchiness [14]. Another factor may be
the failure to simulate varation of winds across the body of the aircraft. By this failure,
the main contributor to roll and vaw moments are neglected. Six degree of freedom
motion simulators (controlled by hydraulic actuators) exist so that roll, pitch, and yaw
motions could be simulated if corresponding moment information were available.

Finally, a simulation model should contain all frequencies which cause a significant
response in the man-aircraft system.

2. Computational Speed: The wind and turbulence model should be computa-
tionally efficient so that real time flight simulations are possible. A computer working
with a flight simulator must process incoming analog sigrals, convert digital output
signals to analog response, calculate turbulence and aerodynamic loads all in real time.
Many opcrational flight simulators are operated by minicomputers and computational
speed is a must for pilot-in-the-loop simulations. Research simulators may have one or
more high speed state-of-the-art computers to run them but even these may not be able

to handle a real time turbulence simulation if the model is too complex.
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3. Flexibility: Several types of flexibility are desirable. First the ability to
simulate a wide range of atmospheric pheno. .cna is desirable. The ability to easily
implement different microburst events from data sets such as JAWS is required.

Anothur type of flexibility involves the freedom of the pilot to perform any
maneuver desired. Many simulators assume a constant airspeed and commit the pilot
to level or glide slope flight. The ability to go around in severe shears is denied. In
microburst tlights, the airspeed changes can be +30 m/sec or more. The ability to go
around or to test various escape strategies is highly desirable.

The flexibility should extend to the ability to apply the wind and gust model
to a wide vaudety of different aircraft. All frequencies of interest to .ircraft response
should be in the model. The ability to do this for aircraft of a wide variety of sizes and
characteristics implies a nondimensional simulation. The concept of nondimensional
simulation is explained in a later section.

4, Easy implementation: Easy implementation implies code clarity, and
simplicity, and portability. Portability means the ability to transfer code or data from
one computer to another. If these attributes are missing, the method will not be
accepted by the aviation community,

While the above list is by no means exhaustive, it does include the major desirable
attributes of a gust and wind model.

In creating a simulation, the simulator is in effect creating a world ot his own.
This shadow world created for engineering purposes should contain enough spectral
information so that all factors affecting the phenomenon under study are available.

The following sections describe the creation of a turbulence and wind shear “world”
which varies in space and time in a realistic manner. In the author’s opinion, the differ-
ences in the realism of the present model and previously used one-dimensional models
are similar to the differences in the creatures inhabiting our three-dimensional world

and the one- and two-dimensional inhabitants of Lineland and Flatland [23].
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Creating realism for the sake of realism is not the function of engineering simulation,
rather the engineering simulation is like a vignette. Relevant features are clear, crisp,
and mathematically precise, while features not affecting the simulation are not.

The model described in this document has many of the desirable attributes, Its
greatest strengths are realism and flexibility. In these two areas, no currently available
wind simulation model can match it. Easy implementation was a goal of this effort.
Programs are in FORTRAN and data are stored in easily transportable integer formats.
The one possible weakness of the model is in computational speed. The spatial model
achieves maximum realism and flexibility but pays some price in speed. Nevertheless,
for systems with enough central memory to store both the JAWS data and turbulence,
speed should be sufficient to do reai time simulations. Some minicomputers satisfy this

requirement.
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CHAPTER V. OVERVIEW OF THE SPATIAL MODEL

To this point, the aviation hazard posed by microburst-related wind shear was dis-
cussed along with the characteristics of the JAWS data sets. Certain aspects of homogeneous
turbulence theory relevant to Monte Carlo turbulence simulation were presented. Previously
reported turbulence simulation methods and desired characteristics of wind model were dis-
cussed. In this chapter all of these threads are pulled together to weave a fabric of computer
created reality for the purposes of aircraft design and pilot training and ultimately to save lives.

Creating the final tapestry which achieves the ultimate reality as far as the wind
environment is concerned is not a simple problem. The currently proposed technique is
an attempt to combine the best available wind shear data set with three-dimensional
simulated turbulence. The mixture of reality with simulated reality is the best that
can be done within the current state-of-the-art.

The need for the addition of turbulence is documented in this chapter. A recipe
for combining measured data and JAWS data is explained, along with the method of
implementation. The proposed technique is related to some similar one-dimensional
approaches to data analysis and relevant coincepts from these simpler cases are intro-
du.ed. Finally, while the JAWS data sets are the best available in the world, they lack
some information which is necessary for realistic flight simulation. Methods for deriving
the required parameters from aircraft measurements are presented.

A typical grid spacing for the JAWS data is 200 m whereas a desired grid spacing
for the calculation of aerodynamic moments is 10 meters. In Figure 21 a comparison
is made between the JAWS grid size and various aircraft. The box surrounding the
planes represents vertical plane grid spacing for the July 14 case (200 m x 150 m).

Figure 22 shows a desired grid spacing (10 m) compared to the Bocing 747 aircraft.

42
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Figure 22. Desired grid spacing compared to the Boeing 747 aircraft.
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The spatial sampling frequency vg is 1/200 m! and the resulting Nyquist spatial
frequency is PNy = Vg2 = 1/400 m!. For an aircraft traveling at 80 m/sec this corre-
sponds to a Nyqiist spatial frequency of fNy = 0.2 Hz. Typically, the frequency of
maximum aircraft response occurs at about 0,1 Hz. According to Etkin {11]. struc-
tural response of an aircraft extends over a spatial frequency range from about 10'4
m to 1072 m™!, Short period response occurs over a range from about 105 m!} to 1073
ml. Phugoid response cuts off at less than 104 m!. The JAWS data contain Phugoid
response frequencies, but only part of the short period response frequencies, and even less
of the structural response frequency range. With regard to frequencies (airspeed = 80 m/sec),
the JAWS cutoff frequency was 0.20 Hz while structural response goes up to near 10 Hz.
Some modelers include structural bending modes in their simulators because they feel these
modes add the correct “feel” to the turbulence. An aircraft structure encountering
turbulence has a ringing response [24]. The conclusion is that since structural and
short term response of aircraft to turbulence are important for realistic simulation, and
since the complete frequency range is not contained in the JAWS data. the high fre-
quency turbulence must be added.

The obvious question arising from the above discussion is, “how can turbulence
be realistically added to JAWS and other data sets?” The addition cf these high fre- ’ }
quencies are subject to several constraints. First, the model chosen is restricted to using
mainly information available from the data set itself. For maximum realism, as little
of the required information as possible should be generated from “rules of thumb” or
from model equations. The available information includes the three velocity components
(over the low frequency range) and spectral width which can be related to a gust
standard deviation. Based on this available information the model to be discussed below

was developed. The “glue” that holds the model together is the following equation.

uj(xs)I,Zat) = Ei(X,Y.Zst) + Oi(x,y,Z,t) W,‘(X,Y,Z) . (38)

"
e TF

e al s - MmN = - - e



by

46

where ui(x,y,z,t) are the simulated winds, —L—ni(x,y,z,t) are the low frequency “smoothed”
winds, oi(x,y,z,t) are the gust standard deviations, and wi(x,y,z) are the zero mean, unit
standard deviation, frozen turbulent velocities.

The model defined in the above equation is written i 1ts most general form but
is specifically tailored for JAWS-type data sets. u; are the three components of low
frequency wind contained in the data scts. gj, while written in vector form, in practice
is isotropic and a scalar, 0. It can be derived from JAWS second moment information.
Notice that uj and o are written s functions of three spatial coordinates and time.

As of this writing, time has not been included in the JAWS data sets. The reason for
this is that the time variation may not be important for flight simulation because of the
rapid aircraft transit times of wind shear phenomena. For this reason, the JAWS Project
has concentrated its resources on other matters,

The final term in Equation (38) is the frozen turbulence data base: frozen because
w; is not a function of time. A three-dimensional block of Monte-Carlo simulated tur-
bulence is created and effectively stacked inside the JAWS data set in order to add the
necessary small length scale phenomena to the coarser gridd=d JAWS data. In the current
method the three-dimensional block is assumed to be isotropic turbulence. Therc is
some basis for this assumption, since much of the anisotropy of the winds will be con- .
tained in Gi' w; is assumed isotropic for convenience. The Monte Carlo simulation of
nonisotropic turbulence is not far advanced in the one-dimensional case. In the three-
dimensional case it is nearly nonexistant, Etkin, in his classic text [23], recommends for
low altitudes (anisotropic turbulence) the three isotropic one-dimensional spectral func-
tions be used with corresponding gust intensities. This is certainly a practical approach
in the onc-dimensional case, but the corresponding tiiree-dimensional spectra-functions
are not available. At least one group of investigators [25] have developed axisymmetric
three-dimensional spectrum functions. These functions may prove useful in the ncar

future, but for the present an isotropic model was used.
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A question arising out of this discussion is, “Why use a three-dimensional turbu-
lence model?” The reason is that by generating three-dimensional turbulence, all lateral,
vertical, and longitudinal correlations are included in the data. Implicitly, when a one-
dimensional simulation is done, the assumption is made that the aircraft is a point
immersed in turbulence as is depicted in the left half of Figure 23. Turbulence is more
complicated than this simple picture and two-dimensional turbulence is depicted in the
right half of the figure. In fact, the spanwise variation of gusts cun be quite high and
gust differences measured in the B-57B Gust Gradient Program exceeded 10 m/sec (20
kts). The B-57B has a 20 meter wing span and its size is compared to some wide-bodied
transport aircraft in Figure 21. The Boeing 747 has a wing span of 60 meters. The
impact of spanwise variation of gusts is under study, but intuitively it seems that the

variations have a significant impact on aircraft response.

~~

Figure 23. Assumptions of turbulence simulation.

In Chapter I a cross-spectral model was developed. The block of three-
dimensionai turbuleace contains the cross-spectral model as a natural subset of its
propertics assuming the three-dimensional von Karman spectrum is vsed to generate the

turbulence.
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The model as proposed in Equation (38) was in part inspired by a scries of papers
by Mark, and by Mark and Fischer [26-30]. In these papers a one-dimensiona’ 1. rou-
lence model defined by the following equation was investigated,

w(t) = w (1) + w(t) = v (1) + ogt) 2(t) , (39)

where w () is the slowly varying part of an aircraft-measured velocity, w,{t) is the high
frequency rapidly varying part of the velocity trace, z(t) is a Gaussian unit variance
process (von Karman one-dimensional spectrum), and w (), of(t). and z/t) are mutually
independent processes.

Mark points out that frequently a smoother knee than expected is measured in
atmospheric turbuience spectra. He attributes this to the effect of a slowly varying gust
intensity og(t). The product og(t)z(t) corresponds to a convolution in the frequency
domain and if oy is a well-behaved function (no spikes in its spectrum), then the
spectrum of the product will be a smootlied version of the spectrum of z. The result is
a rounded knee in the spectrum of the product.

Mark (1981) shows the ~tfect on the autocorrelation function made up of parts
as mdicated in Equation (39), and presents data to support his model [29]. Figures
24 and 25 arc drawn from this report. In Figure 24, o, is the standard derivation of

s
the slowly varying part, w(t). The high frequency portion, wlt). contributes a rapidly
decaying term to the autocorrelation and ws(t) contributes a slowly decaying term. In
Mark’s model, w (1), o(t), and z(t) are presumed independent processes. In Figure 25
a corresponding measurcment is presented. {n the trequency domain the role is reversed,
The spectrum of w,(t) will decay rapidly while the spectrum of w (1) decays slowly.

The summary of the analyses by Mark and by Mark and Fischer was for one-
dimensional turbulence measurements, but most of the resulis carry over to the three-
dimensional model of Equation (38). A notable exception concerns the mutual inde-
The mutual independence assumption was made by Mark

pendence of u;, g;, and w;.

to facilitate his analysis, but in fact _Ji and 0; should be related. We expect this because
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Rw(T) = Rws(T, + Rof(T) Rz(T)
E of |
Rwl(r) [Rog(r) Ryl ] ~ E [042] Rylr)
)
3
2
Owg
4 N >
° ‘\ — o —— —_—— T
Figure 24. Idealized sketch of auto-correlation functions of atmospheric
turbulence and auto-correlation function of its components.
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VERTICAL GUST VELOCITY
AUTOCORRELATION

L (S N S s S I St ) N D M D (s A ) Bt e B S

L.INEAR APPROXIMATION TO RWS (£): —
RW; (E’ = Rw; ‘O) + Rw, (o]l IE’
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Figure 25. Auto-correlation function of vertical velocity record in
mountain wave conditions (airspeed 197 m/sec).

of mechanical production terms in Reynold’s equations involving gradients in Ei. The
relationships may not show up in linear statistical relationships, however. In any case,
the independence assumption 1s not required in the present model

The terms in Equation (38) were discussed above, and now a discussion concemn-
ing the assembly of the three terms into a wind model is presented. For the JAWS
July 14 data set the grid consisted of 60 x 60 x 11 points. At each of these points is a
measured value of the three velocity components, and spectral width. This corresponds
to 158,400 data points. Thes points were measured on a 200 m x 200 m x 150 m grid.
A desirable spectral resolution for the turbulence is 10 m x 10 m x 10 m. Generation of
a block of turbulence 12 km x 12 km x 1.5 km with 10 m resolution corresponds to
6.5 x 108 data points and is not feasible. Instead, a relatively small block of turbulence
can be generated and effectively stacked to fill the JAWS volume. Stacking is equivalent
to moving the block around within the JAWS volume as the plane flies through and

begins to leave the turbulence. The situation brings to mind a small boy playing with
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a caterpillar. As the caterpillar hangs over the edge of his hand the boy obligingly offers
his other hand and the worm’s journey of exploration continues. In his travel across
each hand the caterpillar is unlikely to retrace the exact path of his previous journey
because he begins his journey at a slightly different point each time and travels with a
slightly different heading. The cycle continues as long as the boy desires and the result
is that the caterpillar has his exercise and the boy has the pleasure of his company.

The periodic shifting of the data base is equivalent to stacking blocks of turbu-
lence within the block of JAWS data. Two ways of stacking the blocks come to mind.
As the aircraft of the simulated flight passes out one side of the block its motion can be
reflected back into the block of turbulence. This procedure is similar to video games in
which the electronic ball bounces off the wall {angle of incidence equals angle of reflec-
tion). This method, through complicated has the advantage that the aircraft encounters
no abrupt discontinuities in the turbulence field. This approach is equivalent to stacking
two types of blocks in a special pattemn (see Figure 26). The two types of blocks are
reflections of each other, the same as left and right hands. The blocks are stacked so
that similar sides touch each other.

Computationally a simpler approach is to stack one type of block on itself with

the same orientation. Position within the block is calculated using congruence arithmetic.

