
NASA-CR- 168253

r-" 19840016905

/

_ K-BandLatchingSwitches

FinalReport

, May1984

_- Preparedfor

NationalAeronauticsandSpaceAdministration

LewisResearchCenter - :_-,7
2100 Broo ark Road _.ii.i.... " ,,',_
Cleveland,Ohio44135 ..... .:,

SalesNumber37586 ,;.,,_L_._.....,.,_-_-,._,,._,_L]_?.'.,-Y _,:.-'.S,',

- ContractNumberNAS3-22336 ,'..:_--:_':_--"':::_

TRWElectronicSystemsGroup
OneSpacePark
RedondoBeach,CA90278



I

.r



| "...!" _,.,.... ...,,

:""-' H': .....".-i , C:S,,;_:,T,..Z_<
I- i--r- -'i-

/..€.--.i,--._ i T r-- i'-,.n ii ii ii'_ii-- Wil i
i i_. i#-',

Elf k._'_, I i I-- I I

• _ ,_, v-: ] v-,._%.._:+,--,--r,. .. ,...... .L_-b " }"_:, _'_..,-,..I""

,%11-t--i I- 7_ • l''l I p" _ r-' p" I "t I_ i $ t"-: ." i_'_.j--jlI !_ l
H_ _-. _I _-" : -_-: _ - ,_ :m i -'.)_ ,_'2., ,.-_.,_._-.,. _.L._I_I s, _I _- _._,a_ _ _ I_. s¢ . . !_..._. :.,i I,t_'T I ¥.IT,_ - ,-, - -, .... ,- '- -- -' ''-;4 ,:,, :.

m] i ''' ''_. I ,'"'",..,, ,_ . eCLi. _"-;P:,,..,.. . C: -_:.-C.? .--'.P._C-{_'i."P-,iii-_. .i":,'7":'(1_:)i,'(I'-:.)......... :--:c.._a,- .r -,. :,'-IV,ilL. _ ---',,,%..x, %

k..li.i_; / iyi_ i..li-j i
IL ::,i"

_._ z,. it--. _...,_l--.. vr'-i_.,i i--P,-rr', r-. i-.-tr-p,.t--tr-r,-r'rr'¢".t_...... _- _-" i I ITi-'_........... " " _ _'_ _ _ _ !;!l _ v--_., <-.-, Ht.I';It I _" _"_- _-"
•-_u.v_" / _-_ _-_ _-"]I. i-':-.i.'.,"".... II-:"-L-""_.",I_,'-I'ILLi.,"'lJ...,..,_: ..,.'--.'-"."-"-,----'-''--,---'....... '-""_ _"'-'_'" "

M _''''-"",,.,v_-....",'_,"_""_,:..,,,''_'_,,"..__,._"-." L_I-IV.I-IL.'..,'="_-_"_.,_.oi',_.,._..,__._....."1I.D: , ,--_,.,,.-','-,-• ,"-''-"--""'--'---"'" "-""-""'-'""

........ -- - ¢.es_ > _v,_u ............... r--,,-.,-.,,-m. -..... ;.,-,r_,,..'-.." _;,,:i t-:--;8i'e ,-:.-..c.<N....... o_,......
• ._ .__., ,,, ...:-,-.- - .....; -'- " " "i'_-'b:.'::'.c;= ,_ Y-[_)rJil',J• t I i ..i "_I'l:.A_ it t I f ii_-_ + "" I'__'_ ] C'iii.... _,._-- flt"ll Ir't :.17__1t., ._, _t_.t _.q__ ! ! i _ ._t_'t' i

iii",",f-".FJii] _ it,-]--[),"_['l(] J. ! _ .",'_'. ....'-'+:+,..,<,..,I i.L.l I ,.,,,,x ,_ ,__.,_ ,_+,v--+ --. ............
_ " (t( F", _ €]._. .................. _,,_ ................ _,".,F_,::, :e_'-'.-',-"i-iC:_i' _i"i_i :'I .......

............ _ r_._.--;....... - ,..... _: - - ii i_ ....
iiii ......'''<_' _' *i_ t_:-:_ C:'f >_.,_.,,'-',t-,C; r'i,:3tei"_,.=.;]:-:i ir'.,e;;_ dt_ : n"r-'_i ='/iOLIR..,,-. ....... !() _f• - .l_t_ _

• <-.,r-, .... :_,_ t _"_ i d i t ';t?""-,--,--'[1: -'-'-,'i" --_ _ :-.,:..'i"i'.-. _- " - _ +,--,'--2,-
.... ! !Of ..... " .... :, '.-f i( :'._::}., ;',ii.......... ! ........... :.., [:,r" ....,, _::I'_-S.:@S,+.;.'7 :-._• • • _ _ _ _.i.....:

t i " i " <_'' :"-:.......... tcri<',_'_ -[)`-_-l'l''] E.Iii I t I iiii_,., t11... _ 15i=;',i_'''i____,,,_,_, _-)[',i )...... , ,.-_, ,. ,,', ..... - _ "-"- ..... _i - l..... i

p_oc:,::,er t ies,. iiiT#q.,_._ ,_,-,_.-'i. ,__ l, ,__:_., e dl :":_1........ t 7,.:.1 ............. -....... •...........
,,_...... .,,,_-:_,,.,-,,, ..,-- .

• ' ' ( i-_I
....•.....+ lf!@ ( i_(:,,i .... --

/

.f

ro





1. Report No. 2. Government Accession No. 3. Recipient's Catalog No

CR168253
4 Title and Subtitle 5 Report Date

15 May 1984
6. Performing Organization Code

-- K-Band Latching Switches 11982

7 Author(s) 8 Performing Organization Report No

-- W.S. Piotrowskiand J. E. Raue
10. Work Unit No.

9 PerformingOrganizationNameand Address

TRW ElectronicSystemsGroup 11. Contractor Grant No.

-- Redondo Beach, CA 90278 NAS3-22336
i

13. Type of Report and Period Covered

-- 12. Sponsoring Agency Name and Address FinalReport
14 Sponsoring Agency Code

15. Supplementary Notes

16. Ab_ra_

This final report describesthe study, design,development,and test resultsof two
-- single-pole-double-throwlatchingwaveguideferrite switches: a K-band switch in

WR-42 waveguide and a Ka-band switch in WR-28 waveguide.

The design approachesfor both switches are described. The K-band switch has high
_ power handling capabilityin excess of 75 W CW and about I GHz bandwidth. The Ka-

band switch,with 5 W CW power handling capability,has 2.5 GHz operatingbandwidth.
Both switcheshave structurallysimple junctions,mechanicallyinterlockedwithout

-- the use of bondingmaterials;they are imperviousto the effectsof thermal,shock,
and vibrationstresses.

Ferritematerial for the Ka-band switchwith a proper combinationof magnetic and
-- dielectricpropertieswas availableand resultedin excellentlow loss, wideband

performance. The high power handling requirementof the K-band switch limitedthe
choice of ferriteto nickel-zinccompositionswith adequatemagnetic properties,but

_ with too low relativedielectricconstant. The relative dielectricconstantde-
terminesthe junction dimensionsfor given frequencyresponses. In this case the
too low value unavoidablyleads to a largerthan optimum junction volume, increasing
the insertionloss and restrictingthe operatingbandwidth.

This report also describesthe effortsto overcomethe materials-relateddifficul-
ties throughthe design of a compositejunctionwith increasedeffectivedielectric

_ properties,in additionto the effortsto modify the relative dielectricconstant
of nickel-zincferrite.

17 Key Words (Suggested by Author(s)) 18 Distribution Statement

19 Security Classif (of this report) 20 Security Classif. (of this page) 21 No of Pages 22 Price"

-- U U

"ForsalebytheNationalTechnicalInformationServiceSprinsfieldVirEinm22161





- T;'_;"

- K-BandLatchingSwitches

- FinalReport

May1984

Preparedfor
_ NationalAeronauticsandSpaceAdministration

LewisResearchCenter
21O0BrookparkRoad
Cleveland,Ohio44135

SalesNumber37586
- ContractNumberNAS3-22336

TRWElectronicSystemsGroup
OneSpacePark

-- RedondoBeach,CA90278





PREFACE

-- The work described in this report was performed in the Microwave

Technology Department of the Electronic Systems Group of TRW's Electronics

- and Defense Sector. The work was performed under the direction of

Dr. Cheng Sun, who gratefully acknowledges the principal contributions

of Mr. Godfrey Anzic of the NASA-Lewis Research Center and Dr. J.E. Raue,

Mssrs. W.M. Brunner, and W.S, Piotrowski of TRW.





