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ABSTRACT

Tr1bolog1cal studies were conducted on five different polylmlde solid

bodies formulated from the dlamlne 2,2-b1s [4-(4-am1nophenoxy)phenyl] hexa-

fluoropropane (4-BDAF) and the dlanhydrldes pyromelHtlc add (PMDA) and

benzophenonetetracarboxyllc add (BTDA). The following polylmldes were evalu-

ated 4-BDAF/PMDA, 4-BOAF/BTDA. 4-BDAF/80 mole percent PMDA, 20 mole percent

BTDA, 4-BDAF/60 mole percent BTDA. Friction coefficients, polylmlde wear

10 rates, polylmlde surface morphology, and transfer films were evaluated at
o
o
*? sliding speeds of 0.31 to 11.6 m/s and at temperatures of 25° to 300° C. The
UJ

results Indicate that the trlbologlcal properties are highly dependent on the

composition of the polylmlde and on the experimental conditions. Two of the

polylmldes produced very low wear rates but very high friction coefficients

(greater than 0.85) under ambient conditions. They offer considerable poten-

tial for high-traction applications such as brakes.

INTRODUCTION

The use of polymers for trlbologlcal applications 1s continually Increas-

ing, with ever Increasing demands being placed on the performance of these

polymers. Polymers are needed with Improved trlbologlcal properties from

cryogenic to the highest possible temperature. One class of thermally stable

organic polymers that has demonstrated Increased capabilities 1n this area 1s

polylmlde.

Polylmldes are being used or considered for use 1n bearings, gears, seals,

brakes, and prosthetic human joints.(1-8) A part can be machined or molded

from the polylmlde or a film of polylmlde can be applied to a metallic part.



In many Instances polylmlde by Itself will be sufficient to Improve the trlbo-

loglcal properties of the component. However, solid lubricant additives can

further Improve the trlbologlcal properties. For example, to Improve the load

carrying capacity, polylmlde solid bodies can be reinforced with fibers. If

graphite fibers are used. Improved lubricating performances can also be ob-

tained, because of the good trlbologlcal properties of graphite fibers.(9,16)

Polylmlde does not refer to one particular polymer, however, but to a

class of long-chained polymers that have repeating 1m1de groups as an Integral

part of the main chain. By varying the monomerlc starting materials,

polylmldes of different chemical composition and structure can be obtained.

The polylmlde chains consist of aromatic rings alternated with heterocycllc

groups. Because of the multiple bonds between these groups, the polylmldes

have high thermal stability. On decomposition, they crumble to a fine powder

without melting. They have high radiation stability and can withstand

exposure to neutrons, electrons, ultraviolet light, and gamma radiation. They

are resistant to most common chemicals and solvents, but are attacked by

alkalis. For a more detailed discussion of the physical properties see Refs.

17 to 21.

In 1975 a polylmlde was formulated from partially fluorlnated polylmlde

resins prepared from the dlamlne 2,2-b1s [4-(4-am1nophenoxy)phenyl] hexafluoro-

propane (4-BDAF),(22) which possessed great potential for long-term service 1n

highly oxldatlve environments up to 370° C.(23,24) Because of the promise

shown 1n the preliminary physical properties testing program, two polylmldes

were formulated using the 4-BDAF dlamlne for trlbologlcal evaluation: One

using the dlanhydrlde of benzophenonetetracarboxyllc add (BTDA), and one using

50 mole percent of BTDA and 50 mole percent of the dlanhydrlde of pyromelHtlc

add (PMDA). In addition to solid bodies of the polylmldes, graph1te-f1ber-

relnforced composites were made using the 50/50 PMDA/BTDA polylmlde.



Very good trlbologlcal results were found both with the solid body mate-

rials and with the composites.(25) The results Indicated that higher amounts

of the PHDA dlanhydrlde 1n the polylmlde would produce polymers with Improved

trlbologlcal properties. Thus, the purpose of this study was to evaluate

polylmldes made from the 4-BDAF dlamlne and 60 mole percent PHDA, 80 mole

percent PMDA. and 100 mole percent PMDA (BTDA was the other component.)