X1 = X mod (XTmax)
YT =Y mod (YTmax) (40)
Z1 = Z mod (Zrmay)

In this equation, XT is the X-position within the block of turbulence, X is the real X-
position in space, X, ,x is the maximum extent of the frozen turbulence, and so on.
This expression means, divide X by Xy.,., determine the remainder which is Xp. If

X = 6500 m and Xy, = 600 m then X1 = 500 m. The value of Xt always lies
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Figure 26. Stacking blocks of frozen turbulence.
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between 0 and Xp,a. This method is equivalent to video games in which the electronic
“projectile” disappears from one side of the screen and reappears instantaneously on the
opposite side. An anticipated disadvantage of this technique is a discontinuity in
the turbulence as the plane passes from one side of the block to the other. In practice,
the discontinuity is small or nonexistent so the computationally simpler technique of
Equation (40) can be used.

One caution on the use of the above equation should be discussed at this time.
The frozen turbulence data base generated for use with JAWS data is nondimensional
in space. Transformation of a complete block of turbulence must be achieved at one
time with one length scale of turbulence. At the same time, the turbulence length scale
should vary through the simulated atmosphere. The most commonly studied variation is
with height above ground. The presence of microbursts in the planetary boundary layer
(PBL) also creates a lateral variation of length scale in the atmosphere. Convective
storms imbedded in planetary scale flows have been observed to create an obstruction to
the larger scale flow and even shed vortices. Apparently convective obstructions affect
turbulent scale lengths in the atmosphere. There is every reason to expect that micro-
bursts which are embedded in larger scale {iow in the PBL like chocolate candy Kkisses
will similarly affect length scales in the PBL. In order to account for desired changes in
this length scale, the turbulence is generated in dimensionless space. In dimensionless
space the block size is constant, but in dimensional space the block size changes
isotropically with the length scale. In the space domain an increasing turbulent length
scale corresponds to increasing block size, and in the spatial frequency domain a decreas-
ing block size. The problem with indiscriminant use of Equation (40) is that the blocks
are stacked on top of each other and as each contracts or expands the whole stack
similarly contracts or expands. If the stack contracts along its lower left hand comer
the net mction at the right side of the stack is multiplied by the number of blocks in

between. The result is an unreal change in aircraft position relative to the turbulence.
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Care must be taken that stack contraction is about the location of the aircraft and this
is easily implemented. The nondimensional generation of turbulence mentioned above
will be described in detail in the following chapter.

The preceding discussion brings us to the one parameter not available from the
JAWS data set, i.e., the length scale of turbulence. The distribution of this parameter
must be either modeled, or derived from aircraft experiments or from laboratory
measurements. This desired length scale is not the overall length scale but rather the
length scale associated with w;(x,y,z) in Equation (38).

Interestingly, some evidence suggests that the spanwise length scale increases
through a microburst [31]. The relevant information is presented in Figure 27. Shown
are the three velocity components measured at the center boom of the B-57B aircraft
during a suspected microburst encounter. The encounter occurred about 78 seconds
into the run when a sudden sharp headwind increase was observed. This increase
corresponds to the sudden decrease in the longitudinal velocity component, u. During
this period the B-57B encountered a 15 m/sec headwind increase over a distance of about
130 m. This drastic windspeed change is believed to occur as the aircraft crossed a
microburst front. Aircraft altitude was about 400 m AGL and from Chapter II we recall
that the typical outflow depth is 600 m. The increasing headwind was followed by a
decreasing headwind and then a tailwind all over a period of about 20 seconds. The
feature had an extent on the order of 2 km which is consistent with the microburst
hypothesis. The horizontal wind vector shifts were associated with a strong (10 m/sec)
downdraft which reinforces the microburst idea.

The interesting part of the figure is the lower three graphs which depict wingtip
to wingtip velocity differences. The amplitudes of the velocity difference traces increase
gradually from the start of the run but then decrease in all three components through
the suspected microburst, This unexpected result can arise from three possible sources:

(1) the gust intensity decreases through the microburst, (2) the lateral length scales
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Figure 27. Gusts and wingtip to wingtip gust differences for JAWS Flight 7, Run 10.
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increase through the microburst, or (3) a combination of (1) and (2). From the traces
at the top of the figure, it is difficult to believe that an intensity decrease is the sole
source of the velocity difference decrease. The conclusion then would be that a length
scale increase occurs through the microburst. Some caution must be exercised in drawing
conclusions from one flight through a microburst, but this type of information is vital
for modeling distributions of L.

The problem with obtaining L distribution from aircraft measurements is the
difficulty of finding microbursts to fly through even with Doppler radars to guide the
aircraft. At the same time, more information is required. Laboratory experiments may
help provide the much needed information. Means of obtaining this information in the
laboratory are discussed in Appendix A.

The dearth of knowledge on L distributions is similar to the situation turbulence
modelers found themselves in prior to the development of two-equation turbulence
models [32]. Mixing length distributions had to be specified based on experience.
Finally two-equation models were developed which included a partial differential equa-
wion which effectively specified distributions of the mixirg length. The close analogy
with the present problem suggests that a similar approach to the present problem might
be attempted. The most widely utilized two-equation model is the k-e model which
contains transport equations for turbulent kinetic energy k = 1/2 (_u_2 +ve +—\;§)
and turbulent kinetic energy dissipation €. The equations for this model are presented

by Launder and Spalding [33] in the following form.
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where pgpe = Cupkz/e and recommended values for curve fit “constants” are
Cy= 0.09, Cy = 1.44, C = 1.92, g = 1.0, 0,=13
The length scale of turbulence is defined by
L = Cp k3/2/e (43)

Here Cpy is another constant of proportionality.

Observe that if JAWS estimates of k = 3/2 o2 based on spectral widths are used
then Equation (40) need not be solved. If the Ui in Equations (41) ~nd (42) are assumed to
be the JAWS velocities, appropriate difference forms of Equation (42) can be developed
and with appropriate boundary conditions for e and with the aid of Equation (43), a distri-
bution of L could be calculated. In reality the **constants™ in the above equations vary from
one flow to another and would need to be defined for microburst type flows. The above
equations were developed by making certain assumptions which may not be appropriate
for the JAWS microburst situations. Nevertheless, the above provides an engineering
approach to a difficult problem. The method can be refined and “tuned” if experimental
data are available to tie down the parameters in the al:-ove equations.

Flight simulators would use the spatial model as follows. The frozen turbulence
data base would be giver: to the particular simulation group on magnetic tape. The data
on tape would be transferred to high speed, random access mass storage, e.g., disc storage.
The size of the data base provided would depend upon the available mass starage for the
particular computer. For reasons given in the next section, it is desirable to generate the
data base in one large block. The total block may be too large for many simulators, and it
is not necessary to use the entire data base. The main block can be divided into subblocks
which will fit into available mass storage. If additional mass storage became available at a
later time, then contiguous blocks of data could be shipped to create a larger data base at

the installation.
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Finally, Figure 28 shows how drastically the JAWS data truncates assumed
spectra. This last figure in this chapter serves to reemphasize some points made herein.
First, for realistic wind modeling for flight simulation, turbulence must be added to the
JAWS data. Secondly, the model described by Equation (38) is a model based on
necessity. It is not a scientifically accurate turbulence model, but it is a realistic
engineering approach to a difficult problem. It uses all available information frorn JAWS
and requires only turbulence length scale distributions for completeness. While the
frozen turbulence is Gaussian, the winds generated by the model of Equation (38) are
not, as real atmospheric winds are not. The model contains all three-dimensional
correlations and spectra as any realistic model should. Finally, the model was specifically
tailored for use with the JAWS data base, but is not restricted to it. If o; and Ui were
known for winds on Jupiter, it is anticipated that flight vehicle entry into the Jovian

atmosphere could be simulated with the proposed model.
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Figure 28. Cutoff frequencies for the JAWS data sets (von Karman spectra).

P N L e N o & a P ™ -

®



L

CHAPTER VI. FROZEN TURBULENCE GENERATION
A. The Fast Fourier Transform Approach

Three-dimensional turbulence generation was achieved using Fast Fourier Trans-
form (FFT) techniques. Figure 29 is similar to Figure 20 but differs in that the filter
function, input, and output are functions of three independent variables (four if time is
included). 1f the FFT is used, the Dryden model has no computational advantage over
the von Karman model. Hence, the von Karman model was used. Generation of turbu-
lence using the FFT requires some awareness of certain FFT properties. These properties
are discussed with some derivations given in the appendices. In this chapter all frequen-

cies, spectra, and filter functions are assumed dimensionless.

n: (rq,ro, 13) w; (rq, 1o, r3)

ir.r2.r3 H oy, v, v3) [Wilr.r2.13
WIDE BAND HOMOGENEOUS, ISOTROPIC
GAUSSIAN NOISE THREE-DIMENSIONAL

TURBULENCE

Figure 29. Generation of three-dimensional turbulence.

Since the turbulence is generated digitally, sampling frequencies in the space and
spatial frequency domain play an important role. The relationships arc given by the

following equations

v,
Av = —b i=1,23 (44)
1 hdl
At =— i=1,2.3 (45)
Vg
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where vsi is the sampling frequency corresponding to the r; direction, M; is the number
of grid points in the r; direction, Av; is the grid spacing in the spatial frequency domain
corresponding to the r; direction, and Ar; is the r; grid spacing in the space doinan.
The FFT is a fast computational implementation of the Discrete Fourier Trans-
form (DFT). One-, two-, and three-dimensional DFTs and their inverses are defined in

the following equations.

M-1
Xg =, xp ed2mnk/M k=0,1,..., M- (46)
n:
| Ml
=y & Xk oi2mnk/M n=0,1,..., M-I (47)
k=0
M;-1 My-1
_ - -2m(nyk /Ny + n7ka/Na) _
Xk k= 2o 2o *npng © ki=0,1,... Ml
m=0 ny=0 (48)
M;-1 M5-1 |
1 = +i2m(nyk /M + nska/M2) ~
ity = TS 2 2 X ks © n=0,1,. .., Ml
2 k=0 ky=0

(49)

M;-1 Ma-1 M3-1

X - Z Z Z < e-j:ﬂ(nlklfMl + n2k2/M2 + n3k3/'M3)
kj.kp.k3 ny,ny.n3
n1=0 n2=0 n3=0

kl = 0 1, ey Ml_l

M}-1 My-1 M3-I (50)

1 +j2ﬂ'(ﬂlkl/Ml *nqu/M-,-l-n;k /M )
D e— . - = 3733
xnl,n2,03 M| M,M; Z Z 2 xk],kz.k3 ¢

k1=0 k=0 k3=0 n=0,1,..., M-l
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In Equations (46) through (51) n and lower case x refer to the space domair and k and
upper case X to the frequency domain. In the above six equations, even numbered equa-
tions, i.c., (46), (48), and (50) are the forward transforms and the odd numbered ones
are the inverse transforms. The three different transform pairs are represented beczus: in
the discussion to follow symmetries associated with the one- and two-dimensional trans-
forms show up in the three-dimensional DFT, These symmetries arc of considerable
importance to the generation of three-dimensional turbulence.

The three-dimensional continuous ourier transform and its inverse are given by
the following equations. Since all DFT implementations in this report are by means of

the FFT. these two terms will be used interchangably

= =]

o0 oo
-2 + + 13y
X(V],VZ.V3) = f / f x(rl,rz,r3) € ) ﬂ(rlvl Y2V2 1'3 3) drl drz dl'3 (52)

-00 00 =00

oo oo o

j2r(vyry + +v
X(!‘l.l'z.l'3) = f [ f X(Vl,Vz,V3) CJ ( 111 V:I’z 3[3) dVl dV2 dV3 (53)

-0 ~C) =00

By comparison of (52)and (53) with (50) and (51), approximations for the Fourier

transform and inverse are given by
X(kAvy, koAva, k3Av3) ® Ary Ary Arg DFT [x(njAry, npdry, n34r3)] (54)

x(nlArl, nzAl’z, n3Ar3) = M]Al)l MzAVz M3AV3 DFT_I [X(klAVI, kZAVZ’ k3AV3)]
(55)

Similar expression, apply for the one- and two-dimensional transforms.

Figurc 29 seems to imply that two three-dimensional transforms are necessary ior
turbulence generation. First, noise generated in the space domain js transformed to the
frequency domain, multiplied by a filter and then the inverse transformed back to the space

domain. Actually, only one transform is required because the noise can be generated in
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the frequency domain since transformed noise statistical properties can be calculated.
Important to this discussion are the symmetry properties of transformed real noise for

the one, two-, and three-dimensional cases. Derivations follow easily from the transform

definitions. These properties are presented in Table 2.

Table 2. Symmetry Properties of Transformed One-, Two-, and
Three-dimensional Digital Functions

One-Dimensional Symmetry
Expression Observation

L. X(M-k) = X*(k) Im[X(M/2)] =0

Two-Dimensional Symmetry

2. X(M;-k}.0) = X*(k;,0) 1,[X(M;/2,0) = 0]
3. X(0,Ma-kp) = X*(0,ks) 1,,[X(0M1/2) = 0]
4. X(Nj-k).Nyk») = X*(k) k) 1, [X(M[ /2, Ma/2) = 0]

Three-Dimensional Symmetry

5. X(M;-ky,0,0) = X*(k;,0,0) 1, [X(M{/2,0,0)] =0
6. X(0, Myt , 0) = X*(0,k,0) 1,,[X(0M5/2,0)] =0 -
7. X(0,0M3-k3) = X*(0,0,k3) I,,[X(0,0,M3/2)] =0 }
8. X(M{-kjMyk1,0) = X*(k{.kn,0) I, [X(M{/2, M»/2, 0)] =0 |
9. XM~k |, 0, M3-k3) = X*(k{,0,k3) I, [X(M,/2,0M3/2)] =0
10. X(0, My-ky, M3-k3) = X*(0,kp.k3) 1,,X(0, M/2, M3/2)] =0 '

11, X(Mj-kq, My-k9, M3-k3) = X*(ky ko k3) I,[X(M}/2, My/2, M3/2)] =0 |
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The symmetry relations expressed in Table 2 seem quite complex, but all can
be incorporated into a simple geometric interpretation. The geometric interpretation is
reflection about the center point. In the one-dimensional case the reflection is about the
center point (k = M/2) of the line, in the two-dimensional case, points along the two axes
are reflected about their respective center points (k) = M;/2, ky =0;k1=0,kp = M,/2)
and in the grid interior about the center point of the interior (kj.ky # 0, reflection
about k; =M;/2, ks = M2/2). In the three-ditnensional case one-, two-, and three-
dimensional reflections must be made about the three axes, the three planes (k-kj,
k-k3, ko-k3), and about the interior symmetry point (kj.kok3) = (M1/2,Mz/2,M3/2)
in the interior of frequency space. The Hermitian symmetries are depicted for the one-
and two-dimensonal cases by Figures 30 and 31. Showing the symmetries for the three-
dimensional case is very difficult but the principle is the same. Figure 32 indicates the
grid points at which the transform of a real function must take real values. If these
points fall on an axis, Hermitian symmetry exists about the point on the axis. If the real
point falls on the k{-k, k;-k3, or ko-k3 plane, Hermitian symmetry about the point
exists in the plane, and similarly for the interior point. Each point other than these
eight real points possesses Hermitian symmetry with another point in the grid through

the real point and extended a distance equal to the distance from the original point to }

