
NASA Technical Memorandum 84402

An Explicit Predictor- Corrector
Solver with Applications to Burgers'
Equation
Suhrit K. Dey and Charlie Dey

September 1983

NASA
National Aeronautics and
Space Administration



NASA Technical Memorandum 84402

An Explicit Predictor-Corrector
Solver with Applications to Burgers'
Equation
Suhrit K. Dey, Ames Research Center, Moffett Field, California
Charlie Dey, Country Lane School, San Jose, California

NASA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field. California 94035



AN EXPLICIT PREDICTOR-CORRECTOR SOLVER WITH APPLICATION

TO BURGERS' EQUATION

Suhrit K. Dey and Charlie Dey*

Ames Research Center

SUMMARY

Forward Euler's explicit, finite-difference formula of extrapolation is used as
a predictor and a convex formula as a corrector to integrate differential equations
numerically. An application has been made to Burgers' equation.

INTRODUCTION

The single-step, explicit, forward Euler scheme is possibly the simplest algo-
rithm with which to solve initial-value problems. However, it has very restricted
stability properties which require small step sizes so that, this formula of extrapo-
lation may be useful. Implicit schemes, in which large step sizes may be used, have
better stability properties. But iterative methods are generally used for computa-
tional solution. Most predictor-corrector algorithms require multistep operations
in which correctors use iterative methods for convergence.

In this work, a filtering formula has been introduced by the second author so
that extrapolated values obtained by an explicit formula may be appropriately cor-
rected using one iteration which requires no computation of derivatives or inversion
of a matrix. Mathematically, the corrector introduces a convex mapping, and as such
it may be called a convex corrector. The explicit formula of extrapolation used in
this work is the forward Euler difference scheme. Linearized stability analysis by
Lomax (private communication) showed that the method is stable for step sizes that
could be much larger than those required for stability of the forward Euler scheme.
This will be discussed further on. With regard to the solution of nonlinear models,
the limitations of this scheme are still being investigated.

Let us first develop the algorithm, discuss its stability properties, and look
into some of its simple applications.

THE ALGORITHM

Let us consider an initial-value model

(1)
u(t ) = u

O o
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The forward Euler scheme is:

where At = time-step

U = U + At f(U ,t ) (2)
n+1 n n' n

U = U(t ) = the net function corresponding to u(t )
n n n

We may now set up a predictor-corrector formula as follows:

U = U + At f(U ,t ) (predictor) (3)
n n n

= (1 - Y)U + Y[Un + At
 f(U,tn+i)] (corrector) (4)

Gamma is herein called a filtering parameter. Here we have restricted Y to

0 < y < 1 (5)

Thus, Y is essentially a convex parameter. If y = 0, Un+, = U. The corrector is
ineffective.

If the model (eq. (1)) is linear, then for'a given step size it may be possible
to find a Y such that the method could be effective. If the model is nonlinear, it
may be locally linearized to obtain a Y (for a given step size) so that the method may
remain effective. This stability analysis, done by Lomax (private communications),
is our next topic of discussion.

STABILITY ANALYSIS

Let us consider a simple linear model:

du

(6)
j = Au
dt

u(t ) = u
o o )

If we combine equations (3) and (4) for this model we get

Vl = (1 + Z + Y*2)Un

where z = AAt. Since A may be complex, so is z. It is well known that for
stability

|o| < 1 (8a)

where

a = 1 + z + Yz2. (8b)

Using z as z = x + iy, a complex variable, when we plot the equality part of
equations (8) in a complex plane we get a stability contour for a given value of Y-
Some of these stability contours (drawn by Lomax) have been shown here in



the figures 1-3 for y = 0.095, 0.175, and 0.25, respectively. Outside these
stability contours, the inequality (eqs. (8)) is not valid and as such the algorithm
(eq. (7)) is unstable.