TABLEOF CONTENTS

_ Page
I. INTRODUCTIONAND SUMMARY..................... I

-- 2. HIGH POWERK-BANDFERRITESWITCHDEVELOPMENT........... 7

2.1 Introduction ........................ 7

2.2 Ferrite Materials Problems ................. 7

2.3 Materials Medification Effort ................ 11

2.3.1 Composite Junction Desiqn .............. 11
2.3.2 Modifications of Ferrite Relative Dielectric Constant 20

2.4 Junction Design Considerations ............... 23

-- 2.5 Switch Driver Design .................... 27

2.6 Instrumentation and Test Setup ............... 29

-- 2.7 Switch Actuator Circuit ................... 31

2.8 Results and Test Data .................... 32

3. Ka-BANDSWITCHDEVELOPMENT.................... 46

_ 3.1 Introduction ........................ 46

3.2 Junction Design Considerations ................ 46

-- 3.3 Instrumentation and Test Setup .............. 52

3.4 Switch Actuator Circuit ................... 52

3.5 Results and Test Data .................... 53

4. CONCLUSIONSAND RECOMMENDATIONS................. 69



J

b



I. INTRODUCTIONANDSUMMARY

This final report describes the development of two waveguide ferrite

switches: a high power K-band switch in WR-42 waveguide and a high speed

Ka-band switch in WR-28 waveguide. Also described are the efforts to im-

_. prove the characteristics of ferrite materials for the K-band range. The

nickel-zinc ferrites have excellent high power capability, and their mag-

netic and dielectric pro_=rties are nearly ideal for the design of high

power, wideband, low loss circulators and switches at Ka-band. Their re-

lative dielectric constant, however, is significantly too low to design

these components at the lower K-band range, and leads to a too large

junction volume, increased insertion loss, and degraded bandwidth

-- performance. The analytical work, which disclosed the design problems

caused by the too low relative dielectric constant, was verified by the

design, fabrication, and performance measurements of an artificial com-

posite ,junction consisting of a ferrite core and a ring fabricated from a

high relative dielectric constant ceramic. The resulting junction, with

significantly higher effective dielectric constant, produced the expected

frequency responses from the analytically predicted dimensions and excel-

- lent, well-balanced isolation and VSWRperformance. This approach

resulted in increased insertion loss, however, caused by the dielectric

discontinuity between the ferrite and the ceramic ring, nullifying

the effects of the smaller junction volume. This effort demonstrated the

_ need for a ferrite with higher relative dielectric constant for this fre-

quency range; however, the required bandwidth and insertion loss improve-

ments may be obtained only in a simple junction, fabricated from a homo-

geneous material with proper physical characteristics.

The results of this work were followed with efforts to modify the

dielectric properties of the nickel-zinc ferrite. Several approaches were

investigated during a 15-week development effort, and a substitution

method of oxides with high polarizability into the NiO sites of the

nickel-zinc composition resulted in several samples with significantly

-- higher values of the relative dielectric constant. But, the rather large

variations indicated that a greater effort would be required to achieve

-- adequate process control and acceptable and repeatable results. The

I



efforts to obtain the needed improvements will be continued as p_ t of
other ferrite materials developments.

The concurrent developments of two essentially similar comp( ents

provide a comparison of not only the impact of the materials proF _rties

on the component performance, but also on the degree of design d ficulty -_

and the required level of effort. Logically, the nearly ideal m_ erial

for the higher frequency Ka-band design simplified the effort anc re-

sulted in an excellent performance of isolators and switches. Ir con-

trast, the more modest performance of the lower frequency K-band witch

was obtained at the cost of a significantly more difficult effort demon-

strating the need for improvements in the area of ferrite materi_ s
technology.

The presently available ferrites were developed decades ago. long

before present requirements could be anticipated. In a few exceF ional

cases, the combination of the magnetic and dielectric properties, as in

the Ka-band, are nearly ideal and lead to outstanding component F:r-

formance. Development of ferrite components during the past sew al

years has resulted in rapid progress in design methods, which wet= pre-

dominantly oriented toward overcoming the limitations imposed by nade-

quate materials. However, the component performance is the resul of

proper correlation of the magnetic, dielectric, and transmission ine

characteristics, and the best design method cannot overcome the 1 mita-

tions imposed by grossly inadequate physical properties of materi Is.

Further improvements of component performance require correspond _g

improvements of ferrite properties. In the specific case of higF power

K-band junction components, ferrites with significantly higher rE ative
dielectric constant are needed.

The design of the K-band switch (Figure I) was based on the p-

proach which had proved successful in X-band switch development f r

DSSC-II and Landsat space programs and K-band switch development n WR-

51 waveguide for NASA. The development objectives and the actual
performance data are listed in Table I.
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__ Figure I. K-Band Switch
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Table I. K-Band Switch Design Objectives and Performance

DEVELOPMENT ACTUAL

PARAMETER OBJECTI VES PERFOI_ANCE

CENTER OPERATING FREQUENCY (GHz) 18.95 19.2

BANDWIDTH MIN (GHz) 2.5 1.0

CW OPERATING POWER (W) 75 NOT

MEASURED*

OPERATING TEMPERATURE, MAX ("C) 56 55 --

NONOPERATINGTEMPERATURE,MIN (°C) -40 -40

WAVEGUIDEDESIGNATION WR-42 WR-42

SIZE, MAX (CU. IN.) 10 8.4

SWITCH TYPE, LATCHING SPDT SPDT

INSERTION LOSS, MAX (dB) 0.25 0.4

ISOLATION, MIN (dB) 25 20 TO 25

ISOLATION, GOAL (dB) 30

VSWR, MAX 1.2 1.3

VSWR, MAX WITH 1.15 LOAD 1.3 1.3 --

PHASE LINEARITY OVER ANY 300 MHz

OF PASSBAND (°) 5 < 5

SWITCHING TIME, MAX _SEC) 80 50

SWITCHING POWER SUPPLY (Vdc) 24 24

SWITCHING POWER SUPPLY CURRENT, MAX (mA) 10 4.8

*TESTS NOT PERFOI_IEDDUE TO LACK OF SUITABLE POWER SOURCES.

The development of the Ka-band switch shown in Figure 2, where

ferrite material with nearly ideal properties was available, led to

excellent performance, satisfying or exceeding the design objectives,

These switches were provided with input isolators, increasing the input-

output isolation of the isolator/switch assembly to a level in excess of

40 dB. The design objectives and the actual performance of the switches

and the isolator/switchassembliesare listed in Table 2.



-- Table 2. Ka-BandSwitch DesignObjectivesand Performance

DEVELOPMENT ACTUAL PERFOI_MANCE
-- PARAMETER OBJECTIVES SWITCH ISOLATOR/SWITCH

CENTER.OPERATING FREQUENCY(GHz) 28.75 28.75

-- BANDWIDTH, MIN (GHz) 2.5 2.5

CW OPERATING POWER (W) 5 12

OPERATINGTEMPERATURE,MAX ("C) 56 56

NONOPERATINGTEMPERATURE,MIN (°C) -40 -40

WAVEGUIDEDESIGNATION WR-28 WR-28

SIZE, MAX (CU IN) 10 0.8 2.0

SWITCH TYPE, LATCHING SPDT SPDT

-- INSERTION LOSS, MAX (dB) 0.4 0.25 0.4

ISOLATION, MIN (dB) 35* 20 40

ISOLATION GOAL (dB) 40* - 40

VSWR, MAX 1.2 1.2 1.1 TYP

VSWR, MAX WITH 1.15 LOAD 1.3 1.3 1.2

PHASE LINEARITY OVER ANY 5 5

300 MHz OF PASSBAND (°)

SWITCHING TIME (FISEC) 80 50**

SWITCHING POWER SUPPLY (Vdc) 24 24

SWITCHING POWERSUPPLY 10 4.8

CURRENT,MAX (mA)

* WITH INPUT ISOLATORS.

**ONE _ISEC SWITCHING SPEEDCAPABILITY WITH SUITABLE CONTROLCIRCUIT.

_ 5
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Figure 2. Ka-Band isolator/Switch Assembly



2. HIGH POWERK-BANDFERRITESWITCHDEVELOPMENT

2.1 INTRODUCTION

The design approach of the high power K-band switch is based on the

TRWpatented (I) high power ferrite switching junction design, which has

-_ been previously qualified for DSSC-II and Landsat space programs. The

same type of switching junction was also used in the WR-51 high power

switches developed for NASAduring 1980. The development of these WR-51

switches and multijunction circulators, required for other programs,

__ disclosed unexpected difficulties in obtaining predicted bandwidth and

insertion loss performance in this frequency range. These difficulties

were unexpected because 0.I dB insertion loss over full waveguide band has

been obtained easily, not only at the lower XL-band (7 to 10 GHz), but

also over about 9 GHz of operating bandwidth at the much higher Ka-band

frequency range (26.5 to 40 GHz). Considering the impact of this

performance degradation at K-band not only on the high power switches, but

-- also on the multistage solid state power sources then under development,

we initiated a thorough investigation of this peculiar problem. By the

_ time this current development program started, the analysis of the switch

and circulator designs identified the significantly too low relative

dielectric constant of the high power nickel ferrites used in these

designs as a source of the difficulties. The initial efforts of the

current K-band switch development were devoted to further detailed analy-

-- sis and design of a composite junction to demonstrate experimentally the

impact of the relative dielectric constant on the component design and

-- performance.