EXPRESSION 1, TABLE 2

Figure 30, Correspondence of complex conjugate pairs in the
one-dimensional transform domain,

,
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EXPRESSION 2, TABLE 2

Figure 31. Correspondence of complex conjugate pairs in the
two-dimensional transform domain,
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kq1=0PLANE

ko=0
kq

Figure 32. Points in the transform domain where the
transforms must be real.

the real point. The end of the line segment falls at the corresponding grid point. Values
of the transform at the original point and the new point will be complex conjugates of
each other. This fact is a consequence of the requirement for real turbulence, i.e., not
complex. In one dimension, there are two real points (k = 0, M/2), in two dimensions,
four real points, three dimensions, eight real points, and so on,

Linearity is a well known property of the DFT and DFTI. Since the wide band
random noise to be transformed is Gaussian, then the transformed noise is al. “~aussian.
This being the case, if the expected value and variance of the transformed noi.. w~ere
known, then all the information required for generating noise in the frequency domain
would be known. The mean and variance of trunsformed noise for the one- and three-
dimensional cases are calculated in Appendix D and summarized in Table 3. With the
information available in Table 3, generation of three-dimensional transformed noise in

the frequency domain is possible with a simple Gaussian random number generator.
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Once generated, the noise must be rearranged according to the Hermitian symmetries of

Table 2 so that when transformed back to the space domain the resulting turbulence

takes real rather than complex values,

Table 3. Expected Value and Variance of Transformed One-, and

oy

three-dimensional noise with zero mean value
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B. Derivation of Filter Functions

A simple approach for deriving the one-dimensional filter function is presented
and then generalized to the three-dimensional case. Since the turbulence is generated
digitally, the frequency cutoff, i.e., the Nyquist frequency, is the sampling frequency
divided by two (VS/Z). The DFT is an approximation to the continuous Fourier trans-
form evaluated over these limits (see Figure 33). The magnitude of the constant

spectrum was selected as onz/vs so that the following equation was satisfied.
7
$. dv, =0~ (56)

The expression for the output spectrum for a linear filter in terms of the input

spectrum is
@, () = HE) H*0) &) = HO)I? ¢ ) (57)

The output spectrum is the desired spectrum and is known while the input spectrum is
as shown in Figure 33. The selution for H(») is }

vsPy jo(v)
—_—

H@) - (58)

On

where a(v) is any arbitrary phase function. For this study, a(v) = 0 was selected.
The one-dimersional case can be generalized to any number of dimensions. For

the three-dimensional case the analog to Equation (56) is
Vsl/2 Vsz/z VS3/2

b, dvy dvy dv3 =02 . (59)
“¥s1/2 Vgl2  -vg3/2

——— o2 - st D P s IR e S v Ao - ) -



-

R

ORIGINAL PAGE 1g
69 OF POOR QUALITY

This equation implies a value of b, of onz/(vsl Vg2 Vs3)- Equation (57) still applies

with each term being a function of these variables. The new filter function is given by

Vst Vsy vs3 By (01 03.03)
H(Vl ,92,V3) = 5 (60)
n

OnZ/Vs

=5 .
2 -
Figure 33. Input noise spectrum,

This equation is the general form of the filter function. & for this study is the
three-dimensional von Karman spectral function for either the u, v, or w velocity com-
ponent. In Chapter II the dimensional forms of the von Karman spectra were presented.
In Chapter V the necd for nondimensional spectra was described. The dimensional
spectra are transformed by »; = giL where Qsi is the dimensional wave number. Then the
dimensionless spectrum d)w is given in terms of the dimensional spectrum :1‘> W by the

following relation:

A Vl V2 V3 dVl dV2 dV3
¢W(V1,V2,V3) dVl dl’z dV3 = q)W 'I—: s r , r "—'Ig"'_‘ (6‘)

With this transformation, the nondimensional spectra given in Equation (13) become

¥ aa0 3 02-v0) )
o2 9 {1 +Qra)2117/6
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With Equations (60) and (62) and the results of Tables 2 and 3 all the tools are available
for generation of noise in the frequency domain. The sequence is as follows. Generate
three-dimensional noise over half of three-dimensional space then fill the rest of the space
using the Hermitian symmetry properties of Table 2. Make sure the noise variances
satisfy the restrictions of Table 3. Multiply the transformed noise point by point by a
sampled version of the dimensionless filter function derived from Equations (60) and (62)
above. Apply the inverse FFT and the result in the space domain is three-dimensional
dimensionless turbulence which can be added to mean wind data sets. Codes for per-
forming each of these steps are described and listed in the appendices.

The generated turbulence contains all the correlations with lags in each of the
three space directions. This being the case, if a line of turbulence, say in the r) direction
is selected and the one-dimensional spectrum calculated with an FFT the result should be
an approximation to the one-dimensional continuous spectrum. To chsck this, consider

the generated turbulence given by

Mj-1 My-1 Mj-1

Wngnyn3) = Avy Avy Avy O 9. 9. Hlkpkaks) N(kpkoks)
k]=0 k2=0 k3=0

+.,,ﬂ(“lk1 . naky X n3“3) ©3)
exp | Y- Ml M2 M3

Then wing,ny,n3) is transformed with the following equation.

Ni-1
—j21m1521/M1

/\;'(ll,ng,n3) = any Z w(n,np,n3) e (64)

n1=0

If Equation (63) is substituted into (64), and algebra performed as in Appendix E, the

final result is

. B S o T T B

e el b omany AEENLL .



2

Y T L

‘H, .

P ‘

71
My-1 Mj-1

~ |

0wl == 2. D @ylykyky) Avy Avg (65)
Tky=0 k3=0

This is the digjtal analog to Equation (17). The factor 1/Av| must be present because
@w is an energy density, i.e., the turbulence energy between frequencies viand vy + dyg
is given by @, (v1) dv|. Equation (65) is consistent with previous derivations.

A description of the means for turbulence generation was presented in this
chapter. The technique is a three step procedure, namely (1) generation of three-
dimensional noise, (2) multiplication by the sampled spectral function, and (3) inverse
transformation by FFT to the space domain. An attempt was made to help the reader
vnderstand the important aspects of the problem by presenting geometrical interpreta-
tions of the procedure. A clear understanding of these interpretations helps in under-
standing the codes used for the turbulence generation, Two FORTRAN programs were

written, one for the first two steps above, and another for the final step. These pro-

grams are described in Appendices F and G, respectively.
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CHAPTER VII. USE OF WINDSHEAR DATA SETS WITH
SIMULATED TURBULENCE

A description of the addition of turbulence to a JAWS data set is presented. The
JAWS July 14 case was selected because some aircraft data from the same day were
available for estimating gust intensities and length scales of turbulence. While these
aircraft data were not from the Doppler radar measurement region, the resuits should be
applicable in a general way to the aircraft measurements. This conclusion was based on
the fact that July 14 was a day when many microbursts occurred over a large area.
Any gross variation in turbulence characteristics from one micioburst group to another
on this day seems unlikely.

The JAWS data set characteristics were described in Chapter Il and Table 1
indicates that grid spacing on the July 14 case was 200 m by 200 m by 150 m. For
simulated flights using this data, interpolation of the JAWS winds was required. The
interpolation procedure was based on bilinear Lagrange polynomial basis funcuons. A }
good description of two-dimensional interpolation is presented by Prenter, 1975 [34]. *
The two-dimensional method is easily generalized to three or n dimensions. For three :

dimensions, the general interpolation form is

M1 My-1 Mj-1

U(x,y,2) = Z Z Z ﬁnlmzm3 Pnl,nz,n3 (xyz2) , (66)
n1=0 n2=0 n3=0

where U(x,y,z) is the interpolated quantity, U is the value of the quantity at

ny,hp,n3

the grid points and P (x,y,z) is a group of basis functions, one for each grid “

nl ,nz,n3

72
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point. The simplest set of basis functions for our need is the set of bilinear Lagrange

polynomials. Each of these basis functions is continuous so any finite sum of the

functions is also continuous. Therefore, continuity of the interpolated quantity U(x,y.z)
is assured.

The Lagrange basis functions P are defined at each grid point so that

np.ng,n3

=1, and zn3 are x, y, and z coordinates of grid

Pnl ,n2.n3 (xnl ’yn2’2n3) xnl ’yn'z‘
point (ny,ny,n3). At all surrounding grid points Pnl,nz,n3(x111’yn2’zn3) =0. In ;
practice the summation of Equation (66) is only over the surrounding eight grid points,

In equation form the basis functions associated with a particular cell are defined by

Pi(Xoyeize) = (Ax-x) (Ay-y,) (Az-z.)/(Ax Ay Az) (67)
Py(x.,yc0zo) = X (By-y ) (Az-z )/(Ax Ay Az) - (68)
P3(x,Yerze) = Xe Ve (Az-z.)/(Ax Ay Az) (69)
Py(xyerze) = (Ax-x.) vy (Az-z.)/(Ax Ay Az) (70)
P5(xcyeize) = (Bx-x0) (Ay-y.) 2./(Ax Ay Az) (71) |
Po(Xe¥oZo) = X¢ (Ay-ye) z/(Ax Ay Az) (72) ‘}
Po(x.Yeize) = X ¥¢ 20/(Ax Ay Az) (73) :
Pg(Xo.VoZo) = (Bi-x.) ¥ 2o/(Ax Ay Az) (74) 5

where x.,Y ..z, are the coordinates within the cell as defined in Figure 34; Ax,Ay,Az are |
the x, y, and z grid spacing, respectively; and P; is the basis function corresponding to
grid point i as defined in Figure 34,

Notice that gridpoint one lies at (X..y.,2.) = (0,0,0), grid point two at (x.,y..z;) =

(Ax,0,0), etc. Notice also that Pi is equal to 1 at grid point i, is always nonnegative, and

s W e e em—— - - e -
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Figure 34. Definition of interpolation variables.

is zero at surrounding grid points. Outside of the cell shown in Figure 34, each of the
eight basis functions have different definitions, but these alternate definitions are of no

concern to the interpolation of U within the cell.

Interpolation within the grid of Figure 34 is achieved with the following equation.

8
Uxy2) =Y U Pixya) (75)

i=1
where fJi is the value of U as the ith grid point.

The material in this chapter was implemented for the most part by the computer
program listed in Appendix G. This program was written on a minicomputer with
limited central memory. As a result, data was swa). jed from central memory to disc
files and back. Three-dimensional arrays could not be conveniently stored on disc. The
arrays had to be stored in linear records. For this reason, the JAWS data was stored
cell by cell on disc. In other words, the eight values of U at each of the eight grid

points of Figure 34 were stored contiguously. An adjacent cell would have four of the
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same values stored so that memory-wise, this procedure is inefficient. Computation-
wise it is efficient because accessing the grid values of the cell requires only one READ
statement as opposed to four required by another procedure. More of these details arc
described in Appendix G.

The addition of turbulence to the JAWS data required information on the varia-
tion of gust intensity and turbulent length scale. At the time of writing, JAWS second
moment information was not available. An equation for the distribution of gust intensity
wus necessary for simulation. As a guide, consider Figure 27. This figure shows veloci-
ties measured by NASA’s B-57B aircraft during flight through an apparent microburst
on the day after the July 14 JAWS case. An interpretation of Figure 27 was presented
in Chapter V. Evidence of decreased gust intensity and increased turbulent length scale
were described. For the purposes of demonstration a combination of both was assumed.

An exponential type decrease through the JAWS microburst was assumed. Lateral
variation was written in terms of distance r from the microburst. Moving away from the
microburst center, gust intensity increascd to a maximum and then decreased to zero
exponentially at great distances. A vertical exponential factor was added to make

intensity a maximum at 300 m AGL. The functional form is given by }i

,
0= [(Oax - Omax/2) exp " /0T97]) expior?/50) exp [(2-300/200)].  (76)

where r is horizontal distance from the microburst center in km and z is the altitude in

meters.
A simple vertical relation for turbulent length scale was selected from Reference

35. The functional form is
L = 31.5 (2/18.3)9-C* meters (77)

Turbulence generated for use with the JAWS data consisted of a 64 x 64 x 64

array generated at dimensionless frequencies of vsl = 50, Ve = 50, v53 = 50. One concern
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was the accumulation of error in the calculation of an FFT this large. The three-
dimensional FFT does not have an error problem, at least for arrays of this size. Test
cases were done and error was on the order of 10°® which is the same as the word
precision (32 bits per word, 24 bits fur the mantissa).

Interpolation of the turbulence between grid points was required. Tatom and
Smith, '982 [36] offer some guidance on this point. They show that zeroth order
interpolation (stair step turbulence) causes aliasing to exactly cancel the effect of digi-
tization of the data as long as the turbulence is sampled at frequencies the same as or
lower than generation frequencies. This procedure was followed.

To illustrate mode! performances. a point “airplane’ was flown at constant
ground speed through the data. The prosram in Appendix G that implements this model
has a pair of “knobs”, one of which turns the turbulence up or down, and the other
turns the wind shear on or off. Hence, the JAWS data without turbulence, the turbu-
lence generated without JAWS data, or JAWS data with turbulence can be examined.

The point “airplane” path was selected ‘o begin at a point so that a true heading
of 35° carried the plane through the microburst ceater. A simulated ILS approach with
three degree glide slope was flown beginning at an altitude of 350 meters.

Figure 35 shows the east-west velocity component encountered in flight without
added turbulence. Figure 36 is the same flight path with turbutence added. Notice
that the length scales are decreasing toward the end of the flight as the plane approaches
the ground. The turbulence in this figure appea-s quite realistic (compare with Figure
2.

The traces of turbulence only are plotted in Figure 37. The data was sanpled
at a very high rate so that each data point was shown. Input parameters were arranged
for horizontal flight through the block in the east-west direction. The middle curve is a
plot of the points ix = 1-64, iy = 1, iz = |, the upper curve ix = 1-64, iy = 2, iz = |, and

the lower curve, ix = 1-64, iy = 32, iz = 32. The ftirst two adjacent curves are highly

- .o - - wld W D e P . - - -
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Figure 35. Easti-west JAWS velocity on a simulated ILS
approach (three degree glide slope).
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Figure 36. East-west JAWS velocity component plus turbulence on
a simulated ILS approach (three degree glide slope).
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Figure 37. Comparison of lines of turbulence from the simulated turbulence.

correlated. The third curve shows only slight correlation with the first two, as was
expected. These three traces siiow the kind of transverse (lateral and vertical) three-
dimensional correlation which was missing from previous one-dimensional turbulence
simuiations.
The storage requirements for this realistic three-dimensional simulation are not

as large as one might think, The July 14 JAWS case was provided on a 6] x 61 x 11
grid. For three velocity components and one second moment, the number of words is
163,724, The turbulence was stored on a 64 x 64 x 64 grid and with three components
the number of words is 262,144, The JAWS and the turbuleiice data were stored in
integer form in only two bytes, The total storage requirement is only slightly greater
than 850 kilobytes. The Perkin-Elmer 3250 minicomputer can be outfitted with 32
megabytes of central core storage most of which is available to the user. The conclu-

sion is that very sophisticated sim»lations can be performed on small computers.
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CHAPTER VIII. SUMM _.Y AND CONCLUSION

The characteristics of the spatial model can be summarized as follows:

1. The spatial model contzins three components of real wind shear varying over
space with corresponding c~.uponents of simt-lated turbulence also varying over the
three space dunensions. Bec ise wind and gust variation over the body of an aircraft
are available, all aerodynamic ioads and moments can be calculated.