Friction coefficients, wear rates, wear surface morphology, and transfer

film formation were studied for the three polylmldes (made Into hem1spher1cally

tipped pins) which slid against disks made of the cobalt alloy, Haynes 6B.

Both the effect of sliding speed and temperature were evaluated.

MATERIALS

New polylmldes based on a novel aromatic dlamlne 2,2-b1s

[4-(4-am1nophenoxy)phenyl] hexafluoropropane (4-BDAF) were formulated using

the dlanhydrldes of benzophenonetetracarboxyllc add (BTDA) and of pyromelUtlc

add (PMDA) (see structure, F1g. 1). Two polylmldes and three copolylmldes

were prepared from the above components. The two polylmldes were polymerized

from their respective polyamlc add solutions of 4-BDAF/PMDA and 4-BDAF/BTDA.

The copolylmldes were prepared by adding the dlanhydrldes, 1n the correct pro-

portions, to the 4-BDAF dlamlne during the polymerization procedure. The co-

polylmldes contained 80 percent (by mole) PMDA and 20 percent BTOA, 60 percent

PMDA and 40 percent BTDA, and 50 percent PMDA and 50 percent BTDA. Each poly-

lmlde contains the 4-BDAF dlamlne, but for convenience 1t will not be Included

1n the designations. The designations will be PMDA, BTDA, 80/20 PMDA/BTDA,

60/40 PMDA/BTDA, and 50/50 PMDA/BTDA. The preparation of the 4-BDAF dlamlne

and the polylmldes made from 1t are described 1n Refs. 23 and 24. The polyl-

mldes were molded Into pins 2.0 cm long and 0.95 cm 1n diameter. A 0.476-cm-

radlus hemisphere was machined on one end. The hemispherical tip was slid

against disks made from the Haynes 6B (cobalt alloy). Each disks had a



Rockwell C hardness of 44 and a lapped and polished surface finish of 0.07Q>

0.005 yin R (arithmetic mean). Cleaning with levigated alumina did not
a

affect this value.

APPARATUS

A diagram of the high-temperature p1n-on-d1sk trlbometer used In this

Investigation 1s shown 1n F1g. 2. The loads were applied through a lever arm.

The same lever arm was also used to transmit the friction force to a strain

gage whose output was continuously recorded on a strip-chart recorder (F1g. 2).

The disks were heated by Induction heating. The temperature was monitored by

a thermocouple when the disk was not rotating and by an Infrared optical py-

rometer when 1t was. The friction specimens were enclosed 1n a chamber to

control the atmosphere.

PROCEDURE

Specimen Cleaning

The Haynes 6B disks were washed with ethyl alcohol and then scrubbed with

a water-based paste of levigated alumina. They were then scrubbed with a brush

under running distilled water to remove the alumina and dried with clean com-

pressed air.

The polylmlde or polylmlde composite pins were scrubbed with a nonabraslve

detergent, rinsed with distilled water, and dried with clean compressed air.

Experimental Testing

After the pin and disk specimens were Inserted Into the test apparatus,

the chamber was sealed. Moist air (50 percent relative humidity (10 000 ppm

HO) at 25° C was pumped Into the chamber for 15 m1n before each test and

continuously throughout the test. After purging at 25° C, the disk was rotated

at speeds of 0.31, 3.1, 6.2, and 11.6 m/s (100, 1000, 2000, and 3700 rpm). For

the constant temperature tests of 100°, 200°, 240°, or 300° C, the disk was

slowly heated to the desired temperature using Induction heating and held for



10 m1n at temperature to allow the temperature to stabilize. The load (9.8 N)

was then gradually applied to a disk rotating at 3.1 m/s. The pin slid on a

6-cm-d1ameter track on the disk.

At various times during the experiments, the tests were stopped and the

specimens removed and examined by optical microscopy. The wear scar on each

pin tip was measured and the wear volume calculated. The pin was not removed

from the holder, and locating pins Insured that 1t was returned to Its original

position in the apparatus.