_ 2.2 FERRITEMATERIALSPROBLEMS

Materials selection and problems described in this section apply to

the ferrite junction components with high power handling capability, low

insertion loss, and wide operating bandwidth. Under these design

constraints and at frequencies above 18 GHz, the only acceptable materials

(1)Electronic Waveguide Switch, U.S. Patent No. 4,254,384, dated 3 March 1981
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are nickel-zinc spinel ferrites. Garnets have too low saturation magnet-

ization (anTMs)to satisfy the bandwidth requirements, and magnesium com-

positions have a low power handling capability of up to about 20 watts.

Someof the lithium ferrites with low saturation magnetizations have

better dielectric properties (_r = 18, 4_Ms = 1100 gauss). These, with

an adequate saturation magnetization in the range of 3500 to 4100 gauss,

have too low relative dielectric constants and are not suitable for power
levels in excess of 50 watts CW.

By coincidence, rather than by deliberate design, the nickel-zinc

compositions developed decades ago and long before present requirements

could be anticipated, have nearly ideal combinations of magnetic and

dielectric properties for applications in several frequency ranges, such

as the 26.5 to 40 GHz range, where performance with 0.1 dB insertion loss

over about 9 GHz bandwidth is easily obtained. A similar performance at

the lower K-band range is not possible with this type material because its

relative dielectric constant is significantly too low. In this case, to

obtain the frequency response determined by the relative dielectric

constant of the ferrite, a large junction with distorted proportions

leads to twice the insertion loss and a degraded bandwidth performance.

The impact of the relative dielectric constant on the performance of

ferrite junction components has been largely ignored in the numerous

theoretical papers concerned with general concepts and nearly exclusive

emphasis on the magnetic characteristics. Experimental component

developments at lower microwave frequencies started with a selected

ferrite and optimized the junction dimensions to satisfy given (normally

very modest) requirements. These experimental methods clearly had no

capabilities to determine required materials properties, not only

dielectric but also magnetic. After an examination of a number of

existing components, J. Helszajn (2) writes, "This result also suggests

that many junctions are constructed using materials with values of

saturation magnetization which are too large for the ripple level and
bandwidth of the device."

(2)F.C.F Tan and J. Hejszajn, "Suppression of Higher Order Modes in --
Waveguide-Junction Circulators using Coupled Open Dielectric
Resonators," MTT-24, 5-76, pp. 271-273.
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The introduction of the circulator junction circuit concept, which

considers the junction ferrite as a dielectric resonator whose length is a

quarter or half wavelength long, is also inadequate to define the junction

circuit properly because it does not yield a unique solution. But, when

the junction ferrite is considered as a dielectric resonator supporting

the propagation of two modes, the junction dimensions and the required

physical properties of the ferrite material may be determined accurately.

This TRW-developed design method reverses the previous design approaches,

-- which started with the material selection and attempted to optimize the

dimensions to satisfy the given requirements. The new method begins with

-- the given design center frequency and operating bandwidth, and determines

the resonator dimensions and required relative dielectric constant of the

ferrite material and its saturation magnetization. The following example

illustrates the dominant importance of the relative dielectric constant

in the junction design with design center frequency of 21 GHz and oper-

ating bandwidth 18 to 24 GHz in WR-42 waveguide.

_" The optimum ferrite dimensions required for low insertion loss and

adequate impedance match over the specified bandwidth are:

Ferrite R/L = 1.4

Ferrite length = 0.040 inches

Ferrite radius = 0.056 inches

Ferrite volume = 3.9408 x 10-4 inches

If the relative dielectric constant of the ferrite is _r = 21, the

- frequency responses of the dielectric resonator are:

_ Low frequency = 18.13 GHz

Center frequency = 20.994 GHz

High frequency = 23.855 GHz

9



If a ferrite with the relative dielectric constant _r : 13 is substituted,
the frequency responses would be: _-

Low frequency = 23.046 GHz

Center frequency = 26.682 GHz

High frequency = 30.319 GHz

If the ferrite with the relative dielectric constant _ : 13 must be usedr
because the proper value is not available, the ferrite dimensions must be

increased and experimentally determined. These modified dimensions, in

comparison with the optimum, analytically predictable values are: .-

_r = 13 Er = 21
Ferrite length (inches) 0.056 0.040

Ferrite radius (inches) 0.075 0.056

Ferrite R/L ratio 1.34 1.40

Ferrite volume (in 3) 9.8960 x 10-4 3.9408 x 10-4

The modified ferrite has 2.51 times larger volume, leading to a

proportional increase of the circulator insertion loss, and the badly

distorted junction dimensions also cause degradation of the bandwidth

performance. In addition, the impact on the design process should be

noted. The circulator design with optimized material parameters is

relatively simple, and the actual component performance closely conforms

to the analytically predicted. But when the ferrite relative dielectric

constant is only about half the required value, several experimental and

time consuming design iterations are unavoidable. As a consequence, a

poor performance is obtained at significantly more difficult effort and
cost.

Recognizing the sources of the design difficulties in previous

circulator and switch developments at K-band as materials-related

problems has led to a two-pronged effort to obtain the necessary

improvements. The purpose of the first part of this work was to confirm

experimentally the accumulated analytic data, while the second part was

devoted to an investigation of potential methods to improve the properties
of ferrite materials.

10



2.3 MATERIALSMODIFICATIONEFFORT

The increased insertion loss and reduced bandwidth of K-band circu-

lators and switches, compared with similar junction designs at both the

_- lower and higher frequencies, have been noted during previous develop-

ments. The reasons and sources of these design difficulties have not

been identified, however, and the potential solutions have been thought

to depend on improved design concepts. During a more recent development

of K-band switches in WR-51 waveguide in 1980 the insertion loss and

bandwidth performance, projected on the basis of previous results obtained

at both the lower X-band and higher Ka-band frequencies and falling short

of the design objectives, stimulated a more thorough examination of these

unexpected design difficulties peculiar to the K-band range. After the

previous development was completed and before the present task was

initiated, examination and analysis were nearly completed, and the

sources of component performance difficulties were identified as

materials-related problems; specifically, the improper and significantly

- too low relative dielectric constant of the nickel ferrites used in the

design of high power components in the K-band frequency range.

During the analysis phase, the causes of degraded bandwidth and

insertion loss performance for the K-band high power ferrite components

"_ were examined and compared with other frequency bands. This effort led

to several significant modifications and improved analytic methods,

disclosing not only the source of the deficiencies, but also potential

corrective measures.

Initially, the comparison of the junction dimensions, as related to

the waveguide dimensions at X-, K-, and Ka-bands, indicated that the K-

band junctions were significantly larger than the wideband, low loss X-

and Ka-band designs. In our design, where the junction ferrites as

circuit elements determining the frequency responses of the component are

dielectric resonators, this clearly pointed to the relative dielectric

-- constant of the ferrite as a major source of the problems.

-- 11



The preliminaryresults were followed by a more detailed evalua-

tion of other numerous available dimensional and performance data and

design procedure changes. This was necessary because, in spite of the

fact that the impact of the relative dielectric constant on the size of

the circulator junction may seem obvious, the subject was never considered

as significant in the large volume of technical writing during the past

30 years. Presenting it as a key design consideration, the aspect of the

dielectric constant could be questioned on the basis of this long-

standing treatment and the nearly exclusive consideration of magnetic

properties as the most important design parameter.

ro ,

Another important reason for a thorough analysis of this problem was

the potential impact on further component performance improvements

through progress in the materials technology. Historically, again the

main thrust of the development has been exclusively on magnetic

properties, but little progress has been demonstrated during the past two

decades in this area due to challenging technical difficulties and lack of

adequate funding. Potentially, with improved dielectric properties, an -.

additional direction in materials technology could lead to the same

objectives using technically simpler and more economical materials

development methods.

The reasons for the absenceof adequate considerationof the

dielectricpropertiesof ferrites in junction componentdesign are that

most of the technical papers do not even address the component design

problems, but are mainly concerned with idealized, theoretical

considerations, or the depth and sophistication of the generalized -_

mathematical concepts. As such, they are of little or no value to the

component designer. The few presentations with more practical purposes

normally begin with a given existing material, concentrate on the

obviously important magnetic properties, and consider the relative

dielectric constant as a given, fixed design parameter. The objective of

this method is to optimize component performance with what is available,

but not necessarily to determine what is, in fact, required. With several --

significant improvements, TRW's design procedures were essentially similar.

This approach, which accepts the "as is" condition without the search for

12



what is really needed, tends to obscure the effects of the ferrite

physical properties on component performance. In some cases, this

process works very well because, by coincidence rather than conscious

effort, most design parameters happen to be close to ideal, leading to

outstanding component performance. Under more difficult circumstances

this approach, which in effect states "we will do the best we can with

_ whatever we have and accept whatever results we can get", is bound to

fail. Clea_ly, a reversed approach, starting with the given requirements

-_ and aimed at establishing the precise materials physical parameters

required to satisfy the design objectives, is a vast improvement.