If we set y = 0, we get the stability contour for the forward Euler method.
.This represents a unit circle passing through the origin and x = -2. (This is
included in fig. 3). These contours show that knowing X, which must be real (in
this case), and At, we can choose a y such that the method will remain stable.
This scheme will be demonstrated in some simple examples. First we will do the
truncation error analysis.

In order to make a simple analysis of truncation error we consider a simple
linear model as follows:

The present scheme is

s- = Au + a ., u(0) = u . (9)
dt o

u = un + zun '+ Ata + (TE)(n) (10)

un+1 = (1 - y)u + y[un + zu + aAt + (TE)(n)j (11)

where z = AAt, (TE)̂ n' = 0(At2) = truncation error at tn. We know that
lim (TE)(n) = 0. This gives the consistency of the forward Euler scheme (eq. (10)).

At-K) •

We will now examine how errors for the combined scheme behave as At -»• 0.

Combining equations (10) and (11) we get

un+1 = (1: + z + Yz2)un + (1 +\yz)Ata + (1 + yz)(TE)(n) (12)

The term, neglected in the algorithm, is (1 +yz)(TE) , which tends to zero as
At,-*- 0. • . . ;

. We may study now the accuracy of the steady-state solution. Let us consider
equation (9) again. The steady-state solution is

.' ' - . ' - . . . . • ' •' • u = -a/A '. • - . ; (13)

.Neglecting the truncation error part in equation (12) we get

. . ' Un+1 = (1 +. z + yz2)Un + (1 + yz)Ata . (14)

where U = the net-function corresponding to u .

. At the steady-state condition, U = U . Thus, from .equation (14), at
steady-state .

TTn (1 + yz)At a , . .
U = - ,. ' . • a = - — (z = AAt)

z(l + yz) A

Thus, the present numerical scheme leads to the same analytical steady-state solution
as the one given by the differential equation itself.



. ;•:-,' ,' :;...-, ... . • . APPLICATIONS

Let us. consider two simple applications, one linear and the other nonlinear.

Application No. 1: '

. . -:. 77 = -I00(u - sin t) + cos t I

. dt. : . : • (15)

.. .u(0) = 0 )

The analytical solution is given by . ' ' • " .

\ . :. ... . . • ' • ' . . • • u = sin t . (16)

Here: X = -100. If we choose At = 0.1, z = XAt = -10.0. From figure 1, z = -10
is within the stability contour, for y.= 0.095. The computational results obtained
here are given in table 1..

Obviously, if we set y = 0,.the method reduces to the forward Euler scheme
which was unstable for At = 0.1. There is an interesting phenomenon here: if we
reduce the step size and choose At =.0-.06, then z = XAt = -6.0 which is exterior
to the stability contour for Y = 0.095. Thus, the method must diverge. This has
been verified computationally.

Application No. 2: .

(17)

u(0) = • . " ' " . . '

The analytical solution 'is given by .

: • .' u(.t)'= [1 + exp(-50t)]1/2 (18)

Obviously, lim u(t) = 1 which gives the steady-state solution.

To obtain the value of X we may linearize the model near t = 0. Here,

f(u,t) = -25(u - 1/u) .

X = ~ = -25(1 +1/2) = -37.5
. • . du I . • •

Ju=u0 . .

Choosing At = 0.1, z = XAt = -3.75. Now, according to figure 1, if we choose
y = 0.095, since z = 3.75. is outside the contour of stability, the method must
diverge (verified computationally). But z = -3.75 is well within the contour of
stability for y = 0.175.(fig. 2). Computational results for this case are given in
table 2. ; ' .



BURGERS' EQUATION

One primary objective in this work is to see how effective the method could be
with regard to the solution of mathematical models represented by nonlinear partial
differential equations. A very common test problem for numerical methods is Burgers'
equation, which is

3u/3t + u 3u/3x = v 32u/3x2. (19)

This is a nonlinear, parabolic, partial differential equation and as such its solu-
tion has a special significance in applied mathematics. Since, in general, closed-
form solutions of this equation that are subject to a given set of initial-boundary
conditions are difficult to obtain, the equation is solved numerically.