For the tests 1n which friction coefficient was determined was a function

of constantly Increasing or decreasing temperature, the procedure was to run-In

the polylmlde pins under a 9.8-N load at 3.1 m/s and 25° C for 30 m1n. Then

the temperature was gradually Increased at the rate of 4° C/m1n to a tempera-

ture as high as 350° C, and then 1t was decreased at the same rate to about

100° C. Below 100° C the heat was turned off, and the disk was allowed to

cool at Its own rate, which was slower than 4° C/m1n. One pin was reheated to

350° C under the same stepping procedure, except for the run-1n.

RESULTS AND DISCUSSION

Polylmlde Wear

The wear volume of the five different polylmlde pins as a function of

sliding distance 1s shown 1n F1g. 3. For comparison, data for a commercial

polylmlde are also shown. The experiments were conducted 1n 50-percent-

relatlve humidity air at 25° C, at a sliding speed of 3.1 m/s, and under a

load of 9.8 N.

Initially, there was a run-1n phenomenon during which the high contact

pressures associated with this geometry were reduced and a transfer film was

produced. The run-1n lasted for up to 500 m of sliding, thus the need for

long experiments. After the run-1n, a constant wear regime (constant wear as

a function of sliding distance) was obtained. Wear rate was calculated for



the constant wear regime by taking a linear regression fit (least squares) of
-15 3the curves of F1g. 3. The lowest wear rate (5x10 m /m of sliding) was

found with both the 80/20 and the 60/40 PMOA/BTDA polylmldes. The 50/50
15 3

PMDA/BTDA and the PMDA polylmldes gave wear rates of 27x15 m /m; the
-15 3BTDA polylmlde gave a wear rate of 71x15 m /m; and the commercial poly-

1m1de, 48xlO~15 m3/m of sliding.

To determine the effect of sliding speed on the wear rates, similar ex-

periments were conducted on the six polylmlde pins. The wear rate of the PMDA

polylmlde varied considerably with sliding speed, but the 80/20 PMDA/BTDA,

60/40 PMDA/BTDA, and the commercial polylmlde pins were relatively unaffected

by sliding speed (Fig. 4). Wear rate data as a function of temperature curves

are shown 1n F1g. 5. The best results were obtained with the 80/20 PMDA/BTDA

polylmlde at all test temperatures. The 60/40 PMDA/BTDA gave equivalent re-

sults up to 200° C, but at 300° C Its wear rate Increased to about four times

the wear rate of the 80/20 PMDA/BTDA polylmlde. The BTDA polylmlde gave the

highest wear rate at all temperatures, with a very marked Increase occurring

at 240° C, Indicating a lower temperature stability than the polylmldes formu-

lated with larger amounts of PMDA. A similarly large Increase (although not

as large) occurred for the 50/50 PMDA/BTDA. The wear behavior of the PMDA

polylmlde was very erratic, both as a function of temperature (F1g. 5) and as

a function of sliding speed (F1g. 4). The best polylmlde, the 80/20 PMDA/BTDA,

gave up to 10 times lower wear than the commercial polylmlde at temperatures

to 300° C.

Coefficient of Friction

Average values of the friction coefficient for each polylmlde are shown

1n F1g. 6 as a function of temperature, and the variation 1s given 1n table

I. In general, the friction coefficients for all the polylmldes tended to

drop off as a function of Increasing temperature to some temperature between



100° to 200° C and then to level off. This 1s not surprising, since earlier

work on other polylmldes by one of the present authors Indicated that at least

some polylmldes possess friction and wear transitions.(26,27) Below the tran-

sition (25° and 100° C) the two polylmldes that gave the lowest wear rates

(60/40 and 80/20 PMDA/BTDA) also produced the highest friction coefficients,

Indicating that these polylmldes may have useful applications where high trac-

tion forces are desired.