TRWdeveloped this more logical approach and implemented the neces-

sary computer analysis. Our design procedure correlates the dielectric,

magnetic, and transmission line impedance requirements. In this unified

procedure, each characteristic may be introduced as a variable, and its

-_ effects are immediately apparent, presenting a clear picture of interac-

tions between the variables. Even in the case where the design

" parameters are less than ideal, it simplifies the optimization of the

.design.

This improved analysis clearly indicated the dominant effects of

the relative dielectric constant on component performance. The fer-

rite in a circulator or switch junction is, as a circuit element, a

dielectric resonator supporting the propagation of two modes. The fre-

quency separation between the resonances of these modes determines the

operating bandwidth of the component. The separation of the resonances

- in a cylindrical resonator is controlled by the proportions of the

cylinder, specifically by the radius/length ratio, while the dimensions

for a given frequency response are controlled by the relative dielectric

constant of the ferrite material. It is possible, therefore, to produce

an infinite number of dielectric resonators with identical R/L ratios

and identical frequency responses using a wide range of relative dielec-

tric constants. The difference between these resonators will be only

their volume, increasing as the relative dielectric constant is lowered.

13



Considering all other parameters equal, the circulator junction with

larger ferrite resonators would have higher insertion loss than a junc-

tion with smaller ferrites, the loss being proportional to their respec-

tive volumes. In a circulator, for the loss measurement to have any

meaning it must be measured with the junction nearly perfectly matched

to the terminating waveguides. Combining the loss and impedance consi-

derations should be adequate to perceive intuitively that to obtain both

the optimum loss performance and impedance match, optimum junction

volume must exist. As a consequence, the optimum value of the relative --
dielectric constant is also fixed.

o_

The effects of the magnetic properties in the junction design have

not been mentioned because selecting the adequate level of saturation

magnetization of the ferrite is far simpler. Above 30 GHz, the selection

is limited to ferrites with the highest available saturation magnetization

of 5000 gauss. Below this frequency, care should be taken to avoid too

high a value, which would cause high insertion loss at the lower frequency

part of the circulator bandpass where the ferrites would be magnetically -

biased into the high absorption region of the material. To obtain a

circulator response with well-balanced ripples in the VSWRand isolation --

performance, it is necessary to select a ferrite with saturation

magnetization level adequate to provide phaseshift over a bandwidth equal

to or wider than the frequency separation of the resonances of the

dielectric resonator modes. Under these conditions, the dielectric modes

are coupled to form a wideband response, when the junction is magnetically

biased into saturation, in a manner similar to responses of two coupled

amplifiers. A relatively wide range of the saturation magnetization,

extending from about 2900 gauss to about 4200 gauss could be used in

K-band junction component design.

The opposite is true for the relative dielectric constant. The

proper value of this parameter, combined with a rather wide range of ad-

equate saturation magnetiztion, results in a junction having 0.1 dB in-

sertion loss over the full waveguide band. Within a comparatively nar-

row range of values of the relative dielectric constant, the circulator



or switch performance may be optimized. However, the progressively

larger deviation, especially toward the lower values, leads to a larger

junction, higher insertion loss, and degraded bandwidth. Bandwidth per-

formance degradation is caused by the unavoidable deviation from the op-

-- timum R/L ratio of the ferrites. A larger volume of the ferrite, caused

by a too-low relative dielectric constant required for the given

-- frequency response, is obtained by enlarging the ferrite radius. This

reduces the bandwidth over which acceptable impedance match may be ob-

-- tained.

Our specific problem with the 20 GHz range is caused by three coin-

cidental requirements of high power, wide bandwidth, and low insertion

loss, leaving little room for compromises and tradeoffs. With the

presently available dielectric constant, a lower insertion loss may be ob-

tained over reduced bandwidth, or a wider band performance may be provided

-- with higher insertion loss. Neither is acceptable, so the dielectric con-

stant correction is the only solution.

As mentioned, the relative dielectric constant of the ferrites has

not been considered an important design parameter and there were no known

previous efforts in the materials technology, except to improve the

magnetic properties. As a result, TRWinitiated an investigation to

-- determine potential solutions of the problem using two approaches: (I)

obtain modifications of the relative dielectric constant of the existing

r-- basic nickel ferritecompositionsand (2) overcomethe materials

deficienciesby a design techniqueusing compositejunctionswith

-- artificially increased effective dielectric properties.

2.3.1 Composite Junction Design

This task produced significant results. It is a circulator junction

design, where previously used ferrites with a too low relative dielectric

constant were replaced by an artificially created composite structure

-- intended to approximate the significantly higher relative dielectric

constant required to obtain optimum junction proportions with reduced

- volume.
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Several observations made during this task led to conclusions with a

large impact on potential future performance improvements of ferrite
components. These are:

• Resultsof this work provided conclusiveevidence that the
efforts in the ferritetechnologyarea should be focusedon
controlof dielectricproperties. Previousdevelopmentswere
exclusively devoted to improvements of magnetic properties.

• Actual measured data confirmed the previous analytic work on the
effects of a relative dielectric constant in the design of
ferrite junction components.

• The relative dielectric constant of the ferrite is the dominant
design parameter in the design of ferrite junction circulators -
and switches. It determines the frequency responses, the
junction volume, and the insertion loss performance.

• The value of the relative dielectric constant of the ferrite
affects the quality of component performance, far exceeding the
effects of the magnetic properties which may be chosen from a
relatively wide range.

• A properly chosen value of the relative dielectric constant
leads to an excellent, analytically predictable performance in
contrast to time consuming adjustments of dimensions and
relatively poor performance when proper value is not available.

• The analytically predictable performance significantly reduces
development time. The adjustment of the final impedance match
required less than one day's effort in this design, compared
with several weeks of experimental modifications when a ferrite
with too low relative dielectric constant had to be used.

The design approach of the composite junction considers the junction

ferrite as a capacitor, whose effective dielectric constant may be modi-

fied artificiallyin severalways. It may be reducedby replacingpart of

the ferritecylinderwith a spacer with a lower relativedielectric

constant. It may be increasedby placinga ceramic pin in the center of

the cylinder,or a ceramic ring with a high relativedielectricconstant

on a ferrite core. In the latter case, the objective was to increase the

dielectric constant; a design with a ferrite core and ceramic ring was
used, as shown in Figure 3.

The problems expected with this deceptively simple approach included

spurious responses in the circulator bandpass, caused by fabrication
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Figure 3. Configurationof CompositeJunctionFerrite

tolerancesand possible air gaps betweenthe ferrite core and the ceramic

ring, and the effectsof the abrupt dielectricdiscontinuitiesbetween

these parts. In the fabricatedjunction,the spuriousresponsesdid not

appear,but the effect of the dielectricdiscontinuitieswas nearly twice

_- the insertionloss of a homogeneousjunction with comparablevolume.

- The value of the resultingeffectivedielectricconstant of the

compositejunctionmay be obtainedby consideringthe assemblyas parallel

capacitorsand using the followingsimple relationship:

R2 cf R1 +¢h (R2 R12)¢(eff) =

where:

-- ¢(eff) = effectivedielectricconstant of the assembly
= ferriterelativedielectricconstant

Ef
= ceramicrelativedielectricconstant

R = outsideradius of the ceramicring

RI = ferriteradius

To obtain a basis for comparison,the compositejunctionwas designed

with an operatingbandwidthsimilarto a previouslydevelopedK-band

circulator. In this previouscase, a ferritewith relative dielectric

constant€r = 12.9 was used, leadingto final ferrite dimensionshaving a
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radius = 0.150 in. and length = 0.112 in. The initially calculated fer-

rite dielectric spacer and transformer dimensions produced large fre-

quency shift, poor impedance match, and, generally, an unbalanced and un-

acceptable performance. The ferrites were enlarged to lower the

frequency to the required range and after several weeks of effort, per-

formance was optimized; the results are shown in Figure 4. The swept

frequency responses show 0.2 dB insertion loss (twice the 0.1 dB obtained

at much higher Ka-band frequency range where a more suitable ferrite was

available) and distorted and unsymmetrical VSWRand isolation ripples.
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Figure 4. Performanceof Circulatorwith Simple Low Dielectric
ConstantFerriteJunction

Two composite junctions were designed using the same circulator

design computer program. The first junction ferrite had a diameter of

0.136 inches and a length of 0.080 inches; the second had a diameter of

0.128 inches and a length of 0.080 inches. To minimize the cost of

tooling and fabrication, the ferrite cores in each junction had a diameter

18



of 0.100 inches and length of 0.080 inches. The impedance transformers

were fabricated slightly longer than computed to allow for an adjustment

of the VSWRand isolation levels in the center of the operating bandwidth.