We tested the effectiveness of our algorithm with regard to solution of
equation (19) subject to three distinct sets of initial-boundary conditions. Some of
our findings will be discussed now.

Let us approximate U(- by the forward Euler difference formula and the space
derivatives ux and uxx by central differences. The explicit finite-difference
predictor is then

U. = Un + a Un(Un , - u" ) + b(Un - 2Un + u" ) (20)
J J J J-l J + l J-l J J + l

where
Un = U(x ,t ) = the net function corresponding to u.
J J n J

a = At/(2Ax) , b = vAt/Ax2

At = time-step , Ax = net spacing

U. = predicted value of U. at t .

A corrector may now be set. up as follows:

Un+1 = (1 - Y)U. + Yl"
1' + a U.(Un+J - II ) + b(Un+1 - 2U. + U...)] (21)

J 3 J J J-l .1 + 1 .1-' .1 .1+'

(j = 1,2,. . . , JMAX - 1)

where boundary conditions are given at j = 0 and j = JMAX. As before if we now
set y = 0» then U1? 1 = U-; , which means the corrector is not in use. We may see now
that equation (21) retains accuracy for the steady-state solution.

At the steady state, U™ = Uj = Uj for all j. Thus, if we replace in equa-
tion (20) G.J by Un, we get the difference equation for the steady-state condition

J j
as

a Un(Un - u" ) + b(Un - 2Un + u" ) = 0 (22)
J J-i J+i J-i J J+i

In equation (21) , if we replace Uj and fL by Uj , we get precisely the same
equation (22). Thus, accuracy of the solution is retained by the algorithm
(eq. (21)). . . .



Let us examine now how the truncation error will behave under this convex map-
ping analysis. Assuming that u(x,t) G C4'2 (four times continuously dif f erentiable
with respect to x and twice dif f erentiable with respect to t) we have

(TE)j (23)

where

(TE)n . atf (Utt)» + fi (̂ n̂ . v

As At -> 0 and Ax ->• 0, (TE)n -> 0.

Let u - (ulf u2, . . ••uJMAX_1)
T, u = (ulf u2, . . -u )T. The corrector

gives

= (1 - Y)u. + Y[U" + H.(u,un+1) + (TE)"] (24)

Obviously G.(u ) may be replaced by the functional H.(u jU ) where

U /-- N "H . ( u , u ) = a u j j _ i . + i

From equations (23) and (24)

un+1 = u
n 4- H(u n ,u n ) + Y [H(u ,u n + 1 ) - H ( u n , u n ) ] + (TE)n (25)

If we linearize and assume that the relation

TT/~ n+1. , n n. , ̂  n. , n+1 n. /T^N
H(u,u ) - H(u ,u ) = A (u - u ) + B (u - u ) (26)

(An and Bn are square matrices of the order JMAX - 1) is valid at each time-step,
we get, from equations (25) and (26),

- un = H(un,un) + YA (u - un) + YB (u1" * - u") + (TE)1' (27)
n n

Since from equation (23) u - u = H(u ,u ) + (TE) , from equation (27) we get

un+1 - u" = (I - YB )
-1(I + YA )[Hn + (IE)"] (28)

n n

where H = H(u ,u ).

We assumed that (I - yBn) i-s invertible for all n. Since as At -> 0 and
Ax -> 0, (TE)-: -»• 0, equation (28) shows that the present scheme maintains its consis-
tency property. It is also clear that as steady state is approached,

(I - YB )~1(I + YA )Hn = 0
n n

giving H. = G.(u ) = 0, which is true, provided (I + yA ) is nonsingular.

In order to make some assessment of the stability properties, let us consider
the linear Burgers' equation in the next section. An attempt will be made in



the future to analyze the stability properties of the nonlinear Burgers' equation,
using explicit D-Mappings, as discussed in reference 5.