To study the friction transition 1n more detail, experiments were con-

ducted to measure the friction coefficient as the temperature of the metallic

disk counterface was raised or lowered at the rate of 4° C/m1n. To minimize

the effect of friction heating, a speed of 0.14 m/s was used, and a load of

9.8 N applied. Figure 7 gives the results of that study. The figure Indicates

that the friction transition 1s a gradual process and appears to be both time

and temperature dependent. For most of the polylmldes, a low relatively stable

value occurred as the temperature exceeded 160° C. The exception to this was

the commercial polylmlde, which did not produce a low value until about 200° C

and, on reducing the temperature to 25° C after reaching 300° C, did not mark-

edly Increase.

In earlier experiments the BTOA polylmlde degraded above 300° C, to the

extent that meaningless friction data were produced on reducing the tempera-

ture. For that reason the temperature was only raised to 200° C for this work

(F1g. 7(e)).

The temperature of the PMDA, 80/20 PMDA/BTDA, and 60/40 PMDA/BTDA polyl-

mldes was Increased to 350° C without markedly affecting their performances.

To show the repeatability, the 60/40 PMDA/BTDA polylmlde was Increased 1n tem-

perature a second time after 1t was lowered to 25° C. The same absolute values

were not obtained, but the same general trends are present (F1g. 7(c)).



Figure 8 shows plots of friction coefficient as a function of sliding

speed for sliding Intervals of 1 and 5 km. The commercial polylmlde had a

tendency to decrease as a function of sliding speed for both sliding durations.

The decrease being about 25 percent from a speed of 0.31 to 11.6 m/s. At the

slowest sliding speed (0.31 m/s) the friction coefficient, Instead of remaining

constant as a function of sliding duration (as was found for all other speeds)

tended to decrease.

The PMDA polylmlde produced friction coefficients that were not dependent

on sliding duration but that did Increase with Increasing sliding speed.

Friction coefficients for the 80/20 PMDA/BTDA polylmlde were Independent of

sliding duration and speed at slower speeds (<3.1 m/s), but, above 3.1 m/s,

decreased with sliding duration and speed. Except for the 0.31-m/s sliding

speed, the friction coefficient for the 60/40 PMDA/BTDA polylmlde decreased

both with sliding duration and speed.

It 1s postulated that the decreases In friction as a function of Increas-

ing sliding speed and duration for the 80/20 and 60/40 PMDA/BTDA polylmlde are

due to frlctlonal heating, which raised the temperature above the transition

temperature. The temperature of the actual contact could not be determined,

but the temperature of the metallic counterface reached 90° C for the high-

friction, 11.6-m/s experiments run at 25° C. Whenever the friction dropped so

did the temperature; thus the temperature data do not give a clear cut anal-

ysis, and the data are, therefore, not presented.

Polylmlde Wear Surface Morphology

The PMDA, 50/50 PMDA/BTDA,, and BTDA polylmlde pin wear surfaces were

very smooth at all sliding speeds and temperatures. To varying degrees, plas-

tically flowing back-transfer polylmlde particles and layers were observed.

Figure 9 shows representative photomicrographs of back-transfer material on

the PMDA polylmlde wear surfaces. Also seen 1n the photograph are wandering

8



lines running throughout the wear scar. These lines appear to be boundaries

separating the polylmlde mlcrostructure. Only the PMOA exhibited this micro-

structure. From a trlbologlcal viewpoint, this structure 1s undesirable since

such areas could weaken the structure and serve as Initiation points for wear

particle production. Adjusting the polymerization procedure may eliminate

this mlcrostructure and produce an Improved trlbologlcal material.

The 80/20 and 60/40 PMDA/BTDA polylmldes gave exceptionally low wear rates

but very high friction coefficients. The high friction 1s reflected 1n the

wear surface morphology by the production of tensile cracks. These cracks

were found under all conditions except for 300° C at 3.1 m/s sliding speed and

for 25° C at 11.6 m/s sliding speed. Figure 10 gives representative photo-

micrographs of the wear surfaces produced under these conditions.