2. The simulated turbulence is nonlinear, non-Gaussian, and conforms to the
von Karman three-dimensional spectral model.

3. Because of the conformance to the three-dimensional spectr., the model
contains cross-spectral information for each component,

4. By virtue of its three dimensionality, the spatial model permits flight simula-
tions of any maneuver without diminishing the validity of the simulation.

5. The model is highly flexible. Any flow field about which ensemble average
velocities, gust intensities, and turbulent length scales are known can be simulated.

The spatial niodel was implemented on a Hewlett-Packard F series minicomputer.
The three-dimensional turbulence was generated in a 64 x 64 x 64 block and showed the
three-dimensional correlation expected of it. The resulting turbulence when added to
the JAWS data resulted in a simulated wind trace virtuallv indistinguishable to the eye
from real data measurea with the B-57B aircraft.

An extension of the Houbolt-Sen cross-spectral model was presented and com-
pared with data from the Gust Gradient Program. The theoretical curves showed some
variation from the measured data. This variation is believed to be a probe effect, aliasing, an

effect of the nonfrozen nature of the turbulence, or a combination of the three factors.
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The spatial model requires one statistic not available from the JAWS data; the length
scale of turbulence, L. The effect of microbursts on distributions of L should be a subject
for future research. This research should include flight and laboratory measurements.
Flight measurements are required because of the inability to model atmospheric scale
Reynolds number in the laboratory. Laboratory measurements are required because of the
difficulty of locating and flying thrcugh a microburst. Although laboratory measurements
cannot provide quantitative results, they should provide trends.

Laboratory measurements can contribute significantly to the understanding of the
effect of topography on microbursts. The primary controlling parameter for microburst
shape is the Froude number which can be modeled very well in the laboratory. Topographic
effects in the JAWS data should be identified and carefully considered where the data are

used with the spatial model.
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APPENDIX A. MICROBURST RESEARCH IN THE LABORATORY

T'he dimensionless parameters gcverning microburst-type flows are the Reynolids and
Froude numbers (Re = VD/v, Fr = V/\/g_(—ﬁZﬁD_ , where § is the volumetric expansion
coefficient. For real-atmosphere microbursts typicai velocity and length scales are 10 m/sec
(downdraft) and 600 m (depth of out-flow). The atmospheric Reynolds number is then on
the order of 4 x i08. A typical microburst AT is 3 deg C which implies gBAT = 10 cm/sec:2
=0.1 m/secz. The atmospheric Froude number is then on the order of 1.3. The Froude
number exerts a strong influence on microburst shape while the Reynolds number affects
turbulent details of the flow. In the laboratory, the Froude number can be modeled quite
well, but the Reynolds number cannot. Let V] g =100 cm/sec, gBAT =100 cm/secz,
v=0.01 cmz/se:, and D=0.5 cm, Then Fr = 14, and Re = 5000. Hence very high Froude
numbers, or any smaller value can be achieved so that the shape of the microburst can
be accurately simulated in the laboratory. Turbulence in the flow will not correspond
quantitatively to that in the atmosphere but trends should be observable.

Intuitively, the higher the Froude number, the shallower the outflow depth.
The shallower outflow depth corresponds to an increased outflow velocity. The increased
outflow velocity and decreased depth creates a zone of intense shear which results in
increased turbulence production. Hence the Froude number has a secondary influence on
tusbulence. The Reynolds number affects turbulence and therefore turbulent mixing and
thus the momentum diffusivity. Higher values of momentum diffusivity result in
smoother velocity profiles (except near surfaces where viscous effects predominate) and
thus the Reynolds numbher has a secondary effect on microburst shape.

Figure 38 depicts a laboratory apparatus for studying microbursts. Saline solu-

tions with densities 19% greater than fresh water can be achieved at 20°C. A reasonable
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Figure 38. Laboratory “microburst” apparatus. }
]

working value for AT would be 10%. For normal laboratory work. one meter head

seems reasonable. This gives a maximum velocity of V = ﬁal- = 4 m/sec. If the
injector is constructed with a contraction, higher values of velocity can be achieved. The
valve controls the strength of the momentum source. The apparatus of Figure 38 can be
of any size and complexity depending on resources. The valve could be microprocessor

controlled with flowmeter feedback, for example. Velocity measureiients could be made

with hot wire or split film, laser Doppler velocimeter, or by particle photography
methods. Flow visualization could be achieved by means by Schlieren, shadowgraph,

interferometer, particle photography, hydrogen bubbles, or dye.
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Many of the questions posed previously could be studied with the apparatus of

Figure 4. The etfect of topography on microburst spreading should be modeled quite

well with the apparatus since Froude number scaling can be achieved. Some idea of the

effect of surface roughness can be accomplished also. Surface roughness affects the
surface layer immediately but eventually could affect higi.. . layers. Consider for the
moment Figure 39. The laboratory microburst center is at the center of ihe ~ircle.

The microburst front after a time is retarded by the increased roughness in the rough

sector. The retardation creates shear layers in the transition area between the rough and

stuooth surfaces. It the effect is marked enough, Kelvin-Helmholz instabilities could
be created. Variations of vorticity are observed in blowing dust associated with micro-

b ts.

ROUGH SECTOR

MICROBURST FRONT

>

‘L_/
_ |
Figure 39. Effects of surface roughness on microburst spreading.

By increasir. s head and hence velocities, variation of Reynold’s number can be
achieved in the laboratory model. The effect on turbulence characteristics could be
observed for changing Reynolds number. The turbnlence variations, i.e., length scales

- and intensities have crucial relevance to the wind simulation model. While differences
e
-
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will be observed between the laboratory turbulence and atmospheric turbulence, the

trends should be there. The importance of the trends or functional forms was

explained in Chapter V.
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APPENDIX B. THE THREE-DIMENSIONAL CHARACTER OF THE
VON KARMAN SPECTRA

As an example, conside: the three-dimensional von Karman spectrum for the

vertical velocity component.

Cl (V12 + V22)

by = (78)
33 [1+C, (vlz + ,22 + V32)17/6
where
401(3 2 445
T — g~ ' L
C] 9 ¥
and
Cy = (2maL)?

Defining p2 = vlz + v22, subs:ituting into (78) and solving for v3 gives the following

result.

2\ 6/17
C P 1
by =t (-1—) - 1] —-p% (79)
P33 &)

Equation (79) is the equation for surfaces of constant ¢33.

If Equation (79) is differentiated with respect to p, set to zero, and solved for p

the result is

6 \17/22 (Cy \3/17
p= (——— ) — . (80)
17C, $33
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For this value of p for a given value of ®33, ¥3 achieves its maximum value.

The maximum value of ®33 can also be determined for given Cy and C,. By
inspection of (78), the maximum value of ®33 occurs at v3 = 0, since f3 is a moni-
tonically decreasing function of ®33. The problem of finuing a maximum for ®33 is

reduced to finding the maximum value of ®33 defined by

Cl Pz

[1+C, p2117/6

Differentiating (81) with respect to p equating the result to zero, angd solving for p gives
p= [f— . (82)

Substituting this into the expression for ¢33 gives

A 6C/11C,
P33 =

(83)
[ +6/11117/6

Using 0 = 1 m/sec, L = 500 m in Equations (82) and (83) gives
p=176x 104 m!  and  d33=137 x 107 m/sec?

The maximum value of ¢33 occurs at a smal’ but nonzero value of p and has a large

but not infinite value.
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APPENDIX C. SUM OF COMPLEX EXPONENTIAL SERIES

In this study the following sum occurs frequently in derivations,
N-1

s=3 @) . (84)
n=0

The above summation is recognized immediately as a partial sum of the geometric series.

Equation (84) can | e rewritten in the following form.
o oo o0 o
S = Z (e10)n - E (e10)n = Z (610)11 - elBN Z (elﬂ)n
n=0 =N =0 =0

S= Y (eif)n (1 - 0N (85)
n=0
Equation (85) is true if the infinite scries converges. From complex variable theory it is

known that the geometric scries below converges if jz| < I,

= ]

G= n- __ 86
Z z | Y] ( )
n=0

In actual fact (86) converges everywhere in the closed icgion jz| & | except atz = X I,

Hence

| - elfN

S = 5 0+#0 37)
l-e

By direct substituiion into (84) S can be calculated at § = 0, and .

90
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APPENDIX D. DERIVATION OF PROPERTIES OF TRANSFORMED NOISE
The purpose of this appendix is the derivation of the 2xpressions summarized in
Table 3. In these derivations, x,, and X ny.ng,ng are assumed to be real white noise
such that E{x ;] =0, E[x?] = axnz, Elgxy] = oxn2 Smn» E X 1y gl =0,
o) 9 _ 2
Bl " nging) = 0™ and Elny iy n3Xmy mo.m3l = 0™ 8 my Omany Smany

The operator E[«] means the expected value of the variable in the parentheses and 8,

is the Kronecker delta, i.e., §,,, =0 form+#n,and 8, =1 ifm=n

Expression 1.

E[X, 1 =0
M-1
Xy = Z Xy e=i2mnk/M A,
n=0
M-1 M-1
E[Xy] = E Z X, e-i2mnk/M | _ Z Elx,] e-i2mnk/M Z
n=0 n=0
Expression 2.
M-1 M-l
-j2m(ny-ns)k/M
EXXi*1 = ) ) Elxq *n,1 € R @an?
n1=0 n2=0
M-1 M-l
= 2 5 -j21r(nl—n2)k/M A 2
- Z oXn nlnze ( I')
n1=0 n,=0

o, 2 M (an)?
n
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Expression 3.
Ml Ran kM o j2mns1/M
~j2mn +
E[XyX[*] =E Z Xn © )Ty E xnz o mnsl/ (Ar)2
n1=0 n2=0

M-1 M-1 > /M
= (Ar)2 Z : E["nl"n2] eJ m(nk-nal)/
n;=0 n,=0

M-1 M-1i

- 2 2 =j2n(n k~-ny)/M
(Ar) Z Z oXn 6n1n2 ¢ l
n1=0 ny=0

M-1
=(oy_an? ), ed2nk-Dn/M - (oy_Ar? by
n=0

Expressior 4,

M-1i M-1

Re? (X! = z xnl cos (2mny k/M) z xn2 cos (21m2k/M)(Ar)2
n;=0 ny=0

M-1 M-I
ElRe? (X1 = Y 3 Elxy, %p,] cos 2mnykiM) cos 2mnak/M) (an)*
n{=0 n,=0

M-1
= Z cosZ (2ank/M) oxn2 (Ar)2
n=0

M-1
2 0 1 4mnk
axn (Ar) z(:) -2-+cos M
n:

o, 2 (ar)? M-1
o M+ Re| Y kM
n=0

Mox 2 (Ar)2
n
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Expression 5.
M-1
) _ 2 .
E{lm* [Xy]] = oxk (Ar)2 2: sin? (2nnk/M)
n=0
_ 2 (Ar)?' Z _ cos (41mk/M)
Mo, 2 (ar?
-_-______.2 1-dpx -6M/2k
Expression 6.
M-1 M-1

E[Re[Xy ) Im(X)])

Y L Elxgxp,] cos 2anik/M) sin mngl/M) (An)?
nl'O n2~0

M-1 M-1i

)

Snlnw X, 2 cos (2mnyk/M) sin (2mn,)/M) (Ar)2
n1=0 ny=0

M-1
= 2 (Ar)2 Z cos (2mnk/M) sin 2mnl/M) =0
= b
By the orthogonality property of the sine and cosine functions
Expression 7.
Ml-—l M2-1 M3-1 ) nlkl n2k2 n3k3

-j2n + +
- M My Mj
EXy ksl = 2 2o Y. Elxyang) e
R2:%3 1:112-13

k1=0 k2=0 k3=0

X Arl Ar2 Ar3
=0
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Expression 8:

My My-l Myl (ng-nyh)  (ngalka (n3-fiz3lky
Ar ) A LS Ly .
. = 2 Fin T o ‘A l exp ']:ﬂ + N M
EfXg | koky )‘l‘chk:,k_;l = (4 ary Ay Z Z ZO [hnpnsay *nyngny M, s

n=u ny=0 ny=

IS

M-t Mgt Myl

-~ ~ 3 -
(ny-nylhy (nanath=  (n3-Agdky
2 - . - RAAS -
= “\n' (..\.r\ Arl AI:U: z Z Z() 6“\“] Bn:n: bny\:,t‘“’\‘ﬁ”{ t

+ e ———
M
n =0 ny= n3= My M2 3

s
= 0y “ (Ary any ary® My My My

Expression 9:

M-1 My-l Myl

ﬂ‘(k]-l‘) ﬂz(k:"z) n3(k3—|3)
- “ -~ e + 4
=0y ” Aty Ars)” E: exp [—1-7r —_— M
ElXk|.kak3 Xty ady! * O%n {ary an 213 350 ,:éo oot M, M, 3

My M2 M3

22 5
- (ary Ary Arp? 07 B Doy PRty

2 5
= [My My M3 °x,,2/("s, sy s3) ) Biyly Pghy Pkl

./
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Expression 10:

M=l Ma-l My-1 v 20k
2n ana <7 3n3
[(Re-(xk Kaky )| =(ary 8ry Ary oy » Z Z Z cos? (Qmnk My 4 My + My

n =0 ny=0 n3=0
n\k\ +n:kq naky
s |4 M, Ma M;

M-l M1 M3-1

My-1 Ma-1 M-

= (Arl Ar: Ar3 a‘n): z Z Z

"1=° n:=0 n3=0

o —
[T

Ml M« M}
={(Ar) Ary Arg 0 .

u\—

ny=0 ns

n3

5 Ml M: M3 . ) + 8 M: ,
= (ary any arg o, 1T ———=| 1+ \8gy, * 8Myi2k [ 0K: T ko | Boky * SM3i2k;
- A}

Expression 11:

M-l Ma-1 Mj-i

[ m (xk,k1k3 ] = (Arl Arﬂ Al’s OX )- Z Z Z

nl—O n2—0 n3—0

k) ngky n3ky
4t —
M] M: M3

Mi-1 Mqy-1 Ms-
i Myl Myl 1 nikp  mgky  n3<3

1 2
_(Al'] AHAI‘?'UX) Z Z z E-ECOS 4n M] +T+T3

n]—() n'1=0 n3—0

s
(Afl Arz Ar3 Ux“)’ M‘ M?_ M3
. 5 t-{oox * oy, S0k, * 8y

-?'—kz 2 k2

Re 3 exp (.,41: (n":l)) Zﬂup(ﬂ«(l‘;‘:)) Zzocxp(ﬂ‘h(

Tk

)
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Expression 12:

<} Moml Mgl
M-l Mp-1 My ngky  noky  ngks nl) n212+n3|3

2 ain | 2n + +—— lIx cos|2 + e
EIRe(Xy yoy ) InXp 1)l = @y Aty Az 4?25 2, 2 s TR T W ;
kkaky! 'mit sl Xp a0 130 150 1 2

(&)

M-1 My-1 M;-1
tox Arl ars ArJ)‘: 1 2 3 nl(k]-lll n:(k:-l:) n}(k3-l3)
s z E E exp | H2n + +
) 4 M, My M3
n=0 ny=0 n3=0 -

llllll-kl' nl(lz—kz) ll3(|3-k3}
4 exp [+ 32n + +

Nyihy 4+ Aslhatla) na(kqty)
IR R g2 31R3713 _exp l4y2n m m
M M; M3 Mi : 3

nl(k1+l‘)+ n:(k:ﬂz) . ﬂ3(k3*!3)

- -2
exp | =2n W, M- M3

R
(0\“ A Ara ary)-
L

y %kl Bty Bkl * ok, Bor; ok Sai, ok P01y

“ 81y Bkl Bky13 = ok, B0y ok, Pty ok, °m31
4
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APPENDIX E. ESTIMATE OF THE ONE-DIMENSIONAL SPECTRUM FROM
THREE-DIMENSIONAL SIMULATED TURBULENCE

This Appendix derives the result presented in Equation (65). The notation Ay =
M;-1
Avy Avy Avg is used and the conventionZis accepted to meanz:l
ki k;=0

["1"1 nyky "3“3]
+ +
M M Mg

j2n
winpngmg) = A% 2, 0.3 H(k,ky.k3) N(k ko .k3) €

ki ky k
I 22 %3 (89)

In the above expression N(k 1,k2,k3) is the transtormed noise and H(kl,kz,k3) is the
filter function corresponding to the desired output spectrum.
Define W as follows,
-j2m(1yny /N
j2m(liny /Np) Ary

W(ll,nz,n3) = Z w{np,ny,n3) e (90)

ny
Substituting Equation (89) into Equation (90) and rearranging gives
+

21r[
- My Mg N
W =243 ar) 203" " Hikpkyks) Nk kpks) e -Ze

ki ko k3 ny

W=2a3% ar 3 3 HOykykg) Niipky k) e
ky k3

With this result the variance of W becomes

E[W(;,nyn3)2] = (830 Ary 0)? ;; H(1; kp.k3) 12 2)
2 73

98
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where oy is the variance of the transformed noise and is given in Table 3 as

2
5 MMy Mz, ©2)
Ok =
2
(usl v52 u53)

The filter function is given in Equation (60) and is repeated here for convenience in

digital form.

Vsl V52 Vs3 ¢w(ll,k2,k3)

H(ll,kz,k3) = . 93)
n

Here H(ll,kz,k3) and <I>w(11,k2,k3) are taken to mean H(llAvl,szvz,k3AV3) and
o114y ,szvz,k3Av3) respectively,
Using Equations (92) and (93) in Equation (91) along with relations between sampl-

ing frequencies and grid spacing yields the following desired result.

~ -~ 1
E[W(ynpn3)121 = 8,1 = - 32 D Syl koky) Avy avy (94)
ky k3
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APPENDIX F. FROZEN TURBULENCE GENERATION IN THE
FREQUENCY DOMAIN

FTURB gencrates a three-dimensional block of turbulent velocities for either the
u(ll=1), v(II=2), or w(lI=3) components. Dimensionless sampling frequencies are
selected for each coordinate direction. v 1 = FS1, V52 = FS§2, and VSB = F83 in the pro-
gram, A typical value for these parameters is SO. The first executable statement in
FTURB is a call to a library routine LGBUF. The HP computer system this program was
run on has a limited I/O buffer and a call to LGBUF creates a buffer LBUF 128 - 16
bit words long so that records of this length can be read by the system. For other
systems without buffer problems the call to LGBUF can be removed along with the
dimensional array LBUF(128).

The file of transformed turbulence is created in a direct access disc file in records
128 - 16 bit words, The array being created is complex, and each complex number is
made up of four words, so each block contains 32 complex numbers. Storage can be
visualized as a one-dimensional array with index IX changing ‘:stest, I'Y, next fastest, and
I1Z slowest. Figure 40 depicts storage for a small block. In the block, each cell corres-
sponds to a storage location (logically) for one complex number. The 128 words are
stored physically in 4 - 32 complex word records.

Generation of the turbulence in the frequency domain requires access to lines of
the block of logical turbulence. For example, in the figure, say we want to get a line of
turbulence in the Z direction, say IX = 3, IY = 2, and IZ = 1 to 4. These indices corre-
spond to words 11, 43, 75, and 107. Routine FCHRP handles this chore.

Within the main program, the turbulence is generated according to the symmetry
relations of Table 2. Variances of the transformed turbulence real and imaginary parts
come from expressions 10 and 11 in Table 3. The (F1,0,0) loop corresponds to

100



symmetry relation § in Table 3. The (0,F2,0) loop corresponds to relation 6, the

(0,0,F3) loop to 7, the (F1,F2,0) loop to 8, the (F1,0,F3) to 9, the (0,F2,F3) loop to

101

10, and the (F1,F2,F3) loop to expression 11.
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LOGICAL STORAGE
Z
i 11 KT Ve [TV [ X7 | 104
Al eIV T TP | 103] -
ot [T 77 2t [T | 102 7
Al [ Ve[V ™ [ 101] T 11| A
P21 1517101 99 o8 mo’/ 10T X
a2 | 60 | T3] ~
AN (TY%TP || ~Tss| ~TaulTsl
e | o |00
6 Ts -1l
w0 || “{} 1 °
67 | a9 | &1 | 3 33{ s
Y AR AR RN R
RECORD 1
112(13]... e+ o|30]31]32
RECORD 2
33{34(35|. . . ¢« e+ .|62]63|64
RECORD 3
65/66|67}. . . .« e .|94195|96
RECORD 4
97!98(991. . . .« o [1261127]128
PHYSICAL STORAGE
Figure 40. Example of logical and physical storage for program FTURB.
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3 T=00004 18 OM CRUO0I3I UBINTG 0OUAY BLKS M=V

FTN4X,L
$FILESC0,2)

c

Cowona

PROGRAM FTURB

C PROGRAM FTURB: THIS PROGRAM CREATES TRANSFORMED 3-D TURBULENCE BASED

OO0

9999
9998
9997

9996

9995

9994
9993
9992

9991

9936
9985

N1MAX
N2NAX
N3MAX
FS1
Fs2
F§3

ON THE YON KARMAN SPECTRAL NMODEL.
EN TURBULENCE DATA BASE FOR THE TURBULENCE SIMULATION MODEL

VARIABLE DEFINITION:
MAXINUM NUMBER OF F1 FREQUENCIES

MAXIMUM NUMBER OF F2 FREQUENCIES

MAXIMUM NUMBEK OF F3 FREQUENCIES

F1 DIRECTION SAMPLING RATE (DIMENSIONLESS)
F2 DIRECTION SAMPLING RATE (DIMENSIONLESS)
F3 DIRECTION SAMPLING RATE (DIMENSIONLESS)
ICART = LOGICAL UNIT NUMBER OF THE DISC DRIVE

I1 = VELOCITY COMPONENT (1i=y,

DIMENSION LABLC10),LBUF(128)

COMPLEX X(512),Y(512)

ITS PURPOSE IS TO CREATE THE FKkO2-

2=V, 3=W)

COMMON N1M,NZM,N3M, INPUT, ICART

INTEGER®4 N1M,N2M,6N3M

CALL LGBUF(LBUF, 128>
INPUT = 1

ICART = 34

ROOT2 = S@kT(2.)
WRITEC INPUT, 9999)
FORMATC 1 1THOUTPUT LuU=?)
READ( INPUT,9998)> LUOUT
FORMATC I4)

WRITEC INPUT, 9997)
FORMATC 7HNINAX=?)
READCINPUT,9998) NiMAX
WRITEC INPUT, 9996)
FORMATC 7HNGMAX =7 )
READCINPUT,9998) N2MAX
WRITEC INPUT, 9993)
FORMATC 7HN3MAX=? )
READC INPUT,9998) N3MaX
WRITEC INPUT, 9994)
FORMAT(SHFS1=?)

READC INPUT,9993) FS1
FORMAT(F10.0)

WRITE( INPUT, 99%2)
FORMAT(SHFS52=2)

READ« INPUT,9993) F§2
WRITE( INPUT, 9991)
FORMATC(SHF§3=7?)
READCINPUT,9993) F§3
WRITEC INPUT, 9966)

THIS HP LIBRARY ROUTINE IS NECESSARY TO INCREASE 1/0 BUFFER SIZE.

FORMATC38H ENTER VELOCITY COMPONENT ¢1, 2, OR 3))

READC 1 ,9985) 11
FORMATC 1Y)
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NI = N1MAX

N2N = N2MAX

N3M = N3IMAX

MREC = NIMAXSNZMAXSNIMAK/32 i
MREC = N1MaN2M»N3IN/32 ]
WRITE(1,8087)> MREC )
FORMATC 7HMAXRZC=, 17,254 ENTER FILE TO BE OPENED)

READC1,8086)> CLABL(1),I=1,10) '
FORMATC 10R2)

OPENC ICART,FILE=LABL, IOSTAT=I08,STATUS="NEV ' ,ERR=99,RECL =256,
» FORM="UNFORMATTED ’ ,ACCESS='DIR’, MAXREC=MREC)

DFt = FS1/FLOAT(NINAX)

DF2 = F82/FLOAT(N2MAX)>

DF3 = FS3/FLOAT(NINAX) t
NiD2 = NiIMAX/2

N2D2 = H2MAX/2

N3D2 = NIMAX/2

DDDF = DFt#DF2+DF3 .
X1NAX = FLOATCNIMAX) :
X2MAX = FLOATCN2MAK) -
X3MAX = FLOAT(N3MAX)

FFF = FS1»FS2wFS3

SIGXK = SART(XIMAX*X2MAX#+XIMAKX/2. )/FFF

P = PHIU‘O0.,0.,0.,1I1)

SUM = P E
H = SQRTCFFF*P>

XC1)> = SIGXK*ROOTZ+H#CMPLXC(GRANC >, 0,)

C <F1,0,0> LOOP

c

25

c

30

C ¢0,F2,0> LOOP
c

DO 25 K1 = 2,N1D2
Fi = (FLOATCKY )=1. Y*DF1 ,
P = PHIUCF1,0.,0,,11) ‘ !
SUM = SUM +2.%F
H = SGRTCFFF«P) t
KCK1) = SIGHK#H*CMPLXC GRANC >, GRANC )
XCNIMAK=-K142) = CONJGCXCKY >)

CONTINUE B

Fi = Fi + DF1 ;

P = PHIUCF1,0.,0.,11) *

SUM = UM + P

H = SQRTCFFF#P)

RCNID2¢1) = SIGXK®ROOT2#+Ii#CHMPLXC GRANC ), 0. )

CALL FCiRPC2,1,NIMAX,1,1,1,1,%)

DO 30 K2 = 2,N2D2
F2 = (FLOAT(K2)~1.)sDF2
P - PHIU(O..FZ;O-;II)
SUM = SUM + 2.#P
H = SQART(FFF#P)
K(K2) = SIGXK*H*CMPLXC(GRANC >, GRAN( )
XCN2MAX-K2+2) = CONJG(X(K2))
CONTINUE
F2 = F2 « DF2
P = PHIUCOD. ,F2,0.,11)
SUM = SUM + P
H = SQARTC(FFFeP)
K(N2D2+1)> = SIGXKwROOT2uH#»CMPLX(GRANC >,0.)
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CALL FCHRPC(2,1,1,2,N2MAx%,1,1,X(2)>>

C ¢0,0,F3) LOOP
c

35

c

00 35 K3=2,N3D2
F3 = (FLOAT(K3)-1.)*DF3
P = PHIU¢O.,0.,F3,11)
SUNM = SUM + 2.»P
H = SQARTC(FFF=»P)
X(K3) s SIGXK*=H+=CMPLX(GRANC >, GRANC >)
K(NINAK-K3I+2) = CONJG(X(K3))
CONTINUE
F3 = F3 + DF3
P = PHIU(Y.,0.,F3,11)
H = SQRT(FFF*P)
X(N3D2+1) = SIGXK*ROOT2+*H*CHPLX(GRAN(>,0.)
CALL FCHRP(2,1,' 1,1,2,NT"MAX,X(2))>

C <(F1,F2,0)> LOOP

c

40

45

47

c

DO 45 Kt=2,N1D2
F1 = (FLOAT(K1)-1,)»DF1
00 40 K2 = 2,N2MaX
F2 = (FLOAT<(K2)>-1, »»DF2
P = PHIUCFt,F2,0.,11>
SUM = SUM + 2.»PF
H = SQRT(FFF»*P)
X(K2) = SIGXK#H+*CMPLX(GRANC( >,GRANC >)
YONZ2MAR-K2+2) = CONJG(X(K2))
CONTINUE
CALL FCHRP(2,K1,K1,2,N2MA%,1,1,%C2))
CALL FCHRP(2,NIMAX-K142,NIMAX-K: 72,2 ,N2Ma%X,1,1,¥Y¢2))
CONTINU:
Fi = F1 + DFt
D0 47 K2=2,N2D2
F2 = CFLOAT(K2)-1, )»DF2
P = PHIWF1,F2,0.,11)
SUM = SUM + 2,.»P
H = SQRT(FFFsF>
X(K2) = SIGXK+H*CMPLX<GRAN( >, GRANC >
XONZMAK-K2+2) = CONJG{X(K2))
CONTINUE
F2 = F2 +« DF2
P = PHIU(F'IFZIO'JI!)
SUM = SUM + P
H = SARTC(FFF=P)
X(N202+1) = SIGXK=ROOT2#H*CMPLX(GRANC),0,)
CALL FCHRP(2,N1D2+1,N1D2+1,2,N2MAX,1,1,X(2))

C <F1,0,F3)> LOOP

c

DO 55 K1=2,N1D2

Ft = CFLOAT(K1)-1, d»DFY{

DO S0 K322, N3MAX
F3 = (FLOAT(K3)>-1,)*DF3
P = PHIUCFY,0,,F3,11D
SUM = SUM « 2.»P
H = SART(FFF»i)
X(K3) = SIGRK=HeCNPLX(GRAN( >,GRAN{ D)
YC{N3MAX-K3+2) = CONJG(X{K3))