The ceramic rings were fabricated with the relative dielectric constant

€r = 32. Preliminary measurements indicated an expected operating fre-
quency range and, after the adjustment of the transformer lengths, the

swept frequency responses shown in Figure 5, clearly demonstrated im-

proved symmetry and balance of VSWRand isolation ripples over the pre-

-- vious design. The 0.25 dB insertion loss, caused by the dielectric

discontinuities between the ferrite core and ceramic ring, would be

- significantly lower in a comparable junction volume fabrication from a

homogeneous ferrite material. The volume of the 0.136 inch diameter

junction was reduced to about 59 percent and the 0.128 inch diameter

junction to about 52 percent of the original low dielectric constant

design.
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The increased effective dielectric constant of the junction permitted

significant reduction of the junction volume for an essentially similar

frequency response. The new junctions also demonstrated other improved
characteristics:

• Nearly exactly the predicted frequency responses in contrast to
troublesome frequency shifts in junction designs with improper
dielectric properties.

e More accurate and predictable adjustments of the impedance
matching transformers which determine the final performance
level.

• Swept frequency responses displayed significant improvements
in the balance and symmetry of VSWRand isolation ripples.

The composite junction is not a direct and equal substitute for a

structurally and electrically simpler junction fabricated from homogeneous

material with proper physical properties. The increased complexity and

dielectric discontinuities are obvious disadvantages, also contributing to

an increase of the insertion loss. But, the design concept proves the

effects of ferrite parameters, especially the relative dielectric constant

on the component performance, and provides conclusive and logical

indications for the necessary development initiatives in ferrite materials

technology.

2.3.2 Modifications of Ferrite Relative Dielectric Constant

The objectives of this effort included modifications to the dielec-

tric properties of presently existing nickel ferrite compositions with

high power handling capabilities for applications in wideband, low loss,

high power junction circulators and switches operating in the K-band fre-

quency range. As developed originally, ferrites with saturation magneti-

zation levels in the range of 3000 to 4200 gauss (suitable for the K-band

designs) displayed significantly too low values of relative dielectric

constant to obtain junction ferrite proportions consistent with the

operating bandwidth and insertion loss requirements.
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Assuming an acceptable level of saturation magnetization, the

bandwidth of a junction component depends on the radius/length ratio of

the junction ferrite, but the ferrite in the junction circuit is a quarter-

or half-wave resonator, and its length in a waveguide transmission line is

restricted within relatively close limits with respect to the waveguide

height. For this reason, to maintain the required ferrite R/L ratio, a

similar restriction is also placed on the value of the relative dielectric

-- constant. The significantly too low values of the present nickel ferrite

compositions lead to an excessively large radius of the ferrite,

_- distorting the R/L ratio and degrading the bandwidth, while the increased

ferrite volume contributes to increased insertion loss. The design

problems with the too low relative dielectric constant are especially

troublesome in the K-band range in high power component design where

nickel ferrites with the best power handling capabilities must be used.

TRW's general approach to the materials effort considered not only

- the objectives of the K-band switch development, but also the impact on"

other continuing work at other frequencies. Our background in the area

of the ferrite materials technology was instrumental in both the recog-

nition of the benefits of this work and in the assessment of risk and
difficulties.

Considering the trend to higher frequencies, efforts were initiated

in the area of ferrite materials technology several years ago. Our

objectives included improvements of materials for applications in the

- 50 to 300 GHz frequency range. These initial efforts to resume

development work of more than twenty years ago, and abandoned when the

-- interest shifted to the lower microwave frequencies, were discouraging and

disclosed several obvious difficulties such as technical problems, high

costs and risks, the time consuming nature of this work, and a general

lack of interest amongthe ferrite manufacturers. Technically, previous

developments were limited to improving magnetic properties which are

known as technically challenging. In addition, the trend to higher fre-

quencies reduced the economic incentives to an unacceptable level. The

materials for lower frequencies with a large sales volume and numerous
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potential commercial applications offered adequate incentives. Ferrite

components at higher frequencies are not commercially practical because

they are used only in limited quantities in space communications and

military systems funded by government agencies. As a result, any

further progress requires support from these agencies. In addition,

lack of knowledge by ferrite manufacturers about specific requirements

places the responsibility for any initiatives in this field on the com- -

ponent designers. The specific materials needs at K-band presented an

oppQrtunity to solve the current problem and develop potentially useful --

methods to modify the dielectric properties of ferrites at several

other frequencies.

Another key consideration in this effort was the selection of a

cooperating ferrite manufacturer. Our previous work in this area

provided us with adequate knowledge about the capabilities of leading

ferrite manufacturers and the individuals with the necessary background,

interest, and motivation. The actual material formulation, processing,
and measurementswere performedby CountisLaboratories.

In the specific approach to the development of nickel ferrites with

increased relative dielectric constant, TRWdetermined the best solution

to be modifying the chemical composition, leading to a material with the

required properties. Also considered was the possibility of obtaining
acceptable results through simpler and less costly structural reconsti-

tution methods. These included grinding and milling the existing ferrite,

mixing with high relative dielectric constant additives, and re-sintering

at _reduced temperatures to prevent a complete reaction. Several samples

produced by this method were unsuccesful in increasing the dielectric pro-

perties because the new material displayed a series-parallel arrangement

of particles, where predominantly parallel alignment is required.

The possibility for modifying dielectric properties of existing basic

nickel-zinc ferrite compositions was based on the assumption that an

addition of elements with high polarizability to the present composition

would modify the dielectric properties without materially affecting loss

and magnetic characteristics. Several samples of experimental material

22



confirmed this approach, but displayed an undesirably wide range of

-- relative dielectric constants of 29, 60, and 102. The task to finalize

the required material would require several months of work and would not

-- be completed within the planned 15 weeks. To meet the new material

requirement including 3400 to 4000 gauss saturation magnetization, 18.25

relative dielectric constant, and 0.001 dielectric loss tangent, addi-

tional time is required to establish the composition of the mixture and

the sintering temperatures which critically affect the final properties.

2.4 JUNCTIONDESIGNCONSIDERATIONS

The design of the K-band switching junction in the WR-42 waveguide

_ is based on an approachestablishedpreviously in space-qualifiedcompo-

nents at other frequenciesand at K-band in WR-51 waveguide. As shown

in Figure 6, the RF junction is magneticallybiased by external (to the

waveguide)switch drivers to obtain circulatoraction at the remanent

magnetizationlevel of the switch driver-RFjunction assembly. The

change in the circulatordirectionor the single-pole,double-throwRF

switchingaction is controlledby the polarityof the currentpulse

-- through the coil within the switch driver; the switch is latched in its

positionby this current pulse.

The RF junctionconsistsof two quarter-wavelong ferrites and a

dielectric spacer, housed in a dielectric sleeve located in the recess of

the metallic transformer disk, which in turn indexes the junction
assembly to the switch housing.

A gold foil with several skin current depth thicknesses forms the

waveguide wall in the junction area and separates the switch driver

ferrite from the RF junction, preventing RF leakage with a minimum of

conductive material in the magnetic circuit. The foil thickness is kept

to a minimum because the presence of the conductive material within the

_ magnetic loop permits eddy currentsduring switching,increasingthe

requiredswitchingenergy and reducing the switchingspeed. The design
of the switch driver ferrites is presentedin Section2.5.
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Figure 6. Cross-Sectionof SwitchingJunctionShowing
RF and Driver FerriteLocations

The switchingjunction ferritedesign is significantlymore complex

than the simple nonswitchingcirculatorjunctionferrite design. The

task starts with the well-optimizedcirculatordesign to obtain a

reasonableestimate of the key dimension: the length of the ferrite

required to obtain adequate impedancematch and isolationlevel. The

new enlargedferritewith an adequate cross-sectionto provide a return

path for the magnetic flux is a dielectricresonatorsupportingthe

propagationof two modes whose resonancesdeterminethe operating

bandwidthof the componentwhen the junction is impedance-matchedand

magneticallybiased. The two modes are coupled to form the familiar

dual-rippleresponsesin VSWR and isolationsimilarlyto the couplingof

resonatorsin bandpassfiltersor coupled amplifiers. Ferritematerials

with nearly ideal magnetic and dielectricpropertiessimplifiedthe
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task at X-band where a switching junction with about 0.15 dB insertion

loss, better than 1.05:1VSWR, and higher than 30 dB isolation per-

formance has been developed. At K-band in the WR-51 waveguide a similar

performance could not be obtained. The simultaneous requirements of

-- high power and wide bandwidth eliminated from consideration all ferrites

except the nickel-zinc materials with adequate magnetic characteristics

but with about one-half the value of the required relative dielectric

constant. In the WR-51 design, this led to a large junction with"

_ severely distorted proportions, nearly twice the expected insertion loss

and degraded bandwidth.

During the current development, analysis of the previous design, which

disclosed the material-caused difficulties, led to efforts to develop the

necessary ferrite with an increased relative dielectric constant which

is consistent with the bandwidth high power and insertion loss require-

ments. These efforts would have required significantly more time

than could be included in this development to obtain adequate results,

. and the available approaches were reduced to the composite junction

design or the design with existing ferrites. The composite junction

could be justified in some simple nonswitching junction designs because,

in comparison with the designs with a too low relative dielectric

constant ferrite, it permits circulator designs with significantly

improved impedance match and isolation performance at slightly higher

insertion loss and structural complexity. In a larger switching junction

-- the insertion loss caused by the dielectric discontinuities and the

structural complexity make this approach unacceptable, leaving no other

_ choice but to use the presently available nickel-zinc ferrite with known
too low relative dielectric constant.