Despite the wandering lines formed, they did not appear to accelerate the

wear process of these polylmldes. Again, by adjusting the polymerization pro-

cedure or by Incorporating proper additives Into these polylmldes, 1t may be

possible to Improve the trlbologlcal properties.

Since some of the polylmldes appeared to be harder or more brittle than

others, Vlckers hardness tests were performed on the wear scars using a 0.098-N

load. Tests could not be performed on the polylmlde surfaces themselves since

they were too rough. Table I lists the average hardnesses obtained for the

six polylmldes evaluated. The table Indicates that the 80/20 and 60/40

PMDA/BTDA polylmldes were slightly harder than the others.

Polylmlde Transfer Films

The polylmlde transfer to the metallic counterfaces was studied with a

light microscope to magnifications of 1600 after selected Intervals of sliding.

The type of transfer observed depended, to various degrees, on the sliding

duration. To simplify the discussion, transfer will be characterized as to

short sliding durations (less than 100 m of sliding) and long sliding distances



(greater than 2000 m of sliding). Four types of transfer were characterized.

Table II characterizes the polylmldes evaluated 1n this study Into these

classifications.

Generally, the best wearing materials exhibited a thin continuous layer

type of transfer. Eventually, this type of transfer can buildup over longer

periods of sliding and lead to thick Mdge-Hke transfer. In this study the

buildup did not noticeably affect the friction and wear properties. The higher

wearing polylmldes either tended to produce the thin, platelet transfer parti-

cles or the thick, flattened transfer particles. In working with many dif-

ferent solid lubricant materials, the authors have observed that the ability

of a material "to flow Into Itself 1s an Important Indicator of whether 1t 1s

a good trlbologlcal material. This 1s true whether the solid 1s an applied

film or a transfer film formed during sliding.

Comparison With Other Polymers and Composites

Average friction coefficients and wear rates of the polylmldes evaluated

1n this study are compared with other polymer materials and composites evalu-

ated by the authors under the same conditions. Except for the graph1te-f1ber-

relnforced BTDA polylmlde composite, the 80/20 and 60/40 PMDA/BTOA polylmldes

gave equivalent or lower wear rates than the commercial materials despite the

fact that their friction coefficients are much higher and that they did not

contain solid lubricant additives.

Two of the commercial materials were evaluated In a different geometry

than the others; that 1s, a metallic pin was slid against the composite

materials. This may have some effect on the comparability of the wear rate

values obtained. Reference 28 reports that a graph1te-f1ber-re1nforced

polylmlde composite produces lower wear when evaluated as a pin than as a disk.

Thus, 1f these two commercial materials were evaluated as pins, lower wear

rates may have been obtained.

10



SUMMARY OF RESULTS

Friction, wear, polylmlde wear surface morphology, and polylmlde transfer

film studies on five new polylmldes made by the polymerization of a new dlamlne

(4-BDAF) with different dlanhydrldes (PMDA and BTDA) Indicate that

(1) The polylmlde formulated using 80 mole percent PMDA and 20 mole

percent BTDA (80/20 PMDA/BTDA) gave exceptionally low wear rates over all ex-

perimental conditions. At ambient temperatures and slower sliding speeds, 1t

gave friction coefficients of 0.90 or higher; this, coupled with the low wear

characteristics. Indicates that the polymer may be useful for applications

requiring high traction.

(2) The copolylmlde 60/40 PMDA/BTDA was nearly as good as the 80/20

PMDA/BTDA polylmlde, except that the wear rate was higher at 300° C.

(3) All the 4-BDAF polylmldes possessed a transition In the friction

properties between 100° and 150° C. The transition appeared to be both time

and temperature dependent, and no correlation between the transition and the

amount of either dlanhydrlde (PMDA or BTDA) was observed.

(4) The wear rates of the 80/20 and 60/40 PMDA/BTDA polylmldes were

relatively unaffected by sliding speed 1n the range of 0.31 to 11.6 m/s; fric-

tion coefficient tended to decrease at the higher sliding speeds, however.