LINEARIZED STABILITY ANALYSIS

Let us first consider the linearized stability properties of this method. We
consider

8u , 8u 32u
3t- + C^ = V

Then the present method may be expressed as

U. = Un + a(Un - Un ) + b(Un - 2Un + Un ) (predictor) (30)
J J J-l J + 1 J-l J J + 1

Un+1 = (1 - Y)U. + Ytu" + a(Un+1 - fi,) + b(Un+1 - 2U. + U.,,)] (corrector) (31)
J J J J-l J + 1 J-1 J J+1

where

cAt _ vAt
3 ~ 2Ax ' ~ Ax2

The predictor may be expressed as

U = (b + a)Un , + (1 - 2b)Un + (b - a)u" ,
J J~! J J+1

In matrix notation, this becomes

U = A • Un . (33)

where A is a tridiagonal band matrix, and may be expressed as

A = B(b + a, 1 - 2b, b - a) (34)

The corrector may also be expressed as

Un+1 - Y(a + b)U = (1 - y - 2by)U. + y(b - a)U
J J * J J • i J

In matrix notation, we express this equation as

Aun+1 = 00 + run (35)

where

A = B[-Y(b + a), 1, 0] (36)

0 = B[0, 1 - Y - 2bY, Y(b - a)] (37)

f = Yl (38)



Combining equations (33) and.(35), we get

un+1 = A-^G • A + r)un (39)

The amplification matrix M is thus

M = A"1^ • A + T) (40)

Stability is obtained if M is a convergent matrix which is true if we can find a
norm such that

I|M|| < i (41)

Some computational experiments have been conducted to find p(M) numerically;
p(M) is the spectral radius of the amplification matrix M for some given At, Ax,
v, and y e (0,1). (For At = Ax = 0.05, v = 10~3, p(M) < 1 for y = 1.01.) The
results are given in table 3 (c = 1 in all the cases).

If we consider the predictor alone (eq. (30)), for stability we need b < 1/2
and a < b. These give, respectively,

< 1/2 and — < 2 (c = 1) (42)

If we consider At = Ax = 0.05, v = 0.01, the first criterion is satisfied; however,
Ax/\; = 5 > 2.

The predictor alone is unstable, whereas the present predictor-corrector is
stable (first row in table 3). Also if we consider At = 0.05, Ax = 0.025, v = 0.01,
both inequalities (eq. (42)) are violated.

Again, whereas the predictor itself is unstable when it is combined with the
corrector for y = 0.28 (table 3), the method becomes stab.le. Table. 3 has been
formed by computing p(M), where M is given in equation (40) for a given At, Ax,
and v, and choosing 0 < y < 1 (in general). Table 3 was done by Strate (private
communication).

Fourier stability analysis will be done in the future.

COMPUTATIONAL RESULTS

At each tn, we first computed U-j for j = 1,2,. . ., (JMAX - 1), using the
predictor (eq. (20)); then in a SUBROUTINE we corrected all the predicted values by
using equation (21), where the most recent corrected values were used.

The code and its description appeared in reference 8. It is written in
Extended BASIC for the TRS-80 color computer made by Radio Shack by the second author.
The boundary conditions were kept fixed at j = 0 and j = JMAX.

Case 1 :

u(x,0) = sin TTX

u(0,t) = u(l,t) = 0 (43)
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This represents a sine wave which decays as t ->• °°. The analytical solution as
given in references 2 and 7 is

u ( x , t ) = 2irv Si /52 (44)

where
GO

51 = ) n exp(-n 2TT 2vt)A sin(mrx) (45)
L-J n
n=l

oo

52 =y exp(-n 2 i r 2 vt)A cos(mrx) (46)

n=o

A0 = f exp[(cos TTX - l ) /2 i rv]dx (47)
V0

-1
A = 2 I exp[(cos irx - l ) / 2 7 r v ] cos(mrx)dx (48)

n v n

It may be noticed that for all n and v ^ 0 the integrals are convergent and
lim A^ = 0. The rate of convergence slows down as v gets smaller. Thus, for small

values of v, it is extremely difficult to compute u(x,t) using the analytical
expression (eq. (44)).