As expected, the optimization of the junction dimensions was dif-

ficult and required several time-consuming experimental modifications to

obtain the performance shown in Figure 7.
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2.5 SWITCHDRIVERDESIGN

The switch drivers which replace the permanent magnets of a

_ circulator extend the capability of the junction with fixed direction

circulation to that of a single-pole, double-throw switch. The current

pulse through the winding establishes internal magnetization in the

driver RF junction assembly, latching it at the remanent level,

magnetically biasing the junction into circulation. A pulse with an

-- opposite polarity repeats the switching and latching, reversing the
direction of circulation.

The switch driver assembly shown in Figure 8 consists of a cylin-

-- drical ferrite sleeve enclosing a coil wound on a ferrite core. A

closed magnetic loop of this electromagnet is formed by the contacting

RF junction ferrite; when magnetized by a current pulse, it retains the

internal magnetization within this closed loop at the remanent level. A

ferrite material, suitable for the driver, should have low coercive

field (Hc) and a square hysteresis loop characteristic, indicated by a

high ratio of remanent over its maximumflux density (Br/Bm). The low

- coercive field (Hc), usually a few oersteds, ensures the low switching

energy required, and a high level of remanent magnetization provides

adequate bias for the circulator junction. In this specific switch de-

sign approach, where the switch drivers are placed externally to the

waveguide circuit, both ferrite materials for the drivers and for the

circulator junction are selected independently, allowing an optimum

selection of materials for each function.

The ferrite material selected for the switch drivers is a lithium

-- ferrite 5000 B, manufactured by Ampex Corporation. Its residual

induction (Br) is 3700 gauss, Br/Bm ratio is 0.95, and its coercive

field (Hc) is 4.2 oersteds, indicating good switching characteristics.

Previous designs where similar lithium ferrites have been used required

care in fabrication of the driver parts but did not present unusual

problems in fabrication and heat-treatment. In the present case, the

slightly smaller drivers with a thinner cross-section, combined with

more brittle material, made the processing of driver parts neatly
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Figure 8. Configuration of Switch Driver Assembly

impossible. Part of the problem was the material; internal stress

fractures could not be seen on the surface of the bar stock. To

correct the problem, new material was purchased, and the cross-sections

of the driver parts were increased beyond the requirements of the

circuit to facilitate fabrication and heat-treatment processing.
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The switch design with this type actuator requires an intimate

contact of the switch driver with junction ferrites at all times and

under all specified environmental conditions to prevent unlatching and

loss of circulator action. This intimate contact is ensured by properly

designed wavy-washer type springs which maintain the whole junction

assembly under compression. Their resonant frequencies are much higher

than the specified vibration test frequencies and in this way the

thermal, shock, and vibration problems are effectively eliminated.

2.6 INSTRUMENTATIONANDTEST SETUP

Electrical performance measurements of a circulator or switch under

development include insertion loss, VSWR,and isolation and are normally

accomplished with a simple reflectometer test set (Figure 9). The

components of this test, with the exception of the waveguide load and

-- detector, are standard commercially available equipment, maintained and

calibrated by the TRWMetrology Department in accordance with the

mandatory calibration _rocedures. Special care is used with the

detectors and waveguide loads to ensure acceptable accuracy. This is

necessary because the circulator is by definition a lossless and

reflectionless device, and its actual performance is affected by

reflections at all three ports. It may be measured as better than

actual if the phasing of reflections is favorable, but more often a good

performance is degraded by these reflections, especially the isolation

measurements. The effects of the reflections on the accuracy of the

isolation measurements may be seen in the graph shown in Figure 10. To

- minimize the range of measurement errors, we prepare our own waveguide

loads and detector assemblies. The detector assembly shown in Figure 9

includes, in addition to a low reflection attenuator, a well-optimized

circulator which dissipates even low-level reflections from the detector

in its waveguide load. This improved reflectometer test set has been

used during the development work and final performance measurements,

including the thermal tests.
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2.7 SWITCHACTUATORCIRCUIT

The switch actuator is provided within the switch housing. All

-- that is required to operate the switch is an external 24 Vdc power

supply and two SPST switches or relays.

The actuator consists of two independent capacitor discharge

circuits, one for each direction of circulation. Each circuit has a

188 _F capacitor, trickle-charged through a resistor, limiting the

charging current to 5 mA, and a series dropping resistor, limiting the

peak discharge current. The components of both circuits are combined on

a single circuit board located in the cavity of the switch housing and

protected from the effects of shockand vibration by special "formed in

place" foam. Figure 11 is the schematic of the actuator circuit and the

_ pin assignments of the nine-pin connector, while Figure 12 is the layout of
the actuator circuit board.

The nominal value of the power supply voltage is 24 Vdc, but the

switching may be completed with an input of 15 Vdc and longer capacitor
charging time.
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31



l

GNO

DRIVER
POWERSUPPLY

Figure 12o Board Layout of Switch ActuatingCircuitry

2.8 RESULTSAND TESTDATA

Switch tests were performed in accordance with the test matrix shown

in Table 3. Switch serial number two was temperature tested, while

serial number one was vibration tested.

Figures 13, 14, and 15 are room temperature,swept frequencyresponses

showingVSWR, isolation,and insertionloss, respectively. The thermal

performanceof switch serial number two is shown in Figures 16, 17, and

18. The thermaltest was initiatedby subjectingthe switch to the sur-

vival temperatureof -40°C for three hours. The temperatureof the test

chamberwas then returned to room temperature(23°C) and the switch was

connectedfor the return loss test. The test data taken at all three

ports indicatedno measurabledeviationsfrom the original acceptance

test data. The temperaturewas increasedto 56°C, stabilizedfor one

hour, and the swept frequencyresponseswere recorded. Then the tempera-

ture was loweredto I0°C, stabilized,and the swept frequencyresponses

recorded. The temperatureof the test chamberwas then returned to

room temperaturelevel, and the initialreferencelevels were verified.

The same procedurewas repeatedfor the insertionloss test at all three

ports.
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Table 3. Test Matrix

POWER SWITCHING
INSERTION AMPLITUDE PHASE HANDLING CIRCUIT

REQUIREMENT VSWR LOSS ISOLATION VARIATION DEVIATION CAPABILITY CHARACTERISTIC

REFERENC:=

TEST SEQUENCE PARAGRAPH 4.1.2 4.1.3 4.$.4 4.1..5 4.1.6 4.1.7 4.1.8

INITIAL
I 4.1 X X X X X (2) X

FUNCTIONAL

VIBRATION 2 4.2 ( 1 )

POST

VIBRATION 3 4 , I X X
FUNCTIONAL

THERMAL 4 4.2.2 X X X X X X

FINAL
._ 4.1 X X X X X xFUNCTIONAL

(1) MONITOR ONLY

(2) GOALONLY (DEPENDSON AVAILABILITY OF RF SO_JRCES)
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A similar procedure was used during isolation and insertion loss

__ tests. The swept frequency responses at IO°C and 56°C during the

isolation and insertion loss tests were recorded after the swept

frequency responses at room temperature were established as a reference.

These responses at I0 ° and 560C are shown as deviations from room

temperature performance.

Switch serial number one was subjected to the specified levels of

-- sine and random vibration test levels. Functional test data showing

VSWR,isolation, and insertion loss before the vibration tests were shown

in Figure 7. The switch was then subjected to the sine vibration test

levels specified in the Statement of Work for three minutes along each of

_ the three orthogonal axes. This test was followed by random vibra-

tion for three minutes along each of three axes. The sine and random

test levels were monitored and recorded. The records of the sine and

random input levels are shown for each test and each axis in Figures 19

through 24. After thevibration tests, the switch was subjected to the

-- functional tests. The swept frequency test data of VSWR,isolation and

insertion loss, shown inFigure 25 in comparison withthe test data of

-- Figure 7 before the vibration test, indicate that the switch is impervious
to the specified vibration test levels.

The K-band switch outline is shown in Figure 26.
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Figure 23. K-band Switch;Random VibrationTest;y_y Axis
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3. Ka-BANDSWITCHDEVELOPMENT

3.1 INTRODUCTION

The design approach for the Ka-band switches was finalized during

the study and analysis phase of the development. Considering the

moderate power handling requirements,availablematerials, and

fabricationof criticalcomponents,the junction design with directly

actuatedferrites and high speed switchingcapabilitywas selected. The

ferrite in this type junction is magneticallybiased to circulation

conditionsand latchedat its internalremanentmagnetizationlevel by a

currentpulse passing througha single-turncopper wire loop. The

actuator loop is held in place in O.O05-inchdiameter holes pierced

through the ferrite by a laser beam.

In sharp contrast to the K-band switch developmentthis task was

significantlysimpler. As noted in previous development,the component

performanceand the level of effort required to obtain an acceptable "

performanceare strongly affectedby the quality of the available

ferritematerials. In the Ka-band case the ferrites with suitable

physical propertiesfor this frequencyrange simplifiedthe design and

optimizationwork and led to excellentswitch performance.