2 St
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CONTINUE
CALL FCHRP(2,K1,K1,1,1,2,N3MAX,X(2))
CALL FCHRPC(2, NtMAX-K1+2, NIMAX-K142,1,1,2,NINAX,¥Y(2))
CONTINUE
Fit = Ft + DFt
DO 5?7 K3 = 2,N3D2
F3 = (FLOAT(K3)>-1.)>*DF3
P = PHIUCFY,0.,F3,11)
SUM = SUM + 2.»P
H = SQRTCFFF=P)
X<K3) = SIGXK#H»CMPLXC(GRANC ),GRANC 3)
XCNIMAK-K3+2) = CONJG(X(K3))
CONTINUE
F3 = F3 + DF3
P = PHIUCFY,0.,F3,11)
SUM = SUN + P
H = SQRT(FFF»P)
X(N3D2+1) = SIGXK*ROOT2+H+CMPLX(GRAN(>,0.>
CALL FCHRP(2,N1D2+1,N1D2+1,1,1,2,N3MaX,X(2))

€ C0,F2,F3) LOOP
c

60

65

67

c

DO 65 K2s=2,N202
F2 = (FLOAT(KZ2)>-1,)*»DF2
DO 60 K3=2, N3MAX
F3 = (FLOAT(K3)>~1t,)*DF3
P = PHIUCD.,F2,F3,11)
SUM = SUM + 2.=P
H = SART(FFF=*P)
X(K3)> = SIGXK#H»CMPLXCGRANC 3, GRAN{ )
Y{N3MAX~K3+2) = CONJG(X(K3I)>)
CONTINUE
CALL FCHRPC2,1,1,K2,K2,2,N3MAX,X(2))

CALL FCHRP(2,1,1,N2MAX-K2+2,N2MAX~K2+2,2,NIMAX,Y(2))
CONTINUE

F2 = F2 + DF2
DO 67 K3=2,N3D2
F3 = (FLOAT{K3)>-1,)>*DF3
P = PHIWO.,F2,F3,11)
SUM = SUM + 2.#»P
H = SQRTCFFF=pP>
R(K3) = SIGKK+*H=CMPLX(GRAN( >, GRAN( >)
XCNIMAK-K3+2) = CONJIG(X(K3))
CONTINUE
F3 = F3 + DF3
P = PHlU(O-;F?;FJ;II)
SUM = SitM + P
X(N3D2+1) = SIGXK#H+*ROOT2+*CMPLX(GRAN(),0.)
CALL FCHRP(2,1,1,N2D2+1,N2D2+1,2,N3MAaX,X(2))

C (F1,F2,F3) LOOP
c

DO 300 Ki1=2,N1D2
F1 = (FLOAT(K?1)-1.)»DF!
DO 200 K2=2,N2MAK
F2 = (FLOAT(K2)>-1. *DF2
DO 100 K3=2,N3MAX
F3 = (FLOAT(K3)>-1,)»DF3
P = PHIUCFY,F2,F3,11)
SUM = SUM + 2.»F
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H = SQART(FFF»*P)
RCK3)> u SIGRK#H#-CHPLX(GRANC >, GRANC ))
YCNIMAK-K3I+2) = CONJG(XC(K3))
CONTINUE
CALL FCHRP(2,K1,K1,K2,K2,2,N3MAX, X(2))
CALL FCHRPC(2 . NIMAX-K1+2,NT1NAX-K1+2, N2MAX~K2+2, N2MAX-K2+2,
» 2,N3MAX, Y23
CONTINUE
CONTINUE
Fi = Ft + DF1
D0 350 K2=2,N202
F2 = {FLOAT(K2)>~1. >*DF2
DO 325 K3=2,N3NAX
F3 = (FLOAT(K3)>=-1, )*»DF3
P = PHIUWFI,F2,FI, 11D
SUM = SUM ¢+ 2.%P
X(K3) = SIGHK»HeCMPLXCGRANC ), GRANS ))
Y(NIMAX-K3I+2) = CONJG(X(K3))
CONTINUE
CALL FCHRPC2,N1D2+1,N102+1,K2,K2,.2,NINAX,X(2))
CALL FCHRP(2,N1D2+1,N1D2+1,N2MAX-K2+¢2, N2MAX~K2+2,2,N3MAX,Y(2))
CONTINUE
F2 = F2 + DF2
DO 375 K3=2,KR3D2
F3 = CFLOAT(K3)>~1,)»DF3
P = PHIUF:,F2,F3,11>
SUM = SUM + 2.»P
H = SQART(FFF»P)
X(K3) = SIGCRK+H»CMPLX{GRANC ), GRANC( ))
HCNIMAK-K3+2) = CONJGCHC(KID)
CONTINUE
F3 = F3 + DF3
P = PHIUCF1,F2,F3,11)
SUM = SUM + P
H = SQRTCFFF»P)
XC(N3D2+1) = SIGXK«H»CMPLX(GRANC ), 0.)
CALL FCHRPC(2,N1D2+1,NI1DZ+1,N2D2+1,N202+1 ,2,NIMAX X< 2))

VAR = SUM=DDDF

WRITECLUOUT,9990> Ni1MAX, NZMAX, N3MAX

FORMATC?7H NiIMAX=,14,2X,6HN2MAX=, 14, 2%, 6HN3MAX=, 14)
WRITEC(LUOUT, 9989

FORMATC /)

WRITECLUOQUT,9988> FS1,FS2,FS3

FORMATC(SH FS1=,F10.4,2X,4HFS2=,F10.4,2%,4HFS3=,F10.4)
WRITECLUOUT, 9989>

WRITECLUGUT, 9987 ) VAR

FORMAT(SH VAR=,F10.4)

CLOSEC ICART, I0STAT=105,ERR=99,STATUS="KEEP ')

STOP

WRITEC1,8888) 10S

FORMATC*IOSTAT ERRORS “14)

sTOP

END

- - - - - D - - - o —— - - o8 - D - —— P e WP - - - - o g

C FUNCTION PHIU:

C THIS FUNCTION CALCULATES THE 3~D VON KARMAN SPECTRAL FUNCYION PHIII
C IN NONDIMENSIONAL FORNM

c
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c F1,F2,F3 ARE THE 3 COMPONENTS OF SPATIAL FREQUENCY
c TLS IS THE TURBULENT LENGTH SCQLE
c .......... - - - - = - GP P ay D  E -.- - - - - - - - - - —-—

FUNCTION PHIUCF!1,F2,F3,I1>
A= 1,339
A4 = Aued
Pl = 4,=ATANCt ., )
FSQ = FieF1 + F2+F2 + F3#*F3
ARG = FSQ#(2,*PI=»A)s#2
DENOM = (1., + ARG)Y**(17,/6.)
IFCI1 .EQ. 1) THEN
FF = F1
ELSE
IFCI1 .EQ. 2) THEN
FF = F2
ELSE
FF = F3
ENDIF
ENDIF
PHIU = (440./79, )oP]I%232Aa4%(FSQ~-FF*»2 )/DENOM
RETURN
END

C SUBROUTINE: FCHRP (FETCH REPLACE) THIS ROUTINE READS OR WRITES
THE FOLLOWING (XONT, N2, N33, N1=NtMIN, N1NAY)
OR (X(N1,N2,N3),N2=N2MIN, N2MAK)

OR (X(Nf,N2,N3),N3=N3MIN, N3NAX)
FROM A RANDOM ACCESS DISC FILE.

. > A - e - — YD - D T D o = - - - - - — - - P = . - -

—

OOO0O00O0

9999

2%

SUBROUTINE FCHRP(IFOR,NIL,N1H,N2L,N2H,N3L,N3H, T
COMNON N1M,N2M,N3M, INPUT, ICART

COMPLEX T(1),2BUFF{(32)

INTEGER=4 IL,IH,N1M, N2M,N3M

INTEGER DIDN

IL = NIL+(N2L-1)=NIM+C(N3L-1 )*NZM=N1N
IH = NtH+(N2H=-1 )aNIM+(N3H-1 D)=NZM*NIM

NRECL = (1L-1)/32 + 1
NRECH = C(IH~1)/32 + 1

IBL = IL - (NRECL-1)>»32

DIDN = 0
IFCNIL .NE. NIH) DIDN = 1
IFCN2L .NE. N2H)> DIDN = NiNM
IFCN3L .NE. N3H) DIDN = NiM=N2M
IF(DIDN .NE. 0> GO TO 29
WRITEC INPUT,9999)>
FORMAT( 1 SHERROR FETCH 1)
sTOP

IS = ¢

1B = IBL

NSTEP = DIDN/32

IFCNSTEP .LT., 1) NSTEP = 1

e e e o= —— o —— ——. -,



U AR

S0

9998

—aaakw s

108 ORIGINAL PAGE 1S
OF POOR QUALITY

DO 100 IREC = NRECL,NRECH,NSTEP

READC ICART ,REC=IREC, 10STAT=105,ERR=99) (2BUFF(1),1=1,32)

IFCIFOR (E@. 1) TCIS) = Z2BUFFCIB)

IFCIFOR .EQ@. 2> ZBUFF(IB)> = T(1IS)

IS = I8 + 1

I8 = I8 + DIDN

IFCIB LE. 32> GO TO 50

IB = MODC(IB,32)

IFCIB .EQ. 0) IB = 32

IFCIFOR .EQ. 2) WRITECICART,REC=IREC,10STAT=10S,ERR=99)
(ZBUFF(I)3,1=1,32)

CONTINUE

RETURN

WRITECINPUT, 9996> 10S
FORMATC19HFETCH I0STAT ERROR ,13)
STOP

END

END$

e
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APPENDIX G. TRANSFORMATION OF FREQUENCY DOMAIN
“TURBULENCE” TO THE SPACE DOMAIN

Program FFT3D transforms the file created by FTURB to the space domain via
the inverse FFT. FFT3D contains a call to library routine LGBUF which was explained
in Appendix F. The transform is calculated by operating on small lines (one-dimensional)
from the data in the previously created file. This program is extremely memory efficient
but time inefficient. Core storage is minimal but numerous disc file reads and writes
are required.

The three-dimensional FFT is calculated using a simple one-dimensional FFT

routine. The three-dimensional inverse FFT is defined by
"lkl n2k2 ﬂ3k3

M;-1 My-1 M3l i + .

1 2 3 jom

ZZZ M M M

x(nl,nz,n3) = ii_h_dLM—- X(kl,kz,k3) € 1 2 3
17273 k120 kp=0 k3=0 05)

This equation is broken up into three groups of one-dimensional transforms as follows

M,-1
3
1 )3 j2r n3k3/Mj
A(kl,kz,k3) = Kf—l- X(kl,kz,k3) €
k3=0

(96)

The above procedure must be performed My x M5 times and is implemented in the K3

loop of the main program. The next operation is given in the following equation

My-1
2
1 27 nyk /M
B(ky,ng,n3) = = > Alkykgky) @ 2 2M2 ©7)
2 ny=0

This transform is performed M| x M3 times. The third operation is given by

109
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110
M -1
1
1 i2m nyk /M
x(nl,nz,n3)=M—1 > Blkyngng)e ) 1M (98)
k=0

and is performed My x M3 times in K1 loop. For a 64 x 64 x 64 array only 64 complex

words must be in memory at a given time.

now

L P
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3D T=00004 I8 ON CR00032 USING 00037 BLKS R=0000

FTN4X,L
$FILES(0,2)
PROGRAM FFT3D

Commmom= e mm e e a e mccem— e ———— s cet e —————————

C PROGRAM FFT3D: THIS PROGRAM CﬁLCULhTES A THREE DIHENSIONQL FFY IN
C PLACE FOR DATA RESIDING IN MASS STORAGE <(TYPE 1 DIRECT ﬂCCESS FILE)

DINENSION LABLC10),LBUF(128)
COMPLEX X(S12)
COMMON N1MAX,NZ2MAX, N3MAX, INPUT, ICART K1 ,K2,K3
INTEGER®4 NIMAX, N2MAX, NIMAX
CALL LGBUF(LBUF, 128>
INPUT = |
ICART = 34
ROOT2 = SQRT(2.)
WRITEC INPUT, 9999)
9999 FORMATC( 1 1HOUTPUT Lu=?)>
READC INPUT,9998) LUOUT
9998 FORMAT( 14)
WRITEC INPUT, 9997)
9997 FORMATS ?HNIMAX=?)
READC INPUT,9998)> NIMAX
WRITEC INPUT, 9996)
9996 FORMAT(7HNZ2MAX=?)
READC INPUT, 9998) N2MaAX
WRITEC INPUT, 9995)
9995 FORMAT( 7HN3IMAK=?)
READCINPUT, 9998) N3MAX
WRITEC INPUT,9994)
9994 FORMAT(SHFSt=?)
READCINPUT, 9993 FS1
9993 FORMATC(F16.0)
WRITEC INPUT, 9992>
9992 FORMAT(SHFS2=?)
READC INPUT, 9993) FS2
WRITECINPUT, 9991)
9991 FORMAT(SHFS3=?)
READC INPUT,9993) FS3
MREC = NIMAX*N2MAX*NIMAX/32
WRITEC1,8887)> MREC
8887 FORMAT(7HMAXREC=,17,25H ENTER FILE T0 BE OPENED)>
READC1,8886) (LABL(I),I=1,10)
86886 FORMATC10A2)
OPENCICART,FILE=LABL,10STAT=10S,S8TATUS="0LD "’ ,ERR=99, RECL=256,
» FORM="UNFORMATTED ‘' ,ACCESS="DIR *, MAXREC=MREC >
X1MAX = FLOAT(NIMAX)>
X2MAX = FLOAT{NZMAX)>
X3IMAX = FLOATCN3IMAX)
DF1 = FS1/X1MAX
DF2 = FS2/X2MAX
DF3 = FS3/X3MAX
N1D2 = NIMAX/2
N2D2 = N2MAX/2
N3D2 = N3MAX/2
DUDF = DF1+DF24DF3
FFF = FSIsFS2#FS3

Y
> T
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NiM = NIMaK
N2N = Na2MaXx
N3M = N3MAX
WRITEC!,6999)
6999 FORMAT("BEGIN K3 LOGOP")
c
C K3 LOOP

c
DO 200 Ki=1,NIMAY
DO 100 K2=1,N2MAX
WRITE(1,6998> K1,K2
6998 FORMATC" Ki="13" K2="I3"LA%)
CALL FCHRPC(1,K1,Kt,K2,K2,1,N3M,X>
CALL FFT(X,N3MAX, 1)
CALL FCHRP(2,K1,K1,K2,K2,1,N3M,%)>

100 CONTINUE
200 CONTINUE

c

C K2 LOOP

c

WRITE(1,6997)
6997 FORMATC "BEGIN K2 LOOP")
DO 400 Kist,NIMAX
DO 300 K3=1,N3MAX
WRITEC1,6996> K1 ,K3
6996 FORMAT( "K1="13" K3="13"%A")
CALL FCHRP(1,K1,K1,1,N2M,K3,K3,¥%>
CALL FFT(X,N2MAX, 1)
CALL FCHRP(Z2,K1,K1,1,N2M,K3,K3,X)

300 CONTINUE
400 CONTINUE

c

C K1 LOOP

c

WRITE(1,6993)
6995 FORMAT("BEGIN K1 LOOP")
DO 600 K2=1,N2MAN
DO J00 K3=1,N3MAX
WRITEC1,6994) K2,K3
6994 FORMAT("K2="I3* K3="]3"LA")
CALL FCHRP(1,1,N1M, K2,K2,K3,K3,X%)>
CALL FFT(X,NiIMaX, 1)
CALL FCHRP(2,1,N1M,K2,K2,K3,K3,X)>
S00 CONTINUE
600  CONTINUE
c

C MULTIPLY BY CONSTANT

c
WRITE(1,6993)
6993 FORMATC"MULTIPLY BY CONSTANT")
CONST = FFF
WRITEC1,5554)> CONST
5554 FORMAT("CONST=A"E12.5)
D0 950 K3=1,N3MAX
DO 900 K2=1,N2MAX
CALL FCHRP(1,1,N1M,K2,K2,K3,K3,¥X>
DO 800 J=i,NtMANM
XCJ) = X JICONST
800 CONTINUE
CALL FCHRPC(2,1,N1M,K2,K2,K3,K3,X)

e ————— e
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CONTINUE
CONTINUE
CLOSEC ICART,STATUS= ‘KEEP ', 10STAT=108, ERR=99)
STOP
WRITE(1,3555) 108
FORMAT(17HIOSTAT ERROR NO. ,I14)
sTOP
END

THE FOLLOWING CX(N1,N2,N3),N1=1,NINARK)
OR (X(Nl,NZ,N3),N2-1,N2HﬁX)
OR (X(N1,N2,N3),N3=1,NIMAX)

FROM A RANDOM ACCESS DISC FILE.