The computational results obtained by the present scheme have been plotted in
figure 4. Here v = 0.01, y = 0.25, Ax = 0.05, and At = 0.1. The time = 2.5 sec.
Evidently, as t -*• °°, u(x,t) ->• 0. (The method failed if we set y = 0.) The sharp
overshooting near x = 1 has been caused by the boundary conditions. Such solution
patterns are quite well known; they are not time-accurate.

Case 2:

u(x,0) =1 0 < x < 0.1)
(49)

u(x,0) =1 0 < x < O.lj

=0 x > 0.1 j

This represents a moving shock. Here we chose -y = 0.75 and v = 0.01. Figure 5
describes the solution. Because of the nonconservative form of the algorithm, loca-
tions of the shock were not traced accurately. As expected, overshooting was found
at x = 1. It was not, however, propagated upstream. With y = 0 the oscillations
were unbounded, which is true for Euler's forward scheme by eigenvalue analysis. In
figure 6 an appropriate scale was used to show some of these oscillations.

Case 3:

u(x,0) = <j>(x,0

u(0,t) = <J>(0,t)

u(l,t).= 4>U,t) t

(50)



where

O.le A + 0.5e B + e C ,,,»
-A -B -c (51)

e + e + e

A = (0.5/v)(x - 0.5 + 4.95t) ]

B = (2.5/v)(x - 0.5 + 0.075t)

C = (5/v)(x - 0.375)

(52)

This model is discussed in references 3 and 4. It represents the motions of two
shocks which merge into one at the steady state. With v = 0.022 and y = 0.25, U.'s
were computed for up to 15 time-steps and plotted in figure 7. Similar profiles ̂
were given in references 4 and 5. With y = 0» the method failed. Oscillations are
shown in figure 8.

In order to remove instabilities, 3u/3x was approximated by upwind differencing
(MacCormack) . The predictor is now

U = Un + a Un(Un - Un) + b(U° , - 2UD + tl" ) (upwind-predictor) (53)
J j _1 J-l J J-1 -1 J + 1

The corrector is

= (1 - Y)U. + Y[U + a U.dl - U.) + b(U - 2U . + U. + 1>] (54)

where a = At/Ax. Other parameters are the same as discussed before.

Applying this formula to case 1, with Ax = 0.05, At = 0.1, v = 10~6 , and
Y = 0.4 we obtain figure 9. Instabilities were removed; however, with y = 0, the
method failed (fig. 10).

The same was true for cases 2 and 3. The motion of the shock is shown in
figure 11 for case 2, in which Ax = 0.05, At = 0.1, v = 0.01, and y = 0.25. There
was no overshooting. However, when y = 0, the method failed after six time-steps;
this is shown in figure 12.

Figure 13 shows no overshooting for case 3 (Ax = 0.05, At = 0.1, v = 0.022,
Y = 0.15, number of time steps = 22). Figure 14 shows that the method collapsed
with Y = 0.

In figure 15 it is shown that even when At = 4Ax (At = 0.2, Ax = 0.05), the
method may still be effective for representing the motion of the shock. Figure 16
shows somewhat interesting results for case 2. Here Ax = 0.05, At = 4Ax, v> = 0.01,
and Y = 0.355. Numerical solutions initially showed some strong oscillations.
Later they were damped out. Although the results were not time-accurate, the con-
verged form of solution was correct.

In figures 17-19, it is shown that for the present explicit predictor-corrector
scheme, At, which is much larger than Ax, may be used for small values of v if
we use the upwind predictor (eq. (27)). It has also become clear that although
steady-state solutions are correct here, intermediary solutions at various time-
steps are not acceptable.
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Larger At does not necessarily mean a faster rate of convergence to steady
state; the latter depends on how fast residuals converge to zero. This has been
done-in the past with regard to this method for .solution of Burgers' ̂ equation
expressed in the potential form. Details on this may be found in reference 9.