3.2 JUNCTION DESIGN CONSIDERATION

The developmentof the Ka-band switchingjunction startedwith

mQdificationsof an existing circulatorjunction to provide optimum

performancein the 27.5 to 30.0 GHz range. This modified junction

providedthe initialdata for the design of the switching junction, and

was used for the isolatorswith the Ka-band switches. It was also used

in the detector assemblyof the reflectometertest set. Performance

measurementsof ferritejunction components,especiallythe measurements
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of isolation, are effected by the reflections at the switch or cir-

culator ports. To ensure accuracy of these measurements the test sets

normally include special high quality waveguide loads and detector

assemblies provided with attenuators and high quality circulators to

-- minimize the reflections and measurements uncertainty. The swept fre-

quency responses, isolation, VSWR,and insertion loss of the isolator

-- junction are shown in Figure 27.

-- The switching junction ferrite design shown in Figure 28 starts

with the data obtained from the circulator junction. The ferrite is

-- increased to provide a return path for the internal magnetic flux. The

innermost part of the junction ferrite provides the required volume to

_ obtain circulation, but the increased ferrite volume, as a dielectric

resonator, now supports a different set of propagation modes than were
present in the smaller circulator ferrite. These new dielectric

resonator modes determine the operating bandwidth of the switch; to

obtain the required frequency response, the size of the ferrite is

-- adjusted experimentally. In this particular case the initially
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Figure28. SwitchingJunction Configuration

calculatedferritedimensionsproduced operatingbandwidthat slightly

higher frequencies,and the ferritedimensionswere increasedto obtain

the specified27.5 to 30 GHz operatingbandwidth. The junction is

impedance-matchedto the terminatingwaveguideswith simple step

transformation;the balanceand amplitudeof the ripples in the

isolationand VSWR responsesare obtained by adjustingthe size of the

dielectricspacers. The spacerselectricallyprovideopen-circuitat

the faces of the junctionferrite, and structurallysupportand index

the ferrite to the impedancestep transformers. The transformersare,

in turn, held in place in the geometricalcenter of the switch housing

by a boss on the transformerand recess in the housing. This simple

mechanical assemblyensures adequateprotectionfor the junction under

shock and vibration,and simplifiesswitch assemblyby eliminatingthe

need for epoxy bondingand high temperaturecure.

As required,the switchingjunction is terminatedto accept UG-

595/U mating flanges of WR-28 waveguide; however,the junctionmay

coincidentallyalso be terminatedto accept WR-34 waveguide. This would

not materiallyaffect the switch performance,but becausethe WR-34

waveguideis larger and less lossy than WR-28, the performancecould be

improvedfrom the present0.4 dB to about 0.3 dB. The possibilityfor

this optional design in either WR-34 or WR-28 waveguidesexists only in

the presentlyselectedoperatingfrequencyrange: below 27 GHz, only
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WR-34 could be used, while above 30 GHz, WR-28 waveguide would be the

proper choice. In the present operating band (27.5 to 30 GHz), the

switch junction size and immediate area of the switch housing in the

-- junction region are coincidentally such that the junction may be

terminated with either waveguide. The slight advantage, as far as the

-- insertion loss of the larger WR-34 waveguide is concerned, arises from

the fact that the 27.5 to 30 GHz range falls nearly in the center of the

22 to 33 GHzwaveguide operating band (far from cutoff, where its loss

decreases), while the same switch range falls at the low frequency end

of the WR-28 waveguide, where the waveguide loss is increasing. This

coincidence was noticed during the breadboard development of the

switching junction and the switch was evaluated in both waveguide

-- configurations.

-- The Ka-band switches are provided with two isolators at the switch

input ports. The isolator/switch assembly shown in Figure 29 also

includes a switch actuator and connecting cables. Figures 30, 31, and

32 show the components of the assembly; the Ka-band switch, actuator

and the Ka-band isolator, respectively.

The Ka-band switchis a single-pole, double-throw latching type.

- The isolators provided with the switches have standard TRWcirculator

junctions installed in special redesigned housings to provide adequate

- separation between the switching junction and the strong magnetic fields

generated by the permanent magnets, used to bias the isolator junctions.

The unused ports of the isolators are terminated in built-in waveguide

loads.

-- The waveguide switch by itself is a single-pole, double-throw

switch, and the RF power may be switched from any of its three ports as

- an input to any of the two remaining ports as an output. But once the

isolators with fixed circulation directions are added, the operation of

_ the isolator/switch assembly is limited to a specified mode, determined

by the circulation direction of the isolators. In the present

configuration, the isolator/switch assembly is intended to switch the RF

power from one of the two ports, marked 2 and 3, to the commonoutput
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Figure 29. Ka-Band Isolator/Switch Assembly
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Figure 30. Ka-BandHigh Speed WaveguideFerriteSwitch
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181155-82

Figure 31. Switch Actuator

181154-82

Figure 32. Ka-Band Waveguide Ferrite Isolator
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port, marked I. This arrangement may be used, for example, to switch

one of two redundant transmitters to an antenna.

The isolator/switch assembly provides well in excess of 40 dB

isolation between the output and the input; but, because of the presence

of the isolators, the isolation from port I to port 3 must be measured

with the switch latched to provide transmission from port 3 to port I.

Similarly, the isolation from port I to port 2 is measured with the

junction switched to provide low insertion loss path from port 2 to
port I.

The performance data under room temperature conditions, thermal

performance, and the results before and after vibration tests are shown

and discussed in Section 3.5.

3.3 INSTRUMENTATIONANDTEST SETUP

The test setup for the development and final performance tests of

the Ka-band isolators and switch was prepared and calibrated as de-

scribed in Section 2.6 describing the K-band switch development.

3.4 SWITCHACTUATORCIRCUIT

The Ka-band waveguide ferrite isolator/switch is actuated and

latched to transmit the RF energy from port 2 to I or from port 3 to I

by a current pulse with proper polarity through the single-turn wire

loop in the switching junction ferrite. The connection to the remote

control switch, or relay, is provided by a polarized two-pin connector

at the switch housing. The delivered isolator/switches are equipped

with simple capacitor discharge control units and connecting cables.

The switch control unit consists of a housing; momentary pushbutton

switch; double-pole, double-throw toggle switch; a socket for connection

to the 24 Vdc power supply; and a188 _Fcapacitor, trickle-charged

through a 5 K_ resistor. The double-pole, double-throw switch position

determines the polarity of the current pulse, and the pushbutton switch

discharges the capacitor through the switch actuator loop, switching the

direction of the RF power flow and latching the switch.
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3.5 RESULTSAND TEST DATA

The isolator/switch tests were performed in accordance with the

test matrix shown in Table 3. Serial number two was vibration-tested,

both sine and random, while serial number three was temperature-tested.

-- Figures 33, 34, and 35 are room temperature swept frequency

responses of isolator/switch serial number three showing VSWR,

isolation, and insertion loss, respectively. VSWRis about 1.1:1, or

better, over ~85 percent of the operating band, decreasing to about

_ 1.23:1 at the low frequency end. Isolation between the output port I

and input ports 2 and 3 of 43 dB exceeds the expected 35 dB requirements

and 40 dB development objective. Insertion loss through two junctions

(switch and isolators) varies from about 0.2 dB to 0.45 dB at the edges

of the 27.5 to 30 GHz operating band. The swept frequency responses of

-- the Ka-band waveguide switch are shown in Figure 36. The thermal

performance of the isolator/switch serial number three is shown in

-- Figures 37, 38, and 39.

The thermal test was initiated by subjecting the isolator/switch

assembly to the survival temperature of -40°C for three hours. The tem-

perature was then returned to room temperature (23°C) and the isolator/

switch was connected for the return loss test. The test data was taken

at the input ports 2 and 3 at room temperature (23°C) showing no mea-

-- surable deviations from the original acceptance test data. The temper-

ature was increased to 56°C, stabilized for one hour, and the swept fre-

_ quency response recorded. Then the temperature was lowered to I0°C,

stabilized, and the swept frequency response recorded. The temperature

of the test chamber was then returned to room temperature level and the

initial reference levels were verified. The same procedure was then

repeated at the other input port. The swept frequency responses of the

isolator switch during the thermal test are shown in Figure 37.
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Figure 37. Thermal Performanceof Ka-Band Isolator/SwitchSerial No. 3
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_ Figure39. ThermalPerformanceof Ka-BandIsolator/Switch
SerialNo. 3

_ The isolationfrom output port I to input ports 2 and 3 was mea-

sured with the switch actuatedto provide low loss transmissionfrom

port 2 and port I during the isolationtest from port I to port 2 and

similarlyfrom port 3 to port I during the isolationtest from port I to

port 3. The swept frequencyresponses,recorded at room temperature

(23°C),56°C, and I0°C are shown in Figure 38.