SUBROUTINE FCHRPCIFOR,NIL,N1H,N2L,N2H, N3L,N3H, T>
CONMON N1MAX, N2MAX ,N3MAX, INPUT, ICART K1 ,K2,K3
INTEGER#4 N1MAX,NZMAX,N3MAX, IL, IH

CONPLEX T<1),ZBUFF(32)

INTEGER DIDN

IL = NIL+CN2L-1)»NIMAX+(N3L~1 DaN2MAX*N 1 MAX
IH = NIH+(NZ2H-1)xN1MAX+(N3H-1 dsN2MAX=N | MAX

NRECL = (JIL-1)/32 + |
NRECH = (IH-1)/32 + 1

IBL = IL - (NRECL-1)>»32

DIDN = 0
IFCNIL .NE. NIH) DIDN = 1
IFCH2L .NE. N2HM)> DIDN = NiMAX
IFCN3L .NE. N3H) DIDN = NiMAX=N2MAX
IFCODIDN .NE. 05 GO TO 25

WRITEC INPUT,9999)

FORMAT(13HERROR FETCH 1)

sTOP

1§ = |
18 = IBL
NSTEP = DIDN/32
IFCNSTEP LT, 1) NSTEP = 1
DO 100 IREC = NRECL,NRECH,NSTEP
READ(ICART ,REC=IREC, IOSTAT=10S,ERR=99) (2BUFF(1),61=1,32)
IFCIFOR .EQ. 1) T(IS) = 2BUFF(1B>
IFCIFOR .EG. 2> ZBUFFCIB)Y = T(1S)
IF(1B.GT.32)> GO TG S00
IFCIB,LT. 1) GO TO 500
IFCIS.LT.1) GO TO 500
IFC18.GT7.512> GO TO 500
IFCCABS(TC(I8)).GT.1.E5)> GO TO 500
IF(CABS(ZBUFF{1IB>>.GT.1.ES) GO TO 500
GO TO 600
WRITEC1,7998> K1,K2,K3
WRITE(6,79968> K1,K2,K3
WRITEC1,?999) IB,ZBUFF(18B)>,618,T(IS)
WRITEC(6,7999> IB,ZBUFF(1IB),18,T(1S)

SUBROUTINE: FCHRP (FETCH REPLACE> THIS ROUTINE READS OR WRITES

AN

e
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FORMATC® ZBUFF( 15" )="2(X,E12.5)" T("IS")="2(X,E12.5))
FORMAT(" Ki1=*]IS* KQ=*]18* K3="15)

1§ = IS + 1

I8 = 18 + DIDN

IFC<1B .LE. 32) GO T0 30

IB = MOD(1B,32)

IFCIB .EQ. 0> IB = 32

IFCIFOR EG, 2) WRITECICART,REC=IREC, 10STAT=108,ERR=99>

(ZBUFF(I1),1=1,32)

114

CONTINUE

RETURN

WRITEC INPUT,9998)> 10S

FORMATC $9HFETCH IOSTAT ERROR ,13)
STOP

END

- - — - > - D T - D WY - - - -

COOLEY'S SIMPLE FFT PROGRAM--USES DECIMATION IN TIME ALGORITHM

% IS AN Nu2e»M POINT COMPLEX ARRAY THAT INITIALLY CONTAINS THE INPUT

ON OUTPUT CONTRINS THE TRANSFORH
PARAMETER INY SPECIFIED DIRECT TRANSFORM IF 0 AND INVERSE IF 1

SUBROUTINE FFTC(X, N, INV)
COMPLEX X(1)

COMPLEX U, W, T, CMPLX
INTEGER*»4 N

= COMPLEX ARRAY OF SIZE N--ON INPUT X CONTAINS
THE SEGQUENCE TU BE TRANSFORMED
ON OUTPUT X CONTAINS THE DFT OF THE INPUT

= SIZE OF THE FFT TU BE CONMPUTED--N=2+»M FOR 1 .LE,M.LE.13

= PARAMETER TO DETERMINE WHETHER TO DO A DIRECT TRANSFORM ¢ INV=0)
OR AN INVERSE TRANSFORM CINV=1)

M = ALOGCFLOAT(N)I/ZALOG(2.)> + .1
NV2 = N/2
NMi = N -~ 1
J =
DO 40 I=),NM!
IF (l1.GE.J)> GO TO 10
T s XD
XCJd) = XD
XI) =T
K = Ny2
IF (K.GE.J> GO TO 30
Js=sJ-XK
K = K/2
GO TO 20
J= Je+K
CONTINUE
Pl = 4.%aTANC1.)
DO 70 L=1,M
LE = 2wl
LEt = LE/2
Us=<«(1.,0,0.0)
¥ = CMPLX(COS(PI/FLOATCLE1)),-SINCPI/FLOATCLE)))
IF CINV.NE.O) W = CONJGCW)
D0 60 J=i,LE!



S50

60
70

8o
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00 50 Isy,N,LE
IP » | + LE1
T = XCIPOIwU
XCIP) = X(I) - T
KCI) = XXy + 7
CONT INUE
U= Uni
CONTINUE
CONTINUVE
IFCINV.EG.0) RETURN
00 80 I=1,N
XCID = XIX/CMPLXCFLOAT(N),0.)
CONT1NUE
RETURN
END
ENDS$

ORIGINAL PAGE 19
OF POOR QUALITY
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APPENDIX H. FLIGHT OF A POINT “AIRPLANE” THROUGH
WINDSHEAR AND TURBULENCE

Program JAWS?2 moves a point through the JAWS wind shear and generated

turbulence at a constant selectable ground specd. The “airplane” can fly a straight

horizontal, three degree glide slope approach, or three degree glide slope departure { . ..

path. Initial positions within both the JAWS data and the turbulence are selectable
through flight mode variables MODEF. Twn real variable “knobs”, JCON and TCON
permit an increase in turbulence or tumning on or off of the wind shear so that separate
components can be examined separately,

Interpolation procedures for this program were described in Chapter VII. The
interpolation for the JAWS data is handled by subroutine NTERP. Functions for the
calculation of turbulent length scales and gust intensity are handled by functions TLS
and SIGX, respectively. The demonstration functional forms of TLS and SIGX are also
described in Chapter VII.

Storage for the JAWS data is in ccell form as described in Chapter VII. The
turbulence is stored in 16 bit integers and are converted to real numbers by dividing
by 10000. Storage of the JAWS data is on disc unit 34 and the turbulence on disc

unit 37.

116
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2 T=00004 I8 ON CRO0033 USING 00058 BLKS R=0000

FTN4X, L

$FILES(0,2)

PROGRAM JAWS2

G mm e e m v o e o e e e e e e e e

C PROGRAM JAWS2: THMIS PROGRAM CALCULATES WINDS FOR A PLANE
C MOVING THROUGH THE JAWS DATA RET,

[ g}

C
c
c
c
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
C
C
C
C
C
C
c
C
C
C
c
c
c
C
C
C
C
C
C
C
c
c

PROGRAMMER: WARREN CAMPBELL
VARIABLE DEFINITION:

NBLPF = NUMBER OF BLOCKS PER FIELD

NBLPL = NUMBER OF BLOCKS PER LINE

JLINE = LINE NUMBER OF CURRENT CELL
I1BLIK = PRESENT BLOCK NUMBER

NX1 = NUMBER OF CELLS IN THE X DIRECTION
NY! = NUMBER OF CELLS IN THE Y DIRECTION
NZ21 = NUMBER OF CELLS IN THE 2 DIRECTION

XMIN = MINIMUM VALUE OF X <(KM)
XMAX = MAXIMUM VALUE OF X (KM)
YMIN = MINIMUM VALUE OF Y <KM)
YMAX = MAXIMUM VALUE OF Y (KM)
ZMIN = MINIMUM VALUE OF 2 (M)
ZMAX = MAXIMUM YALUE OF 2 (M)
DELX = X GRID SPACING M)

DELY = ¥ GRID SPACING (M)

DELZ = 2 GRID SPACING (M)

OELT = TINE STEP (SEC)>

IX = X INDEX OF CURRENT CELL
1Y = ¥ INDEXK OF CURRENY CELL
12 = 2 INDEX OF CURRENT CELL

IXT = X TURBULENCE IMNDEX

IYY = ¥ TURBULENCE INDEX

127 = 2 TURBULENCE INDEX

ITPT = NUMBER OF CURRENT TURBULENCE POINT

XT = DIMENSIONLESS TURBULENCE X LOCATION

YT = DIMENSIONLESS TURBULENCE Y LOCATICON

2T = DIMENSIONLESS TURBULENCE 2Z LOCATION

NIMHAX = MAX NUMBER OF TURBULENCE POINTS IN X OIRECTION
N2MAX = MAX NUMBER OF TURBULENCE POINTS IN Y DIRECTION
H3MOX = MAX NUMBER OF TURBULENCE POINTS IN 2 DIRECTION
FS1 = DIMENSIONLESS SAMPLING FREQUENCY IN Ft DIRECTION
FS2 = DIMENSIONLESS SAMPLING FREQUENCY IN F2 DIRECTION
FS3 = DIMENSIONLESS SAMPLING FREQUENCY IN F3 DIRECTION

TCON » TURBULENCE CONSTANT., LARGE VALUE ELIMINATES TURBULENCE,

JCON = JAWS CONSTANT. 1. FOR WIND SHEAR + TURBULENCE
0. FOR TURBULENCE ONLY

¥ = CURRENT X LOCATION <KM)

Y = CURRENT Y LOCATION (KM)>

2 = CURRENY 2 LOCATION <MD

VX = EAST-WEST IMERTIAL VELOCITY (POSITIVE ERST IN M SEC)

VY = NORTH-SOUTH INERTIAL VELOCITY (POSITIVE NORTH IN M SEC)
VZ = VERTICAL VELOCITY C(POSITIVE UP IN M/SEC)

X0 = INITIAL X VALUE (KM)

YO0 = INITIAL Y VALUE (KM)

20 = INITIAL 2 YALUE M)

HDG = MHEADING <DEGREES)
VGRS = GROUND SPEED (M/SEC>

L e
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9999
9998
9997

9996

9995

- 9994

9988

9993

9979

8999
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VAIRS = AIRSPEED (M.’SEC) OF POOR QUALITY
UWIND = EAST-WEST MIND SPEED (POSITIVE EAST IN M/SEC)
JUIND = NORTH-SOUTH WIND SPEED (POSITIVE NORTH IN M/SEC)
WUIND = VERTICAL WIND SPEED (POSITIVE UP IN MHSZC)

MODEF = FLIGHT MODE

t = MORIZONTAL FLIGHT
2 = JLS APPROACH <3 DEGREE GLIDE SLOPE>
3 = TAKEOFF (3 DEGREE GLIDE SLOPE)
CELL = ARRAY CONTAINING CORNER POINTS FOR PRESENT FIELD IN
PRESENT CELL
ICELL = CURRENT CELL NUMBER
ICUBL = CURRENT CELL NUMBER MWITHIN BLOCK ¢(1-16)
I1CB = BEGIHING INDEX OF CELL WITHIMN BLOCK (1,9,17,ETC.)>
ICE = ENDING VALUE OF CELL WITHIN BLOCK = ICB+7
XC = X VALUE WITHIN CELL < O0-DELX)
YC = ¥ VALUE WITHIN CELL <0-DELY)
2C = 2 VALUE WITHIN CELL <O0-DELZ)
T = TINE
NPTS = MAXIMUM NUMBER OF POINTS TO BE CALCULATED. THIS IS A
MEANS OF TERMINATING THE PROGRAM EARLY FOR DEBUGGING
PURPOSES.
IPT = NUMBER OF THE PRESENT POINT BEING CALCULATED
SIGHX = MAXIMUM VALUE OF GUST INTENSITY

- 0 - S - R % A S e L . — . —— - - - ——— -

DIMENSION LBUFF(128)>,IAC128), NAMEC 10),LABELC40>,CELLC8), ITTC(128)
COMMON DELX,DELY,DELZ,D3,SIGHMX
REAL JCON
INTEGER=4 JCELL, ITPT,NIMAX, N2MAX, N3MAX
CALL LGBUF(LBUFF,128)
Pl = 4.¢ATANC1.)
WRITE(1,9999)
FORMATC "ENTER FILE TO BE OPENEDA")
READC1,9998) (NAMEC(1),1=1,10)
FORMATC 40A2)
WRITEC1,9997)
FORMATC "ENTER FLIGHT MODEA*/
» 1 = HORIZONTAL FLIGHT"/
- 2 = ILS APPROACH (32 DEGREE GLIDE SLOPE)>"/
. 3 = TAKEOFF (3 DEGREE GLIDE SLOPE)>*)
READC 1 ,*) MODEF
WRITEC(1,9996)
FORMATC "ENTER CONSTANT GROUND SPEEDQ")
READC(1,®) VGRS
WRITE(1,9995)
FORMAT( "ENTER TRUE HEADING IN DEGREESA")>
READC1,e) HDG
MRITEC( 1,9994)
FORMAT "ENTER INITIAL POSITION (X0,Y0,20)> IN <(KM,KM,M)8")
READC1,=)> X0,Y0,20
WRITE(1,9988)
FORMATC "ENTER DELTA T IN SECONDSS*>
READC1,=)> DELT
WRITEC1,9993)
FORMAT "ENTER TAPE MEARDER <(40A2)3")
READC1,9998) C(LABELC(1),I=1,40)
WRITE(1,9979)
FORMATC "ENTER MAXIMUM NUMBER OF POINTS3™>
READC1,#)> NPTS
WRITE(1,8999)
FORMAT( "ENTER JCON, TCON4™)>

g 4 TR AP a4k v s o T < . 1 b e -
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9937
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READC1,*)> JCON, TCON

WRITEC(1,8998)

FORMATC "ENTER N1MAX,N2MAX, N3MAXA")

READC1,5)> NIMAX, NZMAX, N3MAX

WRITEC1,8997)

FORMATS "ENTER FS1,FS2,FS33")>

READC1,%) FS: ,FS2,FS3

XTMAX = NIMAX/FS!