DISCUSSION

The primary objective of the predictor-corrector formulas discussed here is to
obtain the steady-state solution. The analysis given in the Stability Analysis
section shows that this objective is fulfilled.

The method is only first-order accurate unless y = 1/2. Stability analysis
for the linear Burgers' equation shows that we may use At much larger than Ax
with a suitable y, such that the numerical solution may remain stable (table 3).
Computationally, this has.been found to be true for the nonlinear Burgers' equation.
In the future, nonlinear error analysis done in reference 5 using D-mappings will be
applied to this problem.

More analyses and computational experiments are needed in order to make a more
realistic assessment of the present predictor-corrector schemes for numerical solu-
tion of nonlinear models.
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APPENDIX

THE CODE IN TRS-80 COLOR-EXTENDED BASIC

10 REM
11 REM
20 REM BURGERS' EQUATION
25 REM
30 REM DU/DT+U*DU/DX=NU*D2U/DX2
35 REM
40 REM A PREDICTOR-CORRECTOR METHOD
45 REM
50 REM U=VALUE OF U AT THE RECENT TIME STEP
55 REM U0=VALUE OF U AT THE PREVIOUS TIME STEP
57 REM G=A CONVEX PARAMETER
60 REM JMAX=FIELD SIZE
61 REM NTSTEPS=NO. OF TIME STEPS
63 REM K=LEVEL OF ITERATION
89 REM
90 REM
99 REM
100 DIM U(51),U0(51)
109 REM
110 REM
115 REM INPUT PARAMETERS
117 REM
120 DX=0.05:DT=0.1:JMAX=21:NTSTEPS=200
125 NU=0.01:PI=3.H16
130 A=0.5*DT/DX:B=NU*DT/(DX*DX)
132 K=0
140 REM
142 REM CHOOSE G
145 REM
150 G=0.25
160 REM
162 REM SET INITIAL & BOUNDARY CONDITIONS
165 REM—
170 FOR J=l TO JMAX:X=(J-1)*DX:U(J)=SIN(PI*X):NEXT J
179 REM
180 REM
182 REM RECORD PREVIOUS TIME STEP SOLUTIONS
185 REM
190 FOR J=l TO J M A X : U 0 ( . T ) = U ( J ) : N E X T J
198 REM
200 REM
212 REM ITERATIONS START
215 REM
220 K=K+1
229 REM
230 REM
232 REM EULER FORWARD:PREDICTOR
234 REM
240 FOR J=2 TO JMAX-1

12



245 U(J)=U0(J)+A*U0(J)*(U0(J-1)-U0(J+1))+B*(U0(J-1)
-2*U0(J)+U0(J+1))

250 NEXT J
260 GOSUB 1000
270 REM --------------------------------------------
272 REM OUTPUT
275 REM --------------------------------------------
280 PRINT "AT TIME STEP=";K
290 FOR J=l TO JMAX:X=(J-1)*DX
295 PRINT X,U(J)
300 NEXT J
320 IF K<NTSTEPS THEN 190
800 END
900 REM --------------------------------------------
902 REM CONVEX CORRECTOR: CHARLIE
905 REM --------------------------------------------
1000 FOR J=2 TO JMAX-1
1010 TEMP=(1.-G)*U(J)
1030 V=U0(J)+A*U(J)*(U(J-1)-U(J+1))+B*(U(J-1)-2*U(J)

1050 U(J)=TEMP+G*V
1060 NEXT J
1090 RETURN

13
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TABLE 1.- COMPARISON BETWEEN
ANALYTICAL AND COMPUTATIONAL

VALUES OF U: v = 0.095, At = 0.1

Time

2.5
5.0
7.5
10.0
12.5
15.0

U (Analytical)

0.598472144
-0.958924274
0.937999977
-0.544021111
-0.0663218955
0.650287837

U (Computed)