(5) The PMDA polylmlde had higher thermal stability than the 80/20 and

60/40 PMDA/BTDA, but Its trlbologlcal properties are not quite as good. Thus,

the choice of which polylmlde to use should be based on which factor 1s more

Important 1n a particular application.

(6) The BTDA and 50/50 PMDA/BTDA had poorer trlbologlcal properties than

the other three polylmldes.
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TABLE I. - AVERAGE VICKERS HARDNESS AND VARIATION

OF FRICTION COEFFICIENT

[Sliding speed, 3.1 m/s.]

Polyimide

PMDA
80/20 PMDA/BTDA
60/40 PMDA/BTDA
50/50 PMDA/BTDA
BTDA
Commerci al

polyimide

Average
Vickers
hardness3,

kg/mnr

20.6
24.5
23.5
19.5
22.1
19.4

Temperature, °C

25 100 200 300

Variation of friction coefficient

0.60+0.05
.90+0.10
.80+0.10
.48+0.03
.54+0.05
.73+0.10

0.43+0.05
.70+0.10
.80+0.15
.16+0.05
.60+0.06
.62+0.09

0.12+0.02
.13+0.03
.15+0.04
.07+0.03
.25+TD.10
.25+0.05

0.22+0.08
.18+0.06
.21+"0.05

.30+J3.10

aAt a 10 g load.

TABLE II. - CHARACTERIZATION OF POLYIMIDE TRANSFER

Code

A
B
C
D

Description

Thin,
Thin,
Thick,
Thick,

platelets (<1 urn)
continuous layer (<1
flattened particles
"ridge-like layers

Mm)
(>2 pm)

(>2 urn)

Temperature,
°C

25
25
25
25
100
200
300

SI iding
speed,
m/s

.31
3.1
6.3

11.6
3.1
3.1
3.1

Polyimide type

PMDA 80/20
PMDA/BTDA

60/40
PMDA/BTDA

50/50
PMDA/BTDA

BTDA Commercial
polyimide

Sliding duration

Short

A
C

A-C
B
C

Long

A
D
B-D
B
C

B-D
D

Short

B
B

A-B

A-B
A

Long

B-D
B-D
D

C-D
B-D
B
B

Short

B
B

A
B

Long

B-D
B-D
B-D
B-D
B-D
B-D
D

Short

A

Long

A-C
B-D

B-D

Short

A

Long

A-C
C

Short

_

Long

C
A
D

B-D
A
A
B-D



TABLE III. - AVERAGE FRICTION COEFFICIENTS AND WEAR RATES FOR

COMMERCIAL AND EXPERIMENTAL POLYMERS

[Test temperature, 25° C; load, 9.8 N; sliding speed, 2.7 to 3.1 m/s;
relative humidity, 50 percent.]

P in material Disk material Average
friction

coefficient

Average
wear rate,

m^/rn of si iding

Commercial polymers

440C HT stainless steel

440C HT stainless steel

Polyimide
Ultra high molecular

weight polyethylene
Polyimide with graphite

powder

Polyphenlene sulfide
with 40 percent gra-
phite fibers

Poly(amide-imide) PTFE
and graphite powders

440C HT stainless steel
440C HT stainless steel

440C HT stainless steel

0.30

.37

.48

.30

.64

620xlO-15

ISOxlQ-15

48xlO-15

6xlO-15

5xlO-15

Experimental polymers

PMDA
Graphite-fiber-

reinforced, addition
type polyimide3

80/20 PMDA/BTDA
60/40 PMDA/BTDA
Graphite-fiber-
reinforced BTDAa

Haynes 6B
440C HT stainless steel

Haynes 6B
Haynes 6B
440C HT stainless steel

0.60
.30

.90

.80

.30

27x10-^
12xlO-15

SxlO-*5
5x10-"
2xlO-15

aData from Ref. 25.
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Figure 1. - Monomers used to formulate new polyimides.
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Figure 9. - Representative photomicrograph of the PMDA polyimide pir
wear surfaces.
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Figure 10. - 80/20 and 60/40 PMDA/BTDA polyimide pin wear surfaces.
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