YTMAX = N2MAK/FS2

ZTHAX = NIMAX/FS3

WRITEC1,8995)

FORMAT( "ENTER XTU,YT0,2708%)>

READC1,%) XT0,YT0,270

WRITEC,??277)

FORMATC"ENTER SIGMXA™)

READ(1,#)> SIGNX

WRITE(8,9998)> (LABEL(I),I=1,40)>

WRITE(8,9992)> MODEF

FORMATC* FLIGHY MODE = “12)

WRITE(S8,9991) HDG

FORMAT(" TRUE HEADING = "Fé6.t" DEGREES")
URITE(B,9990> VGRS

FORMATC(™ INERTIAL HORIZONTAL VELOCITY="F8.0" M/SEC")
URITE(8,9989)> X0,Y0,20

FORMATC(" INITIAL POSITION: X0="F8.2" kM Y0="F8.2" KM 20="
- F6.0" N*)>

WRITE(8,8994¢)> XT0,Y70,270

FORMAT(* XT0="F8.3" YT0="F8.3" 2T0="F8.3)
WRITECS8,9987)> DELT,TCON

FORMATC(* TIME INCREMENT = “F8.3" SECONDS TCON="E12.4)
OPEN( 34,FILE=NAME, STATUS="0LD ", IOSTAT=10S, ERR=99
#» ,ACCESS='DIR‘,RECL=2356, MAXREC=7201)
URITEC1,8996)

FORMATC "ENTER TURBULENCE FILE NAMEA®)

READC 1,9998)> (NAMEC(I),1=1,10)

OPEN( 37, FILE=NAME, STATUS="0LD ", I0OSTAT=10S, ERR=99
* ,ACCESS= ‘DIR’,RECL=256, MAXREC=2048)
RFAD(34,REC=1, I0STAT=10S,ERR=99) (IACI), I=1,16)
NXt = J&(1) - 1§

NYt = IAC2) - 1

NZ1 = IA(3) -

XMIN = IA(73/100,
XMAX = JAC8)/100,
DELX = IA(9)

YMIN = IAC103/100.
YMAX = IAC11)/100.
DELY = 1a<12)
ZMIN = JAC13)
ZMAX = JAC14)

DELZ = JAC15)

D3 = DELX«DELY#DELZ

WRITE(8,9986)> XMIN, XMAX

FORMATC " XMIN="F8.2" KM XMAX="Fg8.2" KM")
WRITE(8,9985) YMIN, YMAX

FORMAT(® YMIN="F8,2" KM YMAX="F8, 2" KM")
WRITE(S8,99684) ZMIN, ZMAX

FORMATC( " ZMIN="F8.2" KM ZMAX=*F8.2" KM')>
WRITECS8,9983)> DELX,DELY,DELZ

FORMAT(* DELX="F6.0" M DELY="F6.0" M DELZ="F6.0" M")
WRITE(&,9960> NPTS
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9960 FORMAT(™ MPYS=*15)
WRITE(8,9982)
9982 FORMAT(BX*“T"IX"X X"y X “Z*PK"UWIND"SX"VHIND*SX"WWIND"5X
»*YAQIRS")

Conrsnamnnrns CALCULATE # OF BLKS PER LINE AND # BLKS PER FIELD wrxeswsx
IFCHODC(NX1,16) .EQ@. 0) THEN
NBLPL = NX1/16
ELSE
NBLPL = NX1/16 + 1
ENDIF
NBLPF = NBLPL*NY1#*N21

Coennedes CALCULATE VYX,VY,VZ wrwbmhwkp
THETA = PI#HDG/180,
VX = YGRS*SINCTHETA?
VY = YGRS»COSCTHETA)
IFCMODEF .EQ. 1) THEN
¥Z = 0,
ELSE
IF(MODEF .EQ. 2) THEN
¥2 = -YGRS+*TAN(3.»P1/180.)
ELSE
¥Z = YGRS+TAN(3.»P1/180.)
ENDIF
ENDIF

Cunwks INITIALIZE POSITION AND TIME asasnnnn

Ceswwen CALCULATE CURRENT CELL INDICES, IX, 1Y, 12, IXT, ETC. w#waes
S0 IX = 1000.%(X - XMIN)’DELX + 1
IV = 1000.2(Y - YMINJ/DELY + 1
12 = (2 - ZMINDY/DELZ + 1
IFCXT LGT. XTMAX) XT = XT - XTMAX
IFCYT .GT. YTMAX) YT = YT - YTHMAX
IFCZT .GT. 2TMAX) 2T = 2T - 2ZTHMAX
IFCXT LT, 0.) XT = XT + XTMAX
IFCYT LT, 0.0 YT = YT + YTMAX
IFC2T LT, 0.) 2T = 2T + 2TMAX
IXT = IFIX(XT#FS1) + 1
IYY = IFIXCYT#FS2) + 1
I2T = IFIXC2T*FS3) + |

D WRITEC(S,5000) IXT,IYT,I12T
5000 FORMATC™® IXT="]5" IYT="I5" 12T7="13)
b WRITE(6,5001)> XT,¥T7,27

5001 FORMATC* XT="F8,3" YT="FB8.3" ZT="F8.3)
ITPT = IXT + (IYT~1)sNIMAX + (I12T~1IsN2MAX*NINAX
IFCMODCITPT,128) .EQ. 0) THEN
ITBLK = ITPT/128
ELSE
1TBLK = ITPT/128 + |
ENDIF

. - i e e mapE—— e
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IPUB =» 1TPT - (ITBLK-1)s128
WRITE(S,5005)> ITPT,1TBLK

5005 FORMATC(® ITPY="18" ITBLK=*15)

Coamwnn

100

(/]

CALCULATE UUIND wesx
ICELL = IX + NX1»C(IY-13 + (IZ-1)>eNX12NY1
ILINE = 1Y + (12-1)=NY{
IF(MODCIX, 15> .EQ. 0) THEN

ICWB = 16
IBLOK = (ILINE-1)NBLPL + IX/16 + 1
ELSE

ICéB = MODCIX,16)
IBLOK = (ILINE-1)#NBLPL + IX/16 + 2
ENDIF
READ( 34 ,REC=IBLOK, IGSTAT=10S,ERR=99) (IAC(]1),1=1,128)>
ICB = (ICWB-1)#8 + {
ICE = ICB + 7
IC = 1
DO 100 IB=JCB. ICE
CELLCIC) = JACIBO/100.
IC = IC +
CONTINUE
READ( 37, REC=1TBLK, IOSTAT=10S,ERR=99) CITT(1),1I=1,128>
IFCJCON .LT. 0.0601)> THEN
UTRB = ITTCIPWBY»/(10000.»TCON)
ELSE
UTRB = ITTCIPUB)*SIGX(X.Y,2)/¢10000.+«TCON)
ENDIF
XC = 1000.%CX-XMIN) - C(IX~-1)eDELX
YC = 1000.%CY-YMIN) ~ C(1VY-1)=DELY
2C = 2 - ZNIN ~ <12-1)»DEL2
CALL NTERPC(CELL,XC,YC,ZC,UUIND>
UWIND = JCON*UWIND + UTRE
WRITECE,5003) SIGX(X,Y,2),UTRB

5003 FORMATC(* SIGX="F8.3* UTRB="F8.3)

(of T 1 21
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CALCULATE VWIND »xnaw
IBLOK = IBLOK + NBLPF
READ( 34,REC=IBLOK, 10STAT=10S,ERR=299) (IA(1),1I=1,128>
IC =
D0 125 1B=ICB,ICE
CELLCIC) = ac1B>/100.
IC = IC + 1
CONTINUE
CALL NTERP(CELL,XC,YC,ZC,VYWIND)

Coannnrn CALCULATE W weeexn

150

IBLOK = IBLOK + NBLPF
READC 34, REC=IPLOK, I0STAT=108,ERR®»99)> (IAC1),1=1,128)
IC =
DO 150 1B=1CB, ICE
CELLCIC) = IACIBY/100.
I1C = 1C + 1
CONTINUE
CALL NTERP(CELL,XC,YC,ZC,WWIND>

Casenns CALCULATE ARIRSPEED #wknw

YAIRS = YGRS - UWIND*SINCTHETA)> ~ VWIND*COSC THETA)D

Conwnn WRITE RESULTS wandw

?®
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WRITE(8,9981) T,X,Y,Z2,UNIND, VWIND, WW.ND, VAIRS
9981 FORMAT(SX,F6.2,7¢2X%,FB.2))>
Conunn NCREMENT TIME AND POSITION s#nuux
T « DELT
X ¢ VYX«DELT/1000.
Y + VYoDELT/1000.
2 + VZeDELT
XT = XT + UX»DELT/TLS(X,Y,2)
YT = YT + VYSDELT/TLSC(X.Y,2)
2T = 2T + VZ2eDELT/TLS(X,.Y,2)

IFCIPT .LT. NPTS)> THEN
IPT = IPT + 1
GC TO 2590

ELSE
ENOFILE 8
CLOSE(34,STATUS="KEEP*, 10STAT=10S,ERR=99)
CLOSE(37,STATUS= ‘KEEP ‘', I0STAT=1CS, ERR=99)
STOP

CNDIF

250 IFCCK.GT.XMIN .AND., X.LT.XMAX) .AND.
* CY.GT.YMIN .AND. Y.LT.YMAX)> .AND.
] (2.GT.Z2MIN .AND. Z.LT.ZMAX)>)> THEN
GO TO So
ELSE
ENDFILE 8
CLOSE(34,STATUS="KEEP ‘', 10STAT=10S,ERR=99)
CLOSE(37,8TATUS="KEEP‘, 10STAT=10S,ERR=99)
ENDIF
STOP
99 WRITE(1,9980> I0S
9980 FORMAT("IOSTAT ERROR #4"14)
END

FUNCTION TLS(X,Y,2)

C FUNCTION TLS: TURBULENT LENGTH SCALE FUNCTION. FUNCTIONAL VALUE
C IS FROM ED41 TERRESTRIAL ENYIRONMENT DOCUMENT,

(e e e m e e e c e c e ——————————— e e - ——— - ————

TLS = 31.54(2/18.3)#%0,64
RETURN
END

FUHNCTION SIGX(X,Y,2)

C FUNCTION SIGX: THIS ROUTINE CALCULATES THE U TURBULENCE
C STANDARD DEVIATION FOR THE JAUWS JULY 14,1982 CASE.

COMMON DELX,DELY,DELZ,D3,SIGMX

(50505 0 0 050 o o 00 0 0 0020 00 o o0 0 00 0 oo O A R RSB R R TR R
C ¢(XCTR,YCTR) ARE THE COORDINATES OF THE MICROBURST CENTER
C IN KILOMETERS.
(090 0 0 500 5000 0 0 200 oo o oo 0 o0 0 oo o 0 0 o o o 0 e o 0 e o 0 o0 o o ol o o oo s
XCTR = 14.2
YCTR » ~-1.5
R = SQRTC(X-XCTRI##2 - (Y-YCTR)I®»*2)

-~
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Coamu st 1o e o0 e o o0 a0 0 200 00 0 e 3 000 20 o 0 0 o 000 o o e o R0 8 0 2 0 o o a2 o o 0 R
C CALCULATE THE XY FACTOR. THIS 1S BASED ON B-578 MEASUREMNTS
C FROM THE SAME DATE. THE 57 ENCOUNTERED THE UPPER PART OF A
C MICROBURST AND EXPERIENCED A DECREASE IN TURBULENCE AS IT PASSED
C THROUGH THE DOWNDRAFT. FOR THE SANE RUN THE AVERAGE OF SIGX,SIGY,
C AND SIGZ WAS ABOLT 6 M/SEC. FXY CAUSES A DECREASE IN SIGX OF
C ABOUT 6 AWAY FROM THE OUTFLOW CENTER, AND 3 IN THE CENTER. ANOTHER
C TERM IN FXY CAUSES SIGX YO DECREASE TO EXP(-.5) AT A DISTANCE OF
C S KM. THIS IS IN KEEPING WITH A DECREASE IN TURBULENCE AWAY FROM ,
C WIND SHEAR. ;
Cotrabraksskeafe st afe s ol o ol ofe o oo s s o 3 o o o s a3 2 e ol e o o 0 2 o s e e e o o oo e e o o o e e o e oo ol ol sl obe oo ok ok sk ok o

FXY = CSIGMX ~ .S#SIGMX#EXP(-R#R/(C .75%%242,)))#EXP(~R*R/S50. )

IFCZ .GT. 300.)> THEN

F2 = EXP((2-300.)/200.) ;
ELSE
F2 = 1,

ENDIF

SIGX = FXY#F2

RETURN

END

SUBROUTINE NTERP(CELL,XC,YC,2C,V¥)

DIMENSION CELLC1)
COMMON OELX,DELY, DELZ,D3,SI1GMX :
PHI1 = (DELX-XC)»{DELY-YC)*(DEL2-2C)>/D3 )
PHI2 = XC»(DELY-YC)>»(DELZ-2C)/D3

PHI3 = XCsYC»(DEL2-2C)>/D3
PHI4 = (DELX-XC)>sYC#(DEL2-2C)/D3

PHIS = (DELX-XC)*{DELY-YC)>»2C/D3

PHI6 = XC»(DELY-YC)>»2C/D3

PHI7 = XCeYC»2C/D3

PHI8 = (DELX~-XC)>»YC»2C/D3

V » PHITSCELLC1) + PHIZ#CELLC(2) + PHI3*CELL(3) + PHI4*CELL(4>
# + PHISHCELLC(S)> + PHIG6#CELLC(6) + PHI7#CELL(7) + PHIS+CELL(8)
RETURN \
END ;
ENDS
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