0.597493063
-0.957553061
0.936781981
-0.543440746
-0.0660338101
0.649245878

TABLE 2.- COMPARISON BETWEEN
ANALYTICAL AND COMPUTATIONAL

VALUES OF U: v = 0.175, At = 0.1

Time

0.1
0.5
0.9
1.3
1.7
2.1

U (Analytical)

1.00336332
1.00
1.00
1.00
1.00
1.00

U (Computed)

1.12706991
1.04808666
1.00621156
1.0001474
1.00000293
1.00000006
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TABLE 3.- STABILITY FOR LINEAR BURGERS'
EQUATION

c = 1.0

Case

1
2
3
4
5
6

At

0.05
0.05
0.1
0.1
0.2
0.2

Ax

0.05
0.025
0.05
0.025
0.05
0.025

c = 1.0

1
2
3
4
5
6

0.05
0.05
0.1
0.1
0.2
0.2

0.05
0.025
0.05
0.025
0.05
0.025

c = 1.0

1
2
3
4
5
6

0.05
0.05
0.1
0.1
0.2
0.2

0.05
0.025
0.05
0.025
0.05
0.025

v = 0.01

P,,,,,MIN

0.6741081217
0.2634833436
0.5591445292
0.4932129687
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0.731106526

GAMMA

0.44
0.28
0.39
0.22
0.32
0.13

v = 0.1
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8.0442946351
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24.990423418

0.18
0.05
0.1
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v = 0.001
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0.37
0.38
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o =

o 1 = 0.5
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Figure 1.- Stability contours, convex corrector: y = 0.095,
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Figure 2.- Stability contours, convex corrector: y = 0.175.
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-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -.5

Figure 3.- Stability contours for forward Euler's method (y = 0) and that for the
present scheme with y = 0.25, a =1.

Figure 4.- Velocity profiles (case 1): v = 0.01, y = 0.25, Ax = 0.05, At = 0.1,
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Figure 5.- Velocity profiles (case 2): v = 0.01, y = 0.75, Ax = 0.05, At = 0.1.

0

Figure 6.- Method failed: y = 0> other parameters are the same as those in fig. 5.
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Figure 7.- Velocity profiles (case 3): v = 0.022, 7 = 0.25, Ax = 0.05, At = 0.1,

2.74

Figure 8.- Method failed: y = 0, other parameters are the same as those in fig. 7,
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Figure 9.- Velocity profiles using upwind differencing (eqs. (53) and (54)) for
case 1: v = 10~6, y = 0.4, Ax = 0.05, At = 0.1.

Figure 10.- Method failed (eq. (53)): y = 0, other parameters are the same as those
in fig. 9.
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Figure 11.- Velocity profiles using upwind differencing for case 2: v = 0.01,
Y = 0.25, Ax = 0.05, At = 0.1.

Figure 12.- Velocity profiles upwind differencing for case 2
parameters are the same as those in fig. 11.

Y = 0, other

22



Figure 13.- Velocity profiles using upwind differencing for case 3:
Y = 0.15, Ax = 0.05, At = 0.1.

v = 0.022,

Figure 14.- Velocity profiles using upwind differencing for case 3;
parameters are the same as those in fig. 13.

Y = 0, other
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Figure 15.- Velocity profiles using upwind differencing for case 2:
y = 0.15, Ax = 0.05, At = 0.2.

v = 0.01,

Figure 16.- Velocity profiles using central differencing for case 2:
Y ='0.355, Ax = 0.05, At = 0.2.

v = 0.01,
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Figure 17.- Velocity profiles'using upwind differencing for case 1: v = 0.001,
Y = 0.25, Ax = 0.05, At = 0.2.

Figure 18.- Velocity profiles using upwind differencing for case 1: v = 0.00001,
Y = 0.25, Ax = 0.05, At = 0.2, number of time steps = 30.
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Figure 19.- Velocity profiles using upwind differencing for case 1: v = 0.00001,
Y = 0.152, Ax = 0.05, At = 0.3, number of time steps = 40.
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