-- " The insertionloss from input ports 2 and 3 to output port I was

referencedfor better clarityof the test data to the insertionloss

_ level at room temperature. The performanceat 10 and 56°C was recorded

after the swept frequencyresponse at room temperature(23°C) was estab-

_ lished as a zero referenceand +0.2 dB limits. The swept responsesat

10° and 56°C are shown as deviationsfrom room temperatureperformancein

Figure 39.
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The Statement of Work specified that the sine and random vibration

inputs be applied simultaneously for three minutes in each of three

orthogonal axes. It should be noted that this method was discontinued

several years ago, and the current practice is to perform the sine and

random vibration tests as two separate tests. The switch serial number

2 was first subjected to the sine vibration test input levels specified ....

in the Statement of Work (3 G rms) for three minutes along each of the

three orthogonal axes. This test was followed by the random vibration

for three minutes along each of the three axes. The random vibration

level of 28.3 G rms was monitored and recorded. The records of the sine

and random vibration input levels are shown for each test and each axis

in Figures 40 through 45.

After the vibration tests, the switch was subjected to functional

tests. The swept frequency test data of VSWR,isolation, and insertion

loss before and after the vibration test shown in Figures 46 and 47

indicates that the switch is impervious to the specified vibretion test
levels.

The protection from damaging thermal or vibration stresses is

provided in all TRWferrite junction components through a highly

effective, yet very simple structural design. In the junction designs

where the junction components are bonded with epoxy and rigidly mounted

between the broad walls of the waveguide housing, the large difference

of the coefficients of thermal expansion between the ferrite and the

aluminum or copper alloy housing results in compressive stresses at low

temperatures and tensile stresses at high temperatures. Also during the

random vibration, especially at input levels exceeding 20 G rms, the
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Figure41. K-Band Switch;Sine VibrationTest; Axis Y-Y
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Figure 43. K-Band Switch;Random VibrationTest; Axis X-X
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Figure 44. K-Band Switch; Random Vibration Test; Axis Y-Y
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Figure45. K-Band Switch; Random VibrationTest; Axis Z-Z
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bonded and rigid junctions have proved highly unreliable. The essential
differences in the TRWjunction construction are:

• Absence of any bonding materials

e Mechanical indexing and interlocking of junction parts to form
junction assembly through a boss and recess joints

• High friction damping provided for critical junction parts

• Precise positioning of the junction within the component
housing, ensuring a symmetrical and balanced electrical
performance of all ports.

In addition to greatly simplified assembly, the boss and recess

indexing provides high friction damping for the junction parts and

completely eliminates the possibility of resonances within the frequency

ranges of the vibration tests. The absence of these resonances

precludes the transfer of high levels of destructive energy from the

housing tothe junction parts during shock and vibration. Numerous

qualification tests performed to date on TRWferrite components did not

register a single problem or failure, demonstrating clearly the

reliability of the structural design in providing an effective

protection for junction oarts normally considered brittle and fragile.

The final swept frequency responses, VSWR, isolation, and insertion

loss are shown for serial number 2 isolator/switches in Figure 48 and for

serial number 3 in Figure 49. The outline of the Ka-band isolator/switch

assembly, including the schematic of the switch actuator connection is
shown in Figure 50.
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Figure48. Ka-BandIsolator/SwitchPerformanceAfter Environmental
-- Tests, Serial No. 2
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Figure 49. Ka-Band Isolator/Switch Performance After Environmental
Tests, Serial No. 3
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Figure 50. Ka-band Isolator/Switch Outline
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4. CONCLUSIONSANDRECOMMENDATIONS

The development of the Ka-band waveguide ferrite switch resulted in

a component design with excellent performance, which met or exceeded the

- electrical design objectives and environmental qualifications tests.

At the lower K-band range, difficulties encountered in meeting

bandwidth and insertion loss objectives led to a thorough investigation

of the problems which were found to be material-related. This effort

led to several significant advances in the area of ferrite component

design, including:

• The relative dielectric constant of ferrite, previously
considered unimportant, was demonstrated to be the dominant
design parameter.

• The relative dielectric constant determines the junction
-- dimensions for given frequency response, junction volume,

operating bandwidth, and insertion loss.

• The relative dielectric constant with significantly too low
value leads to a large junction with distorted proportions,
degradation of bandwidth, and insertion loss performance.

-- • Component performance for several frequency ranges, including
frequencies above 50 GHz, may be significantly improved by
modifications of ferrite dielectric properties. Previous
efforts were devoted exclusively to increasing the saturation
magnetization.

_ • Analytic design methods were modified to determine the
material parameters to satisfy the performance requirements.
Previous approaches permitted performance optimization only
after the material was chosen, with primary emphasis on

-- magnetic charcteristics.

• The analytic work disclosing the dominant effects of the
-- relative dielectric constant has been verified experimentally

by composite junction design.

• An examination of previous development efforts disclosed
-- effects of material selection on component performance and

development cost. Inadequate materials invariably led to poor
performance and high development cost.

• An investigation of methods to modify and control the ferrite
dielectric properties, in addition to experimental work,

_ indicated these properties may be modified by additives with
high polarizability.
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The improvements resulting from the analytic approach identified

the significantly too low relative dielectric constant of the nickel

ferrite, which had to be used to satisfy the high power requirements, as

the cause of the bandwidth degradation. The analytic work, verified by

experimental measurements of the composite junction, also identified the

relative dielectric constant as the dominant parameter in the design of

junction components. This work was also instrumental in establishing

new concepts to improve ferrite component performance through efforts in

the ferrite material technology. Specifically, these improvements may

be obtained by modifying the dielectric properties of ferrite materials.

Until this time the relative dielectric constant of ferrites has been

considered an unimportant design parameter, and the efforts in the area

of ferrite materials technology were exclusively focused on the magnetic

properties. The preliminary material efforts indicated that the

dielectric properties of ferrites may be modified by adding elements

with high polarizability. These new materials are needed to satisfy not

only the design requirements at K-band, but also at all frequencies

above 50 GHz, where to date increasing the saturation magnetization was
deemed the only possible solution.

The concurrent developments of the K- and Ka-band switches, in

contrast to separate efforts, attempted at different times and under

different conditions, provided an unusual opportunity to evaluate the

impact of ferrite materials properties on the component performance,

degree of technical difficulty and development cost. Normally, a design

effort of two essentially similar components for two frequency bands

would be expected to be technically simpler at the lower frequency

range and to produce slightly better performance results. This clearly

was not the case in this development. The Ka-band effort, at higher

frequency but with adequate material, was significantly simpler and led

to excellent results. On the other hand, the K-band effort, excluding

the analytic work and the material effort, was much more difficult and

did not meet the design objectives. In retrospect, understanding the

material's related problems, it is easy to see why these difficulties
were underestimated.
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The possibilities to identify and understand the sources of the

material-related problems were obscured by the formerly used design

procedures and the known excellent component performance at both higher

and lower frequencies. The design approach, which started with the

selection of material with proper magnetic characteristics, considered

the relative dielectric constant as a fixed design parameter. This

approach aimed at the optimum component performance with the selected

material, and lacked the capability to determine what material

-- parameters were, in fact, required to satisfy the given performance re-

quirements. Where, by coincidence, the electric and magnetic properties

were nearly ideal, excellent performance was easily obtained, while with

the combination of dielectric and magnetic properties too removed from

optimum (as in the K-band case), the design approach failedto produce

the expected performance and could not positively identify the sources

of the problem.

Three distinct improvements in the design process were necessary to

fully recognize the impact of the relative dielectric constant. First

was the introduction of the concept of the junction ferrite as a

_ dielectric resonator, supporting the propagation of two modes. The

resonances of these two modes, or their separation in frequency,

determines the operating bandwidth of the junction. The second step was

the recognition that the level of saturation magnetization must provide

phaseshift over frequency range, which is larger than the frequency

separation between the resonances of the dielectric resonator. Only

under this condition may the two modes be coupled, in a manner similar

to two coupled amplifiers, to produce a single wideband response with

two ripples in isolation and VSWRresponses. The third step was the

reversal of the design process. Rather than selecting the material

without being certain that it is, in fact, adequate to achieve the

required performance, the improved approach first determines the values

of the saturation magnetization and the relative dielectric constant

required to produce the given frequency responses.

This analytic approach to verify the material requirements of

- ' existing components with excellent performance demonstrated that nearly
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ideal combinations of material properties were found for these designs

strictly by coincidence. The presently available materials were

developed decades ago and long before the present requirements could be

anticipated. Several materials with adequate saturation magnetization

for the K-band design are available, but their values of relative

dielectric constant at _ : 13 are significantly below the requiredr
value of _ : 18, or higher.r

Clearly, in applications where materials with the required physical

properties are not available, a degraded component performance is

unavoidable. In addition, this degraded performance is obtained with a

higher degree of design difficulty and at significantly higher
development cost.

In most current applications, especially in systems using solid

state devices where wideband performance and low insertion loss of

ferrite components are among the key considerations, the degraded

ferrite component performance imposes major limitations on the system

designs. These limitations may be removed and significant further

progress obtained through efforts in the area of ferrite materials

technology.
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